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Summary

The depletion of fossil fuel resources and the environmental damage associated with
their use have prompted the development and emergence of new energy systems
based on renewable energy sources (RES) in the 21st century. In this thesis, an
optimal planning approach for renewable energy systems is proposed based on
the maximization of self-sufficiency. The planning strategy aims to ensure that a
single region or multiple adjacent regions can meet their energy needs primarily
through RES while utilizing the electricity grid for power exchange among them.
The objective is to develop a Python-based tool to estimate the potential of RES
and find the optimal wind and photovoltaic generation and storage capacities
that satisfy power and energy balance and grid constraints at the hourly level
while maintaining a certain level of economic benefits. In order to achieve it, two
optimization models are formulated according to whether the analysis concerns a
single-site or multiple-sites. In the former case, the objective function is converted
to the minimization of power absorption from the grid. For the latter one, electrical
grid constraints are added to model power flow and relevant grid constraints. The
tool intention is to support decision and policy makers to easily create and analyse
different energy scenarios with an hourly resolution, for a time frame no longer
than 25 years.

As a case study, Sardinia Island is selected for the years 2030 and 2050. The
final simulation results highlight the level of self-sufficiency from provincial to island
level for a 21-year period, ensuring an internal rate of return (IRR) greater or equal
to 8%, having a positive return of the initial investment at the end of the useful
lifetime of installed renewable energy systems.
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Introduction

Energy is often referred to as the "universal currency" because it can be transformed
and exchanged between different forms to get anything done. It is a crucial aspect
of many natural and technological systems and plays a central role in modern
society [1]. However, the major source of energy supply still relies on fossil fuels,
which have several negative environmental consequences. These impacts have
pushed for the increased use of renewable energy sources (RES) to transition to a
more sustainable energy system. Unlike fossil fuels, these sources are inherently
sustainable, with significantly lower or zero greenhouse gas emissions and reduced
environmental impact.

Promoting the rapid growth of an emerging energy system that is based on
RES and proposes a paradigm shift on how consumers and enterprises interact can
be challenging. In order to achieve a well-driven energy transition, both decision
and policy makers, should take into account different variables to accurately tackle
the climate and energy crisis within the development of energy policies [2]. These
variables should not only benefit the reliability of the energy system by increasing
its efficiency or upgrading technologies but, supporting the perfect competition
inside the energy market for all players, including prosumers. This concept is a
game-changer inside the energy industry, it proposes to move from an historically
centralized approach of energy supply to a decentralized one, giving the possibility
to consumers to produce energy and trade it inside the energy market.

Due to the fact, Distributed Energy Resources (DER) are being promoted inside
the emerging energy systems to support local generation and consumption, and
incentives players to actively engage energy transition. Two well-defined energy
indicators that are characteristic from DER systems are Self-sufficiency (SS) and
Self-consumption (SC), which quantify the exploitation of energy generation at
local level. Certainly, by enhancing both indicators the energy scenarios can be
positive affected and triggered towards a reliable energy landscape.
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Introduction

Indeed, this is the motivation for this thesis; select an energy indicator that
encompasses different variables inside the energy system by its own, ensuring that
captures multiple aspects that are favorable to the energy transition, thus, in
alliance with decision and policy makers prospective. In this work, SS is chosen as
such indicator by maximizing it, it is possible to plan and model energy scenarios
that are in accordance with the energy transition goals and can support founded
decision-making.

This thesis proposes a single-objective optimization model which maximizes SS
in order to obtain the optimal energy generation from RES and energy storage
capacities that satisfy power balance, electrical network and economic constraints.
The model encompasses energy scenarios within a single-site or multiple-site ap-
proach. Having electricity as its only energy carrier, the model allows the power
sharing between RES generation, electrochemical storage and the power grid. The
multiple-site is modelled considering the electrical grid as the interconnected paths
between individual sites.

The work done in [3] has been employed as a framework for this thesis. The
purpose is to develop an open-source tool that supports decision-making by easily
creating energy scenarios, built from a linearized optimization model that enables
the straightforward implementation of Linear Programming (LP). In this sense,
computational cost is decreased and large dataset handling is achieved.

The program has been built within the Python environment and the integration
of the powerful mathematical programming solver Gurobi, alongside a graphic unit
interface (GUI) the tool enables users to easily create energy scenarios and then,
interactively visualize and analyze results. Optimal planning of renewable energy
systems and the design of energy scenarios is hence a significant topic for energy
planners and decision-makers. The tool aims to support decision and policy makers
to take founded decisions from regional to country level approaches.

In addition, the tool is tested in a case study: The green electrification of
Sardinia. The Italian Island is nowadays gathering big attention from global
entities, regarding the worldwide target of decarbonization. They are aiming to
effect a drastic change in Sardinia’s energy model by 2030, gradually eliminating
production from fossil fuels and increasing the proportion of energy produced from
photovoltaic and wind power [4]. Therefore, the energy landscape in Sardinia is
emerging from conventional fossil fuel generation to renewable energy systems,
which makes it ideal to test the tool.

2



Chapter 1

Renewable generation for
energy transition

Over the past decade, an issue of strong international interest both inside and
outside the energy sector is undoubtedly climate change. The European Commission
has embarked on a long-term strategy confirming its intention to implement global
action to counter the effects of climate change. The goal is to achieve net zero1

by 2050 through a socially equitable and economically efficient energy transition,
developing a sustainable energy with the implementation of renewable energy
sources (RES) [5].

It is strongly advised that countries change their energy consumption policies
toward RES by investing in renewable energy technologies and research for more
sustainable growth [7]. As a matter of fact, The period from 2020 to 2030 holds
significant importance in pursuing the net zero target. It is imperative to utilize
this decade for thorough preparation and strategic planning, aiming to accomplish
complete reliance on RES across all sectors.[8]. In figure 1.2 is illustrated the in-
creasing energy generation from renewable and the unstoppable decay of traditional
generation with projected data by the International Energy Agency (IEA) up to
year 2027.

This mitigation should be addressed by implementing current developed tech-
nology and high level optimization techniques and optimal planning analysis. "By
the hand of digitalization, energy systems should be positive stimulated to increase

1zero greenhouse gas emissions
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Figure 1.1: Share of cumulative power capacity by technology from 2010 to 2027
[6]

their efficiencies by optimizing consumption and metering, reducing losses, gener-
ate energy with the lowest costs and emissions" [9]. Furthermore, leveraging the
historical momentum of renewable energy capacity growth, primarily driven by
photovoltaic and wind technologies, IEA projects a significant milestone in Figure
1.1. According to the data, by 2027, RES will surpass all other forms of power
generation in terms of global cumulative capacity. This achievement would mark
the first time in history that renewables will take the lead in meeting the world’s
energy needs, heading to meet a reliable energy transition [6].

Nevertheless, RES is affected by the intermittency issues related to their fluctuat-
ing behavior, also by their bounded availability, and economic obstacles. This means
the increase on energy system’s complexity, which requires the proper examination
of different variables in order to identify viable configurations. It is well known
that the day-to-day observation and optimization of the existing energy systems is
crucial to get their desired well-functioning. However, planning and optimal sizing
the capacities from generation and storage sides are crucial for the implementation
of RES technologies in the current energy scenarios. Furthermore, optimizing an
energy system can be expressed as a single-objective or multi-objective optimization
problem. However, it is more practical to frame the problem as multi-dimensional
[10].

4
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Figure 1.2: Global electricity generation by technology, 2015, 2021, and 2027. [6]

The scope of this research is limited to the analysis of a single energy carrier,
specifically electricity, with a focus on single-objective optimization. The objective
is to maximize self-sufficiency by optimal sizing generation and storage capacity
while meeting economic and power balance constraints. Moreover, linearizing the
optimization problem using advanced techniques and solvers. One of the goals is
to achieve convergence with minimal computational and timing costs, even when
working with large datasets. Section 3 provides a more detailed explanation of the
energy models and optimization procedures used in this research. The following
subsection highlights the significance of self-sufficiency in renewable energy systems
and outlines how this research aims to maximize it.

1.1 Significance of Self-sufficiency and strategies
to its maximization

In recent years, the concept of self-sufficiency has garnered a lot of attention,
particularly in the area of energy systems. Individuals, communities, and even
entire nations may generate, manage, and use their own energy resources without
relying heavily on external sources. It is a paradigm shift away from the old
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centralized energy approaches and towards more decentralized and sustainable
alternatives. The success of the self-sufficiency model is justified by the fact that in
an increasing number of countries, renewable energy, and in particular photovoltaics,
has achieved a unit cost of electricity generated that is equal to or less than the
unit cost of electricity consumed from the grid. Grid parity allows users to save
money by generating their own power rather than purchasing it from the grid [11].

Self-sufficiency (SS) is an energy indicator to quantify the exploitation of energy
generation at local level, is defined as the amount of electricity locally generated
and consumed (Elgc) with respect to the the total demand (Eload). It measures
user independence from the grid [12]. Another important indicatator that comes
along is Self-consumption (SC) which refers to the proportion of Elgc to total local
generation (Egen) [13] and both are determined by:

SS(t) = Elgc(t)
Eload(t) (1.1)

SC(t) = Elgc(t)
Egen(t) (1.2)

where t is the time interval over which the ratio is calculated hourly, daily, monthly,
or annually [14]. In Figure 1.3 are shown hourly general profiles of power generation,
in this case only Photovoltaics (PV), and the power consumption of a domestic
user. In the hours of maximum production when generation exceeds consumption
and assuming there is no storage integration within the system, the surplus energy
can either be wasted or injected to the grid. This interval case means to low levels
of SC but achieving high levels of SS because the load has been satisfied by the
local generation.

High levels of both energy indicators are crucial for emerging energy systems that
delve the path for energy transition. Accordingly, descentralized energy generation
approaches are being addressed to tackle climate change, as a consequence sustain-
able local energy markets and new players denominated prosumers2 are being part
of the emerging energy trading, where communities can balance generation and
consumption locally [15]. Therefore, the strategies to maximize SS assist the energy
scenarios that are triggering the energy transition and the emerging electricity
market that comes along. The following arguments deep inside the main strategies
that are being adopted to maximize SS and SC.

2Individuals or entities that actively participate in the energy market as both producers and
consumers of energy
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Figure 1.3: Generic example of PV generation and load profiles of a domestic
user. [14]

1.1.1 Implement energy storage systems

Many methods for achieving high degrees of self-sufficiency and self-consumption
are available, the integration of energy storage is the most popular approach for
increasing their levels. Technologies such as Battery Energy Storage System (BESS),
Pumped Storage Hydropower (PSH) or Compressed Air Energy Storage (CAES),
are systems that store excess energy generated during periods of low demand or
high generation and release it when needed, ensuring a reliable and unstoppable
power supply (UPS). Energy storage addresses the intermittency issue that most
renewable energy generation present, it is projected that the deployment of energy
storage technology would boost supply while balancing demand for energy [16].
Nonetheless, the capital costs of energy storage systems is nowadays still high,
generally represent a significant portion of the overall project cost due to their
specialized components and infrastructure requirements.

In Figure 1.4 are illustrated the main energy storage technologies, with their
main features of operation. Their implementation are based on the capacity they
can manage, location of generation plant and time response. For example PHS
and CAES technologies are large-scale intermittent balancing with high level of
storage capacity but are not able to compete frequency response market due to
their low discharge time. In contrast Hydrogen-based storage solutions are the only
technology able to address the intermittency balancing at high penetration levels.
Batteries instead, in chemical and flow composition are competing for broader
power and energy ranges with different times of discharge and response that can
provide flexibility to the dis-match of demand and supply [17].
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Figure 1.4: Electricity storage technologies’ features [17]

Undoubtedly, energy storage is fundamental for the maximization of SS in the
context renewables energy systems where production and consumption patterns
often do not align. The mitigation of the intermittency balancing carried out by
storage technologies gives flexibility to the emerging energy systems and expanding
the possibilities of trade in new energy markets and giving productive final use of
the surplus energy storing it or injecting it to the grid in order to reduce curtailment.
Electrochemical storage systems, such as batteries, are highly implemented for Peak
shaving strategies, which tackle the intermittency issue by adjusting either the
production (production peak shaving) or the consumption profiles (demand peak
shaving) to obtain better profiles matches, avoiding injecting to the grid. Thus,
increasing SC. Nonetheless, it is also possible to achive the same effect without
implementing storage systems [14].

1.1.2 Optimize generation and demand management

Promoting energy-efficient practices and implementing demand-side management
strategies can help balance energy consumption and generation. By incentivizing
energy conservation, shifting peak demand, and utilizing smart grid technologies.
SS and SC can be improved by reducing the overall energy demand and avoiding
the need for additional generation or storage capacity.

8
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Two well-known of these strategies refer to Peak shaving; either on production
(PPS) or demand (DPS). The first, involves intentionally reducing the energy gener-
ated by RES to prevent overload and overvoltage events while providing significant
advantages to the electricity grid. By implementing PPS, the aim is to maintain
grid stability and avoid potential issues caused by excessive energy production from
RES. This approach ensures a valuable contribution to the overall performance and
reliability of the electricity grid [18]. The latter entails lowering peak load in power
use, which helps prevent dependency on expensive peak generating systems such as
fossil fuel plants. Better forecasting and more controllable energy grid operations
may be achieved by using DPS techniques, resulting in greater dependability and
safety of power supply for customers. Furthermore, electricity providers frequently
offer financial incentives to encourage consumers to reduce peak demands. Several
DPS methodologies have been offered in the literature to demonstrate successful
load reduction measures [19].

1.1.3 Limit grid injection

Grid-connected renewable energy systems expand their reliability ensuring the
power absorption from the electricity grid in periods of low production and when
the BESS has low levels of State of Charge (SOC), being unable to fulfill the
demand. In the other hand, the grid-connected energy systems is also helpful in
cases of high production and high levels of SOC, when battery is unable to store
the surplus energy, allowing prosumers to enter the electricity market and sell the
excess of energy, and increase their yearly revenue fulfilling the initial investment.
Figure 1.5 reflects the linked behavior between SC, SS and grid injection.

Limits on grid injection play a pivot roll between high levels of SC and SS. The
first one will get high rates avoiding as much as possible the reliance on the grid
and fomenting the consumption from the local generators. However, the latter
(SS) takes advantage of higher levels of grid capacity, due to economic revenues
the installed generation capacity can be higher, fulfilling the total demand and
economic constraints. Therefore, it is an ambiguous limitation that depends on the
economical and infrastructural scenarios. Figure 1.6 reflects the linked behavior
between Net present value (NPV), SS and grid injection.

Moreover, Limiting the injection of excess energy can help address grid con-
straints and stability issues that may arise from the intermittent nature of RES.
By aligning energy production with local demand and avoiding excessive injections,
grid operators can maintain a stable and reliable power supply [20].
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Figure 1.5: SC andd SS as functions of PV nominal power with different injection
limits. [14]

Figure 1.6: SS and NPV as functions of PV nominal power with different power
injection [14]

1.1.4 Promote distributed generation

In the emerging energy market, new players are entering the scene, including
prosumers, which play a crucial role in the transition towards a more decentralized
energy system. Distributed energy resources (DERs) refer to the various decentral-
ized sources of energy, including rooftop solar, small wind turbines, energy storage
systems, and even electric vehicles. These resources are typically located close to
the point of consumption, promoting local energy production and self-sufficiency.
DERs offer benefits such as reduced transmission losses, enhanced grid resilience,
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and increased renewable energy integration.

By promoting DERs individuals and communities actively can participate in
the energy market to influence towards a more sustainable and cosumer-centric
energy system. Therefore, the reliance on the grid reduces as local generation is
predominated, in this sense SC and SS increse.

Another remarkable point is that island for example can also act as DERs at a
regional level. Island generally do not have high energy consumption but possess
high rate of renewable resources, once the limit of grid connection to the mainland
is overcome island can perfectly give flexibility to the grid. Islands can operate
interconnected to form microgirds, allowing them to operate independently or in
coordination with the mainland grid.

1.1.5 Support optimal planning

Emphasizing the importance of optimal planning in the renewable energy sector,
including comprehensive resource assessments, strategic location selection, and
efficient project development and deployment. Optimal planning ensures the
effective utilization of available resources and maximizes the benefits of renewable
energy investments. In the emerging energy transition market, decision-makers face
the challenge of addressing not only the system’s cost but also its energy efficiency,
environmental impact, and a wide range of variables that are crucial in tackling
the energy and climate crisis of the 21st century [21]. To navigate this complex
landscape, decision-makers require technological support to facilitate informed
decision-making.

Optimal planning of renewable energy systems becomes essential in this context,
as it enables decision-makers to forecast and anticipate the most appropriate
pathways to pursue. By leveraging advanced technologies and data-driven analysis,
decision-makers can gain valuable insights and predictions. This ensures that
the chosen pathways align with the goals of energy transition, climate mitigation,
and sustainable development. Therefore, Multi-criteria analysis offers a valuable
technical-scientific tool for decision-making in the renewable energy sector, providing
a transparent and consistent justification for the choices made [22].

Even though only a singular energy indicator is being address in this section,
the maximization of SS is a criterion that encompasses several interconnected
aspects. SS, as a metric, represents the ability of an energy system to meet its
energy demands from internal renewable energy sources. However, by maximizing
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it, decision-makers indirectly prioritize factors such as increasing the utilization
of RES, optimizing BESS, and reducing reliance on external energy sources. This
criterion encapsulates the broader objective of promoting sustainability, reducing
dependence on fossil fuels, and mitigating environmental impact.

The motivation behind this thesis was to develop a tool that combines high-level
optimization techniques with powerful open-source software. The aim was to create
a user-friendly and intuitive tool that can effectively assist decision-makers in
creating energy scenarios aligned with sustainability goals and energy reliability
objectives. At the core of this tool lies the maximization of SS as a fundamental
principle guiding the decision-making process. By leveraging optimization tech-
niques and open-source software, the tool enables decision-makers to explore and
analyze various energy scenarios. It provides them with the capability to assess dif-
ferent combinations of renewable energy sources, storage systems, and consumption
patterns. The focus on maximizing SS ensures that the created scenarios prioritize
self-reliance and reduce dependence on external energy sources.
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Chapter 2

Photovoltaic, wind turbine,
electrochemical storage and
converter technologies

textcomp

The global energy landscape is undergoing a rapid transformation towards
sustainability and efficiency, with renewable energy sources and energy storage
technologies playing a vital role. Photovoltaic (PV) and wind technologies, along
with electrochemical storage systems, offer significant potential for clean and reliable
power generation. However, effectively integrating these technologies into existing
energy infrastructures requires careful planning and decision-making. This section
presents a theoretical background tailoring PV, wind, and electrochemical storage
technologies, highlighting their fundamental principles and applications.

2.1 Photovoltaic technology

Irradiance (G) represents the total power received per unit area from a radiant
source, measured in watts per square meter. The Sun, behaving like an ideal
radiation emitter at approximately 5800 K, emits electromagnetic radiation with
a spectral distribution ranging from ultraviolet to infrared, peaking in the visible
range at a wavelength of approximately 0.5 µm. When solar radiation enters the
Earth’s atmosphere, some of the energy is dispersed, reflected in space, or absorbed
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by various substances such as clouds, carbon dioxide, ozone, and air molecules.
The integral of the solar spectrum over wavelength, on a surface perpendicular to
the incident beam, is known as solar irradiance.

Direct irradiance (Gb) refers to the solar radiation that reaches the Earth’s
surface without being scattered or reflected. On a clear summer day at sea level,
the direct beam irradiance is approximately 1000 W/m2. Diffuse radiation (Gd)
represents sunlight that is scattered in the atmosphere but still reaches the Earth’s
surface. The proportion of direct and diffuse components depends on weather
conditions, with diffuse radiation constituting around 20% of the total under clear
sky conditions. A small fraction of the solar irradiance, called albedo (Ga), reaches
a receiver on an inclined surface after reflection from the Earth’s surface. The
reflection coefficient (ρ) is the ratio of the radiation reflected from a surface to the
radiation incident upon it. The value of ρ varies with the color of light and the
nature of the reflecting surface, being highest on snow, for example. The total
irradiance reaching a terrestrial receiver is the sum of the direct, diffuse, and albedo
components, known as global irradiance (Gg).

Figure 2.1: Spectral distribution of solar radiation

The intensity of solar radiation reaching the Earth fluctuates significantly due to
daily and annual variations caused by the apparent motion of the Sun and irregular
changes driven by weather conditions. Therefore, designing a photovoltaic system
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requires accurate meteorological data specific to the installation site, considering
factors such as altitude and the angle of the receiving surface. A commonly
used value for solar spectrum on the Earth’s surface is AM = 1.5. This value,
combined with a global irradiance of 1000 W/m2 (available at noon from March to
September), is utilized for qualifying photovoltaic cells and modules, with crystalline
and amorphous silicon being the prevalent technologies.

2.1.1 Equivalent circuit of a PV cell

At the external terminals of a solar cell, its electrical behavior can be approximately
described as an ideal current source proportional to the irradiance, in parallel with
an anti-parallel diode. The equivalent circuit in Figure 2.2 provides a more accurate
description of a real cell, incorporating two additional dissipative elements: a shunt
resistor connected in parallel (Rsh) and a series resistor (Rs). The shunt resistance
(Rsh) accounts for leakage paths along the side surfaces between the front grid and
the solar cell plate. During the cell manufacturing process, efforts are made to
insulate these surfaces as much as possible. The series resistance (Rs) is the sum of
the semiconductor’s bulk resistance, electrode resistances, and contact resistances.
In practice, the primary contribution comes from the grid-shaped front electrode.

Figure 2.2: Equivalent circuit of a PV cell

The following equations are written by applying Kirchhoff’s voltage and current
laws to the equivalent circuit of a solar cell.

I = Iph − Ij − Uj/Rsh U = Uj − Rs · I (2.1)
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Where U is the voltage across the load terminals and I is the current flowing
through the load. The equivalent circuit is defined by the following five independent
parameters: Iph, I0, m, Rs, Rsh

U = mkT

q
· ln(Iph − I(1 + Rs/Rsh) − U/Rsh + Io

Io

) − RsI (2.2)

Assuming constant irradiance and temperature, it is possible to define the I-V
curve, where the coordinates of its points represent the power P = U * I delivered
to the load. There always exists a point PM (UM, IM), intermediate between the
short-circuit conditions (0, ISC) and open-circuit conditions (VOC, 0), at which
the power output of the photovoltaic cell is maximum.

2.1.2 Dependency on irradiance and temperature

The current-voltage characteristic I(U) of the solar cell, at a constant temperature
TP V , changes depending on the irradiance G. When G decreases, the short-circuit
current Isc decreases proportionally, while the open-circuit voltage UOC decreases
logarithmically. Figure 2.3 shows the dependency of I(U) on G and highlights the
location of the maximum power points PM at TP V = 25◦C. In fact, UOC remains
nearly constant over a wide range of G. Only for low values of G (less than 50
W/m2), it decreases abruptly.

Figure 2.3: I(U) graph of a PV generator with respect to irradiance
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2.1.3 Principal parameters of PV module

The solar cells within the module are typically made of semiconductor materials,
such as silicon, which generate an electric current when exposed to sunlight. PV
modules come in various sizes and power ratings, with larger modules capable of
producing higher amounts of electricity.

The overall conversion efficiency of photovoltaic (PV) modules is determined
under standard test conditions (STC), which include an irradiance of 1000 W/m2,
air mass (AM) of 1.5, and cell temperature (Tpv) of 25°C. The module efficiency
can vary between 7% and 23% depending on the type of solar cell used. To
simulate the AM 1.5 solar spectrum, specialized flash lamps are employed. These
conditions replicate typical spring and autumn environmental parameters. PV
modules are characterized by their peak power (Wp), which represents the maximum
power output under STC. Typical Wp values range from 10 Wp to 350 Wp.
Additional electrical parameters defined under STC include the short-circuit current
(Isc), open-circuit voltage (Voc), current at maximum power (Im), and voltage
at maximum power (Vm). Since the STC test conditions are artificially created
in a laboratory, another significant parameter called the Normal Operating Cell
Temperature (NOCT) is defined. The module manufacturer provides this parameter,
which represents the temperature at thermal equilibrium under specific conditions:
operating at open circuit with an ambient temperature (Ta) of 20°C, wind speed
of 1 m/s, and irradiance of 800 W/m2. NOCT typically ranges from 42°C to 50°C
and helps estimate the cell temperature under different operating conditions. By
assuming a linear dependence between the temperature difference of Tpv and Ta
and the irradiance G, the cell temperature is calculated using Equation:

Tpv = Ta + NOCT − 20◦C

800W/m2 · G

The I(U) characteristic of an entire PV module exhibits similar trends to that of
the individual cells, with an increase in voltage scale for cells connected in series
and an increase in current scale for strings connected in parallel.

The energy production of a PV system is directly proportional to the solar
radiation on the surface of the PV generator in kWh/m2, and the proportionality
factors are the surface area Sn of the PV generator and the conversion efficiency
ηST C . The equation for energy production is given as:

Eac = Hg ∗ SP V ∗ ηST C = heq ∗ Ppeak
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The unit cost of modules (€/kW_p) is expressed in terms of the nominal power
Pp and includes both of the aforementioned parameters. Since the nominal power
of a PV generator is defined at a reference irradiance GSTC, dividing the daily
radiation (in kWh/m2) by the irradiance of 1 kW/m2 gives dimensionally the
number of hours, per day, of operation at the nominal power of the PV field
(heq). This virtual duration is defined as the "number of equivalent hours" at the
reference irradiance. The product of the nominal power of the PV generator and
the daily equivalent hours gives the PV energy produced in one day. This is a
theoretical value that does not take into account losses: the ratio between the
actually produced energy and this theoretical value defines the "Performance Ratio"
(PR), which varies for each PV system.

For example, grid-connected PV systems have an average PR ranging from
0.7-0.8, while stand-alone PV systems with batteries have a PR ranging from 0.55
to 0.65.

2.2 Wind turbine technology

Wind technology is a key player in the renewable energy sector, harnessing the
power of wind to generate electricity. By capturing the kinetic energy of moving
air masses, wind turbines from its rotor blades can convert it into a clean and
sustainable source of power, from the hub rotation due to aerodynamic forces.
This rotational motion is then converted into electrical energy through a generator
housed within the turbine in a structure called the nacelle [23]. In figure 2.4 is
depicted the general Wind turbine components. The main ones are listed:

• Rotor Blades: The rotor blades are aerodynamically designed to capture the
energy from the wind. They spin as the wind blows, converting the wind’s
kinetic energy into rotational energy.

• Gearbox: The gearbox is responsible for increasing the rotational speed of
the rotor blades to a level suitable for electricity generation. It connects the
low-speed shaft from the rotor hub to the high-speed shaft connected to the
generator.

• Generator: The generator converts the mechanical energy from the rotating
shaft into electrical energy. Typically, wind turbines use synchronous or
asynchronous generators to produce electricity.
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• Control System: The control system monitors and manages the wind turbine’s
operation. It adjusts the orientation of the rotor blades to optimize their
alignment with the wind direction. The control system also regulates the
speed of the turbine and manages safety features.

In Figure 2.5 is consider the stream tub that models the turbine interaction
with the wind. Rotational speed an the wind speed are fundamental to regulate
performance, this balance is known as the tip speed ratio (λ) in equation 2.3.
Additionally, another factor under consideration is the angle of attack (α) in which
the wind hits the chord line of the blades.

Figure 2.4: Main components of a wind turbine.[23]

λ = 2πfr

u1
(2.3)

Where f is the blades frequency of rotation (Hz) and r is the blade length (m).
The power coefficient is the efficiency of power generation of a wind turbine and
varies from each type, it is represented as the ratio between mechanichal power
Pmec generated by the blades and the wind power at constant speed U, which can
also be as the ratio of real generated power and ideal power. The power coefficient
can also be expressed in function of tip speed ratio and angle of attack, maximum
value of 0.59 known as the Betz limit Cp(λ, α) [23].

Finally, the usable power from the wind speed is represented as in equation
2.4. Nonetheless, each type of wind turbine has its own representing power curve
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Figure 2.5: Wind speed profiles along the stream tub.[3]

representing their phases of operation. in Figure 2.6is shown an ideal wind turbine
power curve, the cut-in and cut-out wind velocities are the operational limits of
the turbine, these two thresholds ensure the minimum operation point to activate
the rotor and the latter avoid structural damage.

P = 1
2Cp(λ, α)ρairAT u3

1 (2.4)

In terms of electromechanical conversion technology, the market is divided
between two types of turbines [3]:

• Fixed-speed turbines (40% market share)

• Variable-speed turbines (60% market share), which are a more recent de-
velopment. These turbines are equipped with either Doubly Fed Induction
Generators (DFIG, accounting for 45% of the market) or Permanent Magnet
Synchronous Generators (PMSG, accounting for 15% of the market).

The main characteristics of wind are its intensity and direction. Anemometers
are used to measure these parameters, typically placed at a height of around 10-15
m above the ground. To utilize experimental wind data, it is necessary to adjust
them to the hub height of the wind turbine, as wind speed depends on the height
and the type of terrain. This adjustment is done using the concept of roughness,
represented by the parameter Z0, which quantifies the terrain’s roughness. The
formula used for this adjustment is as follows:
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U(h, z0) = U(href ) ·

 ln
1

h
z0

2
ln

1
href

z0

2


The wind speed increases with height up to 100 m. The lowest roughness values
correspond to flat surfaces such as beaches and seas, while the highest values are
found in cities with tall buildings and skyscrapers.

Figure 2.6: Ideal wind turbine power curve[23]

Appropriate sites for hosting wind farms should have an average wind speed
of at least 5 m/s. From a statistical perspective, it is necessary to calculate the
number of hours during which the wind speed falls within a certain range for a
given wind direction. This involves grouping the data into velocity classes and
calculating the mean value and standard deviation. The resulting wind rose graph
illustrates the prevailing wind directions, indicating the optimal orientations for
wind turbines.

This statistical analysis is crucial for wind turbines because their conversion
efficiency varies significantly with wind speed, unlike photovoltaic generators whose
efficiency remains relatively constant with solar irradiance.

In order to perform the calculation of energy production, it is required simulta-
neous knowledge of:

• The distribution of wind speed frequencies, often represented by the Weibull
distribution fw(U). Which gives the probability of a wind speed U occurring
at a specific location.
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• The power curve Pel(U) which represents the electrical power output as a
function of wind speed, which represents the relationship between the wind
speed (U) and the electrical power output (Pel) of a wind turbine.

Productivity is the sum of the products, for each wind speed at hub height, of
the power curve and the distribution of wind speed frequencies. The profitable
wind speed range is (3-25) m/s, and the calculation of energy production and grid
injection is performed over a one-year period (8760 hours), as summarized in the
equation:

EAC,wind,year(kWh) = 8760 ·
U=25m/sØ
U=4m/s

(Pel(U) · fW (U))

2.3 Electrochemical Storage technology

In this section electrochemical batteries are introduce, explaining their principal
fundamentals and essential parameter that characterized them. In the emerging
energy systems batteries are fundamental to address the intermittency issue, even
though energy storage is dominated by pumped hydro, batteries are recognized
for high-value opportunities helping energy transition by managing peak demands,
increasing grid reliability and allow the smooth penetration of RES. Sodium-sulfur
batteries are available in the market for applications in the grid, and Lithium-ion
batteries are commonly found in commercial electronics and implemented for grid
storage in electric vehicles, with vehicle-to-grid (V2G) approaches [24].

Regardless the chemistry of electrical batteries, all of them store energy through
the electrode composition within charge transfer reactions. Inside the plenty
Electrical Energy Storage (EES) technologies, they vary in application due to their
characteristics and strategies. Categories for applications such as power quality,
load shifting, bulk power management are in function of the discharge time at
rated power and the installed capacity of each different technology. For instance
Supercapacitors are applied for power quality solutions due to their higher power
and more expanded cycle life than batteries. In table 2.1 are listed different types of
batteries with their respective characteristics, highlighting even maturity, duration
and costs.

Batteries are defined as parallel or series connected cells providing the desired
voltage and capacity. A cell has a negative and positive electrode, where the redox
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Figure 2.7: Gravimetric power and energy densities for different rechargeable
batteries [24]

reactions take place and they are separated by an electrolyte. Once both terminals
are connected from outside the chemical reactions begin at both electrodes, thus
liberating electrons and providing current [24].

Figure 2.7 depicts the most common rechargeable batteries, their energy and
power storage properties, providing complementary information to table 2.1. As
noticed Lithium ion batteries (LIB) technologies outcome its competitors in terms
of capacity and providing high specific power. They are characterized by low
molecular weight, small ionic radius and low redox potentials, the latter explains
why they can provide high-output voltage and high-energy densities. furthermore,
their long cycle life and rate capability out-stand LIB to portable electronics market
and nowadays for the integration in electric vehicles, which will turn in expanding
the electrical grid flexibility with V2G approaches.

In this research study is chosen Lithium-ion technology as EES, it has been
motivated due to the fact realated to its superior specific power, high energy
efficiency, and environmentally friendly nature compared to other technologies
like lead-acid batteries. Lithium-ion batteries exhibit reduced self-discharge and
do not require high operating temperatures. These advantageous characteristics
have made them the preferred choice for electric vehicles and have contributed
to significant research investments in this field. Furthermore, the decreasing
installation costs, ranging from approximately 700 €/kWh for domestic users to
300 €/kWh for large-scale installations, coupled with expected improvements in
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cost and performance, indicate a promising future for Lithium-ion technology in
both mobile and stationary applications [24].

Table 2.1: Technology Option Maturity. Adapted from [24]

Technology Capacity
(MWh)

Power
(MW)

Duration
(hours)

% Efficiency
(total cycles)

Cost
($/kWh)

Advance
Pb-acid 3.2–48 1–12 3.2–4 75/90

(4500) 625–1150

Na/S 7.2 1 7.2 75
(4500) 445–555

Zn/Br flow 5–50 1–10 5 60/65
(>10000) 340 –1350

Fe/Cr flow 4 1 4 75
(>10000) 300–400

Zn/air 5.4 1 5.4 75
(4500) 325–350

Li-ion 4–24 1–10 2–4 90/94
(4500) 90–1700
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Chapter 3

Optimal configuration for
renewable exploration

This chapter describes the mathematical models that represent an energy system
with electricity as its only energy carrier, and the power sharing between its
components. The generation production is supplied by RES, specially PV panels
and wind turbines. Storage is performed by BESS with a centralized approach, and
the DC/AC inverter allows unidirectional flow within the electricity grid and loads.
As an starting point these models were adopted from [3] and [25]. However, This
thesis work introduces a different approach for power flow management. Through
a process of linearization, the original quadratic and polynomial representations
were successfully reformulated into a total linearized form. This transformation
enables the system to converge more rapidly towards an optimal solution. Moreover,
operational logic of BESS and power exchange within the electrical network are
incorporated inside the optimization problem’s constraints. The chapter begins by
explaining the mathematical models of RES generation, BESS, Electronic converter
and economic. Then, concluding with the optimization techniques utilized for both
single-site and multiple-site scenarios.

3.1 Energy Balance Model

The energy balance model represents the power sharing between generators, load,
grid and energy storage in an hourly basis. Within the model, the grid is integrated
to depict the hourly energy exchange, including injection and absorption, within
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the energy system for single-site scenarios. Additionally, it enables the analysis of
energy exchanges between different regions in the case of multiple-site scenarios.
By incorporating the grid functionality, the model facilitates a comprehensive
understanding of energy flows and interactions at both the individual site and
regional levels, enhancing the overall analysis of the energy system.

The modelled energy system is represented in Figure 3.1. The main components
are: PV generators, wind turbines, electrochemical batteries, electronic converters,
electric grid and loads. The system’s core is the DC bus, connecting all renewable
sources to the battery voltage. Loads are in AC and can be powered by the grid
when renewables are unavailable. A unidirectional inverter supplies AC power
to the loads, sized based on the combined capacity of photovoltaic and wind
generation, the BESS is not included in this sizing process. The implementation of
energy storage addresses the intermittent nature of renewable generation, thereby
maximizing self-sufficiency.

Figure 3.1: Hybrid energy system connected to the grid consisting of photovoltaic
and wind generators with energy storage. [3]
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3.1.1 Photovoltaic production model

The generation consists of PV panels and wind turbines both have a consolidated
Technology Readiness Level of 11 (TRL 11) and continually are addressed to
improvement [26]. Regarding the PV production simulation, it is evaluated following
the model described in [27].

The power absorbed by the DC/AC inverters is derived from real irradiance
profiles obtained by PVGIS database. specific orientation of PV generators are
settled based on the desired location to be simulated, usually the types of PV
modules are set as fixed-axis and tracking. In equation 3.1 is represented the DC
power the solar panel produce, its nomimal power (P P V

nom) is multiplied by the
hourly horizontal irradiance (G(t)) which lower limit is (G0 = 0.0177kW

m2 ) to avoid
malfunctioning of the inverter, defines the minimum value to turn on the inverter.
The standard test conditions are (GST C = 1kW

m2 and TST C = 25◦C), at which the
rated peak power for all commercial PV modules is measured [3].

P P V
DC (t) = P P V

nom · G(t) − G0

GST C

· ηthermηmix (3.1)

ηmix = ηdirt · ηreflection · ηmismatch · ηcable (3.2)

The losses due to cell temperature are represented in equations 3.4 where
(γ = 0.3 ÷ 0.5 %

◦C
) is the power reduction coefficient, in this work is used a 0.5%/◦C

value. The PVGIS API provides the hourly air temperature in Celsius (Ta(t)) of
the analyzed region [28]. The losses due DC cables, to reflection and dirt of PV
module’s glass, and tolerance and I − U mismatch, are globally ≈ 8% [29], then
the miscellaneous efficiency is approximately ηmix ≈ 92%. In equation 3.3 NOCT
is generally the normal cell operating temperature written in the PV module data
sheet. In this work it corresponds to a typical value NOCT = 45◦C and GNOCT is
the solar irradiance (800 W

m2 ) corresponding to the NOCT conditions. In this sense
the PV cell temperature can be calculated in ◦C as represented in equation 3.3.

Tc(t) = Ta(t) + NOCT − 20◦C

GNOCT

· G(t) (3.3)

ηtherm = 1 − γ(Tc − TST C) (3.4)
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3.1.2 Wind Turbine production model

In the other hand, for wind power simulation the link between wind speed and
power output is nonlinear. Under steady-state conditions, the mechanical power
converted by a horizontal-axis wind turbine is a cubic function of wind speed and
can be expressed as [23]:

Pmec = 1
2 · ρair · AT · u3

w · Cp(λ, α) (3.5)

• ρair ≈ 1.225 kg
m3 at 15 °C and 1 atm; it is th air density.

• AT is the cross sectional area of the rotor disk (perpendicular to wind speed),
a function of blade length.

• uw
m
s

is wind speed, at height z of the rotor hub, passing through the cross
sectional area.

• Cp(λ, α) is the power coefficient, i.e., the ratio of converted power to available
power, and is a function of the tip-velocity ratio λ and angle of attack α.

The model of wind turbine production is performed by the empirical correlation
of power curves "wind speed - AC power output", which manufactures provide
on the datasheet of the specific wind turbine. Power output and wind velocities
are generally provided as a discrete list of points, then a linear interpolation is
performed between power and wind speed values to obtain the results of power
production for a single turbine (P singl,W T

AC ) and the overall production for a wind
farm (Equation 3.7) multiplying the number of turbines (nW T ).

In Figure 3.2 is represented a wind turbine power curve with 850kW nominal
power and cut-in wind speed of 3m/s and a cut-out of 25m/s. The first zone for
low to medium wind speed (4 − 9m/s) is a cubic function; the second zone is a
nearly linear function close to the rated wind speed (10 − 14m/s); and the third
zone is a constant power output equal to the rated power output in the portion
from rated wind speed to shutdown wind speed (15 − 25m/s) [3]. Finally, it is
necessary to transfer the data to the turbine hub height using the logarithmic
formula represented in equation 3.6[23], where uref is the reference wind speed, Zo

is the terrain roughness, h is the hub height and href is the wind speed at wich the
wind speed is measured. PVGIS provides hourly wind speeds at 10m above sea
[28].
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Figure 3.2: Wind Turbine general power curve correlation [3]

uw(h, z0) = uref ·
ln h

z0

ln href

z0

(3.6)

P farm,W T
AC = P singlW T

AC · nW T (3.7)

3.1.3 Battery Energy Storage System model

Having an accurate storage model is crucial for evaluating energy and cash flow.
There are various electrical models available, each allowing simulation of the storage
system with different levels of precision. The more sophisticated models enable
determination of key parameters such as State of Charge (SOC) and the number
of cycles performed by the storage system, state of health (SOH) [30] [31].

The SOC, calculated on an hourly basis and compared to the limits (SOCmin

and SOCmax), is used to estimate the amount of energy stored or that can be stored
in the battery with a nominal capacity (Cs). Instead the SOH is implemented in
the model in order to know life time of the BESS, generally 8 years (3500 cycles)
[3].

The model of the battery takes as input specific parameters represented in Table
3.1, for commercial storage in PV applications, to simulate the behavior of the
storage system over time. The SOC(t) is in function in time of its previous value
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SOC(t − 1) 3.8 and must satisfy the limits of maximum and minimum discharges
to avoid battery damages as represented in equation 3.9.

SOC(t) = SOC(t − 1) − ηbat · P b(t − 1)
Vb,r · Cs

(3.8)

SOCmin ≤ SOC(t) ≤ SOCmax (3.9)

Table 3.1: Specifications of a Li-ion Battery element [32]

Battery rated capacity (CS) 100 Ah

Battery rated voltage (Vb,r) 12 V

Lifetime (cycles) (Ncycles) 3500

Lifetime (years) 8

Maximum power (P b
max) ≈2.4 kW

Charge-discharge efficiency (ηbat) 0.88

3.1.4 Electronic Converter Model

The interaction with the the grid (AC side) is performed by the DC/AC converter,
which mages the power output from wind, PV and storage. The resulting power
after the inversion process is obtained from the inverter efficiency ηinv taking into
account the DC/AC losses. In equation 3.10 is defined as the ratio of AC power
delivered to the grid and DC power input.

ηinv = PAC

PDC
= PAC

PAC + P glob
loss

(3.10)

Where P glob
loss stands for the inverter global losses, defined in [33].

P glob
loss = P0 + CL · PAC + CQ · P 2

AC (3.11)
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CL is the linear loss coefficient (due to the conduction of diodes, IGBT and
switching losses), P0 are the no-load power losses along the operation (due to the
supply of auxiliary circuits, and CQ is the quadratic loss coefficient (due to the
conduction of MOSFETs and the resistive contribution). The sizing of inverters is
in function of nominal power genration from RES.

3.2 Financial Model

In order to evaluate the financial viability of energy system investment or project,
a widely use method of financial model incorporates Net Present Value (NPV) and
Internal Rate of Return (IRR). Over a specified time period NPV is a financial
indicator to determine the profitability of an investment, taking into account the
cash inflows and outflows. At the end of the project lifetime positive NPV values
means a profitable investment, instead negative values represent a potential loss.

NPV = −CI −
TØ

t=1

Ct

(1 + r)t
+

TØ
t=1

Rt

(1 + r)t
(3.12)

NPV is expressed in equation 3.12 [14], where CI is the initial cost of investment,
r is the discount rate, C is the absolute value of negative cash-flows year and R is
the positive cash-flows.

On the other hand, IRR is a financial metric employed to measure the profitability
of an investment. It represents the discount rate at which the NPV becomes zero.
A higher IRR indicates a more appealing investment opportunity. It is represented
in 3.13 where CFt is the total of cash-flows.

NPV =
TØ

t=0

CFt

(1 + IRR)t
= 0 (3.13)

The negative cash-flows of an energy system project include the cost of operation
and maintenance (O&M), including the replacement of batteries, possible damages
in the RES generation and buying electricity from the grid. The positive ones
include the earnings due to energy injection to the grid and the monetary savings
due to self production, avoiding buying electricity from the grid.

Investors and decision-makers obtain significant insights into the financial via-
bility and prospective returns of an investment by combining NPV and IRR. This
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allows them to evaluate the feasibility of a investment project.

By utilizing NPV and IRR together, investors and decision-makers gain valuable
insights into the financial feasibility and potential returns of an investment. This
enables them to assess the desirability and financial attractiveness of projects,
facilitating well-informed investment decisions.

3.3 Optimization Model

Single-objective optimization problems focus on the challenge of optimizing a
single objective, which can involve either maximizing or minimizing it. These
problems involve decision variables, which are the variables that can be adjusted
or chosen to achieve the optimal solution. The decision variables are subject to
a set of constraints, which are conditions or limitations that must be satisfied.
These constraints help shape the feasible region, which represents the range of
valid solutions. The ultimate goal in single-objective optimization is to find the
best possible solution within the given constraints, maximizing or minimizing the
objective function to achieve the desired outcome [34].

The optimization problems discussed in this chapter face a significant challenge
when dealing with large sets of decision variables and constraints. The presence
of a large number of variables and constraints can make it challenging to find a
feasible solution that satisfies all the requirements. While single-objective quadratic
and linear optimization problems are mathematically well-behaved and do not
inherently struggle with convergence, their implementation within solvers can
sometimes lead to convergence issues. These implementation-related challenges
will be further elucidated in the subsequent chapter. This chapter instead, presents
a comprehensive analysis of single-objective optimization problems for energy
systems with electricity as their only energy carrier, considering two different
configurations: the single-site approach and the multiple-site approach. The
chapter provides a detailed description and examination of the analysis conducted
for these optimization problems.

3.3.1 Single-site optimization model

The single-site optimization model is implemented to maximize self-sufficiency while
ensuring compliance with power balance and economic constraints. The outcome of
the optimization model determines the optimal configuration of the energy system
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that maximizes the utilization of renewable energy sources and minimizes reliance
on external power supply. The first step is to define the objective in function of
the decision variable, in equation 3.14 is represented in fucntion of (nP V , nW T , Cs)
which are the number of PV panels, Wind Turbines and storage capacity. CP V

t

and CW T
t represent the production of PV panels and wind turbines for the tth hour.

The P d
t and P b

t are the power demand and dicharge or charge power battery.

SS =
TØ

t=1

nP V · CP V
t + nW T · CW T

t + P b
t

P d
t + P b

t

(3.14)

As it can be noticed the objective equation is not linear, meaning a significant
increase in the complexity of solving the optimization problem. However, after
conducting the analysis, it was determined that the entire model could be linearized.
This involved transforming the original problem from a mixed-integer quadratic
formulation to a mixed-integer linear formulation. Starting from the objective
function, it was deduced that maximizing self-sufficiency is equivalent to minimizing
the power absorption from the grid.

Maximize SS ≡ Minimize
TØ
t

Pabs(t) (3.15)

The primary goal of the model is to achieve a high level of self-sufficiency,
where the energy generated from renewable sources within the system meets a
significant portion of the overall energy demand. To accomplish this, the model
considers various factors such as the maximum potential capacity of renewable
energy technologies, the resource availability, and the demand forecast for each
region. Additionaly, as previously mentioned the model needs to meet power
balance, financial and battery constraints.

As represented in the following optimization problem, the linear objective is the
maximization of Pabs, per convention Pabs(t) ∈ R−, meaning that the maximization
will bring the objective as close as possible to zero. The power balance in the system
is achieved by managing the generation from renewable sources, the energy storage
management, and the grid interaction. The generated power from renewables is the
sum of the power produced by PV panels and wind turbines, as seen in equation
3.16.

P G(t) = nP V · CP V (t) + nW T · CW T (t) (3.16)

The decision variables, represented by nP V and nW T , indicate the optimal num-
ber of PV panels and wind turbines, respectively. The installed capacity of each PV
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panel is fixed at 1MW , while each wind turbine has a capacity of 2MW . Then, the
hourly energy generation will depend on the available energy resources in the ana-
lyzed area, represented by CP V (t) and CW T (t). The storage management depends
on BESS capabilities and the hourly need to charge or discharge the batteries,
per convention (P b < 0 discharging) and (P b > 0 charging). Reciprocally, the
interaction with the grid works basically the same with the goal to fulfill energy
demand the absorption power must be negative (Pabs(t) ∈ R−) and the injection
power positive (Pinj(t) ∈ R+).

Maximize:
TØ
t

Pabs(t)

Subject to:
Power balance :

P G(t) − P d(t) − P b(t) − Pabs(t) − Pinj(t) = 0
Financial :

NPV ≥ 0
Battery :

Eb(t) =

Eb(t − 1) + ηc(1 − S(t))P b(t), if charging

Eb(t − 1) + P b(t)S(t)/ηd, if discharging

t ∈ Z+

S(t) ∈ [0,1]
Pabs(t) ∈ R−

The NPV as represented in equation 3.12 is linear as the discount rate (r) is
constant defined by the user, It is expected to be the value that makes NPV = 0,
meaning the desired IRR. The NPV must be higher or equal than zero in order
to have a positive return of the initial investment. It is remarkable to mention
that the model only ensures the NPV ≥ 0 at the end of the time simulated. This
financial constraint is link to the decision variables because both initial investment
and negative chasflows depend on the installed capacity of generation and storage,
and the costs for operation and maintenance. As the problem is analyzed in an
hourly timeframe the NPV needs to be converted from yearly to hourly basis,
starting from the discount rate as equation 3.17 reprents it and the derived NPV is
expressed as 3.18.
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rhour = (1 + r/365)(1/24)) − 1 (3.17)

NPV = −CI −
TØ

t=1

Ct

(1 + rhour)t
+

TØ
t=1

Rt

(1 + rhour)t
(3.18)

Furthermore, the power balance constraint ensures the reliability of energy
supply by balancing demand and generation. The implementation of this constraint
enables the management of power flow. When combined with the other constraints,
it establishes the operating rules and conditions for each component involved inside
the model. As the objective function is the minimization of Pabs, the energy system
modeled will predominate the power that has been locally produced or stored than
the one absorbed from the grid. In addition, the overproduction can be either stored
or injected to the grid, this will depend not only if the batteries can be recharged
at time (t) but also on the capacity limitations of batteries and transmission lines.
Moreover, the liked economic constraints within injection and storage capacities
can also influence, as the increase in storage capacities means an increment in
negative cash-flows and power injection to the grid the opposite.

BESS increases the complexity of the model but increases reliability of energy
systems based on RES, hence maximizes SS. Nonetheless, Eb is defined as a mix
integer quadratic function having two possible solutions to ensure charging or
discharging the battery. Even though quadratic problems do not represent a hazard
for convergence, it may do for computational cost and even more when modelling
systems with large sets of decision variables and constraints. Accordingly, it is
the case when planning energy scenarios for extended periods with high-resolution
data. Therefore, linearizing the proposed optimization problem delves the path for
the chapter 4 when the model will be computationally implemented.

The battery management has been modify from a SOC management approach to
purely calculate the energy inside the battery and adding constraints that simulate
the limits SOC management takes under consideration, as the one represented in
equation 3.9. The SOC management can be formulated as:

SOC(t) =

SOC(t − 1) + ηc(1 − S(t))P b(t)/CS, if charging

SOC(t − 1) + P b(t)S(t)/ηdCS, if discharging

As it can be noticed, the difference between SOC and Eb calculations is the addition
of CS decision variable in case of SOC formulation. The reason why the latter
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formulation has been selected is again on terms of reducing complexity, adding
decision variables to the expression may be translate to more computational cost.

Therefore, the additional constraints to be implemented for Eb encompasses the
initial state of energy inside the battery, which is supposed to be equal to 20% of the
storage capacity (Eb(t = 0) = 0.2 · CS). Afterwards, as previously mention, Eb(t)
has two possible solutions, representing when the BESS is charging or discharging.
To accomplish it, the binary decision variable S(t) is incorporated to the model, by
convention S(t) = 0 when charging and S(t) = 1 when discharging. The parameters
ηc and ηd represent the charge and discharge efficiencies that usually take values of
≈ 90% each.

The implementation of the above mentioning optimization problem would
require Mix-integer Quadratic Programming (MIQP) approaches. Nonetheless, the
complete linearization of the model is possible by implementing linear programming
methods, such as The Big M method. This technique involves introducing a large
positive constant ”M” to represent a huge upper/lower bound to the decision
variable under analysis (Eb(t)) [34]. In this sense, energy inside the battery will not
take values technical unfeasible but still following the charge/discharge conditions,
with the help from the binary variable S(t) and reformulating thee constraints,
the original problem can be transformed into an equivalent Mix-integer Linear
Programming (MILP) problem. It is worth mentioning that, the over sizing of M
could result on suboptimal or unrealistic solutions thus, its value selection should
be done judiciously. In this thesis is selected as M = 3 times the storage capacity
CS.

Charging:
Eb(t) ≤ Eb(t − 1) + ηc · (1 − S(t))P b(t) + S(t) · M · CS

Eb(t) ≥ Eb(t − 1) + ηc · (1 − S(t))P b(t) − S(t) · M · CS

Discharging:
Eb(t) ≤ Eb(t − 1) + S(t)P b(t)/ηd + (1 − S(t)) · M · CS

Eb(t) ≥ Eb(t − 1) + S(t)P b(t)/ηd − (1 − S(t)) · M · CS

3.3.2 Multiple-site optimization model

The optimization model for the multiple-site approach focuses on a single objective,
which is to minimize dependence on the grid. According to the adopted convention
This objective is essentially equivalent to maximizing the amount of power absorbed
from the grid, particularly from the mainland. Therefore, the objective can be
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defined as

TØ
t

P Mainland
abs,v (t)

HVDC lines that connect the region to mainland were decided to be modelled
as virtual generators that can have bidirectional power flows, representing the
absorption or injection from/to the grid. The subscript v indentifies the each
virtual generation inside the modelled energy system, and the objective will be
the minimization of reliance from mainland for each one of them. Also, inside the
model will only consider medium and high voltage transmission lines, for Italy
representing the 220 kV and 380 kV.

Furthermore, to uniquely identify each site within the model, a new subscript,
denoted by i, will be introduced. This subscript will serve as an identifier for each
individual site, allowing for differentiation and specific analysis of each site within
the model. For instance the power locally generated for a site i can be identify
as P G

i . Additionally to these minor but important changes, it is introduced to
the model a new constraint related to the power flow between each site inside the
model. In order to linearized the power flow equations, a linear approximation is
performed calculating the Power Transfer Distribution Factors (PTDF), which is a
technique used in power systems analysis to determine the power flows and voltage
profiles in a network. The PTDF allows to estimate the power transfer distribution
across transmission lines in response to changes in generation or load. In this sense,
the modeler will need to introduce the respective PTDF of the network under
analysis and its lines characteristics and limits. The PTDF results will represent
the sensitivity power flows (f) from bus 1 to bus n and through line 1 to line m,
with respect to changes in Power network (P N) regarding absorption or injection.

PTDF =


f(1,1) f(1,2) . . . f(1, n)
f(2,1) f(2,2) . . . f(2, n)

... ... . . . ...
f(m,1) f(m,2) . . . f(m, n)




P N(1)
P N(2)

...
P N(n)


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Maximize:
TØ
t

P Mainland
abs,v (t)

Subject to:
Power balance :

P G
i (t) − P d

i (t) − P b
i (t) − Pabs,i(t) − Pinj,i(t) = 0

P min
v ≤ P mainland

abs,v (t) ≤ P max
v

P min
v ≤ P mainland

inj,v (t) ≤ P max
v

Financial :
NPV ≥ 0

Network :
fmin

m ≤ fm(t) ≤ fmax
m

Battery :

Eb
i (t) =

Eb
i (t − 1) + ηc(1 − S(t))P b

i (t), if charging

Eb
i (t − 1) + P b

i (t)S(t)/ηd, if discharging

t, i, m, v ∈ Z+

S(t) ∈ [0,1]

As it can be noticed, the network constraint contains the subscript m representing
the mth transmission line inside the network, which flow (fm) must compliant with
its line limits. Then the concept from single-site to multiple-site optimization
model follows the same structure but the latter one adds up the consideration
of power exchange between regions and mainland, at the end of the simulation
the results will show the levels of self-sufficiency of the regions united as a whole.
The subscripts were added to take under consideration the all the energy system.
Nonetheless, the system is simplified from a realistic power system as it is only
considered a DC power flow and no transformers where taken under consideration
inside de model.
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Chapter 4

Python-based planning and
optimization tool for
supporting energy transition

In this section will be described the mathematical models implementation inside
the software, its architecture and approach. The program is based on the proposed
framework in [3] which studies the optimal power sharing between PV panels,
Wind Turbines, Electrochemical Storage and electrical grid in urban districts.
Additionally, this new tool provides a user-friendly interface and incorporates
advanced optimization techniques capable of handling larger sets of hourly data
spanning up to 25 years, equivalent to approximately 219,000 hours. This enhanced
capability allows for more comprehensive analysis and optimization of energy
systems over extended time periods. The tool also includes a well-organized and
automated local database management system. These capabilities are made possible
through the integration of open-source modules and libraries within the Python
integrated development environments.

By using the tool the user can develop energy scenarios from single to multiple
locations in a hourly time-step basis, with electricity as the only energy carrier.
The first dimension is focus on finding, through a linearized optimization model,
the optimal values of capacities for renewable generators and BESS that achieve
the maximum level of self-sufficiency, which must be compliant with economic and
power balance constraints. Moreover, to model multiple regions under analysis
the objective is the same but, the inclusion of the electric grid becomes essential
for connecting the energy flows between these locations. By incorporating the
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electric grid into the modeling framework, the tool enables the representation
and analysis of energy exchange and transmission between different regions. This
allows for a more comprehensive understanding of dynamics of the energy system.
The optimization problem definition and their linearization are well-described in
sections 3.3.1 and 3.3.2.

This chapter instead, focuses on the implementation of the mathematical models
and algorithms described in the previous chapter. It provides a detailed description
of how these models were translated into computer code and integrated into the
optimization software. As concluded in section 3.3.1 the optimization models
can be address having a MILP approach, increasing computational efficiency and
reuducing problem complexity. The implementation details of the optimization
software are also provided. This includes information on the programming language
used, the software libraries or frameworks utilized.

Additionally, the chapter highlights any challenges or considerations encountered
during the implementation process. It discusses issues related to data handling,
algorithm scalability, convergence criteria, and computational resources. Overall,
in this chapter the mathematical representation and analysis become practical
and tangible to give a software tool that satisfies the main objective of the thesis;
develop an instrument that support decision and policy makers on shaping energy
transition by easily create and asses different energy scenarios from a single to a
multiple site perspective.

4.1 Tool’s Architecture

Figure 4.1 illustrates a general web application architecture that serves as a reference
for developing the tool. The architecture encompasses various components, starting
with the local data allocation in memory (database). Then, The backend consists
of two main layers: the automated database management and the data interaction
request within the PVGIS API composed the Data layer, the operational layer
is where optimization and mathematical models are employed. The frontend
comprises the presentation layer, which acts as a gateway for user requests and
backend responses. This layer facilitates active interaction with data through
dashboards, allowing users to actively engage with the application. Additionally,
Figure 4.2 presents the block diagram of the application’s functionality, providing
a visual representation of the expected inputs and outputs. The diagram outlines
the sequential steps involved in utilizing the tool and showcases the interaction
between different components. Starting with the user input, which include the
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location’s name and its decimal latitude and longitude, alongside the hourly energy
demand for a requested period (maximum 25 years).

Figure 4.1: Standard web application architecture.

As the inputs are received, they are passed to the data request and optimization
models within the operational layer. The required data is obtained through the
utilization of the PVGIS API, which offers hourly data for variables such as global
horizontal irradiance with optimal tilt angles (G(t)[W/m2]), wind speed at 10
meters above sea level (WS10m(t)[m/s]), and air temperature (T2m(t)[◦C]). It is
important to note that the tool utilizes the SARAH-2 database, which encompasses
satellite-based climate data for Europe, Asia, and Africa from the years 2005 to
2020 [28]. This extensive database serves as a valuable resource for accessing
reliable and comprehensive climate information within the tool.

To proceed with energy scenario simulation, the user is required to provide
additional input parameters related to financial and energy limits. These parameters
include the discount rate, which determines the present value of future cash flows,
and the limit on the maximum generation capacity, which represents the maximum
allowable energy generation capacity for the system.

Once all the parameters are inputted, the simulation process begins. The
mathematical and optimization models within the operational layer utilize these
parameters, along with the previously mentioned inputs such as energy demand,
renewable energy generation data, and system constraints. These models perform
calculations and optimizations to simulate and analyze different energy scenarios.
In tables 4.2 and 4.3 are listed the required inputs.
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Figure 4.2: Tool’s block diagram.

By incorporating the user-inputted parameters, the mathematical and optimiza-
tion models play a crucial role in conducting the energy scenario simulations. They
enable the exploration of various scenarios, allowing users to assess the financial and
energy feasibility of different system configurations and make informed decisions
based on the simulation results.

Lastly, the data visulaization is performed by the Python library streamlit, in
this dataplotter the user can visualize the daily, monthly, and yearly energy and
financial profiles; the summary table resulsts as well.

4.2 Implementation

In the implementation of mathematical models into a software system, a modular
program approach involves breaking down the software into self-contained modules,
each responsible for a specific mathematical model or component. By modularizing
the program, it becomes more flexible and easier to modify individual modules

42



Python-based planning and optimization tool for supporting energy transition

without affecting the entire system. Moreover, this approach enables the integration
of various mathematical models seamlessly, allowing the software to handle complex
calculations efficiently. Additionally, the use of standardized interfaces between
modules ensures interoperability and simplifies the integration process.

Being Python an object-oriented programming language makes it appropriate
to have a modular program approach. Figure 4.3 illustrates the modules inside the
developed tool, in total there are three modules which are called from the Main.py
function.

Figure 4.3: Tool’s modular programming structure.

The first module oversees the administration of the database (DBMS) within
the accounts by employing a data access object (DAO) class. This DAO class
encompasses all the relevant attributes for facilitating communication with the local
database, enabling the execution of various queries and the flexibility to get acces
to database from any script in the program. To fulfill the program’s requirement
for analyzing multiple regions, the third module incorporates the RegionData class
to facilitate communication with the PVGIS API. This integration enables the
program to make multiple requests for meteorological data while it is running,
facilitating efficient data retrieval for various regions. Lastly, The second module is
where the energy, financial and optimization functions are implemented. Module 2
represents the logic and analysis explained in section 3.

The tool’s development has been facilitated by various Python libraries, as
detailed in Table 4.1. Pandas has been instrumental in the overall design, being
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widely used across all modules to efficiently manage and structure data. Gurobipy
has played a crucial role by providing the interface necessary for implementing
optimization models. Furthermore, Streamlit has proven invaluable in creating a
user-friendly interface and enabling users to interact with the tool through different
inputs commands.

Table 4.1: Python libraries used inside each module

Module 1 Module 2 Module 3 Main
Sqlalchemy Pandas json Streamlit

Pandas SciPy Requests Folium
Mysql NumPy Pandas Geopandas

Datetime GurobiPy io Plotly

The libraries used in each module have significantly contributed to the develop-
ment of the program as a whole. Here is a more detailed description of each library
and its role in enhancing the functionality of the respective modules:

• Pandas: widely used for data manipulation and analysis. It provides data
structures and functions to handle structured data, making it easier to work
with database queries and data extraction [35].

• Sqlalchemy: provides a high-level interface for interacting with databases using
SQL. It allows for the creation of database connections, execution of queries,
and handling of database transactions [36].

• NumPy: provides support for numerical computations in Python. It is often
used for handling numerical data and performing calculations on database
results [37].

• SciPy: builds on top of NumPy and provides additional functionality for
scientific computing. It includes modules for optimization, interpolation,
integration, signal processing, and more. It can be useful for implementing
complex mathematical models and algorithms [38]

• Requests: is commonly used for making HTTP requests in Python. It allows
for sending requests to the PVGIS API and retrieving the corresponding
meteorological data.

• json: provides functions for working with JSON data. It can be used to parse
the API responses, extract the required data, and convert it into a usable
format.
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• Gurobi: Gurobi is a commercial optimization solver that can be used to
solve mathematical optimization problems. It provides a high-level interface
for formulating and solving linear programming, integer programming, and
quadratic programming problems [39].

• Streamlit: library for building interactive web applications for data science
and machine learning. It provides a simple and intuitive interface for creating
interactive dashboards, visualizations, and data exploration tools [40].

• Plotly: library for creating interactive and customizable plots and visualiza-
tions. It supports a wide range of chart types, including line plots, scatter
plots, bar plots, pie charts, and more. Plotly provides an API that allows
you to create interactive plots with features like zooming, panning, and hover
tooltips [41].

The code of each module is shown and commented in annexes. However, in the
following will be shown a pseudo-code representation of the code implementation,
regarding the energy production from RES and Gurobi optimization model.

Listing 4.1: RES generation model implementation (Pseudo-code)
# Import l i b r a r i e s
import pandas as pd
from funct ions_cons tant s import cons tant s as c_eb
import s c ipy . i n t e r p o l a t e

de f RES_generation ( df ) :
# PV product ion model
df [ ’G( i ) ’ ] = df [ ’G( i ) ’ ]/1000 #i r r a d i a n c e in kW
df [ ’ PV_cell_temperature ’ ] = equat ion 3 .4
df [ ’ PV_eta_thermal ’ ] = equat ion 3 .3
df . l o c [ df [ ’G( i ) ’ ] > c_eb .PV_G_0, ’PV_DC’ ] = equat ion 3 .1
df . l o c [ df [ ’G( i ) ’ ] > c_eb .PV_G_0, ’ PV_production ’ ] = equat ion 3 .5

# Wind Turbine (WT) product ion model
df [ ’U_w’ ] = equat ion 3 .6
s c ipy . i n t e r p o l a t e . in te rp1d ( wind_speed , power_turbine )
df [ ’ WT_production ’ ] = equat ion 3 .7

# s imulate age ing o f p lant product ion
age ing_factor = 0,5%
f o r year in range ( year + 1 , end_year ) :

PV_production ∗= (1 − age ing ∗ year )
WT_production ∗= (1 − age ing ∗ year )

re turn df
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As it can be noticed the code implementation makes reference to the equations
explained in section 3, The imported script "constants" makes reference to the
assumed constants for PV and WT technologies, which in Tables 4.2 and 4.3 are
the listed values and their description. The code conducts simulations to estimate
the aging of the power plants for each year, after the initial year. The aging factor
applied is 0,5%. After completing the simulations, the code returns a dataframe
containing the hourly local generation from RES.

Table 4.2: PV technology parameter values

Parameter Value Description
ηdirt 97% Losses due to dirt

ηreflect 97% Losses due to reflection
ηmismatch 97% Losses due to mismatch

ηcable 99% Losses in cable
γ -0.005 [◦C−1] Power reduction coefficient

G0 0.017 [kW/m2] Minimum radiation coefficient
GST C 1 [kW/m2] Radiation in STC
TST C 25 [◦C] PV cell temperature in STC

NOCT 45 [◦C] Normal operating cell temperature
P P V

nom 1 [MW] Nominal power of a PV cell

Table 4.3: WT technology parameter values

Parameter Value Description
Hhub 93 [m] WT hub height
Href 10 [m] Height reference
z0 0.1 [m] Reference terrain roughness

P W T
nom 2 [MW] Nominal power of a WT

The flexibility of the simulation parameters is a notable aspect to highlight.
Although the user has the ability to modify these parameters directly in the code,
the values presented here were specifically chosen for the purposes of this thesis.
The Gamesa 2MW wind turbine was selected for the simulations, and its power
curve is depicted in Figure.

The implementation of the optimization model in the code follows the same
structure as the mathematical model. The pseudo-code in Listing 4.2 outlines the
steps for constructing an optimization model using Gurobi. The model defines
decision variables, constraints, and an objective function. The solver then finds
the solution that satisfies the model, typically within seconds or a few minutes,
depending on the size of the dataframe and on the feasibility region of the model.
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The initial stage involves taking the dataframe obtained from the RES_generation
function, which comprises data on PV and WT power generation along with hourly
energy load. Using this data as a basis, decision variables are established with
suitable constraints, limiting them to positive, negative, or both values. By em-
ploying a solver, the optimal values for the quantity of PV panels (n_pv), wind
turbines (n_wt), and storage capacity (c_s) are determined, aiming to maximize
self-sufficiency and minimize dependence on the grid.

The second input of the function optimalmodel (optdata) stands for the inputted
simulation parameters by the user which will be better explained in the following
subsection.

Listing 4.2: Optimization model implementation (Pseudo-code)

# Import l i b r a r i e s
import gurobipy as gp
from gurobipy import GRB

def optimal_model ( df , opt_data ) :

# Create the model
m = gp . Model ( " Max_SS_Min_Absorption " )

# Def ine d e c i s i o n v a r i a b l e s
# Undependent o f time
n_pv = m. addVar ( p o s i t i v e , type = cont inuous ) # number o f PV
n_WT = m. addVar ( p o s i t i v e , type = cont inuous ) # number o f WT
c_s = m. addVar ( p o s i t i v e , type = cont inuous ) # Storage capac i ty

# Dependent o f time
Eb( t ) = [m. addVar ( p o s i t i v e , type = cont inuous ) { l ength ( df ) } ]
Pb( t ) = [m. addVar(+/−, type = cont inuous ) { l ength ( df ) } ]
P_inj ( t ) = [m. addVar ( p o s i t i v e , type = cont inuous ) { l ength ( df ) } ]
P_abs( t ) = [m. addVar ( negat ive , type = cont inuous ) { l ength ( df ) } ]
PG( t ) = equat ion 3 .25 { l ength ( df ) }

# Financ i a l e x p r e s s i o n s
NPV( t ) = equat ion 3 .21

# Def ine c o n s t r a i n t s
# Power Balance :
m. addConstrs (PG[ t ] − Pd [ t ] − Pb [ t ] − P_inj [ t ] − P_abs [ t ] = 0)

#Financ i a l :
m. addConstr (NPV >= 0)

# Battery :
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m. addConstr (Eb [ t = 0 ] = 0 .2 c_s )
m. addConstr (Pb [ t = 0 ] = 0)
m. addConstrs ( ( Eb_t [ t ] >= 0 .2 ∗ c_s )
m. addConstrs (Pb [ t ] >= −c_s )
m. addConstrs (Pb [ t ] <= c_s )
m. addConstrs (Eb [ t ] = Eb [ t −1] + Pb [ t ] )
m. addConstrs ( Big M method c o n s t r a i n t s )

# Set o b j e c t i v e
m. s e tOb j e c t i v e ( gp . quicksum (P_abs) , s ense=gp .GRB.MAXIMIZE)

# Optimize the model
m. opt imize ( )

As mentioned in section 3.3.1 one of the main concerns for the implementation
was the computational cost the optimization model could have. Even though
the model is totally linear, the fact of dealing with large datasets of decision
variables and constraints affect the convergence inside a feasible region. Therefore,
an arrangement for the solver settings had to be adopted. According to Gurobi
documentation [39], it is possible to set parameters to constraint the convergence
inside a feasible solution. The configuration of parameters used for the model
refers to mix-integer programming (MIP) strategies, in listing 4.3 are shown the
ones use for solve the single-site model. ”MIPGapAbs” refers to the gap tolerance
between the objective value and the best bound value, in this case has been set
as less or equal to 10%. ”MIPFocus” is established to indicate the solver how
to prioritize exploration, a value of 1 instruct to perform the search space evenly.
”Method” the parameter specifies the algorithmic approach used by the solver, the
value of 2 suggests to the solver to prioritize good feasible solutions over rigorous
optimal ones. Lastly ”Corssover” indicates whether or not the crossover method
is implemented inside the model, in this case has been set to 0 in order to do not
use it, because enable it means higher computational cost for the solver.

Listing 4.3: Parameters for mix integer programming
m. setParam ( "MIPGapAbs" , 0 . 1 ) # Maximum t o l e r a n c e f o r convergence
m. setParam ( ’MIPFocus ’ , 1) # I n d i c a t e s how the s o l v e r e xp l o r e s
m. setParam ( ’ Method ’ , 2) # Algor i thmic approach s e l e c t i o n
m. setParam ( ’ Crossover ’ , 0) # Crossover method

It is worth noting that the generation and storage capacities remain constant and
independent of time. This implies that the energy system installation is considered
to occur at the start of the analysis period, and it is assumed that there will be
no increase in capacities over time. This fact also influences on the computational
cost and faster convergence. The results for convergence time will be presented
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inside the case study chapter.

Despite initially having a well-described optimization model, the implementation
process encountered various challenges. To address these complications, multiple
simulations and trials were conducted in order to reach the current state where the
model can effectively utilize the solver to find an optimal solution. By fine-tuning
these parameters and making appropriate adjustments discussed in this section,
the model has been refined to a point where it can efficiently utilize the solver and
offer improved performance in finding an optimal solution.

4.3 Build a Single-site energy scenario

After running the command line ”streamlit run Main.py” on the system’s
terminal, the program will be opened in a web page with four different tabs. From
the main page the user will be able to add or delete site’s hourly METEO data
to/from the local database. As depicted in Figure 4.4 the required inputs are
Province name, Site name, latitude, longitude and the period in years of the data
the user wants to add. The modules used in this Tab are the module one and three
which allows the connection with PVGIS API and then allocate the downloaded
data in the local database.

Figure 4.4: Tab 1. Add/delete region to/from database
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To facilitate the single-site scenario simulation, the user is provided with an
interactive table that displays the available regions within the database. This table
includes the coordinates of each region and the length of the hourly data, which
spans from the minimum date (Min_date) to the maximum date (Max_date). The
data in this table can be easily edited to input desired values.

Figure 4.5: Tab 2. Single site simulation

In addition to the region information, the simulation requires several parameters
related to financial aspects, generation limitations, and grid constraints. These
parameters are presented in Table 5.5 along with their corresponding descriptions
and units. These values can be adjusted according to the specific requirements of the
simulation. Finally, the user can name a new energy scenario in order to simulate
the sites desired. In this sense, Gurobi solver will manage each optimization model
for the regarding regions, the outcome will be their respective optimal values for
generation and storage capacities for each energy system modelled. Furthermore,
the solver is capable of reconstruct the hourly profiles for each decision variable
that must be compliant with constraints and results. At the very end the program
will return a reconstructed and detailed dataframe for each site and allocate it
inside the database with the name of the case scenario, the data can then be used
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for data visualization and analysis, see section 4.4.

As previously described, the integration of the front-end and back-end com-
ponents provides flexibility in creating various energy scenarios. This flexibility
enables the simulation of different regions as well as the simulation of the same
region with different input parameters. Users can compare results across differ-
ent time periods, financial parameters, and technology specifications within the
modeled energy system. This capability allows for comprehensive analysis and
comparison of diverse scenarios.

Based on the inputs provided, the solver’s outcome from the single-site model
can be valuable for decision-makers, as it will determine whether the model is
feasible or infeasible. If the model is feasible, it means that there exists a set of
decision variables that satisfies all the defined constraints, and an optimal solution
has been found. In this case, decision-makers can use the results to make informed
decisions regarding the installation of the energy system at the specific site.

On the other hand, if the model is infeasible, it indicates that there are no
feasible solutions that meet all the constraints. In this situation, decision-makers
may need to reassess their inputs, constraints, or objectives to find a feasible
solution. Identifying infeasibility can be crucial for decision-making, as it may
signal the need for adjustments or revisions in the planning and design of the
energy system.

Table 4.4: Input parameters for single-site simulation

Parameter Units Description
MaxC_PV MW Maximum installable capacity of PV
MaxC_WT MW Maximum installable capacity of WT

Max_Injection MW Maximum injection to grid
IRR % Internal rate of return

Ele_price €/kWh Cost of energy purchase
Sell_price €/kWh Energy selling price
uCostPV €/kW Unit cost of PV installation
uCostWT €/kW Unit cost of WT installation

uCostStorage €/kW Unit cost of storage installation
Discharge_time h (1-24) Battery discharge time

mCostPV €/kW Maintenance cost of PV
mCostWT €/kW Maintenance cost of WT

eNPV € NPV value at the end of simulation
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4.4 Build a Multiple-site energy scenario

The multiple-site energy scenario can be built by adding the energy network
constraints that interconnect all the possible evaluated regions inside the model. The
user is asked to provide the grid topology and its characterization by constructing
the PTDF explained in section 3.3.2.

In order to perform the implementation inside the code the line reactance
plays an important roll determining the line limits. As mentioned the voltage
levels considered inside the model correspond to 220 kV and 380 kV, then their
respective reactance need to be calculated in order to properly implement the
PTDF calculation inside the model, the reactance are expressed as:

X220kV
i,j = 0.67Ω/km −→

∼
X

220kV

i,j =
X220kV

i,j

Z220kV
base

X380kV
i,j = 0.23Ω/km −→

∼
X

380kV

i,j =
X380kV

i,j

Z380kV
base

Where
∼
X i,j represents the normalized (p.u) value of the reactance and:

Z220kV
base = (220kV )2

100 Z380kV
base = (380kV )2

100

In this case the subscripts i and j represent the from − bus and to − bus
respectively. In this sense it is expected the list for both type of buses inside
the network, the connection between two busses result in a branch with length ′l′

(km). Afterwards, the connection matrix can be built which represents for each
row the branches and for each column the buses. The connection matrix Cft can
be implemented inside the code as an sparse1 matrix where per convention the
indices 1 represent the from − buses and −1 the to − buses, it can be formulated
as follows:

1Sparse matrix is a matrix that contains mostly zero elements. By exploiting the sparsity of
the matrix, computational efficiency and memory savings can be achieved.
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Cft =


1 0 0 . . . 0 −1 0 . . . 0
0 1 0 . . . 0 0 −1 . . . 0
... ... ... . . . ... ... ... . . . ...
0 0 0 . . . 1 0 0 . . . −1


nl×nb

Where nl is the vector length for branches or lines, and nb represents the vector
length for buses.

The PTDF can be calculated after representing the reactance in terms of
susceptance, which is the reciprocal of reactance Bfi,j =

∼
X

−1

i,j . The suscenptance
matrix can be constructed as represented in the following cases being; bi is the
series susceptance associated to the ith branch, the positive values of bi placed for
the from − buses and the −bi for the to − buses, otherwise is 0. Therefore, the
power injection at each from − bus can be denoted as the Bbus matrix express it
as in equation 4.1.

Bfij =


bi if j = fi (from bus of branch i)
−bi if j = ti (to bus of branch i)
0 otherwise

Bf =


b1 0 0 . . . 0 −b1 0 . . . 0
0 b2 0 . . . 0 0 −b2 . . . 0
... ... ... . . . ... ... ... . . . ...
0 0 0 . . . bnl 0 0 . . . −bnl


nl×nb

Bbus = Cft
T · Bf (4.1)

The calculation of the PTDF values involves multiplying the ith row of the Bf
matrix with the kth column of the inverse Bbus matrix, yielding a scalar value. This
mathematical expression represents the calculation of the PTDF values, indicating
the sensitivity of branch DC power flows to changes at the non-slack buses. The
PTDF matrix is constructed according to the following cases:

PTDFij =

Bfik · Bbus−1
kj if j ∈ noslack

0 otherwise

Once the PTDF for the network under analysis is constructed, the user can
start modelling the energy scenario. As a starting point, the program will suggest
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to which transmission line each region’s energy system should be connected, it will
predominate the closest line for the region ith. This features will allow the program
to calculate the respective reactance according to the connection, this will allow
to set the boundaries for power injection. In this thesis, it is assumed maximum
values for power injection at 220 kV and 380 kV transmission lines 200 MW and
1100 MW respectively.

In Figure 4.6 is represented a general grid composed by 220 kV and 380 kV
transmission lines and the regions that are composing the model. What is yet to
be represented in the figure are the virtual generators that constitute the model for
HVDC lines that are connected to mainland. In this sense, the virtual generators
have bi-directional flows simulating the absortion or injection behavior of HVDC
transmission lines.

Figure 4.6: Provinces location and Medium/high voltage electricity grid in
Sardinia.

In Figure 4.6 the acronyms for the regions shown stand for Cagliari (CA), Sassari
(SS), Olbia Tempio (OT), Nuoro (NU), Oristano (OR), Medio Campidano (VS),
Carbonia Iglesias (CI) and Ogliastra (OG). In chapter 5 will be also used.

At this point the model is about to be simulated, what is still missing is to
provide the limits for the virtual generators, in order to set the boundaries for the
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power absorption and injection from/to mainland.

P min
v ≤ P mainland

abs,v (t) ≤ P max
v

P min
v ≤ P mainland

inj,v (t) ≤ P max
v

The outcome from the simulation will give the values of optimal generation
and storage capacities for each region i that satisfies the constraints, specially
for multiple-site having under consideration the interconnections between regions
through the electrical netwrok. In this sense, the results will be compliant for
the maximum optimal values of SS, thus the minimization of reliance from grid
mainland.

4.5 Results Visualization

Tab number four of the application is dedicated to data visualization. Once the
simulation is completed, the program saves and stores the results in the database
inside a table called as the case scenario. To facilitate analysis and provide users
with a wide range of possibilities to evaluate each scenario, a graphical interface
with interactive plots has been developed.

The interactive nature of the plots allows users to visualize and analyze the
results at various levels of detail, ranging from hourly to yearly basis. This flexibility
enables users to explore the data in different time frames and easily identify patterns
or trends. For instance, they can identify periods when power generation is higher
or when the absorption from the grid becomes more critical. As shown in Figure
4.7, the graph on the left-hand side provides users with the option to select hourly
profiles from a range of dates. This graph allows users to visualize the data at a
granular level, examining the variations in values throughout specific time periods.

On the other hand, the graph on the right-hand side presents a bar version
of the hourly profiles. However, instead of displaying individual values, it shows
the cumulative values for all the years that have been simulated. This cumulative
representation provides an overview of the aggregated data over time, highlighting
the overall trends and patterns.

The identifier ”cagliari_1” represents the results for the specific region being
evaluated. In the application’s dropdown lists, users can easily switch between
different regions that were simulated within the case study. This allows for a
convenient way to compare and analyze results across various regions. Additionally,
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Figure 4.7: Tab 3. Results visualization

another dropdown list is available to select the specific magnitudes or variables that
users wish to analyze. In Figure 4.7, the depicted variables are the production from
PV panels, wind turbines, and the behavior of the battery in terms of charging
and discharging. By providing these dropdown lists, the application enables users
to explore and analyze the simulated data for different regions and variables of
interest. This flexibility empowers users to gain insights into the performance
and behavior of renewable energy generation, storage systems, and other relevant
parameters specific to each region. Furthermore, the graphical interface offers
additional features such as the ability to customize the appearance of the plots,
add annotations or markers, and compare different scenarios side by side.

Figure 4.8 displays additional graphs within the data visualization section. One
of the graphs represents a box plot showing the distribution of the magnitude being
investigated. This box plot provides insights into the variability and range of the
data, allowing users to understand the statistical characteristics of the variable
under consideration. Another graph focuses on the economic aspects of the energy
system. It presents the cumulative Net Present Value (NPV) profiles for the entire
evaluation period. This visualization offers a comprehensive view of the financial
performance of the energy system over time, providing valuable information on the
economic viability and profitability.

Furthermore, the figure includes a summary section that highlights the most
important parameters for each individual site. This summary includes key informa-
tion such as the SS and SC values, the number of PV panels, the number of WT,
the storage capacity, and other relevant parameters. This summary enables users
to quickly assess and compare the results for each site, facilitating the identification
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Figure 4.8: Tab 3. Economic results

of the most significant factors and their impact on the overall system performance.

By incorporating these additional graphs and the summary section, the applica-
tion provides a comprehensive and easily accessible overview of the results. Users
can gain insights into the statistical characteristics, economic performance, and
key parameters for each site, supporting informed decision-making and detailed
analysis of the simulated scenarios.

To evaluate the capabilities of the tool, a specific case study has been chosen
for testing purposes. The case study introduced in chapter 5 represents a specific
scenario or system that will be simulated and analyzed using the tool’s functionali-
ties. The selection of a case study allows users to apply the tool to a real-world
scenario or problem of interest. It serves as a practical example to assess the
tool’s effectiveness in addressing specific challenges or objectives related to energy
systems, renewable energy integration, or other relevant domains.
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Chapter 5

Case Study: The Green
Electrification of Sardinia

The Sardinia project is a pilot that could be exported nationwide and calibrated
to suit local differences and requirements. Sardinia could thus become Europe’s
greenest island and a model for Italy as a whole. As reported in [42] the island
is conceiving big attention by Europe as it is a perfect example of Distributed
Energy Resource (DER), Sardinia brims with the potential to become a large-scale
laboratory for electrification and sustainability. The project has a bold vision to
bring about a significant transformation in Sardinia’s energy model by 2030, aiming
to deliver environmental, social, and economic benefits to the entire region and its
community.

Its main objective is to drive a radical shift away from fossil fuel-based energy
production and instead increase the proportion of energy generated from solar
and wind power sources. Currently, only 7% of energy in Sardinia comes from
photovoltaic systems, while wind power accounts for 15% [4]. Therefore, the project
seeks to substantially boost these percentages and promote renewable energy as a
cleaner and more sustainable alternative.

Looking ahead, Sardinia envisions a future characterized by further advancements
in its energy system. The upcoming years hold promising prospects for the island,
driven by key projects and initiatives. One notable development is the Tyrrhenian
Link, which aims to connect Sardinia’s electricity grid with the mainland, facilitating
greater access to renewable energy sources and ensuring a more reliable and
sustainable energy supply. Additionally, Sardinia is committed to embracing the
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concept of green electrification, encompassing the integration of renewable energy
generation, energy storage systems, and smart grid technologies. This holistic
approach seeks to optimize energy efficiency, reduce emissions, and promote a more
sustainable and resilient energy system across the island [43].

For the purpose of this study, the University of Cagliari has provided valuable
data on hourly energy consumption and purchase/selling electricity prices in
Sardinia for the years 2030 and 2050 for each province. This data serves as a crucial
foundation for analyzing and evaluating the energy landscape in the region during
these time-frames. This chapter provides a comprehensive overview of Sardinia’s
current energy system, laying the groundwork for modeling and analyzing different
future energy scenarios from a province to island level, using the tool reported in
section 4.

By combining projected data and advanced optimization techniques, the chapter
aims to provide simulation results and valuable insights about the tool’s performance,
tested with a real case scenario with a reliable projected energy demand and financial
inputs. The outcome can assist decision-makers and policy-makers in shaping the
energy landscape of Sardinia.

5.1 Current Sardinia’s energy scenario

At present, Sardinia’s energy generation largely depends on traditional power plants,
including those fueled by coal. This heavy reliance on fossil fuels poses significant
challenges in terms of greenhouse gas emissions and contributes to the overall
carbon footprint of the island, as represented in Figure 5.2 the carbon intensity per
electricity consumed in 2023 round the 600 gCO2eq/kWh. According to Terna
the potential disconnection of Sardinian consumers from the electrical network
becomes a significant concern when there is no generation from coal power plants
[44].

The Figure 5.1 illustrates the active fossil fuel power plants in Sardinia. Accord-
ing to the plans, Fiumesanto and Sulcis are expected to cease their operations by
2025. As a result, Sardinia aims to become carbon-free by 2030, indicating that
Sarlux power plant will also be decommissioned [44]. Since this study focuses on
the period between years 2030 and 2050, one of the energy scenarios will solely
consider Sarlux as the remaining power plant in operation.

Despite the high reliance Sardinia has on coal power plants, the period from
2010 to 2020 witnessed a notable expansion in the share of renewables, as depicted
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Figure 5.1: Sardinia’s active Fossil fuel power plants. Adapted from [44]

in Figure 5.3. This increase is primarily attributed to the growing contribution
of photovoltaic (PV) and wind energy systems, reflecting a significant rise in the
energy generated from these sources inside the island.

Figure 5.2: Carbon intensity per electricity consumed (gCO2eq/kWh) in Italy.
Taken from Electricity Maps [45] on May 2023

One notable achievement in Sardinia’s energy transition is the projected re-
duction in coal power plants. Recognizing the harmful environmental impacts
associated with coal plants, Sardinia has made significant progress in phasing out
these facilities. Instead, the focus has shifted towards increasing the proportion
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of energy derived from renewable sources. The adoption of renewable energy
technologies, such as solar and wind power, has gained momentum, enabling the
island to harness its abundant natural resources and reduce its dependence on
non-renewable energy. Achieving values up to 2 TWh and 1.2 TWh for Wind and
PV technologies respectively in 2020, according to Figure 5.3.

Figure 5.3: Increase share of renewable energy generation in Sardinia (GWh) [46]

With respect to the current situation of Sardinia’s electrical grid and the existing
High Voltage Direct Current (HVDC) links with mainland, the island relies on
two main connection cables: Sacoi, which links the island with Corsica, and Sapei,
which provides the crucial connection to the mainland peninsula as illustrated in
Figure 5.4. However, the existing transmission lines face limitations in terms of
capacity and reliability, posing challenges to the integration of renewable energy
sources and ensuring a stable electricity supply.

To facilitate the growth of renewable energy generation in the region, it is crucial
to ensure that the existing electricity transmission infrastructure can support the
increased capacity. Terna, the transmission grid operator, has recognized this need
and has initiated several network expansion projects. Inside the Development Plan
of 2021, The Tyrrhenian link is positioned as one of the most important inside it,
which main objective is to stabilize and secure the power grid, ensuring efficient
exchange between the two islands, Sardinia and Sicily, and the mainland [43].
Figure 5.5 represents the connections of the Tyrrhenian link.
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Figure 5.4: Current transmission lines connected to mainland. Adapted form
Entsoe grid map [47]

5.2 Preliminary analysis

The analysis begins by assessing the energy demand projections for the eight
provinces in Sardinia. According to a forecast conducted by Cagliari University
for 2030, the total energy consumption of the entire island is estimated to reach
9.7 TWh. However, it is anticipated that a portion of this demand will already
be met by existing hydroelectric and thermal plants, such as Sarlux in Cagliari,
which might be programmed for phase out by 2030. As a result, the remaining
energy demand is intended to be fulfilled by non-conventional generation methods,
particularly through the use of photovoltaics, wind farms, and electrochemical
storage.

Table 5.1 presents the projected energy production by conventional generators for
each province in 2030, being the hydrolectric in Nuoro with the higher contribution,
up to 295.783 GWh/year. On the other hand, Table 5.2 illustrates the energy
demand per province that needs to be supplied by renewable generators. This
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Figure 5.5: Tyrrhenian link, adapted from [44]

Table 5.1: Hydroelectric and thermal plants production in Sardinia by province
in 2030 and 2050

Province Hydroelectric (GWh) Thermal plant (GWh)
CA - 2.861
CI - -
VS 32.770 -
OR 22.600 -
NU 295.783 -
OG 45.200 -
OT - -
SS 10.498 -

calculation takes into account the subtracted production from hydroelectric and
coal plants from the total energy demand for each province.

A noteworthy observation is that the provinces of Cagliari (CA), Carbonia-
Iglesias (CI), and Sassari (SS) exhibit higher energy demands, collectively accounting
for approximately 70% of the total energy consumption in the island for years 2030
and 2050 as represented in tables 5.2 and 5.3. This emphasizes the significance of
these provinces in shaping Sardinia’s overall energy landscape. To delve further
into the energy dynamics of the region, the analysis focuses specifically on Cagliari
province. At least two energy scenarios will be simulated for Cagliari, providing
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a comprehensive outlook on potential future pathways. One scenario considers
the continued generation from the Sarlux power plant, while another scenario
explores the possibility of shutting down Sarlux and completely rely on alternative
energy sources. The purpose of simulating these scenarios is to evaluate the island’s
potential to decrease its dependency on power plants fueled by fossil fuels, while
simultaneously ensuring a significant degree of self-sufficiency and cost-effectiveness.

Table 5.2: Sardinia energy demand by province for the year 2030

Province Energy demand (GWh) Proportion
CA 3’048.44 0.32679
CI 1’868.34 0.20028
VS 403.19 0.04322
OR 1’054.91 0.11309
NU 664.26 0.07121
OG 183.84 0.01971
OT 408.94 0.04384
SS 1’696.55 0.18187

Sardinia 9’328.47 1

Table 5.3: Sardinia energy demand by province for the year 2050

Province Energy demand (GWh) Proportion
CA 3’935.437 0.3221
CI 2’241.601 0.1835
VS 526.415 0.0431
OR 1’345.974 0.1102
NU 920.170 0.0753
OG 256.250 0.0210
OT 745.254 0.0610
SS 2’247.812 0.1840

Sardinia 12’218.913 1

In the simulation, a constant increment was assumed for the energy demand
between the years 2030 and 2050. This means that the energy demand was projected
to increase steadily over this 21-year period. Provides a comprehensive timeframe
for analyzing the dynamics of the energy system and identifying trends, patterns,
and potential challenges that may arise as the energy demand increases over time.
It allows decision-makers to assess the sustainability and resilience of the system
and make informed decisions based on the projected energy demand trajectory.
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Subsequently, the estimation of the maximum potential capacity for each genera-
tion and storage technology is a crucial step to facilitate the accurate simulation of
energy scenarios. In [48], a comprehensive analysis is presented considering factors
such as land availability and resource accessibility for Sardinia. This analysis
provides estimations of capacities for various generation technologies, including
Wind farms (onshore), PV farms, and PV rooftop installations, specific to each
province. These estimations serve as a baseline for modeling the energy systems of
the eight provinces under investigation.

The outcome potential capacities from the study are reported in Table 5.4
indicating the maximum achievable values, the optimization process ensures that
the selected capacities align with economic and power balance limitations. On the
other hand, when sizing the storage system, the analysis assumes no limitations on
land availability. The maximum capacity of the storage system relies on satisfying
power balance and economic constraints since it ensures the uninterruptible energy
supply and represents the most expensive cost of replacement/maintenance of the
entire energy system.

Table 5.4: Maximum capacity potential assumed for Sardinia and different
provinces [48].

Province Max Potential Capacities (GW)
PV Wind (onshore) Storage

CA 2.413 2.658 -
CI 6.514 7.514 -
VS 6.514 7.514 -
OR 7.112 7.835 -
NU 12.558 13.835 -
OG 7.113 7.864 -
OT 10.220 10.865 -
SS 19.243 21.199 -

5.3 Province level simulations and results

As explained in section 4.3 the first step is to provide the inputs in order to proceed
with the simulation. Energy demand is defined in Tables 5.2 and 5.3, the input
parameters regarding financial, and energy system’s limitations are defined in Table
5.5, the definition of each parameter is well-described in chapter 4. Limitation on
maximum generation capacities have already been reported for each region under
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analysis in Table 5.4 and limitation on maximum injection will vary according to
the transmission line connection the individual site is linked.

To test the tool and explore various scenarios, it will be outlined two different
situations. The first scenario focuses on connecting to medium voltage transmis-
sion lines (220 kV), while the second scenario examines high voltage connection
transmission lines (380 kV). By examining the limitations on injection, the results
will demonstrate the disparity between low and high restrictions, and the subse-
quent impact on other analyzed metrics like self-sufficiency, self-consumption, and
economic parameters.

Table 5.5: Input parameters for single-site simulation

Parameter Units
MaxC_PV MW
MaxC_WT MW

Max_Injection 1480 MW
IRR 8%

Ele_price 24 c€/kWh
Sell_price 4 c€/kWh
uCostPV 650 €/kW
uCostWT 1000 €/kW

uCostStorage 300 €/kWh
Discharge_time 1 h

mCostPV 10 €/kW
mCostWT 0.0085 €/kWh

eNPV 1 €

The simulation will perform the optimization model for a single-site returning
the optimum sizes for generation and storage capacities within an IRR higher
or equal to 8% for each province over a 21-year period simulation. Financial
parameters and costs were provided by the university of Cagliari, the values are
shown in Table 5.5.

Visualization results are distributed from hourly to yearly resolution, in figure
5.6 it is shown an example of hourly profiles during a month of high production. By
examining the figure, it is observed the fluctuations and patterns in production over
the course of a day or weeks, providing valuable insights into the system’s behavior.
This feature potentially identifies peak production periods or any recurring patterns,
as the one regarding the BESS

By implementing the optimization model with the various decision variables and
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Figure 5.6: General hourly profiles during high production period.

constraints it was possible to reconstruct from the RES production and the energy
demand the other parameters composing the energy system, for instance the power
absorption or power battery. In fact, this is the powerful feature this software
provides, the solver will reconstruct the optimal values for all the decision variables
inside a feasible area where all the constraints are met. As a demonstration, in
Figure 5.7 it is reported for a week period the battery management. S_capacity
stands for the decision variable related to optimal storage capacity, and where
the light blue profile is the energy inside the battery, as noticed it respects the
conditions of limits on SOCmin and SOCmax and follows the profiles of generation
for charging when high production or discharging power in cases of low production.

In terms of performance, the converge times the solver takes to find an optimal
solution were satisfactory. Even though, the model has a big range of decision
variables and constraints with an hourly resolution for a 21 year-period, the
linearization of the model supported the fast convergence. For each site simulated
within a period ranging from 1 to 2 minutes it was possible to obtain the optimal
values for generation and storage capacities, and reconstruct all the variables that
the renewable energy system comprises.
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Figure 5.7: General battery management profiles

For simplicity, in the following cases only two regions will be depicted for their
graphical representation, because the tool capability allows the data visualization
site by site. However, at the conclusion of each energy scenario, it will be provided
a results summary table to compare the regions under analysis. This table will
highlight the levels of SS achieved in each scenario, providing valuable insights
for decision-making regarding Sardinia’s potential reliance on RES generation for
decarbonizing the island in between 2030 and 2050 timeframe.

The energy landscape for Sardinia is promising due to all the facts described
at the beginning of the chapter, specially in regards the plans for grid capacity
expansion the island has embarked. Accordingly, for the periods under evaluation
Sardinia has a bright potential on supporting energy transition, this is why makes it
a suitable case study to test the tool. The energy scenarios that will be study were
chosen based on the maximum power injection to the grid because it represents a
direct factor for maximizing SS, the limitations in grid capacity is in fact, an energy
transition bottleneck regarding RES penetration in emerging energy systems.
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5.3.1 Limit on injection at medium voltage transmission
lines

The two regions selected for the single site graphical results are composed by OT
and CA, both with different levels of energy consumption inside Sardinia, with a
proportion of 32% for Cagliari and 4% for Olbia. The results will show the contrast
for the energy system behavior and reconstruction of the complementary variables,
according to the connection at medium voltage (220 kV) transmission lines, with
an assumed value of 200 MW for maximum injection to grid.

Figure 5.8: Cumulative monthly data distribution for PV production

To begin the analysis of energy production from photovoltaic (PV) and wind
turbine (WT) sources, Figures 5.8 and 5.9 present the cumulative data distribution
for both types of production over the evaluated time period. It is observed that
the distribution for PV production exhibits a distinct pattern during the summer
months, where there is a notable increase in PV energy production, indicating a
higher generation of electricity from solar panels. In contrast, the distribution for
WT production remains relatively constant throughout the years, due to the fact
that relies on wind speed and availability, which can be more consistent throughout
the year.
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Figure 5.9: Cumulative monthly data distribution for WT production

The results are composed by plots from hourly to yearly resolution, due to the
fact that the hourly G, u and T are given with real values variation for the 21
year-period, the tool provides accurate results. Which can be analyzed in its hourly
original form or be re-sampled to analyze monthly, yearly profiles. Furthermore,
enabling the program with the local database allowed going easily through all the
energy scenarios simulated, due to the modularity approach the tool was developed
on. Despite the huge size of each modelled region, the program handles to provide
high quality resolution results.

Accordingly, the data visualization is capable of providing cumulative data
plots as the ones represented in Figures 5.10 and 5.11 which represent the hourly
cumulative profiles for the years 2030 and 2050 in the region of OT. This graphs
help the user to analyzed the results and energy system’s performance for the
initial year and last year. As mentioned previously, the load is assume to increase
constantly from the period in between 2030 and 2050. Additionally, the ageing
factor for decrement on production from renewables is assumed 0.5% per year.

The hourly plots place in evidence the hours with higher production from renew-
ables, which accordingly for PV _production the generation is maximum during
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Figure 5.10: OT hourly cumulative energy profiles for year 2030

sun hours and for WT_production has a more constant behaviour throughout the
day. During periods of over production, power injection to the grid and power
charging for the battery takes place, and then power discharging during the night
periods of low production. Moreover, no power absorption was required to supply
the energy demand for the year 2030 in OT, meaning 100% self-sufficiency for the
first year.

Nevertheless, the results for the year 2050 drastically change in contrast with
the first year of simulation. The 2050 load has almost triple the initial one, with
higher demand during nights. Production from renewables decreased because of
the aging factor, therefore the reliance from the grid absorption increased during
night time significantly. Despite the high increment of energy demand for the year
2050 and that no more generation capacity were considered to be added during
time, in 2050 according to the results the system can still satisfy the load with
high level of self-sufficiency, see Table 5.6, in this sense being still able to inject
power to the grid in periods of overproduction.

Additionally, when the data is resampled at a monthly resolution, it allows us to
examine the behavior of key variables during each month and gain insights into their
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Figure 5.11: OT hourly cumulative energy profiles for year 2050

profiles. Figure 5.12 illustrates the profiles for the OT region, revealing a prominent
emphasis on PV generation during the summer months. This dominance can be
attributed to the higher generation capacity of PV compared to WT. Consequently,
the power injected into the grid follows the pattern of PV generation, resulting in
surplus electricity during the summer months. Conversely, the absorption of power
from the grid is more pronounced during the winter months, indicating a greater
reliance on grid power during that time. It is notable to mention, that the values
of active power refer to the cummulative ones, meaning for the month 7 a total PV
production of 1.5 GWh for the 21 year-period simulation.

By analyzing the monthly profiles of these variables, we can better understand
the seasonal patterns and dynamics of energy generation and absorption in the
OT region. This information can be valuable for decision-making and optimizing
the utilization of renewable energy sources to meet the region’s energy demands
throughout the year.

The final graph to be analyzed presents the yearly profiles and provides a
summary of power distribution between the energy system and the electric grid over
a 21-year period as shown in Figure 5.13. The overall results indicate a substantial
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Figure 5.12: OT monthly cumulative profiles for 21 year period simulation

increase in energy demand throughout the simulation, starting from 400 GWh
in the first year and reaching 1 TWh by 2050. At a certain point in the middle
of the simulation, the energy load even surpasses the generation capacity of PV
production.

However, the total renewable energy generation amounts to approximately
900 GWh, indicating a significant contribution from renewable sources. The
power balance heavily favors local generation, as evident from the fact that power
absorption from the grid is only notably required during the last five years of the
simulation.

• n_PV = 433 for a singular PV panel of 1 MW meaning an installation
capacity for PV farm of 1.97 GW.

• n_WT = 62 for a singular WT of 2 MW meaning a wind farm of 76 MW.

• cs = 1.2MWh for storage capacity

These results demonstrate high levels of self-sufficiency SS at 89% and SC at
66% for Olbia, making it suitable for decarbonizing its energy system and relying
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on renewable energy sources. Even when the maximum injection is limited to 200
MW for a medium voltage connection of 220 kV, the optimal capacities of the
energy system still yield high levels of self-sufficiency and ensure a positive net
present value (NPV), at the point that the overall power injection with respect to
the load reaches 46%. These findings are reported in Table 5.6, and for the other 7
regions as well.

Figure 5.13: OT yearly cumulative profiles for 21 year period simulation

On the other hand, CA has higher energy demand which requires higher gener-
ation and storage capacities to fulfil the load, which starts from from 3 TWh in
the first year and reaching 8 TWh by 2050. However, with the limitations on grid
injection for medium voltage transmission lines, finding a optimal configuration
for the energy system that satisfies the power balance and economic constraints
it is more complicated than the previous case. Nevertheless, CA energy scenario
reaches 63% of SS and 96% of SC, due to the fact that the overall power injection
with respect the load only reaches 2% the RES generation is almost completely
self consume, and the wasted power (curtailment) is only 2% as well.

While in the first year, the renewable energy plants primarily supply the load
with minimal power absorption from the grid, by the year 2050, the system struggles
to meet the energy needs and heavily relies on the grid for support. This indicates
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a growing demand and potential challenges in maintaining self-sufficiency in the
later years of the simulation if the limits on power injection remain the same.

Figure 5.14: CA hourly cumulative energy profiles for year 2030

The optimal values that satisfied the CA energy model connected at medium
voltage level are composed by:

• n_PV = 1965 for a singular PV panel of 1 MW meaning an installation
capacity for PV farm of 1.97 GW.

• n_WT = 92 for a singular WT of 2 MW meaning a wind farm of 184 MW.

• cs = 7.16 MWh for storage capacity.

Within the model and the electricity market, the primary means of recouping
investments is through the sale of electricity to the grid. In the case of Cagliari,
only 2% of the renewable energy generation was injected into the grid. As a result,
the model prioritizes the installation of photovoltaic (PV) capacity, as it is typically
more cost-effective compared to other energy components. In this sense the model
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Figure 5.15: CA hourly cumulative energy profiles for year 2050

is capable of having a positive value for the NPV at the end of the simulation with
a value of 630.000 €.

Monthly and yearly profiles in Figures 5.16 and 5.17 can better represent the
challenges CA faces to supply its high energy demand during the simulation period.
For instance, cumulatively, there is no month or year where PV production is higher
than the energy consumption, and the reliance on power absorption from the grid
starts to be highly significant after 8 years of plant’s installation.

The monthly patterns further emphasize the dominant role of PV production in
the overall renewable energy generation. This reliance on PV generation leads to
a higher dependence on the grid during the winter season when solar irradiance
is lower. As a result, the energy system must compensate for the reduced PV
production by relying more heavily on grid power during these months.

These observations shed light on the challenges faced by CA in supplying its
high energy demand while striving for renewable energy integration. The data
suggests that additional measures, such as diversifying the renewable energy mix
or upgrading the grid capacity that support the renewble penetration.
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Figure 5.16: CA monthly cumulative profiles for 21 year period simulation

Nonetheless, it is worth mentioning that the simulation has been performed
considering Sarlux out of the energy system, this is promising for the future energy
landscape Cagliari has towards decarbonization. This could involve increasing
the deployment of renewable energy technologies and the proper infrastructure to
ensure their efficient penetration to the electrical grid.

In the following subsection, it will evaluated the case where the regions are
connected to high voltage 380 kV transmission lines. This configuration enables
a higher rate of power injection into the grid, allowing for increased integration
of renewable energy sources. By changing connection to high voltage lines, sites
can significantly enhance its renewable energy integration and overall system
performance, specially in cases such as CA, SSS and CI with high energy demand
to supply.

In Table 5.6, the simulation results for the key parameters of each province are
presented, considering a connection to medium voltage with a maximum injection
of 200 MW. The table provides an overview of the findings for each region.

One common trend observed across all regions is that PV generation predom-
inates over WT production. This can be attributed to the cost-effectiveness of
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installing PV panels compared to wind turbines. The regions prioritize PV instal-
lations due to their relatively lower costs and higher availability of solar resources.
However, regions with higher energy demands exhibit lower levels of SS and require
larger storage capacities, the higher storage capacity requirement also implies higher
initial investment costs for these regions.

Figure 5.17: CA yearly cumulative profiles for 21 year period simulation

Undoubtedly, CA is the special case between the regions under analysis, it
required the higher initial investment for the energy system installation, as its total
installed generation capacity rounds the 2 GW and storage capacity 7.2 MWh.
Due to its simulated energy system and low levels injection, CA out stands with
the higher level of SC with respect to the others.

It will be explores how CA performs in a new case scenario with higher injection
capabilities. By increasing the injection capacity, CA can potentially enhance its
renewable energy integration and overall system performance. The following section
examines the potential effects and benefits of this scenario.
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Table 5.6: Simulation’s summary table for Sardinia provinces with 200 MW as
maximum power injection.

OT VS NU OG CA CI OR SS
Capacity results

PV Capacity [MW] 433 531 719 362 1965 1266 853 1130
WT Capacity [MW] 124 76 70 74 184 130 144 178
Storage Capacity [MWh] 1.2 1.1 1.8 0.5 7.2 4.2 2.9 3.8

First year results

RES production[GWh] 971 884 1153 652 3513 2115 1673 1915
Load [GWh] 408 403 664 183 3048 1868 1054 1696
Injection to grid [GWh] 567 486 494 471 630 438 627 356
Absorption from grid [GWh] 3 7 9 0 205 166 11 142

Last year results

RES production[GWh] 861 804 1063 604 3161 1895 1503 1782
Load [GWh] 1085 1069 17620 487 8088 4957 2798 4501
Injection to grid [GWh] 143 89 18 222 0 0 0 0
Absorption from grid [GWh] 296 351 715 101 4925 3060 1292 2717

Metric results for 21 years

Self-sufficiency 89% 85% 80% 81% 63% 62% 79% 63%
Self-consumption 66% 67% 80% 33% 96% 95% 87% 95%
Absorption/Load 11% 15% 20% 19% 37% 38% 21% 37%
Injection/Load 46% 41% 20% 111% 2% 3% 11% 3%
RES/Load 134% 126% 100% 201% 65% 65% 90% 66%

Economic results

NPV after 21 years [M€] 10 4 5 7.41 0.63 1.7 11.9 13
Initial investment [M€] 654 648 913 403 2934 1806 1320 1700
IRR 8% 8% 8% 8% 8% 8% 8% 8%

5.3.2 Limit on injection at high voltage transmission lines

In this subsection the regions have been simulated connecting them to a high
voltage transmission line, assuming 1000 MW of maximum power injection to
the grid. The site representing the graphical analysis consists of CA, the region
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inside Sardinia with higher energy needs. From figure 5.18 it can be noticed in
advance the enormous difference with respect to the previous case, production from
renewables during the first year of simulation overcomes load mainly by solar which
has 2.4 GW of installed capacity. It is also evidenced the absence of reliance on
the grid, locally generation predominated.

Figure 5.18: CA monthly cumulative profiles for 21 year period simulation, second
case scenario

However, overproduction leads to increase waste energy, denominated as curtail-
ment. For cases like this one of high penetration of renewable into the grid, the
power that cannot be longer stored or injected results in energy wasted. CA for
this case scenario obtained an 8% of curtailment, with only 15% of reliance from
the grid and 22% of overall power injection.

At the end of the simulation, despite the high demand of Cagliari, the generation
from renewables is capable of overcoming the energy need during the periods of
sun hours. The profiles of power absorption show accordingly high demands during
night times.

Cumulative monthly graphs also represent how the generation from renewables
can withstand energy needs. The outcome shows a well-balanced energy scenario
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Figure 5.19: CA yearly cumulative profiles for 21 year period simulation

for Cagliari, as it has higher level of SS than the previous case (85%) and also
keeping high levels of SC (79%). Generation from renewables encompasses a 108%
rate.

5.4 Comments on results

The results for both simulations performed in the Sardinia case study, suggest that
the regions with high levels of energy demand will achieve higher levels of SS and
possible as the case of CA high levels of SC as well. Due to the fact higher levels of
injection provides more positive cash flows, then more generation capacities can be
installed, and still achieving positive values of NPV at the end of the simulation.
On the other hand, regions with low demand connected to high voltage transmission
lines will tend to oversize their generation capcities.
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Table 5.7: Simulation’s summary table for Sardinia provinces with 1000 MW as
maximum power injection.

OT VS NU OG CA CI OR SS
Capacity results

PV Capacity [MW] 863 1458 1458 848 2879 2131 1459 1904
WT Capacity [MW] 486 88 250 88 512 434 484 494
Storage Capacity [MWh] 1.17 1.14 1.8 0.49 9 5.3 3.2 4.7

First year results

RES production[GWh] 2589 2097 2498 1414 5783 4027 3446 3554
Load [GWh] 408 403 664 183 3048 1868 1054 1696
Injection to grid [GWh] 2177 486 1834 1232 2713 2145 2383 1873
Absorption from grid [GWh] 0 7 0 0 15 0 0 0

Last year results

RES production[GWh] 2256 804 2297 1306 5172 3541 3102 3311
Load [GWh] 1085 1069 17620 487 8088 4957 2798 4501
Injection to grid [GWh] 1293 1259 869 904 40 185 735 185
Absorption from grid [GWh] 117 230 332 84 2954 1598 430 1372

Metric results for 21 years

Self-sufficiency 96% 92% 93% 93% 85% 87% 95% 87%
Self-consumption 27% 28% 43% 21% 79% 72% 51% 71%
Absorption/Load 4% 8% 7% 7% 15% 13% 5% 13%
Injection/Load 258% 235% 124% 343% 22% 34% 91% 36%
RES/Load 353% 327% 217% 436% 65% 121% 185% 122%

Economic results

NPV after 21 years [M€] 9 4.2 5.9 6.72 1.03 2.65 9.6 11
Initial investment [M€] 1232 1214 1537 697 4287 2921 2077 2709
IRR 8% 8% 8% 8% 8% 8% 8% 8%
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Conclusion

In summary, the development of the tool, starting from the mathematical formula-
tion of the optimization problem to its implementation, has achived satisfactory
outcomes. The challenges related to computational costs were successfully ad-
dressed by fully linearizing the model and implementing it within Gurobi for
solving the MILP problem. Despite the high-resolution input dataset and the
numerous decision variables and constraints, the solver rapidly identified feasible
regions and provided optimal configurations for the evaluated energy systems.

Integrating the Gurobi solver within the Python environment has facilitated the
creation of different energy scenarios and their interactive visualization of results.
It was made possible by the modular programming approach that was adopted and
the automated local database, that fluently communicate within the front-end.

The powerful feature of the tool emphasizes on the hourly reconstruction of
the decision variables the modelled energy system encompasses, by following the
constraints the solver was capable of returning the optimal values that effectively
minimizes reliance on the grid, thus maximizing SS. Accordingly, In the case study
conducted for Sardinia, the model demonstrated its capability to adapt to different
energy scenarios, as changes in the maximum power injection to the grid directly
impacted the levels of self-sufficiency for a single-site. The outcome of the results
suggested the connection to high voltage transmission lines to the regions with
high demand levels. This highlights the model’s versatility and its potential for
informing decision-making processes in the energy sector.

Despite rigorous efforts and comprehensive analysis, the objective of imple-
menting a multiple-site energy scenario for Sardinia could not be fully achieved.
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The approach to interconnect regions through the electrical grid and also model
the HVDC lines connecting the island to mainland, was expected to give more
accurate results for an island or country level simulations. Nevertheless, the path
has been delved providing the models to integrate the linear PTDF and the various
constraints inside the single-site model.

Overall, the tool development has been successfully implemented for a single-site,
achieving the objective to provide a software capable of easily construct energy
scenarios to support decision-making and energy transition.
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Appendix

A.1 Implementation code

1 c l a s s RegionData ( ) :
2 ’ pvg i s c l a s s to get hour ly weatherdata and an a t t r i b u t e to pass

from json to dataframe type ’
3

4 u r l = " https : // re . j r c . ec . europa . eu/ api /v5_2/ s e r i e s c a l c ? "
5

6 de f __init__( s e l f , province , reg ion , l a t , long , years ) :
7 t ry :
8 s e l f . prov ince = prov ince
9 s e l f . r eg i on = reg i on #input ( ’ I n s e r t r eg i on name : ’ )

10 s e l f . l a t i t u d e = l a t #input ( ’ I n s e r t l a t i t u d e : ’ )
11 s e l f . l ong i tude= long #input ( ’ I n s e r t Longitude : ’ )
12 s e l f . s tar t_year = ’ 2005 ’
13 s e l f . end_year = ’ 2020 ’
14 pr in t ( s e l f . end_year )
15

16 s e l f . f i n a l _ u r l = s e l f . u r l+ " l a t=" + s e l f . l a t i t u d e + "&lon
=" + s e l f . l ong i tude + "&s t a r t y e a r=" + s e l f . s tart_year \

17 + "&endyear=" + s e l f . end_year + "&opt ima lang l e s
=1&outputformat=json&browser=1"

18

19

20 r e g i o n s . append ( s e l f . r eg i on )
21 except :
22 pr in t ( " Error connect ing to PVGIS API" )
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1 de f set_load ( df , increment , years ) :
2 increment = increment
3 #years = years
4

5 energy_load_data = [ df . Load ]
6 f o r year in range (1 , years ) :
7 energy_load = df . Load ∗ (1 + increment ) ∗∗ year
8 energy_load_data . append ( energy_load )
9

10 total_energy_load = pd . concat ( energy_load_data , ignore_index=True
)

11

12 re turn total_energy_load
13

14 de f RES_generation ( df , n_pv , n_wt) :
15

16 df [ ’G( i ) ’ ] = df [ ’G( i ) ’ ]/1000 #i r r a d i a n c e in kW
17 df = df . round (3 )
18

19 # PV product ion model
20 df [ ’ PV_cell_temp ’ ] = ( df [ ’T2m ’ ] + ( ( ( c_eb .PV_NOCT−20) /0 . 8 ) ∗( df [ ’G

( i ) ’ ] ) ) )
21 df [ ’ PV_eta_thermal ’ ] = (1 + c_eb .PV_gamma_th ∗ ( df [ ’ PV_cell_temp ’

]−c_eb . PV_T_stc) )
22 df . l o c [ df [ ’G( i ) ’ ] < c_eb .PV_G_0, ’PV_DC’ ] = 0
23 df . l o c [ df [ ’G( i ) ’ ] < c_eb .PV_G_0, ’ PV_production ’ ] = 0
24 df . l o c [ df [ ’G( i ) ’ ] > c_eb .PV_G_0, ’PV_DC’ ] = ( c_eb .

PV_nominal_power ∗ n_pv ∗ ( ( df [ ’G( i ) ’ ] − c_eb .PV_G_0) /c_eb .
PV_G_STC) ∗ ( df [ ’ PV_eta_thermal ’ ] ∗ c_eb . PV_eta_mix) )

25 df . l o c [ df [ ’G( i ) ’ ] > c_eb .PV_G_0, ’ PV_production ’ ] = (−(1+c_eb .
PV_K_lin) + ((1 + c_eb . PV_K_lin) ∗∗2 + (4 ∗ c_eb .PV_K_quad) ∗ ( ( df
[ ’PV_DC’ ] ) − c_eb .PV_Po) ) ∗∗0 . 5 ) / (2 ∗ c_eb .PV_K_quad)

26

27 # WT product ion model
28 df [ ’U_w’ ] = df [ ’WS10m ’ ] ∗ ( c_eb . WT_numerator / c_eb .

WT_denominator )
29 df [ ’U_w’ ] . l o c [ df .U_w > max( c_eb . lst_wind_speed ) ] = max( c_eb .

lst_wind_speed ) # l i m i t i f U_w exceeds wind speed WT power curve
30 WT_power_interpol = sc ipy . i n t e r p o l a t e . in te rp1d ( c_eb .

lst_wind_speed , c_eb . lst_pow_Gamesa )
31 df [ ’ WT_production ’ ] = WT_power_interpol ( df [ ’U_w’ ] ) ∗ n_wt
32 df . drop ( [ ’PV_DC’ , ’G( i ) ’ , ’T2m ’ , ’WS10m ’ , ’U_w’ , ’ PV_cell_temp ’ , ’

PV_eta_thermal ’ ] , a x i s =1, i n p l a c e=True )
33

34 n=8760
35 n_years = i n t ( l en ( df ) /n)
36 cont_year = 1
37
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38 df [ ’Time ’ ] = pd . to_datetime ( df [ ’Time ’ ] , format=’%Y−%m−%d %H:%M:%S
’ , e r r o r s = ’ coe r c e ’ )

39 rows_with_errors = df [ df [ ’Time ’ ] . i s n u l l ( ) ]
40

41 s tart_year = df [ ’Time ’ ] . dt . year . min ( ) + 1
42

43 end_year = start_year + n_years
44 age ing = f l o a t ( 0 . 0 0 5 )
45 f o r year in range ( i n t ( s tart_year ) , i n t ( end_year ) ) :
46 df . l o c [ df [ ’Time ’ ] . dt . year == year , ’ PV_production ’ ] ∗= (1 −

age ing ∗ cont_year )
47 df . l o c [ df [ ’Time ’ ] . dt . year == year , ’ WT_production ’ ] ∗= (1 −

age ing ∗ cont_year )
48 cont_year += 1
49

50 re turn df

1 c l a s s DAO( ) :
2 ’ C lass Data Access Operator ’
3

4 de f __init__( s e l f ) :
5 t ry :
6 s e l f . eng ine = create_engine ( " mysql+pymysql ://{ user } : {

pw} @loca lhos t /{db} "
7 . format ( user=" root " ,
8 pw=" " ,
9 db=" e l e c t r i f y s a r d i n i a " ) )

10

11 s e l f . conn = s e l f . eng ine . connect ( )
12

13

14 except Error as ex :
15 pr in t ( " Error : {0} " . format ( ex ) )

1 @st . cache_data
2 de f s i t e _ s e l e c t i o n ( ) :
3

4 dao = DAO()
5 t ab l e = ’ new_case ’
6 d f_se l e c t = dao . s e l e c t _ d i s t i n c t ( t ab l e )
7 pr in t ( d f_s e l e c t )
8 de fau l t_va lues = {
9

10 "Max_#_PV" : 1e7 ,
11 "Max_#_WT" : 1e7 ,
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12 " Max_Injection " : 2e5 ,
13 " Discount_rate " : 0 . 08 ,
14 " Ele_pr ice " : 0 . 24 ,
15 " S e l l _ p r i c e " : 0 . 04 ,
16 "uCostPV" : 650 ,
17 "uCostWT" : 1000 ,
18 " uCostStorage " : 300 ,
19 " Discharge_rate " : 1 ,
20 "mCostPV" : 10 ,
21 "mCostWT" : 0 .0085 ,
22 "eNPV" : 1
23

24 }
25

26 df_inputs = pd . DataFrame ( index=range ( l en ( d f_se l e c t ) ) , columns=
de fau l t_va lues . keys ( ) , dtype=f l o a t )

27 df_inputs . f i l l n a ( de fau l t_values , i n p l a c e=True )
28

29 ed i tab l e_df = pd . concat ( [ d f_se l ec t , df_inputs ] , ax i s =1)
30

31

32 re turn ed i tab l e_df

1 import s t r e a m l i t as s t
2 import p l o t l y . expre s s as pt
3 from DB. connector import DAO
4 import datet ime
5

6 @st . cache_data
7 de f s e tdata ( ) :
8 dao = DAO()
9 t ab l e = " high_voltage "

10 df_H = dao . r eque s t ( t ab l e )
11

12 df_H = df_H . dropna ( )
13

14 df_M = df_H . groupby ( [ " Region " ] ) . resample ( ’M’ ) . sum( numeric_only =
True )#resampl ing df f o r monthly p l o t s

15 df_Y = df_H . groupby ( [ " Region " ] ) . resample ( ’Y ’ ) . sum( numeric_only =
True )

16

17 df_Y [ ’NPV_cum2 ’ ] = df_Y [ ’NPV’ ] . cumsum( )
18 numeric_df = df_Y . se l e c t_dtypes ( [ ’ f l o a t ’ , ’ i n t ’ ] ) #s e l e c t numeric

c o l s f o r both df
19 numeric_df_orig = df_H . se l e c t_dtypes ( [ ’ f l o a t ’ , ’ i n t ’ ] )
20 numeric_cols = numeric_df . columns
21 numeric_cols_orig = numeric_df_orig . columns
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22

23 region_column = df_H [ ’ Region ’ ] #unique value o f r e g i o n s in order
to use r eg i on dropdown l i s t

24 unique_region = region_column . unique ( )
25

26 re turn df_H , numeric_cols_orig , unique_region , numeric_cols , df_M
,df_Y

27

28 df , numeric_cols_orig , unique_region , numeric_cols , df_M, df_Y =
setdata ( )

1 import gurobipy as gp
2 from gurobipy import GRB
3

4 de f optimal_values ( df , opt_data ) :
5

6 years = 25
7 l e = (8760 ∗ years ) − 1 #to c o n t r o l the opt imiza t i on time ,

h igher than the input l ength w i l l be ignored
8 l e = min ( le , l en ( df ) )
9 df = df . l o c [ 0 : l e ]

10

11 PV_prod = df [ ’ PV_production ’ ]
12 WT_prod = df [ ’ WT_production ’ ]
13 Load = df [ ’ Load ’ ]
14

15 # Create the model #
16 m = gp . Model ( " Max_SS_Min_Absorption " )
17

18 # Def ine the v a r i a b l e s #
19

20 # Undependent o f time
21 n_pv = m. addVar ( lb = mpv, ub = opt_data [ ’Max_#_PV’ ] , vtype = gp .

GRB.CONTINUOUS, name=" number_of_pv " )
22 n_wt = m. addVar ( lb = mwt , ub = opt_data [ ’Max_#_WT’ ] , vtype=gp .

GRB.CONTINUOUS, name=" number_of_wt " )
23 c_s = m. addVar ( lb = mcs , vtype=gp .GRB.CONTINUOUS, name="

Storage_capac ity " )
24

25 # Power gene ra t i on
26 PG = n_pv∗PV_prod + n_wt∗WT_prod
27

28 # Dependent o f time
29 # Power shar ing Var iab l e s
30 EB_t= [m. addVar ( vtype = gp .GRB.CONTINUOUS, name="

Energy_in_battery " ) f o r i in range ( l en ( Load ) ) ]
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31 Pb_t = [m. addVar ( lb = −GRB. INFINITY , vtype = gp .GRB.CONTINUOUS,
name=" Power_battery " ) f o r i in range ( l en ( Load ) ) ]# Charging or
d i s cha rg ing power

32 in j_t = [m. addVar ( lb = 0 , ub = opt_data . Max_Injection , vtype =
gp .GRB.CONTINUOUS, name=" In jec t ion_to_gr id " ) f o r i in range ( l en (
Load ) ) ]

33 abs_t = [m. addVar ( lb = −GRB. INFINITY , ub = 0 , vtype = gp .GRB.
CONTINUOUS, name=" Absorption_from_grid " ) f o r i in range ( l en ( Load ) ) ]

34 Pc_t = [m. addVar ( lb = 0 , vtype = gp .GRB.CONTINUOUS, name="
Curtai lment " ) f o r i in range ( l en ( Load ) ) ]

35

36 re turn
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