
 

 

 

 

 
 

 

 

Master’s Programme in Energy Storage – EIT InnoEnergy 

 

Comparative study of multiphysics modelling 
and simulation software for lifetime perfor-
mance evaluation of battery systems. 

  
 

 

Francesco De Marco 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 
Master’s thesis 
2023  



  

 

 

 



 

 

 

 

 
 

 

 

 

Copyright ©2023 Francesco De Marco 

 

 

 

 

 

 



                                                                                                 

 

  

 

 

4 

 

 

Author  Francesco De Marco 
Title of thesis  Comparative study of multiphysics modelling and simulation soft-

ware for lifetime performance evaluation of battery systems 
Programme  Energy Storage – EIT InnoEnergy 
Major Energy Engineering 
Thesis supervisor  Prof. Massimo Santarelli, Prof. Kari Tammi 
Thesis advisor(s)  Majid Astaneh, Ph.D. 

Collaborative partner  Northvolt Systems AB 
Date  10.07.2023 Number of pages  90 Language  English 



  

 

 

 
Abstract 

Battery systems play a vital role in numerous applications, ranging from electric 

vehicles to renewable energy storage. Accurate modelling and simulation of battery 

systems are crucial for assessing their lifetime performance. Currently, there are 

various simulation software on the market to assist industry and academia to im-

plement multiphysics models and simulate battery systems. Every tool has unique 

capabilities, which can suit different needs of users.  

This thesis investigates and compares four widely used multiphysics modelling 

and simulation software tools— Simcenter Amesim, MATLAB/Simulink, 

MATLAB/Simulink/Simscape and Dymola—with respect to four main aspects, 

namely computational performance and accuracy, ease of use, features, and licens-

ing. The scope of the study is to highlight peculiarities of every software, to provide 

insights to simulation engineers, researchers and students that need to select the 

right simulation software for their investigations. 

The very same multiphysics model of a battery pack, composed by an Equivalent 

Circuit Model (ECM) with two RC branches and liquid cooling will be described in 

detail and implemented on the four tools. The system includes electric, thermal, 

and ageing model. The main output of the simulation is battery lifetime degradation 

in different operating conditions. Accuracy of the four software will be bench-

marked against test data, while computational speed will be estimated based on the 

lifetime simulation.  

The main findings of this comparative study is that Dymola proved to be the tool 

with the best speed performance, requiring only 0.25 seconds to perform a 24h sim-

ulation and 288 seconds to perform a 10 years simulation. In terms of ease of use, 

Amesim resulted as the most user-friendly, with a simple user interface, smooth 

workflow, and clear documentation. In terms of features and interoperability, Sim-

ulink has the great advantage of being closely interconnected with MATLAB envi-

ronment. The same is true for Simscape, whose speed and accuracy performance 

were the poorest, but is more user-friendly since it provides multiphysics compo-

nent.  

The findings of this comparative study will assist researchers, engineers, and in-

dustry professionals in selecting the most suitable software tool for lifetime perfor-

mance evaluation of battery systems, based on their specific case. 

Keywords  Battery Energy Storage System, Lifetime Simulation, Simulation Soft-

ware, Battery Degradation, Calendar Ageing, Cycle Ageing, Software Comparative 

Study 
 

 



                                                                                                 

 

  

 

 

6 

 

 



                                                                                                 

 

  

 

 

7 

 

 

 

 

 

The thesis is written as part of a collaborative joint degree programme called Master’s Pro-
gramme in Energy Storage (EIT InnoEnergy).  

Aalto University is responsible for the implementation of the programme along with 
Politecnico di Torino (PoliTo) and EIT InnoEnergy, a knowledge and innovation commu-

nity of the European Institute of Innovation and Technology. 

The thesis is supervised by both partner universities. 

 

 

 

____________________________________________________________________
__________ 

 

  

  

  



                                                                                                 

 

  

 

 

8 

 

 



                                                                                                 

 

  

 

 

9 

 

 



 

10 

 

 

TABLE OF CONTENTS 
TABLE OF FIGURES ..................................................................................... 12 

TABLE OF TABLES ....................................................................................... 13 

Preface and acknowledgements .................................................................... 14 

Abbreviations ................................................................................................. 15 

1 Introduction ........................................................................................... 16 

1.1 Background and motivation ............................................................. 16 

1.2 Comparative studies of simulation software ................................... 17 

1.3 Scope of the study ............................................................................ 17 

2 Battery pack multiphysics model .......................................................... 20 

2.1 Simulation framework .................................................................... 20 

2.2 Case studies ...................................................................................... 21 

2.3 Multiphysics model ......................................................................... 23 

2.3.1 Electric model ........................................................................... 23 

2.3.2 Thermal model ......................................................................... 25 

2.3.3 Ageing model ............................................................................ 29 

3 Methodology .......................................................................................... 35 

3.1 Software selection ........................................................................... 35 

3.1.1 Simcenter Amesim ................................................................... 35 

3.1.2 MATLAB/Simulink .................................................................. 36 

3.1.3 MATLAB/Simulink/Simscape ................................................. 37 

3.1.4 Dymola ...................................................................................... 38 

3.2 Key performance indicators ............................................................ 40 

3.2.1 Performance ............................................................................. 40 

3.2.2 Ease of use ................................................................................ 42 

3.2.3 Features .................................................................................... 43 

3.2.4 Licensing ................................................................................... 43 

3.3 Hardware selection ......................................................................... 44 

3.4 Model implementation .................................................................... 44 

3.4.1 Simcenter Amesim ................................................................... 45 

3.4.2 Simscape ................................................................................... 45 

3.4.3 Simulink.................................................................................... 46 



 

11 

 

 

3.4.4 Dymola ...................................................................................... 47 

4 Results ................................................................................................... 49 

4.1 Performance .................................................................................... 49 

4.1.1 Runtime .................................................................................... 49 

4.1.2 CPU Usage ................................................................................ 52 

4.1.3 Accuracy .................................................................................... 53 

4.2 Ease of use ....................................................................................... 54 

4.2.1 Amesim ..................................................................................... 54 

4.2.2 Simulink/Simscape .................................................................. 56 

4.2.3 Simulink.....................................................................................57 

4.2.4 Dymola ...................................................................................... 58 

4.3 Features ........................................................................................... 60 

4.3.1 Modelling features ..................................................................... 61 

4.3.2 Simulation features .................................................................. 62 

4.3.3 Interoperability ........................................................................ 63 

4.4 Licensing ......................................................................................... 64 

5 Conclusions ........................................................................................... 65 

6 References ..............................................................................................67 

APPENDIX A ................................................................................................. 72 

Parametric Maps ....................................................................................... 72 

APPENDIX B ................................................................................................. 77 

Model implementation............................................................................... 77 

 

 



 

12 

 

 

TABLE OF FIGURES 

Figure 1 - Lifetime simulation framework .............................................................. 20 
Figure 2 - Interdependency of electric values in the battery model ........................ 22 
Figure 3 - Equivalent Circuit Model with 2 RC branches ........................................24 

Figure 4 - Electric and thermal interactions in the battery pack model ................. 25 
Figure 5 - Schematic of the battery pack thermal model ......................................... 27 
Figure 6 - Simcenter Amesim launch window. ........................................................ 35 
Figure 7 - MATLAB/Simulink logo .......................................................................... 37 
Figure 8 - Simscape logo ......................................................................................... 38 
Figure 9 - Dymola logo ............................................................................................ 39 
Figure 10 - Investigated key performance indicators. ............................................ 40 
Figure 11 - Simcenter Amesim model of the battery pack connected to the thermal 
model. ...................................................................................................................... 45 
Figure 12 - Simscape model of the battery pack connected to the thermal model. 46 

Figure 13 - Simulink implementation of the electric model (top), thermal model 
(mid-left), generated heat (mid-right), liquid properties (bottom). ....................... 47 
Figure 14 - Dymola model of the battery pack connected to the thermal model. .. 48 
Figure 15 – Runtime comparison of the four simulation tools for the 24-hour 
simulation. .............................................................................................................. 50 
Figure 16 - CPU usage comparison for the 24-hour simulation on the four tools .. 52 
Figure 17 - Accuracy comparison between the four tools. ....................................... 54 
Figure 18 - HPPC Test to detect Electric Circuit Model parameters [16] ................ 73 
Figure 19 - Rate of Voltage decay to identify time constant T [56] ......................... 75 
 



 

13 

 

 

TABLE OF TABLES 

Table 1 - Operating condition in the four case studies ............................................ 21 
Table 2 - ECM parameter dependencies on electric and thermal quantities ..........24 
Table 3 - Stress factors considered for Calendar and Cycle ageing ......................... 31 

Table 4 - Runtime comparison of the four simulation tools for one 24-hour 
simulation. .............................................................................................................. 50 
Table 5 - Runtime comparison of lifetime simulation on the four tools ................. 51 
Table 6 - CPU usage comparison for the 24-hour simulation on the four tools ..... 52 
Table 7 - Relative error of every simulation tool with respect to experimental test 
data. ......................................................................................................................... 53 
Table 8 - Feature comparison between the four software. ..................................... 60 
Table 9 - Ideal use cases for every software ............................................................ 66 

 



 

14 

 

 

Preface and acknowledgements 

I would like to express my deepest gratitude and appreciation to all those 

who have supported me throughout the completion of my master's thesis. 

Without their guidance, encouragement, and assistance, this accomplish-

ment would not have been possible. 

First and foremost, I would like to thank Northvolt for providing me with 

the opportunity to undertake my internship. The experience gained during 

this period was invaluable in shaping my understanding of energy storage.  I 

am especially grateful to my thesis advisor, Majid Astaneh, for his continuous 

support, valuable insights, and guidance throughout the entire process. I 

would also like to extend my heartfelt thanks to my manager, Anders Mag-

nusson, for his mentorship and for fostering a conducive environment for 

learning. 

I am deeply grateful to professor Silvia Bodoardo and professor Annukka 

Santasalo-Aarnio who organized the academic activities of the EIT InnoEn-

ergy Master’s degree in Energy Storage. Their expertise and dedication to 

their field have been instrumental in broadening my knowledge and shaping 

my professional direction.  

I would like to express my sincere appreciation to my ex-supervisor at Ed-

ison, Alessandro Perol, for his guidance and support during my previous in-

ternship. His mentorship and encouragement have significantly influenced 

my professional growth and have inspired me to pursue further research in 

this field. 

Many thanks to prof. Massimo Santarelli and prof. Kari Tammi for super-

vising my thesis work. 

Last but not least, I would also like to extend my gratitude to my best 

friends (in ascending order of height) Clarissa, Giuditta and Alice 

(parimerito), and Pierfrancesco. Thanks also to Giuliano&Laca. You have 

been a constant source of encouragement, motivation, and support through-

out my master's journey. Thanks also to all my friends from Collegio Onaosi 

and Random Target.  

To all those mentioned above and countless others who have contributed 

to my growth and success, I offer my heartfelt thanks. Your support has been 

indispensable, and I am honoured to have had the opportunity to work with 

and learn from such incredible people. 

 



 

15 

 

 

Abbreviations 

 
BESS Battery energy storage system 

DOD Depth of Discharge 

ECM Equivalent circuit model 

EOL End of life 

FEM Finite elements model 

FMU Functional mock-up unit 

GUI Graphical user interface 

HPPC Hybrid pulse power characterization 

KPI Key performance indicator 

LAM Loss of Active Material 

LC Loss of Conductivity 

LLI  Loss of Lithium Inventory 

OCV Open circuit voltage 

SEI Solid Electrolyte Interface 

SOC State of charge 

 

  



1 - Introduction 

16 

 

 

1 Introduction 

1.1 Background and motivation 
In recent years, battery systems have become a fundamental technology 

in modern society.  To meet the ambitious goal of net-zero carbon emission 

by 2050, a strong and global effort must be made. Institutions, researchers, 

and industry are driving our world toward electrification and clean energy 

production. One of the strongest trends concerns the development and im-

plementation of renewable energy technologies. The global installed capacity 

of renewables is expected to double in the next five years and increase by five 

times in 2050 [1]. On top of that, the other industrial challenge is the com-

plete electrification on road transport by 2035. In this scenario, it is undoubt-

edly true that energy storage systems, especially batteries, will play a funda-

mental role. A proper clean and sustainable future cannot be reached without 

a proficient development of this technology. 

Battery modelling and simulation is a powerful tool to enhance battery 

characteristics in terms of performance, durability, and safety. Through this 

method, it is possible to optimize the design and the operation of the battery 

systems to increase efficiency and prolong lifetime, since it is possible to test 

various scenarios and obtain results rapidly, without the need of conducting 

expensive and time-consuming experiments. However, battery modelling is 

a non-trivial work since it involves the detailed study of many phenomena of 

various sorts, from different physics, such as electrochemistry, thermody-

namics, electrotechnics, fluid-dynamics, and mechanics. Because of that, a 

common approach is to develop a comprehensive multiphysics model, which 

not only considers all the different phenomena, but also how those effects 

interact among them.   

Recently, many companies are developing software and tools that aims to 

assist the battery modelling process and allow users to run simulation and 

obtain multiple physical variables. As the complexity of the model increases, 

the required computation effort to simulate the system can be significant. In-

deed, these software are solving all the physical governing equation (which 

in most of the cases are differential equations), for each timestep. It is of no 

surprise that for simulating lifetime operation of a battery system (one or two 

decades), the computational runtime can be of the order of hours, even days. 

This represents a bottleneck that harms the proficient development of bat-

tery systems that our society requires.   

The energy storage industry is rapidly growing and, along with it, an in-

creasing number of software developers propose their own simulation tool, 

with unique features and specific performance. For this reason, being aware 

of which software best suits different needs is not obvious. Furthermore, it is 



1 - Introduction 

17 

 

 

of the utter importance for industry and researchers to properly select the 

software based on their needs, in terms of accuracy and simulation runtime. 

1.2 Comparative studies of simulation software 
Many researchers have investigated different simulation software, com-

paring their performances, features, and ease of use. For instance, Attia et al. 

[2] have performed a comparative study of ten simulation tools for building 

performance, conducting a survey with 249 experts. They gathered insights 

about usability, information management and integration of intelligent de-

sign since those factors are agreed to be the most representative to assess 

“architect friendliness”. A comparative study of three tools for Finite Ele-

ments Modelling (FEM) has been conducted by Gardner et al. [3]. The au-

thors focused their attention on two qualitative aspects, user friendliness 

(considering ease of setup and overall control) and features (such as material 

models and adaptive mesh capabilities). Also, Ross [4] based his study on 

ease of use and features, comparing simulation software for modelling sta-

bility operation. Sousa [5] reviewed and compared five energy simulation 

software for building, providing a detailed list of their different features and 

a comparison of the simulation results. This work also includes suggestions 

for the best use for each tool. A qualitative and quantitative comparison of 

simulation software has been conducted by Torres-Torriti et al. [6], who in-

vestigated mobile robot tools. They showcased the physical modelling capa-

bilities, the solver features, and the accuracy of the results.  The computa-

tional performance of simulation software has been benchmarked by Magni 

et al. [7], whose research focused on energy simulation tools for building. To-

gether with the computational cost, this cross-comparison evaluated the dif-

ferent results, provided insights of multiple features, and gave suggestion for 

choosing the right software. Bernal-Agustín et al. [8] compared 11 simulation 

tools for optimization of stand-alone renewable energy systems. The author 

compared the software based on their functionalities, optimization algo-

rithms and licensing. 

1.3 Scope of the study 
Even though comparative study between software is a common practice, 

there has never been a comparison between simulation software specifically 

for multiphysics modelling of battery systems.  Therefore, it is not straight-

forward to select the most suitable software for a specific case via literature 

review. Given the current and future relevance of battery simulation, this the-

sis aims to analyse, benchmark, and compare four different simulation tools 

among the most used ones in research and industry. The investigated soft-

ware are Simcenter Amesim, MATLAB/Simulink, MATLAB/Simulink/Sim-

scape, and Dymola. The same model of a battery system for stationary 



1 - Introduction 

18 

 

 

applications will be modelled and implemented in each software and run on 

the same machine, so that a fair comparison will be made. The scope of each 

simulation is to estimate battery degradation after lifetime operation. The 

comparison considers four different categories, namely performance, ease of 

use, features and licencing. An overall score will be assigned to each category, 

which will consider both quantitative and qualitative aspects. 

Based on personal modelling and simulation experience, Simcenter 

Amesim proved to be the most user-friendly software, with its intuitive inter-

face, and steep learning curve. In terms of performance, Dymola can perform 

the fastest simulations. Compared to the second fastest tool, Simulink, 

Dymola is more than three times faster for simple simulations and more than 

5 times faster for lifetime simulations. Both Simulink and Simscape have the 

great advantage of being closely interconnected with the MATLAB environ-

ment, which comes with a number of advantages, described later in this the-

sis. While Simulink is faster than Simscape, it is the last in terms of ease of 

use, since there are no multiphysics component in its library. These and more 

findings will be explained in Section 4.  

Given the widely comprehensive framework of this thesis, the scope of this 

study is multifaceted; the main purposes are the followings: 

1. Present a comprehensive multiphysics model of a battery system for 

stationary application. This model investigates electrical, thermal, and 

ageing aspects, with the intention of estimating battery degradation af-

ter lifetime operation. 

2. Develop a methodology that can be used to compare and benchmark 

simulation software of different kinds, providing insights on Key Per-

formance Indicators (KPI), data collection and results comparison.  

3. Evaluate four different simulation software for simulating multiphys-

ics models of battery systems, highlighting advantages and disad-

vantages of each tool, based on the selected KPIs. 

4. Suggest software selection based on different user objectives, both for 

industry and academia, based on the results of the comparative study. 

The thesis is divided in five sections. Section 2 describes in detail how the 

battery system is modelled. The different use cases are presented, along with 

the multiphysics phenomena involved. This section ends with an overview of 

the experimental tests cited in literature to obtain the electrical and thermal 

parameters of the model. Section 3 presents the methodology adopted. It 

starts with the reasoning behind software selection, outlining a brief descrip-

tion of each tool. The same section explains how the battery model can be 

implemented on the selected tools. It also outlines the KPI based on which 

the software have been compared. Section 4 presents the qualitative and 

quantitative results of the analysis, providing deeper insights for each 



1 - Introduction 

19 

 

 

software and recommendation on which tool best suits different require-

ments. The last section summarizes the key findings.  

 

 

 

 



2 - Battery pack multiphysics model 

20 

 

 

2 Battery pack multiphysics model 
 

The model represents an electrochemical Battery Energy Storage System 

(BESS) composed of serially connected battery cells. The purpose of the life-

time simulation is to evaluate overall degradation of the BESS after 10 years 

of operation. To this aim, a multiphysics simulation will be used to estimate 

the operating condition of the system over time. The model parameters are 

calibrated using experimental data and the ageing maps are based on empir-

ical curve fitting. The next sections will provide an overview of the framework 

adopted, what is the use case power profile, how multiphysics phenomena 

have been implemented in the model and the experimental approach to de-

termine the parametric maps of the model. 

2.1 Simulation framework 
Battery degradation is a phenomenon that depends on many kinds of fac-

tors, driven by thermal, electrochemical, or mechanical processes. For this 

reason, lifetime simulation must handle different physics at the same time 

since they are closely intercorrelated. The workflow adopted to perform the 

lifetime simulation is shown by the scheme in Figure 1. 

 

Figure 1 - Lifetime simulation framework 

 

The entire lifetime simulation considers 10 years of daily operation of the 

battery pack. This period is investigated by means of 24-hours simulations 

that are performed iteratively. Every daily simulation receives as an input the 

use case power profile and the updated state of health, which indicates the 

remaining useful capacity and the increase of internal resistances. The model 

performs a multiphysics simulation whose output are the daily profiles of 

electrical and thermal quantities. This output is then implemented in the age-

ing model, which calculates the degradation associated with the last 24 

hours. This is needed to assess the updated state of health, which is given as 

an input for the next 24-hours simulation. This whole process is repeated 

3650 times, to calculate lifetime degradation over 10 years.   



2 - Battery pack multiphysics model 

21 

 

 

2.2 Case studies 
One of the inputs of the simulation is the duty cycle, which is usually de-

fined by the user. In this case, the battery system performs two full cycles per 

day. During daily operation, six different phases can be identified. To inves-

tigate the effect of different operating conditions on degradation, lifetime 

simulation will be performed for four different case studies. The charge/dis-

charge logic in all the four cases is the same; what will vary is the ambient 

temperature, resting State of Charge (SOC) and Constant Power (CP) rate. 

We will refer to the standard case as Case 1. The other three cases are based 

on Case 1, with only one variation in operating conditions. Table 1 summa-

rizes the operating conditions in the four cases. 

 

Table 1 - Operating condition in the four case studies 

 

Ambient temperature 

(°C) 

Resting SOC 

(%) 

CP Rate 

(-) 

Case 1 (Standard) 20 50 0.33 

Case 2 (Ambient) 40 50 0.33 

Case 3 (State of charge) 20 20 0.33 

Case 4 (Power rate) 20 50 1 

 

Given the operating conditions, the charge/discharge profile is the same. 

It consists of two full cycles back-to-back, with 1 hour rest between the cycles. 

The 24-hours power profile can be summarized as follows: 

1. The initial phase is the resting phase, while the battery is idle: the 

SOC is constant at a given value (Resting SOC) without self-dis-

charge effects.  

2. After the initial resting time, the battery is discharged at constant 

power, until one of the following conditions is satisfied: 

o SOC drops under 0.01%. 

o Cell Voltage drops below the lower cut-off voltage set-point. 

3. Then, the charging phase begins. An electric current flows in the 

circuit so that the power output of the battery is constant. Here is 

the equation that controls the current input: 

I =
P

V𝑡
                                                            (1) 



2 - Battery pack multiphysics model 

22 

 

 

The charging phase continues until one of the following conditions 

is satisfied: 

o SOC exceeds 100%. 

o Cell voltage overcomes the upper cut-off voltage. 

4. Once the battery is fully charged, it is discharged with constant 

power until the resting SOC. 

5. The battery is idle for 1 hour. 

6. The second cycle begins, following again steps 2, 3 and 4.  

7. The battery is idle until the end of the day. 

The SOC is obtained by integrating over time the current flowing through 

the system, divided by the actual cell capacity. 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −∫
𝐼(𝑡)

𝐶
3600

𝑑𝑡 ∙ 100
𝑡

0

                                       (2) 

Where 𝑆𝑂𝐶0 is the State of Charge at the initial time in %, 𝐼(𝑡) is the cur-

rent in A, 𝐶 is the capacity in Ah and 3600 is the conversion factor from hours 

to seconds.  

The cell Open Circuit Voltage (OCV) is a one-to-one non-linear function 

of the State of Charge and is obtained from the experimental OCV(SOC) func-

tion produced by the tests described in Appendix A.  

Power, voltage, current and SOC are interdependent and are concatenated 

in an algebraic loop. Figure 2 depicts the sequence used by the simulator to 

compute each variable. 

 

Figure 2 - Interdependency of electric values in the battery model 

 

To break the algebraic loop, a delay can be added after the current is com-

puted, so that all the calculations at the new timestep are performed with the 

last stored value. The first phase is idle mode, so the initial value of the cur-

rent is zero. 



2 - Battery pack multiphysics model 

23 

 

 

2.3 Multiphysics model 
The system is composed of the battery pack, the liquid cooling system, and 

an electric circuit to control charge and discharge. The simulation must be 

able to handle variables from different physics which are interdependent. 

This section will explain the multiphysics model implementation, highlight-

ing the interdependencies between electric, thermal, and ageing variables 

and parameters.  

2.3.1 Electric model 
The battery pack is composed of cells connected in series. To estimate the 

electric properties of the system, such as current and voltage, it is necessary 

to identify the electrical parameters of the circuit. The two most spready used 

approaches to model electric behaviour of battery are the electrochemical 

models and the Equivalent Circuit Models (ECM) [9]. The former method 

implements a set of non-linear differential equations that characterize the 

transport, thermodynamic and kinetic reaction inside the battery. While it is 

true that those models accurately describe the chemistry and the physics of 

the reactions, it is also true that for long time-span simulation this approach 

may lead to unnecessary computational burden, which results in extremely 

long runtime in lifetime simulations [9]. Because of that, in our case an ECM 

method is more suitable since it is more straightforward in terms of numeri-

cal treatment [10]. This model aims to describe the static and dynamic be-

haviour of cells through an equivalent circuit containing resistors, capacitors, 

and a voltage source. With a proper configuration and parameterization, this 

model can accurately predict the electric variables, such as current, voltage, 

power and SOC [11]. ECMs are usually composed of three main parts: a static 

component, usually composed by a series of an Open Circuit Voltage (OCV) 

and an internal resistance to mimic the thermodynamic behaviour; a dy-

namic component, which usually includes a series of RC branches; an electric 

source or load to close the circuit [10], [12].  

One of the firstly adopted ECM to describe static and dynamic behaviour 

of battery is the Thevenin Battery Model [13], whose dynamic part includes 

one RC parallel branch. He et al. [12] proposed ad Improved Thevenin Model 

by including a second RC parallel branch. The two RC branches describe the 

electrochemical polarization effect and the concentration polarization effect, 

leading to more accurate results. He et al. [9] performed a comparative study 

of seven battery models. Among those ECMs and electrochemical models, the 

study investigated the Thevenin and the Improved Thevenin model (DP 

model). The researchers concluded that the 2-RC branch ECM best describes 

the dynamic response of the battery, with the lowest error with respect to 

experimental data. They also proved that increasing the number of RC 

branches over two leads not only to higher model complexity, but also causes 

a higher error. Hu et al. [14] compared twelve different battery models, 



2 - Battery pack multiphysics model 

24 

 

 

concluding that second-order RC model increase accuracy of the results. The 

same results were drawn by Zang et al. [15], that compared first-order with 

second-order RC model. However, the study highlighted that the slight in-

crease in accuracy comes with higher complexity, which is not always desir-

able for simple simulation. Nevertheless, for our study we decided to adopt a 

slightly more complex ECM model with two RC-branches to achieve the high-

est accuracy possible. Indeed, since the simulation will involve ten years of 

daily operation, a small error in the model could stack up and lead to inaccu-

rate results.  

Figure 3 shows the selected ECM of a single battery cell. 

 

 
Figure 3 - Equivalent Circuit Model with 2 RC branches 

 

The values of the current and the voltage drops in the ECM are correlated 

by a set of ordinary differential equations. The following governing equations 

[9] are implemented in the battery block in each simulation software. 

 

{
 
 

 
 
𝑉𝑡 = 𝑉𝑂𝐶𝑉 + 𝑅0𝐼 + 𝑈1 + 𝑈2 + 𝑅𝑎𝑑𝑑𝐼                                      
𝑑𝑈1
𝑑𝑡

= −
1

𝑅1𝐶1
𝑈1 +

𝐼

𝐶1
                                 𝑈1(𝑡 = 0) = 0

𝑑𝑈2
𝑑𝑡

= −
1

𝑅2𝐶2
𝑈2 +

𝐼

𝐶2
                                    𝑈2(𝑡 = 0) = 0

                 (3) 

 

All the electric parameters, namely the open circuit voltage 𝑂𝐶𝑉, the series 

resistor 𝑅0, the electrochemical polarization resistance 𝑅1 and capacitance 𝐶1 

and the concentration polarization resistance 𝑅2 and capacitance 𝐶2, are not 

fixed. Their value depends on electrical and thermal variables, such as Tem-

perature, SOC and Current [16]. Table 2 shows each component and on which 

variable it depends. 

 

Table 2 - ECM parameter dependencies on electric and thermal quantities 



2 - Battery pack multiphysics model 

25 

 

 

Component Symbol Dependency 

Open Circuit Voltage 𝑂𝐶𝑉 State of Charge 

Internal series resistance 𝑅0 State of Charge, Temperature, Current 

First order resistance 𝑅1 State of Charge, Temperature, Current 

First order capacitance 𝐶1 State of Charge, Temperature, Current 

Second order resistance 𝑅2 State of Charge, Temperature, Current 

Second order capacitance 𝐶2 State of Charge, Temperature, Current 

 

The parametric maps of ECM have been determined through Hybrid Pulse 

Power Characterization (HPPC) tests that will be further explained in Appen-

dix A. The multiphysics simulation is run in a dynamic way, meaning that at 

each timestep the values of the electric parameters are calculated based on 

SOC, current and temperature. These parameters are needed to solve the 

thermal problem, which will output the cell temperature. Figure 4 graphically 

explains how the electrical and the thermal model are coupled.  

 

 
Figure 4 - Electric and thermal interactions in the battery pack model 

 

Every cell is connected in series and the additional resistance 𝑅𝑎𝑑𝑑 of the 

connectors should also be considered. For simplicity, this additional re-

sistance is assumed to be constant and independent from the electrical and 

thermal quantities.  

2.3.2 Thermal model 
Battey ageing is closely correlated to electrothermal and thermodynamic 

phenomena. Therefore, to properly estimate capacity fade and resistance in-

crease with high accuracy, it is fundamental to analyse the thermal behaviour 

of the system. Battery systems have been thermally modelled in several ways. 

Gu & Wang [17] developed a multidimensional electrochemical-thermal 

model of a battery system. They consider the fundamental laws of thermody-

namics and integrated the thermal phenomena with the electrochemical heat 



2 - Battery pack multiphysics model 

26 

 

 

generation. Another approach is to couple a Foster network with a CFD sim-

ulation, as the one adopted by Hu et al. [18] in their thermal model of battery 

systems for electric vehicles.  

For our purpose, a zero-dimensional, lumped parameter simplified model 

is the best choice in terms of computational speed and resolution of the re-

sults. Through this approach we cannot identify the temperature distribution 

inside the battery system, but we can obtain the average cell temperature pro-

file with respect to time. This information is sufficient to estimate the thermal 

stress factors that cause degradation under low C-rate operating conditions 

such as stationary applications which is the main focus of the current study.  

The governing equation of the thermal model is the first law of thermody-

namics applied to the battery pack; this law can be simplified with the follow-

ing assumptions: 

• The system is zero-dimensional, and all its properties are evenly dis-
tributed. 

• The system is closed (no mass-flows) but not thermally insulated. 

• The volume is fixed and constant. 

• No mechanical work is involved. 

• There is no variation of potential and kinetic energy within the system. 

• Heat generation inside the system is due to reversible and irreversible 
phenomena. 

• The system exchanges heat with the ambient at a constant temperature 

𝑇𝑎𝑚𝑏. 

• The system is cooled with a constant liquid volume flow. 

The first law of thermodynamics for the battery system is the following: 

𝑛𝑀𝑐
𝑑𝑇

𝑑𝑡
= �̇�𝑔𝑒𝑛 + �̇�𝑎𝑚𝑏 + �̇�𝑐𝑜𝑜𝑙                                             (4) 

Where 𝑛 is the number of cells in the pack, 𝑀 is the mass of one cell in kg, 

𝑐 is the specific heat of one cell in J/(kg K), 
𝑑𝑇

𝑑𝑡
 is the rate of change of the 

temperature of the system in K/s, �̇�𝑔𝑒𝑛 is the heat generated inside the system 

in W, �̇�𝑎𝑚𝑏 is the heat exchanged between the system and the ambient in W, 

�̇�𝑐𝑜𝑜𝑙 is the heat exchanged between the system and the liquid coolant in W. 

The following schematic in Figure 5 represents the thermal model of the 

battery system, including the heat flows.  



2 - Battery pack multiphysics model 

27 

 

 

 

Figure 5 - Schematic of the battery pack thermal model 

 

Eq. (4) is a first-order ordinary differential equation, since on the left-

hand side there is the first derivative of the unknown 𝑇(𝑡) and on the right-

hand side there are the heat flows that depends on the system temperature. 

The boundary condition is that the system temperature at 𝑡 = 0 is 𝑇0. Every 

term of Eq. (4) will be explained and modelled in the next section. 

Thermal mass 
The thermal capacity of the system has been obtained through cooling 

curve test on the single cell (Appendix A). This experiment provided the ther-

mal capacity of one cell, which is assumed to be constant. When considering 

a battery pack, this thermal capacity is multiplied by the number of cells in 

the pack. 

Heat generation 
The electrical and electrochemical reactions occurring inside the cells dur-

ing charge and discharge generate heat, hence they should be modelled to 

correctly apply the first law of thermodynamics. These phenomena [19] are 

of two kinds:  

• Irreversible losses due to the joule effect in the internal electrical re-
sistances.   

• Reversible losses due to entropy change resulting from electrochemi-
cal reactions within the cell. 

In total, four heat component will be considered, namely the ohmic loss, 

the additional loss, the diffusive loss, and the entropic loss, where the first 

three are irreversible and the last one is reversible.  

The ohmic loss is due to joule dissipation effect in the internal series re-

sistances 𝑅0. It is expressed by the following equation. 



2 - Battery pack multiphysics model 

28 

 

 

�̇�𝑜ℎ𝑚 = ∑ 𝑅0,𝑖 𝐼
2

𝑁𝑐𝑒𝑙𝑙

𝑖=1

                                                          (5) 

The additional loss is caused by joule effect in the additional resistances 

𝑅𝑎𝑑𝑑 . The following equation is used to compute it. 

�̇�𝑎𝑑𝑑 = ∑ 𝑅𝑎𝑑𝑑,𝑖  𝐼
2

𝑁𝑐𝑒𝑙𝑙

𝑖=1

                                                       (6) 

The diffusive loss happens at each RC branch and is evaluated with this 

equation: 

�̇�𝑑𝑖𝑓𝑓 = ∑(𝑈1,𝑖 +𝑈2,𝑖) 𝐼

𝑁𝑐𝑒𝑙𝑙

𝑖=1

                                                  (7) 

The reversible heat loss is governed by the entropic coefficient (
𝜕𝑉𝑂𝐶𝑉

𝜕𝑇
) and 

it is caused by the reversible entropy change inside the battery due to elec-

trochemical reactions. It is described by the following equation. 

�̇�𝑟𝑒𝑣 = 𝐼𝑐𝑒𝑙𝑙𝑇𝑐𝑒𝑙𝑙
𝜕𝑉𝑂𝐶𝑉
𝜕𝑇

                                                      (8) 

Where 𝐼𝑐𝑒𝑙𝑙 is the current intensity in Ampere, 𝑇𝑐𝑒𝑙𝑙 is the temperature of 

the cell in Kelvin, 
𝜕𝑉𝑂𝐶𝑉

𝜕𝑇
 is the entropic coefficient in V/K, which is a function 

of the State of Charge and is calculated based on experimental data. The cor-

relation 
𝜕𝑉𝑂𝐶𝑉

𝜕𝑇
(𝑆𝑂𝐶) has been determined experimentally through tests. 

Ambient cooling 
The battery pack is not insulated, therefore it exchanges heat with the am-

bient via natural convection. The heat flow is estimated using an equivalent 

thermal resistance between the battery pack and the ambient. The value of 

the resistance is assumed to be constant and has been determined experi-

mentally through cooling curve test. The following equation describes the 

heat exchanged between the system and the ambient: 

�̇�𝑎𝑚𝑏 =
𝑇𝑎𝑚𝑏 − 𝑇𝑐𝑒𝑙𝑙
𝑅𝑡ℎ,𝑎𝑚𝑏

                                                        (9) 

Where 𝑅𝑡ℎ,𝑎𝑚𝑏 is the thermal resistance in K/W, 𝑇𝑎𝑚𝑏 is the ambient tem-

perature in K and 𝑇𝑐𝑒𝑙𝑙 is the battery pack temperature in K. 

Liquid cooling 
The battery pack is liquid cooled with a heat exchanger. The fluid enters 

the system at atmospheric pressure, ambient temperature, and constant vol-

umetric flow rate. The thermal phenomenon is forced convection and, also in 



2 - Battery pack multiphysics model 

29 

 

 

this case, the heat exchanged is obtained through an experimental thermal 

resistance, determined by cooling curve test. The thermal resistance is as-

sumed to be function of the volume flow rate: through the tests, an empirical 

correlation is obtained. The following equation describes the heat exchanged 

between the battery system and the liquid circuit. 

�̇�𝑐𝑜𝑜𝑙 =
𝑇𝑐𝑜𝑜𝑙 − 𝑇𝑐𝑒𝑙𝑙
𝑅𝑡ℎ,ℎ𝑒𝑥(𝑄)

                                                     (10) 

Where Rth,hex(Q) is the thermal resistance, in K/W, as a function of the 

volume flow rate Q, in L/min. Tcool is the coolant temperature, in K, assumed 

to be equal to the coolant outlet temperature. Our lifetime simulation is 

therefore investigating the ageing associated to the battery pack in the most 

critical condition, so that the degradation is estimated in a conservative way. 

For this reason, the battery pack temperature is assumed to be equal to the 

temperature of the most critical cell, i.e., the one with the highest tempera-

ture.  

To solve the thermal problem, it is necessary to consider an additional 

equation. The following equation is the first law of thermodynamics applied 

to the system containing the coolant in the heat exchanger.  

𝑑𝑇𝑐𝑜𝑜𝑙
𝑑𝑡

𝑉ℎ𝑒𝑥𝜌𝑐𝑜𝑜𝑙𝑐𝑐𝑜𝑜𝑙 = �̇�𝑐𝑐𝑜𝑜𝑙(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) + �̇�𝑐𝑜𝑜𝑙                    (11) 

As already stated, we are assuming that 𝑇𝑐𝑜𝑜𝑙 = 𝑇𝑜𝑢𝑡 for conservative rea-

sons. 𝑉ℎ𝑒𝑥 is the volume of the heat exchanger in m3, 𝜌𝑐𝑜𝑜𝑙 is the liquid density 

in kg/ m3, and 𝑐𝑐𝑜𝑜𝑙 is the specific heat of the coolant, in J/kgK. �̇� is the cool-

ant mass flow rate in kg/s. Being a first-order differential equation, we need 

an initial condition, being the coolant initial temperature, which is set equal 

to the ambient.  

2.3.3 Ageing model 
Battery degradation is a complex phenomenon [20]–[22] since it depends 

on multiple factors and is caused by several electrochemical reactions. Being 

able to properly estimate the State of Health (SOH) of a battery is of the utter 

importance, since low state of health causes poor performances, safety issues 

and economic losses. Battery SOH is usually expressed in two ways: capacity 

fade and internal resistance increase [23], [24]. The remaining capacity of 

the battery is a crucial indicator to assess the SOH and is usually used as an 

end-of-life (EOL) criteria; in most of the storage applications EOL happens 

when the remaining capacity is 70-80%. Resistance increase involves all the 

internal resistances of the battery and is usually caused by parasitic reaction 

happening within the cell. 



2 - Battery pack multiphysics model 

30 

 

 

Many studies agree that the main causes of battery degradation are Solid 

Electrolyte Interface (SEI) formation and Lithium plating on the anode sur-

face [21], [22], [24]–[26]. 

SEI layer grows on the anode-electrolyte interphase, and it is fundamental 

to passivate the electrode and prevent short circuit. However, an excessive 

growth of this layer causes a decrease of the electrode porosity and inhibits 

the kinetic transport of Lithium ions [24]. This results in an increased re-

sistance to the ionic flow which limits the available power and capacity. The 

formation of the SEI layer leads to contact loss within the anode, causing im-

pedance increase.  

Another critical phenomenon is lithium plating, which occurs on the an-

ode surface when the local electric potential drops below zero [24]. In this 

case, instead of intercalating inside the graphite structure of the anode, Li-

ions form a layer of metallic lithium on the anode surface, causing an irre-

versible loss of lithium ions.  

These two reactions, together with several minor parasitic reactions, cause 

battery degradation through three main modes [25]: Loss of Lithium Inven-

tory (LLI), Loss of conductivity (LC) and Loss of Active Material (LAM). LLI 

refers to the irreversible reactions that prevent lithium ions to carry charge 

and intercalate in the electrodes. LC is correlated to the increase of the re-

sistances and the flow limitations. LAM indicate a loss of the active material 

in the anode and cathode due to cracking, graphite exfoliation, reduced elec-

trical contact, structural changes [27], [28]. 

Most of those parasitic reactions are enhanced at higher temperature, 

causing faster degradation of the cell. A highly degraded battery experiences 

significant resistance increase, which result in higher heat generation during 

operation. This causes temperature rise which results in a positive feedback 

thermal loop [29]. To prevent this to happen, temperature of the battery must 

be controlled with cooling systems.  

Battery degradation is commonly modelled with two components: calen-

dar ageing and cycle ageing [20], [22]. The first one occurs when the battery 

is storing energy without exchanging energy with an external circuit; the sec-

ond one happens when the battery is charged or discharged. Many studies 

have modelled these two components empirically, by means of ageing curve 

and stress factors that depends on multiple conditions. Usually, those models 

consider either calendar [30], [31] or cycling [32]. The accuracy of the esti-

mation depends on how many degradation factors are considered. Refs. [33], 

[34] estimated both cycle and calendar ageing but did not consider current 

rate. Petit et al. [22] did not consider depth of discharge and maximum state 

of charge as stress factors. 



2 - Battery pack multiphysics model 

31 

 

 

Some studies consider cycle and calendar age separately, without includ-

ing the calendar component if the battery is cycling. Indeed, the battery may 

be in cycle mode for a prolonged period, during which the system experiences 

also calendar ageing. In our model, when the battery is in cycling mode, both 

the effect of calendar and cycle ageing are considered.  

Given that the cited models do not consider some aspect of battery degra-

dation, our approach is one of the most comprehensive one, since it considers 

the most relevant factors that influence calendar and cycle ageing. In partic-

ular, the investigated factors are reported in Table 3.  

 

Table 3 - Stress factors considered for Calendar and Cycle ageing 

Calendar Ageing  Cycle Ageing 

Resting Temperature  Average Temperature 

Resting State of Charge  Maximum State of Charge 

  Depth of Discharge 

  Root Mean Square of Current 

 

The next section will present more details on calendar and cycle ageing, 

how they are influenced by the ageing factors and the equation used. 

 

Calendar ageing 
Calendar ageing is the degradation caused by material deterioration over 

time. This aging component acts while the battery is in resting mode, i.e., not 

charging nor discharging. During this period, the battery experiences para-

sitic reactions (mainly SEI formation) that reduce state of health. The rate at 

which these reactions occur are mainly influenced by the cell temperature 

and the SOC. Barré et al. [35] highlighted that SEI growth is the prominent 

degradation reaction in calendar ageing. A comprehensive study on calendar 

ageing from Naumann et al. [36] investigated the influence of temperature 

and SOC on degradation. Their results show that the battery experiences 

stronger degradation for higher temperatures and SOC.  

Many studies [32], [37], [38] developed empirical model of calendar age-

ing based on a power law equation, adjusted with multiplicative stress factors 

that consider temperature and SOC. In a similar fashion, we adopted the fol-

lowing equation to estimate capacity fade due to calendar ageing. 

𝑄𝑐𝑎𝑙 = 𝐷𝑞,𝑐𝑎𝑙(𝑇𝑟𝑒𝑠𝑡, 𝑆𝑂𝐶𝑟)[(𝑡𝑞,𝑒𝑞 + 𝑡)
𝛼𝑞,𝑐𝑎𝑙

− 𝑡𝑞,𝑒𝑞
𝛼𝑞,𝑐𝑎𝑙]              (12) 



2 - Battery pack multiphysics model 

32 

 

 

Where 𝑄𝑐𝑎𝑙 is the capacity loss, experienced during the calendar period 𝑡. 

𝐷𝑞,𝑐𝑎𝑙(𝑇𝑟𝑒𝑠𝑡, 𝑆𝑂𝐶𝑟) is a stress factor that depends on the average temperature 

𝑇𝑟𝑒𝑠𝑡 during the calendar period and on the resting State of Charge, 𝑆𝑂𝐶𝑟. The 

exponent 𝛼𝑞,𝑐𝑎𝑙 is an empirical coefficient, obtained by curve fitting in ageing 

tests. 𝑡𝑒𝑞 is the equivalent time at the beginning of the calendar period. If the 

battery is new, its capacity is 100% and the equivalent time is zero. If the 

battery has experienced degradation, the equivalent time corresponds to the 

hypothetical amount of time needed to degrade the battery from 100% ca-

pacity to its actual capacity, exclusively though calendar ageing at a Temper-

ature and State of charge equal to 𝑇𝑟𝑒𝑠𝑡 and 𝑆𝑂𝐶𝑟. It can be calculated with 

the following equation: 

𝑡𝑞,𝑒𝑞 = (
1 − 𝑆𝑂𝐻𝑐

𝐷𝑞,𝑐𝑎𝑙(𝑇𝑟𝑒𝑠𝑡, 𝑆𝑂𝐶𝑟)
)

1
𝛼𝑞𝑐𝑎𝑙

                                    (13) 

Where 𝑆𝑂𝐻𝑐 is the state of health of the battery, in dicating the remaining 

capacity. After the calendar period 𝑡, the battery has experienced a capacity 

fade equal to 𝑄𝑐𝑎𝑙, therefore the new capacity is equal to the remaining ca-

pacity at the beginning of the calendar period minus the capacity fade. 

The internal resistance increase caused by the calendar ageing can be cal-

culated in a similar fashion, with the difference that the state of health 𝑆𝑂𝐻𝑟 

will be 100% when the battery is new and will numerically increase when the 

battery ages. Every resistance in the system, namely the series internal re-

sistance, first charge dynamics resistance and second charge dynamics re-

sistance, is equally affected by this phenomenon. Their actual value is given 

by the product of their value at Beginning of Life and the resistance state of 

health, 𝑆𝑂𝐻𝑟. During the calendar period 𝑡, the resistance increase is given 

by the following equation: 

𝑅𝑐𝑎𝑙 = 𝐷𝑟,𝑐𝑎𝑙(𝑇𝑟𝑒𝑠𝑡, 𝑆𝑂𝐶𝑟)[(𝑡𝑟,𝑒𝑞 + 𝑡)
𝛼𝑟,𝑐𝑎𝑙

− 𝑡𝑟,𝑒𝑞
𝛼𝑟,𝑐𝑎𝑙]               (14) 

Where 𝐷𝑟,𝑐𝑎𝑙 is a calendar stress factor regarding resistance increase and 

𝛼𝑟,𝑐𝑎𝑙 is the calendar ageing exponent regarding resistance increase. 𝑡𝑟,𝑒𝑞 is 

the equivalent time, defined as the previous equivalent time 𝑡𝑟,𝑒𝑞, except that 

indicates the period needed to reach a resistance increase of 𝑆𝑂𝐻𝑟 at the be-

ginning of the calendar period. Therefore, it can be obtained with the follow-

ing equation: 

𝑡𝑟,𝑒𝑞 = (
𝑆𝑂𝐻𝑟 − 1

𝐷𝑟,𝑐𝑎𝑙(𝑇𝑟𝑒𝑠𝑡, 𝑆𝑂𝐶𝑟)
)

1
𝛼𝑟𝑐𝑎𝑙

                              (15) 

The updated value of the resistance state of health can be obtained by add-

ing 𝑅𝑐𝑎𝑙 to 𝑆𝑂𝐻𝑟 at the beginning of the calendar period. 

 



2 - Battery pack multiphysics model 

33 

 

 

Cyclic ageing 
Cyclic aging is the degradation caused by the charge and discharge opera-

tion of the battery. Many factors influence this kind of degradation, such as 

maximum SOC, Depth of Discharge (DOD), average temperature and current 

rate [22].  Also in this case, the degradation is mainly caused by SEI for-

mation and, in extreme cases, Lithium plating. These parasitic reactions are 

enhanced when the anode potential is lower [24], which happens during 

charge or for high SOC. Especially when the battery is charged to high SOC 

and stores energy for a prolonged period, the degradation is accelerated [20]. 

DOD indicates the amount of energy withdrawn by the battery during dis-

charge. Huang et al. [26] showed that the deeper the DOD, the faster the bat-

tery degrades. Also, fast charging and discharging can decrease SOH, since 

in causes overheating, mechanical stress, structural changes, uneven SEI for-

mation, anode exfoliation [39]. 

Temperature has a critical role in cycle ageing. Even in this case, a higher 

temperature accelerates the degradation process. However, also low temper-

ature can be dangerous for battery health since it reduces capacity and in-

crease internal resistance [29]. 

A common approach to model capacity loss from cycle ageing is with a 

power law, corrected with stress factors that consider operating conditions 

[32]. In our case, the equation adopted is the following. 

𝑄𝑐𝑦𝑐 = 𝐷𝑞,𝑐𝑦𝑐(𝑇𝑎𝑣𝑒 , 𝐼𝑅𝑀𝑆, 𝐷𝑂𝐷, 𝑆𝑂𝐶𝑚𝑎𝑥) [(𝐴ℎ𝑞,𝑒𝑞 + 𝐴ℎ)
𝛽𝑞,𝑐𝑦𝑐

− 𝐴ℎ𝑞,𝑒𝑞
𝛽𝑞,𝑐𝑦𝑐] (16) 

Where 𝐷𝑞,𝑐𝑦𝑐(𝑇𝑎𝑣𝑒 , 𝐼𝑅𝑀𝑆) is a cycling stress factor that depends on the aver-

age temperature during cycling, 𝑇𝑎𝑣𝑒, and the root mean square value of the 

current, 𝐼𝑅𝑀𝑆. 𝐹𝑞,𝑐𝑦𝑐(𝐷𝑂𝐷, 𝑆𝑂𝐶𝑚𝑎𝑥) is a cycling stress factor that depends on 

Depth of Discharge, 𝐷𝑂𝐷, (i.e. the difference between maximum and mini-

mum SOC during the cycling period) and the maximum State of Charge dur-

ing the cycling period, 𝑆𝑂𝐶𝑚𝑎𝑥. 𝐴ℎ is the current throughput in Ampere hours 

and it corresponds to the time integral of the absolute value of the electric 

current during the cycling period. 𝐴ℎ𝑞,𝑒𝑞 is the equivalent throughput, which 

corresponds to the electric current throughput needed to degrade the battery 

from the BOL condition to the actual degradation at beginning of the inves-

tigated cycling period, 𝑆𝑂𝐻𝑐. It is expressed by the following equation: 

𝐴ℎ𝑞,𝑒𝑞 = (
1 − 𝑆𝑂𝐻𝑐

𝐷𝑞,𝑐𝑦𝑐(𝑇𝑎𝑣𝑒 , 𝐼𝑅𝑀𝑆, 𝐷𝑂𝐷, 𝑆𝑂𝐶𝑚𝑎𝑥)
)

1
𝛽𝑞,𝑐𝑦𝑐

                   (17) 

Where 𝑆𝑂𝐻𝑐 is the state of health of the battery, indicating the remaining 

capacity. After the cycling period, the battery has experienced a capacity fade 

equal to 𝑄𝑐𝑦𝑐, therefore the new capacity is equal to the remaining capacity at 

the beginning of the cycling period minus the capacity fade. 



2 - Battery pack multiphysics model 

34 

 

 

The resistance increase is calculated in a similar fashion, using the follow-

ing equation: 

𝑅𝑐𝑦𝑐 = 𝐷𝑟,𝑐𝑦𝑐(𝑇𝑎𝑣𝑒 , 𝐼𝑅𝑀𝑆, 𝐷𝑂𝐷, 𝑆𝑂𝐶𝑚𝑎𝑥) [(𝐴ℎ𝑟,𝑒𝑞 + 𝐴ℎ)
𝛽𝑟,𝑐𝑦𝑐

− 𝐴ℎ𝑟,𝑒𝑞
𝛽𝑟,𝑐𝑦𝑐] (18) 

Where 𝐷𝑟,𝑐𝑎𝑙 and 𝐹𝑟,𝑐𝑦𝑐 are stress factor related to resistance increase deg-

radation and 𝐴ℎ𝑟,𝑒𝑞 is the equivalent throughput to degrade the battery to 

𝑆𝑂𝐻𝑟 at the beginning of the cycling period. It can be calculated with the fol-

lowing equation: 

𝐴ℎ𝑟,𝑒𝑞 = (
𝑆𝑂𝐻𝑟 − 1

𝐷𝑟,𝑐𝑦𝑐(𝑇𝑎𝑣𝑒 , 𝐼𝑅𝑀𝑆, 𝐷𝑂𝐷, 𝑆𝑂𝐶𝑚𝑎𝑥)
)

1
𝛽𝑟,𝑐𝑦𝑐

             (19) 

The new value of the resistance state of health can be obtained by adding 

𝑅𝑐𝑦𝑐 to 𝑆𝑂𝐻𝑟 at the beginning of the cycling period. 



3 - Methodology 

35 

 

 

3 Methodology 
This section will explain in detail the methodology adopted to compare 

and benchmark four simulation software. In the first part we will describe 

the software, providing insights into their common use, features, and modus 

operandi. Then, four KPIs will be introduced. The comparison will be based 

on these four areas, for each software. Section 3.1 will describe the four se-

lected software. Then, the investigated aspects of the comparative study will 

be showcased in section 3.2. In section 3.3 the hardware is described, and in 

section 3.4 the battery model implementation is explained, for all of the four 

tools.  

3.1 Software selection 
Battery system simulation can be run with a wide variety of tools. For this 

study, we focused on four of the most common approaches, used in industry 

and academia to model and simulate battery systems. This section will briefly 

describe every tool. 

3.1.1 Simcenter Amesim 
Simcenter Amesim [40] is a system simulation software that allows to 

model Multiphysics systems. It is used to design and optimize complex sys-

tems, taking into consideration various phenomena thanks to a drag-and-

drop interface, where many pre-built components are already implemented. 

This software allows to investigate electrical, fluid-dynamic, mechanical, 

thermal and control systems with a customizable approach, since the user 

can modify parameters and input experimental data. However, it is not pos-

sible to change equation and functionalities behind each component block 

directly. 

 

 

Figure 6 - Simcenter Amesim launch window. 



3 - Methodology 

36 

 

 

This software is developed by Siemens and is part of the wide pool of soft-

ware in the Simcenter suite. This means that it is possible to interface system 

simulation with other projects, built with other Simcenter tools, which in-

clude testing and designing tools. Users can integrate it with several Com-

puter-Aided Engineering (CAE) and Computer-Aided Design (CAD) tools 

and interoperate Functional Mock-up Units (FMU) developed with other 

simulation tools. This feature guarantees a higher interoperability of simula-

tion tools, allowing models to be operated in different environments.  

Amesim interface has four modes, namely “Sketch”, “Submodel”, “Param-

eter” and “Simulation”. In the “Sketch” mode it is possible to build the multi-

physics system by choosing physical components from an embedded library. 

In the case of the battery system model, the components are mainly electrical 

(current source, voltage sensor, battery pack, …), thermal fluid (pumps, 

heat exchanger, fluid properties, thermal resistance, …) and control signal 

(charge/discharge controller, property inspectors, integrators, …). All the 

components are wisely interconnected to enable the interaction of different 

effects. In the “Submodel” mode we can choose different modelling charac-

teristics for each component. For example, the battery pack component has 

three different submodels, namely Simple ECM, Advanced ECM and Elec-

trochemical model, which represents the most common simulation strate-

gies for Li-ion cells. 

The “Parameter” mode allows to set the general parameters of the model 

and to input physical quantities in each component. Parameters can be im-

ported from external files in the format .data, which can contain values and 

lookup tables. In the case of ECM parameters, they depend on current, tem-

perature and SOC, so these parameters can be input as 3-D lookup tables and 

Amesim will automatically interpolate the value based on those electrother-

mal quantities.  

The last mode is “Simulation”, where it is possible to select the type of 

solver, the fixed or variable timestep and other run parameters. Then, the 

simulation is run, and all the logs are displayed through a window. Once the 

simulation is completed, it is straightforward to visualize the results just by 

selecting a component and clicking on the quantity that we want to inspect. 

All results can then be exported or post processed in the “Post processing” 

window.  The simulation can also be run from an external Python script, en-

abling iterative simulation to run smoothly. The Python library “amesim” in-

cludes all the commands useful to set parameters, run simulation and extract 

results. In this way it is possible to run lifetime simulation by implementing 

the workflow described in Appendix B with only one python script.  

3.1.2 MATLAB/Simulink 



3 - Methodology 

37 

 

 

MATLAB [41] is one of the most widespread programming environments 

among industry and academia. It is a proprietary high-level programming 

language initially released in 1984, and is developed by MathWorks, provid-

ing an interactive platform to perform numerical computation, data analysis 

and programming. It is often used by engineers and scientists to develop al-

gorithms and to implement models.  

 

Figure 7 - MATLAB/Simulink logo 

 

Simulink [42] is an Add-on to the MATLAB environment which provides 

a visual environment for programming and modelling dynamic systems. It 

can be used to perform simulations, to optimize systems, to build and analyse 

models based on non-linear and differential equations. For the analysis and 

simulation of complex systems, MATLAB and Simulink offer a complete col-

lection of tools. 

Simulink can be interoperated with MATLAB, since they share a common 

workspace where all the variables are saved. By implementing a MATLAB 

script, it is possible to import data and create functions which can directly be 

used in a Simulink model. Also, the simulation output can be analysed and 

post-processed in MATLAB, enabling a straightforward link between the two 

platforms. 

Simulink library does not contain multiphysics components; hence, a pre-

liminary step is to implement all the physical governing equations of the sys-

tem. This requires additional modelling effort because a deep knowledge of 

the physical phenomena is needed. Once we define the set of equations, these 

can be implemented in the Simulink model by means of drag-and-drop 

blocks that perform basic algebraic and logical operation.  

 

3.1.3 MATLAB/Simulink/Simscape 
Simscape [43] is an add-on package to the MATLAB/Simulink environ-

ment that contains a library with multiphysics components. This enables to 

use Simulink as a platform to build multiphysics model with a library of pre-



3 - Methodology 

38 

 

 

built blocks that mimic the physical behaviour of different part of the system. 

The foundation library of Simscape includes multiple domains, such as elec-

trical, hydraulic, thermal, mechanical and many more. These libraries con-

tain all the sources, elements, and sensors useful to create such models.  

 

 

Figure 8 - Simscape logo 

 

Since Simscape is based on a physical modelling approach, is not neces-

sary to know the underlying laws of the system since all the governing equa-

tions are already implemented in every block, which simplifies the process of 

model development and implementation. It is possible to access the source 

code of the component to understand the underlying equation. It is also pos-

sible to modify the script and generate new components in the library, but 

they can only be developed via the MATLAB programming language. Other 

than the Simscape foundation library, MathWorks developed several add-on 

Simscape libraries, specifically designed for a physical domain. In our case, 

we implemented the battery system model also thanks to the two additional 

libraries “Simscape Battery” and “Simscape Fluids”.  

3.1.4 Dymola 
Dymola [44] is a simulation, modelling, testing and post-processing envi-

ronment developed by the French software house Dassault Systèmes. It is 

based on Modelica, an open-source modelling language, used in academic 

and industrial contexts. Systems can be modelled in Dymola with multiphys-

ics component, and many other blocks already implemented in the Dymola 

library; it is possible to fully access the code behind every block and modify 

its equations, parameters, and variables by programming with the Modelica 

language, allowing users to personalize or create new blocks based on their 

needs. When the simulation is initialized, the Modelica Compiler converts 

the model to C code and run the script. 



3 - Methodology 

39 

 

 

 

Figure 9 - Dymola logo 

 

The Dymola interface shows three main modes: Graphics, Text and Sim-

ulation. In the “Graphic” mode it is possible to import blocks and compo-

nents from the native Modelica library or from additional libraries developed 

by Dymola. In our model, we mainly used basic Modelica blocks, in combi-

nation with more advanced components from the “Battery” and “Cooling” 

Dymola libraries. Every library contains a vast variety of already built exam-

ples, which can be used as a starting point to build customized models. 

Dymola allows users to extend or duplicate blocks: in the first case, by ex-

tending a block it is possible to customize its properties, without changing 

the default functionalities of the block, which remains the same as the source 

block in the library; duplicating a block means creating a new library compo-

nent, which can be fully customized and implemented in the system model.  

The model implementation is multi-layered, meaning that every compo-

nent can be explored at a deeper level to visualize and change the underlying 

blocks. A different way of building the system is by using the Text mode. The 

graphic mode and the text mode describe the same system model and the two 

interfaces are interconnected, meaning that the user can implement the 

model graphically and see the changes in the script, and vice versa.  

In Text mode it is possible to visualize and modify the code behind every 

block using the Modelica programming language. This mode allows the user 

to define system variables, parameters, and events. For instance, the ageing 

model has been implemented partially with the graphics mode (to import the 

lookup tables), but also at text level, writing the ageing variables and the 

event triggered when the system switches between resting and cycling mode.  

Once the model is built, it can be simulated in the “Simulation” tab. The 

default solver is the native “dassl” solver, which uses a variable timestep, but 

it is possible to select different solvers, both with fixed and variable step. 

Every variable of the system can be displayed on a graph or on a table, which 

can then be exported in different formats.  

The Dymola simulation can be run from an external python script by im-

porting the Dymola library. This library contains several commands that let 



3 - Methodology 

40 

 

 

the user modify parameters, set initial conditions, run simulation and extract 

results. 

3.2 Key performance indicators 
This comparative study has the ambition to analyse different simulation 

tools in the most comprehensive way, covering multiple aspects of software 

that can be relevant to various users. Other studies, such as the one con-

ducted in Ref. [45], was focused on aspects that are relevant to business us-

ers, professionals, or industry, without considering that other users from ac-

ademia, such as students or researchers, may put more value in other aspects 

of a software. Based on our specific goal and on the state-of-the-art software 

comparison, we intend to evaluate four main aspects of the software: Perfor-

mance, Ease of Use, Features and Licensing. Some of these have been as-

sessed quantitatively, by conducting tests and experiments and comparing 

the results; some others, are reviewed qualitatively, by describing the user 

experience and the distinctive aspects of the tool. In the this the four investi-

gated aspects will be introduced and described, aiming to explain what they 

address and how they can be evaluated.  

 

 
Figure 10 - Investigated key performance indicators. 

 

3.2.1 Performance  
One of the key aspects of a software is related to its overall performance. 

This indicator can be measured by different tests on all the software, and the 

main two aspects that were investigated are the speed of the simulation and 

the accuracy of the results. Similarly, many other comparative studies of sim-

ulation software compared the different tools based on their accuracy [46]–

[50] and speed [7], [46], [49].  



3 - Methodology 

41 

 

 

Simulation runtime can be a determinant of what software to use, espe-

cially for systems with complex and multiple physics, and for lifetime analy-

sis. Increasing the speed of the simulation will allow users to enhance their 

workflow, obtaining more results faster for a better and more comprehensive 

analysis. In an industrial context, enabling fast computation can be critical 

to meet business goals and provide valuable information to customers. In the 

research context, this enables us to obtain valuable information sooner, es-

pecially in fast moving fields, like energy storage. Simulation speed was 

tested and compared in the studies from Jmai et al. [49]  and Magni et al. [7], 

which also stress the importance of this characteristic.  

To make a fair comparison of the software, the very same multiphysics 

model of a battery system, explained in Section 2, is implemented with the 

four tools, and a 10-year lifetime simulation are run in the same conditions. 

All the four use cases depicted in paragraph 2.2 are tested on the four soft-

ware, giving sixteen simulation outputs. For every use case, a comparison of 

the simulation runtime of each of the four tools will show the speed perfor-

mance. To have a more reliable comparison, each simulation is run ten times, 

and an average runtime is considered. All simulations are run on the same 

local workstation described in Section 3.3, while all other tasks be idle. 

Since there are no real test data regarding ageing in the lifetime simula-

tion, it is not possible to assess the accuracy of the software based on the pre-

vious analysis. Judkoff et al. [51], [52] identified three methods to validate 

simulation results, to assess their accuracy. The output can be compared with 

real test data (empirical validation), or between the different tools (cross-val-

idation), or with an analytical solution (analytical validation). The last ap-

proach is only available for simple systems when it is possible to solve ana-

lytically all the equations of the system. In our case, the system contains 

many non-linearities and parametric maps, which makes this method hardly 

applicable. Cross-validation has the disadvantage that it is difficult to define 

a reference against which to assess the accuracy of the other software. More-

over, the same multiphysics model was implemented in all the investigated 

tools and there is no difference in the comprehensiveness level of the model 

among the four software. For the third method, empirical validation, it is nec-

essary to have test data available, which we gathered for different operating 

conditions. Camargos et al. [48] validated the results of two simulation soft-

ware against catalogue data. Also, the comparative study from Chakrabarti et 

al. [50] estimates the accuracy of different simulation tools with respect to 

real data obtained from experiments. In our case, we compared the four soft-

ware with experimental tests and used empirical validation to assess their 

accuracy. We used values from two different tests.  

For each test, there are information regarding the current, voltage, coolant 

flow rate and pack temperature. Therefore, the analysis was structured as fol-

lows: 



3 - Methodology 

42 

 

 

• Setup the same parameters and operating conditions of the real experi-

ment on every software. 

• Input in the four simulations the same current profile measured during 

the test. The tools will read the current values from the same experimental 

timeseries. 

• Input the same coolant flow rate timeseries, in a similar way as the cur-

rent profile. 

• Extract from every simulation the voltage and the temperature profiles. 

• Compare the simulation output values with the test values, by evaluating 

their relative error. 

The relative error of the simulation output with respect to the test values 

is given by the following equation: 

𝐸𝑟𝑟 =
|𝑋𝑠𝑖𝑚 − 𝑋𝑡𝑒𝑠𝑡|

|𝑋𝑡𝑒𝑠𝑡|
                                                     (20) 

Where 𝑋𝑠𝑖𝑚  is the simulation output in a timeseries format, 𝑋𝑡𝑒𝑠𝑡 is the 

test values. In our case 𝑋 represents the two investigated outputs, which are 

the voltage and the temperature profiles.  

 

3.2.2 Ease of use 
The second aspect of our comparative study aims to assess the ease of use 

of the software. Different software may require a higher level of expertise, 

while others may have a steeper learning curve. Software that requires less 

modelling effort, or with a more intuitive interface and a smoother workflow 

will allow users to produce results faster, with a smaller probability of errors 

and with an overall better experience. Other comparative studies of software 

focused their attention on this aspect, to guide users in their choice. Gardner 

et al. [3] compared three FEM simulation software, providing insights on the 

ease of setup. The software usability was considered as a relevant aspect also 

by Jafrancesco et al. [47], who compared four simulation software, also based 

on their Graphical User Interface (GUI) and on their general characteristics 

regarding ease of use. Attia et al. [2] assessed usability of the software based 

on 249 interviews to experts and users, summarizing their opinions in tables. 

In our case, the software comparison will be based on the personal experience 

of modelling the BESS on different software. As opposed to performance, the 

ease of use can hardly be quantified by specific indicators based on experi-

ments. The way we intend to compare the different software is by giving a 

qualitative review of the user experience for each of the four tools, providing 

insights and suggestions regarding the model implementation. This part will 

consider all the different factors that determine how easy it is to learn and 



3 - Methodology 

43 

 

 

use the software. The GUI is a relevant feature of the tool since it is the mean 

though which the modeler develops the project. Another factor that deter-

mines the usability of the software is whether it has pre-built blocks that rep-

resent a physical component. With this feature, it is possible to implement 

complex systems without a deep knowledge of the governing equations, just 

by drag-and-dropping the block needed. An aspect that was considered by 

Attia et al. [2] is the flexibility of use, which describes the ability to accom-

modate both beginners and advanced users on the same software. Indeed, 

some tools can be properly used only by expert users, while others might be 

more suitable for unexperienced users, but lack the ability of complex cus-

tomization of the system when needed. Having a knowledge-based platform, 

containing detailed documentation, and already built examples, are deter-

mining factors in mastering the software, especially in the early stages of use. 

On top of that, good customer support and online documentation can im-

prove the user experience and simplify the learning process. All these factors, 

and many more, will be evaluated while using the four tools, and results will 

be shown in Section 4.2. 

3.2.3 Features 
The third relevant aspect of a software regards its features and function-

alities. Most of the multiphysics system simulation tools have similar capa-

bilities, but every software developer implements unique features to gain 

competitive advantage to other software houses. These features concern dif-

ferent aspects of the software, which can be related to the solver options, the 

level of physical detail of the modelling components, the interoperability with 

other platforms and many others. Also in this case, similarly to the “ease of 

use” aspect, it is not appropriate to compare software based on experiments 

and indicators. Nevertheless, a more quantitative comparison can be con-

ducted. Many software comparative studies [2], [3], [7], [47] summarize the 

relevant features in tables, showcasing a feature in each row and software in 

each column. We believe that this approach is effective to describe the overall 

capabilities of the software, and to highlight the uniqueness of each tool. 

Hence, Section 4.3 provides a summarizing table of the feature of each soft-

ware, together with a more extensive review for each software. The aim is to 

highlight the different peculiarity of the tools, so that the user can choose the 

best approach based on his/her specific requirements. Our description has 

the ambition to cover all the relevant aspects of the tools, such as the interop-

erability, the level of physical detail, the simulation options, optimization ca-

pabilities, the comprehensiveness of the library and many more.  

3.2.4 Licensing 
The last but not least aspect of this comparative study is related to the li-

censing scheme. This factor is relevant in both industry and academia since 



3 - Methodology 

44 

 

 

the cost of software can represent an important factor in terms of resource 

management. In a comparative study of simulation software from Jafran-

cesco et al. [47], the tools are compared also based on the license type, such 

as open-source, freeware, commercial or home-made. In a similar fashion, 

we will be describing the licensing scheme of every tool, also giving insights 

on the costs and license type. On top of that, some software may provide a 

license for the basic functionalities and require additional purchase for add-

ons and libraries specifically built for a particular application, such as battery 

pack models or thermal cooling systems. Section 4.4 provides deeper insights 

into this aspect.  

3.3 Hardware selection 
One of the main performance indicators that we intend to compare is the 

simulation runtime of every software. To conduct a fair comparison, all the 

simulations will be run locally on the same workstation, with the same oper-

ating conditions. The hardware selected for this study has the following spec-

ifications [53]: 

Processor  Intel(R) Core(TM) i7-1065G7 CPU  

Processor base frequency 1.30GHz   

Max Turbo Frequency 3.90 GHz 

Total Cores  4 

Total Threads  8 

Installed RAM  32.0 GB (31.6 GB usable) 

Operating System  Windows 10 Enterprise 

System type  64-bit operating system 

 

While running the simulation, no other tasks were active, so that all the 

computational effort is dedicated for our simulation. To guarantee con-

sistency of results, simulation has been run 10 times and an average value of 

the runtime has been considered.  

3.4 Model implementation 
This section will briefly explain the implementation process of the multi-

physics model of the battery system on the four software. A deeper and more 

comprehensive description of the implementation process is given in Appen-

dix B. This Section 3.4 aims to provide a glimpse into the different modelling 

approaches for lifetime simulation on the four tools. 



3 - Methodology 

45 

 

 

3.4.1 Simcenter Amesim 
Simcenter Amesim allows user to build battery systems starting from na-

tive multiphysics components. The “battery pack” component contains all the 

relevant equations comprised in the electric and thermal model described in 

Section 2.3.1 and Section 2.3.2. The liquid cooling circuit can be implemented 

with multiphysics component, such as pipes, heat exchangers and tempera-

ture sensor, and connected to the battery pack.  

Regarding lifetime simulation, the Simcenter Amesim model simulates 

24-hour operation. This simulation is run 3650 times (for ten years) from an 

external python script. After the 24-hour simulation is run from the python 

script, the current, Temperature, and SOC profiles can be extracted and be-

come the input of the ageing model described in Section 2.3.3, which outputs 

capacity fade and resistance increase. The updated values of capacity and re-

sistance are then updated in the Simcenter Amesim mode, and anew 24-hour 

simulation is run. This process is explained more in detail in Appendix B.  

Being a multiphysics modelling and simulation tool, Simcenter Amesim 

presents a clear and intuitive interface, as it shown in Figure 11, which depicts 

the battery pack component connected to the thermal model.  

 

Figure 11 - Simcenter Amesim model of the battery pack connected to the thermal model. 

3.4.2 Simscape 
The MATLAB/Simulink add-on package “Simscape Battery” comes with 

the battery builder functionality, which enables users to create a customized 

battery pack block, by specifying cell geometry, position, connection scheme, 

ECM parameters and many more features. This battery pack multiphysics 

block is the added to the Simscape library and can be used in the Simulink 

environment to simulate a battery pack. Embedded in this block, there are 

both the ECM electric model and the thermal heat generation for Ohmic ef-

fect. The thermal port of the battery pack can then be linked to the thermal 



3 - Methodology 

46 

 

 

model, developed with Simscape blocks from the “Thermal liquid” library. 

The system model is displayed in Figure 12. 

 

Figure 12 - Simscape model of the battery pack connected to the thermal model. 

 

Similarly to Simcenter Amesim, the Simscape model simulates 24-hours 

operation. The lifetime simulation is run from an external script that itera-

tively runs the 24-hour simulation and estimates capacity fade and resistance 

increase from the output profile. This time, the external script is developed 

in MATLAB, since it shares the same workspace environment with Sim-

ulink/Simscape, hence the interaction between the script and the model is 

optimized.  

3.4.3 Simulink  
The implementation of the battery system model in Simulink requires an 

additional modelling effort, since Simulink library do not contain multiphys-

ics components, but only signal operators. This means that it is necessary to 

investigate the governing equations of the electric and thermal model (ex-

plained in Section 2.3.1 and Section 2.3.2), and implement those relations 

with basic algebraic and logic blocks in Simulink.  

Simulink offers a signal-flow environment that can be used to implement 

dynamic models based on differential equations. Unlike all the other simula-

tion tools, Simulink does not provide multiphysics components, such as bat-

teries, pipes, voltage sensors and others. This means that the user needs to 

model the relevant governing equation that represents the system. Figure 13 

represents the Simulink model of the system, containing electric model, ther-

mal model, generated heat, and liquid properties.  



3 - Methodology 

47 

 

 

 

Figure 13 - Simulink implementation of the electric model (top), thermal model (mid-left), 

generated heat (mid-right), liquid properties (bottom). 

Everything must be modelled as set of equations and translated into Sim-

ulink blocks. This means that the complexity of the project rises quickly and 

making changes in the model may require the re-modelling of all equations. 

Also in this case, it is convenient to run the lifetime simulation from a 

MATLAB script, since the Simulink-MATLAB environments share the same 

workspace.  

3.4.4 Dymola 
Dymola provides a modelling environment with multiphysics compo-

nents. Every block is freely accessible, and the source code can be custom-

ized. This freedom allows users to modify blocks and model to suit their 

needs. The battery library provides several “thermal”, “electric” and “aging” 



3 - Methodology 

48 

 

 

models, which can be combined to form a cell model. The cell model becomes 

the basis of the battery pack component, which can then be connected to the 

cooling circuit, as it is shown in Figure 14.  

 

 

Figure 14 - Dymola model of the battery pack connected to the thermal model. 

Since the ageing model has been implemented at cell level in Dymola, 

there is no need to loop a 24-hour simulation from and external script and 

calculate degradation accordingly. Instead, the lifetime simulation is run in-

side the Dymola environment, which ease the model implementation (no 

need to code externally) and enhance overall performance (no interaction be-

tween different platform, but all-in-one solution).   



4 - Results 

49 

 

 

4 Results 
 

This section presents the main findings of the comparative study. The four 

simulation tools will be compared quantitatively regarding their perfor-

mance (Speed, CPU Usage and Accuracy), and qualitatively regarding Ease 

of Use, Features and Licensing.  

 

4.1 Performance 
On of the key aspect of a simulation software concerns performance. The 

same model implemented and simulated on different software may produce 

different results and with different computational resources. The reason for 

this lays on the solver configuration, in the different model implementation 

features and on different block functionalities. Software can be compared 

based on the required computational resources, which will be measured via 

the simulation runtime and the CPU usage, and on their accuracy, assessed 

by the comparison between simulation output and test data.   

 

4.1.1 Runtime 
Software simulation runtime will be based on the 24h multiphysics simu-

lation in the four different cases. We believe that this is the fairest compari-

son to estimate the performance of the simulation. The lifetime simulation 

runtime, which consists of a loop that runs the 24h simulation 3650 times 

(10 years), does not represent only the software performance, but also the 

efficiency of the interaction between the script and the software, which is out 

of the scope of the study. On top of that, Amesim lifetime simulation has been 

implemented with a python script, while Dymola the lifetime loop is imple-

mented inside the tool. This different implementation translates in different 

speed performance, that does not represent the single simulator perfor-

mance. We will run the 24h simulation 10 times in every case and the average 

runtime value will be considered. Total elapsed runtime is composed of ini-

tialization time and CPU time, which regards the numerical computation pe-

riod. Table 4 shows the simulation runtime for every software and case. For 

every software, the table shows the total elapsed runtime to simulate the 

model and the ratio between the initialization time and the total elapsed 

runtime, in percentage. For a direct comparison, Figure 15 displays a bar plot 

of the same results, where every bar is stacked with a brighter bar that repre-

sents the initialization time. 

 



4 - Results 

50 

 

 

 

Table 4 - Runtime comparison of the four simulation tools for one 24-hour simulation. 
 

Amesim Simscape Simulink Dymola 

 Elapsed 
runtime 

(s) 

Initialization 
time rate 

(%) 

Elapsed 
runtime 

(s) 

Initialization 
time rate 

(%) 

Elapsed 
runtime 

(s) 

Initialization 
time rate 

(%) 

Elapsed 
runtime 

(s) 

Initialization 
time rate 

(%) 

Case 1 1.047 2.1 9.546 1.6 0.829 27.1 0.260 9.4 

Case 2 0.901 2.0 10.064 1.6 0.801 16.6 0.243 9.8 

Case 3 0.851 1.3 10.274 1.5 0.788 19.3 0.259 9.2 

Case 4 0.779 1.4 10.117 1.6 0.816 18.6 0.254 10.0 

Aver-
age 0.895 1.7 10.000 1.6 0.809 20.4 0.254 9.6 

 

The results show that Dymola outperformed in terms of simulation 

runtime, with values ranging from 0.243 seconds in Case 2, to 0.260 seconds 

in Case 1. Simulink and Amesim showed similar speed, with Simulink per-

forming faster simulation in three out of the four cases. Overall, Simulink 

performed better than Amesim, with an average runtime of 0.809 seconds 

versus 0.895 seconds. In terms of elapsed time, Simscape was the slowest, 

with an average runtime of 10.0 seconds. In terms of initialization, the 

Dymola simulation took on average 9.6% of the total elapsed time to initialize 

the simulation, while the same rate on Amesim averaged 1.7%. Simulink took 

20.4% average to initialize the simulation, even though it performed better 

than Amesim. Simscape initialization time represented 1.6% of total time, but 

in terms of speed it performed 39.3 times slower than Dymola, 12.4 times 

slower than Simulink and 11.1 times slower than Amesim.  

  

Figure 15 – Runtime comparison of the four simulation tools for the 24-hour simulation. 

 om arison o  sim  ation r ntime  or one     sim  ation

                        
 

 

 

 

 

  

  

 
 
 
  
 
 
  
 
 

      

        

        

      



4 - Results 

51 

 

 

Figure 15 represents in a bar plot the results shown in Table 4.  The lighter 

bar stacked on top of each bar represents the initialization time.  

Runtime of lifetime simulation values are affected not only by the software 

performance, but also by the implementation method, e.g. external script to 

run simulation vs simulation run in the same environment. Table 5 shows 

the simulation runtime of the 10-year lifetime simulation. 

 

Table 5 - Runtime comparison of lifetime simulation on the four tools 
 

Simcenter Amesim Simscape Simulink Dymola 

 Elapsed runtime 
(s) 

Elapsed runtime  
(s) 

Elapsed runtime 
(s) 

Elapsed runtime 
(s) 

Case 1 14953 35770 1013 209 

Case 2 16136 36498 1017 158 

Case 3 16332 37221 1146 204 

Case 4 15439 35627 1077 195 

Average 15715 36279 1063 191 

 

 It can be noticed that runtime of Simcenter Amesim for 24-hour simula-

tion is only about 3.5 times slower than Dymola (average of 0.895 seconds vs 

0.254 seconds), while for lifetime simulation the overall runtime is 82.3 

times slower (15715 seconds vs 191 seconds). Most of the computational inef-

ficiency comes from the implementation method, since lifetime simulation in 

Simcenter Amesim is run from a python script, while everything is embedded 

in Dymola. A new release of Simcenter Amesim (2304) will allow users to 

develop a custom ageing model that can be implemented within the battery 

block. This means that there will be no need of external script, which will 

enhance the overall computational speed. From the results shown in table 5  

it is possible to learn that the interaction between MATLAB and Simulink is 

significantly more effective than the interaction between python and 

Simcenter Amesim. For a 24-hor simulation, the two software show similar 

runtime (on average, 0.895 seconds for Simcenter Amesim and 0.809 sec-

onds for Simulink). However, if we run lifetime simulation for 10 years (3650 

iteration of the 24-hor simulation) from an external script (python coupled 

with Simcenter Amesim and MATLAB coupled with Simulink), the overall 

runtimes change significantly. The lifetime simulation requires 15715 sec-

onds with Simcenter Amesim, while only 1063 seconds with Simulink, which 

results 14.8 times faster than Simcenter Amesim. For this reason, the 

Simcenter Amesim model can be improved by implementing a degradation 

model within the cell block and avoiding external scripting.  

The higher efficiency between MATLAB and Simulink/Simscape is not 

enough to make Simscape speed performance competitive with the other 

three tools. 



4 - Results 

52 

 

 

4.1.2 CPU Usage 
Another performance metric is the CPU used by the simulation tool. CPU 

was monitored during the simulation via a python script. While monitoring 

the CPU used by the simulation task, ten simulations were performed, and 

the average CPU*seconds value has been considered. The monitoring tool 

saves the instantaneous CPU percentage used by a specific task. Since simu-

lations require different runtime, the overall computational resources can be 

obtained by the integration of the CPU usage profile against time. For this 

reason, the unit used is core*second, which corresponds to the computa-

tional resources used by one CPU core at maximum power for one second. 

Table 5 displays the computational resources used by a 24h simulation for 

every software. Figure 16 show the same results on a bar plot.  

 

Table 6 - CPU usage comparison for the 24-hour simulation on the four tools 

 Amesim 
(core*seconds) 

Simscape 
(core*seconds) 

Simulink 
(core*seconds) 

Dymola 
(core*seconds) 

Case 1 1.62 12.39 2.37 0.87 

Case 2 1.44 14.08 1.97 0.86 

Case 3 1.44 12.82 2.08 0.91 

Case 4 1.44 13.04 2.19 0.94 

Average 1.49 13.08 2.15 0.90 

 

 

Figure 16 - CPU usage comparison for the 24-hour simulation on the four tools 

 P   sage  er sim  ation

                        
 

 

  

  

 
 
 
  
 
 
 
  
 
 
  
  
 
 
 
 
 
 

       

        

        

      



4 - Results 

53 

 

 

 

Also in this case, Dymola required the least computational effort, with an 

average CPU resource of 0.9 core*seconds. Even though Amesim runtime 

was slightly higher than Simulink, it required less computational resources, 

with an average of 1.49 core seconds against 2.15 core seconds of Simulink. 

Simscape was the simulation tool that required the highest amount of com-

putational effort, with an average value of 13.08 core seconds. This is proba-

bly because this simulation has been set with a fixed timestep, while all the 

other ones use a variable timestep. We could not implement a variable 

timestep with Simscape because the simulation runtime was too long com-

pared to the other software. We believe that, with further optimization of the 

model, the software might perform better. This additional analysis can be ex-

panded in a future work.  

 

4.1.3 Accuracy 
Simulation outputs have been validated empirically, via comparison with 

real test data. Two tests were performed, cycling the battery with different CP 

rate. Every simulation was fed with the current profile and the investigated 

output is the thermal response of the system. Also, voltage profiles will be 

compared to assess the accuracy of the software. Regarding the temperature 

profile, the most accurate software was Simulink, whose relative error was 

2.41% for Test 1 and 1.77% for Test 2, However, both Simcenter Amesim and 

Dymola performed well, with a slightly higher error, as reported in Table 7. 

On the other hand, Simscape relative error was 4.48% for Test 1 and 5.86% 

for Test 2, mainly since the battery block does not model entropic losses. Also 

regarding voltage profile, Simcenter Amesim, Simulink and Dymola per-

formed well, with Simcenter Amesim being the best one. Simscape showed 

higher relative error, mainly because the ECM parameters can depend only 

on the temperature and SOC, but not on the current.  

 

Table 7 - Relative error of every simulation tool with respect to experimental test data. 

Relative error (%) Amesim Simscape Simulink Dymola 

Test 1 (Temperature) 2.41 4.48 2.41 2.45 

Test 2 (Temperature) 1.78 5.86 1.77 1.84 

Test 1 (Voltage) 0.72 0.95 0.73 0.72 

Test 2 (Voltage) 0.57 0.69 0.57 0.57 

 

 

 



4 - Results 

54 

 

 

 

Figure 17 - Accuracy comparison between the four tools. 

 

The reason why Simcenter Amesim resulted as the most accurate software 

is because the model optimization of the parameters was performed with this 

tool. The same parametrization on other software may produce small inaccu-

racies, due to the different solver or diverse block functionalities. 

4.2 Ease of use 
This section will present the results regarding ease of use and a compari-

son of the user experience during the modelling and simulation process. Each 

software will be briefly reviewed, aiming to describe the learning process and 

to enhance user awareness about what difficulties they might encounter 

while using the tool. This aspect cannot be quantified by numeric indicators, 

hence we agreed that the most effective way to give a sense of user-friendli-

ness was to write a “user-experience” review for each tool, so that we could 

assess each tool in a qualitative way. These reviews are based on personal 

experience, acquired while modelling, implementing, and simulating the bat-

tery system on the four software.  

4.2.1 Amesim 
Thanks to the vast library of multiphysics components, the modelling of 

complex systems requires very low effort. In most cases, to implement the 

model, the user only needs to search for the right block in the library and 

drag-and-drop in the project environment, in sketch mode. These compo-

nents can then be parametrized with specific values or tables, just by entering 

the number, the equation, or the path of the table file. Ease of setup is the key 

strength of Amesim, and it is probably the most user-friendly software 

among the ones analysed. The user is not required to have a physical 

knowledge of the system, or advanced modelling skills. Also, all the blocks 

are mimicking the most relevant physical phenomena, with a black-box ap-

proach. This gives less freedom to the user, but eases the learning process, 

 e ati e error o  tem erat re sim  ation o t  t  rt test  ata

            
 

 

 

 

 

 

 
 
 
  
  
  
  
  
 
  
  

 

      

        

        

      

 e ati e error o   o tage sim  ation o t  t  rt test  ata

            
 

   

   

   

   

   

   

   

   

   

 

 
 
  
  
  
  
  
 
  
  

 

      

        

        

      



4 - Results 

55 

 

 

since it is not required to model and implement the different physical effects. 

This makes the tool particularly suited for beginners, who will reach a decent 

level of expertise in a short time. After the two steps of model implementation 

(drag-and-drop plus connect blocks) and parametrization (specify the gen-

eral and block parameters), the model is ready to be simulated; this whole 

learning process requires little effort from the modeler, which can allocate 

more energy for the later stage of data processing and visualization. Also, this 

last process of post-processing and data visualization is very user-friendly, 

thanks to the Amesim intuitive interface. After the simulation has run, the 

user can click on a specific component and drag-and-drop a physical quantity 

to visualize its time-profile. Plots can then be overwritten on the same figure, 

compared in a new subplot, and exported in .csv format. All these quantities 

are automatically displayed with their physical unit, decreasing errors com-

ing from misinterpretation of results. In a dedicated window, user can import 

different results and perform post processing, which can be very useful to 

extract additional information or to validate the model. 

When starting a simulation, the tool opens a log window, which provides 

all the useful information about the model, including warnings and errors. 

The debug experience is smooth, since the log window provides detailed in-

formation about the possible errors, so that the user can easily identify the 

sources of error.  

As was explained, the components are used with a block-box approach, 

meaning that the user cannot access the script. However, every block comes 

with a very detailed documentation, which gives insights on the block func-

tionalities, properties, inputs, and outputs, and all the underlying equation. 

After double-clicking on the block, an icon with a question mark appears, 

which is linked to the block documentation. In our personal experience, every 

documentation provided the necessary information to well understand the 

block functionalities, easing the modelling process. While on one hand the 

documentation is comprehensive, on the other hand, for more high-level is-

sues, the online resources, such as forums or tutorials, are not very exhaus-

tive. This means that if the solution cannot be found in the documentation, it 

is unlikely to solve the issue by online research; the alternative is online sup-

port from the tool developer.  

In our lifetime simulation model, it was required to interface the 

Simcenter Amesim model with a python script; this implementation required 

an intermediate coding ability with python, which increases the otherwise 

simple implementation of the degradation model. The following release of 

Simcenter Amesim, v2304, introduced an “ageing identification tool”, that 

incorporates a degradation model in the battery block, starting from test 

data. This means that degradation is calculated inside Simcenter Amesim, 

making external scripting non necessary anymore.  



4 - Results 

56 

 

 

Overall, the learning and modelling process with Amesim is very smooth, 

without any blocker. This tool is easily accessible to most of users since there 

is no need for a deeper understanding of the system. As te system complexity 

increases, little effort is needed to implement the changes in the virtual 

model. However, for our lifetime simulation, a good knowledge of python 

scripting was required.  

4.2.2 Simscape 
As in the case of Amesim, Simscape library also contains a vast variety of 

multiphysics components. This means that the user is not required to have a 

deep understanding of the physical governing equation, since the most rele-

vant ones are already incorporated in the physical components. Simscape has 

good ease of setup, since the user only needs to select the right components, 

connect them, and simulate the model. Because of that, the learning process 

does not require much effort, and this tool can fairly accommodate less ex-

perienced user. Nevertheless, Simscape shares the same environment with 

Simulink, whose advanced functionalities can allow more experienced users 

to implement more complex systems, with a higher level of detail. Indeed, 

Simscape blocks are easy to use but have low level of detail, which can repre-

sent a limitation for advanced users that want to create complex models. 

The Simscape documentation is detailed, providing insights about func-

tionalities and equations, including examples. In most of the cases, this re-

source is enough to model the system. Nevertheless, in the case that the doc-

umentation cannot provide help for a specific problem, the online commu-

nity of Simscape users is quite large, and solutions can be found online.  

The log window displays information about model warnings and errors, 

assisting the user to debug the simulation. However, the tool does not always 

provide suggestions on actions, making the debugging experience more chal-

lenging. Also, because data cannot be immediately displayed without proper 

blocks (such as Scope, ToWorkspace), finding errors requires more effort. 

While in Amesim, after every simulation, it is possible to immediately visu-

alize every physical value of every block, in Simscape it is necessary to link a 

Scope block to the investigate value, run the simulation, and then visualize 

the profile. Especially for long runtime simulation, this aspect could slow 

down the modelling process. 

In our case, most of the parameters and lookup tables were defined in the 

MATLAB environment. To do this, a basic knowledge of the MATLAB pro-

gramming language is needed. Post-processing and data visualization can 

also be performed in MATLAB, with more advanced coding abilities. This 

close connection with the MATLAB environment can enable more advanced 

and complex analysis but adds an additional aspect that requires learning 

effort. However, the MATLAB language has been designed specifically for 



4 - Results 

57 

 

 

engineers and is one of the most widespread languages in academia and in-

dustry. This means that most users will be able to interact with Simscape, 

knowing the basics of MATLAB. 

For our lifetime simulation, a more extensive knowledge of MATLAB was 

necessary to run the simulation, process data and estimate degradation, 

which complicates the ease of implementation.  

Overall, the Simscape implementation has the advantage of already built 

multiphysics component, which allows fast implementation of complex sys-

tems without a high modelling effort. However, postprocessing and visuali-

zation requires basic/intermediate knowledge of the MATLAB coding lan-

guage. The debug experience is decent, since the tool identifies the error lo-

cation, without suggesting possible actions. 

4.2.3 Simulink 
Unlike the other simulation tools, Simulink does not provide multiphysics 

components in its library, but it is designed to simulate signal flows and dy-

namic systems. It provides the flexibility to model and implement all sorts of 

phenomena if the modeler knows all the governing equations of the system. 

Because of this, building a Simulink model of a battery system requires the 

additional step of better understanding all the physical effects of the system, 

describe them with set of equations and represent these equations with Sim-

ulink blocks. As a result, the model setup requires more modelling efforts and 

investigation of the physical effects, which increases the probability of com-

mitting errors and the time required to build the system. It goes without say-

ing that this modelling approach requires higher expertise from the user, who 

needs to investigate the system first, and implement the equations then.  

Even though the modelling process takes more time, the implementation 

happens with basic algebraic and logical blocks, which are easy to use and 

connect. Simulink is a lower-level programming environment, while the 

other tools provide an already-built component environment, where the al-

gebraic and logical level is hidden behind the blocks. This different approach 

gives more freedom to the modeller to customize every block, but it requires 

higher level of experience.  

All Simulink blocks are well documented, enabling a smoother self-learn-

ing process. Simulink is by far the most used simulation tool, compared to 

the other three. This means that most of the warnings and errors encountered 

during the model implementation can be issued online, by leveraging the vast 

online MATLAB/Simulink community and the tutorials. A meaningful met-

ric of the widespread of each tool can be the number of results found on 

Google. By entering “Simulink battery model” in Google, the search engine 

provides roughly 2.75 million results (research conducted on the 12th June 

2023). If instead of “Simulink” we type “Simscape”, the number of results 



4 - Results 

58 

 

 

drops to 200 thousand, while both “Amesim” and “Dymola” produce 50 

thousand results each. These values give a sense of how popular each soft-

ware is, with Simulink resulting as the most popular. This does not imply that 

other software are not well documented or that errors cannot be issued by an 

online research. However, in personal modelling experience, it was often the 

case that errors encountered in Simulink could be debugged by online re-

search in a very easy way. This aspect increases the ease of use and the self-

learning process, without the need to contact the vendor support.  

Simulink, as well as Simscape, is highly interconnected with the MATLAB 

environment. Hence, also in this case, a basic knowledge of the MATLAB pro-

gramming language is needed. Data visualization, post-processing and anal-

ysis can be better performed in MATLAB, so the user needs familiarity with 

MATLAB. This lowers the learning curve, since the user should understand 

how all these environments are interoperated and how results can be pro-

cessed and visualized. 

Also, the modification or the improvement of a system towards a more 

complex model requires more time and effort than the other tools. While for 

other multiphysics simulation tools the user can easily add component or in-

tegrate new library, with Simulink the new components must be modelled, 

meaning that the set of equation of the old system might not be valid anymore 

and the entire model needs to be rebuilt or heavily modified.  

Overall, Simulink proved to be a very flexible and customizable tool to 

build the battery system. However, it was the only tool that required the user 

to write all the equations, understand the electrical, thermal, and fluid dy-

namics phenomena, and translate these equations with basic algebraic and 

logic blocks. The overall modelling phase requires more knowledge, time, 

and effort, but support can be easily found online thanks to the vast pool of 

Simulink user in academia and industry.  

4.2.4 Dymola 
The fourth and last simulation tool, Dymola, contains a large library of 

multiphysics components, coming both from the Open Modelica library and 

the Dymola library.  Not only do these libraries contain blocks and compo-

nents, but also a wide pool of already-built examples. They offer a good start-

ing point for beginners to start building their model. Every example is de-

scribed in the documentation, which eases the learning phase of the software. 

The software comes with an extensive user guide, which describes all the 

functionalities of Dymola. However, in most cases, reading the source code 

was a more straightforward strategy to understand block functionalities. Also 

the online resources from the Dymola users community was not suited to de-

bug errors, which in this case were mainly issued via the source code access 

or the vendor support.  



4 - Results 

59 

 

 

The great advantage of this software is that unexperienced users can im-

plement models starting from the library examples, and more advanced users 

can easily access the source code and customize the functionalities. Blocks 

can be duplicated, customized, and added to the library. These libraries can 

then be shared with other users, so that they can drag-and-drop the new 

blocks and integrate the new functionalities in their models. For the three 

other software, sharing work between users mainly happens via the sharing 

of the model file, while in this case it is easier to import the library.  

The source code can be modified easily, but this process requires 

knowledge of the OpenModelica language, which, unlike most of the other 

programming languages, is based on acausal modelling. Also known as equa-

tion-based approach, with this method users define the relationship between 

variables, rather than performing the right-to-left assignment of variables. 

Once defined, the equations are always satisfied in both directions, so there 

is no need of explicating the variables.  

In the personal experience of model implementation with Dymola, mas-

tering this modelling method required effort, but enables an easier descrip-

tion of complex physical systems. Understanding acausal modelling is a nec-

essary step to add complexity of details to the basic models. Once mastered, 

every block can be customized in the “text” layer, while also having a graph-

ical representation of the system in the “graph” layer.  

Like in Amesim, after the model simulation it is possible to click on com-

ponents and easily visualize the output profiles. Physical quantities can be 

displayed on plots, subplots or tables, and are always linked to a physical 

unit. The Check icon can be used to verify that the model is well built and, if 

it is not the case, the log window displays warning, errors, and possible ac-

tions to debug the model. The debugging experience is well supported by the 

software suggestion on finding and correcting the error.  

Unlike the other three software, to run lifetime simulation there was no 

need for an external python/MATLAB script, since the ageing is calculated at 

cell level. While it is true that the degradation model needed to be written in 

the OpenModelica language, this let us avoid writing an additional script, 

easing the overall implementation of the simulation.  

To sum up, Dymola offers great customizability of the blocks, but requires 

learning effort to understand the OpenModelica approach. However, begin-

ners can start building their models based on the examples provided in the 

libraries, which are a good starting point to understand the basic functional-

ities of the software. The user can be overwhelmed by the modelling oppor-

tunities that the software offers, but can leverage this possibility with the ven-

dor’s support, which can suggest best practices to properly implement the 

model.  



4 - Results 

60 

 

 

4.3 Features 
This section aims to present and compare the features of the four tools, 

regarding three main categories, namely modelling, simulation and interop-

erability. We will present the software so that the user can understand the 

uniqueness of each tool and choose the one that best suits his/her needs. Ta-

ble 8 will summarize this paragraph for a rapid and direct comparison.  

 

Table 8 - Feature comparison between the four software. 

 Simcenter 

Amesim 
Simscape Simulink Dymola 

Modelling features     

Fluid property library Wide, expandible Moderate, not ex-

pandible 

No Wide, expandible 

Drag-and-drop multiphysics com-

ponents 

Yes Yes No Yes 

Access the source code of the 

block 

No Yes Yes Yes 

Modification of the source code of 

the block 

No Yes, but not easy Yes, but not easy Yes 

Customizability Low Intermediate High High 

CC-CV charge block No Yes No Yes 

ECM parameter dependency SOC, T, Current SOC, T Free model SOC, T, Current 

Reversible heat generation (en-

tropic coefficient) 

Yes No Can be modelled Yes 

Integration of ageing model in the 

battery block 

Yes, but not cus-

tom (bf v2304) 

Yes, but not cus-

tom 

Can be modelled Yes, customizable 

Crate battery pack based on cus-

tom cell model 

Yes Yes Yes Yes 

Electrochemical battery model Yes No Can be modelled Yes 

Multi-dynamics Equivalent Circuit 

Model 

Yes, no RC limit Yes, up to 4 RC 

branches 

Can be modelled Yes, up to 3 RC 

Simulation features     

Skip re-initialization in iterative 

simulation 

No Yes Yes No 

Variety of solvers 2 variable, 

3 fixed 

1 variable,  
8 fixed 

10 variable, 
8 fixed 

15 variable, 
4 fixed 

Optimization Yes Yes Yes Yes 

Sweep parameters No No No Yes 

Simulation until steady state No No No Yes 

Ease of results postprocessing High Intermediate Intermediate High 

Ease of output visualization High Intermediate Intermediate High 

Interoperability     

Accommodate beginners and ad-

vanced users 

Mainly beginners Both beginner 

and experts 

Mainly advanced Both beginners 

and experts 

FMU integration Yes Yes Yes Yes 

Run simulation from external 

script 

Yes, Python Yes, MATLAB Yes, MATLAB Yes, Python 



4 - Results 

61 

 

 

Add blocks to the library No Yes, but not easy Yes, but not easy Yes 

 

4.3.1 Modelling features 
Every software provides different tools to describe a physical system. 

However, the level of detail, the fidelity and the functionalities can vary 

greatly between tools. For our specific case, we will focus more on the fea-

tures that concern the battery system modelling experience, neglecting many 

other features that regards other physical systems. It is important to state 

that if a modelling feature is not available by default in a tool, it does not 

imply that this feature cannot be implemented with turnarounds or addi-

tional modelling effort. We want to showcase the modelling features that can 

be easily implemented without adding any extra work from the modeler.  

Cells can be modelled with an Equivalent Circuit Model or with an elec-

trochemical mode. Both Simcenter Amesim and Dymola offer the two mod-

elling approaches, while Simscape Battery provides only ECM with up to 4 

RC branches. Dymola, by default, provides ECM with maximum 3 RC 

branches, while in Simcenter Amesim there is no limit. Since Simulink offers 

the possibility to model every possible equation, there are no modelling lim-

its, hence all the features can be implemented. However, the modelling pro-

cess requires much more effort, since the user must know and implement all 

the equations involved. The ECM parameters depend on SOC, Current and 

Temperature in both Simcenter Amesim and Dymola, while only on SOC and 

Temperature for Simscape. The irreversible heat losses due to Ohmic effects 

are present in all the tools, while the reversible heat due to entropic effects is 

only modelled in Simcenter Amesim and Dymola. All the tools provide ageing 

models embedded with the cell component, with some differences. Simscape 

only models Calendar ageing, with two approaches, equation-based or table-

based. Simcenter Amesim degradation model can be user-defines static/dy-

namic or semi-empirical dynamic, meaning that the user can input ageing 

model based on specific relationships between derivative of state of health 

and ageing stress factors. In Dymola there are already build ageing model for 

different battery chemistries, but it is also possible to build a custom ageing 

model with blocks and code, giving more freedom to the user.  

A charging block with an already defined CC-CV charging protocol can be 

very useful when modelling battery systems. Dymola and Simscape Battery 

contains a CCCV block, while it is not included in Simcenter Amesim.  

More advanced users may need to access the source code of a component 

to visualize and modify its functionalities. Simcenter Amesim does not pro-

vide this functionality by default, while it is possible to visualize the script in 

Simscape and Dymola. This last tool also offers the possibility to easily mod-

ify the script with the Modelica language, which enables users to customize 



4 - Results 

62 

 

 

blocks. This can also be done with Simulink/Simscape, but it requires more 

effort.  

Regarding the fluid library, every tool provides a list of already imple-

mented liquid and gas properties, depending on temperature and pressure. 

This feature is commonly used when modelling cooling circuits of liquid 

flows. Simscape provides eight liquids/mixtures, where the user can specify 

the volume fraction. In Simcenter Amesim, more than 50 media are already 

modelled and stored in the native library, while for Dymola there are 50 mod-

elled liquids, but many more can be modelled and imported. Also Simcenter 

Amesim gives the possibility to import user-defined fluids, while in Simscape 

the user can enter table-based properties.  

As already mentioned, Simulink does not natively contain most of the fea-

tures, but all of them can be modelled and implemented manually. Indeed, it 

is the only tool that does not provide multiphysics drag-and-drop compo-

nents. 

4.3.2 Simulation features 
The simulation features concern all those aspects regarding the post-mod-

elling phase, which allows users to run simulations in different ways, visual-

ize/process the results and perform system analysis and optimization. In 

terms of solvers, every tool gives the ability to simulate the model with a fixed 

or a variable timestep. Every software offers a wide variety of solvers, with 

Dymola containing the higher number of variable-step solver (around 15), 

while Simulink has around ten, Simcenter Amesim two (regular or cautious) 

and Simscape only one. Regarding fixed-step solver, Amesim contains three 

options: Euler, Adam-Bashforth and Runge-Kutta. Dymola has Euler and 

three types of Runge-Kutta and Simscape/Simulink have eight different 

fixed-step solvers.  

In every simulation tool, when running a simulation, the software first in-

itializes and compiles the model, then runs the simulation. When running a 

simulation from an external script, the same process happens. For lifetime 

simulation it is often the case that simulations are run multiple times, mean-

ing that at every iteration the same model is re-initialized and re-built. This 

process can highly increase the overall simulation runtime. Simulink and 

Simscape have the “Fast Restart” feature, which skips the initialization and 

compilation step if the simulation is run again without major changes. This 

feature significantly decreased the runtime, since the model was initialized 

only for the first day and quickly run for the other days, just with a different 

state of health. It was not the case for Amesim, for which the lifetime simu-

lation took longer because at every step the model was rebuilt, which took 

around additional 3 seconds.  



4 - Results 

63 

 

 

All the simulation software contain an optimization tool that can help us-

ers to design parameters to fit experimental data. They also give the possibil-

ity to stack simulation for different parameters, to conduce sensitivity analy-

sis based on swept parameters. With Dymola it is also possible to run a sim-

ulation until steady state, without the need to specify the end time. 

In terms of output visualization and post-processing, both Amesim and 

Dymola have a user-friendly interface, where it is possible to plot and process 

the results immediately. This feature is not implemented in Simulink and 

Simscape, which however leverage the close interaction with the MATLAB 

environment to manage the data.  

 

4.3.3 Interoperability 
System simulations are usually based on multiple system components, 

which can be developed by other users. In this case, the simulation software 

should be able to integrate in the same model multiple functionalities devel-

oped on different platforms. Functional Mockup Interfaces and Functional 

Mockup Units (FMU) are the most common way of sharing these functional-

ities. All the software are able to import FMU in their models. Also, FMU can 

be created and exported starting from each of the investigated simulation 

tool. Interoperability can also mean the ability of the software to accommo-

date both beginner and advanced users. In this sense, Dymola can be easily 

operated by beginners thanks to the graphical view and allows advanced us-

ers to customize models by coding in Modelica. Amesim is even simpler to 

use but lacks the feature of deep and flexible customization of the blocks. 

Simulink and Simscape interfaces can accommodate beginner users, also 

providing some advanced features to build more complex and customizable 

models.  

If more than one user is working on the same platform on different parts 

of the system, with Dymola they can share their jobs by creating a new cus-

tom library and share it with others. For instance, the thermal modeler can 

develop a cell thermal model that can then be shared with the simulator, who 

can easily select the newly created thermal model into the system. With the 

other three tools, the job can be shared as a model file, and the user can copy 

and paste the blocks between different projects. The difference is that the 

newly developed model is not included in a shared library, so it is needed to 

open the specific project to import the work. However, Simcenter Amesim 

can be interoperated with “Simcenter System Simulation Client for Git”, a 

shared platform where multiple users can upload and access other simulation 

project, to develop in parallel new models.  

In terms of running simulation from an external script, Amesim and 

Dymola can be operated from python script, even though this process is not 



4 - Results 

64 

 

 

computationally efficient. Simscape and Simulink simulations can be run 

from a MATLAB script in a more efficient way, since all the data are managed 

in the same workspace, without the need of continuously reading and writing 

data on files. 

4.4 Licensing 
All the tools require a license purchase to be operated. In all cases, licenses 

can be perpetual (one-time buy), or rented annually. For this comparison, we 

considered floating licenses with one year of activation period. 

MATLAB/Simulink resulted as the cheapest one [54], costing around 860 

EUR for MATLAB and 1300 EUR for Simulink. In the Simscape case, two 

additional licenses are required: “Simscape” and “Simscape Battery”, making 

necessary the purchase of four distinct products. The overall annual price is 

around 4000 EUR. Also Simcenter Amesim requires a rental license, but in 

this case there is no need to purchase add-ons. All the functionalities needed 

for this study were included in the standard license of Simcenter Amesim, 

which costs around double the annual total Simscape price. The most expen-

sive software is Dymola, which requires the Dymola standard configuration, 

plus the two libraries: Battery and Cooling. Its overall price is around double 

than Simcenter Amesim. However, it must be said that the different vendor 

may provide exclusive discounts, based on number of licenses purchased, 

type of license required (Standard/Home/Academic). The prices reported in 

this thesis are a rough estimate, to give a sense of magnitude to the reader. 

  



5 - Conclusions 

65 

 

 

5 Conclusions 
This thesis conducted a comparative study of four simulation software, 

benchmarking different aspects associated with the modelling and simula-

tion experience. The main investigated indicators regard the software perfor-

mance (speed, accuracy, CPU usage), ease of use, features, and licensing. The 

four tools have been compared based on the same multiphysics model of a 

battery system, liquid cooled. The model has been described in detail, espe-

cially the interactions between the electric, thermal, and ageing phenomena. 

Ease of use was evaluated based on personal experience of modelling, imple-

mentation, and simulation of the battery system. Thanks to its simple inter-

face, the very comprehensive library of multiphysics components, clear doc-

umentation, and the ease of setup and postprocessing, Simcenter Amesim 

performed as one of the best in the ease-of-use category. Also Dymola proved 

to be user-friendly, especially thanks to the many model examples already 

available, based on which the user can master the software and build more 

complex systems. However, it has a less steep learning curve because the user 

might need to learn the Modelica language to customize the block function-

alities. Thanks to the multiphysics library and the battery builder functional-

ity, Simscape supports the modelling experience, making it smoother. How-

ever, visualization and post processing require basic MATLAB language 

knowledge. In terms of customizability, both Simulink and Dymola are opti-

mal, for different reasons. With Simulink, the user can model every sort of 

effect, provided that the underlying equations of the system are known. 

Dymola gives the possibility both to select multiphysics component, with all 

the equations already implemented, but also to modify these blocks by ac-

cessing the source code in Modelica language. Regarding performance, 

Dymola is the software that uses the least computational resources and run 

simulation in the least amount of time. For the 24-hour simulation, it is fol-

lowed by Simulink and Simcenter Amesim, which are around three times 

slower. Simscape was the slowest, probably due to implementation ineffi-

ciencies that require more investigation. For lifetime simulation Dymola was 

mor than 5 times faster than Simulink and more than 80 times faster than 

Simcenter Amesim. This last tool can was slower for lifetime simulation be-

cause of the implementation with a python script. In a future release, 

Simcenter Amesim will be able to evaluate degradation without the need of 

an external script. From the licensing perspective, Simulink has the lower 

price, followed by Simscape, which is an add-on to the basic Simulink pack-

age. 

Overall, every software showed benefits under a particular aspect, hence 

we believe that the software choice mainly depends on how the user priori-

tizes the different aspects. Indeed, this thesis aimed to showcase advantages 

and disadvantages of every tool, based on which the user could make a more 



5 - Conclusions 

66 

 

 

conscious selection. Table 9 summarizes which are the ideal usage of the soft-

ware for different user requirements.  

 

Table 9 - Ideal use cases for every software 

Software Use case 

Simcenter Amesim Given the high user-friendliness, with a high level of physi-

cal detail, this tool is optimal for users that need to build 

comprehensive models with a smooth workflow. The ease of 

setup and the inability to customize blocks makes it more 

appropriate for early design phase and preliminary studies, 

rather than complex customized system simulations. Also, 

it well suits parameter fitting and system calibration. 

Simulink Simulink guarantees good performance and interoperabil-

ity with the MATLAB environment. It best suits advanced 

users with a good physical knowledge of the system and pro-

gramming skills to model and run dynamic systems. Given 

the high flexibility, the model can be detailed as desired. It 

is also the most economic tool among the ones selected. 

Simscape It is ideal for users that want to gain the benefits coming 

from the MATLAB/Simulink environment, but value more 

ease of use than performance. The graphical representation 

of multiphysics components can please a wider range of us-

ers that are not required to study the physical phenomena. 

It can also accommodate users that needs to understand the 

general behaviour of a complex system, since it is faster to 

build and modify complex models, albeit with a lower level 

of detail. 

Dymola It is the ideal tool for users that needs to run or parallelize 

computational heavy simulation, with the lowest runtime 

possible. Model complexity and level of detail can be in-

creased as desired for deep investigation, provided that the 

user is able to describe and implement physical phenomena 

with the Modelica language. Ease of setup, starting from 

components or examples, makes suitable for preliminary 

investigation, while high flexibility enables also very de-

tailed analysis.  

 

These are suggestion based on the comparative analysis, but it must be 

acknowledged that no tools showed limitation in the modelling and simula-

tion experience. Some of them may need extra modelling effort or specific 

turnarounds, but they do not prevent users to build and simulate battery sys-

tems. Therefore, the final choice depends on the user preferences.  

 



6 - References 

67 

 

 

6 References 
 
[1] I. International Energy Agency, “Renewables 2022,” 2022. [Online]. Availa-

ble: www.iea.org 

[2] S. Attia, L. Beltrán, A. De Herde, and J. Hensen, “‘Architect friendly’: a com-
parison of ten different building performance simulation tools,” in Eleventh 
International IBPSA Conference, 2009. 

[3] J. D. Gardner, A. Vijayaraghavan, and D. A. Dornfeld, “Comparative Study 
of Finite Element Simulation Software,” UC Berkeley, 2005. [Online]. Avail-
able: https://escholarship.org/uc/item/8cw4n2tf 

[4] J. L. Ross, “A Comparative Study of Simulation Software for Modeling Sta-
bility Operations,” 2012. 

[5] J. Sousa, “Energy Simulation Software for Buildings: Review and Compari-
son,” 2010. 

[6] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro, “Survey and com-
parative study of free simulation software for mobile robots,” Robotica, vol. 
34, no. 4, pp. 791–822, Apr. 2016, doi: 10.1017/S0263574714001866. 

[7] M. Magni, F. Ochs, S. de Vries, A. Maccarini, and F. Sigg, “Detailed cross 
comparison of building energy simulation tools results using a reference of-
fice building as a case study,” Energy Build, vol. 250, Nov. 2021, doi: 
10.1016/j.enbuild.2021.111260. 

[8] J. L. Bernal-Agustín and R. Dufo-López, “Simulation and optimization of 
stand-alone hybrid renewable energy systems,” Renewable and Sustainable 
Energy Reviews, vol. 13, no. 8. pp. 2111–2118, Oct. 2009. doi: 
10.1016/j.rser.2009.01.010. 

[9] H. He, R. Xiong, H. Guo, and S. Li, “Comparison study on the battery mod-
els used for the energy management of batteries in electric vehicles,” in En-
ergy Conversion and Management, Dec. 2012, pp. 113–121. doi: 
10.1016/j.enconman.2012.04.014. 

[10] B. Y. Liaw, G. Nagasubramanian, R. G. Jungst, and D. H. Doughty, “Model-
ing of lithium ion cells - A simple equivalent-circuit model approach,” in 
Solid State Ionics, Nov. 2004, pp. 835–839. doi: 10.1016/j.ssi.2004.09.049. 

[11] M. K. Tran, A. Dacosta, A. Mevawalla, S. Panchal, and M. Fowler, “Compar-
ative study of equivalent circuit models performance in four common lith-
ium-ion batteries: LFP, NMC, LMO, NCA,” Batteries, vol. 7, no. 3, Sep. 
2021, doi: 10.3390/batteries7030051. 

[12] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation 
of the lithium-ion battery using an adaptive extended Kalman filter based 
on an improved Thevenin model,” IEEE Trans Veh Technol, vol. 60, no. 4, 
pp. 1461–1469, May 2011, doi: 10.1109/TVT.2011.2132812. 



6 - References 

68 

 

 

[13] Z. Salameh, M. Casacca, and W. Lynch, “A Mathematical Model for Lead-
Acid Batteries,” IEEE Transactions on Energy Conversion, 1992. 

[14] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models 
for Li-ion batteries,” J Power Sources, vol. 198, pp. 359–367, 2012, doi: 
https://doi.org/10.1016/j.jpowsour.2011.10.013. 

[15] L. Zhang, H. Peng, Z. Ning, Z. Mu, and C. Sun, “Comparative research on 
RC equivalent circuit models for lithium-ion batteries of electric vehicles,” 
Applied Sciences (Switzerland), vol. 7, no. 10, Sep. 2017, doi: 
10.3390/app7101002. 

[16] X. Lin et al., “A lumped-parameter electro-thermal model for cylindrical 
batteries,” J Power Sources, vol. 257, pp. 1–11, 2014, doi: 
https://doi.org/10.1016/j.jpowsour.2014.01.097. 

[17] W. B. Gu and C. Y. Wang, “Thermal‐Electrochemical Modeling of Battery 
Systems,” J Electrochem Soc, vol. 147, no. 8, p. 2910, Aug. 2000, doi: 
10.1149/1.1393625. 

[18] X. Hu, S. Lin, S. Stanton, and W. Lian, “A Foster Network Thermal Model 
for HEV/EV Battery Modeling,” IEEE Trans Ind Appl, vol. 47, no. 4, pp. 
1692–1699, 2011, doi: 10.1109/TIA.2011.2155012. 

[19] J. Wang, C. Pan, H. Xu, and X. Xu, “Thermo-Electric Model of the Power 
Battery and Module Based on AMESim,” in 2017 5th International Confer-
ence on Mechanical, Automotive and Materials Engineering, CMAME 
2017, Institute of Electrical and Electronics Engineers Inc., Nov. 2018, pp. 
223–228. doi: 10.1109/CMAME.2017.8540167. 

[20] M. Ecker et al., “Calendar and cycle life study of Li(NiMnCo)O2-based 
18650 lithium-ion batteries,” J Power Sources, vol. 248, pp. 839–851, 2014, 
doi: 10.1016/j.jpowsour.2013.09.143. 

[21] J. Vetter et al., “Ageing mechanisms in lithium-ion batteries,” J Power 
Sources, vol. 147, no. 1–2, pp. 269–281, Sep. 2005, doi: 10.1016/j.jpow-
sour.2005.01.006. 

[22] M. Petit, E. Prada, and V. Sauvant-Moynot, “Development of an empirical 
aging model for Li-ion batteries and application to assess the impact of Ve-
hicle-to-Grid strategies on battery lifetime,” Appl Energy, vol. 172, pp. 398–
407, Jun. 2016, doi: 10.1016/j.apenergy.2016.03.119. 

[23] A. S. Mussa et al., “Fast-charging effects on ageing for energy-optimized au-
tomotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells,” J 
Power Sources, vol. 422, pp. 175–184, May 2019, doi: 10.1016/j.jpow-
sour.2019.02.095. 

[24] S. Atalay, M. Sheikh, A. Mariani, Y. Merla, E. Bower, and W. D. Widanage, 
“Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear 
ageing and lifetime prediction,” J Power Sources, vol. 478, Dec. 2020, doi: 
10.1016/j.jpowsour.2020.229026. 



6 - References 

69 

 

 

[25] E. Teliz, C. F. Zinola, and V. Díaz, “Identification and quantification of age-
ing mechanisms in Li-ion batteries by Electrochemical impedance spectros-
copy.,” Electrochim Acta, vol. 426, Sep. 2022, doi: 
10.1016/j.electacta.2022.140801. 

[26] W. Huang et al., “Evolution of the Solid-Electrolyte Interphase on Carbona-
ceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Micros-
copy,” Nano Lett, vol. 19, no. 8, pp. 5140–5148, Aug. 2019, doi: 

10.1021/acs.nanolett.9b01515. 

[27] P. Iurilli, C. Brivio, and V. Wood, “On the use of electrochemical impedance 
spectroscopy to characterize and model the aging phenomena of lithium-ion 
batteries: a critical review,” Journal of Power Sources, vol. 505. Elsevier 

B.V., Sep. 01, 2021. doi: 10.1016/j.jpowsour.2021.229860. 

[28] S. L. Hahn, M. Storch, R. Swaminathan, B. Obry, J. Bandlow, and K. P. 
Birke, “Quantitative validation of calendar aging models for lithium-ion bat-

teries,” J Power Sources, vol. 400, pp. 402–414, Oct. 2018, doi: 
10.1016/j.jpowsour.2018.08.019. 

[29] F. Zhou and C. Bao, “Analysis of the lithium-ion battery capacity degrada-

tion behavior with a comprehensive mathematical model,” J Power Sources, 
vol. 515, Dec. 2021, doi: 10.1016/j.jpowsour.2021.230630. 

[30] I. Bloom, B. G. Potter, C. S. Johnson, K. L. Gering, and J. P. Christophersen, 
“Effect of cathode composition on impedance rise in high-power lithium-ion 

cells: Long-term aging results,” J Power Sources, vol. 155, no. 2, pp. 415–
419, Apr. 2006, doi: 10.1016/j.jpowsour.2005.05.008. 

[31] R. Spotnitz, “Simulation of capacity fade in lithium-ion batteries.” 

[32] J. Wang et al., “Cycle-life model for graphite-LiFePO4 cells,” J Power 
Sources, vol. 196, no. 8, pp. 3942–3948, Apr. 2011, doi: 10.1016/j.jpow-
sour.2010.11.134. 

[33] M. Ecker et al., “Development of a lifetime prediction model for lithium-ion 
batteries based on extended accelerated aging test data,” J Power Sources, 
vol. 215, pp. 248–257, Oct. 2012, doi: 10.1016/j.jpowsour.2012.05.012. 

[34] J. Belt, V. Utgikar, and I. Bloom, “Calendar and PHEV cycle life aging of 
high-energy, lithium-ion cells containing blended spinel and layered-oxide 
cathodes,” J Power Sources, vol. 196, no. 23, pp. 10213–10221, Dec. 2011, 
doi: 10.1016/j.jpowsour.2011.08.067. 

[35] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, “A re-
view on lithium-ion battery ageing mechanisms and estimations for auto-
motive applications,” Journal of Power Sources, vol. 241. pp. 680–689, 
2013. doi: 10.1016/j.jpowsour.2013.05.040. 

[36] M. Naumann, M. Schimpe, P. Keil, H. C. Hesse, and A. Jossen, “Analysis 
and modeling of calendar aging of a commercial LiFePO4/graphite cell,” J 
Energy Storage, vol. 17, pp. 153–169, Jun. 2018, doi: 

10.1016/j.est.2018.01.019. 



6 - References 

70 

 

 

[37] I. Bloom et al., “An accelerated calendar and cycle life study of Li-ion cells.” 

[38] C. Guenther, B. Schott, W. Hennings, P. Waldowski, and M. A. Danzer, 
“Model-based investigation of electric vehicle battery aging by means of ve-
hicle-to-grid scenario simulations,” J Power Sources, vol. 239, pp. 604–610, 
2013, doi: 10.1016/j.jpowsour.2013.02.041. 

[39] X. Gao, H. Zhou, S. Li, S. L. Chang, Y. Lai, and Z. Zhang, “The fast-charging 
properties of micro lithium-ion batteries for smart devices,” J Colloid Inter-
face Sci, vol. 615, pp. 141–150, Jun. 2022, doi: 10.1016/j.jcis.2022.01.105. 

[40] “Simcenter Amesim,” Siemens Digital Industries Software. 
https://plm.sw.siemens.com/en-US/simcenter/systems-simula-
tion/amesim/ (accessed Jul. 03, 2023). 

[41] MathWorks, “MATLAB”, Accessed: Jul. 03, 2023. [Online]. Available: 
https://it.mathworks.com/products/matlab.html 

[42] MathWorks, “Simulink”, Accessed: Jul. 03, 2023. [Online]. Available: 
https://it.mathworks.com/products/simulink.html 

[43] MathWorks, “Simscape Battery.” https://it.mathworks.com/products/sim-
scape-battery.html (accessed Jul. 03, 2023). 

[44] Dassault Systems, “Dymola.” https://www.3ds.com/products-ser-
vices/catia/products/dymola/ (accessed Jul. 03, 2023). 

[45] M. A. A. Khan and A. K. Sheikh, “A comparative study of simulation soft-
ware for modelling metal casting processes,” International Journal of Sim-

ulation Modelling, vol. 17, no. 2, pp. 197–209, Jun. 2018, doi: 
10.2507/IJSIMM17(2)402. 

[46] E. Weingärtner, H. Vom Lehn, and K. Wehrle, “A performance comparison 

of recent network simulators,” in IEEE International Conference on Com-
munications, 2009. doi: 10.1109/ICC.2009.5198657. 

[47] D. Jafrancesco et al., “Optical simulation of a central receiver system: Com-
parison of different software tools,” Renewable and Sustainable Energy Re-

views, vol. 94. Elsevier Ltd, pp. 792–803, Oct. 01, 2018. doi: 
10.1016/j.rser.2018.06.028. 

[48] P. H. Camargos, F. E. N. Campos, and B. I. L. Fuly, “Motor Starting Direct-

on-line: Performance Analysis in ATP and MATLAB/SIMULINK Environ-
ments,” in Proceedings - 2021 IEEE 3rd Global Power, Energy and Com-
munication Conference, GPECOM 2021, Institute of Electrical and Elec-
tronics Engineers Inc., Oct. 2021, pp. 85–90. doi: 
10.1109/GPECOM52585.2021.9587781. 

[49] B. Jmai, A. Rajhi, and A. Gharsallah, “Software comparative study for RF 
power coupler,” in Mediterranean Microwave Symposium, IEEE Computer 
Society, Apr. 2015. doi: 10.1109/MMS.2014.7088968. 

[50] S. Chakrabarti, H. N. Saha, Čhulālongkō̜nmahāwitthayālai. Sasin Graduate 
Institute of Business Administration, Institute of Engineering & 



6 - References 

71 

 

 

Management, University of Engineering & Management, and Institute of 
Electrical and Electronics Engineers, 2017 8th Industrial Automation and 

Electromechanical Engineering Conference (IEMECON) : 16-18 August, 
2017, Sasin Graduate Institute of Business Administration of 
Chulalongkorn University, Bangkok, Thailand.  

[51] R. Judkoff, D. Wortman, B. O’Doherty, and J. Burch, “A methodology for 
validating building energy analysis simulations, NRELTechnical Rep. 550–
42059 1–192.,” 2008. 

[52] R. Judkoff, D. Wortman, and J. Burch, “Empirical Validation of Building 
Analysis Simulation Programs: A Status Report ,” in Solar Energy Research 
Institute, Golden, Colorado, 1982. 

[53] “Intel® CoreTM i7-1065G7 Processor,” 2023. https://ark.intel.com/con-
tent/www/us/en/ark/products/196597/intel-core-i71065g7-processor-8m-
cache-up-to-3-90-ghz.html (accessed Jun. 25, 2023). 

[54] MathWorks, “MATLAB Price list.” https://it.mathworks.com/pricing-li-
censing.html?prodcode=ML&intendeduse=comm (accessed Jul. 04, 2023). 

[55] T. Bruen and J. Marco, “Modelling and experimental evaluation of parallel 
connected lithium ion cells for an electric vehicle battery system,” J Power 
Sources, vol. 310, pp. 91–101, Apr. 2016, doi: 10.1016/j.jpow-
sour.2016.01.001. 

[56] W. Storr, “Tau - the time constant of an RC Circuit,” Basic Electronics Tuto-
rials. https://www.electronics-tutorials.ws/rc/time-constant.html (accessed 
Jun. 29, 2023). 

  



APPENDIX A 

72 

 

 

APPENDIX A 

Parametric Maps 
In this section is meant to provide deeper insights on the tests and meth-

odologies adopted to obtain the parametric maps and the functions that de-

scribe electrical and thermodynamical quantities. All those values will be dy-

namically calculated in the simulation using empirical correlation or multi-

dimensional lookup tables. These tables have been set up to linearly interpo-

late within the operating range, and to select the nearest value as an extrap-

olation method. The following paragraphs will describe how to determine 

OCV function, the ECM parameters, and the thermal.  

State of Charge – Open Circuit Voltage map 
One of the most common approaches to evaluate the correlation between 

SOC and OCV is by cycling the cell with a low current rate [10], [11], [16], 

[55]. The battery is initially fully charged and discharged to determine its ca-

pacity. Then a low current is used, so that the voltage drops across the inter-

nal impedances are negligible and the OCV can be approximated to the ter-

minal voltage. This constant current typically ranges between C/50 and C/20 

and the measurement is performed in a thermally controlled environment. 

The result is a non-linear curve that covers the entire SOC range 0%-100%, 

where the OCV reaches its minimum and maximum values. 

ECM parameters (HPPC Test) 
While the OCV is assumed to be solely dependent on the SOC, the other 

ECM component must be characterized with respect to SOC, Temperature 

and current. A commonly used approach [9], [11], [12], [14]–[16], [55] to de-

termine the values of the resistances and capacitances is through Hybrid 

Pulse Power Characterization (HPPC). The typical experimental setup is as 

follows: 

• The system is kept at a fixed temperature in a thermal chamber.  

• The battery is charged to 100% SOC with a CC-CV protocol. 

• The battery is kept in this condition until thermal and electrochem-

ical equilibrium is reached. 

• An electric impulse discharges the battery for a short period of time 

at constant power. Current and voltage are monitored. 

• The current is cut for a relaxation period to reach equilibrium at a 

lower SOC. 

• A series of pulse-relaxation periods are repeated until the battery is 

fully discharged. 



APPENDIX A 

73 

 

 

• The experiment is repeated with different power intensities.   

• The experiment is repeated at different temperature.  

At the end of the experiments, we will have a series of voltage relaxation 

profiles, each of which corresponds to a SOC, a current intensity and a tem-

perature. Based on the shape of these voltage profiles it is possible to deter-

mine the electric parameters through curve fitting.  

 
Figure 18 - HPPC Test to detect Electric Circuit Model parameters [16] 

 

After the pulse period 𝑡𝑝, the cell voltage reaches an equilibrium value dur-

ing the relaxation period. The voltage experiences an initial instant rise, Δ𝑉𝑠, 

caused by the series Ohmic resistance 𝑅𝑠. Its value can be obtained with the 

following equation. 

𝑅𝑠 =
Δ𝑉𝑠
𝐼
                                                                (20) 

The values of the dynamic RC branches are determined with the relaxation 

voltage profile after the initial jump. Their values are determined to fit the 

following equation with experimental data, so that the square error is the 

minimum. 



APPENDIX A 

74 

 

 

𝑉𝑟𝑒𝑥(𝑡𝑟) =∑𝐼𝑅𝑖 (1 − 𝑒
−
𝑡𝑝
𝑅𝑖𝐶𝑖)(1 − 𝑒

−
𝑡𝑟
𝑅𝑖𝐶𝑖)

𝑛

𝑖=1

                                (21) 

Where 𝑛 is the number of RC branches, in our case 2. 𝑅𝑖 and 𝐶𝑖 are the 

resistance and capacitance of the 𝑖 − 𝑡ℎ RC branch, 𝑡𝑝 is the pulse duration 

and 𝑡𝑟 is the time variable of the relaxation period. With one specific pulse 

we can obtain 𝑅𝑠, 𝑅1, 𝑅2, 𝐶1 and 𝐶2 that correspond to the imposed tempera-

ture, state of charge and current intensity. After repeating the experiment at 

different condition, the output will be a three-dimensional parametric map 

for each electric component, depending on SOC, Current and Temperature.  

 

Thermal parameters 
The thermal model of the system must be defined in terms of thermal ca-

pacity of the cells, thermal resistances with the cooling system and with the 

ambient, entropic coefficient. To the determine those parameters, cooling 

tests based on Newton’s law of cooling have been adopted. Newton’s law of 

cooling states that the rate of heat flow of an object is directly proportional to 

the difference between the current temperature of the body and the sur-

rounding temperature. 

𝑑𝑄

𝑑𝑡
= −𝑘Δ𝑇                                                            (22) 

Where 
𝑑𝑄

𝑑𝑡
 is the heat flow from the body to the surroundings in Watt, Δ𝑇 

is the temperature difference between the body and the surroundings in Kel-

vin and 𝑘 is a heat transfer coefficient in W/K. In the case of a 0-D constant 

properties body, after differentiating with respect to time the equation 𝑄 =

𝑚𝑐Δ𝑇, we obtain the following equation: 

𝑑𝑄

𝑑𝑡
= −𝑚𝑐

𝑑𝑇

𝑑𝑡
                                                         (23) 

Where 𝑚 is the mass of the body in kg and 𝑐 is the specific heat coefficient 

in J/kgK. By combining eq. (22) and eq. (23), we obtain a first-order ordinary 

differential equation, whose solution is the following. 

Δ𝑇 = (𝑇0 − 𝑇𝑠)𝑒
−𝑡/𝜏                                                 (24) 

Where Δ𝑇 is the temperature difference between the body and the sur-

roundings, 𝑇0 is the initial temperature of the body, 𝑇𝑠 is the temperature of 

the surroundings, 𝑡 is the time variable and 𝜏 is a characteristic time of the 

cooling process. In this case 𝜏 corresponds to 

𝜏 =
𝑚𝑐

𝑘
                                                                  (25) 



APPENDIX A 

75 

 

 

By using the analogy between a thermal cooling and an RC electric circuit, 

it can be proved that in both cases: 

𝜏 = 𝑅𝐶                                                                  (26) 

In the thermal circuit, 𝑅 is the thermal resistance in K/W between the 

mass and the surroundings, expressed by the following equation. 

𝑅 =
Δ𝑇

�̇�
                                                                (27) 

𝐶 represents the thermal capacity of the mass, i.e. the product 𝑚𝑐. By measuring 
the cooling curve, 𝜏 corresponds to the time at which the Δ𝑇 equals 36.8% of its 
initial value.  

 
Figure 19 - Rate of Voltage decay to identify time constant T [56] 

 

The experimental setup consists in several cooling curve tests, initially run 

with a constant coolant flow rate. The battery is heated with a sequence of 

constant current pulses to reach a steady state temperature. Once the upper 

temperature is reached, the current is cut off and the temperature profile is 

detected. With this method it is possible to identify 𝜏. The global thermal re-

sistance can be obtained with eq. (27), where Δ𝑇 is the temperature difference 

between the battery and the coolant (as the average between inlet and outlet). 

The heat flow �̇� can be calculated with the following equation. 

�̇� = 𝑐𝑝�̇�(𝑇𝑐𝑜𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑜𝑙,𝑖𝑛)                                            (28) 

Where 𝑐𝑝 is the specific heat of the coolant in J/kgK, �̇� is the mass flow 

rate of the coolant in kg/s and (𝑇𝑐𝑜𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑜𝑙,𝑖𝑛) is the temperature 



APPENDIX A 

76 

 

 

difference between the coolant outlet and the inlet in K. Once 𝜏 and 𝐶 are 

calculated at a given coolant flow rate, it is possible to determine the total 

thermal resistance with eq. (26).  

The test is repeated with different coolant flow rates and the battery ther-

mal capacitance is obtained as the average of all the experimental 𝐶.  

The last experiment is a cooling curve test with the cooling system 

switched off, so that it is possible to identify the thermal resistance between 

the battery and the ambient. The temperature cooling profile provides infor-

mation about 𝜏𝑎𝑚𝑏, so that 𝑅𝑎𝑚𝑏 can be derived with eq. (26).  

Lastly, 𝑅𝑐𝑜𝑜𝑙 can be calculated for each coolant flow rate by using the elec-

trical analogy of two resistors in parallel. 

1

𝑅𝑡𝑜𝑡
=

1

𝑅𝑎𝑚𝑏
+

1

𝑅𝑐𝑜𝑜𝑙
                                                     (29) 

By curve fitting, it is possible to identify the function 𝑅𝑐𝑜𝑜𝑙(�̇�), that can be 

implemented in the simulation to solve the thermal problem.  

 

 

 

 

 

 

 



APPENDIX B 

77 

 

 

APPENDIX B 

Model implementation 
This section will explain the implementation process of the multiphysics 

model of the battery system on the four software. We will give insights not 

only on the procedural steps to build the model, but also on the different ap-

proaches to simulation and how to manage parameters and values in lifetime 

simulation.  

Amesim 
Amesim library contains multiphysics components that enable user to 

build the battery system simulation in a very straightforward way. In “sketch” 

mode, we can import components from the library and connect them to de-

velop the electric circuit and the cooling channels.  

The battery pack is modelled via the existing block “Battery pack”, which 

contains all the information regarding electric and thermal phenomena. In 

the “submodel” editor, we can select various electric models of the battery. 

As described in section 2.3.1, our electric model is based on an equivalent 

circuit model with two RC branches, therefore the corresponding submodel 

in Amesim is “Advanced ECM of battery pack” .In the block parameter, we 

can specify the location of the parametric maps, containing the values of the 

ECM resistances and capacitances, the OCV(SOC) curve and the entropic co-

efficient. These parametric maps are multidimensional lookup tables, saved 

in the .data format. To generate these files, the “Table editor” tool of Amesim 

enables users to import, edit and generate tables in the .data format, so that 

they can be interpreted by Amesim. The ECM Parameters are dependent on 

SOC, Temperature and Current, while OCV and Entropic coefficient are de-

pendent only on SOC. In the battery pack parameter tab, it is possible to spec-

ify the number of cells in series and in parallel inside the pack. Also, the com-

ponent “battery pack” contains information about heat loss for both reversi-

ble and irreversible phenomena. The icon includes a thermal port which can 

be connected to a thermal circuit, which models the cooling effect towards 

the ambient and the liquid cooling circuit.  



APPENDIX B 

78 

 

 

 

Figure 20 - Amesim Electric and thermal model 

 

The battery is connected to a “thermal capacitance” block, which mimics 

the bulk thermal capacitance of the battery pack. This block sees the three 

thermal flows: the heat losses from the battery pack, the dissipation towards 

the ambient and the cooling effect of the heat exchanger. The ambient loss is 

modelled through a thermal resistance between the thermal capacitance and 

a fixed temperature source, representing the ambient. The liquid cooling heat 

flow happens through a variable thermal resistance between the battery and 

a fixed volume chamber, which sees the liquid coolant entering at a fixed tem-

perature and volume flowrate. The fluid properties of the coolant are selected 

from the existing Amesim fluid library, which contains information about 

various cooling liquid properties for different temperatures and pressures. 

Figure 20 shows a snippet of the battery pack connected to the thermal 

model. The electric circuit is controlled by a current generator, which receives 

as input the charge/discharge profile of that specific case study.  

For the accuracy test, the current input comes from a timeseries table 

which contains the current profile measured during the experiment. For life-

time simulations the current input is modelled with the “statechart environ-

ment”. This Amesim tool is useful to model different states of the system, like 

charge, discharge, or rest. The 24-hours profiles described in section 2.2 can 

be implemented in a state chart, as shown in figure 21.  



APPENDIX B 

79 

 

 

 

Figure 21 - Statechart environment in Simcenter Amesim 

 

This scheme is composed of different states, whose output is an electric 

power value, and of transitions between subsequent states, which are trig-

gered by events. These events can be related to physical quantities (e.g. when 

the terminal voltage overcomes the maximum cutoff voltage) or to time du-

rations (e.g. resting time of one hour between two cycles). These logical 

events dictate the transition between states, and it is very convenient in the 

case the instant of transition is unknown a priori, but depends on other dy-

namic variables (Temperature, SOC, Voltage, …).  

To extract the ageing stress factors in table 3, we used integrator blocks to 

compute the time average of physical quantities, and logic block to store max-

imum and minimum SOC. These simulation outputs are then fed in the age-

ing model to estimate capacity fade and resistance increase linked to the last 

24 hours of operation; these updated capacity and resistance values become 

the input of the model to simulate the next 24 hours of operation. This pro-

cess runs iteratively for the investigated lifetime of the battery pack. This loop 

is executed via an external Python script, whose duty is to run the lifetime 

simulation by calling the Amesim simulation inside a “for” loop. Every itera-

tion of the loop executes one day of operation at a given state of health. Here 

follow the steps to conduce the lifetime simulation: 



APPENDIX B 

80 

 

 

• At day zero, both Capacity SOH and Resistance SOH are 100%. 

• “For” loop with N iteration, where N is the number of days in the life-

time simulation. At every iteration: 

o The SOH values are assigned to the Amesim model with the py-

thon command “ameputgpar”, from the “amesim” python li-

brary. 

o Once the SOH is set, the python command “amerunsingle” 

runs the 24h Amesim simulation. 

o The stress factors are extracted with two python commands: 

“amegetvarnamefromui” and “ameloadvarst”.  

o These stress factors are fed in the ageing model, which calcu-

lates the capacity fade and resistance increase related to the last 

24h simulation. 

o New State of Health values are calculated and saved in an array. 

A new iteration starts. 

• After N iteration, we can visualize the state of health profiles and meas-

ure the total runtime of the lifetime simulation.  

Running the lifetime simulation from the python script does not require 

Amesim to be launched, since all the commands related to writing input, run-

ning the simulation, and extracting output are performed at text level. 

For the empirical validation of the model with respect to test data, there is 

no need to automate the simulation. The simulation is run directly inside the 

Amesim environment, where it is also possible to visualize the required out-

puts, i.e., the voltage and the temperature profiles. It is sufficient to click on 

the component and select the parameter to extract, so that it can be saved in 

.csv format.  

Simscape 
The same battery system model has been implemented on the 

MATLAB/Simulink environment, taking advantage of the add-on libraries 

“Simscape” and “Simscape Battery”. The Simscape tool gives the possibility 

to create multiphysics models in the Simulink environment by drag-and-

dropping physical components from a library. Similarly to Amesim, these 

components contain the main physical equation that model various physical 

phenomena from different domains, such as electric, thermal or fluid. In 

Simscape, batteries can be modelled though the “Battery (Table-Bases)” 

block since it allows to define the ECM parameters though dynamic lookup 

tables. This component models an electrochemical cell through an ECM with 

up to four RC branches. All the ECM parameters are set through a 2D lookup 

table, depending on SOC and Temperature. There is no current dependency 



APPENDIX B 

81 

 

 

of the ECM parameters in this Simscape block. The OCV is also given by a 2D 

lookup table, depending on SOC and Temperature. It is possible to model the 

thermal aspect of the battery, providing the thermal mass of the cell in J/K. 

The battery pack can be modelled via the creation of a new library block with 

the Simscape battery builder commands, in the MATLAB environment.  

• In MATLAB, import the simscape.battery.builder library. 

• Create a “cell” element via the command Cell. It is possible to specify 

the model options, such as geometry, thermal model, electric model. 

• Once the cell is created, generate a parallel assembly with the com-

mand ParallelAssembly. 

• Based on the newly created parallel assembly, generate the module us-

ing the command Module.  

• Use the command buildBattery to convert the module into a new 

library component, which can then be drag-and-dropped in the Sim-

ulink/Simscape environment.  

The thermal model of the battery in Simscape is only considering irre-

versible losses due to ohmic effects in the internal resistances. It does not 

model the reversible losses due to entropy change; however, this type of 

losses can be computed with Simulink blocks and be added in the thermal 

circuit with the block “Controlled Heat Flow Rate Source”. For a fair com-

parison, we decided not to include reversible loss in the Simscape model, 

since the original battery block does not consider this effect.  Unlike Amesim, 

the thermal capacitance is already inside the battery pack block, hence it can 

be directly connected to the ambient (Temperature source) through a Ther-

mal Resistance. The dissipated heat through the liquid coolant is modelled 

via a Variable Thermal Resistance, connected to a Constant Volume Cham-

ber (TL), which sees as inlet a constant volume flow rate at a fixed tempera-

ture.  



APPENDIX B 

82 

 

 

 

Figure 22 - Thermal model in Simscape 

 

Liquid properties are given by the block Thermal Liquid Properties, where 

it is possible to select the fluid from a list and specify the mixture percentage.  

The electric circuit is controlled by the block Controlled Current Source, 

which takes as an input the current profile of the simulation. Similarly to the 

implementation on Amesim, the current profile is given as a timeseries in the 

empirical validation simulation, while is given by a state chart in lifetime sim-

ulations. The logic behind the state chart is the very same as the one used in 

Amesim. In the Simulink environment, the state chart is part of an add-on 

library called “Stateflow”, which contains the block Chart.  

 

 

Figure 23 - Stateflow in Simulink/Simscape 



APPENDIX B 

83 

 

 

 

Also in this case, the Simulink/Simscape simulation is run from an exter-

nal script for lifetime simulation. However, there is no need of using python, 

since the Simulink/Simscape environment is conveniently interconnected 

with the MATLAB environment, hence this language will be used. The script-

simulation interaction logic is the same as the one used for the Python-

Amesim interaction. In this case, the MATLAB-Simulink/Simscape interac-

tion is preferable since these environments share the same workspace, where 

variables and parameters are stored. This means that all the parameters and 

lookup tables can be imported via MATLAB script, so that they are automat-

ically interfaced with Simulink/Simscape simulation. The lifetime simulation 

is run with a MATLAB script with the following logic: 

• Import all parameters and lookup tables in MATLAB, from external .txt 

files, with the command readmatrix. 

• Set the initial SOH for capacity fade and resistance increase to 100%. 

• “For” loop with N iteration, where N is the number of days in the lifetime 

simulation. At every iteration: 

o The SOH related to Capacity and Resistance is assigned to the sim-

ulation as a parameter. 

o The Simulink/Simscape 24h simulation is run via the MATLAB 

command sim,  specifying as options the Fast Restart mode to 

“on” and the simulation mode to “Accelerator”. 

o The output of the command sim contains all the information about 

the simulation, including the stress factors.  

o These stress factors are fed to the ageing model and the capacity 

fade and resistance increase linked to the last 24h simulation are 

obtained. 

o State of health is updated based on the newly computed capacity 

fade and resistance increase. New iteration begins.  

• After N iteration, we can visualize the state of health profiles and measure 

the total runtime of the lifetime simulation.  

While in this case the simulations are run from MATLAB command, in the 

empirical validation the simulation is run directly from the Simulink/Sim-

scape environment. The investigated output variables can be exported to the 

MATLAB workspace with the block ToWorkspace. In this way it is possible 

to visualize the voltage and temperature profiles and compute the relative 

error with respect to test data.  



APPENDIX B 

84 

 

 

Simulink  
Simulink offers a signal-flow environment that can be used to implement 

dynamic models based on differential equations. Unlike all the other simula-

tion tools, Simulink does not provide Multiphysics components, such as bat-

teries, pipes, voltage sensors and others. This means that the user needs to 

model the relevant governing equation that represents the system.  

 

Figure 24 - Simulink multiphysics model 

 

These equations were explained in section 2.3, an they describe electric 

and thermal effect and can have been implemented in the Simulink model 

mainly with logic and algebraic blocks, such as Sum, Product or Integrator. 

The state chart environment is the same as the one described in the previous 

section, Simulink/Simscape.  



APPENDIX B 

85 

 

 

Also in this case, it is convenient to run the lifetime simulation from a 

MATLAB script, since the Simulink-MATLAB environments share the same 

workspace. The logic behind the script is the very same as the one used for 

the Simulink/Simscape lifetime simulation and described in paragraph 3.4.2. 

The only difference is that the command sim inside the for loop, launches the 

Simulink simulation instead of the Simulink/Simscape one.  

Dymola 
The same battery system Multiphysics model has been implemented in 

Dymola. This tool contains many libraries that include not only blocks and 

components, but also examples of already built systems. Examples have been 

used as a starting point for building the cell model and the cooling circuit.  

The cell model used in our case is imported from the Battery library of 

Dymola, which contains different cell geometries. Every cell model is com-

posed of three sub models, namely the thermal, electric and ageing model, 

as shown in figure 25.  

  

 

Figure 25 - Cell model in Dymola 

 

Each of these three models can be selected among a list of already existing 

thermal, electric and ageing models, or can be customized based on what the 

user needs. In our case, we used an ECM electric model with two RC 

branches, whose parameters are based on three-dimensional lookup tables. 

This model is shown in Figure 26.  



APPENDIX B 

86 

 

 

 

Figure 26 - Electric model in Dymola 

 

All the parametric maps are saved in one file in the .sdf format, which is 

a convenient way to manage multi-dimensional tables. This file is managed 

with the “SDF Editor” tool, included in the Dymola installation bundle. The 

thermal model has been modified, so that the cell is represented by one ther-

mal capacitance. The ageing model has been created from scratch, imple-

menting the lookup tables and equation described in section 2.3.3. This age-

ing model has been developed leveraging both the graphical representation 

and the text layer behind it. All the signal routings, parameter sensing, and 

lookup tables are implemented via drag-and-drop graphical component from 

the Dymola library, while all the equations of the ageing model have been 

implemented as OpenModelica scripts in the text layer. Once the Cell model 

is completed, it can be scaled up to a pack by using the Battery Pack block in 

the Battery library. 



APPENDIX B 

87 

 

 

 

Figure 27 - Battery pack model in Dymola 

 

This component lets users specify number of series and parallel cells in 

one pack, and the thermal distribution inside the pack, which, in this case, is 

homogeneous.  

The battery pack dissipates the heat through a thermal resistance towards 

the ambient and through a thermal resistance towards the cooling channels. 

These channels are imported from the Cooling library of Dymola, where it is 

also possible to specify the cooling liquid out of a list of parametrized fluids.  

 

 

Figure 28 - Electric and cooling circuit on Dymola 

 



APPENDIX B 

88 

 

 

The electric circuit is controlled by a current generator, whose input comes 

from a state chart (for lifetime simulation) or from a timeseries (for empirical 

validation). The state chart environment is composed of events and transi-

tion, similarly to the other simulation software. The main difference in this 

implementation is that the 24h profile is looped to restart once every 24 

hours, while before the end time of the simulation was set to be exactly 24 

hours. In this case, it is possible to perform lifetime simulation within the 

software environment, without the need for an external script that automates 

the simulation runs. The end time of the lifetime simulation in Dymola is set 

equal to the investigated battery lifespan (10 years), and degradation is auto-

matically calculated at cell level while the battery is operating.  

For the empirical validation, the inputs are imported as TimeTable into 

the battery system model. These input regards both the current profile and 

the coolant volumetric flow rate.   

The simulation results can be visualized in plots or tables in the “simula-

tion” tab. These values can then be exported in different data format, so that 

they can be compared with the other simulation software output. 



 

89 

 

 



 

90 

 

 

END OF DOCUMENT 


