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Abstract

One of the direct consequences of climate change lies in its impacts on the hydrological cycle:

the recurrence of extreme positive and negative anomalies of precipitation is set to become

more and more frequent, while the rising of global temperatures is already impacting on

freshwater availability,or excess, in many regions of the world. The Great Alpine Region

(GAR), i.e. the geographical area comprising the European Alps and their close proximity,

is in this context a particularly impacted spot as it is showing high levels of both exposure

and vulnerability to climate change. This is especially relevant because of the importance of

the Alps for the freshwater resources across the whole continent. In this thesis we perform a

thorough data analysis on hydrological data at 0.5°x 0.5° resolution for the ISIMIP-2a proto-

col’s model ensemble over the period 1971-2000 in the GAR. The purpose of this work is to

provide insights into the current capability of Global Hydrological Models (GHMs) and their

reliability on the selected scale and area. To achieve that, we perform an exploratory analysis

of the data providing graphs and maps of different hydrological signatures for the region.

Secondly, we compare the models’ output data with a large observational dataset provided

by the Global Runoff Data Center (GRDC). Lastly, the models’ performance is ranked over

two different experiments and we set a link between the performance of the models and the

morphological properties of the catchments. To this end, daily runoff generated at each pixel

of the model’s grid is compared to daily runoff data from 141 catchments of the GAR. Three

hydrological signatures are selected to perform the comparison: a quantile for the high flows

(Q95 ), one for the low flows (Q5) and lastly the Mean Monthly Runoff curve. For each

signature the modified Kling Gupta Efficiency (KGE’) is computed to account for the misfit

between the observed and modeled data. The performance on the three signatures allows

for a relative ranking of the ensemble participating the project. Results highlight that the

ensemble mean tends to outperforms each single model in general but has specific downsides

related especially to the representation of the monthly regime curve. All models struggle to

represent correctly the low flows quantiles while the high flows quantiles are more consis-

tently reproduced by the models. Mean monthly regime curves rank in the middle of the

three indicators and show two main important results: one is the consistent negative bias

in mean values across all models, which overall considerably underestimate the total volume

of runoff produced, secondly the difficulty of the models to correctly reproduce the seasonal

timing of both peak and low flows. This indicates the limits of using current state of the art

GHMs in the context of a complex region such as the GAR, pointing towards the difficulty
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of representing complex mechanisms of snow melt in complex topography.

II



Contents

Abstract I

Introduction 2

0.1 General background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Aim of the work and research questions . . . . . . . . . . . . . . . . . . . . . 3

1 Theoretical Background 4

Theoretical Background 4

1.1 Overview of ISIMIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 ISIMIP water sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Climate input: Reanalysis datasets . . . . . . . . . . . . . . . . . . . 6

1.1.3 Socio Economical Scenarios . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 The GHMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Background on the GAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Overview of the Alps and climate change . . . . . . . . . . . . . . . . 12

1.2.2 GAR, climate modelling and future projections . . . . . . . . . . . . 13

1.2.3 Major Rivers of the GAR . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Data and Methods 19

Data and Methods 19

2.1 ISIMIP data over the GAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Hydrological signatures over the GAR . . . . . . . . . . . . . . . . . . . . . . 22

2.3 GRDC data for the alpine region . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 From discharge to generated runoff . . . . . . . . . . . . . . . . . . . 27

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Performance evaluation metrics . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Software used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Results 34

Results 34

3.1 Results for selected representative catchments . . . . . . . . . . . . . . . . . 34

III



3.1.1 Border of Slovenia and Italy: the River Soca . . . . . . . . . . . . . . 34

3.1.2 Example of catchment in the high Alps: The spawn of river Rhone at

Gletsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Catchment affected by human impacts: Durance at Serre Poncon . . 37

3.2 Performance Evaluation of ”NOSOC” model ensemble . . . . . . . . . . . . . 40

3.3 Performance Evaluation of ”VARSOC” model ensemble . . . . . . . . . . . . 46

3.3.1 Summary table of results . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Link between performance and morphology of the catchments . . . . 54

3.3.3 Link between performance of specific models on different indicator . . 56

4 Discussion 59

Discussion 59

4.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Discussion on the methodology adopted . . . . . . . . . . . . . . . . . . . . . 62

4.3 GAR modeling and climate change . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

IV



List of Figures

1.1 General scheme of ISIMIP, source ISIMIP . . . . . . . . . . . . . . . . . . . 4

1.2 The water cycle, credits source USGS . . . . . . . . . . . . . . . . . . . . . 5

1.3 Graph of input data to GHMs . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Scheme of modelled processes, source [9] . . . . . . . . . . . . . . . . . . . . 11

1.5 European alps with orography, credits [8] . . . . . . . . . . . . . . . . . . . 14

1.6 GAR regionalization and principal river basins . . . . . . . . . . . . . . . . . 15

1.7 Danube statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Rhine statististics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Po statististics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Rhone statististics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Flood october 2000, generated runoff . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Flood october 2000, simulated discharge . . . . . . . . . . . . . . . . . . . . 21

2.3 Mean annual specific runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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Introduction

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) is an international re-

search initiative that provides a framework for assessing and comparing the impacts of cli-

mate change across various sectors of the environment and society. The project aims at

filling the gap between the future climate projections , which have long been available, e.g.

through the Climate Model Intercomparison Project (CMIP) and the consequences of such

projections on both anthropic and natural systems. This thesis presents a thorough data

analysis of the ISIMIP output dataset for the water sector for the region of the European

Alps, GAR (4-19° E, 43-49° N)[2] for the historical period 1971-2000. Beyond the data analy-

sis, showcasing the general feature of the dataset, the purpose of the thesis is to evaluate the

performance of the Global Hydrological Models(GHMs) that partecipate in the project in

terms of representing the intricacies of the alpine hydrology. This is done through a rigorous

statistical analysis of the model’s output data versus an observational dataset.The objective

is to provide new insights into the current capabilities of GHMs while focusing on the GAR.

This work finds its relevance in the context of the efforts to adapt and mitigate impacts of

climate change on human society. The choice of the region is strategic: The Great Alpine

Region was referred to as the “Water Towers of Europe” (European Environmental Agency

[33]), being the spawning point of some of the most relevant sources of freshwater of the

continent.

0.1 General background

Global Hydrological Models are computer-based numerical models that focus on resolving

the movement of water through the Earth’s surface. They do so by conceptualizing the

relevant processes and solving mathematical equations on a discretized representation of the

land masses. Over the years they have been recognized as valuable tools for many research

topics and practical purposes relevant to our interactions with the hydrosphere ( e.g Doll et

al. [6] ). Their areas of application range from pure scientific research,for instance climate

impact projections, to measures related to water resource planning, such as agriculture and

flood management. The general idea behind this work is to understand the functioning of

the GHMs while applied to the GAR. The main hypothesis is that the Alps are an area

where GHMs will have shortcomings related to:

1. Complex morphologies with very steep elevation gradients
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2. Presence of processes related to snowmelt, glaciers and permafrost environment

Indeed, in a similar study focusing on the evaluation of GHMs in 6 Pan-artic watersheds,

Gädeke et al [12] found out that, in general, all models reproduced poorly the hydrological

processes of the artic environment, especially the correct seasonality of discharges, which is

related to permafrost and snowmelt mechanisms. The interest for this analysis is therefore

two-folded: on one hand, the alpine hydrology is and will be highly impacted by climate

changes effects , with severe repercussions on the economies on both local and continental

scale[8] [33]; on the other side, the hydrological modelization of an area with such het-

erogeneous geomorphological features is a particularly challenging task which we speculate

current GHMs will have trouble representing and believe requires further research. As other

studies pointed out when evaluating GHMs inside specific regions, e.g. [7] and many more,

the models have difficulties in correctly reproducing observed values. To understand in a

comprehensive way which are the limitation of the models and their advantages a thorough

performance evaluation is carried out: three selected hydrological signatures are compared

against observed values from river gauging stations located in the GAR. The adopted eval-

uation metric is the modified Kling Gupta Efficiency (KGE’), [11],selected for its ability to

measure the misfit between observed and modeled values while at the same time provid-

ing for a finer interpretative tool because of its subdivision of the misfit in terms of three

components: timing volume and variability.

0.2 Aim of the work and research questions

The scope of the work can be summarized as: understanding how Global Hydrological

Models work, in particular those who adhere to ISIMIP, when applied to the specific region

of interest of the GAR. The main topics we cover are therefore the following:

1. Divulge the general structure of both ISI-MIP and of GHMs

2. Explore how the ISIMIP data set represent hydrological signatures for the GAR

3. Evaluate the performance of the GHMs when applied to the GAR on the selected

hydrological signatures

4. Discuss the possible reasons for shortcomings and good performance of models and the

potential uses in the context of climate change projections

Each of the following chapters will tackle one of the listed objectives. In conclusion, this

thesis provides a big picture of the current state of the global hydrological models, while at

the same time delving deeper into their limitation and advantages through the performance

evaluation on the selected area.
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Chapter 1

Theoretical Background

In this chapter we give a top-to-bottom view into the ISIMIP project.Firstly, we describe

the generalities of ISIMIP. Secondly,we delve deeper into the specific components of the

project by addressing their structure. The elements under study are the reanalysis datasets

and socio economical scenarios for the input side and the Global Hydrological Models on

the output side. Each of these element presents non-trivial information which we discuss in

order to have a complete background and understand the performance evaluation set-up and

its results. Lastly, we explain some of the features of alpine climate and hydrology in order

to focus once again the attention on the study area.

1.1 Overview of ISIMIP

ISIMIP was designed by the Potsdam Institute for Climate Impact Research (PIK) in col-

laboration with the International Institute for Applied Systems Analysis (IIASA) to help

answer two main questions:

• How is climate change affecting human society and natural systems today?

• How will it do so in the future?

Figure 1.1: General scheme of ISIMIP, source ISIMIP
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The project currently gathers more than 100 impact modellers’ team from across the globe

and has been cited in many publications, most notoriously the IPCC AR5 and 6.[9] The

experiments are organized in successive rounds, the experiment ISIMIP-2 is the latest for

which results are publicly available. The general scheme, presented in figure 1.1, is that

climate and socio economical data are the input to the impact models to then produce

outputs in the form of effects on selected sectors. Global impact modelling is the core of the

project, with models having a 0.5°x0.5° resolution ( 50 x 50 km at the equator), although

specific focus regions also feature regional models runs at higher resolution.

1.1.1 ISIMIP water sector

The water sector entails the modelization of the water exchanges from the atmosphere

through the land masses, as schematized in fig. 1.2. It is arguably one of the most di-

rect declination of climate impacts.

Figure 1.2: The water cycle, credits source USGS

For the Water Sector in ISIMIP2 there are two separate batches of experiments. One is the

validation run ( protocol 2a) while the other is the run for the future projections ( protocol

2b). In the 2a protocol the climatic input is in the form of reanalysis data, i.e. historically

observed metereological data which has been gridded, interpolated and gap filled in order to

provide a spatially and temporally dense input for the model to run at the selected space

and time resolution. In the protocol 2b instead, the input are the output data of the climate

models, therefore simulated climatic variables.

In terms of socio-economical input the main distinction in the scenarios presented for the

2a and 2b protocols is that socio economical scenarios for the future have an impact on

the climate input themselves, being that anthropogenic climate change effects will vary

depending on the strategies and measures of adaptation that human society will employ.

These scenarios are the Representative Concentration Pathways (RCPs) and Shared Socio

5



Economical Pathways (SSPs) introduced by the IPCC. In the 2a set of experiments instead,

the socio economic scenarios relate to the including or not of the most realistic representation

of all the anthropogenic interferences to the water cycle. This interferences can be roughly

summarized as:

• Human impacts on land use

• Human impacts on water abstraction

The realistic and consistent representation of all the impacts that humans have on the

hydrosphere as well as their changes over the historical period should provide for the most

loyal and true to observed values results. However, this has to be verified, as including

elements of realism also means having to parameterize more sub-pixel-scale processes that

cannot be explicitly modelled as they occur at a much finer scale than that of the grid of the

models, therefore introducing new sources of error. This thesis focuses on the historical run

or ISIMIP 2a. This is because the purpose of the thesis is to delve deeper into hydrological

modelling.

1.1.2 Climate input: Reanalysis datasets

In the ISI-MIP 2a experiment’s round, the first common input that we present are the

climatic datasets that are used to force the impact models. Those are datasets common to

all sectors as all impact models take climatic input and use it to derive its effects on specific

sectors.

Table 1 presents a list of all the datasets avaialbale for ISIMIP along with a summary

description of each of them. The general feature, as previously explained, is that all of them

are reanalysis products. Reanalysis entails combining past observational data with numerical

weather prediction models to generate a comprehensive and plausible description of the

Earth’s atmosphere over a specific period. Unfortunately the three most recent products

based on the more advanced ERA-interim or even more the product based on ERA-5 where

not used in the ISIMIP 2a round; as their where only recently published. Therefore the

choice was to evaluate the GHMs forced by the WATCH WFD dataset which was among

the most consolidated dataset used in other similar studies [9]. Also from the results of

existing literature, we considered to use only one forcing dataset. Other studies agreed

on the fact that the contribution to the overall uncertainties coming from the choice of

the dataset is less relevant then the contribution from the choice of a different GHM[12].

However, that could be also due to the fact that similar products based on similarly dated

reanalysis methodologies presented the same limitations. It remains to be seen in the next

round of ISIMIP whether that will be the case with the newly developed products which

have already given promising results in the context of impact modelling [5].

WATCH WFD dataset The Water and Global Change (WATCH) project is an initiative

focused on evaluating and understanding the terrestrial water cycle. Its primary objective

6
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is to assess various hydrologically important variables, including evaporation, soil moisture,

and runoff. This evaluation is conducted using land surface models and general hydrological

models. On of the first step of the project focused on creating the required me- teorological

forcing data as input named WATCH Forcing Data (WFD). This is the dataset that is also

used in the ISIMIP project and that we adopted for the performance evaluation.

We now briefly describe the general properties of the WFD. The WFD covers the time

period from 1958 to 2001, with data based on the 40-year European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). ERA (ECMWF Re-Analysis)

is a series of global atmospheric reanalysis datasets produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF). In particular ERA-40 is the second product

of the ERA series after ERA-15, it has a coarser resolution, around 125 km globally, then

the required 50 km (or 0.5°) of the impact models and for this reason it was processed in

order to comply with the spatial resolution of the GHMs.

The WFD consists of subdaily, regularly gridded data with a half-degree resolution in lat-

itude and longitude. It covers the period from 1958 to 2001. The WFD includes various

meteorological variables, such as wind speed at 10 m, air temperature at 2 m, surface pres-

sure, specific humidity at 2 m, downward longwave radiation flux, downward shortwave

radiation flux, rainfall rate, and snowfall rate. The data is stored at 67,420 points over land

(excluding the Antarctic) and follows the netCDF format using the Assistance for Land-

Surface Modelling Activities (ALMA) convention.

The creation of the WFD for the late twentieth century involved bilinear interpolation of

each variable from the ERA-40 grid to the CRU land-sea mask at a 0.5° resolution. Elevation
corrections were applied to the interpolated temperature, surface pressure, specific humid-

ity, and downward longwave radiation in sequential order, taking into account the elevation

differences.

The 2-meter temperatures in ERA-40 were known to lack some climatic trends and exhibit

biases. Therefore, bias correction was performed on the monthly average interpolated and

elevation-corrected temperatures using CRU TS2.1 gridded observations.

CRU TS (Climatic Research Unit Time-Series) is a dataset produced by the Climatic Re-

search Unit (CRU) at the University of East Anglia in the United Kingdom. It provides

global gridded climate data at various temporal resolutions. The CRU data used for bias

correction includes adjustments for inhomogeneities between stations and incorporates the

correlation length of the variables. However, it may still have limitations and rare inhomo-

geneities. Offsets and outliers in the CRU temperature data were identified and removed

prior to their use in bias correction. Monthly diurnal temperature ranges were also corrected

using the CRU data.
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Advantages and limitations The WFD dataset has been used priorly in impact mod-

elling studies [12] and comes from a well-established climate research project such as the

ERA; those are the main reasons why it was selected. Another advantage is the fact that

it presented no discontinuities for the selected period 1971-2000 giving the opportunity to

utilize a full 30 years of daily data for the analysis, which we deemed as another important

factor especially in the context of working with extreme high and low flows.

Apart from the advantages and opportunities it is also crucial to be aware of the main lim-

itations of the dataset in order to correctly interpret the results of the following analysis:

as previously pointed out there is a well known issue in the variable of precipitation in the

ERA-40 analysis. That is due to the coarse resolution and it is particularly evident in the

case of alpine area.[15] Indeed, studies analyzing the precipitation data for the alpine region

have shown that a significant negative bias exist in the representation of the precipitation

over mountainous catchments e.g Adam et al [26]. The authors of the studies have identified

the coarse resolution as being the source of this error, because the data at that spatial scale

failed to reproduce highly localized phenomena of both high and low intensity, which are

also a typical feature of small alpine catchment.

1.1.3 Socio Economical Scenarios

Impact modelling entails reproducing a wide array of realistic properties of the physical

world. Among these properties are the impact of anthropic presence on the environment.

Those elements are included in the socio economical scenarios.

In Table 2 the scenarios are listed along with their main characteristics. In figure 1.3

instead, a graph show a representation of both climate and socio economical input providing

a better understanding of the input side.

Scenario Name Scenario description and comments

nosoc
No human influences except for year-2000 constant land-use patterns. No
anthropogenic water abstraction (e.g., irrigation), no reservoirs/dams. No population
and GDP data prescribed.

pressoc

Present-day human impact runs: only climate varies; keep all other settings
(population, GDP, land-use, technological progress, etc.) constant at year 2000
values. This run will be used to quantify adaptation pressure
under current socioeconomic conditions.
For water models, pressoc includes present-day irrigation and
other water uses / reservoirs.

varsoc
Not only climate but also population, GDP, land-use, technological progress, etc.
varies over the historical period.It is the most complete and realistic representation
possible

Table 1.2: Summary of socioe economical scenarios
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Figure 1.3: Graph of input data to GHMs

Discussion on Socio Economical Scenarios: VARSOC and NOSOC While, as

stated, providing a complete and realistic representation of the world, including the its

anthropic elements, is indeed one of the core prerogative of impact modelling, in contrast

for example with pure climate modelling. Their correct representation should not be given

as a a priori verified assumption. In fact in some of the reference studies [9] the model

run are taken as only ”nosoc” because of the small size of the catchments and the alluded

similarity between the modelling of nearly undisturbed catchments and the model of singular

pixels of the grid. In others, such as [7] or [12] the distinction is not even highlighted. A

single study [30] was found that systematically compared the performance under the different

scenarios. While this study did found out that the inclusion of human impacts lead to a

sensible increase in performance of the models versus observed data. It was noted how this

improvement was more pronounced for highly managed catchments then nearly natural ones.

Considering the above notions we opted to verify also these assumption and validate the two

scenarios separately in order to understand their limitation and advantages in the context

of the specificity of the alpine catchments.

1.1.4 The GHMs

We have already defined GHMs in terms of their aim of resolving the terrestrial part of

the water cycle. In this section we delve deeper into their structure and list all the models

participating in the ISIMIP project.

First and foremost a distinction is due: the rough definition given above for the term Global

Hydrological Models, actually applies to at least two different typologies of tools that were

historically developed for different purposes. While Hydrological Models, both global or

regional, were developed for the purpose of water resource management, Land Surface Models

(LSMs), conceptualize the same processes but for the purpose of providing a lower boundary

to atmospheric models in the wider context of climate modelling. The main distinction

between the two is the fact that LSMs can be coupled to atmospheric models and put
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emphasis on describing the vertical heat, water and sometimes carbon fluxes; HMs on the

other hand, focus more on describing the lateral movement of water. In summary LSMs solve

both the energy balance and water balance; GHMs solve only the water balance. Haddeland

et al.[13]provides a study in which the performance of the two are thoroughly compared.

Besides the different original purpose they all represent the hydrosphere and adopt similar

schemes and parametrizations. Furthermore, model development and advancements continue

to blur the boundaries between these categories as models become more integrated and

comprehensive in representing Earth system processes.Therefore for the purpose of this study

the wide definition of GHMs is extended to both LSMs and GHMs.

Structure of the models adhering to ISIMIP In general, o the GHMs resolve on the

afore-mentioned 0.5°x0.5° grid the balance equation 1.1 for all the grid cells

dS

dt
= P − E −Q (1.1)

Where:

• dS
dt

= changes in storage

• P = precipitation

• E = evapotranspiration

• Q = Qs+Qg −Qa = runoff sum of surface (s) and groundwater (g) components minus

water abstracted (a)

Figure 1.4 further illustrates the general scheme applied by most models. It must be however

noted how each of them applies different methods and parametrizations of the same processes.

Table 1 presents the list of all the models partecipating in the ISIMIP 2a experiment along

with their reference paper/ technical manual.

Figure 1.4: Scheme of modelled processes, source [9]
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In table 2, in italic, we highlight the model which fall under the classification of LSMs.

We also show the different modelization of the snow scheme. This information showcases

the main difference between the two, with GHMs having the distinction between rain and

snow precipitation based on the daily value of temperature. On the other hand LSMs need

radiation input at a finer temporal scale ( hourly or 6-hours ) in order to evaluate the heat

fluxes and radiative balance. This distinction is also relevant in the context of our study area

being interested by snow precipitation and should be kept in consideration while interpreting

the results. For instance Haddeland et al [13], in their study focusing on the comparison of

the two kinds of models, found that the physically based radiative balance method applied

by the LSMs was consistently reproducing a smaller snow water equivalent values compared

to the degree day approach.

1.2 Background on the GAR

1.2.1 Overview of the Alps and climate change

The Alpine ridge extends for 800 kms and has a width of 200 km on average. It presents

unique morphological characteristics such as high peaks reaching up to 4800 meters above

sea level interspersed by low valleys (see figure 1.5). It is one of the dominant feature of the

European landscape. For centuries it has been an area of interest for scientists, starting from

the work of Horace Benedict de Saussure who already in the eighteen century, therein laid

the basis for the discipline of mountain meteorology [23]. Over the course of the last century

the interest has morphed into a widespread alarm due to the fact that the measured effect

of global warming on the area amounted to a regional increase in temperature of 2° Celsius
already by 2009, indicating a warming rate twice as much as the average for the Northern

emisphere. [33]

This worrisome climatic evidence intertwines with other reasons for concern: the Alps are

a densely populated area with high economic relevance for the European continent. Many

sectors such as agriculture, hydropower generation and tourism, are threatened by such a

fast rate of change that could be destructive for the Alpine natural and anthropic systems. A

more specific and, in the context of this study, more notable vulnerability factor for the GAR,

lies in the fact that the 4 major European river,the Danube, Rhine, Rhone and the Po have

their spawn in the alpine area and are fed majorly by the runoff generated in the Alps. More

precisely the Danube receives on average 26% of its discharge from the alps while for the Po

river the Alps’ contribution reaches values of 53%. This proves the utmost importance of the

GAR and the possible catastrophic effects of the disruption of its environmental functions

at both local and continental scale.
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Table 1.3: List of partecipating models

1.2.2 GAR, climate modelling and future projections

For the purpose of this work, what needs to be noted is the complexity and heterogeneity

at different scales that characterizes the climatology of the study area. Indeed the GAR

features notable variations in climate variables across all three space dimensions (latitude
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Figure 1.5: European alps with orography, credits [8]

and longitude and elevation). It experiences frequent occurrences of intense precipitation

events, which can result in various hazards. The presence of permanent and transient snow

and ice in the higher altitudes is of great significance. Additionally, the complex topography

often leads to distinct flow phenomena influenced by the surrounding mountains and hills.

One of the latest and more successful efforts at characterizing the climatology of the Alps

is the Histalp project [2]. Its aim was to provide for a spatially and temporally dense

metereological database for the GAR. Among its results there is also the regionalization of

the GAR into 4 main sectors, i.e. North and South West sectors and North and South East

sectors. The different macro regions were retrieved via Principal Component Analysis (see

[32]) the meteorological variables available. What was achieved was the subdivision of the

GAR region in 4 different regions each with its peculiar climatology. This result is visible in

figure 1.6 which was retrieved from [33].

The results of these studies highlight the complexity intrinsic to modelling the GAR. In

the case of the hydrosphere in particular, even on the historical trend recent analysis have

shown differentiated results. Most notably, in the NW sector the overall yearly precipitation

has increased (+9%) while in the SE a significant decrease has been detected (-9%) over the

20th century [2]. The differences are relevant also on the temporal interannual scale, while

precipitation in winter are projected to increase, especially the rain fraction over the snow,

precipitation in summer is instead projected to decrease with very dry summers, especially in

the South corners becoming more and more frequent[8].Logically these changes will continue

to impact the runoff of rivers. The decrease in the snow cover and its duration through the

winter, will have important effect on the decrease of summer runoff for all the rivers which

are heavily fed by the Alps.
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Figure 1.6: GAR regionalization and principal river basins

1.2.3 Major Rivers of the GAR

To further expand on the GAR’s hydrology, we focus on this section on the characteristics

of the 4 major rivers spawning in the area. These are, as previously mentioned, the rivers

Danube, Rhone, Po and Rhine which flow into all of the 4 climatic sub-regions highlighted

by figure 1.6.

Danube (North East)

The Danube has the second largest river basin in Europe (after river Volga) and is the main

tributary to the Black Sea. The river crosses three climatic zones due to its extensive length

from west to east: the Mediterranean climate, the continental climate with lower precipita-

tion and colder winters, and the Atlantic climate with high precipitation.Germany, Austria,

Slovak Republic, Hungary, Croatia, Serbia and Montenegro, Bulgaria, Romania, Moldova,

and Ukraine are among the ten nations that the Danube passes through or borders.

The Danube begins in the Black Forest (Schwarzwald) of Germany, at an elevation of roughly

1000 meters. It is interesting to note that in its higher course around Immendingen, the

Danube loses roughly half of its discharge to the Rhine basin through underground passage-

ways (reduction from 12 to 6 m3/s). After traveling 2,780 kilometers, the Danube arrives in

the Black Sea, mostly flowing to the south-east. The Danube discharges water at its mouth

on average at a rate of roughly 6,500 m3/s in Tulcea [31].Austria’s portion of the Danube

catchment is primarily enclosed by the Alps, and it produces 1 448 m3/s, or 22%, of the

basin’s overall runoff (ICPDR, 2005).
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Figure 1.7: Danube statistics, source ICPDR via EEA 2009

Rhine (North West)

The river Rhine connects the Alps with the North Sea. It forms the most important cultural

axis of central Europe [3], with cities such as Basilea, Dusseldorf, Rotterdam and Strasbourg

being located on its course. The two headstreams of the Rhine, which are the ”Vorder-

rhein” and the ”Hinterrhein” both spawn in the canton of Grisons in Switzerland in an area

with high peaks with elevations reaching 3000 m.s.l.. The region where it flows it’s highly

populated and after the confluence of the two spawning rivers the anthropic effects become

highly significant, such as water for industry and hydropower (see figure for details). The

river morphs its regime from nival-glacial to pluvial down its course due to addiction of sig-

nificant amounts of water by tributaries not spawning in the Alps; nevertheless, the alpine

section, which constitutes only 15% of the total area of the catchment, impacts for 34% of

the contribution to the Rhine, with peaks in summer of percentage up to 50% due to the

decreased contribution of the pluvial signal in respect to the realiable contribution of snow

and glacier melt. This last contribution is also vital in the sense of providing good quality

water for drinking purposes.

Po(South East)

The Po river spawns in Piedemont Region in the Monviso Mountain at 2022 m.s.l. It flows

in a large delta outlet into the Adriatic Sea. Most of its basin its in Italy (70 000 km2̂

) while a little portion of it lies in Switzerland (4 000 km2̂ ). It is surrounded by the

Alps in the North West and the Apennines on the South. The approximate distribution of

environment typology is 2/3 mountainous and 1/3 for the Po river basin. Its regime derive of

a complex interaction between the influences of the two aforementioned mountainous areas (

Alps and Apennines) and the Mediterranean climate. The contribution of the Alps accounts
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Figure 1.8: Rhine statistics, source IKSR via EEA 2009

on average for 53% of the river’s discharge as already stated; among this contribution of

note is the contribution of around 600 km2̂ of glacier areas. Its mean discharge at the

outlet is around 1600 m3̂/s. The water of the Po river is heavily under pressure by industry,

agriculture and hydropower production. Across the Alps 174 reservoirs manage on average

2 766 million m3̂ per year.

Figure 1.9: Po statististics, source Po River basin Authority via EEA 2009

Rhone(South West)

The Rhone is the second largest input of freshwater to the Mediterranean after the Nile.

Its spawn it’s in the homonimous glacier located in the Swiss canton of Valais, in an area

comprising peaks of up to 4000 m of elevation. Its basin its influenced by climatic input of

both Mediterranean, Continental and even Polar origin. It’s tributaries are mostly alpine

streams and therefore its regime is mostly nival/glacially regulated. It flows through the

largest water body in western union, Lake Leman, which regulates its regime and serves as a

mitigating factor for flood downstream of it. The first section of the river before lake Leman,

is the one which is most influenced by the alpine tributaries with a high contribution in the
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spring discharge due to snowmelt. The last section, in France and especially after Avignon

the Mediterranean influence becomes stronger with extreme precipitation event often causing

flooding events in the tributaries mostly rivers Isere and Durance. Its average discharge is

close to 1700 m3̂ /s near the outlet.

Figure 1.10: Rhone statististics, source Encyclopaedia Britannica via EEA 2009

Impacts of Climate Change on the Major GAR rivers, past observations and

future perspective We have stated how each of those 4 major rivers is majorly impacted

by the Alpine climatology. In different proportions and sections, all of the mentioned rivers

are under a significant effect by the mechanisms of snow and glacier melting. Moreover these

major streams support the lively-hood of millions of people in the European continent and

also sustain a considerable portion of its biodiversity. Over the 20th century climate change

has already affected the hydrology of the GAR and measure of adaptation have become

more and more compelling. As stated there are however difference in the modality and

degree of which these impact are distributed. The north and south quadrants of the Alps

have shown differentiated results with the north being affected by increasing precipitation in

autumn and winter. This for instance is shown in increasing trends for winter in the northern

rivers, Danube and Rhine, especially close to their spawn. The southern rivers have been

instead showing more significant impacts especially in the summer decrease which has been

consistent and sizeable, affected by the lesser degree of snowmelt mitigation. The heatwave

of 2003 has created numerous problem for the hydro power systems in all the major rivers,

as water was too scarce and too hot to sustain a significant production over the summer

months. With the future projections foretelling a situation of really hot and dry summers

such as that of 2003 being as common as one every two summers in some scenarios [8], it is

clear how the GAR and its water resource needs to be protected from further damages to

both human and natural systems.
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Chapter 2

Data and Methods

In this chapter we present the datasets that were used. The first section is dedicated to

showcasing the features of the input/ output data of the ISIMIP GHMs ensemble. The

second section instead presents the observational dataset that was used for comparison, this

second sets of data comprises of gauge data from 179 stations. Finally we give an overview

of the methods used to 1) setup the performance evaluation 2) carry out the performance

evaluation.

2.1 ISIMIP data over the GAR

We downloaded the data from the ISIMIP repository (https://data.isimip.org/search/) which

gives the possibility to directly download the data and even perform preliminary operations

on it by cutting out geographical boxes of interest. I downloaded data for all 13 models

partecipating in the nosoc scenario and the 5 model partecipating in the varsoc scenario.

The variables are the following:

-Total runoff “qtot”, qtot= rainfall + snowmelt – evapotranspiration;

-Simulated discharge “dis”; simulated river discharge in specific points inside the grid.

In order to explore the dataset in a qualitative manner and get a first feel for the downloaded

variables I performed some simple preliminary analysis. Following, is a sequence of images

(timelapse) following the famous flood event which affected the Piedmont Region in October

2000. Both variables are observed in their evolution in a time window encompassing the

days between the 14th and the 17th of October.
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Figure 2.1: Flood october 2000, generated runoff

It is possible to visualize how the intense rainfall that fell over the northwest part of

Italy resulted in a massive amount of generated runoff over the Piedmont and Valle d’Aosta

regions. The Piedmont region in particular, suffered most of the damages. In total there

were 23 deaths.
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Figure 2.2: Flood october 2000, simulated discharge

From the second time lapse we can visualize the evolution of the simulated discharge

during the flood. In particular, the signal of the Po river it’s clearly visible. Between the

14th and the 17th of October in the metropolitan area of Turin the river reached peak

discharges of 2300 m3/s. The flood then proceeded downstream with limited damages.
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2.2 Hydrological signatures over the GAR

Following we present another possible way of visualizing the data and estrapolate useful

information about the region of interest. We will now create spacial maps of 5 selected

signatures over the GAR. Such signatures are

1. Mean annual specific runoff

2. Pardè Range

3. Slope of the flow duration curve

4. Normalized High Flows

5. Normalized Low Flows

Mean Annual Specific Runoff (Qm) is a measure of the generated runoff over any pixel

of the region in term of mean annual values. It is calculated via the following equation:

Qm =
365

T

NX
t=1

Q(t) (2.1)

Figure 2.3: Mean annual specific runoff

Comments Q = P- E is the long term balance for each pixel that the map in figure 2.1

represent. It is possible to appreciate the differences in annual runoff on the long term for

the study area. It is evident how even within the GAR exists very humid catchments with

annual runoff close to 2000 mm/ year and dry ones with annual runoff around 400 mm/year.
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Pardè Range ∆P is a measure of how much ,throughout the year, the flow generation

changes. It is defined as the difference between the maximum and minimum Pardè coeffi-

cients:

∆P = max(Pari)−min(Pari) (2.2)

Figure 2.4: Pardè Range

With the Pardè coefficient for month i being defined as:P
tϵMi

Q(t)PN
t=1Q(t)

(2.3)

Comments The map of the Pardè ranges showcases the different seasonal regimes present

in the region. It is possible to appreciate at glance how the highest range exists for regions

at high elevation, which indeed present a very high variation between the runoff peak of the

spring months and the low values in the summer and winter months. The low Pardè range

in the regions to the North of the GAR as well indicates the difference in the continental

climate compared to the Mediterranean regions in the south of the Alps.
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Slope of the flow duration curve (mFDC) is slope of the flow duration curves in its

central part.It indicates how much does a 1% increase in exceedance probability corresponds

to in terms of decrease in runoff, in respect to the mean daily value.

mfdc =
Q0.30 −Q0.70

40 ∗Qm

(2.4)

Figure 2.5: Slope of FDC

Comments Also the slope of the FDC is an indication of the seasonal variability of runoff,

mountainous catchment present FDC curves with a steeper middle section, coherent with

the high variability of runoff in snow dominated catchments.
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Normalized High flows The 5th quantile ( Q5) divided by the mean daily value.

Qhigh =
Q0.5

Qm

(2.5)

Figure 2.6: Normalized High Flows

Normalized Low flows The 95th quantile ( Q95) divided by the mean daily value.

Qlow =
Q0.95

Qm

(2.6)

Comments Also these signatures showcase a different aspect of the long term FDC there-

fore an indication of seasonality. Figure 2.4 shows how high are the extreme high values

compared to the average conditions. On the contrary figure 2.5 concentrates on the lower

end tail of the FDC indicating how low compared to the average are the extreme low fows.

Once again we see a pattern in the northern area indicating a more stable flow generation

throughout the year, compared to mountainous regions. In this case also the southern re-

gions show case a particularly high deviation of the extremes in respect to average conditions,

especially in terms of high flows.
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Figure 2.7: Normalized Low Flows

2.3 GRDC data for the alpine region

The dataset that we use for comparison was downloaded by the Global Runoff Data Center

(GRDC) which also provides a list of stations included in a monitoring project specific to

the alpine region named ”adaptalp” (website of GRDC: https://www.bafg.de). In total the

stations from the adaptalp catalogue are 169. We place a cutoff on missing data arbitrarily at

10% and on stations which do not present information about catchment area and elevation.

The last cutoff criteria is for stations with area of the catchment above 5000 km2,thus

catchments that represent the generated runoff for at least two pixels. At the at the end of

this process 141 stations are left.

The location of the stations and other the distributions of area and elevation are represented

in the following image and graphs.
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Figure 2.8: Stations’ location

Figure 2.9: Area and Elevation of catchments

2.3.1 From discharge to generated runoff

The data downloaded from the GRDC is discharge data from specific rivers in the closure

point of their catchment. Thus all the water that is measured at that section of the river is

coming from the relative catchment. In so far as the performance evaluation, we chose to

work with the variable generated runoff. Therefore the discharge at each station was divided

by the respective area of the catchment. One could argue that this is unnecessary as one of

the GHMs’ output is simulated discharge. The choice is to compare the generated runoff as

the discharge simulated from at each pixel is the sum of all the rivers passing in the pixel

itself. For this reason it is very difficult to compare the modeled data to the observed one

as the observed data will be but one of the contribution to the total value present in the

output of the GHMs. This is particolarly troublesome in an area with many small streams

and even rivers such as the GAR. We therefore decided in our best judgement to compare

the observed generated runoff ( calculated as per above) with the generated runoff of the

pixel inside which the station is located.This methodology presents other limitations,which

we discuss in the next paragraph, but it is independent from the area property.

27



Main limitation: Representativity of catchments In this study, for the 141 mea-

suring stations only a few catchment’s shape file were available. And therefore we opted

for comparing each station’s data with the pixel within which it falls.This implies assuming

a correspondance between modeled and observed data that is only partial. To provide an

example, we show the situation for one of the only stations for which the shape file was

available in figure 2.8.That is river Var at the station of Malaussane, in France.

Figure 2.10: Catchment of river Var at Malaussene

It is possible to note how, while the measuring station is placed in the pixel in the bottom to

the right, the catchment actually falls in 4 different pixels. Correctly and uniquely attribut-

ing the generated runoff to one of the 4 pixels given the presented configuration is clearly

unfeasible: one would need to multiply the generated runoff by the portion of area that falls

in the selected pixel assuming homogeneous runoff generation in the whole catchment, but

even then that would represent the contribution to the runoff generation of only that fraction

of pixel area (highlighted in yellow), and not of all the other portion of the pixel that falls

outside the catchment.

In order to further clarify why it cannot be completely eliminated but must be only accounted

for, we present the only two scenarios in which there is perfect match.

1. The catchments have the exact same extension and shape as the pixels and are perfectly

centered in their middle point. In this case the generated runoff at the pixel and

catchment match 1:1.

2. For each pixel there is 100% observational coverage of every stream of water that passes

in it. This is also a completely unrealistic scenario. In fact, measuring river discharge,

especially in small and possibly ephemeral streams, is in itself a well known technical

issue.
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In conclusion, comparing the output of the models with real world data entails accepting

a certain degree of mismatch between the two. As explained this is an inherent limiting

factor that cannot be completely surpassed and its due to the discretization necessary for

the models and their present resolution. Notwithstanding that, it can be accounted for while

evaluating the performance of the models as will be explained in the following section.

2.4 Methods

In the previous section, while presenting the dataset, we already showcased the first basic

ways of working with data and understand the information that they relay. Given the geo-

localized data available it is possible to create different temporal aggregation and provide,

as was done, different maps conveying information about long term averages or even inter-

annual variability for the whole study area. It is otherwise possible to aggregate the data

spatially and inspect the resulting time series, look for trends or step changes. In this section

instead we focus on the methods employed in the more quantitative part of the analysis. This

is the comparison of the models’ output data with the observed data. We also give a brief

overview of the statistical tools applied and finally of the softwares used in the analysis.

2.4.1 Performance evaluation metrics

There are many statistical methods to evaluate misfit between observations and modeled

data; it is important to remember that no standard procedure exist and each method presents

its advantages and disadvantages. One of the founding studies providing a systematic review

of the different performance evaluation metrics for hydrological models was provided by

Moriasi et al in 2007 [18]. Since then methods have evolved and many authors have provided

new methodologies and alternatives for carrying out performance evaluation of models[16]

[11]. In this section we therefore give the explanation of the methods chosen along with their

functionalities and limitations.

A first coarse distinction is made by Moriasi between graphical and statistical techniques

for performance evaluation. In the following paragraph a sample of both will be explained

while in the last part the chosen evaluation metrics is discussed in more detail.

Graphical Methods

Graphical methods are the most intuitive and simple evaluation techniques but nevertheless,

if coupled with expertise from the model evaluator and in depth knowledge of hydrology,

they are a valuable source of information. The most simple kind is plotting the hydrograph

of the modeled vs simulated value, which can be already a good indication of how the model

is in general reproducing the observations e.g figure 2.9.
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Figure 2.11: Example of plotting the annual hydrograph for graphical inspection

Boxplot or ”box and a whisker” plots summarize the information about a distribution by

representing in a single line the most significant informations about the distribution. Those

informations are:

• Median value: value in the middle of the distribution i.e. 50% of values fall below it

and 50% above it

• Q1 or Q0.25 the the quantile which is exceeded 25% of the time

• Q3 or Q0.75the quantile which is exceeded 75% of the time

• Interquantile Range (IQR) = Q1-Q3

• Maximum Limit Q1+1.5*IQR

• Minimum Limit Q3+-1.5*IQR

• Outliers, value that fall outisde the Minimum and Maximum Limit

Figure 2.12: Boxplot,source: Towards Data Science

Scatterplots are another way to graphically inspect the data, this time in the form of the

relationship between two variables. For instance we can look into the relationship between
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elevation and area of the catchment. We might expect from common knowledge to see more

extended catchments to be at lower elevation and on the contrary, more elevated catchments

to be smaller.

Figure 2.13: Scatterplot of Area vs Elevation of Catchments

Statistical evaluation techniques

Statistical evaluation techniques are proposed to provide a numerical, therefore less subjec-

tive estimate of the performance of hydrological models. The most common and more widely

adopted evaluation metric in hydrology is the Nash Sutcliffe Efficiency [18]. It measures the

ratio between the variance of the residuals (noise) versus the variance of the data (informa-

tion). It ranges from −∞ to 1(included). Value of NSE = 1 signifies perfect correspondence

between observed and modeled data. Further distinction define value of NSE > 0as accept-

able performances and negative values as bad performance. In the context of this study we

use a decomposition of the NSE proposed by Kling and Gupta, after whom is named Kling

Gupta Efficiency [11].

Kling Gupta Efficiency KGE KGE is a decomposition of the MSE in the form of the

Nash Sutcliffe Efficiency. It ranges from −∞ to 1

KGE = 1−
p

s1 ∗ (1− r)2 + s2 ∗ (1− α)2 + s3 ∗ (1− β)2 (2.7)

Where:

r =

Pn
i=1(qobs(i)− qobs,µ)(qsim(i)− qsim,µ)pPn

i=1(qobs(i)− qobs,µ)2
pPn

i=1(qsim(i)− qsim,µ)2
(2.8)
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α =
σmodeled

σobserved

(2.9)

β =
µmodeled

µobserved

(2.10)

The term r, the pearson correlation, indicates the linear correlation between observed and

simulated series, the term α about the variability and the term β about the bias. The

coefficients s, can be instead used to give different weight to give more emphasis to specific

components of the misfit. This can be an interesting perspective, but as of yet it has been

scarcely researched, and for simpler interpretation we stick to the most adopted version

applying the value of 1 to each of the weight.

Modified Kling Gupta Efficiency KGE’ The modified KGE minimizes the effects of

cross-correlation between the mean and the standard deviation which is present if there is a

bias in the modeled data. We choose this version as we know that there is a bias inherent in

precipitation from ERA-40 as mentioned before and as per seen in other studies [26]. The

core of the performance evaluation consists in evaluating the modified KGE score for all the

selected 141 measuring stations for three different signatures. Those signatures are the one

related extreme high Q5 extreme lows Q95 and the mean monthly regime curve. For each

of these signatures, each model and each station we have the relative KGE score indicating

the misfit between observed and modeled values. The overall results are provided in the

Appendices to this thesis.

KGE ′ = 1−
p

s1 ∗ (1− r)2 + s2 ∗ (1− α′)2 + s3 ∗ (1− β)2 (2.11)

Where:

α′ =
σmodeled

σobserved

∗ β−1 (2.12)

2.4.2 Software used

The analysis of the datasets was performed using 4 main tools:

1. Panoply (https://www.giss.nasa.gov/tools/panoply/) is an open source tool provided

by nasa that allows for quick visualization of data in the netcdf format. It was used in

the beginning, to obtain the first plots and visualize the dataset.

2. Qgis was also used in the context of having an interactive map always available.
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3. Python inside a Jupyter notebook environment was the main tool used for data analy-

sis. The availability of multiple packages such as numpy pandas, matplotlib and more,

allowed for ready to use tools for working with large amount of data such as the ones

downloaded in the study.

4. Excel . The final tables with the output of the performance evaluation where exported

in excel. Although python offers an easier and more automated way of working with

data; excel was also employed in the final part in order to see the results and begin to

interpret them.

The main ones for which the results are shown are Python (especially) and Excel, which

are the main tools from which results are obtained. The first two, Panoply and Qgis, where

valuable in the context of the fast and readily available visualization of data.
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Chapter 3

Results

The section of results is divided into three main sections. First we show the results for specific

catchments. We showcase both the performance evaluations results in terms of KGE’ scores

and plot hydrological signatures in order to look for the specific reasons for bad or good

performance at the catchment scale. Secondly we provide the generalized results across all

stations and indicators in order to delve deeper into the specifics of model performance on

the selected hydrological signatures.

3.1 Results for selected representative catchments

We provide results for selected catchments.Through these case studies we illustrate, even

more than the general background given above, the complexities of hydrological modelling of

the GAR. With this closer look into some specific and relevant basins of the region we aim to

further exemplify the general theme, already highlighted above of the extreme heterogeneity

and thus the inherent limits of adopting global models on the selected scale. First we start

with the basin of the Soca River, located in the climatic subregion of the South East at

the border between Slovenia and Italy. Secondly we present the case study of river Rhone

at his spawning point in the homonimous glacier. Then the river Durance, one of Rhone’s

main affluents, at the artificial lake Serre Poncon. Lastly we present results for river Lech

in Lechbruck. In this way we cover all the 4 subregions of the GAR and presents specific

results in the context of the various climatologic features that characterize the region

3.1.1 Border of Slovenia and Italy: the River Soca

The Soca River is the first for which we present the results. The river flows from slovenia

where it spawns at 1100 meters of elevation in the protected area of mount Triglav. It spans

for a total of 136 km out of which 95 are in Slovenia and 42 in Italy where it ends in the

Adriatic Sea. The upper basin, is among the wettest area of the whole European continent

with yearly precipitation reaching up to 3500 mm/year. The southern part near the outlet

features a sub-Mediterranean climate with droughts in the summer months that are not so

uncommon. The water of the Soca river is used both by the Slovenian, which have build
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reservoirs and hydropower plants in the upper part of the basin, and the Italians which rely

heavily on the river both for the energy and agricultural sectors; figure . shows the results

of the signatures for the Soca river at the outlet in Kobarid (Caporetto).

Figure 3.1: Soca River at Kobarid: results for the high , low flows and monthly regime
curve

Figure 3.2: Soca River at Kobarid: results for the high , low flows and monthly regime
curve

It is possible to notice on a first graphical inspection the good results for the model

in matching the monthly regime curve for this particular catchment. In particular this

catchment show the typical features of the pre-Alpine catchments in presenting two maxima:

one in the spring and one in the autumn season; the models mostly follow the timing of the

events correctly, only model that anticipates the spring peak and overshoots the autumn

peak into almost winter is model web-dhm.Regarding the high flows, the first graphical

inspection shows a tendency on the overestimation for this specific catchment, but still a

more even spread around the observed value in comparison with the low flows; indeed, the low

flows show a clear tendency for most models toward the underestimation with only models

VIC and MATSIRO showing a significant overestimation of such values. Table . shows the

statistical evaluation results in terms of the signatures and in both the experiments with

human impacts parametrized (varsoc) and not parametrized (nosoc).
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River Soca at Kobarid
Catchment area (km2̂) = 437
Catchment elevation (m)= 194
Models clm4.0 dbh h08 jules lpjm matsiro mpi orchidee pcr vic ways watergap2 web-dhm ensemble

Signatures

KGE’ (nosoc) Q 5 0.36 0.31 0.22 0.28 0.17 0.30 0.17 0.34 0.71 -0.15 0.63 0.53 -0.13 0.70
Q 95 -1.20 -4.78 -0.32 -0.05 -2.66 -0.21 -2.73 -1.59 -0.52 -0.06 0.19 0.02 -0.47 0.41
Monthly -0.09 -0.09 0.27 0.53 0.39 0.39 0.21 0.04 0.61 0.57 0.59 0.56 0.13 0.73

KGE’(varsoc)
Q 5 NA 0.31 0.22 NA 0.17 0.30 NA NA NA NA NA 0.53 NA 0.78
Q 95 NA -3.67 -0.32 NA -2.66 -0.21 NA NA NA NA NA 0.02 NA 0.48
Monthly NA -0.10 0.27 NA 0.39 0.39 NA NA NA NA NA 0.56 NA 0.78

Table 3.1: KGE Score for Soca catchment

Looking at table 3.1, its possible to see the results o all models for the KGE scores of

this specific catchment. The most meaningful result is the appropriate performance of the

ensemble mean across all indicators: Montlhy Regime KGE’ = 0.73, Q95 = 0.41,Q5 = 0.70.

The model DBH expresses the greates variability going from a decent 0.31 KGE’ on the high

flows, to a markedly bad fit for the low flows ( KGE’ = -4.78 ). The other interesting factor

to note is that the models do not show any significant changes while passing from the socio

economical scenario no soc( no human impact parametrized) to the scenario varsoc. The

only models that shows any change in the results of the KGE’ score is once again model

DBH which shows a slight decrease in performance on the monthly regime signature (-0.01)

but a significant increase in performance for the low flows ( +1.11).

3.1.2 Example of catchment in the high Alps: The spawn of river

Rhone at Gletsch

We have already presented in chapter 1 the Rhone river as one of the major rivers spawning

in the region and in general one of the most important in the Alpine area. We now show the

results for the river in its spawning point in the High Alps in Switzerland. The catchment

has an area of 38 km2̂ and a mean elevation of 1810 m.a.s.l

Figure 3.3: Results for the river Rhone at its spawn in Gletsch: results for the high , low
flows and monthly regime curve

The most interesting feature that appears from the graphs is the fact that, although

models match to a certain degree the shape of the monthly regime curve. They fail to

reproduce the correct timing and also amount of water that is actually generated in the

catchment. Looking at the last graph on the right in figure 3.4 we can see how the observation

curve depicts a significantly larger amount of water compared to all the models. Also all
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Figure 3.4: Results for the river Rhone at its spawn in Gletsch: results for the high , low
flows and monthly regime curve

the models depict the spring peak of runoff given by snow melt way in advance compared

to the true values. As far as the high and low flows are concerned we spot a different,

and also opposite, result compared to the previous catchment. The high flows, that were

previously mostly overestimated, are here mostly underestimated by most models. On the

contrary, linking to the previous results, low flows are mostly overestimated the ensemble.

Looking at the results in terms of KGE’ score on the different indicators, we can seet that,

while the ensemble mean is not performing worse than all the other models, it is not the

best performing model. In this case models JULES, WaterGAP and WAYS, outperform the

ensemble mean on most indicators. Once again model DBH is the only one, which shows a

marcate distinction between the performance in the varsoc and nosoc scenarios, improving

its KGE scores on the monthly regime ( KGEMonthly,varsoc =0.11, KGEMonthly,nosoc =0.09 )

on the high flows ( +0.10) and on the low flows ( +0.16).

Rhone at Gletsch
Catchment area (km2̂) = 38
Catchment elevation (m)= 1810
Models clm4.0 dbh h08 jules lpjm matsiro mpi orchidee pcr vic ways watergap2 web-dhm ensemble

Signatures

KGE’ (nosoc) Q 5 -0.16 -0.12 -0.33 -0.59 -0.65 -1.56 -0.13 -0.15 0.00 -0.30 -0.17 0.04 -0.19 -0.14
Q 95 0.51 -1.47 0.22 0.32 -4.03 -3.36 -0.16 -0.26 -1.08 -2.48 -0.91 -0.36 -0.35 -0.41
Monthly 0.12 0.09 -0.12 0.36 -0.52 0.23 -0.09 0.09 -0.11 0.12 0.17 0.23 -0.88 0.00

KGE’(varsoc
Q 5 NA -0.02 -0.33 NA -0.65 -1.56 NA NA NA NA NA 0.04 NA -0.21
Q 95 NA -1.31 0.22 NA -4.03 -3.36 NA NA NA NA NA -0.35 NA -0.24
Monthly NA 0.11 -0.12 NA -0.52 0.23 NA NA NA NA NA 0.25 NA -0.01

Table 3.2: KGE Score for Rhone at Gletsch

3.1.3 Catchment affected by human impacts: Durance at Serre

Poncon

The Durance is one of the main affluent of the Rhone. We select to showcase the results as

it is in the interesting closing station at the outlet of lake Serre Poncon, which is one of the

most prominent artificial reservoir used both for hydropower and agriculture in France. We

want to assess the difference in results of the signature in the two scenarios. The catchment

area is 3500 km2̂ while its mean elevation is 704 m.a.s.l.

The first thing to note is that the catchment area is now around 50% bigger than the

pixel area ( 3400 catchment area vs 2400 pixel area). We can have a look at the map and
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Figure 3.5: Results for the river Durance at the reservoir of lake Serre Poncon

Figure 3.6: Results for the river Durance at the reservoir of lake Serre Poncon

see whether at the lake falls into the correct pixel (figure 3.7).

Figure 3.7: We can see that the outlet station falls into a pixel that is more likely not
representative of the catchment

We notice how the correspondence between pixel and river and lake is less than ideal, giving

already a very plausible explanation for the poor results of this specific catchment. Indeed

if we choose to compare with the pixel above and to the right, which apparently entails a

larger portion of the catchment and river, as well as the lake itself, we can see a difference

in results and a better match in the monthly regime curves (figure 3.8).
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Figure 3.8: Monthly regime curve with the correct pixel

The results for the KGE’ score given the change in pixel for the ensemble mean are the

following:

• KGE’Monthly,nosoc=0.28; KGE’Monthly,varsoc=0.31

• KGE’high,nosoc=0.55; KGE’high,varsoc=0.43

• KGE’low,nosoc=0.0.34; KGE’low,varsoc=0.39

We can compare the results with the table below with the results for the standard method-

ology and see that the KGE’ score for the ensemble mean in both experiments is drastically

lower. Indicating that in this specific case, the pixel within which the outlet station fell, was

not the appropriate comparison data for the evaluation. Once again we can comment on the

graphs obtained and verify the same pattern of intra-annual runoff regime, with the peak of

spring snowmelt that is anticipated by most models.

Durance at Espinasses
Catchment area (km2̂) = 3580
Catchment elevation (m)= 704
Models clm4.0 dbh h08 jules lpjm matsiro mpi orchidee pcr vic ways watergap2 web-dhm ensemble

Signatures

KGE’ (nosoc) Q 5 0.23 0.20 -0.43 0.24 0.31 -0.11 0.14 0.33 0.13 0.25 -0.12 0.04 -0.39 0.31
Q 95 -1.43 -0.30 -2.02 -5.46 -2.57 0.06 -0.26 -0.26 -5.28 -0.10 0.10 -0.34 nan 0.05
Monthly -0.06 0.03 -0.54 -0.47 -0.48 -0.10 -0.47 -0.63 -0.15 -0.19 -0.54 -0.24 -0.49 -0.41

KGE’(varsoc
Q 5 NA 0.14 -0.43 NA 0.31 -0.09 NA NA NA NA NA 0.19 NA 0.27
Q 95 NA -0.13 -1.96 NA -2.45 0.05 NA NA NA NA NA -0.32 NA -0.10
Monthly NA -0.02 -0.54 NA -0.48 -0.11 NA NA NA NA NA -0.24 NA -0.35

Table 3.3: KGE Score for Durance at Espinasses
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3.2 Performance Evaluation of ”NOSOC” model en-

semble

We now generalize the results obtained with boxplots and scatterplots showing the per-

formance of the ensemble over all the stations. First we present results for naturalized

conditions, no human impacts on the hydrology of the catchments.

First the median KGE’ for all models over all stations, the following plot shows the results

of all the three selected signatures:

Figure 3.9: Results for the three signatures, nosoc

We can see how the indicator of the low flows reaches over the median performance across

the stations the highest performance score on KGE’. It is closeli followed by the monthly

regime indicator and, quite well below follows the performance over the low flows. We can

still appreciate how the box for all the three signatures fall above the line of 1 −
√
2 which

indicates a better estimating power than the mean of the observation over that signature(

for at least 50% of stations). The outliers in the negative sense indicate stations for which

the representativeness of the pixel is limited at best; As we have seen in the case of river

Durance in Serre Poncon.
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Results for indicators over the different models Secondly we expand on the per-

formance over each of the three specific signatures across all stations and models, we start

by showcasing the KGE’ scoring over all stations for all the 14 models partecipating in the

nosoc esperiment.

Figure 3.10: Results for Monthly regime, nosoc

(a) Correlation (b) Bias (c) Variability

Figure 3.11: Results for the separate subcomponents of the KGE for the monthly regime

Overall the performance of the model ensemble is quite satisfactory on the monthly

regime signature. The singular models which performs worse than all the others is model

LPJ(median of KGE’ over all stations = -0.22), followed by Orchidee(-0.04) and Mat-

siro(0.02). The three best performing models are instead models WaterGAP(0.35) , PCR(0.36)
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and best overall DBH (median of KGE’ over all stations = 0.43). The boxplot of the sub-

components show a marked difference in the result for the correlation with the observed data

across models, indeed the best performing model (DBH) is also the one which shows a high

degree of correlation with the observed data. Thus implying a better representation of the

seasonality compared to the other models. The results for bias and variability show instead

a tendency on the underestimation for both aspects on this signature across all models.It is

interesting to note how the model web-dhm which has the error bias term smaller then most

models still ranks as one of the worse models due to its poor representation of intra-annual

processes. The ensemble mean ranks 5th on the monthly regime KGE’ scores showing still

a positive median score of 0.28.

42



Q5

Figure 3.12: Results for Q5, nosoc

(a) Correlation (b) Bias (c) Variability

Figure 3.13: Results for the separate subcomponents of the KGE for Q5

The high flows signature is, among the selected threes, the one over which the models

ensemble obtains the highest KGE’ scores on average. We can see that in the results of

figure 3.12 how most models fall well above the threshold of ”poor performance”. The three

worse performing models over this signature are models web-dhm ( KGE’ = -0.29 ), h08

( -0.15) and Matsiro ( 0.18). The best performing ones are instead Orchidee ( 0.37) ways

( 0.38) and the ensemble mean with a median performance across stations of (0.44). In

terms of the components we notice how the correlation terms is in general good and also

doesnt vary much across models, which is a potential warning sign which we will consider
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in the discussion section. The othre two terms instead spread between over estimation and

underestimation of the runoff. Altough the best performing models are characterized by an

underestimation while the one performing worse are overestimating the high flows ( e.g. h08

and web-dhm, see figure 3.13 b).
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Q95

Figure 3.14: Results for Q95, nosoc

(a) Correlation (b) Bias (c) Variability

Figure 3.15: Results for the separate subcomponents of the KGE for Q95
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3.3 Performance Evaluation of ”VARSOC” model en-

semble

Results considering human impacts on the hydrology of the catchments:

Likewise, boxplot of all indicators:

Figure 3.16: Results for the three signatures, varsoc
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Monthly regime Secondly the boxplot for each model over all station on every indicator

separately . We start with monthly regime:

Figure 3.17: Results for Monthly regime, varsoc

(a) Correlation (b) Bias (c) Variability

Figure 3.18: Results for the separate subcomponents of the KGE for Monthly regime in the
varsoc experiment
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Figure 3.19: For one of the best performing model we show the difference in the represen-
tation of the monthly regime’s KGE’ in the different scenarios, in this case we can see that
while moving from the worse to best performance the good indicator of KGE are more towards
the varsoc experiment, altough its not solid evidence we can still detect a slight graphical trend
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Figure 3.20: Results for Q5 , varsoc

(a) Correlation (b) Bias (c) Variability

Figure 3.21: Results for the separate subcomponents of the KGE for Q5 in the varsoc
experiment
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Figure 3.22: For one of the best performing model we show the difference in the represen-
tation of the high flows in the different scenarios, slim in terms of the selected KGE’ metrics
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Figure 3.23: Results for Q95 , varsoc

(a) Correlation (b) Bias (c) Variability

Figure 3.24: Results for the separate subcomponents of the KGE for Q95 in the varsoc
experiment
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Figure 3.25: For one of the best performing model we show the difference in the represen-
tation of the low flows in the different scenarios, in this case we can see that while moving
from the worse to best performance the good indicator of KGE are more towards the varsoc
experiment, altough its not solid evidence we can still detect a slight graphical trend
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3.3.1 Summary table of results
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3.3.2 Link between performance and morphology of the catch-

ments

We now look into the performances of the models and see whether there is a link between

morphological features of the catchments, i.e. area and elevation, and the KGE’ scoring on

the different indicators. We make scatter plots of the KGE’ values compared to the area and

elevation properties of the catchments.

For each hydrological signature we select the best performing model overall on the selected

indicator and use it for the scatterplots.

The scatter plots are limited for the stations that have KGE ′ > −0.41 as values above zero

imply that there is some level of representativity of the catchment by the modeled data.

Monthly regime:

Figure 3.26: Monthly regime vs morphological properties :no trend is noticeable. Only
influence of the skewness of the initial dataset, i.e. many stations with small area

Q5:

Figure 3.27: Q5 vs morphological properties: no trend is noticeable. Only influence of the
skewness of the initial dataset, i.e. many stations with small area
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Q95:

Figure 3.28: Results for Q95 vs morphological properties : Only in Q95 we can spot a
certain trend in the performance of the catchment vs their morphological properties, that
is consistent with the fact that low flows are more linked to small scale properties of the
catchment such as soil moisture and local geology compared to monthly regime and q5.

Comments These attempts at showing a link between morphology and performance of

the models show no particular interesting results. Only for Q95 is possible to note a decrease

in performance with the decrease area, and a decrease of performance with the increase in

elevation. The aim is to show that the models struggle more to represent the complex feature

of small alpine catchments.
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3.3.3 Link between performance of specific models on different

indicator

Also in this section we want to show the different results for a selection of models. We use

the scatter plot to highlight the different performance on the different indicators. Indeed one

would expect to see a good correlation between performing well on any given hydrological

signature and performing similarly on the others. But as results have showed this is not the

case. In particular we showcase the result for three models.

1. ”Ensemble Mean” : the ensemble mean of the whole models in the experiment nosoc

is showcased

2. Model DBH

3. Model Matsiro

1) Ensemble Mean

We show the results for the ensemble mean as it outperforms each single model on the

quantile signatures achieving a median score on the KGE’ between all stations of 0.44 on Q5

and of 0.29 on Q95. The ensemble mean has a relative rank of 1 in both quantiles but falls

a short in the monthly regime where it is ranked 5.

Figure 3.29: Compared results of KGE on the three signatures. Correlation of good perfor-
mance across indicator is good for Monthly regime and high flows. Drops at
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2) DBH

The model DBH outperforms each model in the monthly regime signature, but falls short

on the Q5 (rank 6) and even worse on the Q95 where it is ranked 13. It is possible to see

how the model presents good performance on the first two signatures and a good correlation

( 0.74) between the score on those two, first graph in figure 3.16; the correlation drops while

comparing the score of the first two signatures with the low flows signature.

Figure 3.30: Compared results on the different KGE scores for model DBH. It is possible
to see a good correlation between good performance on high flows and monthly regime. Cor-
relation drops when comparing with low flows.
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2) Matsiro

The model Matsiro is amongst the one who consistently performs badly being ranked

12th on the monthly regime 12th on the Q5 10th on the Q95. In the following graphs it is

possible to appreciate how for this model perfomance on any signature is nearly uncorrelated

with the performance on others because the results are overall really poor.

Figure 3.31: Compared results of KGE score on the different signatures. Possible to appre-
ciate a good correlation between good performance on the high and monthly signature while
correlation drops when comparing with the low flows score. Limitin factor is the low score
achieved in all stations for Q95
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Chapter 4

Discussion

We now summarize the results of the analysis and draw some conclusions. First and foremost,

even before the results of the study we were aware that there are several limiting factor in

adopting GHMs to specific regions. As per the results of [7], the GHMs account for a big

source of variability and struggle to reproduce correctly the signatures. In this section we

firstly discuss the results and place them in the context of current literature then discuss the

general use of GHMs for impact projections and resource planning, finally we discuss also

the methodology used and the metric adopted (KGE’).

4.1 Discussion of the results

Worst signature: Low Flows(Q95) :one of the main result of this study is the overall

bad performance of all the models on the low flows. Indeed if we look across all models and

stations it is the indicator for which the scoring is lowest (- 0.16 ). This discovery is as well

coherent with [9] that uses a similar methodology, and although using a different scoring

criteria, still finds that the low flows are the most poorly reproduced out of all the quantiles

inspected, even finding further proof of consistency in the fact that there is a decreasing

trend in performance while moving from the higher flows quantiles to the lower ones (see fig.

4.1).

Our results agree that low flows are difficult for models to reproduce and other studies

point out how this could be due to the lower degree of correlation of the low flows with

the precipitation events, but higher degree of correlation with small scale properties of the

catchment such as the interaction between soil moisture and even vegetation in periods of

prolonged droughts.[12] Amongst the model which performs well in this indicator we find the

ensemble mean, which clearly exploits the overestimation of low flows by some models (e.g.

Matsiro) and the underestimation from most of the others, and places itself in the middle

outperforming by a considerable margin all of the other models (median performance across

all stations = 0.29 ). We can see how the models who singularly performs better on these

indicators are WaterGAP2 and Ways, both of which fall under the classification of Global

Hydrological Model, this could imply the fact that the greater degree of attention to the
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Figure 4.1: Results of Gudmundsson et al[9] for quantiles evalutation: in this picture
the American notation of quantiles it’s used, therefore the 95th/ 5th quantiles in our study
are the 5/95th (swapped) in this graph, deriving from the use of non exceedance probabil-
ity(American) and exceedance probability (European). Going from the low flows quantiles
on the left we can see a marked decrease in the performance on both correlation, relative
difference in mean (bias) and relative difference in standard deviation (variability) coherent
with the results of our study

lateral fluxes in the models design have payed off in the description of the low flows, that, as

said, are heavily dependent on the lateral movement of water and morphological properties

than on the energy balance per se, although this is a speculation and need to be further

investigated. A more reliable guess as in why those two models outperform the others lies

in the fact that specifically models WaterGAP and WAYS are the only models for which a

very simple calibration procedure was employed.

When inspecting the bias term, in the present work only the models Matsiro and VIC consis-

tently overestimate the low flows while all the other models present a bias term consistently

lower than 1 indicating a systematic underestimation instead. This result is amplified in

our study and could be a consequence of the application of GHMs to the very specific and

complex Alpine region, thus highlighting the differences while working on areas of complex

morphology such as the chosen catchments. Further proving this point is the already high-

lighted limitation of the employed reanalysis products, which are downscaled to 0.5° but start
from a coarser resolution ( around 1°) and were proven in other studies [26] to be unable to

capture highly localized phenomena of both high and low intensity which are typical of the

Alpine area. Indeed also the disproportion between the pixel area( around 2500 km2 and the

catchment areas (median of catchment areas= 134 km2) could be a decisive reason of differ-

ence in this sense. We can imagine that the runoff generation in a very small and elevated

alpine catchment could be higher than the surrounding generated runoff in the remaining

portions of the pixel. Therefore the leading cause for this underestimation probably lie both

in the limitation of the input climatic dataset and in the inherent limitation of the GHMs

in describing the hydrological phenomena involved.

Best performing: High Flows(Q5). The high flows are the signature which overall

scores the best over the model ensemble and across all stations ( median value of KGE’ =

0.29). Also this discovery applies to the results of other studies like the ones cited above.
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All study tend to point out how models are often design for flood design purposes and that

could be one of the reasons why they score higher than other quantiles. Furthermore high

flows are well correlated with precipitation events. That is shown also in the high and pretty

coherent across models value of the term ”r” of the KGE’ indicator. This result might also

show that using the KGE’ for evaluating the high flow might not be the best solutions,

as probably the most important aspect of the peak flow signal lies in the volume of water

reproduced, more than the variability or correlation of the signal. Indeed a specific indicator

for the performance of model over the specific component of peak flow of the hydrograph

exist and it is termed Annual Peak Flow Bias ( APFB). We simply report its formula and

notice the interesting quality of being exactly the KGE score with the weight of coefficients

s1 and s2 = 0.

APFB =

r
(1− µmodeled

µobserved

)2 (4.1)

Monthly Regime ranks in the middle but tells valuable information about GHMs.Monthly

regime results show the negative bias and the difference between models in reproducing the

timing of events within the year. In particular its clear to see how snow dominated catch-

ments are poorly represented with the snow melt peak that is consistently anticipated, as it

tipically occurs between February an March in the modeled timeseries while only between

April and May for the observed data. This confirms the difficulty of models of reproducing

mechanisms of snowmelt that occurs at high elevation, and its consistent with the study of

both Gadeke et al [12] and Giuntoli et al [7] which find this same results for two very different

region such as North America and the Artic watersheds. The results of the cited studies as

well as the present one point towards the fact that models have a tendency to overestimate

the timing of runoff, in particular the mechanisms of snowmelt seem to be represented as

way faster than the observational data reports. Another important aspect that is clear is

that a poor score on the Monthly regime, more than poor scores on the extremes, shows

the representativity of the catchment by the pixel, as was shown in the case study of the

Durance river at Serre Poncon.

Differences between scenarios are minimal, quite surprisingly adding the different mod-

elization of the human impacts i.e. considering a scenario with no human impacts and a

scenario with historically varying human impacts, did not produce a significant difference

in the results of the performance evaluation. We can point to several reasons as of why

this could be the case, besides the already stressed limitation of the comparison between

pixel and station: the first one is that, as pointed out in a specific study by Veldkamp et al

[30], the increase in performance was reported to be significant especially in highly managed

catchments. In our study the catchments are mostly small and almost natural catchments,

indeed the biggest impact on the stations that are explored would most likely be the ones

of reservoir and dams for hydropower production. That is seen for instance while looking

at the Rhone at Gletsch , how for model DBH the curve of the monthly regime has a lower
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peak in the spring month in the varsoc experiment ( 580 mm/month) compared to the 600

mm/month of the nosoc experiment. This result is coherent with the presence of reservoirs

in the study catchment. The most interesting takeaway was how most model did not present

any significant variation of scoring besides the model DBH. This could imply a really limited

effort from other models into characterizing human impacts, compared to model DBH which

states the evaluation of the effects of human impacts as one of its primary design purpose.

Also this result highlight the importance of choosing the correct model for the correct pur-

pose, stressed in many studies (e.g.[13]) and indicating the fact that each model is fine tuned

for the representation of specific processes and not all processes combined can be optimized

in the context of the same GHM.

4.2 Discussion on the methodology adopted

The KGE’ score was selected as an indicator of performance and allows to visualize how the

misfit is distributed along its component of bias, timing and variability. That is an interesting

property and is the reason why the indicator was proposed in the first place. Kling and

Gupta point out [11] how using the KGE decomposition of the MSE, allows to visualize

pitfalls where the MSE fails to correctly discriminate between bad and good performance of

models.This is not to say that the KGE does not carry the same problem, but in the KGE it

is possible to expand on the single value and have a further look into the reasons of a specific

value for a given obtained score. This allow for the combination of an ”objective” metric

such as the KGE’ numerical value, with the subjective judgement of the interpreter, who can

understand the reasons for a given score and, based on his expertise weight them accordingly.

The combination of an objective and a subjective evaluation procedure is suggested as an

optimal method by many authors such as [16]. One important disclaimer that has to be

pointed out while discussing and drawing conclusion from the results of our analysis is the

fact that, while the KGE’ scores is indeed an indicator of good performance and it allows

to have a deeper view into the causes of both, its results are not directly comparable across

signatures. Indeed in this study, we use a one metric for all signature approach, but we have

to understand how this limits the possibility of comparing the results as we are talking about

different parts of the hydrograph with different underlying hydrological processes. The most

obvious example of why they cannot be directly compared lies in the fact that the monhtly

regime curves are 12 month-long time series, thus evaluating the correlation for a different

length ( 30 years for the high and low flows) has a different mathematical meaning. Also for

the low flows and high flows, while the mathematical formulation is similar, and they are

more comparable then the monthly regime within themselves. We must remember that the

physical processes underlying the condition of peak flows ( possibly flood ) or low ( drought)

are significantly different. Indeed the use of specific metrics for the specific signatures gives

a better estimates on the actual ability of the models to reproduce the underlying processes

in a significant and physically-consistent way. [21]
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Another final yet important remark is the fact that, as stated while presenting the data set,

there is an inherent limitation which lies in the partial match between pixel and catchment

areas. The results can be therefore interpreted also in the sense of providing a list of stations

that is well or badly represented by the models.

4.3 GAR modeling and climate change

We can now discuss the roles of GHMs in the context of future climate change projections.

We have highlighted some of their limitation and in general showcased their output on

selected locations. Using the downloaded data for the experiment 2b in the future scenarios

RCP 8.5 ( i.e. a scenario where no climate change mitigation is performed). To have a

glimpse in the future of the alpine regions hydrology and showcase potential uses of GHMs.

We show results for the ensemble mean of the 2b scenarios for the variation of two signature

already presented in chapter 2: the mean annual specific runoff, and the Pardè Range.We

then plot near them the monthly regime curves for the catchment already selected in the

result section of Rhone at Gletsch and Soca at Kobarid.

Figure 4.2: Map of the relative change of mean annual specific runoff for the GAR between
the mean of the 1971-2000 period and the 2071-2099 period in the scenario RCP 8.5

We can see in figure 4.2 how the change in predicted generated runoff is heteregeneously

distributed in the GAR. In particular the south east corner show a marked decreas in runoff

between the historical and future period, coherently with what is shown in the predictions

for the precipitation of the area in the study by Gobi et al[8]. Furthermore if we investigate

into the representative catchment already shown in the previous chapter for the Soca river

basin we can see this results in terms of the monthly regime curves.
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Figure 4.3: Monthly regime curves for the 1971-2000 period and the 2071-2099 period in
the scenario RCP 8.5. We can appreciate the decrease in overall runoff as well as the shift
of the spring peak towards the winter season due to the increase in temperatures.

We also see the same change but for the Pardè range in order to inspect the spatial

distribution of the change in seasonality:

Figure 4.4: Map of the change of Pardè range for the GAR between the mean of the 1971-
2000 period and the 2071-2099 period in the scenario RCP 8.5

Where we see how the most marked decrease in the Pardè range is located in the moun-

tainous region, indicating a big shift in seasonality for the snow dominated catchments due

to the increase in temperatures indicating the abrupt changes to which the Alps will be po-

tentially affected in the future. To once again see the results in terms of a specific catchment

64



we look into the alreayd inspected Rhone catchment at Gletsch.

Figure 4.5: Monthly regime curves for the 1971-2000 period and the 2071-2099 period in
the scenario RCP 8.5.Significant changes in regime type and volumes of water due to climate
change in the unmitigated scenarios for the high alps
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4.4 Conclusions

The conclusion of our analysis can be summarized in the following way:

• The KGE’ scores on the different indicators highlight a marked decrease in performance

of the models passing from the high flow percentile to the low flows’. The monthly

regime curves rank in the middle of the two indicators, although is not possible to

directly compare the scores of the same metric across indicators as their meaning

changes with the underlying processes involved.

• The ensemble mean outperforms each single model in the percentiles and obtains suf-

ficient performance in all signatures, proving as a reliable estimator.

• Significant negative bias exists across all indicators, which is only partly consistent with

other studies and could be a symptom of the well known negative bias of precipitation

in the reanalysis products across the Alpine areas and in areas at high latitudes. Models

such as WaterGAP2, that have undergone a simple calibration procedure show better

results across all stations and indicators compared to others.

• Model DBH is the model that consistently reproduces the monthly regime better than

all other models. Notwithstanding this its performance drop considerably into the

high flows, and even more so on the low flows. This results highlight the goodness

of working on a multiple series of signature in order to highlight the different pros

and cons of the specific models; this result also points toward the potential of using

specific models in specific section of the hydrograph based on their design purpose and

calibration methods.

• The results of comparing the models on the different scenarios show a luck luster

absence of change between the two. This result only partially coincides with other

studies and points toward the specificity of the study area and once again highlights

the limitation of adopting GHMs in the GAR; but also raising questions about the

different representation of human impacts in the models adhering to ISIMIP. One

further explaination as of why this difference is small could also lie in the fact that

the small alpine catchment used for comparison are de facto considerable as natural

catchments.

• Finally, in the context of climate change, GHMs could provide a valuable tool and

study such as this one could lay the foundations for understanding impact studies and

future hydrological projections, especially with the increase in process representations

and detail of GHMs but also of Reanalysis products (e.g. ERA 5) ; the latter in

particular have already increased significantly in spatial resolution and the results of

the next round of ISIMIP could showcase quite different results compared to the ones

showed in this study.
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Briffa, Phil Jones, Dimitrios Efthymiadis, Michele Brunetti, Teresa Nanni, Maurizio

Maugeri, Luca Mercalli, Olivier Mestre, Jean-Marc Moisselin, Michael Begert, Gerhard

Müller-Westermeier, Vit Kveton, Oliver Bochnicek, Pavel Stastny, Milan Lapin, Sándor

Szalai, Tamás Szentimrey, Tanja Cegnar, Mojca Dolinar, Marjana Gajic-Capka, Ksenija

Zaninovic, Zeljko Majstorovic, and Elena Nieplova. Histalp—historical instrumental

climatological surface time series of the greater alpine region. International Journal of

Climatology, 27(1):17–46, 2007.

[3] Jörg Uwe Belz, Gerhard Brahmer, Hendrik Buiteveld, H Engel, R Grabher, H Hodel,

P Krahe, R Lammersen, M Larina, HG Mendel, et al. Das Abflussregime des Rheins und
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Qi Song, Jing Zhang, and Petra Döll. Variations of global and continental water balance

components as impacted by climate forcing uncertainty and human water use. Hydrology

and Earth System Sciences, 20(7):2877–2898, July 2016. Publisher: Copernicus GmbH.

[20] W. Oleson, M. Lawrence, B. Bonan, G. Flanner, Erik Kluzek, J. Lawrence, Samuel

Levis, C. Swenson, E. Thornton, Aiguo Dai, Mark Decker, Robert Dickinson, Johannes

Feddema, L. Heald, Forrest Hoffman, Jean-Francois Lamarque, Natalie Mahowald, Guo-

Yue Niu, Taotao Qian, James Randerson, Steve Running, Koichi Sakaguchi, Andrew

Slater, Reto Stockli, Aihui Wang, Zong-Liang Yang, Xiaodong Zeng, and Xubin Zeng.

Technical Description of version 4.0 of the Community Land Model (CLM). 2010.

[21] Matthias Pfannerstill, Björn Guse, and Nicola Fohrer. Smart low flow signature metrics

for an improved overall performance evaluation of hydrological models. Journal of

Hydrology, 510:447–458, 03 2014.

[22] Wei Qi, Lian Feng, Hong Yang, Junguo Liu, Yi Zheng, Haiyun Shi, Lei Wang, and

Deliang Chen. Economic growth dominates rising potential flood risk in the Yangtze

River and benefits of raising dikes from 1991 to 2015. Environmental Research Letters,

17(3):034046, March 2022. Publisher: IOP Publishing.

69



[23] C Schär, TD Davies, C Frei, H Wanner, M Widmann, M Wild, and HC Davies. Current

alpine climate. Views from the Alps: Regional perspectives on climate change, 21:63,

1998.

[24] S. Sitch, B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Ka-

plan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky. Evaluation of

ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dy-

namic global vegetation model. Global Change Biology, 9(2):161–185, 2003. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2486.2003.00569.x.

[25] T. Stacke and S. Hagemann. Development and evaluation of a global dynamical wetlands

extent scheme. Hydrology and Earth System Sciences, 16(8):2915–2933, August 2012.

Publisher: Copernicus GmbH.

[26] Fengge Su, Jennifer C Adam, Kevin E Trenberth, and Dennis P Lettenmaier. Evaluation

of surface water fluxes of the pan-arctic land region with a land surface model and era-40

reanalysis. Journal of Geophysical Research: Atmospheres, 111(D5), 2006.

[27] Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C.

Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch,

Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver
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