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CHAPTER 1 

1INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The utilization of surface wave methods for subsurface characterization is a widely 
adopted practice that extends from shallow depths to considerable depths. This approach allows 
researchers to gain valuable insights into the near-surface structures. Acquiring knowledge 
about the distribution of subsurface properties plays a crucial role in order to effectively plan, 
design, manage, and assess actions that are influenced by the subsurface.  

Understanding the properties of the shallow subsurface is crucial for various projects. 
Whether it involves constructing buildings, bridges, or infrastructure, the mechanical 
properties of soils and shallow bedrock play a fundamental role. This knowledge allows 
engineers to mitigate geological risks during the construction phase as well as throughout the 
lifespan and decommissioning of structures (Anbazhagan et al., 2013).  

By characterizing the shallow subsurface, engineers can determine the soil properties 
and their variation with depth, which are crucial for foundation design and predicting the 
dynamic response of the wind turbine system. The main differences between land-based wind 
turbines and offshore wind turbines are substructures, and the more complex offshore 
environmental condition bring higher requirements for the foundation design. The foundation, 
who interacts with the environment directly, plays the key role in the development of offshore 
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wind industry. Therefore, understandings of current status, adaptabilities, and limitations of 
offshore wind foundations are necessary for the design and risk control (Pérez-Collazo et al., 
2015; Wang et al., 2018; Bhattacharya et al., 2021). 

Carbon dioxide capture and sequestration (CCS) in deep geological formations has 
emerged as an important option for reducing greenhouse emissions. A fundamental 
understanding of the geologic, hydrologic, geomechanical, and geochemical processes 
controlling the fate and migration of CO2 in the subsurface is necessary to provide a base for 
developing methods to characterize storage sites and to select sites with minimal leakage risk. 
(Benson & Cole, 2008). Monitoring injected CO2 is a regulatory requirement to assure safe 
storage and is also an important tool to optimize injection operations and confirm storage 
volumes. One of the monitoring programs is seismic monitoring of the large subsurface area 
(Furre et al., 2020).  

Both passive and active seismic data can be employed for the characterization of these 
structures. Passive seismic data acquisition relies on ambient vibration wavefields, utilizing the 
naturally occurring vibrations in the environment. This approach offers several advantages, 
including its cost-effectiveness, availability, and environmentally friendly nature. To process 
passive seismic data, seismic interferometry is commonly employed, which involves cross-
correlating seismic recordings from different receiver locations. By doing so, Green's functions 
of the wave field are obtained, representing the response that would be observed at one receiver 
position if there were an impulsive source at another location (Wapenaar, 2004). 

Among the various sources of ambient vibrations, traffic noise has gained significant 
attention among researchers. Traffic-induced noise is readily available, cost-effective, and 
environmentally friendly, making it an attractive choice for passive seismic surveys. This 
literature review aims to explore the current state of research and advancements in the use of 
traffic-induced noise as passive source method for subsurface characterization. Curtis et al. 
(2006) explained the operation of seismic interferometry and provides a few examples of its 
application.  Bensen et al. (2007) explained and justified the ambient noise data processing 
development through salient examples. Halliday et al. (2008) showed results of several 
different approaches to the interferometric estimation of surface waves in a suburban 
environment, using both active and passive sources. For the passive case, illustrats that surface 
wave estimates can be produced using interferometry and that the quality of these estimates 
can be enhanced with some simple filtering steps. These steps account for the adverse effects 
of directional bias in the noise and the short recording periods used. To take full advantage of 
the noise in this setting, concluds that it may be beneficial to account for known sources of 
noise during survey planning.  

Park & Miller (2008) described passive version of the multichannel analysis of surface 
waves (MASW) method that can be implemented with the conventional linear receiver array 
deployed alongside a road. They accountd for the cylindrical, instead of planar, nature of 
surface wave propagation that often occurs due to the proximity of source points, by 
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considering the distance between a receiver and a possible source point. Nakata et al. (2011) 
applied the cross-coherence method to the seismic interferometry of traffic noise, which 
originates from roads and railways, to retrieve both body waves and surface-waves. Their 
algorithm in the presence of highly variable and strong additive random noise uses cross-
coherence, which uses normalization by the spectral amplitude of each of the traces, rather than 
cross-correlation or deconvolution. However, this algorithm is particularly effective where the 
relative amplitude among the original traces is highly variable from trace to trace.  

Behm & Snieder (2013) showed that surface waves can be efficiently recovered from 
interferometry applied to local ambient noise. They showed that Love waves in the frequency 
band of 1.5 to 5 Hz can be obtained from local noise interferometry, and that they are of 
comparable S/N as Rayleigh waves. Thus, they may also be used to constrain the near-surface 
structure. Behm et al. (2014) investigated the feasibility of using locally-generated seismic 
noise in the 2–6 Hz band to obtain a subsurface model via interferometric analysis. They found 
traffic noise from a nearby state road to be the dominant source of surface waves recorded on 
the array and observe surface wave arrivals associated with this source up to distances of 5 
kms.  Cheng et al. (2015) proposed passive seismic method based on seismic interferometry 
and MASW. They conclude that proposed passive seismic method is an energetic method 
which combines advantages of both seismic interferometry and MASW. It is non-destructive, 
non-invasive, effective, and relatively more accurate. Besides, it costs less and explores deeper. 

 Quiros et al. (2016) applied Seismic interferometry to railroad traffic recorded by an 
array of vertical component seismographs along a railway within the Rio Grande rift has 
recovered surface and body waves characteristic of the geology beneath the railway. These 
results confirm that train-generated vibrations represent a practical source of high-resolution 
subsurface information, with particular relevance to geotechnical and environmental 
applications. Cheng et al. (2016) proposed multichannel analysis of passive surface (MAPS) 
waves based on long noise sequence cross-correlations. A hybrid method of seismic 
interferometry and the roadside passive MASW using cross-correlation to produce common 
virtual source gathers from multichannel noise records is introduced. Common virtual source 
gathers are then used to do dispersion analysis with an active scheme based on phase-shift 
measurement. 

Lehujeur et al. (2017) developed and applied a method for ambient noise surface wave 
tomography that can deal with noise cross-correlation functions governed to first order by a 
non-uniform distribution of the ambient seismic noise sources. They Showed that for networks 
with limited aperture, taking the azimuthal variations of the noise energy into account has 
significant impact on the surface wave dispersion maps. Dou et al. (2017) reported the first 
end-to-end study of time-lapse VS imaging that uses traffic noise continuously recorded on 
linear distributed acoustic sensing (DAS) arrays. This study demonstrats the efficacy of near-
surface seismic monitoring using DAS-recorded ambient noise. 
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 Pang et al. (2019) proposed a data selection technique in time domain for selective 
stacking of cross-correlations and applied it to improve the MAPS method. Zhang et al. (2020) 
indicates that traffic noise can be created using vehicles or vibrators to capture surface waves 
within a reliable frequency band of 2–25 Hz if no vehicles are moving along the survey line. 
They showed that the virtual shot gathers obtained by cross-correlation appear less noisy than 
those obtained by cross-coherence. (Mi et al., 2023) Proposed direct-wave interferometry with 
correlated sources that stacking the interferometric responses from high-speed trains with 
different speeds and demonstrated it reduces the spurious imprint of source self-correlations, 
but it cannot remediate the problem. They eliminated the influence of the source wavelet by 
using cross coherence.  

Mi et al. (2022) developed an application of using traffic noise with seismic 
interferometry to investigate near-surface structures. Noise data were recorded by dense linear 
arrays with approximately 5 m spacing deployed along two crossing roads. They extracted 
phase-velocity dispersion curves (DCs) from virtual shot gathers using MASWand the result 
coincides with the results from active seismic data, which supports the deployment of receivers 

along roads for efficiency and convenience in highly populated urban areas. The results 
demonstrate the accuracy and efficiency of delineating near-surface structures from traffic-
induced noise, which has great potential for monitoring subsurface changes in urban areas. 

You et al. (2023) proposed a processing scheme to retrieve high-quality surface wave 
signals from vibrations generated by high-speed trains moving on the track built on viaducts. 
They used a signal selection method to attenuate the directional noise effect of linear-array 
based passive surface wave measurement, which automatically and directly selects signals 
generated by the high-speed train when it runs in the stationary phase zone. 

Since the size of ambient noise data are enormous application of ML in surface wave 
analysis utilizing ambient noise has gained attention among researchers. Huot et al. (2017) 
showed a variety of methods, mixing traditional signal processing and machine learning, to 
automatically assist geophysicists in analyzing the ambient noise recorded and selecting non-
ideal noises. They demonstrated that different types of noise and specific events can be 
identified using ML.  Martin et al. (2018) analyzed 37 days of ambient noise; introduced an 
exploratory data analysis tool that clusters a week of noise to quickly find coherent, repeating 
noises that inhibit reliable extraction of useful signals. Huot & Biondi (2018) built a neural 
network for detecting traffic noise. They pointed out that while training neural networks can 
be computationally involved, they perform remarkably fast at run-time and are hence well-
suited for event detection problems.  

Most studies utilizing traffic noise do not precisely locate the position of individual 
vehicles. Instead, they assume that the noise originates from the surrounding seismic 
deployment or a particular direction relative to it. To overcome this limitation, a seismic line 
can be deployed along a road with regular truck passage, enabling each vehicle to be treated as 
a distinct source. However, one of the challenges in this approach is automatically identifying 
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the time windows that contain vehicle passages. To address this challenge in the present work, 
we employ machine learning (ML) algorithm to detect the presence of vehicles in the seismic 
recordings. Once the vehicles are identified, we apply seismic interferometry to generate virtual 
seismic gathers, treating the trucks as local active sources. We compute dispersion images 
using phase shift method (Park et al., 1999) and stack them to increase quality. These dispersion 
images represent the variation of surface wave velocities across the surveyed area. By stacking 
multiple dispersion images, the overall quality of the results can be improved. Subsequently, 
surface wave DCs can be estimated, which provide valuable information about the subsurface 
properties. 

In summary, this thesis aims to utilize surface wave methods for subsurface 
characterization by leveraging vehicle-induced noise. By employing a ML algorithm to detect 
vehicle presence, applying seismic interferometry to generate virtual seismic gathers. Through 
the computation of dispersion images and estimation of surface wave DCs, a comprehensive 
understanding of the subsurface structures can be achieved. This research approach offers 
significant potential for enhancing the efficiency and effectiveness of subsurface 
characterization techniques. 

1.2 OUTLINE 

The second chapter of the thesis, presents the basics of surface wave methods and 
propagation. We discuss the main steps for the surface analysis: Seismic data acquisition, 
processing and inversion. We explain both active and passive data acquisition briefly. 

In the third chapter, we explain processing procedure from raw passive recording to 
retrieval of the DCs. In this work we utilized traffic induced noise as a passive source by 
considering the direction of the noise. We explain the processing steps needed for the locating 
the truck in the recording, seismic interferometry, and procedure for retrieval of DCs in this 
chapter. 

In the fourth chapter, we apply the method proposed in the third chapter, on the 2 days 
recording in Kefalonia, Greece. We present the results and the DCs extracted from passive data 
are compared to the active data to assess the quality of the proposed method. 

In the final chapter we critically analyze the outcomes of this work and provide 
recommendations for future work.  
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CHAPTER 2 

2SURFACE WAVE 

Traditional seismic techniques rely on body-wave propagation, specifically P-wave 
reflection. Surface waves, are considered unwanted noise that needs to be eliminated or 
reduced. However, surface waves can be interpreted to characterize the shallow near surface. 
Surface waves have attracted researchers from diverse disciplines like solid-state physics, 
engineering, seismology, and geophysics ( Shapiro & Campillo, 2004; Boiero et al., 2011; 
Bussat & Kugler, 2011; Garofalo et al., 2016; Kästle et al., 2018; Jokar et al., 2019). These 
waves offer noninvasive methods to characterize materials at different scales, from small 
defects to large-scale Earth structure investigations. By exploiting the geometric dispersion of 
surface waves, valuable information about the medium’s properties can be extracted. 

2.1 SURFACE WAVE DEFINITION 

Seismic surface waves are a type of seismic wave that propagates along or near the 
Earth’s surface. Seismic surface waves consist of: Rayleigh waves, Love waves, and Scholte 
waves. Rayleigh waves, are a combination of both compressional (P) and shear (S) waves. 
They cause elliptical motion of particles as they propagate, with the largest amplitudes at the 
Earth’s surface (Figure 2.1.a). Love waves, are horizontally polarized shear waves that move 
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in a horizontal, side-to-side motion perpendicular to the direction of wave propagation (Figure 
2.1.b). Scholte waves are equal to Rayleigh waves but instead of an interface between air and 
solid we have an interface between liquid and solid. Typically they generate along the seabed 
when the source is close enough to the water bottom. 

 

Figure 2.1 a) Rayleigh waves cause a rolling motion. B) Love waves cause the ground to shift 
from side to side (Earle, 2015) 

2.2 SURFACE WAVE PROPERTIES 

Surface waves are seismic waves that propagate parallel to the earth’s surface. Their 
amplitude decreases exponentially with depth, and most of the energy is contained within one 
wavelength () from the surface. Their propagation depends only on the mechanical and 
geometric properties of the subsurface. Their propagation depth depends on the wavelength, 
higher wavelengths (low frequencies) propagate to higher depth compare to the lower 
wavelengths (high frequencies), i.e., geometric dispersion. Therefore, in vertically 
heterogeneous medium, the harmonics of the propagating surface wave with high frequencies 
propagate in top layers of subsurface thus their velocity depends on properties of shallow 
subsurface, and the harmonics of the propagating surface wave that have lower frequencies 
propagate in deeper layers of subsurface thus their velocity depends on properties of deeper 
subsurface. Surface waves, compared to body waves, are more energetic and experience less 
energy loss due to geometric spreading therefore they are dominant in seismic recording 
(Figure 2.2). 
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Figure 2.2 Geometric dispersion of surface waves in vertically heterogeneous media. 𝜆 is the 
wavelength of the surface wave (Foti et al., 2018) 

2.3 SURFACE WAVE ANALYSIS 

Surface wave analysis is conducted to estimate the profile of seismic shear wave 
velocity (VS) by solving an inverse problem that involves identifying model parameters 
through the analysis of experimental DCs. This analysis typically follows a three-step process: 
seismic data acquisition, processing, and inversion. 

2.3.1 DATA ACQUISITION 

There are two types of surface wave measurements: active and passive. Active 
measurements involve using a seismic source, while passive measurements utilize ambient 
vibration wavefields. The choice of array geometry depends on the measurement type. For 
active-source prospecting, receivers are typically placed in-line with the seismic source. For 
passive tests, 2D arrays of sensors deployed on the ground surface are preferred for developing 
robust VS profiles. Whenever it is feasible, the combination of active-source and passive data 
is beneficial for obtaining a well-constrained VS model that extends from the surface to large 
depths. 

2.3.1.1 Active prospecting  

The MASW (Park et al., 1999; Xia et al., 1999) method is the most commonly used 
acquisition layout for surface wave analysis, where vertical receivers are evenly spaced and 
aligned with the seismic source. To ensure an adequate signal-to-noise ratio over the desired 
frequency range for the target investigation depth, the energy provided by the seismic source 
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must be carefully considered. Preliminary assumptions about the expected velocity range are 
necessary to define the required frequency band of the source. 

 The choice of source depends on factors such as expected velocity range, presence of 
velocity contrasts, and cost considerations. Active prospecting options include vertically 
operated shakers, impact sources, weight-drop systems, explosive sources, and 
sledgehammers. Multiple sources may be used to cover a wider frequency range, and signal-
to-noise ratio can be improved by stacking records from multiple shots. Vertical geophones are 
commonly used as receivers for Rayleigh wave data acquisition in surface wave analysis(Foti 
et al., 2018).  

2.3.1.2 Passive survey 

The penetration depth of a surface wave is approximately equal to its wavelength 
(Richart et al., 1970) .When small sources (e.g., hammer, small weight drop) are used is would 
be rare to generate energy at frequencies less than 8–10 Hz. Conversely, passive surveys allow 
measuring dispersion from low to intermediate frequencies, and 2D sensor arrays are 
recommended for capturing vibrations from different directions (Foti et al., 2018). Passive 
surface-wave analysis records ambient vibrations without an artificial seismic source. Ambient 
vibrations arise from natural and human activities. Assessing the quality of passive surveys is 
complex, and careful differentiation between "signal" and "noise" is necessary. Noise can come 
from various sources, while the signal consists of Rayleigh (and possibly Love) waves from 
distant sources. The reliability of results varies with the site's ambient vibration level. In the 
following, we explain the processing technique designed for passive surveys, focusing on the 
analysis and processing of vehicle-induced noise. 

2.3.2 PROCESSING 

In the second step, the field data undergo processing to extract an experimental DC. 
Various processing techniques, particularly in the spectral domain, can be employed for 
seismic data analysis. One of the commonly used processing methods for extraction of phase-
velocity DCs is Multichannel method. Multichannel is a transform-based method, converts 
space-time (x-t) domain into frequency-wavenumber (ƒ-k), frequency-slowness (ƒ-p), and 
frequency-phase velocity (ƒ-𝑣) domains. In this transformed domain, the data form a dispersion 
image, that shows the energy distribution, allows for the identification and picking of DCs by 
locating the spectral maxima.  

2.3.2.1 Virtual shot gathers 

Passive seismic data can be processed using seismic interferometry. Seismic 
interferometry refers to the principle of generating new seismic responses by cross-correlating 
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seismic observations at different receiver locations. The result is Green’s function of the wave 

field that would be observed at one of these receiver positions if there were an impulsive source 
at the other (Wapenaar, 2004). 

The Green's function �̂�(𝐱, 𝐱𝐴, 𝜔) is the Fourier transform of the causal time-domain 
Green’s function 𝐺(𝐱, 𝐱𝐴, 𝑡), which represents an impulse response observed at 𝐱, due to a 
source at 𝐱𝐴, this is also applied for �̂�(𝐱, 𝐱𝐵, 𝜔). The basic representation for seismic 
interferometry is: 

�̂�(𝐱𝐵, 𝐱𝐴, 𝜔) + �̂�∗(𝐱𝐵, 𝐱𝐴, 𝜔)

= ∮
∂𝔻

−1

𝑗𝜔𝜌(𝐱)
(�̂�∗(𝐱𝐴, 𝐱, 𝜔) ∂𝑖�̂�(𝐱𝐵, 𝐱, 𝜔) − (∂𝑖�̂�

∗(𝐱𝐴, 𝐱, 𝜔)) �̂�(𝐱𝐵, 𝐱, 𝜔)) 𝑛𝑖d
2𝐱 2.1 

where 𝔻 is domain, ∂𝔻 is the boundary of domain, 𝑗 is the imaginary unit, 𝜔 the angular 
frequency, 𝜌 mass density, ∗ denotes time convolution, �̂� and ∂𝑖�̂�𝑛𝑖 under the integral in the 
right-hand side of equation represent responses of monopole and dipole sources at 𝐱 on ∂D. 
The products �̂�∗ ∂𝑖�̂�𝑛𝑖, etc., correspond to cross-correlations in the time domain (van Manen 
et al., 2005; Wapenaar & Fokkema, 2006). By assuming that the medium at and outside ∂𝔻 is 
homogeneous and isotropic, with P-wave propagation velocity 𝑐𝑃, and 𝑆-wave propagation 
velocities  𝑐𝑆. In the The Eq. 2.1 can be rewritten as: 

�̂�(𝐱𝐵, 𝐱𝐴, 𝜔) + �̂�∗(𝐱𝐵, 𝐱𝐴, 𝜔)  ≈ −
2

𝑗𝜔𝜌
∮

∂D
(𝑛𝑖 ∂𝑖�̂�(𝐱𝐵, 𝐱, 𝜔)) �̂�∗(𝐱𝐴, 𝐱, 𝜔)d2𝐱 2.2 

(Wapenaar & Fokkema, 2006). In passive interferometry, the positions of the sources 
are unknown and ∂𝔻 can be very irregular. In that case, the operation 𝑛𝑖 ∂𝑖 is replaced by a 
factor −𝑗𝑘, where 𝑘 = 𝜔/𝑐, and 𝑐 is the velocity of the medium which leads to: 

�̂�(𝐱𝐵, 𝐱𝐴, 𝜔) + �̂�∗(𝐱𝐵, 𝐱𝐴, 𝜔)& ≈
2

𝜌𝑐
∮

∂D
�̂�(𝐱𝐵, 𝐱, 𝜔)�̂�∗(𝐱𝐴, 𝐱, 𝜔)d2𝐱 2.3 

Transforming both sides of Eq. 2.3 back to the time domain yields: 

𝐺(𝐱𝐵, 𝐱𝐴, 𝑡) + 𝐺(𝐱𝐵, 𝐱𝐴, −𝑡) ≈
2

𝜌𝑐
∮

∂D
𝐺(𝐱𝐵, 𝐱, 𝑡) ∗ 𝐺(𝐱𝐴, 𝐱, −𝑡)d2𝐱 2.4 

(Wapenaar, Slob, et al., 2010). For sources acting separately in time, and having an 
equal autocorrelation function 𝑆0(𝑡), located at positions 𝐱 along an enclosing source boundary 
∂𝔻, one may use the seismic interferometry cross-correlation expression: 

ℜ{𝐺(𝐱𝐵, 𝐱𝐴, 𝑡)} ∗ 𝑆0(𝑡)  ≈
1

𝜌𝑐
∮   

∂𝔻
𝑢obs(𝐱𝐴, 𝐱, −𝑡) ∗ 𝑢obs(𝐱𝐵, 𝐱, 𝑡)d𝐱 2.5 
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where ℜ denotes the real part, and 𝑢obs(𝐱𝐴, 𝐱, −𝑡) is the time-reversed wavefield 
observed at 𝐱𝐴 due to a transient source at  𝐱. 

For seismic interferometry with uncorrelated noise sources, a relation to retrieve the 
Green’s function 𝐺(𝐱𝐵, 𝐱𝐴, 𝑡) derived as: 

ℜ{𝐺(𝐱𝐵, 𝐱𝐴, 𝑡)} ∗ 𝑆0(𝑡) ≈ ⟨𝑢obs(𝐱𝐴, −𝑡) ∗ 𝑢obs(𝐱𝐵, 𝑡)⟩ 2.6 

(Wapenaar & Fokkema, 2006) where the noise sources are assumed to have the same 
autocorrelation function 𝑆0(𝑡), 𝑢obs(𝐱𝐴, −𝑡) stands for the time-reversed total recorded noise 
at 𝐱𝐴 due to all the noise sources and ⟨⋅⟩ denotes ensemble average. For field applications, the 
ensemble average is exchanged for averaging over long recording times. As the long-time 
recordings are stored in time windows with certain length, the time averaging is exchanged for 
summation over all 𝑖 time windows: 

ℜ{𝐺(𝐱𝐵, 𝐱𝐴, 𝑡)} ∗ 𝑆0(𝑡) ≈ ∑  

𝑖

(𝑢obs(𝐱𝐴, −𝑡) ∗ 𝑢obs(𝐱𝐵, 𝑡))
𝑖
 2.7 

(Vidal et al., 2014). According to Eq. 2.7, traces recorded at two different locations, are 
cross-correlated. Then all the cross-correlated responses over all source locations are summed 
to reconstruct a virtual trace received at B with a virtual source at A (Wapenaar, Draganov, et 
al., 2010). Once surface waves have been reconstructed through seismic interferometry, the 
next step is to analyze their dispersion characteristics. 

2.3.2.2 Phase shift method  

The Phase Shift method (Park et al., 1999) analyzes the seismic wave data in the 
frequency-phase velocity (ƒ-𝜈) domain to estimate the phase velocity DC. It involves 
representing the spectrum of the seismic data and extracting the phase information. The phase 
of a wave represents the fraction of a cycle that a given point has completed at a specific time. 
It is defined as: 

𝜑𝑖(𝑓) =
2𝜋𝑓𝑥𝑖

𝑣(𝑓)
 2.8 

Where 𝜑𝑖 is the phase at 𝑥𝑖, ƒ is the frequency of the wave, 𝑥𝑖 is the position in space 
𝜈 is the phase velocity of the wave at 𝑥𝑖. The relationship between the phase and waveform can 
be described as: 

𝑈(𝑥𝑖 , 𝑓) = 𝐴𝑖𝑒−𝑗𝜑𝑖(𝑓) 2.9 

Where 𝑈(𝑥𝑖 , 𝑓) is the seismic wave data at position 𝑥𝑖 and frequency ƒ, 𝐴𝑖 is the 
amplitude of the wave at 𝑥𝑖. Applying the Fourier transform to the waveform we get: 
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𝑈(𝑥𝑖 , 𝑓) = ∑  

𝑁

𝑖=1

𝐴𝑖𝑒−𝑗𝜑𝑖(𝑓) 2.10 

Assuming various testing phase velocities 𝜈𝑇, a phase shift is calculated for each trace 
and frequency as: 

𝜑(𝑓)𝑇𝑖 =
2𝜋𝑓𝑥𝑖

𝑣𝑇
 2.11 

Substituting the phase definition and slant stacking along all 𝜈𝑇  values, by averaging 
the phase-shifted seismic wave data 𝑈(𝑥𝑖 , 𝑓) over all receiver positions 𝑥𝑖 at each frequency ƒ, 

gives us the estimation of the summed amplitude:  

�̂�(𝑓, 𝑣𝑇) = ∑  

𝑁

𝑖=1

𝑈(𝑥𝑖, 𝑓)𝑒−𝑗𝜑(𝑓)T𝑖  2.12 

The resulting spectrum in the phase velocity domain provides information about the 
dispersion characteristics of the seismic waves.  

 

2.3.3 INVERSION 

The primary objective of the inversion process is to identify the optimal subsurface 
model that closely matches the experimental data. In the inversion process, the experimental 
DCs are utilized as the reference to determine model parameters. The subsurface is typically 
represented as a layered elastic medium, with emphasis placed on layer thickness and shear-
wave velocities due to their influence on surface waves. The objective is to identify the shear-
wave velocity profile that offers the closest match to the experimental data. 
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CHAPTER 3 

3METHOD 

3.1 INTRODUCTION 

In this chapter, we present a method for utilization of vehicle-induced noise by locating 
the position of the individual vehicle using ML algorithm and energy computation. We explain 
processing data using seismic interferometry, by cross-correlating seismic recording at 
different receiver locations to generate virtual source gathers (Wapenaar, 2004), computing 
dispersion images using spatial windowing and phase shift method (Park et al., 1999), and 
extracting the DCs and assessing the quality of the extracted DCs.  

3.2 MAIN PROCESSING STEPS 

In Figure 3.1, we provide a sketch of the main processing steps. We then describe in 
detail each of them. 
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Figure 3.1 The processing steps to retrieve DCs from vehicle-induced noise data 

3.3 RAW NOISE RECORDING 

We acquire the data along a road where trucks were passing by, employing vertical 
receivers. Figure 3.2 shows a vehicle is moving from left to right direction. There is a linear 
receiver array parallel to the road that record vehicle-induced noise. 

 

Figure 3.2 Illustration of source (moving vehicle) and receiver layout. ∆𝑥 shows the 
receivers spacing 

3.4 PRE-PROCESSING 

The first step of data processing consists of pre-processing of raw data recording. For 
processing noise data firstly, we divide the raw data into short time window gathers. This helps 
to segment the data into smaller, manageable units for further processing. Secondly, the de-
meaning and low-pass filtering are utilized to these gathers.  
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3.5 IDENTIFYING THE TIME WINDOWS WITH TRUCK PASSAGE 

We employ supervised ML algorithms in Python to recognize the gathers in which the 
recorded data correspond to the passage of the vehicles. In Figure 3.3, we provide a sketch of 
steps for identifying windows with truck passage. We then describe in detail each of them. 

 

Figure 3.3 Steps for identifying windows with truck passage 

To apply ML, we convert the gathers into images in JPEG format to reduce the size of 
the field data. We randomly pick a small subset of these images, and we divide it into two 
classes with appropriate labels. We then subdivide each class into training and validation 
subdirectories (Figure 3.4). 
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Figure 3.4 Data classification steps 

We define a neural network to match the data to their appropriate labels. We use 
TensorFlow (Abadi et al., 2016) to create a Convolutional Neural Network (CNN) utilizing 
Keras sequential layers. The series consist of convolutional, pooling, flattening, and dense 
layers (Figure 3.5).  

 

Figure 3.5 Convolutional neural network. Each neuron of a neural network is connected to a 
neighborhood of neurons in the previous layer. 

The object of the convolutional layer is to extract the common features of the images 
that belong to the same directory. It learns the best filter that matches these images to their 
labels. The next layer is max pooling, which reduces the size of the image to make the process 
faster. Pooling is a fundamental concept in CNNs that plays a crucial role in reducing the 
computational burden and controlling the number of connections between convolutional layers. 
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In CNNs, pooling is typically applied after convolutional layers to down sample the feature 
maps while retaining the most relevant information. The most common type of pooling is max 
pooling. Max Pooling layer is a layer that computes the max of each filter output within 
adjacent windows (Ranzato et al., 2007). This is important because the size of the data in 
passive seismic data processing can be very large. The maxed pooling function can be 
formulated as follows: 

𝑦𝑘𝑖𝑗 = 𝑚𝑎𝑥
(𝑝,𝑞)∈ℛ𝑖𝑗

 𝑥𝑘𝑝𝑞 3.1 

where 𝑦𝑘𝑖𝑗 is the output of the pooling operator related to position (𝑖, 𝑗) in 𝑘th feature 
map, and 𝑥𝑘𝑝𝑞 is the element at (𝑝, 𝑞)(Gu et al. , 2018). The flatten layer is typically used after 
the convolutional and pooling layers in a CNN architecture. We utilize a flattening layer to 
transform the data into a one-dimensional array, facilitating processing by the dense layer.  

We employ dense layers to classify images based on output from convolutional layers. 
The initial dense layer consists of neurons with a Rectified Linear Unit (ReLU) activation 
function. The ReLU activation function is a widely used non-linear activation function in 
neural networks. It introduces non-linearity to the network, allowing it to learn complex 
relationships between inputs and outputs. The ReLU activation function is defined as follows: 

𝑦𝑖 = 𝑚𝑎𝑥(0, 𝑧𝑖) 3.2 

where 𝑧𝑖 is the input of 𝑖th channel. ReLU is a piecewise linear function which prunes 
the negative part to zero and retains the positive part (Nair & Hinton, 2010). Neural networks 
can be effectively trained using the ReLU activation function without the need for pre-training 
(Krizhevsky et al., 2017). Given our aim to perform binary classification, the output dense 
layer comprises a single neuron with a sigmoid activation function. The sigmoid activation 
function is commonly used in binary classification tasks. It maps the input values to a range 
between 0 and 1, which can be interpreted as the probability of the input belonging to the 
positive class. The sigmoid function is defined as: 

𝑓(𝑥) = 1/(1 + exp (−𝑥)) 3.3 

where 𝑥 is the input to the function and 𝑓(𝑥) is the output. 
In binary classification, the output of the sigmoid function can be interpreted as the probability 
of the input belonging to the positive class, while the probability of belonging to the negative 
class is simply 1 − 𝑓(𝑥).  We compile the model with a binary-crossentropy loss function and 
accuracy metrics. It measures the dissimilarity between the predicted probabilities and the true 
class labels. The formula for binary cross-entropy loss is: 

𝐿 = −[𝑦 ∗ 𝑙𝑜𝑔 (𝑝) + (1 − 𝑦) ∗ 𝑙𝑜𝑔 (1 − 𝑝)] 3.4 
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Where L represents loss, 𝑦 represents the true class label, and 𝑝 represents the predicted 
probability of the positive class obtained using the sigmoid activation function. The goal is to 
minimize this loss function during training. In order to mitigate overfitting, which can result in 
inaccurate labelling of new data, we expand the training dataset using image augmentation 
techniques such as width and height shifting, zooming, and horizontal flipping.  

We created identification number for each gather. The result of ML classification gives 
us the identification number of gathers with truck passage present. With these identification 
number we find the signal gathers with truck passage.  

3.6 AUTOMATIC IDENTIFICATION OF VIRTUAL SOURCE POSITION 

After the classification of the data and finding the signal gathers with truck passage 
using the ML algorithm. We track the position of the truck in time and space in each gather. 
We assume that the trace closest to the vehicle at each time has the highest energy and we 
identify it as: 

𝐸𝑖 = ∑|𝐴𝑖|
2 3.5 

where 𝐸𝑖 represent the energy of the ith trace, and 𝐴𝑖 is the amplitude of the seismic 
signal of the ith trace (Colombero et al., 2019).  

3.7 COMPUTATION OF VIRTUAL SHOT GATHERS 

The highest energy trace computed by Eq. 3.5 is used as virtual source and cross-
correlated using Eq. 2.7 with all other traces, resulting in a virtual shot gather. This process is 
repeated for all the identified virtual sources, leading to the production of a large collection of 
virtual shot gathers.  

3.8 DISPERSION IMAGE COMPUTATION  

The virtual shot gathers are then processed to retrieve surface wave DCs along the 
seismic line by spanning the line with a spatial window and using phase shift method. For each 
window position we stack the computed dispersion images of several shot positions to increase 
the quality of the final dispersion image.  
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3.8.1 STACKING OF THE SPECTRA 

To reduce the experimental uncertainty, the quality of an experimental DC can be 
improved by employing a stacking technique in the frequency domain. The resulting dispersion 
image from stacking in frequency domain has higher resolution and S/N ratio (Grandjean & 
Bitri, 2006; Neducza, 2007).  

3.8.2 SPATIAL WINDOW 

We extract several local DCs, each of them referring to a different subsurface portion, 
along the survey line using a spatial windowing, the window continuously moves along the 
common receiver gather. Spatial windowing of the seismic traces, mitigate the effect of lateral 
variations to focus the investigation within a certain spatial range. In this way, the DC becomes 
a local property of the subsurface beneath the receivers whose traces are weighted more.  

  

Figure 3.6 Illustration of spatial windowing with continuously moving window. N represents 
number of receivers in each spatial segment moving every one receiver  

3.9 DISPERSION CURVES 

The data in f-vT   domain shows the energy distribution in form of dispersion image. We 
extract the DC as the maxima of the stacked dispersion image. By repeating this procedure for 
every window position, we obtain a set of DCs along the receiver line. 

3.10 CONCLUSION 

We have presented workflow for the estimation of the surface DCs from vehicle-
induced noise seismic data using ML and seismic interferometry (Wapenaar, 2004). We 
described method for processing of the retrieved virtual gathers using phase shift method (Park 
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et al., 1999) to compute dispersion image and extract DCs. In the following chapter the 
application of the workflow on the vehicle noise recording from Kefalonia, Greece is 
presented. 
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CHAPTER 4 

4DATA, PROCESSING AND RESULTS 

4.1 INTRODUCTION 

In this chapter, we apply the method to the vehicle-induced noise dataset from from 
Kefalonia, Greece. We pre-processed the data to get small time windows we searched for the 
vehicle passage in the time window and we find vehicles position in windows by energy 
computation. We use seismic interferometry to generate virtual gathers. From the generated 
virtual gathers using phase shift method we compute the dispersion image, we extract the DCs 
from the computed dispersion image. We assess the quality of the DCs extracted from passive 
data by comparing them with extracted DCs from the active data. 

4.2 DATA 

Field experiment was carried out in Kefalonia, Greece, data where continuously 
recorded for a period of 2 days. The data were acquired along a road where trucks were passing 
by, employing 234 vertical 4.5 Hz receivers with a 5 m receiver spacing (Figure 4.1).  

 



Data, Processing and Results 

22 

 

                                Acquisition line 

 

Figure 4.1 The aerial view of the field, the maroon line represents the acquisition line 

4.3 PROCESSING 

First, we divided continuous recordings into 5 second window gathers. We applied de-
meaning and low-pass (100 Hz) frequency filtering to all the gathers (Figure 4.2). De-meaning 
involves subtracting the mean value from each data point within the time window gather. A 
low-pass filter attenuates or reduces high-frequency components in the data, allowing only the 
lower frequency components to pass through. This is useful for removing high-frequency noise 
or unwanted signal variations that may be present in the raw data. Low-pass filtering at 100 Hz 
is the filter is designed to pass frequencies below 100 Hz and attenuate frequencies above that. 

 

Figure 4.2 Eexample of 5 second gather after de-meaning  
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Then we searched for patterns indicative of vehicle passage using ML. To avoid 
analysing a large number of (approximately 25,000) gathers, we selected 400 samples to train 
the neural network algorithm. We classified the selected 400 figures into two categories, 
labelled as "Truck" and "No Truck" (Figure 4.3.a and Figure 4.3.b respectively). 

a) 

 
b)  

 

Figure 4.3 a) An example of gather with the truck passage present b) An example of gather 
with no truck passage  

“Truck” 

 

“No Truck” 
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We divided 80% of these data as the training dataset and the remaining 20% as the 
validation dataset. We achieved 99% accuracy in training dataset and 97% accuracy in 
validation dataset, after 20 epochs of training on our training and validation datasets (Figure 
4.4). 

 

Figure 4.4 Training and validation accuracy versus epoch (Total number of iterations of all the 
training data in one cycle of training) 

We then applied the implemented algorithm to the 24,600 remaining gathers, and 
identified 5676 gathers with the presence of truck passage. For each of these gathers we 
computed energy using Eq.1 every 0.1 seconds and we identified maximum energy (Figure 
4.5), which corresponds to the truck position. 
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Figure 4.5 The green asterisks are representing the maximum energy picked in each window 

Figure 4.6 shows that in the case that several truck passage are present within same 
window, we can correctly identify the event with the highest energy.  

 

Figure 4.6 Between two truck passage within the same window the one with higher energy is 
picked, the maximum energy picked in window is marked with the green asterisks 

The closest receiver to the location of the truck was used as the virtual source. Then, 
the trace corresponding to the virtual source was cross-correlated with all other receivers 
resulting in a virtual shot gather. In Figure 4.7.a we show an example of a record with the truck 
passing by, where we can see the sign of the truck passage between traces 164 and 171. The 
virtual gather obtained from interferometry using the 171st trace as a virtual source and its 
corresponding active shot gather are shown in Figure 4.7.b and Figure 4.7.c.  
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a) 

 

 
b) 

 

 
c) 

 

 

Figure 4.7 a) An example of recording with a truck passage. The red arrow shows the most 
energetic trace that is used as the virtual source b) The virtual shot gather using seismic 

interferometry c) An example of active recordings where the position of the active source is 
near to virtual source in plot(a)  

We defined spatially moving window of 12 receivers, moving every 1 receiver along the line. 
For each spatial window, 30 closest virtual shots were chosen, and the dispersion image related 
to each shot was computed using the phase shift method. The individual dispersion images 
were stacked and the DC was picked as maxima in the dispersion image (Figure 4.8). Then, we 
repeated this process for all 221 spatial windows (resulting to the computation of 6630 virtual 
shot gathers).  
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Figure 4.8 Example of picked DC as a maxima in the dispersion image corresponding to the 
spatial window from receiver 144 to 155  using the proposed method 

To evaluate the quality of the estimated DCs from the proposed method, we compared 
them with the DCs from the active data that have been picked independently. The source was 
a weight drop for active acquisition, with source spacing equal to 10 m. (Figure 4.9.a, Figure 
4.9.b, Figure 4.9.c, Figure 4.9.d, Figure 4.9.e, and Figure 4.9.f). 

a)

 

b) 
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c)

 

d)

 
e)

 

 

 

f)

 

Figure 4.9 Computed dispersion image corresponding to the spatial window from receiver 
143 to 154 using: a) active data, b) the proposed method. Receiver 100 to 111 using: c) 

active data, d) the proposed method. Receiver 103 to 114 using: e) active data, f) the 
proposed method. Black asterisks show the estimated DCs. 

In Figure 4.10.a and Figure 4.10.b, we show the pseudo-sections of DCs obtained from 
active data, acquired along the same line using a weight drop source, with the proposed method. 
Each DC is plotted according to the location of the center of the corresponding window, the 
vertical axis shows the wavelength, the horizontal axis is the location, and the phase velocity 
is given by colormap. 
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a)

 
b) 

 

Figure 4.10 a) Pseudo-section of the DCs for active data along the line. b) Pseudo-section of 
the DCs for the proposed 

As we can see in Figure 4.10.a and Figure 4.10.b, the DCs are generally consistent, 
however, there are some differences. The number of DCs retrieved from active data is 67 
compared to 184 DCs retrieved from the proposed method. In certain zones of the line (see for 
instance 750 to 830 m), the DCs obtained from interferometry have narrower bandwidth at low 
frequency, while from 900 to 1500 m, they are broader band with respect to the DCs obtained 
from active data and from about 1230 to 1300, the passive data fill a gap in active data .  

4.4 QUALITY CONTROL 

To asses the quality of the picked DCs from passive data, we compared DCs from the 
passive data with their corresponding active data quantitatively. We computed normalized 
misfit (𝑀𝑖) between ith passive and active DCs as:  

𝑀𝑖 =
1

𝑛
∑ |

𝑉𝑝𝑗
− 𝑉𝑎𝑗

𝑉𝑎𝑗

|

𝑛

𝑗=1

 4.1 
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where n represents the number of common frequencies between the ith active and 
passive DCs, 𝑉𝑝𝑗

 and 𝑉𝑎𝑗
 are the velocity of jth frequency in the ith passive and the active DC 

respectively. We calculated the normalized total misfit (Mtot) existing between all the DCs as: 

𝑀𝑡𝑜𝑡 =
1

𝑘
∑ 𝑀𝑖

𝑘

𝑖=1

 4.2 

where k is the number of locations that DCs are available for both active and passive 
data. We calculated the normalized total misfit (Mtot) existing between all the DCs as using Eq. 
4.2. The calculated normalized total misfit is 17.7%. Vehicles are not always in line with the 
receiver array, this leads to phase velocities overestimation that could be a reason for this 
relatively high misfit (You et al., 2023). 
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CHAPTER 5 

5CONCLUSION 

5.1 FINAL REMARK 

In our research, we successfully demonstrated that vehicles moving along the seismic 
line can serve as seismic sources, providing valuable data for subsurface characterization. The 
data were acquired along a road where trucks were passing by in Kefalonia, Greece for a period 
of 2 days. We implemented a ML algorithm capable of accurately identifying each time 
window that contains truck passage. This algorithm efficiently tracks vehicles positions along 
the seismic line (Khoveiledy et al., 2023).  

Using the closest receiver to the source as a virtual source, we effectively simulated the 
presence of an impulsive source at the location of each identified vehicle. This enabled us to 
reconstruct the wavefield response as if it were generated by an active seismic source. To 
generate virtual shot gathers, we employed seismic interferometry techniques. 

By utilizing the phase shift method, we calculated dispersion images that captured the 
variation of surface wave velocities across the surveyed area. DCs were picked as maxima in 
the stacked dispersion image. These DCs provide crucial information about the subsurface 
properties and allow us to infer the structural characteristics beneath the seismic line. 
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Comparing the estimated DCs derived from the computed dispersion images of the 
vehicle-induced noise data with those obtained from active seismic sources, we established a 
consistent pattern. This finding indicated that the information obtained from the vehicle-
induced noise data was reliable and comparable to that obtained through traditional active 
seismic surveys.  

5.2 SUGGESTIONS FOR FUTURE DEVELOPMENT 

To decrease the misfit between the active and passive data directional noise effect could 
be attenuated. Only signals could be used that are in the stationary phase zone.  

In this work the DCs are picked manually, to make the processing steps fully automatic, 
ML-Based DC Picking can also be used. Utilizing ML techniques to automatically pick the 
DCs from the computed dispersion images. Training a supervised ML model using a large 
dataset of manually picked DCs. The model can learn the patterns and features indicative of 
DCs and then automatically pick them from new datasets.  
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