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Abstract 

Electrification of the mobility sector is necessary to make a lasting impact on emis-

sions from an otherwise entirely dependent fossilized fuel sector. A key component 

to electrification is ensuring that electric vehicles do not disrupt an already complex 

energy grid system. This thesis focuses on vehicle to grid (V2G) scenarios in which 

EVs are used to supplement peak demand periods in the grid while also smartly 

controlling when the battery is charged up again. This raises the question of, how 

does the extra charging and discharging affect the battery life? Currently EV man-

ufacturers offer warranties anywhere from 8-10 years when the battery gets to 80% 

of its original capacity. This metric is compared overall to several usage profile and 

vehicle to grid (V2G) scenarios to determine the effects on battery degradation with 

the goal to demonstrate and understand its impact on the battery. 

 

Six weekday usage profiles, with weekend profiles considered, were constructed 

taking into account driving and charging habits when compared to grid data dictat-

ing peak energy demand periods. These profiles were outfitted into an AMESIM 

model, including a semi-empirical battery ageing model, calibrated to a 71 kWh bat-

tery electric vehicle (BEV) using a temperature estimation, charger, a generic nickel 

manganese cobalt (NMC) battery and driving cycle array. Finally, parameter effects 

within these profiles, such as power level, state of charge (SOC) limits, and fre-

quency, were hypothesized on and compared in terms of capacity loss. 

 

After running the model for 1 year, the results show that V2G does not significantly 

add battery degradation versus simply driving and charging on a normal use sched-

ule. There is a 0.35% capacity loss percent difference between the reference no V2G 

scenario and the heaviest V2G use case, of 2 V2G discharge cycles per day. Over 10 

years this would be about 12.5% versus 16.0% capacity loss, still within 20% of the 

original capacity. These results support the usage of V2G and demonstrate that the 

battery capacity loss is limited and upon the use of smart SOC management could 

even be less than non V2G scenarios.  

 

Keywords  Vehicle to Grid (V2G), Smart Charging, Bidirectional charging, Usage 

profile, Battery degradation, Peak demand, Grid management 
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1 Introduction 

 
Electrification of the mobility and stationary application sectors, especially 

automobiles and grid side demand, is a major trend to reduce the reliance on 

fossil fuels to curb the emissions impact on the environment. Emissions from 

the energy sector make up 39.3% of the global total with transportation mak-

ing up an additional 17.9% [1]. This is over half of global emissions. Taking 

advantage of solutions to leverage change in both sectors is highly sought af-

ter. Electric vehicles have begun to proliferate the market, with a goal of 60% 

of new vehicles sold to be electric by 2030 [2]. There will be nearly 350 mil-

lion EVs by 2030. This means there will be an increase in demand for charg-

ing infrastructure as well as grid side support for all this newfound demand. 

Renewable energies like wind and solar, have become the norm set to make 

up 5,022 GW by 2026 which is nearly 80% more than the 2020 levels [3]. 

One main issue still facing these technologies is the ability to store energy 

effectively. The vehicle batteries do not have as long of a lifetime as customers 

desire to feel comfortable in their investment since battery replacements 

make up nearly half the cost of the vehicle and the renewable energies are 

intermittent, supplying energy during off-peak demand hours. Now, original 

equipment manufacturers (OEMs) / pure electric vehicle (EV) manufactur-

ers and grid side aggregators / distributors alike see an opportunity to tackle 

both problems at the same time with vehicle to everything (V2X) capabilities. 

 

This concept is most commonly called vehicle to grid (V2G), which is the abil-

ity to bidirectionally charge / discharge the vehicle [4]. Most battery electric 

vehicles (BEVs) at the moment, outside of a select handful, can only be 

charged from the grid when they are plugged in. This is helpful for the con-

sumer but not so much for grid flexibility. With the number of EVs expected 

to rise so quickly, the grid will need to be able to keep up. Driving habits dic-

tate charging times and for most vehicle owners their most consistent habit 

is commuting to work. This leaves vehicles needing t0 charge all at the same 

time which can put an immense load on the grid [5]. However, the peaks will 

be worse than the load if it can be spread out. This is where smart charging 

and V2G can come in to play. Smart charging offers the ability to delay charg-

ing to off-peak hours and charging up to be ready for a commute instead of 

relying on higher power levels to charge. Then, V2G allows the vehicle to pro-

vide energy to the grid during peak times so that we do not need to run costly, 

both monetarily and environmentally, peaker coal plants to make up the dif-

ference.  

 

Current projects involve certain vehicles, like Nissan Leafs, that offer V2G 

capability already thanks to their CHAdeMO charging system. The ongoing 

research is mostly related to the support of the grid but less so on the effects 
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on the EVs themselves [6]. This thesis aims to target specifically the battery 

degradation side of V2G. OEMs specifically are interested in this aspect be-

cause it could potentially put extra stress on the battery cells, with more 

charge / discharge cycles done per day, decreasing its lifetime. Battery deg-

radation can be broken down into two main consequences, capacity and / or 

power fade that is influenced by many accelerating factors, such as time, tem-

perature and cycling [7], [8]. A common set of metrics that are compared are 

the state of charge (SOC), remaining quantity of electricity available in a cell, 

or depth of discharge (DOD), how much of the battery has been used, in re-

lation to the state of health (SOH), the ratio of the max battery charge to its 

rated capacity [9]. These metrics are commonly measured in experimental 

tests of real battery cells but also in models that are calibrated to predict how 

a battery will behave over time in specific conditions.  

 

This thesis is focused on V2G market / project research combined with the 

modelling of an EV battery system over a 1 year period in order to understand 

battery ageing. The 1 year results are then used to understand the impacts on 

a 10 year warranty period. The modelling is done with an existing simple Sie-

mens AMESIM model, that includes a semi-empirical battery ageing model, 

that considers calendar and cycle ageing. The V2G research was applied to 

the construction of usage profiles, taking into account driving cycles, charg-

ing instances, and optimal V2G discharging times based on grid peak de-

mand periods. The inclusion of the aforementioned components calibrates 

the model.  

 

The usage profiles were built to adhere to common driver commuting and 

charging habits combined with grid side metrics for peak demand, all within 

the European Union (EU). They can easily be extrapolated to a global scale 

though since driving commute practices are similar across the globe. The six 

weekday scenarios are as follows: two baseline ones with no V2G, two with 

one V2G period of 4 hours in the evening energy peak and two with two 2 

hour V2G periods in the morning and evening peak windows. Weekend sce-

narios were also constructed to be included in the simulation to fit in with the 

weekday models. There are two stay at home ones, two for quick errands, two 

for short road trips and one longer road trip that only occurs 5 times a year. 

Then there are an additional set of parameter changes per scenario with 

charging frequency, SOC limit and power level differences. Temperature is 

estimated based on a day / night cycle with seasonal variations. Running the 

model with these profiles serves to answer the following questions which are 

explored from an OEM, grid operator and consumer perspective:  

 

1. Does V2G make sense to implement from an EV battery health stand-

point over a 10-year warranty period? 

 



 

11 

 

2. Which driver usage profile scenario adjusted for charging / discharg-

ing frequency, SOC limit, or power level make the biggest impact on 

battery degradation in terms of capacity loss?  
 

These questions are set to be answered by the validity of the created usage 

profiles, the accuracy of the model components, and the graphical capacity 

loss results that are produced from the model. The results can be classified 

by scenario and parameters to help provide OEMs and battery manufacturers 

with key insights for future battery technologies and EV optimizations.  
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2 Vehicle to Grid (V2G) System  
 

The concept of V2G is not new, it was originally thought of as a concept back 

in 1997 long before EVs were mainstream [10]. This idea was promised as a 

solution to avoid overloading the grid with large amounts of EVs but also a 

way for off grid homesteads to remain disconnected from the grid with noth-

ing but solar panels and an electric vehicle. The idea gained traction in 2o11 

in Japan with the Fukushima nuclear disaster that caused rolling blackouts 

across the country. People wanted a way to have backup power for their 

homes plus a way to keep critical services active in emergencies. Nissan then 

put a lot of focus into adding the capability into their EVs, like the Nissan 

Leaf. The CHAdeMO charger system was born and most projects to this day 

involve this type of system. One issue is that CHAdeMO systems are not pop-

ular across the EU or the US. The current standard is the central charging 

system 1 and 2 (CCS1 / CCS2). Taking that into consideration the V2G studies 

involving CCS are increasing [6].  

 

V2G at the core is a suite of technologies that allow for an EV to bi-direction-

ally receive or provide energy. The main use cases are to shave (lower) peak 

energy demand windows. Today the standard is just to have vehicles receive 

charge when connected to electric vehicle supply equipment (EVSE), like 

chargers and inverters. V2G adds complexity to an otherwise simple system. 

When a vehicle is plugged in today, the systems onboard can check the SOC 

and determine how much charge to take on depending on the available 

power. This is determined by the maximum rate power of the onboard 

charger of the vehicle but also that of the charging system to be plugged in. 

The main technologies involved in V2G are the grid itself, charging strategies, 

and electric vehicles.  

 

2.1 Energy Grid 
 

V2G by definition relates to the use of the vehicles in conjunction with the 

grid to help balance peak demand. The other added benefit is the use of the 

system to store excess renewable energies which have been proliferating the 

market exponentially over the last decade. In order to achieve 100% electri-

fication, renewables will play a significant role, but they are intermittent, oc-

curring during off peak windows. Solar occurs during the middle of the day 

and wind is even more sporadic depending on weather. At the moment this 

means that there is underutilized or even wasted energy throughout the day. 

There are many studies that focus on the shifting of these lulls to lower peak 

demand. One big focus now is to use the readily available batteries in EVs to 

store, for example, solar energy during the day and then discharge during the 

evening peak window. Grid management is key to ensuring that the 
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transition to 100% EVs does not overload the grid. If all the vehicles in the 

EU were to go EV, there would be 250 million vehicles, with approximately 

0.15 kWh per km [11]. With the yearly 12000 km average driving distance 

there would be an 1800 kWh of charging per year per car [12]. In total to 

charge all the vehicles for a year would require 450 TWh would be needed. 

This is 16.2% of the total grid energy generated in the EU, at 2785 TWh [13], 

so it would technically be feasible to charge all vehicles at once outside of 

peak demand hours. The main issue it that nearly everyone arrives home at 

the same time from work and then their EVs are set to charge while lights, 

ovens, and endless electronic devices are put to use at the same time. This is 

how the concept of charging strategies could be a solution.  

 

2.2 Charging Strategies  

 
Charging strategies largely come down the users’ habits and schedule, plus 

the availability of charging infrastructure and its power capability. Refueling 

gasoline / diesel is second nature these days and is quite standard. A driver 

fills up when they are low or in advance of a large trip. There is rarely any 

worry about whether or not there will be a place to refuel and the refueling 

process takes minutes so it does not hinder travel time. These factors are 

what charging infrastructure is needing to figure out, both in terms of tech-

nology but more importantly proliferation speed of the chargers themselves. 

This is more for public charging infrastructure but eventually V2G could be 

implemented in these situations as well. The more ideal place for V2G is the 

work or home, where vehicles will be spending a long time idle. Most con-

sumer electronics are used during peak hours and EVs would be a large load 

when set to charge so in order to combat this, smart charging and charging 

levels are necessary. 

 

2.2.1 Smart Charging 

 

Smart charging is a term that is popularly used to describe controlling with a 

management software when an EV charges or not and at what speed. This 

system can either delay charging until it is suitable for the grid or provide 

more or equal energy to certain vehicles in specific locations when there is 

excess solar [14]. Smart charging allows charging infrastructure to remain as 

is because even if more vehicles show up to a set of stations the energy can be 

appropriately distributed [15]. The combination of data connections is what 

allows smart charging to accomplish these feats [16]. The ability of V2G to 

both charge and discharge adds variables but with the data management it is 

still feasible. Therefore, if a company is working on V2G there is also a smart 

charging component to it. V2G is essentially a smart charging and discharg-

ing system.  
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2.2.2 Charging Levels  

 

There are three common levels of charging, 1, 2, and 3. Level 1 is slow trickle 

charging coming in at about 1 - 1.8 kW, which is almost unusable for an EV 

except as back up.  Level 2 charging is the current standard for the home, 

work or public EV charger power level. It is in the 3 - 22 kW range with the 

trend towards an 11 kW norm. Most installed chargers today are of this level 

2 region which goes up to 22 kW. Level 3 charging then is the fast or rapid 

charging which can be up to 30 - 360 kW [17]. With each level battery degra-

dation increases due to the increased stress applied to the battery over such 

cycles. When V2G is put into practice then a logic system needs to be applied 

so that the system knows when to send power to and from the grid. This adds 

extra complexity, and therefore cost, which is still to be determined where 

that cost will be accounted for- the vehicle or the charger. The vehicle means 

it is a consumers cost while in a charger means it could be a cost of the charger 

company or even the purchaser of said charger. The other challenge is deter-

mining what happens to the EV battery during these V2G periods. The addi-

tional cycling will cause more degradation but how much and how fast is a 

raised question. In order to understand this phenomenon, the causes of bat-

tery degradation must be analyzed. In addition, the type of EV needs to be 

taken into consideration, which in turn determines the type of battery in the 

system.   

 

2.3 Electric Vehicles 
 

Grid infrastructure changes less often than the vehicle market so the change 

made for the grid needs to match the EVs. From the perspective of OEMs, the 

focus is to make sure their products are reliable which is why the idea of a 

battery degrading faster than it should is not desirable. Needing to make 

space within the vehicle for more capable charging systems could potentially 

impact design. Other factors that play a part in how V2G can be utilized is 

accepted power level of the vehicle. Many OEMs are making the business de-

cision whether to include the highest portions of level 3 charging. This is in 

part because of cost but also for the sake of the vehicles warranty. The most 

critical and expensive portion of an EV is the powertrain, making up about 

51% of the total cost. The powertrain includes the battery packs, inverters and 

controllers with most of that 51% coming from the battery itself [18]. Due to 

this fact, consumers maintaining the battery health is of paramount im-

portance. At the same time the OEMs do not want to misjudge how long the 

battery will last or allow extra strain to be applied to it because that would 

reflect poorly on the company. The fact that legislation is in place for no new 

internal combustion engine vehicles (ICE) to be sold by 2035 across the EU 

[19] and many American states [20] leaves OEMs to change their entire line-

ups in a short period of time. This makes this research even more important 
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to the future of EV manufacturing and how batteries will be designed. The 

batteries need to have high energy density in order to be as small as possible 

to fit into the vehicle while still offering high performance and range. Looking 

at the characteristics of a battery led to the tracking of the right metrics in 

order to accurately determine battery degradation from V2G instances.  
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3 Battery Degradation 
 

The main EV component is the battery and it also determines the perfor-

mance and range of the EV which are the parts that directly impact the user 

experience. Then the user experience reflects back on the EV manufacturers 

first and foremost, not necessarily the battery companies, so it is paramount 

to get the degradation research right. This way the proper warranty and ap-

plications can be offered to customers. Reliability plays big part in the battery 

degradation research focus. 

  

In order to understand battery degradation, it is important to understand 

battery assembly. Batteries consist of two electrodes, an anode and cathode, 

electrolyte, and separator, in addition to a housing mechanism. Using lith-

ium-ion batteries as a reference, the anode is usually graphite that gives the 

lithium-ions a place to insert when there is a charge. The cathode is an active 

material consisting of a lithium mix that provides the lithium-ions. The elec-

trolyte is a lithium salt mix that allows for the ease of movement of li-ions 

[21]. The separator is a plastic material usually made of polyolefin to allow 

ions to pass but not anything else so that the odds of a short circuit are min-

imal. Short circuits are a form of instantaneous battery degradation when the 

anode and cathode touch [22]. This phenomenon is more often than not oc-

curring in a quick period of time like a puncture of the cell. Longer term short 

circuits can happen thanks to lithium plating that is listed a degradation 

mechanism in Figure 1. The lithium plating continues to grow off of the edge 

of the active material until a dendrite is formed. This dendrite can eventually 

pierce the separator causing a short circuit [23].  

 

The main battery in the EV market currently are the lithium-ion chemistries, 

either lithium iron phosphate (LFP) or NMC. NMC wins out over other chem-

istries thanks to higher energy density, power density and charging proper-

ties [24]. This thesis study was conducted using a generic NMC lithium-ion 

cell but battery degradation is a factor irrespective of battery chemistries and 

applications. Therefore, degradation needs to be considered before any addi-

tional usage / charging / discharging strain is put onto a battery.  

 

3.1 Causes 
 

Calendar and cycle ageing are the two main overarching themes of battery 

degradation. Calendar ageing is simply based on time and can be classified 

as the lost capacity during storage whereas cycle ageing is due to repeated 

charging and discharging. The key aspects of battery degradation are related 

to acceleration factors, degradation mechanisms, degradation modes and the 

consequences of all those [7]. These can be represented in Figure 1. 
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Figure 1: Battery degradation components [7] 

 

Starting from the consequences and working backwards there are two conse-

quences, power fade and capacity fade. Power fade is the loss of power output 

available and capacity fade is the loss of capacity compared to the original 

battery levels. These then are the metrics which can be measured easiest to 

determine battery degradation. In terms of this thesis the main focus output 

for comparison is only capacity fade. Different models can output different 

metrics and capacity fade is the straightforward result from the semi-empir-

ical model, this will be discussed in further detail in section 3.3 below.  

 

As shown in Figure 1, the consequences come from the degradation modes 

which are loss of lithium inventory and loss of active material. Both impact 

capacity fade so it is a bit more accurate of a metric than power fade which is 

only influenced by the loss of active material. Active material is located in the 

cathode as the lithium portion and it accounts for the number of lithium-ions 

available for intercalation [25]. As the active material shrinks there is less 

space for the lithium-ions to go to. The loss of lithium inventory happens over 

time as more and more lithium-ions become stuck in the graphite anode 
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layers, like a leak draining a basin of water. This lowers the capacity further 

since less and less of the ions are moving during charge and discharge [26].  

 

The degradation mechanisms are what perpetrate the degradation modes. 

Solid electrolyte interphase (SEI) growth, chemical decomposition / dissolu-

tion reaction, and lithium plating impact the loss of lithium. Then the addi-

tion of structural changes during cycling and subtraction of SEI growth work 

to enact the loss of active material. The SEI layer is an important factor that 

initially helps cell performance, without it there is a harder time for the lith-

ium-ions to intercalate in between the graphite sheets of the anode. It forms 

on the edge of the anode as some of the electrolyte solidifies during formation 

of cells at slow current rates (C-rates) [27]. The issue with the SEI layer is 

that it continues to grow as the cell ages, eventually making it harder for ions 

to cross, which in turn creates a loss of lithium inventory and capacity fade.  

 

The acceleration factors are plenty and are the main focus of this thesis be-

cause they create the mechanisms and modes which eventually lead to the 

consequential mechanisms that can be tracked from outside of a cell, via tests 

or by a model. Time is a constant accelerator of the SEI layer. All the factors 

from temperature and cycling effect the degradation of the battery the most. 

High temperature causes the electrolyte to break down between the elec-

trodes leaving the SEI to form quicker as well. Low temperatures during cy-

cling cause lithium plating. A cycle of a battery is one charge and discharge 

so large cycling numbers put the system into stress more often [28]. Large 

cycling currents leave the system during cycles at a higher stress, since there 

is an optimal current level that is best for the battery. During quicker charg-

ing sessions, this is increased. Keeping the battery at a high or low SOC for 

extended periods of time can cause expedited chemical decomposition. In-

stances of large DOD also leave structural changes [29]. Each of these factors 

that occur with regular use, especially with driving use cases and charging 

strategies, can be varied in order to achieve different levels of consequences. 

The tests and models used in these types of studies and how they are applied 

in the V2G context is continued in the following two sections, 3.2 and 3.3.  

 

3.2 Standards / Tests 
 

Due to the prevalence of battery degradation each and every cell must be 

checked for compliance with the standards. These standards set the baselines 

for each chemistry type. What starts with testing at lab scale becomes very 

important when batteries hit Gigafactory scale for mass production. Battery 

cells are everywhere but especially at the large cell count present in EVs safety 

becomes a big concern in hand with degradation. Most testing of cells comes 

in the form of cycling them over and over again to understand cycling ageing. 

Companies will run formation cycles, test those, then run cycle and 
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impedance tests within a cycler. The comparisons between time, tempera-

ture, various C-rates and charge / discharge cycles become how the cells are 

verified for performance. Usually, capacity is plotted against voltage to show 

the batteries difference at different C-rates for discharge / charging [30]. 

Then for calendar ageing it becomes easier to enter the details of the cell into 

a model because then the results will come out much quicker. The model used 

in this thesis could do 10 years’ worth of simulating in about 4 hours. The 

simplest way to measure battery degradation is to use capacity or power fade. 

Other common ways are remaining useful life (RUL) or to combine capacity 

and power fade into degradation cost [31]. Since the AMESIM semi-empiri-

cal model does not take into account power fade the study will focus on ca-

pacity fade as the main metric. This is essentially a measure of state of health 

(SOH) because it is current capacity compared to the initial capacity.  

 

3.3 Models 
 

There are several categories of models for the use of battery degradation 

which all provide a different accuracy, complexity level, and data depend-

ency. Due to this the models are all best used for specific applications. The 

categories can be broken down into theoretical models, empirical models, 

and semi-empirical models, each of which have their own subcategories as 

detailed by Figure 2.  

 

 
Figure 2: Battery degradation model comparison [7] 

 

3.3.1 Theoretical Models 

 

First, the theoretical models can output both capacity loss and power fade. 

The focus is on the use of equations reflecting the electrochemical and phys-

ical principles that impact battery lifetime and even performance [32]. Spe-

cific battery design features, like porosity or electrode thickness, are adjusted 

to understand their effects on degradation. Due to the inclusion of these fea-

tures the model’s accuracy is highly dependent on the availability of this 
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information. The models also tend to focus more on main degradation mech-

anisms, like SEI growth, than some of the others so they are best for mecha-

nism analysis. 

 

3.3.2 Empirical Models 

 

Empirical models rely more on large datasets and equivalent circuits than 

equations like theoretical models. There are also many types, so the types of 

degradation metrics are not necessarily both calendar and cycle ageing. The 

types are Arrhenius-based, cycle counting, Ah / Wh throughput, regression 

and artificial neural network (ANN) based models.  

 

The most common battery degradation model is the Arrhenius-based model. 

They can also be classified as semi-empirical since they combine parameter 

estimation with physical equations. This model using the Arrhenius equation 

takes into account stress factors, at the most basic level just temperature, and 

how they factor into the ageing rate [33].  

 

Cycle counting models focus on the number of cycles until a battery is con-

sidered at end of life. This is generally agreed upon in the industry for mobil-

ity applications as 80% of its initial capacity, 1500-2000 cycles, or in the 

161000 – 322000 km range [34], [35]. Where this value starts to change is 

when the DOD is adjusted within those cycles so that is the main factor in 

cycle counting models.  

 

Ah / Wh throughput models are more interested in the capacity fade due to 

how extreme charging / discharging events are. Typically, only charging 

throughput is looked at but V2G scenarios could easily be incorporated. The 

battery can only withstand a certain level of throughput for both Ah, current 

charge, or Wh, energy, and therefore it is tested until it fails [36].  

 

Regression models are just an analysis of specific stress factors using regres-

sion methods, such as polynomial or linear. The expressions for the type of 

data are chosen and then there is a fit done to them to represent the battery 

degradation [37].  

 

Lastly, the ANN based models sift through a lot of input and output data to 

make comparisons which is a form of guided or unguided training of the 

model. Accurate datasets are necessary as they determine the accuracy of the 

model but also of the ANN system itself. The other empirical models are 

based on equations so the parameters can easily be changed to incorporate 

various battery chemistries but with the ANN this would require entirely new 

data sets and training [38].  
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Overall, empirical models are better for system planning and operation anal-

ysis than theoretical models but also useful for faster calculations needed for 

on-board estimations. The on-board estimations help with calibrating bat-

tery management systems, these keep track of SOC and SOH for the user but 

also to keep the battery healthy for longer. The issue with empirical models 

is that many of them have low accuracy due to a low level of complexity in the 

incorporated data.  

 

3.3.3 Semi-Empirical Models 

 

Semi-empirical models offer the best of both theoretical and empirical mod-

els by taking into account mathematical theories and also datasets from ex-

periments. The higher level of accuracy compared to empirical models is a 

generally longer computational time. This is the reason that these models 

cannot be used for battery management systems as they are too slow but also, 

they tend to be offline. Common factors included are discharge rate, temper-

ature and cycle numbers [39]. The semi-empirical model offers higher accu-

racy but also enough complexity to have the factors most associated with V2G 

included. Therefore, the semi-empirical model is the most appropriate for 

the sake of this thesis centered on the charging / discharging heavy scenario 

of V2G.  
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4 Research Methodology 
 

In order to create a proper comparative picture of the effects of V2G, first 

usage profiles needed to be created. These profiles would demonstrate what 

a typical EV and its battery would go through on a daily / weekly / yearly 

basis. The profiles can be split into weekday scenarios and weekend scenar-

ios. This distinction is important because during the week schedules are 

pretty routine for commuters heading to work and back home. The weekend 

can be much more varied involving even instances of rapid charging. The us-

age profiles once constructed gave the semi-empirical model the direction to 

output the battery degradation metrics, taking into account both calendar 

and cycling aging, in terms of capacity fade.  

 

4.1 Usage Profiles 
 

The goal of the usage profiles was to create as close to real life scenarios based 

on a combination of research into prior studies, interviewing EV drivers and 

the balancing act between keeping the vehicle always charged and keeping 

the battery healthy. The main assumptions, some researched and the others 

created from the research, were as follows:  

 

1. Most drivers would follow battery health recommendations set forth 

by the car manufacturer (SOC max/min of 90/10% or 80/20%) [40] 

2. Weekly driving consists primarily of commuting to and from work  

3. The battery size of the vehicle is 71 kWh of useable energy (right at the 

current average for EV battery size ~65 kWh [41]) 

4. The grid would only need V2G during peak periods [42] 

5. Users’ vehicles are available for V2G for 95% of a normal work day 

 

4.1.1 Weekday Scenarios 

 

The weekday scenario was the main focus because this takes up majority of 

the year. Five out of 7 days in the week are dedicated to regular commuting 

patterns. The average EU commuter drives for an average of 30 minutes to 

work in the morning with a subsequent 30 minute drive back home in the 

evening [43]. Analyzing data from the EU showed that most work schedules 

are from 09:00 – 17:00 [44]. Therefore, a commute period was established 

from 08:00 – 08:30 and from 17:00 – 17:30 each weekday.  

 

Taking into account a generic NMC battery vehicle with 71 kWh of useable 

energy a 30 minute and 23 km distance worldwide harmonized light-duty 

test procedure (WLTP) was run in a more complex thermal EV model. This 

includes some low, medium, high and extra high-speed phases of driving, 
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simulating a bit of city and highway driving within the commute. This will be 

explained in further detail in section 4.2 describing the AMESIM semi-em-

pirical model and the components that make it up. 

 

The weekday scenario can be further broken down by when an EV user de-

cides to charge, when their vehicle is available for V2G and when the grid 

could potentially require V2G. EV users can be broken into a couple catego-

ries for how they like to charge, overnight plug in only, always keeping the 

vehicle topped up, just charging when absolutely necessary or a combination 

of the them [45]. These charging habits play a big part into when the vehicle 

is available for V2G.  

 

Considering a normal work week as described above vehicles are available for 

up to 95% of the day. This is due to the nature of commuting 1 hour of total 

time to work and back, leaving the rest of the day as potential V2G periods 

[46]. 

 

24 ℎ𝑟𝑠 𝑖𝑛 𝑑𝑎𝑦 − 1 ℎ𝑟 𝑐𝑜𝑚𝑚𝑢𝑡𝑒 =
23 ℎ𝑟𝑠

24 ℎ𝑟𝑠
∗ 100 ≈ 95%  (1) 

 

Most EV owners today are homeowners with a place to charge at their home 

but as the numbers increase there will be more of a shift to charging at fast 

chargers or work with all of the people living in apartments. For the sake of 

this thesis, it is assumed that drivers have access to bi-directional chargers at 

both home and work. This gives the ability to demonstrate V2G at a maxi-

mum capability in an effort to prove that the battery degradation is of a rea-

sonable amount.  

 

The nature of the grid means that even with EVs available 95% of the time 

during the work week they cannot be utilized that entire time. The optimal 

V2G windows become the morning and evening peak periods which allows 

for slower charging at all other times of the day. Research was conducted to 

discern the optimal time for V2G utilization. Figure 3 was created showcasing 

the results of 9 studies [47]-[55]: 
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Figure 3: V2G peak demand article comparison [47]-[55]
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Taking all these factors into account the following weekday scenarios were 

created: 

 

1. No V2G with only overnight charging  

2. No V2G with overnight & solar charging 

3. One V2G evening period with only overnight charging 

4. One V2G evening period with overnight & solar charging 

5. Two V2G periods with only overnight charging 

6. Two V2G periods with overnight & solar charging 

 

Scenario 1, Figure 4, and 2, Figure 5, are used as the baseline to set the stage 

for the V2G comparison. Considering the grid fluctuations from solar energy, 

the importance to utilize charging during the day allows for a deeper depth 

of discharge (DOD) from the battery to the grid. The comparison helps to 

paint a picture of the benefits of combining V2G with smart charging.  

 

 
Figure 4: Scenario 1 daily custom-built profile 
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Figure 5: Scenario 2 daily custom-built profile 

 

Scenarios 3, Figure 6, and 4, Figure 7, are then addressing the largest energy 

peak demand of the day in the evening, between 18:00 – 22:00. This four 

hour period is especially crucial because of the habit for many EV drivers to 

simply come home and plug in their vehicles. This way the vehicles are still 

plugged in but they can support the grid before slowly being recharged over-

night when they are required again.  
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Figure 6: Scenario 3 daily custom-built profile 
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Figure 7: Scenario 4 daily custom-built profile 

 

Lastly, scenarios 5, Figure 8, and 6, Figure 9, offer two V2G periods both 

morning (06:00 – 08:00) and evening (20:00 – 22:00) to completely cover 

the peak periods while still providing the user with the ability to use their 

vehicle. A key component of this system will require a manual override for 

users in order to ensure the necessary amount of charge if they so require it 

outside of normal scheduling.  
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Figure 8: Scenario 5 daily custom-built profile 
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Figure 9: Scenario 6 daily custom-built profile 

 

The weekday is quite regimented in terms of schedule and this helps keep the 

battery healthy for longer. The weekdays are the biggest percentage of the 

week, so they have more impact on the battery in theory. However, if driving 

habits are analyzed then longer weekend trip behaviors could possibly have 

an impact on this percentage makeup.  

 

4.1.2 Weekend Scenarios 

 

The weekend can be a complex scenario to quantify because users do a mul-

titude of different tasks, from road trips to errands to absolutely nothing. The 

assumptions here were based more on leisure trip statistics for the EU. Ma-

jority of EU residents travelled anywhere between 300-1000 km in a year for 

leisure [56]. Therefore, the weekend scenarios were split into two sections, 

more standard weekends and then longer road trips that occur 5 times a year 

to reach near to those distances. The weekend scenarios can be thought of 

more as parameters, adjusting the weekly scenarios, since they will be chosen 

one at a time to function alongside each weekly scenario. The weekend sce-

narios are as follows: 
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1. Staying at home without V2G 

2. Staying at home with V2G 

3. Errands without V2G 

4. Errands with V2G 

5. Short road trip without V2G (1x rapid charging) 

6. Short road trip with V2G (1x rapid charging) 

7. Long road trip without V2G (2x rapid charging) 

 

In reference to the staying home weekend scenarios, 1 and 2 give the ability 

for V2G to step in for two 4 hour windows because there is no need a for a 

commute to work. Weekend scenarios 3 and 4 offer a similar situation to the 

work week but allow for shorter slow charging windows in between driving 

from errand to errand. There is a driving cycle of 30 minutes 3 times in the 

day with 3 two hour charging sessions, followed by a normal longer overnight 

charge. Retail stores are interested in having V2G capabilities in their park-

ing lots in order to incentivize employees to have their vehicles charge but 

also bring down the store’s energy costs [57]. Weekend scenarios 5 and 6 fac-

tor in longer driving periods, 2 two hour sessions, and the addition of rapid 

charging (level 3 charging), one time per day while on the road. Finally, the 

longer road trip, 3 three hour driving sessions, was curated to include two 

instances of rapid charging with no possibility for V2G. There is a recharge 

overnight though in all cases. The long road trip will also be considered as 

happening in a weekend but the model has the potential to elaborate further 

and make this kind of trip last for a week or more. The weekend scenarios 

were created with the intent to interweave them with the weekday scenarios. 

The original 6 scenarios with no parameters (to be discussed in section 4.2.5) 

changed will use the 5x a year road trip as standard and the stay at home on 

the weekends option as well. This way, a 1 year simulation of the model is as 

close to real life as possible. The integration of these scenarios into the model 

is crucial for meaningful results. The model and this process are detailed be-

low.  

 

4.2 Battery Ageing Model 
 

The chosen model for conducting the V2G battery degradation analysis is an 

AMESIM model, with a semi-empirical model battery ageing model within 

it. This type of model has better accuracy, complexity and data dependency 

than most other types of models. The complexity of including a charging / 

discharging strategy, WLTP driving cycle, temperature estimation, and vari-

ous scenario parameters help calibrate the high voltage (HV) battery semi-

empirical model results. At medium accuracy, the semi-empirical model was 

an appropriate choice for the battery degradation analysis. Then the original 

model has space for enough adjustments for operation analysis and system 

planning of V2G. Taking advantage of the already existing AMESIM model 
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helped to have a framework in place to build from. This allowed for con-

sistency and prevented breaking the model during simulations. The purpose 

of the existing model was to take a look at charging / discharging strategies, 

so the natural progression was to add research-based assumptions into the 

mix for the next level of smart charging / discharging. Figure 10 shows the 

original demo model and Figure 11 shows the edited model for this research.  

 

 
Figure 10: Siemens AMESIM charging strategy demo model 

 

 
Figure 11: Custom V2G semi-empirical model 

 

The adjustments made were building more scenarios, adding a specific driv-

ing cycle, and filtering the days to differentiate between weekday and week-

end scenarios. This added complexity, but more importantly, accuracy to the 

model because based on assumptions of EV user behavior and seasonal tem-

perature it matches the real world over 1 year. In future versions of this 

model, longer driving cycles, different battery chemistries and additional pa-

rameters for the scenarios could be considered.  

 

4.2.1 Charging / Discharging Strategy 

 

The charging and discharging strategy portion of the model for weekdays and 

weekends are shown in Figure 12 and Figure 13 respectively. The first 
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adjustments made were to the strategies built into the model. The aforemen-

tioned weekday and weekend scenarios were created into signals starting at 

their desired time.  

 

 
Figure 12: Weekday charging / discharging strategies 

 

In Figure 12, next to the G2V and V2G headings are signal symbols which 

dictate start time in hours from 0, the pulse ratio, a way to set the length of 

the charging / discharging signal, and frequency, how often it occurs within 

a period of time. In most cases the frequency is set to once per day. Following 

away from the signal is a strategy determiner. This indicates if the system 

should be off, slow, fast, rapid charge, or discharge via V2G (1, 2, 3, 4 in the 

system respectively). The next junction is a summing function allowing the 

turned-on signals to reach the state chart. Right before completion there is a 

location where the signals are hit with a pulse ratio that allows the signal 

through 5 out of 7 days of the week, mimicking a work week. 

 

The weekend scenarios are demonstrated in Figure 13. Similarly, these were 

entered into the model in the exact manner as the weekday scenarios. The 

only differences were the rapid charging scenarios as these required the value 

3 instead of a 1 in order to trigger the new charging speed. Otherwise, the 

application flows through the same chain of signal, type of charging / dis-

charging speed and the summation functions. Being a weekend scenario, the 

final signal allows it to go through only after the 120th hour of the week and 
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through to the end of 48 hours. The weekend signals took a long time to get 

right as at first the various weekend charges / discharges were occurring at 

the same time crashing the simulation. There were also instances when the 

weekend scenarios picked up from the SOC level before the weekend and 

overcharge because the system thought that was the new minimum. Changes 

were made to the signals to start and stop at the correct time. The statechart 

(discussed below) needed to be adjusted in order to keep the same original 

SOC minimum and maximum. Lastly, the weekend scenarios required longer 

driving cycles of 2 and 3 hours. Therefore, the 30 minute WLTP needed to be 

repeated 4 times for 2 hours and 6 times for 3 hours. The higher rapid charg-

ing use cases could cause the degradation to be worse so it is important to 

incorporate those scenarios.  

 

 
Figure 13: Weekend charging / discharging strategies 

 

Included in the charging / discharging strategies portion of the model is a 

statechart, the outside of which is demonstrated in Figure 14. It is one of the 

most important sections as without it there is no way for the system to rec-

ognize when a new action occurs. The demo could only do slow, fast, and 

rapid charging but it did not include a way for the statechart to differentiate 

between those and V2G rates. The statechart was changed to form increased 

logic for the model, the inside is detailed in Figure 15.  
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Figure 14: Statechart representation in the model
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Figure 15: Charging / discharging strategies statechart (inside) 
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The statechart flows as follows. The incoming signal at the top is a certain 

value between 0 – 4 to tell the model which path to go down. The statechart 

also includes cut off points for when the battery switches from constant cur-

rent to constant voltage when charging. This is important in order to protect 

the battery from overheating with constant current as it gets closer to being 

charged and then protecting it from overcharging with constant voltage [58]. 

This value changes as the battery ages which is a flaw of this model that it just 

remains constant. For the sake of this study, it was changed to be very low 

since there is only one scenario where the battery is pushed up to 100% SOC. 

The battery details themselves like the SOC upper and lower limit are con-

trolled in the battery parameters themselves but are represented within the 

statechart to tell it when to stop charging / discharging. The limit is set as 

SOC_max – 1 or SOC_min – 1. There is also a chance for the model to exit 

charging before the switch from constant current to constant voltage. This 

was designed as a failsafe due to several simulations overcharging if the same 

numbered signal was repeated one after another.  

 

4.2.2 HV Battery 

 

The HV battery component is the semi-empirical model factoring in equa-

tions that describe battery ageing phenomena and also theoretical compo-

nents that in this case are the usage profiles. It is important as it allows for 

the specification of the battery by how many cells there are, how many are in 

parallel / series, the capacity size, the initial SOC, and the upper / lower SOC 

limits. Based on the kWh sizing of the energy, the type of battery chemistry 

can be hypothesized. In this study, the battery is a generic NMC cell as men-

tioned before, and it is 71 kWh in size. In order to visualize the results, like in 

Figure 16, the final capacity loss is kept track of in the HV battery subsection. 

This subsection takes into account the temperature from the driving cycle 

and the ambient temperature estimation but also the information from the 

charger. The charger controls if the system is experiencing driving or if one 

of the V2G actions are happening.  
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Figure 16: HV battery / semi-empirical model variables 

 

A helpful feature of the semi-empirical model is the ability to watch battery 

functions in real time as the simulation runs. The SOC monitor allows for the 

matching the scenarios to their base assumptions and can highlight potential 

issues. Take for example Scenario 6, there are supposed to be two V2G peri-

ods followed by charging but in early runs of the simulation only one of the 

charging periods occurred. This caused the simulation to crash because sud-

denly there was two V2G sessions back-to-back without any recharging caus-

ing a negative SOC which is impossible. The next iteration of the model could 

utilize this space, as shown in Figure 17, to change the features of the battery 

chemistry, pack size and arrangement.  
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Figure 17: Full model interface & HV battery parameters list 

 

4.2.3 Driving Cycle 

 

The original model also included a driving cycle but here the focus was on the 

V2G and less on the driving cycle so not a very specific one was used. The 

cycle just needed to be 30 minutes long for scalability purposes and include 

a bit of city and highway driving. The WLTP data, in Figure 18, shows the 

duration, distance, stops, accelerations and overall speed per phase.  

 

 
Figure 18: WLTP of 30 minute drive cycle 

 

The power data can be derived from those parameters as shown in Figure 19. 

The 30 minute WLTP cycle was ran in a more detailed thermal model to out-

put battery temperature data during driving. The heat flow data from the 

thermal model system, Figure 20, then becomes inputs for the new model. 

Within the model the heat flow data goes to the HV battery and the power 
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data goes to the vehicle consumption circuit to tell the system when there is 

a driving cycle occurring instead of a period of rest, charging or discharging. 

 

 
Figure 19: HV battery power data 
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Figure 20: HV battery heat data 

 

The driving cycles themselves are split into sections within the model for 

weekday, weekends and longer road trips. This way each of their signals can 

be filtered by when they are supposed to occur in the week / year. The weekly 

driving cycle of two 30 minute commutes, one to work and one back home, 

occurs each day outside of the weekends. This is represented in Figure 21. 

The weekend cycles are limited to the two days of the week that the other 

signal is suppressed for, as shown in Figure 22. The complexity of the longer 

road trips is that they occur 5 times a year but in reality, would occur during 

the week most likely as part of a vacation. Due to the simplicity of the model 

and a time constraint, the long road trips will also be confined to the week-

end. They will include a lot more driving, 9 hrs, in that short period as op-

posed to driving less per day, 4 hrs, and stopping more often, as represented 

in Figure 23. A future version of the model could include a feature for week 

long road trips, or even other driving occurrences, like higher speed highway 

driving.  
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Figure 21: Weekday drive cycle power and heat flow data 

 

 
Figure 22: Weekend drive cycle power and heat flow data 

 

 
Figure 23: Road trip drive cycle power and heat flow data 

 

4.2.4 Temperature Estimation 

 

The AMESIM demo model initially included a temperature estimator 

throughout the year. This was not included in the initial version of the battery 

ageing template that was constructed and instead a set ambient temperature 

was used. This proved appropriate for short time span simulations, where the 

temperature could become a changeable parameter. The results here were 

according to literature, the higher the temperature the more degradation, 

which did not provide any additional depth to the study. The metric also 

proved inaccurate for full year to year length simulations due to day and night 

cycles, plus seasonal changes. Therefore, the previous temperature estima-

tion tool, Figure 24, was utilized to make for more realistic scenarios. Figure 

25 shows the estimator has a profile of average European day and night tem-

peratures, alternating through them. While also taking into account a sea-

sonal variation from a separate oscillating signal. 
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Figure 24: Temperature estimator 

 

 
Figure 25: Temperature day and night cycle plus seasonal fluctuation 

 

4.2.5 Scenario Parameters 

 

Siemens AMESIM allows for the changing of any global parameters, as 

demonstrated in Figure 26. Then when it is time to run the simulation 

changes can be made to the global parameters through a study manager. The 

study manager is shown in Figure 27 as allowing for multiple sets to be run 

simultaneously. This saves a lot of time as the model does not need to be rec-

reated for each scenario. Instead, what can be changed are the parameters 

for each scenario specifically.  
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Figure 26: Global parameters list 

 

 
Figure 27: Study manager list of adjusted parameters 

 

In the case of Scenario 1, where there is no V2G and only charging during the 

night, the V2G portions are set to 0 while the driving cycle and evening charg-

ing session still occurs. The chosen parameters to be adjusted were power 

level (11 vs 22 kW discharge rate), charging frequency (every 24 vs 48 hours 

for only the baseline scenarios), SOC upper and lower limits (100/0 vs 90/10 

vs 80/20), cycles per day (1x vs 2x V2G, 1x vs 2x charge), and driving profiles 

(weekday vs weekend). The time was kept constant to a window of 1 year for 
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the sake of run time. Ten years would have been optimal in order to match 

current warranty standards and car ownership habits. The time constraint of 

the thesis combined with 42 sets divvied up between the 6 main weekday 

scenarios has left only time to assume each year would be the same. The es-

timate of 10 times 1 year of degradation should be appropriate because even 

though EV battery degradation is more nonlinear than linear, 10 years is not 

long enough for there to be a drastic drop off. Usually there is an initial drop 

in capacity, followed by a slow in ageing, until closer to end of life when there 

is another larger drop in capacity and SOH [59]. End of life is quantified as 

when the battery is at 80% capacity so as long as the results are within that 

threshold, they will be a good representation. Between the 42 sets an over-

view comparison of the capacity loss results per scenario can still be created. 

In the future this model can be ran for the full 10 years to achieve potentially 

more accurate results but also to do a comparison which could be interesting. 

The results are broken down in detail in the following section.  
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5 Results 
 

The main results of this study are all in terms of capacity loss. Initially when 

testing the model, SOC was used in order to match the usage profiles created 

with assumptions to that of the model output. This way it could be deter-

mined if both the assumptions were correct and that the model was working 

properly. Figure 28 compared to Figure 5 and Figure 9 is one such detail to 

ensure that the model was functioning appropriately. The SOC levels match 

outside of the driving cycle which in the model takes closer to 10% SOC. In 

the initial calculations based on total kWh of the battery versus the time to 

work, 30 minutes, it was expected to take only 5% of the SOC. The power 

levels also change significantly during the first driving cycle at 08:00. These 

differences are because the road load was not adjusted for the theoretical ve-

hicle used. It provides different acceleration times within the drive cycle 

causing more SOC loss and power level jumps. The assumptions were correct 

in the shapes of the profile.  

 

 
Figure 28: Scenario 2 vs 6 SOC & power comparison 

 

The compared results can be broken down as follows. Each weekday scenario 

1-6 is used as a reference for parameter changes within that specific scenario. 

The overall baseline is non V2G compared to V2G which is essentially Sce-

narios 1 and 2 versus Scenarios 3, 4, 5 and 6, ranging from lowest cycles and 

energy throughput to most. First, the main 6 scenarios will simply be com-

pared to one another. Then afterwards their variations will be compared 

within their original scenario. Followed by a comparison of the variations 

from each of the 6 main scenarios. Each scenarios’ default includes SOC max 

of 90%, SOC min of 10%, an 11 kW power discharge level, 24 hr signal fre-

quency, overnight charging and the long road trip 5 times per year with oth-

erwise no driving on the weekends. Then as mentioned in section 4.2.5, the 

parameters that are changed are SOC max / min limits, charging frequency, 
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discharge power level and weekend scenarios. The charging frequency is only 

changed for the non V2G scenarios (1 & 2) while the discharge power level is 

only changed for the V2G scenarios (3, 4, 5, & 6). The following table provides 

clarity on the specific comparison adjustments:  

 

Table 1: Scenarios arranged by changes 

Scenario Set Description Change 

1.0 1 No V2G N/A 

1.1 13  SOC max 80% & 20% min 

1.2 47  48 hr charge 

1.3 49  Weekend errands 

1.4 50  SOC max 100% & 0% min 

1.5 51  No long road trip (no rapid charge) 

1.6 52  Short road trip (1x rapid charge) 

2.0 2 No V2G, solar charge N/A 

2.1 18  SOC max 80% & 20% min 

2.2 48  48 hr charge 

2.3 53  Weekend errands 

2.4 54  SOC max 100% & 0% min 

2.5 55  No long road trip (no rapid charge) 

2.6 56  Short road trip (1x rapid charge) 

3.0 3 One V2G N/A 

3.1 23  SOC max 80% & 20% min 

3.2 28  22 kW power level 

3.3 57  Weekend errands 

3.4 58  SOC max 100% & 0% min 

3.5 59  No long road trip (no rapid charge) 

3.6 60  Short road trip (1x rapid charge) 

4.0 4 One V2G, solar charge N/A 

4.1 29  SOC max 80% & 20% min 

4.2 34  22 kW power level 

4.3 61  Weekend errands 

4.4 62  SOC max 100% & 0% min 

4.5 63  No long road trip (no rapid charge) 

4.6 64  Short road trip (1x rapid charge) 

5.0 5 Two V2G N/A 

5.1 35  SOC max 80% & 20% min 

5.2 40  22 kW power level 

5.3 65  Weekend errands 

5.4 66  SOC max 100% & 0% min 

5.5 67  No long road trip (no rapid charge) 

5.6 68  Short road trip (1x rapid charge) 

6.0 6 Two V2G, solar charge N/A 

6.1 7  SOC max 80% & 20% min 

6.2 12  22 kW power level 

6.3 69  Weekend errands 
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6.4 70  SOC max 100% & 0% min 

6.5 71  No long road trip (no rapid charge) 

6.6 72  Short road trip (1x rapid charge) 

 

The main 6 scenarios compared to each other bases the capacity loss purely 

on V2G happening not at all, once, or twice in 24 hours. The assumption here 

based on previous studies in the field is that the higher V2G scenarios will 

have a higher capacity loss percentage than the non V2G scenarios. Figure 29 

and Figure 30 show this not to be entirely the case.  

 

 
Figure 29: Main scenarios capacity loss comparison 

 

 
Figure 30: Bar graph main scenarios capacity loss comparison 

 

Scenarios 3 and 4, with one V2G period, are both lower than both baseline 

non V2G scenarios of 1 and 2. This bodes well for the idea that mitigated V2G 

combined with smart charging can result in keeping the battery in more ideal 

SOC states. The baseline scenarios are of a user who plugs in their vehicle as 

soon as they get the chance. This causes the vehicle to stay between 80-90% 

SOC which, as mentioned in section 3.1, high SOC for prolonged periods of 
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time can cause degradation. The lowest scenario is scenario 3, coming in at 

1.214952% capacity loss over 1 year. Therefore, over 10 years the degradation 

would be ~ 12.15% still well under the 20% capacity loss that equals a spent 

EV battery. In order to reach the end of life criteria the EV battery would need 

to experience ~ 6.46 more similar years. This would give the EV an expected 

lifetime of over 16.5 years, longer than the average ICE counterpart at 12 

years of lifetime [60]. The other thing about EVs is that they require less 

maintenance since there are less components to fail. Vehicles in the EU right 

now are on average 11.8 years old and that has gone up over the last few years 

as people are waiting to purchase EVs [61]. The perks of a vehicle lasting 

longer saves drivers money and reliability is always a focus. The worry about 

V2G causing extra degradation is warranted because the highest usage sce-

nario, scenario 6, is up at 1.600084% capacity loss. This is only ~0.35% 

higher than the lowest scenario, scenario 3, but it results in 4 years of func-

tionality of that EV left versus the ~6.5 of the one V2G scenario. Overall Sce-

nario 6 still demonstrates a 14 year lifespan of the EV battery which is better 

than the current average vehicle.  

 

A feature of Figure 29 that is distinctly visible is the jump up in degradation 

for the 5x a year longer road trips. The 3 three hour driving cycles mixed with 

two rapid charging instances adds at its largest a ~0.32% capacity loss in-

crease, nearly an ~82.1% increase in just one weekend. A large cycling cur-

rent is known to cause more degradation and this is a clear example of this. 

The V2G aspects themselves are much less impactful on the overall capacity 

loss, even if there is an increase in the power level. Demonstrated in Figure 

31, of the four scenarios run with 22 kW discharge power versus the original 

11 kW, only one successfully ran in its entirety.  

 

 
Figure 31: V2G scenarios 11 kW vs 22 kW power discharge level 

 



 

50 

 

 
Figure 32: Power level comparison SOC impact on simulation failure 

 

Figure 32 shows that the run failures can be attributed to a deep DOD, bring-

ing the SOC into the negatives. This in turn broke the statecharts reasoning 

and halted the simulation. Scenario 6 still managed to run because it has 

more charging scenarios than any other scenario allowing it the chance to 

recharge before another large 22 kW V2G period occurred. Figure 33 even 

shows that the 22 kW scenario had less degradation than the baseline sce-

nario 6. This shows a key point for the success of maintaining a batteries 

health while implementing V2G, that there needs to be enough instances 

throughout the day of adequate charging. The EV and EVSE market is head-

ing towards a 22 kW power level which can be feasible if there is matching 

charging to go with it. For the sake of this model only a 22 kW discharge 

power was considered, due to time constraints, which made the difference.  

 

 
Figure 33: V2G scenarios 11 kW vs 22 kW comparison graph 
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The main scenarios are all a plug in the vehicle whenever possible type situ-

ation for the user but there are people who tend to only plug in when neces-

sary. In order to see how much this makes an impact on non V2G scenarios 

and in an effort bring them lower than the one time V2G scenarios in capacity 

loss. The parameter of charging frequency is explored in Figure 34.  

 

 
Figure 34: No V2G charge frequency 24 vs 48 hour comparison graph 

 

Only scenario 1 ran using this parameter change because scenario 2 had a 

large DOD during the start of long road trip weekend having started at a 

lower SOC. This is a fault of the inputs into the model as it should have been 

a parameter of every 48 hours with a charge session before the weekend. A 

driver would know that they are going on a trip and override their smart 

charging routine in order to have a “full” charge for the road trip. The next 

iteration of this study can include such logic behaviors in the statechart in 

order to fix this scenario. The baseline scenario is more than halved in terms 

of capacity loss with the decrease in charging frequency. This falls into the 

category of allowing the battery to sit at a lower SOC rather than just staying 

between 80-90%. Most drivers are paranoid about how much range they are 

going to need so allowing smart charging and V2G to dictate these values will 

take some adjustment but it means longer term battery health.  

 

The next comparison is between the SOC limit changes. First, the 80% max 

and 20% minimum simulation, as shown in Figure 35. Then Figure 36 shows 

that scenarios 5 and 6 achieved their lowest capacity loss percentage of any 

simulation. For the rest of the scenarios, it was the second lowest. Most EV 

manufacturers make claims to their customers that to keep an EV battery 

healthy on of the best methods is to keep it between 80% and 20% SOC. This 

proves to be true regardless of the V2G amount with scenario 6 achieving less 

than a percent in one year, ~0.9% loss. This is nearly a ~44% decrease in the 

total capacity loss percentage over the year compared to the main scenario. 
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Holding to these SOC limits could allow V2G to be used more often. The grid 

might not need it for major peak shaving windows but a more vehicle to 

building scale could be thought of to reduce reliance on the grid throughout 

the day.  

 

 
Figure 35: All scenario 80 max SOC capacity loss comparison 

 

 
Figure 36: All scenario 80 max SOC capacity loss graph 

 

On the other side of the SOC parameter change is the 100% SOC max and 0% 

minimum. These are considered for the reason of consumers wanting more 

range and occasionally charging up their battery fully. Discharging a battery 

completely is not good for its long-term health at all so much so that the 

model has protections for the cell stopping it a bit before zero SOC. The low 

SOC combined with the DOD is large enough to warrant the worst capacity 

loss results of any of the scenarios. This follows the literature that keeping a 

battery healthy is to keep it in a comfort zone for temperature, c-rate, SOC 

and number of rapid cycles. Comparing the best overall parameter change, 

or the success of V2G versus the worst, between Figure 36 and Figure 37 

shows that it causes capacity loss to more than double. Not only that but 
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scenarios 5 and 6 are the first and only instances of capacity loss breaching 

the 20% loss end of life criteria. This happening in 10 years is lower than the 

usual promised EV lifespan but is still in the range of when drivers tend to 

buy new cars so it is not a disaster. It is worth noting that all vehicles will 

never go through 10 years of 100% to 0% SOC cycles. This is because batteries 

used in EVs come with protections set by the OEMs and / or battery manu-

facturers that keeps part of the battery’s upper and lower SOC safe from use. 

Essentially a logic system, similar to the statechart, that stops the vehicle 

from ever being completely discharged. These limits may not even be listed 

anywhere with the consumer thinking they are charging up to 100% but it 

really is not. Either way a lot of battery degradation comes down to user con-

trol over what they do with their vehicle and so allowing smart charging and 

V2G to make the right battery health decisions based on logic can make a big 

difference in how long EVs and the batteries that make them up will last.  

 

 
Figure 37: All scenario 100 max SOC capacity loss graph 

 

There is a trend of the first four scenarios being quite close to each other re-

gardless of the parameter changes and this shows that maintaining a high 

SOC is about equal to one V2G period per day. The addition of the V2G dis-

charge only really adds that extra half of the cycle (discharge) because the 

charging cycle stays the same, regardless of solar charging or not. This holds 

true for the three weekend related parameter adjustments. First, the week-

end errands in Figure 38, then the short road trips in Figure 39 and Figure 

40, and lastly the no long trip in Figure 41.  
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Figure 38: All scenario weekend errands capacity loss graph 

 

The errands weekend scenario nearly matches the values from the main ref-

erence scenario, Figure 30, for each of the four scenarios (1, 2, 3, 4) that com-

pleted their simulations. There is a mere 0.01% difference between each of 

them. This shows that if the weekends are rest periods or there are small er-

rand runs with charging at the stores, both with or without V2G, the capacity 

loss changes a negligible amount. Therefore, it is well within reason to also 

run V2G on the weekends as part of a user’s vehicle usage profile. A good test 

for future studies could be to completely maximize V2G discharge cycles 

throughout the day irrespective of the grid need, just to see the capacity loss 

at both extremes. This study was kept more in line with reality and assump-

tions based on research in order to find the real-world scenarios that V2G 

makes an impact on.  

 

The one parameter change that all six scenarios crashed in simulation is the 

short road trips weekend scenario. This is unusual that all the scenarios have 

crashed but it fits with the theme that the statechart is not operating as it 

should. Figure 39 shows that all the scenarios stop in nearly the identical spot 

of a bit past 120-130 hours. This lines up with when a regular weekend cycle 

is supposed to occur, in the case of this overall scenario the stay at home ver-

sion with V2G or not depending on the specific scenario number.  
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Figure 39: All scenario short road trips capacity loss comparison 

 

 

 
Figure 40: Short road trips simulation failure check via SOC 

 

By checking the SOC in Figure 40, the easiest way to see what went wrong 

with the scenario, it shows that the SOC was able to go above the max of 90% 

right before the simulation crashed. This means that the weekend scenario 

did not trigger rest properly and instead continued to charge. For future up-

dates to the model the statechart logic needs to be verified. It was working 

perfect for most scenarios outside of one so then a change was made to in-

corporate variables instead of events and that might have caused the issue. 
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Figure 41: All scenario no long trip capacity loss graph 

 

The long trip adjustment to the scenarios was a good addition to alleviate 

concerns over longer driving sessions combined with fast charging in addi-

tion to V2G. Verification of how much the impact the parameter has is based 

on Figure 41 compared to the main scenario in Figure 30. This is the lowest 

capacity loss out of any scenario for weekday scenarios 1, 2, 3 and 4. Scenar-

ios 1, 2 and 4 are nearly half of their main scenario counterparts, while sce-

nario 4 is almost 3 times less. The takeaway here is that once again V2G is 

making less of an impact than regular driving habits that users would do re-

gardless of attempting to keep their battery healthy. For battery and EV man-

ufacturers this is promising because it makes the application of V2G make 

sense from a battery degradation point of view. The other factors like the 

wear and tear on other components related to charging or the cost of the com-

ponents themselves is a different story but purely from a degradation point 

of view the marginal additions to capacity loss, or even the lower capacity loss 

scenarios, point to V2G being successful. The perks and benefits are all there 

from the grid peak shaving side, the electrification environmental side, the 

emergencies side and the ease-of-use side for the drivers.  
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6 Conclusions 
 

The continued push towards 100% electrification is only gaining momentum 

so any solutions that can help mitigate the need for new infrastructure will 

be extremely beneficial. V2G could be part of this solution allowing the pri-

vate users to use their EVs to benefit more than themselves. V2G offers a 

unique solution to the intermittency of renewables and also encourages the 

continued turnover of ICE vehicles to EVs which are key to clean up the en-

ergy industry. The continued concern over EV batteries, in terms of safety, 

performance and range leave V2G a hot topic. The idea of stressing out a bat-

tery further than necessary is unwanted by both users and OEMs. This thesis 

has explored the concept of V2G, its benefits and potential detriments, all the 

while seeking to explore battery degradation. The key component to V2G be-

coming implemented is less the technology, as that is already in existence, 

and more the degradation impact. For it to proliferate the market, both be-

tween charging infrastructure and on board EVs, the concerns need to be 

quelled or at the very least better understood.  

 

The results of the AMESIM model are noteworthy in the fact that they 

demonstrate V2G scenarios as only being marginally more impactful on the 

battery in a handful of scenarios but also better with one V2G session per day. 

The two baseline scenarios are actually worse to begin with because they are 

always keeping the battery at a high SOC, between a 10% range of the upper 

SOC limit. This is a real-life scenario though as many people plug in right 

when they get home from work and the smart charging option to delay charg-

ing or slow it down has not been quick to spread just yet. When changing the 

baseline scenarios to charging every 48 hours instead of every 24 then the 

capacity loss is right in line with the higher V2G scenarios. The aspect of V2G 

that could revolutionize how people charge is the ability to plug in and forget. 

The battery management system of the vehicle, the smart charging infra-

structure and the ability to V2G will keep the vehicle optimally charged and 

discharged to maximize the battery lifetime. The failed simulations due to the 

statechart were not ideal but the overall results still were able to offer valua-

ble insight. Future iterations of the study can put a focus into adjusting the 

statechart for the current scenarios but also add in deeper complexity. For 

example, in this model there is only a minimal smart charging system imple-

mented based on calculations from assumed usage profiles so this could be 

further optimized and then the results should become more in favor of V2G.  

 

This study was done with a semi-empirical model but if it were to be redone 

with theoretical model to include power fade / loss then the results could be 

even more accurate and conclusive. The testing of this in the real world will 

also need to be conducted to see what sort of other factors might need to be 

considered. For example, factors like number of EVs in a specific location, 
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power levels changes for charging instead of only for discharging, or even 

taking into account other charging components like power converters. All of 

the components related to charging would need to be analyzed for their po-

tential degradation as well. Going from a vehicle and its components resting 

for 95% of the day to suddenly being utilized for V2G and extra charge cycles 

at up to 83% of the day. That is a major increase on the systems and compo-

nents. The battery has shown the ability to handle to increase but some of the 

other components need to be studied. If they do not last with the increase in 

utilization then it will mean more repairs or more costly longer lasting com-

ponents, all which could increase the cost of EVs and charging infrastructure 

immensely. A main adjustment that would tailor this study for more EVs 

would be the inclusion of a battery chemistry comparison. At the moment it 

is only a wholistic comparison more of scenarios than of specific battery 

types. This study would need to continue to follow the market trends as LFP 

batteries are becoming more popular in EVs already. Tesla, MG and BYD 

have already begun to use LFP cells in some of their vehicles even at the tech-

nical lower energy density but at a lower cost with a longer life cycle [62]. 

NMC will continue to live alongside LFP and may even remain the higher 

used option, but it is good to be able to adapt the model for different use 

cases. This way regardless of the vehicle in a line-up that is tested it will suf-

fice. This change will continue as costs factor heavily into the purchase deci-

sions for EVs right now, more so than the range or performance anxieties of 

more premium customers. 

 

The V2G concept that has been on the minds of scientists longer than EVs 

have been in the center stage. Now the current market dictates EV warranties 

at around 10-12 years which match that of ICE vehicles. The time to change 

a battery in an electric vehicle is at 80% capacity and the goal of this study 

was to ensure that V2G could still stay within the industry average warranty 

window for EVs. The scenarios all stayed well within 20% capacity loss in 10 

years outside of the two V2G sessions per day during the SOC 100% max and 

o% min simulation. That was the only time that the numbers were even close. 

It is also not a scenario that EV owners will do often, or even at all. Partially 

because they are told not to but also because EV manufacturers and OEMS 

place protection limits on their batteries as well. Based on this study the det-

riments of V2G on battery degradation are not as bad as they have been made 

out to be. V2G can even keep a battery healthier than if it was just kept 

charged as often as possible so it is a win-win-win situation. This is very 

promising for the industry and should help allow for V2G to become a normal 

part of EV user, grid side operators and OEMs practices.  
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