
POLITECNICO DI TORINO

Department of Mathematical Sciences

Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Hybrid Quantum-Classical Generative
Adversarial Networks: a Study on Image

Analysis and Probability Distribution
Loading

Supervisor:
Prof. Bartolomeo MONTRUCCHIO

Candidate:
Mirko MATTESI

Company Supervisor
Data Reply S.R.L.
Dr. Davide CAPUTO

Academic Year 2022⁄2023

Acknowledgements

My academic journey has been quite challenging, considering my high school studies
and the change of course of study between bachelor’s and master’s degrees.
This significant achievement is primarily dedicated to my family who have always
supported my ambitions and provided me with the opportunity to reach this point.
To Valerio and Francesco, for bearing with me during stressful times (and beyond);
to my aunt Tiziana, for her constant presence despite the distance. I owe special
thanks to two people. To my grandmother Ada, without whom I probably couldn’t
have achieved this goal. And to my mother Mariateresa, for never burdening me
with anything and for always believing in me.
To my lifelong friends: Alessandro, Luca, Gianluca, and Giovanni, who have always
been there for me during the most difficult times and have never made me feel
the pressure of my absences due to exam studies. To Luigi, a reliable shoulder I
can always lean on, who made the years we spent together in our house in Turin
special. And to Antonio, Marco, Giuseppe, Alessia, Carolina, and Ludovica, who
along with Luigi form my second family in Turin.
Lastly, I would like to express my gratitude to all the colleagues at Data Reply
with whom I had the opportunity to work during my internship and thesis months,
for welcoming me and making me feel comfortable, and most importantly, for
teaching me so much. A special thanks goes to Blanca and Davide, for granting
me this opportunity, and to Luca, for his support throughout this journey and his
patience.

iii

Summary

This work explores the intersection of quantum computing and machine learning,
with a particular focus on investigating the potential of hybrid quantum-classical
algorithms in generative modeling tasks. The work begins by providing an overview
of the current state of Noisy Intermediate-Scale Quantum (NISQ) devices, consid-
ering the challenges posed by inherent noise and the limited number of available
qubits. It then establishes a solid mathematical foundation of quantum computing
principles, covering fundamental concepts such as qubits, superposition, entangle-
ment and quantum gates. Based on this understanding, the study investigates
the structure and training methods of Parametrized Quantum Circuits (PQCs),
highlighting their versatility in machine learning and optimization tasks. Two
significant PQC-based algorithms, the Variational Quantum Eigensolver (VQE)
and the Quantum Approximate Optimization Algorithm (QAOA), are discussed in
detail. We also explore different data encoding schemes, which play a crucial role
in effectively representing information within quantum systems.
The core focus of this work is the exploration of quantum Generative Adversarial
Networks (qGANs), which extend classical GANs using principles from quantum
computing. The performance and potential benefits of qGANs are assessed through
two experiments. The first experiment examines the qGAN’s ability to generate
realistic images using the MNIST dataset, a standard benchmark in image gen-
eration. The second experiment is focused on efficiently learning and encoding
probability distributions into quantum states. More specifically, through extensive
experimentation, this work investigates the effectiveness of qGANs in capturing
the characteristics of both univariate and multivariate Student’s t-distributions,
models that find frequent application in the fields of finance and risk management.

v

Sommario

Questo lavoro esplora l’intersezione tra il quantum computing e il machine learn-
ing, con particolare enfasi sull’indagine delle potenzialità degli algoritmi ibridi
quantistico-classici in problemi di modellazione generativa. Il lavoro fornisce in
prima battuta una panoramica dello stato attuale dei dispositivi quantistici Noisy
Intermediate-Scale Quantum (NISQ), considerando le difficoltà ingegneristiche
relative al rumore degli attuali dispositivi quantistici e al numero limitato di qubit
disponibili. Successivamente, viene stabilita una solida base matematica dei principi
del calcolo quantistico, coprendo concetti fondamentali come qubit, sovrapposizione,
entanglement e quantum gates. Sulla base di questa comprensione, lo studio indaga
la struttura e i metodi di training dei Circuiti Quantistici Parametrizzati (PQCs),
evidenziando la loro versatilità nei campi del machine learning e dell’ ottimizzazione.
Due importanti algoritmi basati su PQC, ovvero il Variational Quantum Eigensolver
(VQE) e il Quantum Approximate Optimization Algorithm (QAOA), vengono dis-
cussi in dettaglio. Inoltre, vengono presentati diversi schemi di codifica dei dati,
i quali svolgono un ruolo cruciale nel rappresentare efficacemente le informazioni
all’interno dei sistemi quantistici.
L’obiettivo principale di questo lavoro è l’esplorazione delle quantum Generative
Adversarial Networks (qGANs), che estendono le GAN classiche utilizzando i prin-
cipi del calcolo quantistico. Le capacità e i potenziali vantaggi delle qGANs sono
valutati attraverso due esperimenti. Il primo esperimento esamina l’abilità delle
qGANs di generare immagini realistiche utilizzando il dataset MNIST, un riferi-
mento standard nella generazione di immagini. Il secondo esperimento è incentrato
sull’apprendimento e la codifica efficiente di distribuzioni di probabilità in stati
quantistici. Più precisamente, attraverso un’ampia sperimentazione, questo lavoro
indaga l’efficacia delle qGANs nel catturare le caratteristiche di distribuzioni t di
Student sia univariate che multivariate, le quali trovano frequente applicazione nei
campi della finanza e della gestione del rischio.

vii

Table of Contents

1 Introduction 1

2 Foundations of Quantum Computing 7
2.1 Qubit and Quantum State . 7
2.2 Multiple Qubits . 11
2.3 Pure and Mixed States . 12
2.4 Measurement of Quantum States 15
2.5 Time-Evolution of a Closed System 17
2.6 Quantum Gates . 18

2.6.1 Single-Qubit Gates . 18
2.6.2 Two-Qubit Gates . 21
2.6.3 Quantum Gate Decompositions 23

2.7 Entanglement . 24
2.8 Quantum Hardware and Challenges 26
2.9 Physical Realizations of Quantum Computers 29

2.9.1 Superconducting Qubits . 29
2.9.2 Photonic Qubits . 31
2.9.3 Trapped Ion Qubits . 31

2.10 Conclusions . 32

3 Parametrized Quantum Circuits and Data Encoding 35
3.1 Parametrized Quantum Circuits . 35
3.2 Variational Quantum Eigensolver 38
3.3 Quantum Approximate Optimization Algorithm 41
3.4 Data Encoding Strategies . 44

3.4.1 Basis Encoding . 45
3.4.2 Amplitude Encoding . 46
3.4.3 Angle Encoding . 47
3.4.4 Hamiltonian Encoding . 48

3.5 Conclusions . 50

ix

4 Quantum Machine Learning 53
4.1 Feed-Forward Neural Networks . 55
4.2 Generative Adversarial Networks 58
4.3 Quantum Generative Adversarial Networks 62

4.3.1 QuGAN . 64
4.3.2 qGAN Distribution Learning 68

4.4 Conclusions . 71

5 Applications and Numerical Experiments 75
5.1 QuGAN applied on MNIST dataset 75

5.1.1 Dataset and Data Qubitization 75
5.1.2 Dimensionality Reduction 76
5.1.3 Quantum Circuit Ansatz . 77
5.1.4 Results and Discussion . 78

5.2 qGAN for Loading Student’s t-Distributions 81
5.2.1 Student’s t-Distribution and its Generalization 81
5.2.2 qGAN Architecture and Implementation 83
5.2.3 Results and Discussion . 86

5.3 Conclusions . 93

6 Conclusions 97

Bibliography 101

A Gradient Descent Optimization Algorithms 113
A.1 Gradient Descent Variants . 113

A.1.1 Batch Gradient Descent . 114
A.1.2 Stochastic Gradient Descent 114
A.1.3 Mini-Batch Gradient Descent 115

A.2 Challenges . 116
A.3 Adam . 117
A.4 AMSGrad . 118

x

Chapter 1

Introduction

Quantum Computing is a relatively new and rapidly evolving field at the inter-
section of computer science, mathematics and physics that investigates how to
leverage some of the peculiar properties of quantum physics for use in computer
science.
Modern computers are physical devices that utilize electronic circuits to process
information through algorithms or software programs, which provide instructions on
how to manipulate electrical signals to execute computations. While these processes
involve microscopic particles, such as electrons, atoms, and molecules, they can
be described using a macroscopic, classical theory for electronic circuits. However,
when microscopic systems (like photons, electrons, and atoms) are directly used to
process the same information, a set of specific mathematical rules is required in
order to describe them, as nature behaves very differently on small scales than our
intuition suggests. Such mathematical framework is known as quantum theory, and
a computer whose computations are exclusively described by the laws of quantum
theory is referred to as a quantum computer.
Starting from the 1990s, quantum physicists and computer scientists have been
examining the possibilities of building quantum computers and their potential ap-
plications. They devised a variety of languages to describe the calculations carried
out by a quantum system, enabling us to examine these devices theoretically. The
circuit model is the most well-known language for formulating quantum algorithms
and its key ingredients are represented by the concepts of qubits, which replace
conventional bits, and quantum gates, which enable qubits to be processed.
During the early 1990s, two of the most important algorithms for quantum comput-
ing were devised. One of these, introduced by Peter Shor in 1994, was a revelation
that caused a stir in both the physics and computer science fields. Shor’s algorithm
theoretically demonstrated that quantum computers can provide an exponential
speedup when it comes to factoring large integers [1]. This was a notable revelation
because the current modern cryptography methods rely on the belief that factoring

1

Introduction

large numbers is an unsolvable computational task. The potential of quantum
computers to efficiently solve this problem drew a lot of attention to the field. The
second algorithm was developed by Lov Grover in 1996, and provided a quadratic
speedup over classical counterparts for searching through unsorted data sets [2].
Although there were highly encouraging initial outcomes in algorithmic research,
quantum computing primarily remained a theoretical discipline due to the diffi-
culties encountered in hardware advancement. Creating a quantum computer in
a laboratory setting is actually a challenging task, requiring precise control over
extremely small systems while simultaneously avoiding any interference that could
disrupt the fragile quantum coherence necessary for the desired quantum effects.
To maintain this coherence throughout numerous computational operations, error
correction plays a crucial role. However, error correction for quantum systems
is considerably more complex than for classical systems, presenting a significant
engineering hurdle for the development of a noiseless quantum computer.
The first physical realizations of quantum computers were announced by two dis-
tinct research groups at the end of 1990s, employing nuclear magnetic resonance
technology and a computational volume of two qubits [3, 4]. This kind of quantum
computer architecture was also used for a first implementation of a simplified ver-
sion of Shor’s factorization algorithm [5] and a first physical realization of Grover’s
search algorithm [6]. However, progress in experiments using this architecture
slowed down afterwards, as nuclear magnetic resonance proved to be difficult to
scale.
The hardware development in the quantum computing sector did not take up
quickly again until recent years. Indeed, the attempt to commercialize quantum
technologies has given rise to the "near-term" era of quantum computing, which has
markedly impacted research in this field. There are already a number of physical
implementations of quantum hardware, with trapped ions and superconducting
tunnel junctions appearing to be among the most promising. Both private investors
and government agencies are investing substantial resources into quantum technolo-
gies, expanding the domain of quantum hardware beyond the confines of academia.
Moreover, the development of cloud computing has revolutionized the way quantum
hardware is utilized, making it more accessible for individuals and companies inter-
ested in building quantum software. A watershed event happened in 2016 when
IBM launched the "IBM Q Experience" cloud platform for quantum computing,
which started with a single 5-qubit machine but at the time of writing has over
20 devices and has played a crucial role to the development and expansion of the
quantum computing industry. Other major software companies such as Amazon
and Microsoft are also offering cloud computing quantum services on their cloud
platforms, AWS and Azure, respectively.
Significant advancements have been made in the creation of the so-called Noisy
Intermediate-Scale Quantum (NISQ) devices, which are the first models of what

2

Introduction

could eventually become a full scale, noise-free quantum computer. These devices,
which currently consist of up to a few hundreds qubits (depending on the technology
employed) that may not all interact directly with each other, suffer from noise and
consequently, for a high number of operations on qubits, may lead to inadequate
results. While quantum devices in the NISQ era have the potential to demonstrate
the benefits of quantum computing, the requirement to limit algorithms to only a
few qubits and gates significantly affects the design of quantum algorithms them-
selves. The ideal objective would be to identify practical computational problems
that intermediate-scale quantum devices can solve while exhibiting (preferably)
exponential and verifiable improvements in run-time compared to the best-known
classical algorithms. Quantum supremacy is the term used in this context to
describe the theoretical point at which quantum computers can complete a task
that the most powerful classical supercomputers cannot accomplish in a reasonable
amount of time. In 2021, a team associated with the University of Science and
Technology of China exhibited their remarkable 62-qubit programmable quantum
computer called " Zuchongzhi" based on a superconducting processor [7]. Later,
the same device was upgraded and used to attain quantum supremacy.1 The
demonstration of quantum supremacy is an exciting development that highlights
the vast potential of quantum computing, despite the remaining challenges. Hence,
it can be concluded that the use of quantum computers is unlikely to completely
displace classical computers, but rather their potential lies in tackling challenging
scientific computing tasks that demand considerable computational resources.
There are several reasons why quantum computers are thought to be able to swiftly
and effectively solve a variety of scientific problems, with machine learning and
optimization frequently identified as promising fields. Firstly, they can perform
numerous calculations simultaneously using qubits and superposition, which is the
ability of a quantum system to exist in multiple states (or states of uncertainty)
at once. This means that a qubit can have a probability of being in one state or
another, unlike classical bits which can only be deterministically in one state at a
time. This is similar to the act of spinning a coin, where the coin is in a state of
"heads" and "tails" simultaneously until it comes to rest and collapses into one of the
two possible states. In the same way, a qubit can exist in a superposition of "0" and
"1" states until it is measured, at which point it collapses into a definite classical
state. To describe the state of a qubit in a superposition, a wave function can be
used to determine the probability of finding the qubit in each of its possible states.
Secondly, they can use quantum entanglement to correlate two or more qubits so

1The original quantum supremacy barrier was surpassed by Google’s Sycamore processor in
2019 [8], though the challenge posed by Zuchongzhi’s problem is approximately six orders of
magnitude more complex. Additionally, doubts have been raised regarding the intricacy of the
problem that Sycamore solved [9].

3

Introduction

that the state of one qubit can be dependent on the state of the other. When two
qubits are entangled, no matter how far away they are, measuring the state of one
qubit instantaneously reveals the information about the other qubit. Due to its
non-local nature, this association cannot be accounted for by conventional physics.
Finally, quantum computers can be utilized for simulations of quantum systems,
such as chemical reactions and materials properties, which are computationally
expensive for classical computers but may be possible on quantum computers. For
instance, to simulate a penicillin molecule with 42 atoms, the exponentially huge
parameter space of electron configurations would require 1086 states — more states
than the number of atoms in the universe; the quantum systems can achieve this
with only 286 qubits.
In general, a quantum computer with n qubits can thus represent 2n states at the
same time due to the ability of qubits to exist in a superposition of states. However,
it is important to note that using n qubits for computation is not equivalent to
having 2n classical bits. This is because qubits exist in a quantum state as long
as they are not measured, but once they are measured, they collapse into a single
classical state and can no longer be used for quantum computations.
This property, along with the fundamental concepts and principles of quantum
mechanics used in quantum computing, will be presented in the initial part of
this work. This includes a detailed discussion on key elements such as qubits,
superposition, quantum gates, and other essential components that underpin quan-
tum computation. Based on this understanding, we will explore the concept of
Parametrized Quantum Circuits (PQCs), which offer a versatile framework for
machine learning and optimization tasks. We will see that the structure of a PQC
consists of an initial state preparation, an encoder component to embed input
data, and a quantum component formed by gates with trainable parameters. The
circuit’s output is obtained through measurement, yielding a classical quantity that
can be used to update the trainable parameters through classical optimization tech-
niques, aiming to minimize a specific objective function. Then, we will describe two
significant PQC-based algorithms, namely the Variational Quantum Eigensolver
(VQE) and the Quantum Approximate Optimization Algorithm (QAOA). VQE
is a hybrid quantum-classical algorithm designed to determine the ground state
energy of a specific Hamiltonian. It employs a PQC to prepare trial states and
classically optimizes the circuit parameters to minimize the expectation value of
the Hamiltonian with respect to the trial states. QAOA is another hybrid quantum-
classical algorithm developed for solving combinatorial optimization problems. It
involves encoding the optimization problem into a quantum state and evolving the
state under a time-dependent Hamiltonian. The Hamiltonian is constructed from a
series of unitary operators, and the circuit parameters are optimized classically to
find the best approximate solution to the optimization problem. Additionally, we
will explore various data encoding schemes that are crucial for efficient information

4

Introduction

representation within quantum systems.
The core focus of this work lies in the exploration and analysis of quantum Gen-
erative Adversarial Networks (qGANs). The classical GANs model has garnered
significant interest in the machine learning community due to its ability to generate
realistic data samples. Quantum Generative Adversarial Networks are extensions
of classical GANs that leverage quantum computing principles to enhance the ca-
pabilities of generative modeling. To assess the performance and potential benefits
of these models, we will conduct two main experiments. The first experiment will
involve evaluating the qGAN ability to generate realistic images using the MNIST
dataset, which consists of a large collection of handwritten digits that have been
labeled with their corresponding numeric values. This dataset is commonly used
for tasks such as digit recognition, image classification, and deep learning model
evaluation. Finally, we will focus on the specific application of efficiently learning
and loading probability distributions into quantum states. This will include in-
vestigating the effectiveness of the qGAN in capturing the characteristics of both
univariate and multivariate Student’s t-distributions, which are frequently utilized
models in finance and risk management.

5

Chapter 2

Foundations of Quantum
Computing

In this chapter, we will cover the fundamentals of quantum computing, laying the
theoretical groundwork for exploring its applications in the algorithms presented in
subsequent chapters.

2.1 Qubit and Quantum State
Quantum computers rely on qubits, or quantum bits, as the basic building block for
information processing. A qubit is a two-level quantum mechanical system whose
state can be represented by a unit vector in a complex two-dimensional Hilbert space
H, which serves as the mathematical framework for characterizing its probabilistic
nature. The term "Hilbert space" generally refers to an infinite-dimensional inner
product space that is complete. However, it is also commonly used in the case
of finite-dimensional spaces, which inherently fulfill the completeness requirement
due to their finite nature. We denote such complex vector space as Cn, where n
indicates the number of dimensions.
When working with vectors in quantum mechanics, the widely used notation is the
Dirac one, also known as braket notation. A ket is simply a column vector labeled
with a specific symbol, such as |ψ⟩, which represents a vector denoting a state
labeled as ψ. A bra, on the other hand, is a row vector denoted as ⟨ψ| representing
the Hermitian conjugate of a ket; therefore, we have that ⟨ψ| = |ψ⟩†.
With this notation, an inner product between two states |ψ⟩ and |ϕ⟩ can be
expressed as ⟨ψ|ϕ⟩; consequently, the (Euclidean) norm of a generic vector |ψ⟩ ∈ H
can be expressed as

||ψ|| =
ñ

⟨ψ|ψ⟩

7

Foundations of Quantum Computing

When it comes to quantum computing, the labels |0⟩ and |1⟩ are the most common
used due to their association with classical bit values. Notably, such special vectors
|0⟩ and |1⟩, known as computational basis states, form an orthonormal basis of C2

and are given by:

|0⟩ =
A

1
0

B
, |1⟩ =

A
0
1

B

By utilizing the basis vectors, it is possible to express any two-dimensional vector
into a linear combination of them. This also means that a one-qubit system can
exist in a superposition of basis states. Therefore, any general quantum state |ψ⟩
may be expressed as:

|ψ⟩ =
A
α
β

B
= α

A
1
0

B
+ β

A
0
1

B
= α|0⟩ + β|1⟩ (2.1)

where α, β ∈ C are called probability amplitudes. The requirement that the state is
represented by a unit vector implies that

|α|2 + |β|2 = 1 (2.2)

which is known as the normalization constraint, and is essential for the consistency
of quantum measurements, as we will see later in the chapter. Although a qubit
may take infinitely many different states, when it undergoes measurement, its state
collapses to a single classical state, either 0 or 1. The values of |α|2 and |β|2 indicate
the probability of finding the qubit in either the 0 or 1 state after measurement,
respectively. By way of illustration, a qubit may exist in the state

1√
2

|0⟩ + 1√
2

|1⟩

which, upon measurement, yields the outcome 0 with a probability of fifty percent
(|1/

√
2|2), and the outcome 1 with an equal probability.

An electron orbiting around a nucleus serves as an example of a physical system
that can be represented by a vector in a two-dimensional Hilbert space [10]. When
examining energy as the primary variable, the electron may occupy a nearly
infinite number of energy levels, resulting in an infinite-dimensional Hilbert space.
Quantum mechanics principles state that these energy levels are discrete, indicating
that the electron can only adopt specific energy values instead of a continuous
range. In certain situations, an electron is most likely to be found in the ground
state (minimum energy level) or the first excited state, while higher energy levels
necessitate a significantly large amount of energy, making them nearly unattainable.
In these cases, we can disregard the subspace spanned by energy levels beyond the

8

2.1 – Qubit and Quantum State

first excited state. This simplifies the system to a two-level model, which can be
represented by a two-dimensional vector in the space consisting of the two lowest
energy levels.
Another instance of a two-level quantum system involves the spin state of specific
particles [10]. In quantum physics, particles possess a degree of freedom known as
spin, which is absent in classical descriptions. Many particles belong to the spin-1

2
category, and their spin states are represented by vectors in a two-dimensional
Hilbert space. A suitable basis for this space comprises a unit vector for the
particle’s ’spin-up’ state and an orthogonal unit vector for the ’spin-down’ state.
Therefore, the overall spin state of a spin-1

2 particle is a combination of both spin-up
and spin-down states.
One crucial aspect of state vectors is that a state represented by the vector eiθ|ψ⟩
is equivalent to the state represented by the vector |ψ⟩, where eiθ is any complex
number with unit norm. For instance, the state |0⟩ + |1⟩ is equivalent to the state
represented by the vector eiθ|0⟩ + eiθ|1⟩. However, relative phase factors between
two orthogonal states in a superposition hold physical importance. Consequently,
the state represented by the vector |0⟩ + |1⟩ is physically distinct from the state
represented by the vector |0⟩ + eiθ|1⟩. In theory, we could describe quantum states
using equivalence classes of unit vectors, but we will simply use a unit vector,
acknowledging that any two vectors related by a global phase are equivalent.
The state of a qubit can be conveniently represented as a point on a unit sphere,
commonly referred to as the Bloch sphere, as shown in Figure 2.1. Usually, the
north and south poles of the Bloch sphere are selected to correspond to the standard
basis vectors |0⟩ and |1⟩, respectively. Since state vectors must have unit norm and
are equivalent up to global phase, two real parameters θ and ϕ are adequate to
describe them. Notably, the mapping

α = cos
A
θ

2

B
, β = eiϕ sin

A
θ

2

B

allows for representing the state |ψ⟩ of a generic qubit in the computational basis
as:

|ψ⟩ = cos
A
θ

2

B
|0⟩ + eiϕ sin

A
θ

2

B
|1⟩ (2.3)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. The interpretation of the angles θ and ϕ as
spherical coordinates is clear, which means that the vector |ψ⟩ in the Hilbert space
can be visualized as a vector #»a ∈ R3, pointing from the origin to the point of
the sphere with coordinates #»a = (sin θ cosϕ, sin θ sinϕ, cosϕ) . Vector #»a ∈ R3 is
commonly referred to as Bloch vector. Several operations on individual qubits,
which will be explained later in this chapter, can be neatly described using the
Bloch sphere representation. Nonetheless, it is important to remember that this

9

Foundations of Quantum Computing

ϕ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.1: State |ψ⟩ of a qubit on the Bloch Sphere.

visualization has its limitations since there is no straightforward way to extend the
Bloch sphere to multiple qubits.
The standard orthonormal basis {|0⟩, |1⟩} is not the only option for choosing basis
vectors. Indeed, any pair of linearly independent unit vectors |u⟩ and |v⟩ from the
two-dimensional complex vector space can be used as a basis. This means that

α|0⟩ + β|1⟩ = α′|u⟩ + β′|v⟩

for some α′, β′ ∈ C such that |α′|2 + |β′|2 = 1. An example of an alternative basis
is the Hadamard basis {|+⟩, |−⟩}, defined by the vectors

|+⟩ .= 1√
2

|0⟩ + 1√
2

|1⟩ =
A 1√

2
1√
2

B
, |−⟩ .= 1√

2
|0⟩ − 1√

2
|1⟩ =

A 1√
2

− 1√
2

B

It is important to specify which basis is being used, as different bases can give
different measurement outcomes for the same vector. For instance, a state vector
with components A 1√

2
1√
2

B

measured in the standard orthonormal basis will give outcomes |0⟩ and |1⟩ with
an equal probability of 1

2 . However, when measured in the Hadamard basis, it
will give the outcome |+⟩ with probability 1. In general, the choice of the basis
is determined by the measurement process or the physical implementation of the
quantum computer.

10

2.2 – Multiple Qubits

2.2 Multiple Qubits
So far we have only examined simple systems with two possible states, such as
a single electron’s spin. However, when we begin to describe more complex com-
posite systems, such as two particles, the situation becomes even more interesting.
Quantum mechanics employs the algebraic concept of tensor product of vector
spaces to offer an abstract description of such systems. This is a consequence of
the formalism that relies on Hilbert spaces, whereby the Hilbert space H⊗n of an
n−composite quantum system is the tensor product of the Hilbert spaces of its
individual subsystems [11], e.g.,

H⊗n = C2 ⊗ C2 ⊗ ...⊗ C2 (2.4)

As an example, let us consider a two-qubit system; as we have already learned, we
can describe the quantum state of each of them separately using a two-dimensional
complex vector:

|ζ⟩ =
A
ζ1

ζ2

B
, |φ⟩ =

A
φ1

φ2

B
By taking the tensor product of such two states, we obtain a single vector |ψ⟩ ∈ C4

describing the state of our composite system:

|ψ⟩ = |ζ⟩ ⊗ |φ⟩ =
A
ζ1

ζ2

B
⊗
A
φ1

φ2

B
=

ζ1 ·

A
φ1

φ2

B

ζ2 ·
A
φ1

φ2

B
 =

ζ1φ1

ζ1φ2

ζ2φ1

ζ2φ2

 (2.5)

In Dirac notation, it is common practice to eliminate the ⊗ symbol between the
kets that undergo the tensor product and merge them into a single ket, i.e.,

|ζ⟩ ⊗ |φ⟩ .= |ζφ⟩ = |ψ⟩ (2.6)

Similarly to how we can use a two-state orthonormal basis to represent a two-
dimensional state vector, a four-state orthonormal basis is suitable for a composite
system that comprises two two-level systems. Hence, the standard orthonormal
basis for the tensor product |ζ⟩ ⊗ |φ⟩ will consist of the following four orthonormal
unit vectors

|00⟩ .=

1
0
0
0

 , |01⟩ .=

0
1
0
0

 , |10⟩ .=

0
0
1
0

 , |11⟩ .=

0
0
0
1

 (2.7)

and the system state will be described by four probability amplitudes

|ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩ (2.8)

11

Foundations of Quantum Computing

with α, β, γ, δ ∈ C such that |α|2 + |β|2 + |γ|2 + |δ|2 = 1.
It is important to note that not all states of a combined system can be decomposed
into the tensor product form |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩. Notably, if the qubits
are prepared independently and kept isolated, then each qubit can be considered
a closed system, and the state of the composite system can be expressed as the
tensor product of the individual states. In this case, two probability amplitudes are
required to fully describe the state of each individual qubit before measurement, thus
2n probability amplitudes are required to describe the state |ψ⟩ of the composite
system.
However, if the qubits are allowed to interact, then they form a closed system that
includes all qubits together and the tensor product representation of the system
state |ψ⟩ does not exist; in this case, we need to specify 2n probability amplitudes
to describe the state of the composite system, which is an effective measure of
useful information that can be stored in the system when qubits are entangled. The
concept of entanglement will be explored in detail in section 2.7.

2.3 Pure and Mixed States
Up to now, we have assumed that the state of a quantum system has a definite
state vector. However, there are cases where the qubit can only be described by
one of a particular set of state vectors, with corresponding probabilities (which
must add to 1). For instance, let us assume that a qubit has a probability of 1

3 of
being in the state |ψ1⟩ = 1√

2 |0⟩ + 1√
2 |1⟩ and a probability of 2

3 of being in the state
|ψ2⟩ = 1√

2 |0⟩ − 1√
2 |1⟩. This probability distribution describes a state known as a

mixture or ensemble of the states |ψ1⟩ and |ψ2⟩. The state of a system in such a
situation is referred to as a mixed state, while a system with a uniquely specified
state vector is said to be in a pure state.
One way to describe a generic mixed state on n qubits is by using an ensemble
representation

{(|ψ1⟩, p1) , (|ψ2⟩, p2) , ..., (|ψk⟩, pk)} (2.9)

which implies that the system is in the pure (n-qubit) state |ψi⟩ with probability
pi, for i = 1, 2, ..., k. It is worth noting that a pure state can be viewed as a special
instance of a mixed state, where all pi except one equal zero.
However, using the representation (2.9) consistently in all our computations would
be challenging. Fortunately, there exists an alternative way to express mixed states
in terms of operators on the Hilbert space H. These operators are known as density
operators, and their matrix representation is referred to as a density matrix. A
density matrix can be constructed by taking the outer product of a state vector |ψ⟩:

ρ = |ψ⟩⟨ψ| (2.10)

12

2.3 – Pure and Mixed States

A state |ψ⟩ is considered a pure state if it can be expressed in such a form. Even if
the state vector is in a superposition, the corresponding density matrix will still
describe a pure state. In quantum physics, which is inherently probabilistic, it is
advantageous to conceive of a pure state as a pure ensemble, i.e., a set of identical
particles with the same physical configuration. For pure states, the following
properties hold:

• A density matrix is idempotent, i.e., ρ2 = (|ψ⟩⟨ψ|) (|ψ⟩⟨ψ|) = |ψ⟩⟨ψ|ψ⟩⟨ψ|
= |ψ⟩⟨ψ| = ρ.

• Given any orthonormal basis {|ek⟩} of H, the trace of a density matrix is 1:
tr(ρ) = q

k⟨ek|ρ|ek⟩ = q
k⟨ek|ψ⟩⟨ψ|ek⟩ = q

k⟨ψ|ek⟩⟨ek|ψ⟩ = ⟨ψ|ψ⟩ = 1.

• Similarly, we have that tr(ρ2) = 1.

• A density matrix is Hermitian, or self-adjoint: ρ† = (|ψ⟩⟨ψ|)† = |ψ⟩⟨ψ| = ρ.

• A density matrix is positive semi-definite: ⟨ϕ|ρ|ϕ⟩ = ⟨ϕ|ψ⟩⟨ψ|ϕ⟩ = |⟨ϕ|ψ⟩|2 ≥
0, where |ϕ⟩ is an arbitrary vector.

For a mixed state such as (2.9), the density matrix is given by:

ρmixed =
kØ

i=1
pi|ψi⟩⟨ψi| (2.11)

In other words, the density matrix ρmixed for a mixed state is a probabilistic
combination of matrices ρi for pure states, i.e., ρmixed = qk

i=1 piρi, where 0 ≤ pi ≤ 1
and qk

i=1 pi = 1. Considering a statistical perspective again, a mixed state is
comprised of indistinguishable particles that are distributed among different physical
configurations. This is why the term "density matrix" is appropriate, as a mixed
state is essentially a distribution of probabilities over pure states. A mixed state is
characterized by the following properties:

• Idempotency is violated: ρ2
mixed =

A
kØ

i=1
pi|ψi⟩⟨ψi|

BA
kØ

i=1
pi|ψi⟩⟨ψi|

B

=
kØ

i=1

kØ
j=1

pipj|ψi⟩⟨ψi|ψj⟩⟨ψj| /= ρmixed

• tr(ρmixed) = 1.

• tr(ρ2
mixed) < 1.

• Hermicity.

• Positive semidefiniteness.

13

Foundations of Quantum Computing

We typically use the same notation, ρ, to denote both mixed and pure states,
without a lower index to distinguish between them. To emphasize the difference
between superposition and mixed states, let us consider the computational basis
{|0⟩, |1⟩}. A superposition in this two-dimensional space is a linear combination of
two vectors:

|ψ⟩ = α|0⟩ + β|1⟩

where |α|2 + |β|2 = 1. The corresponding density matrix has non-zero interference
terms, or off-diagonal elements, and is given by

ρ = |ψ⟩⟨ψ| =
A

|α|2 αβ∗

α∗β |β|2
B

(2.12)

where the symbol * stands for complex conjugation. On the other hand, a mixed
state is represented by a density matrix with no interference terms:

ρ = |α|2|0⟩⟨0| + |β|2|1⟩⟨1| =
A

|α|2 0
0 |β|2

B
(2.13)

It is important to note that a density matrix depends on the chosen basis; nonethe-
less, its trace is invariant under a change of basis.
Pure and mixed states have a nice geometrical interpretation in terms of the Bloch
sphere, introduced in section 2.1. Specifically, pure states correspond to points on
the surface of the sphere, while mixed states correspond to points within the sphere.
In order to demonstrate this, we shall focus on the simple two-dimensional case.
One can show that any density operator ρ for a single qubit can be expressed as

ρ = 1
2

A
1 0
0 1

B
+ ax

2

A
0 1
1 0

B
+ ay

2

A
0 −i
i 0

B
+ az

2

A
1 0
0 −1

B
(2.14)

where #»a = (ax, ay, az) ∈ R3 is the corresponding Bloch vector. The eigenvalues of
ρ are λ1,2 = 1

2 (1 ± || #»a ||2) and, since density matrices are positive semi-definite, it
is required that || #»a ||2 ≤ 1. For pure states, the relation tr(ρ2) = tr(ρ)2 = 1 must
be satisfied, while for a mixed state, it holds that tr(ρ2) < tr(ρ)2 = 1, thus we get

tr(ρ2) = 1
2
1
1 + || #»a ||2

2
= 1 ⇐⇒ || #»a ||2 = 1 (2.15)

In simpler terms, the Bloch vector #»a , which corresponds to the point in R3

representing the state of our system, lies on the surface of the unit sphere if the
state is pure. On the contrary, if the state is mixed, the vector #»a represents an
interior point within the sphere.

14

2.4 – Measurement of Quantum States

2.4 Measurement of Quantum States
In classical physics, a measurement of a system state has no significant impact on
the system itself, and any external disturbance resulting from the measurement
is usually negligible and does not require consideration. Furthermore, classical
physics imposes no limit on measurement accuracy other than the quality of
the measurement technique, and there are no restrictions on measuring different
physical quantities simultaneously, except for the complexity of the experimental
setup.
In contrast, quantum physics operates differently. Measurement activities are
destructive to the quantum state, and measurements of non-commuting observables
cannot be made simultaneously. The measurement process in quantum physics
is controlled by the concepts of observable and measurement operators, which we
shall explore in more detail in this section.
Specifically, each measurable property of a physical system, known as observable,
corresponds to a unique Hermitian operator. The values of the physical observables
are represented by the expectation values of their corresponding Hermitian operators.
In general, the expectation value ⟨A⟩ of a Hermitian operator A in the normalized
state |ψ⟩ is calculated as:

⟨A⟩ .= ⟨ψ|A|ψ⟩ = Tr (ρA) (2.16)

where ρ denotes the density matrix associated to state |ψ⟩ and Tr (A) is the trace
of a generic square matrix A.
It turns out that the eigenstates of a Hermitian operator and the concept of
superposition are closely related in quantum mechanics. Indeed, the spectral
theorem [12] establishes that for any Hermitian operator A, the state |ψ⟩ of a
system can be expressed as a superposition of the eigenstates (|ψi⟩)i=1,...,n of A:

|ψ⟩ =
nØ

i=1
αi|ψi⟩ (2.17)

where the coefficients (αi)i=1,...,n are complex probability amplitudes assumed
to be normalized, i.e., such that qn

i=1 |αi|2 = 1. The measurement postulate of
quantum mechanics states that measuring the Hermitian operator A in the state
|ψ⟩ described in equation (2.17) yields possible outcomes corresponding to the
eigenvalues (λi)i=1,...,n of A, and the probability of measuring a given eigenvalue
λi is given by pi = |αi|2. After the measurement outcome λi, the state of the
system will collapse to the corresponding eigenstate |ψi⟩. If we perform a second
measurement immediately afterward in the same computational basis, we will
obtain the same outcome without any uncertainty.
The process of quantum measurement is described using measurement operators

15

Foundations of Quantum Computing

(Pi)i=1,...,n that act on the state space of the system with n possible outcomes. If
the state of the system before the measurement is |ψ⟩, then the probability of
obtaining outcome i is given by

P(i) = ⟨ψ|P†
i Pi|ψ⟩ (2.18)

In order to ensure that the sum of the probabilities of all possible outcomes adds
up to 1, the measurement operators must also fulfill the completeness condition

nØ
i=1

P†
i Pi = I (2.19)

where I denotes the identity operator.
From the standpoint of quantum computing, we are interested in measurement
operators that are projections (i.e., such that P2 = P) onto the computational
basis, such as the standard orthonormal basis. For instance, in the case of a single
qubit, the measurement operators can be defined as follows:

P0
.= |0⟩⟨0| =

A
1 0
0 0

B
and P1

.= |1⟩⟨1| =
A

0 0
0 1

B
(2.20)

We can easily check that P2
0 = P0 and P2

1 = P1, as expected for projection
operators, and that the completeness condition (2.19) holds. Moreover, if the qubit
is in state |ψ⟩ = α|0⟩ + β|1⟩, then the measurement operator P0 will yield |0⟩
with a probability of |α|2, and the measurement operator P1 will yield |1⟩ with a
probability of |β|2:

P0|ψ⟩ = |0⟩⟨0| (α|0⟩ + β|1⟩) = α|0⟩⟨0||0⟩ + β|0⟩⟨0||1⟩ = α|0⟩
P1|ψ⟩ = |1⟩⟨1| (α|0⟩ + β|1⟩) = α|1⟩⟨1||0⟩ + β|1⟩⟨1||1⟩ = β|1⟩

The measurement postulate in quantum mechanics asserts that when an immediate
measurement is performed in the same computational basis, the result will be the
same without any uncertainty. The crucial phrase here is "the same computational
basis". What would happen if the subsequent measurement is carried out in a
different basis, specified by another set of linearly independent unit vectors from
the state space? To answer the question, let us assume that the qubit is in state

|ψ⟩ = 1√
2

|0⟩ + 1√
2

|1⟩ = |+⟩

Measuring |ψ⟩ in the {|0⟩, |1⟩} computational basis will yield states |0⟩ and |1⟩
with an equal probability of 1

2 . Let us now suppose that our measurement was 0;
the qubit state then becomes

|ψ′⟩ = 1 · |0⟩ + 0 · |1⟩

16

2.5 – Time-Evolution of a Closed System

When the measurement is performed again in the same {|0⟩, |1⟩} computational
basis, the state |0⟩ is obtained with probability 1, consistently with the measurement
postulate. On the other hand, if we had measured the state |ψ′⟩ in the Hadamard
basis {|+⟩, |−⟩}, we would have observed equal probabilities for outcomes |+⟩ and
|−⟩. Assuming that we measured |−⟩, the state of the qubit now becomes

|ψ′′⟩ = 0 · |+⟩ + 1 · |−⟩

If we perform another measurement of the state |ψ′′⟩ in the Hadamard basis
{|+⟩, |−⟩}, we get state |−⟩ with probability 1. However, from the perspective of
the {|0⟩, |1⟩} computational basis, the state of the qubit is an equal superposition
of states |0⟩ and |1⟩, meaning that we have an equal chance of measuring either |0⟩
or |1⟩ in this basis.
Measurement is critical in quantum computing, as it involves collapsing a quantum
state and extracting classical information from it. When qubits encoding a quantum
state are measured, a classical bit string is produced. Nevertheless, since the
measurement process yields probabilistic outcomes, it is essential to perform multiple
measurements on the same quantum state. This process generates an adequately
large set of classical bit strings to produce reliable statistics.

2.5 Time-Evolution of a Closed System
In general a physical system evolves over time, which means the state vector |ψ⟩
of a system is actually a function of time, represented as |ψ(t)⟩. According to
quantum theory, the evolution of the state vector of a closed quantum system is
governed by the Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩ (2.21)

where ℏ is Planck’s constant and H is a time-independent Hermitian operator
called the Hamiltonian of the system. The Hamiltonian of a quantum system is
an operator that describes the total energy of the system, with its eigenvalues
representing the possible energy levels of the system. Having knowledge of the
Hamiltonian offers all the essential information about the system dynamics.
In the Schrödinger equation (2.21), the state |ψ(t1)⟩ of a closed quantum system
at time t1 is linked to the state |ψ(t2)⟩ at time t2 by a unitary operator U(t1, t2)
that depends solely on t1 and t2. This relationship can be expressed as:

|ψ(t2)⟩ = U(t1, t2)|ψ(t1)⟩ (2.22)

where U(t1, t2) can be derived from the Hamiltonian H as

U(t1, t2) = exp
A

−iH(t2 − t1)
ℏ

B
(2.23)

17

Foundations of Quantum Computing

We recall for the sake of convenience that an operator U on a Hilbert space H is
unitary if U †U = UU † = I, or equivalently, if U † = U−1. This indicates that all
operations are inherently reversible by definition, as applying the adjoint after the
transformation brings the vector back to its initial state, i.e.,

U|ψ(t1)⟩ = |ψ(t2)⟩ (2.24)
U †|ψ(t2)⟩ = |ψ(t1)⟩ (2.25)

Unitary operators preserve the inner product (and consequently norms, lengths,
and distances), which implies that for any two vectors |u⟩ and |v⟩, the inner product
between |u⟩ and |v⟩ is the same as the inner product between U|u⟩ and U|v⟩:

⟨u|U †U|v⟩ = ⟨u|v⟩

This property is crucial, as it ensures that two orthogonal vectors will remain
orthogonal after undergoing a unitary transformation.
In quantum mechanics, physical transformations such as rotations, translations,
and time evolution correspond to unitary operators that map quantum states
to other quantum states, thus implementing the computation. This perspective
enables us to view unitary operators as the quantum logic gates responsible for
carrying out quantum computation processes. In the next section, we will delve
deeper into the various types of quantum gates, their properties, and how they are
used to perform operations on qubits.

2.6 Quantum Gates

2.6.1 Single-Qubit Gates
In contrast to classical computing, which allows for only two logic gates operating
on a single bit (the identity gate and the NOT gate), quantum computing boasts
an infinite number of single-qubit logic gates. Indeed, any unitary 2 × 2 matrix can
be considered a quantum logic gate. Among these gates, however, some are more
significant or easier to implement compared to others. In the following discussion,
we shall focus on a few of these noteworthy gates, beginning with the identity gate
(I) and the Pauli matrices (X, Y, and Z).
A transformation of the qubit state can be visualized as a transition from one point
on the Bloch sphere to another. As a result, the unitary matrix responsible for this
transformation can be regarded as a rotation operator. In this context, we can refer
to gate operations as rotations and consider rotation angles as gate parameters.
The effect of the I gate is straightforward – it does not alter the qubit state; the
Pauli matrices X, Y, and Z, on the other hand, rotate the qubit state by π radians

18

2.6 – Quantum Gates

around the x, y, and z axes, respectively:

I =
A

1 0
0 1

B
, X =

A
0 1
1 0

B
, Y =

A
0 −i
i 0

B
, Z =

A
1 0
0 −1

B
(2.26)

By carrying out basic algebraic operations, we can readily confirm that the X gate
performs a bit flip while the Z gate induces a phase flip, leaving |0⟩ invariant, and
changing the sign of |1⟩:

X Gate:
A

0 1
1 0

BA
1
0

B
=
A

0
1

B
,

A
0 1
1 0

BA
0
1

B
=
A

1
0

B

Z Gate:
A

1 0
0 −1

BA
1
0

B
=
A

1
0

B
,

A
1 0
0 −1

BA
0
1

B
= −

A
1
0

B

For this reason, the X gate is also referred to as the NOT gate, while the Z gate is
commonly called the PHASE gate. The visualization of these operations can be
facilitated by utilizing graphical representations of the quantum gates:

|0⟩ X |1⟩ |1⟩ X |0⟩

|0⟩ Z |0⟩ |1⟩ Z − |1⟩

Figure 2.2: Graphical representation of the X and Z gates.

In this representation, horizontal lines represent quantum registers, while boxes
symbolize quantum gates. Quantum registers and quantum gates collectively form
the graphical representation of quantum circuits, which are sequences of quantum
gates that transform quantum states to execute quantum computation. Quantum
circuits are interpreted from left to right, with the initial quantum state displayed
on the left side and the final state on the right side of the circuit.
We know that one of the primary reasons behind the potency of quantum computing
is the capability of a qubit to exist in a superposition of basis states. But how can
we achieve a superposition of states |0⟩ and |1⟩ for a qubit that was initialized as
|0⟩ (or |1⟩)? The solution lies in the Hadamard gate, H, which generates an equal
superposition of states |0〉 and |1〉 when applied to either state |0⟩ or state |1⟩:

H = 1√
2

A
1 1
1 −1

B
(2.27)

H

A
1
0

B
= 1√

2

A
1
0

B
+ 1√

2

A
0
1

B
and H

A
0
1

B
= 1√

2

A
1
0

B
− 1√

2

A
0
1

B
19

Foundations of Quantum Computing

|0⟩ H
1√
2(|0⟩ + |1⟩) |1⟩ H

1√
2(|0⟩ − |1⟩)

Figure 2.3: Graphical representation of the Hadamard gate H.

It turns out that the Hadamard gate acts as its own inverse, meaning that
applying it twice reverses the effect of the first application; mathematically, H2 = I,
or equivalently, H = H−1.

|0⟩ H H |0⟩ |1⟩ H H |1⟩

Figure 2.4: Hadamard gate H applied twice.

Other useful one-qubit gates include phase shift gates, S and T , which shift the
phase by π

2 and π
4 , as opposed to the Z gate that shifts the phase by π:

S =
A

1 0
0 e−i π

2

B
, T =

A
1 0
0 e−i π

4

B
(2.28)

Lastly, it is essential to mention the adjustable one-qubit gates that execute a
rotation of the qubit state around a particular axis by an arbitrary angle θ. These
gates are represented as Rx(θ), Ry(θ), and Rz(θ), and their expressions are as
follows:

Rx(θ) =
 cos

1
θ
2

2
−i sin

1
θ
2

2
−i sin

1
θ
2

2
cos

1
θ
2

2
Ry(θ) =

cos
1

θ
2

2
− sin

1
θ
2

2
sin

1
θ
2

2
cos

1
θ
2

2
Rz(θ) =

A
e−i θ

2 0
0 ei θ

2

B
(2.29)

The adjustable gates are crucial in Parameterized Quantum Circuits (PQC), which
we will explore in much detail in chapter 3.
The final operator applied to the quantum register is the measurement operator,
shown in Figure 2.5. After measurement (in the computational basis), a qubit is
converted into a classical bit, and its value becomes a known binary number.

q0

Figure 2.5: Application of the measurement operator to qubit q0.

20

2.6 – Quantum Gates

2.6.2 Two-Qubit Gates
Just like one-qubit gates, which are represented by 2 × 2 unitary matrices, we
can also construct multi-qubit gates. Specifically, n-qubit gates are described
by 2n × 2n unitary matrices. As multi-qubit gates can operate on several qubits
simultaneously, they can be utilized for entangling qubits, causing their states to
become interdependent. Moreover, it is possible to create conditional operators
that act on a target qubit only if a control qubit is in the state |1⟩. These types of
gates are referred to as controlled gates, and below we shall provide the details of
some of them.
Controlled gates are represented in a quantum circuit by a straight line connecting
two quantum registers. The control qubit is represented by one quantum register,
marked by a dot at the end of the connecting line. The other quantum register
represents the target qubit, on which the intended conditional operator is placed.
Figure 2.6 demonstrates this with a Controlled Y (CY) gate example. In this case,
q1 is the quantum register for the control qubit, q2 is the quantum register for the
target qubit, and the Y operator is applied to the target qubit q2.

CY =

1 0 0 0
0 1 0 0
0 0 0 −i
0 0 i 0

 (2.30)

q1

q2 Y

Figure 2.6: Controlled Y (CY) gate.

The Controlled NOT gate, commonly denoted as CNOT or CX, serves as another
example of a two-qubit controlled gate. In this case, the Pauli X gate is applied to
the target qubit when the control qubit is in state |1⟩. The corresponding unitary
matrix for the CNOT gate is:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.31)

This gate is frequently depicted in quantum circuits using an XOR logic symbol
(a circled plus) placed on the target qubit quantum register. This is because the
truth table for the target qubit aligns with that of the XOR logic gate.

21

Foundations of Quantum Computing

q1

q2

Figure 2.7: Controlled X (CNOT) gate.

The CZ (CPHASE) gate applies a Pauli Z (phase flip) operation to the target
qubit, provided that the control qubit is in state |1⟩ and is represented by the
following unitary matrix:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.32)

Interestingly, the CZ gate does not distinguish between the target and control
qubits – the outcome remains the same regardless of which qubit is designated as
the control or target qubit.

q1

q2 Z
= q1 Z

q2

Figure 2.8: Controlled Z (CZ) gate.

The SWAP gate is a two-qubit gate that interchanges the quantum states of
two qubits. In other words, it swaps the information stored in the two qubits.
The

√
SWAP gate is a universal gate, which means that any multi-qubit gate

can be constructed using just the
√

SWAP gate and single-qubit gates. Their
representations in terms of unitary matrices are:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , √
SWAP =

1 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
1+i

2 0
0 0 0 1

 (2.33)

q0

q1

Figure 2.9: SWAP gate.

22

2.6 – Quantum Gates

Typically, the choice of the set of universal gates from which all other gates may
be built is governed by the characteristics of the physical system used to perform
quantum computation. Related gates like iSWAP and

√
iSWAP are inherent gates

in systems that exhibit Ising-type interactions [13]:

iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 , √
iSWAP =

1 0 0 0
0 1√

2
i√
2 0

0 i√
2

1√
2 0

0 0 0 1

 (2.34)

Finally, the XY gate is an example of adjustable two-qubit gate that performs a
rotation by a specific angle θ between the |01⟩ and |10⟩ states:

XY (θ) =

1 0 0 0
0 cos

1
θ
2

2
i sin

1
θ
2

2
0

0 i sin
1

θ
2

2
cos

1
θ
2

2
0

0 0 0 1

 (2.35)

We may observe that XY (π) = iSWAP and XY (π
2) =

√
iSWAP. The iSWAP gate,

along with the CZ gate, holds significant importance in the formation of quantum
circuits, as any two-qubit gate can be represented using a maximum of three CZ
or three iSWAP gates [14].

2.6.3 Quantum Gate Decompositions
At the time of writing, the most commonly utilized NISQ computing technologies
include trapped ions and superconducting qubits. In both instances, one-qubit
gates are significantly faster and have higher fidelity than two-qubit gates [15]. As
a result, one-qubit gates can be considered computationally efficient, and their
quantity is less of a concern. On the other hand, it is crucial to optimize the use of
two-qubit gates since circuits with fewer of them can perform better in terms of
less amount of noise introduced. Consequently, we should be familiar with native
two-qubit gates specific to a system—gates that can be naturally implemented using
standard hardware control methods. While more complex gates can be broken down
into subcircuits consisting of native gates, a better approach is to create algorithms
that exploit the native gates, eliminating the need for non-native two-qubit gates.
For instance, Rigetti’s Aspen system [16], based on superconducting qubits, utilizes
two native two-qubit gates, CZ and XY . Building circuits with these gates instead
of, for example, SWAP gates, would result in improved performance.
Nevertheless, designing hardware-dependent algorithms may not always be feasible
or desirable. As the selection of native gates is inherently limited, it is helpful to

23

Foundations of Quantum Computing

be acquainted with a few fundamental decompositions. The following relationships
can be confirmed through direct calculations and serve an essential function in
quantum circuit construction:

q1

q2 Z
=

q1

q2 H H

Figure 2.10: CZ gate decomposition into CX and Hadamard gates.

q1

q2
=

q1

q2 H Z H

Figure 2.11: CX gate decomposition into CZ and Hadamard gates.

Finally, we mention the CNOT representation of the SWAP gate. Notably, due
to the limited connectivity of NISQ devices (nearest neighbours for most qubits),
the SWAP gate is particularly valuable, and its efficient implementation using
available native gates is crucial. The SWAP gate can be depicted as a sub-circuit
composed of three CX gates:

q0

q1
=

q0

q1
=

q0

q1

Figure 2.12: SWAP gate decomposition using three CX gates.

In conclusion, the ability to decompose non-native two-qubit gates into subcircuits
composed of native two-qubit gates and high-fidelity one-qubit gates enables the
development of hardware-independent quantum algorithms. This approach ensures
that the designed algorithms can be adapted to various quantum computing
platforms, making them more versatile and broadly applicable across different
systems.

2.7 Entanglement
In section 2.2, we mentioned that entanglement is a crucial feature of quantum
computing. Here, we explain this in detail and present examples for two-qubit

24

2.7 – Entanglement

systems.
We know that an n−qubit system can be in any superposition of the 2n basis states:

2n−1Ø
i=0

ci|i⟩ = c0|00...00⟩ + c1|00...01⟩ + ...+ c2n−1|11...11⟩ (2.36)

with
2n−1Ø
i=0

|ci|2 = 1 (2.37)

If such a state can be expressed as tensor product of the individual qubit states,
then the qubit states are not entangled. For instance, it can be readily verified that
√

3
4
√

2

3
|000⟩ + 1√

3
|001⟩ + 3√

3
|010⟩ + |011⟩ + |100⟩ + 1√

3
|101⟩ + 3√

3
|110⟩ + |111⟩

4

=
A

1√
2

|0⟩ + 1√
2

|1⟩
B

⊗
A

1
2 |0⟩ +

√
3

2 |1⟩
B

⊗
A√

3
2 |0⟩ + 1

2 |1⟩
B
, (2.38)

so that the quantum state is not entangled, but only in superposition. On the
contrary, an entagled state cannot be expressed as a tensor product of individual
qubit states. For instance, the two-qubit state

1√
2

|00⟩ + 1√
2

|11⟩ (2.39)

cannot be decomposed into a tensor product. In other words, for any complex
numbers c1, c2, c3, c4 ∈ C such that |c1|2 + |c2|2 = |c3|2 + |c4|2 = 1, we have

1√
2

|00⟩ + 1√
2

|11⟩ /= (c1|0⟩ + c2|1⟩) ⊗ (c3|0⟩ + c4|1⟩)

We observe that 2n probability amplitudes are required to describe the state on
the left-hand side of (2.38), while only 2n probability amplitudes are needed to
describe the state on the right-hand side of (2.38). The number of probability
amplitudes necessary to fully describe the state of a system is directly connected
to the amount of information it can encode. Entanglement enables us to encode
a substantially larger amount of information compared to individual independent
qubits.
Let us now ask what happens when we measure entangled qubits. In (2.39), both
qubits are in a state of equal superposition, meaning that if we measure the first
qubit, we will obtain both 0 and 1 with a probability of 1

2 . If we measure the
second qubit instead, we will also get 0 and 1 with equal probability. However,
the situation drastically changes if we tried to measure the second qubit after
the first one has already been measured. In this scenario, the state of the second

25

Foundations of Quantum Computing

qubit is entirely determined by the act of measuring the first qubit, and there
is no uncertainty about its value anymore: if the first qubit was measured as 0,
the second qubit is also in state 0, and if the first qubit was measured as 1, the
second qubit is also in state 1. In other words, measuring one qubit causes the
superposition to collapse and immediately affects the other qubit.
Qubits can be entangled using two-qubit gates. The two-qubit state described by
(2.39) is known as one of the four maximally entangled Bell states. This state can
be derived from the unentangled state |00⟩:

|00⟩ = (1 · |0⟩ + 0 · |1⟩) ⊗ (1 · |0⟩ + 0 · |1⟩)

by employing the Bell circuit, which is composed of Hadamard and Controlled
NOT gates:

|0⟩ H

|0⟩
1√
2(|00⟩ + |11⟩)

Figure 2.13: Bell circuit.

The other three Bell states can be derived by applying this circuit to the unentagled
states |01⟩, |10⟩, and |11⟩:

|01⟩ → 1√
2

(|01⟩ + |10⟩)

|10⟩ → 1√
2

(|01⟩ − |10⟩)

|11⟩ → 1√
2

(|00⟩ − |11⟩)

Entanglement can also be achieved using various other two-qubit gates. The specific
gate employed may depend on the hardware implementation, and could include a
SWAP, CPHASE, another fixed two-qubit gate, or an adjustable two-qubit gate
like XY (θ).

2.8 Quantum Hardware and Challenges
After establishing the theoretical framework for quantum bits and quantum gates,
it becomes crucial to comprehend how these can be implemented from a hardware
perspective. One of the most critical challenges in building a quantum computer is
the phenomenon of decoherence, which represents the loss of information from a

26

2.8 – Quantum Hardware and Challenges

quantum system to its environment due to entanglement and coupling with the
surroundings. The system under consideration is no longer a closed system when
interaction with the environement is in action. To describe the evolution of an open
quantum system in the presence of decoherence, density matrices are commonly
used. Notably, the diagonal elements of the density matrix correspond to the
probabilities of finding the system in the corresponding state, while the off-diagonal
elements describe the coherence between the states of the system. Nevertheless,
due to interactions with the environment, the off-diagonal elements of the density
matrix decay over time, leading to a loss of coherence and a mixed state that
cannot be described by a pure wavefunction.
To see this with an example, let us consider the pure state |+⟩. The corresponding
density matrix with respect to the standard computational basis {|0⟩, |1⟩} is given
by

ρ = |+⟩⟨+| = 1
2

A
1 1
1 1

B
Assuming now that the time evolution of |+⟩ is

|+⟩ = |0⟩ + |1⟩√
2

→ |0⟩ + eiwt|1⟩√
2

the corresponding density matrix becomes

ρ(t) = 1
2

A
1 eiwt

e−iwt 1

B

The "population" in state |+⟩ can be obtained by computing the expectation value
of the operator ρ(t) with respect to the state |+⟩:

⟨+|ρ(t)|+⟩ = Tr (|+⟩⟨+|ρ(t))

= Tr
A

1
4

A
1 1
1 1

BA
1 eiwt

e−iwt 1

BB

= 1
4
1
2 + eiwt + e−iwt

2
= 1

2 + 1
2 cos (wt)

(2.40)

where we have used the well-known relation eiwt +e−iwt = 2 cos (wt). The oscillation
in (2.40) is due to the off-diagonal elements of ρ(t), and it is called the coherence
of the system. The state is pure at any time t. However, in a real physical system,
the coherence often decays exponentially over time due to interactions with the
surroundings. In such a situation, the density matrix can be expressed as

ρ(t) = 1
2

A
1 eiwt−γt

e−iwt−γt 1

B
27

Foundations of Quantum Computing

and the population in the state |+⟩ decays in accordance with

⟨+|ρ(t)|+⟩ = 1
2 + 1

2e
−γt cos (wt)

This is referred to as decoherence of the system, and the value of γ relies on the
physical mechanism that leads to the decoherence.
To address the issue of decoherence, quantum error correction is a crucial concept
that must be incorporated. Quantum error correction relates to a set of techniques
that protects information in quantum computing by encoding it across several
physical qubits to create a logical qubit. The concept of a logical qubit refers to a
theoretical unit of quantum information that a quantum processor can manipu-
late. The number of logical qubits that a quantum processor has determines its
computing capacity. In other words, the more logical qubits a quantum processor
has, the more computational power it has. This method is considered essential for
developing a large-scale quantum computer that can perform useful calculations
with low error rates [17]. Current research efforts are aimed at enhancing the quality
of qubits and increasing the isolation of quantum systems, with the objective of
utilizing fewer physical qubits to construct a logical qubit.
Given the challenges posed by decoherence and the need for quantum error cor-
rection, it is essential to consider the requirements for a physical system to be
suitable for use as a quantum computer. In 2000, David DiVincenzo proposed a
set of necessary conditions for such a system, which are now commonly referred to
as the "DiVincenzo criteria" [18]. These requirements include:

1. A scalable physical system with well-characterized qubits: the physical system
must be capable of adding more qubits in a way that does not compromise the
performance of the system. Additionally, the qubits must be well-characterized,
meaning their physical parameters should be accurately known, including their
internal Hamiltonian (defining the qubit energy eigenstates), the presence of
and couplings to other states, and couplings to external fields (necessary to
manipulate the qubit state) and to other qubits in the system (necessary for
implementing multi-qubit gates).

2. The ability to initialize the state of the system to a simple fiducial state: the
system must be able to be initialized to a known state, typically an all-zero
state, before the start of the computation.

3. Long relevant decoherence times: the physical system must be able to maintain
coherence for a sufficiently long time, much longer than the gate operation
time, to ensure that the quantum features of computation can be utilized.

4. Capability to implement a universal set of quantum gates: the system must
be able to implement a universal set of quantum gates, which can be used

28

2.9 – Physical Realizations of Quantum Computers

to construct any quantum algorithm. This typically includes single-qubit
gates and a single type of two-qubit gate, which is native to a particular
implementation (e.g., CNOT, CPHASE, or XY).

5. A qubit-specific measurement capability: the system must be able to measure
specific qubits, which is necessary for the efficient execution of quantum
algorithms.

Despite the impressive advances of quantum computing technology over the last
several years, achieving sufficiently fault-tolerant quantum computers is still a few
years away. This is why it is useful (and necessary) to utilize quantum simulators,
which are classical computers that operate based on the principles of quantum
computing. The only hindrance for classical computers to operate in this way is
the memory requirements, as the state of an n−qubit quantum system can be
stored in classical memory as 2n probability amplitudes. Due to this limitation,
most quantum simulators are typically constrained to operate on a limited number
of qubits, usually ranging from a few to a dozen. Nonetheless, these simulators
play a vital role in providing an ideal computing environment, free from quantum
hardware imperfections. As a result, they are crucial for testing fundamental
principles and small-scale versions of quantum algorithms.
In the following, we will discuss three primary physical realizations of quantum
computers that satisfy the DiVincenzo criteria, namely superconducting qubits,
photonic qubits, and trapped ions qubits. We will provide a brief overview of
their fundamental principles, advantages, and challenges, as well as mention some
notable companies working on these technologies.

2.9 Physical Realizations of Quantum Computers

2.9.1 Superconducting Qubits
Superconducting qubits are based on the manipulation of quantized energy levels
in superconducting electrical circuits. These circuits are made of materials that
exhibit zero electrical resistance below a certain critical temperature. The basic
building block of a superconducting qubit is the Josephson junction, which consists
of two superconductors separated by a thin insulating barrier. The non-linear
inductive behavior of the Josephson junction allows for the creation of quantized
energy levels that can be used to represent the quantum states. Some popular
superconducting qubit designs include:

• Transmon: a variant of the Cooper-pair box qubit, the transmon qubit features
a large shunting capacitance to suppress the charge noise, while still maintain-
ing sufficient anharmonicity to allow for selective qubit state manipulation.

29

Foundations of Quantum Computing

• Flux Qubit: this qubit design is based on a superconducting loop interrupted
by one or more Josephson junctions. The qubit states are defined by the
quantized magnetic flux in the loop, and the qubit can be controlled by
applying an external magnetic field.

• Xmon: the Xmon qubit is a modification of the transmon design, with the
addition of an extra coupling capacitor that allows for stronger qubit-qubit
interactions in a scalable architecture.

Superconducting qubits represent a mature and promising technology for addressing
the scalability challenge. These qubits are kept in a cryogenic dilution fridge oper-
ating at millikelvin temperatures, providing isolation from thermal and electrical
noise. Control of these qubits requires a multitude of complex wiring and cables,
which are connected to a rack-full of external electronics. While it is possible to
fabricate thousands of qubits on a single chip and cool them down to extremely
low temperatures, the major hurdle lies in scaling up the control and readout
electronics [19]. This difficulty arises primarily from the limited cooling power
available in cryogenic systems, which imposes constraints on the wiring capacity
and management of cabling heat load. Another challenge associated with supercon-
ducting qubits is their limited connectivity, which poses difficulties in implementing
complex quantum algorithms and performing multi-qubit operations efficiently.
IBM and Google are two prominent companies that have significantly contributed
to the development and application of quantum computing technologies, partic-
ularly in the field of superconducting qubits. IBM has been at the forefront of
this research, unveiling the IBM Quantum System Two in 2022, which offers
improved performance and scalability with its advanced superconducting qubits
[20]. This system features a sophisticated design that combines advanced cryo-
genics, electronics, and shielding to minimize the effects of noise and decoherence.
IBM’s continuous improvement of their quantum systems is evidenced by their
roadmap, which aims to achieve a 1,121-qubit system, named "Condor," by 2023
[21]. Google, another key player in quantum computing, has continued to make
strides with their superconducting qubit technology. By demonstrating a quantum
advantage with error-correction techniques such as the surface code, Google has
further established the potential of superconducting qubits in quantum computing
[22]. Moreover, Google unveiled their ambitious plan to build a practical, error-
corrected quantum computer, the "Quantum Era", by 2029 [23]. This plan includes
a series of engineering milestones aimed at improving error rates, qubit counts, and
connectivity.

30

2.9 – Physical Realizations of Quantum Computers

2.9.2 Photonic Qubits

Photonic qubits represent another promising avenue for the realization of quantum
computers, utilizing the quantum properties of photons as the basis for encoding
and manipulating quantum information. The main advantage of photonic quantum
computing lies in the inherent robustness of photons against decoherence, making
them less susceptible to environmental noise compared to other physical implemen-
tations of qubits. One of the primary approaches to photonic quantum computing
is the linear optical quantum computing (LOQC) model, which relies on linear
optical elements such as beam splitters, phase shifters, and single-photon sources to
manipulate and process photonic qubits [24]. In recent years, integrated quantum
photonics has emerged as a scalable approach to implement LOQC, leveraging ad-
vances in the fabrication of photonic integrated circuits to miniaturize and increase
the complexity of quantum photonic devices [25].
Xanadu [26], a Canadian company, is a notable pioneer in the field of photonic
quantum computing. They have developed a unique approach to quantum com-
puting based on continuous-variable (CV) quantum information processing, which
employs the quantum states of light, such as quadrature amplitudes, to encode and
manipulate quantum information. Moreover, PsiQuantum, a US-based company, is
working on building a large-scale, fault-tolerant photonic quantum computer using
a silicon photonics platform [27]. They aim to leverage the mature silicon photonics
fabrication technology to manufacture photonic qubits and the required quantum
gates, which could enable large-scale, error-corrected quantum computing.

2.9.3 Trapped Ion Qubits

Trapped ion technology has emerged as another intriguing alternative for the
physical realization of qubits and quantum gates. In this approach, individual ions
are trapped using electromagnetic fields and manipulated using laser beams to
perform quantum operations. The advantages of trapped ion qubits include their
long coherence times, high-fidelity quantum gates, and potential for scalability.
However, the technology also faces challenges such as the complexity of the required
control systems and the need for efficient ion transport and reordering.
One of the leading companies working on trapped ion quantum computing is
IonQ. The company has developed several generations of trapped ion quantum
computers, demonstrating consistent improvements in qubit count and overall
system performance. In 2023, they announced the release of their fifth-generation
quantum computer, IonQ Forte, featuring 32 fully connected qubits and a quantum
volume of over 4 million [28].

31

Foundations of Quantum Computing

2.10 Conclusions
In this chapter, we laid the groundwork for understanding quantum computing
by discussing its essential concepts, components, and techniques. We began with
an introduction to the fundamental building block of quantum computing, the
qubit, and its canonical mathematical representation. We then discussed multiple
qubits and their interactions. The density operator was also introduced, allowing
us to describe both pure and mixed quantum states, in contrast to the state
vector that can only represent pure quantum states. We continued with the
exploration of the measurement of quantum states and the time-evolution of closed
systems, highlighting the importance of unitary operators. Next, we delved into
quantum gates, starting with single-qubit gates and their representation as rotation
operators on the Bloch sphere. We proceeded to examine two-qubit gates and
their matrix representations, as well as quantum gate decompositions. We also
covered the topic of entanglement, a distinctive feature of quantum systems that
enables powerful computational capabilities. Subsequently, we outlined the primary
physical realizations of quantum computers, focusing on superconducting qubits,
photonic qubits, and trapped ion qubits, along with the rapid advancements in
each of these areas.
In the next chapter, we will present a specific kind of quantum circuit, known as
Parameterized Quantum Circuits (PQCs), which offer considerable versatility for
a range of applications. Furthermore, we will investigate different data encoding
methods – the process of transforming samples from classical datasets into their
respective quantum states.

32

Chapter 3

Parametrized Quantum
Circuits and Data Encoding

In recent years, Parameterized Quantum Circuits (PQC), also known as Variational
Quantum Circuits, have emerged as a versatile and powerful tool in the development
of quantum algorithms. These circuits are characterized by their ability to adapt
and evolve through the adjustment of tunable parameters, making them particularly
suitable for optimization and machine learning tasks. In this chapter, we will explore
the fundamental concept of PQC and provide a comprehensive description of two
prominent PQC-based algorithms, namely the Variational Quantum Eigensolver
(VQE) [29] and the Quantum Approximate Optimization Algorithm (QAOA) [30].
These algorithms have garnered significant attention due to their ability to leverage
NISQ devices for solving complex optimization problems. Additionally, this chapter
will introduce data encoding schemes, which play a crucial role in translating
classical data into quantum states. This allows for an integration of the quantum
and classical computing paradigms, further expanding the potential applications of
PQC in various domains.

3.1 Parametrized Quantum Circuits
As we discussed in the previous chapter, quantum gates can be combined to create
quantum circuits of varying depth. Notably, these circuits apply a sequence of
unitary operators Ui(θi) that transform an initial n−qubit state |ψin⟩ into a final
quantum state |ψ⟩:

|ψ⟩ = Um(θm) ... U1(θ1)|ψin⟩ (3.1)

The unitary operators Ui correspond to individual gates, each with an associated
vector of gate parameters θi, for i = 1, ...,m. Certain gates in a quantum circuit may

35

Parametrized Quantum Circuits and Data Encoding

· · ·

· · ·

· · ·

· · ·

· · ·

q1 U1(θ1)

q2

q3

... ...
qn−1

qn Um(θm)

Figure 3.1: Graphical representation of a generic Parametrized Quantum Circuit
(PQC) acting on n qubits.

have fixed parameters, meaning that the operation performed by the gate cannot
be changed. For instance, a two-qubit CZ gate can be considered a controlled
rotation of the target qubit state around the z−axis by a fixed angle of θ = π.
Other gates, however, may have adjustable parameters that can be tuned to change
the operation performed by the gate. For example, a one-qubit Ry(θ) gate can
rotate the qubit state around the y−axis by an arbitrary angle θ ∈ [−π, π].
After constructing the final quantum state |ψ⟩, the qubits can be measured, yielding
a classical bitstring. We do not always need information about the entire quantum
system. In discriminative models, only a single qubit or a few qubits can provide
sufficient information about the binary representation of the class label for a
given sample. Conversely, in generative models, the information relative to all the
qubits is necessary to obtain a bitstring representing a generated sample from the
probability distribution encoded in the final quantum state |ψ⟩.
This is a general description of a PQC, which is illustrated schematically in Figure
3.1. One of the most important aspects of a PQC is that it can be trained to find an
optimal set of adjustable parameters (such as the vectors θ1, ..., θm above) based on
the overall PQC architecture, known as ansatz. The meaning of "optimal" may vary
depending on the problem being solved, but generally refers to a configuration of
the parameters that leads to the closest possible match between the final quantum
state |ψ⟩ and a desired target quantum state corresponding to a specific probability
distribution that needs to be encoded. When dealing with quantum machine
learning use cases, the process of determining the optimal configuration of PQC
parameters is commonly referred to as learning. This can be achieved through
differentiable or non-differentiable methods and always involves minimizing some

36

3.1 – Parametrized Quantum Circuits

Figure 3.2: Illustration of the hybrid quantum-classical algorithm used to train
PQCs, reproduced from [31].

cost function by adjusting the circuit parameters.
Parametrized Quantum Circuits are typically trained through a hybrid quantum-
classical paradigm, which is schematically represented in Figure 3.2. This approach
involves three components: the user, a classical computer, and a quantum computer
[31]. The user provides the model for the problem to be solved along with the
input training data, while the classical computer pre-processes the initial data
and generates the initial set of parameters for the PQC. The quantum computer
executes the PQC by setting up the quantum state in accordance with the PQC
instructions and by performing measurements. The measurement outcomes are
then post-processed by the classical computer to evaluate the cost function. To
improve the cost, the classical computer updates the model parameters according to
the chosen learning algorithm (e.g., backpropagation of error with gradient descent
[32]). The overall algorithm is therefore run in a closed loop between the classical
and quantum hardware.
In conclusion, the PQC framework is widely considered to be a promising approach

for utilizing NISQ devices to solve complex real-world problems. It employs a
hybrid quantum-classical computational protocol and can be applied to experiment
with various quantum machine learning models.

37

Parametrized Quantum Circuits and Data Encoding

3.2 Variational Quantum Eigensolver
The Variational Quantum Eigensolver (VQE) is a PQC-based algorithm that seeks
to determine the smallest eigenvalue (i.e., the lowest energy) of a Hamiltonian. The
Hamiltonian of a quantum system entirely describes its dynamics, as we discussed
in section 2.5. Therefore, if we are able to encode the objective function we want
to minimize in the Hamiltonian of a quantum system, then finding the ground
state of the Hamiltonian is equivalent to finding the set of decision variables that
minimizes the objective function. The VQE was first developed in 2014 by [29]
and has become a popular tool for solving optimization problems on NISQ devices.
The algorithm uses a variational approach to systematically search for the best
possible approximation of the ground state by exploring various PQC ansatzes and
configurations of adjustable PQC parameters.
Let us now take a closer look at how the VQE algorithm works. Given a Hamiltonian
H, its characteristic equation is given by

H |ψi⟩ = Ei |ψi⟩ (3.2)

where Ei is an eigenvalue corresponding to the eigenstate |ψi⟩. The goal is to
determine the smallest eigenvalue E0 of H that corresponds to the ground state
|ψ0⟩. If the latter were known, such a task would be straightforward, as the
eigenvalue of H in a given eigenstate is nothing but the expectation value of H in
that eigenstate:

⟨ψi|H|ψi⟩ = ⟨ψi| Ei |ψi⟩ = Ei ⟨ψi|ψi⟩ = Ei (3.3)
However, in practice, the ground state |ψ0⟩ is often not known, and the aim is to
find the ground state that encodes the solution of the optimization problem by
minimizing the expectation value of H. In this case, we can construct a series of
increasingly better approximations to the ground state, resulting in a increasingly
accurate upper bound for the ground state energy E0.
The variational approach is based on the spectral theorem, which allows the
expansion of the Hermitian HamiltonianH in terms of its eigenstates and eigenvalues
as:

H =
Ø

i

Ei |ψi⟩⟨ψi| (3.4)

Let us suppose we constructed a state |ψ⟩ that approximates the actual ground
state |ψ0⟩. By considering the expression of H given by (3.4), we can express the
expectation value of H in state |ψ⟩ as

⟨ψ|H|ψ⟩ = ⟨ψ|
AØ

i

Ei |ψi⟩⟨ψi|
B

|ψ⟩

=
Ø

i

Ei ⟨ψ|ψi⟩ ⟨ψi|ψ⟩ =
Ø

i

Ei |⟨ψ|ψi⟩|2
(3.5)

38

3.2 – Variational Quantum Eigensolver

Equation (3.5) demonstrates that the expectation value of H in any state |ψ⟩ can
be written as a linear combination of the eigenvalues of H, with all weights being
non-negative since |⟨ψ|ψi⟩|2 ≥ 0 for every i. Consequently, we can conclude that

⟨ψ|H|ψ⟩ ≥ E0 (3.6)

since E0 is the smallest eigenvalue of H and all the weights in (3.5) are non-negative.
The PQC is responsible for generating the candidate state |ψ⟩, while the variational
aspect of the algorithm involves incrementally improving this candidate state
through iterative updates of the adjustable parameters. This process is carried
out as a classical part of the hybrid quantum-classical protocol. The quantum
component of the algorithm involves executing the PQC and measuring H on the
resulting quantum state to determine the expectation value of H.
In the context of variational quantum eigensolvers, a crucial issue pertains to the
implementation of H as an observable, since this may require an infeasible amount
of measurements for Hamiltonians that are not simple to handle. Fortunately, for
many practical scenarios, H can be expressed as a linear combination of weighted
local (i.e., 1- or 2- qubit) observables Hj

H =
JØ

j=1
hjHj (3.7)

with hj ∈ R ∀j = 1, . . . , J . Actually, it is always possible to express the Hamilto-
nian as a sum of Pauli operators [29]

H =
Ø
iα

hi
ασ

i
α +

Ø
ijαβ

hij
αβσ

i
ασ

j
β + . . . (3.8)

for real h, where the superscripts i, j, . . . runs over the qubits that the Pauli
operator acts on, while the subscripts α, β, . . . identify the Pauli operator (with
σ1 being the identity operator). For instance, i = 2, α = y, and σ2

y = Y acting on
qubit 2. The validity of this expansion does not rely on any assumptions regarding
the dimension or structure of the Hermitian Hamiltonian. We can utilize the
property of linearity of quantum observables to compute the expectation value of
the Hamiltonian by summing up the expectations of the individual terms:

⟨H⟩ =
Ø
iα

hi
α⟨σi

α⟩ +
Ø
ijαβ

hij
αβ⟨σi

ασ
j
β⟩ + . . . (3.9)

This representation allows for efficient estimation of the energy expectation if the
Hamiltonian can be expressed as a sum of only a few terms, each consisting of only a
few Pauli operators. This is often the case in quantum chemistry where Hamiltonians
describe electronic systems under the Born-Oppenheimer approximation, as well as

39

Parametrized Quantum Circuits and Data Encoding

Figure 3.3: Principle of VQE, reproduced from [34]. The variational quantum
eigensolver operates by using the Hamiltonian of the system as the observable. In
many cases, the Hamiltonian H can be expressed as a linear combination of local
Hamiltonian terms Hj that can be measured individually and then summed up
classically to obtain the overall expectation value ⟨H⟩. The VQE uses this approach
to iteratively improve the candidate state |ψ(θ)⟩ prepared by the parametrized
ansatz W (θ) and obtain the ground state energy of the system.

in the well-known Ising and Heisenberg models [33].
Using this decomposition, the overall cost C(θ) is given by a sum of estimates of
local expectation values, i.e.

C(θ) =
JØ

j=1
hj⟨ψ(θ)|Hj|ψ(θ)⟩ (3.10)

where θ denotes the set of all PQC parameters. The local estimates ⟨ψ(θ)|Hj|ψ(θ)⟩
are multiplied by the coefficients hj and summed up on the classical device. This
is schematically shown in Figure 3.3. If the number of local terms in the objective
function is relatively small and scales polynomially with the number of qubits, then
the process of estimating the energy expectation via quantum measurements can
be done in a qubit-efficient manner.
Finally, it is worth mentioning that the task of finding the lowest energy state of
an Ising-type Hamiltonian can also be efficiently tackled on a quantum annealer
[35], which is based on adiabatic quantum computing (AQC). Notably, the gate
model of quantum computing involves applying a series of unitary gates to a set of
qubits, which are then measured at the end of the computation. On the other hand,

40

3.3 – Quantum Approximate Optimization Algorithm

AQC encodes the solution of the optimization problem in the ground state of a
Hamiltonian that defines the dynamics of a n−qubit system. The process involves
starting with a quantum system in the ground state of a simpler Hamiltonian that
can be easily realized experimentally, and then gradually adjusting the system so
that it is controlled by the desired Hamiltonian, in such a way that the system
likely ends up in its ground state.
Adiabatic quantum computing has been shown to be polynomially equivalent to
gate-based universal quantum computing, as any quantum circuit can be represented
as a time-dependent Hamiltonian with at most polynomial overhead [36]. Both
approaches have their strengths and weaknesses, and a careful analysis is required
to determine which approach is better suited for a particular problem.

3.3 Quantum Approximate Optimization Algo-
rithm

The Quantum Approximate Optimization Algorithm (QAOA) is another instance
of a hybrid quantum-classical approach for tackling combinatorial optimization
problems, and was introduced in 2014 by [30]. It is inspired by and incorporates the
ideas of two previously mentioned optimization algorithms, namely AQC and VQE.
Specifically, QAOA uses a parametrized quantum circuit to encode the objective
function of an optimization problem into a Hamiltonian, which is then evolved
adiabatically to find the ground state. Similar to VQE, a classical optimization
algorithm is used to iteratively update the parameters of the quantum circuit
to minimize the expectation value (i.e., the energy) of the evolved Hamiltonian.
However, unlike VQE, the QAOA algorithm is not designed to find the exact ground
state of the Hamiltonian but rather a good approximation of it.
To see this, let us consider again the Schrödinger equation (2.21) introduced in
Chapter 2, which describes the time evolution of a quantum state |ψ(t)⟩ under a
time-independent Hamiltonian H:

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

Given some initial condition |ψ(0)⟩, its solution is given by

|ψ(t)⟩ = U(0, t)|ψ(0)⟩

where U(0, t) is the time evolution operator obtained from the Hamiltonian H as

U(0, t) = exp
3

−iHt

ℏ

4
41

Parametrized Quantum Circuits and Data Encoding

For the sake of simplicity, we use units where the value of ℏ is set to 1; consequently,
the system dynamics can be expressed as

|ψ(t)⟩ = e−iHt|ψ(0)⟩ (3.11)

If we know the initial state |ψ(0)⟩ of the system, then the state at any time t can
be determined by applying the Hamiltonian H over the time period t.
In contrast to the time-independent Hamiltonian used in VQE, the dynamics of
AQC involves time-dependent Hamiltonians of the form

H(t) =
3

1 − t

T

4
H0 + t

T
HF (3.12)

where H0 is the initial Hamiltonian and HF is the final or problem Hamiltonian that
encodes the optimization problem. The solution to this mismatch is to approximate
the time-dependent Hamiltonian H(t) over the time interval [0, T] using a sequence
of time-independent Hamiltonians H1, H2, ..., Hm, each transforming the state over
the shorter time intervals [t0 = 0, t1], [t1, t2], . . . , [tm−1, tm = T].
In the same way, we can approximate the operator U(0, T) as

U(0, T) ≈ U(tm−1, tm) U(tm−2, tm−1) . . . U(t2, t1) U(t0, t1) (3.13)

Clearly, the quality of the approximation improves as the time intervals [ti−1, ti]
become more fine-grained.
The Suzuki-Trotter expansion [37] provides a useful way to approximate the operator
U(0, T). If we have operators A1,A2, ...,Ak (that do not necessarily commute),
then we can use the expansion:

exp (A1 + A2 + ...+ Ak) = lim
m→∞

5
exp

3A1

m

4
exp

3A2

m

4
. . . exp

3Ak

m

46m

(3.14)

Hence, if U(0, T) is expressed as exp ([B + C]T), it is possible to use the Suzuki-
Trotter expansion to get

exp ([B + C]T) = lim
m→∞

5
exp

3BT
m

4
exp

3CT
m

46m

This means that instead of evolving the system with the Hamiltonian [B + C] over
a time interval T , we can break the time interval into m smaller subintervals of
length T/m and apply the operators B and C alternately over these subintervals to
approximately evolve the system over the whole time interval.
In the context of AQC, the general form of Hamiltonians H0 and HF is given by

H0 =
nØ

i=1
σi

x, HF =
nØ

i=1
aiσ

i
z +

nØ
i=1

nØ
j=1+1

bijσ
i
zσ

j
z (3.15)

42

3.3 – Quantum Approximate Optimization Algorithm

Figure 3.4: Principle of QAOA. In QAOA, the observable is the phase Hamiltonian
C of a combinatorial optimization problem. The algorithm involves alternately
applying a sequence of two Hamiltonians (B and C) to an initial state that is an
equal superposition of n qubits. The qubit states are then measured and used to
calculate a cost, which is then minimized using a classical optimization algorithm
by varying the angles β and γ.

for some coefficients ai and bij, i, j = 1, . . . , n. The operator B, also known as
the mixing Hamiltonian, corresponds to the initial Hamiltonian H0, whereas the
operator C, also called the phase Hamiltonian, corresponds to the final Hamiltonian
HF .
The initial state |ψ(0)⟩ is prepared in an equal superposition of all possible solutions,
and can thus be expressed as:

|ψ(0)⟩ = 1√
2n

(|0 . . . 00⟩ + |0 . . . 01⟩ + . . .+ |1 . . . 11⟩) = 1√
2n

2n−1Ø
i=0

|i⟩

Such a state corresponds to the ground state of the operator B and can be easily
constructed from the all-zero state by applying the Hadamard gate H to each qubit,
i.e.

|ψ(0)⟩ = H⊗n|0⟩⊗n (3.16)
Figure 3.4 shows a schematic illustration of the QAOA procedure, which we briefly

summarize below:

1. Given the initial state |ψ(0)⟩ = H⊗n|0⟩⊗n, a parametrized quantum state
|ψ(β, γ)⟩ is constructed by alternately applying the operators B and C, where
β
.= (β1, . . . , βm) and γ .= (γ1, . . . , γm) are vectors of m variational parameters

that determine the duration of each round:

|ψ(β, γ)⟩ = e−iβmBe−iγmC . . . e−iβ1Be−iγ1C
1
H⊗n|0⟩⊗n

2
2. The final quantum state |ψ(β, γ)⟩ is then measured in the computational basis

(z-basis) to obtain a candidate solution that is a binary string. The above

43

Parametrized Quantum Circuits and Data Encoding

state preparation and measurement are repeated multiple times to obtain a set
of binary strings. The expectation value ⟨ψ(β, γ)|C|ψ(β, γ)⟩ of the operator
C, which corresponds to the cost function to be minimized, is then evaluated
using the obtained set of candidate solutions.

3. The variational parameters β and γ are updated based on the outcome of
the previous step, using a classical optimization algorithm. The procedure is
repeated for multiple iterations until convergence is achieved, resulting in the
optimal set of parameters that provide the best approximate solution to the
optimization problem.

Finally, it is worth noting that applying operators e−iβB and e−iγC alternatively is
essential to avoid getting trapped in a local minimum. It is also crucial to ensure
that B and C do not commute [38]. Notably, the application of only e−iγC can
result in an eigenstate of the phase Hamiltonian, leading to being stuck there. This
is because any further application of a linear operator to its eigenvector could only
change its magnitude but not its direction. By the same token, if two commuting
operators are applied alternately, we could get stuck in an eigenstate of both
operators. However, by using non-commuting operators such as σx and σz, there
is always a chance to escape from the local minimum and find the global optimal
solution.
QAOA has been applied to various optimization problems, such as MaxCut [39]
and Graph Coloring [40], and has shown promising results on near-term quantum
devices.

3.4 Data Encoding Strategies
In the context of quantum machine learning, data encoding strategies represent a
fundamental component for a variety of quantum algorithms. As a matter of fact,
in order to utilize quantum computers to learn from classical data, it is necessary
to represent such data using quantum states. In classical quantum computing,
preparing the initial state of the quantum computer, which encodes the input
to the algorithm, is known as state preparation. In quantum machine learning,
however, data encoding is an essential step that goes beyond just preparing the
algorithm. In fact, it plays a critical role in the runtime of the algorithm and can
often be the bottleneck. Therefore, it is crucial to have a good understanding of
different encoding strategies and their advantages and drawbacks. In this section,
we will introduce some relevant schemes for encoding data into an n−qubit system,
including basis encoding, amplitude encoding, angle encoding, and Hamiltonian
encoding.

44

3.4 – Data Encoding Strategies

3.4.1 Basis Encoding
Basis encoding is commonly used in quantum algorithms where arithmetic ma-
nipulation of real numbers is required [41]. Essentially, it links a classical n−bit
string (for example, 0100) with a computational basis state of an n−qubit system
(|4⟩ = |0100⟩). This encoding strategy is considered the simplest since each bit is
directly substituted by a qubit, and computation operates in parallel on all bit
sequences in a superposition.
Let us consider a real number x ∈ R approximated by a τ−bit string according to

x ≈ (−1)bs

τi−1Ø
j=0

bj2j +
τfØ

j=1
b−j2−j

→ |bsbτi−1 . . . b0b−1 . . . b−τf

⟩ .= |x⟩

where τ = (1 + τi + τf) and bs, bj, b−j ∈ {0, 1}. The first bit bs accounts for the sign
of x, while the remaining bits are divided into two parts: τi bits to the left of the
decimal point (integer bits) and τf bits to the right of the decimal point (fractional
bits). Let us now consider a vector x = (x1, . . . , xN) ∈ RN , where N denotes the
number of features. We can concatenate the binary approximations of each feature
xi into a vector1

b1
s, b

1
τi−1, . . . , b

1
−τf

, . . . , bN
s , b

N
τi−1, . . . , b

N
−τf

2
∈ {0,1}τN

which can then be used to derive a quantum state representation of x with τN
qubits of the form

|b1
sb

1
τi−1 . . . b

1
−τf

. . . bN
s b

N
τi−1 . . . b

N
−τf

⟩

For instance, if we use a binary representation with a precision of τi = 2 and τf = 3,
we can represent the input vector x = (−2.625, 0.375) as x = (110.101, 000.110).
Then, we concatenate these bit strings to obtain the binary sequence 110101000110
of length τN that can be represented by the n−qubit quantum state |x⟩ =
|110101000110⟩. The process of preparing such a state is relatively straightforward,
as it only involves flipping the qubits that correspond to non-zero bits. Hence, the
encoding circuit is created by applying the NOT gate Xbi on qubit i:

|0⟩⊗τN →
τNp
i=1

Xbi |0⟩⊗τN

Although the algorithm is simple and involves only the use of the single-qubit gate
X, it demands a substantial amount of qubits, particularly when encoding data
with high accuracy, and is not generally efficient in real-world applications.
Let us now consider a dataset D = (x1, . . . ,xM), where each data point xm ∈ D
is expressed using a binary string of the form bm = (bm

1 , ..., b
m
n) ∈ {0,1}n, m =

45

Parametrized Quantum Circuits and Data Encoding

1, . . . ,M . The binary encoding of D can be obtained by preparing a uniform
superposition of basis states |xm⟩, where each basis state corresponds qubit-wise
to the binary representation of the corresponding input data point:

|D⟩ = 1√
M

MØ
m=1

|xm⟩

To illustrate with an example, let us consider two binary inputs x1 = (01, 11)T and
x2 = (10, 01)T , where each feature is represented using a binary precision of τ = 2.
We can express them as binary strings b1 = (0111) and b2 = (1001), respectively.
These strings can then be associated with the corresponding basis states, namely
x1 = |0111⟩ and x2 = |1001⟩, and the complete data superposition can be obtained
as

|D⟩ = 1√
2

|0111⟩ + 1√
2

|1001⟩ = 1√
2

|7⟩ + 1√
2

|9⟩

The vector of probability amplitudes related to the state |D⟩ have components
equal to 1√

M
for the basis states that correspond to a binary instance in D, while

all other components are zero. In our example, since we have a 4−qubit system
and only two basis states corresponding to binary instances in D, the amplitude
vector (in the computational basis) will be given by

1
0, 0, 0, 0, 0, 0, 0, 1√

2
, 0, 1√

2
, 0, 0, 0, 0, 0, 0

2T

From this, we can notice that basis encoding of datasets typically results in
sparse amplitude vectors, with a much smaller number of non-zero amplitudes (M)
compared to the total number of amplitudes (2n).

3.4.2 Amplitude Encoding
When quantum algorithms do not require arithmetic manipulation of data, more
compact data representations can be used to take advantage of the large Hilbert
space of a quantum device. One such technique is amplitude encoding, which
relates classical information, represented by a real or complex vector, with the
probability amplitudes of a quantum system. Given an N−dimensional data point
x = (x1, . . . , xN) ∈ CN , with N = 2n, we can associate quantum amplitudes to the
components of x according to

x =

x1
x2
...
xN

 → |ψx⟩ = 1
||x||

NØ
i=1

xi |i⟩

46

3.4 – Data Encoding Strategies

where ||x|| = qN
i=1 |xi|2 is the normalization constant. For example, to apply

amplitude encoding to the vector x = (0.3,−0.8, 1.0), we first normalize it to unit
norm and then pad it with zeros to reach a dimension of integer logarithm. The
resulting vector (rounding to three digits) is therefore

x = (0.228,−0.608, 0.760, 0.000)

This normalized vector can now be encoded in the probability amplitudes of a
2-qubit quantum state as:

|ψx⟩ = 0.228 |00⟩ − 0.608 |01⟩ + 0.760 |10⟩ + 0 |11⟩

It is also possible to use amplitude encoding to encode an entire dataset D =
(x1, . . . , xM) consisting of M patterns in RN in superposition as

|ψD⟩ = 1
CD

2pØ
i=1

x̄i|i⟩

for some integer p, where

x̄ = (x̄i)i=1,...,2p = (x1
1, . . . , x

1
N , x

2
1, . . . , x

2
N , . . . , x

M
1 , . . . , x

M
N)T ∈ RMN

is the concatenation of all the patterns in D and CD is a normalization factor. The
integer p is chosen such that 2p ≥ MN , or equivalently, p ≥ log2(MN). However,
there may be some sparsity in the amplitude vector if 2p ≥ MN .
Amplitude encoding allows n quantum registers to hold up to 2n continuous features.
Nonetheless, achieving this requires the creation of deep quantum circuits, which
may not be feasible for NISQ devices when working with a large number of features.

3.4.3 Angle Encoding
Angle encoding is a method that utilizes rotation gates to encode classical informa-
tion into a quantum state. As discussed in section 2.1, the state of a qubit can be
represented as a point on the Bloch sphere using the following unit vector in C2:

|ψ⟩ = cos
A
θ

2

B
|0⟩ + eiϕ sin

A
θ

2

B
|1⟩ =

 cos(θ
2)

eiϕ sin(θ
2)

As a qubit state can be completely identified by specifying two continuous variables,
θ ∈ [0, π] and ϕ ∈ [0, 2π], a single qubit can encode two real-valued features.
Let us assume we are given a dataset with M samples and K features, where all
the features X1, . . . , XK are real-valued. Then, for each data pattern j = 1, . . . ,M ,

47

Parametrized Quantum Circuits and Data Encoding

we can consider a one-to-one correspondence between the feature values Xj
i and

the corresponding rotation angles θj
i according to:

θj
i = Xj

i −Xmin
i

Xmax
i −Xmin

i

π (3.17)

where Xmin
i

.= minj X
j
i and Xmax

i
.= maxj X

j
i are the minimum and maximum

values of the i−th feature across all samples, respectively. The rotation angles θj
i

generalize the angles θ and ϕ in Figure 2.1.
Given the data point Xj = (Xj

1 , . . . , X
j
K) ∈ RK , j = 1, . . . ,M , angle encoding can

thus be applied to Xj in accordance with the mapping

Xj →
Kp

i=1

A
cos

A
θj

i

2

B
|0⟩ + sin

A
θj

i

2

B
|1⟩
B

This approach utilizes a single rotation gate per qubit and is thus capable of
encoding the same number of features as the number of qubits used. However, it
should be noted that a single quantum register has the ability to encode two real
variables. To account for this, the authors in [42] proposed dense angle encoding, an
alternative encoding scheme that utilizes an additional property of qubits, namely
relative phase, to encode two features per qubit. The corresponding mapping for
the classical data point Xj reads

Xj →
Kp

i=1

A
cos

A
θj

2i−1
2

B
|0⟩ + exp (iθ2i) sin

A
θj

2i−1
2

B
|1⟩
B

This strategy allows for the encoding of n data points using only n
2 qubits.

The primary benefit of angle encoding is its high operational efficiency, as it
requires only a constant number of parallel operations, regardless of the number
of data values that need to be encoded. However, the number of qubits required
is influenced by the number of data values, as one qubit is needed to encode
each component of the input vector. Therefore, although the state preparation is
efficient, the number of qubits needed for this encoding is not optimal.

3.4.4 Hamiltonian Encoding
While the methods explored so far involve encoding features directly into quantum
states, Hamiltonian encoding is an alternative approach that utilizes the features to
determine the evolution of the quantum system. It is inspired by the Schrödinger
equation (2.21), whose solution can be written (ignoring the term 1/ℏ for simplicity)
as

|ψ(t)⟩ = e−iHt|ψ(0)⟩

48

3.4 – Data Encoding Strategies

The idea of this method is to associate the Hamiltonian H with a square matrix
X ∈ Cn×n that represents the initial data. When X is Hermitian, we can create
the Hamiltonian matrix HX by setting HX

.= X. On the other hand, when X is
not Hermitian, we can construct a Hermitian version of HX using the augmented
matrix

HX
.=
 0 X

X† 0

To apply Hamiltonian encoding, it is therefore necessary to execute the evolution

|ψ(t)⟩ = e−iHXt|ψ(0)⟩ (3.18)

on a quantum computer, which is also known as Hamiltonian simulation. The
initial state |ψ(0)⟩ represents an n−qubit system, and the resulting state |ψ(t)⟩ can
be regarded as a quantum state that "encodes" the information of the Hamiltonian,
such as its eigenvalues in the phase of the amplitudes.
Given a precision level ϵ, the goal of Hamiltonian simulation is to determine a state
|ψ̃⟩, or an algorithm that produces this state, that satisfies the condition...|ψ̃⟩ − |ψ(t)⟩

... ≤ ϵ

where ∥ · ∥ is a suitable norm used to quantify the distance between quantum
states, and |ψ(t)⟩ is the solution of the Schrödinger equation (3.18).
A significant bottleneck of this technique is related to the calculation of the
exponential matrix e−iHXt. Let us consider a Hamiltonian HX that can be expressed
as sum of several simpler Hamiltonians, i.e.

HX =
JØ

j=1
hjHj

where each Hj is simple to simulate. However, when the terms Hj do not commute,
the factorization rule for exponentials does not hold, i.e.,

exp (−i
JØ

j=1
Hjt) /=

JÙ
j=1

e−iHjt

To tackle the issue of non-commuting Hj, [43] suggested using the first-order
Suzuki-Trotter formula

exp (−i
JØ

j=1
Hjt) =

JÙ
j=1

e−iHjt + O(t2) (3.19)

49

Parametrized Quantum Circuits and Data Encoding

This formula implies that the factorization rule is approximately valid for small
values of t. This can be applied when expressing the evolution of HX over time t
as a sequence of small time steps of length ∆t, so that the factorization reads

exp (−i
JØ

j=1
Hjt) =

exp (−i
JØ

j=1
Hj ∆t)

 t
∆t

=
 JÙ

j=1
e−iHjt + O(∆t2)

 t
∆t

which has a small error. Clearly, there is a trade-off in choosing ∆t, as smaller
values result in a greater number of repetitions of the sequence. Despite this, the
approach enables us to simulate HX by simulating the Hj terms. In most cases, an
n−qubit Hamiltonian H can be expressed as a combination of up to 4n elementary
Hamiltonians in the Pauli form as

H = 1
2n

Ø
i1,...,in∈{X,Y,Z,I}

Tr
A

np
k=1

σik
H

B
np

k=1
σik

Here, σik
denotes a Pauli operator. However, using 4n Pauli operators may be

too extensive in general. Fortunately, local features of the Hamiltonian, such as
sparsity [44], can help reduce the complexity of the problem.

3.5 Conclusions
In this chapter, we presented the concept of parametrized quantum circuits (PQCs)
as a versatile tool for quantum machine learning and optimization applications. We
discussed two significant algorithms associated with PQC, namely the Variational
Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm
(QAOA). VQE is a quantum-classical hybrid algorithm that aims to find the ground
state energy of a given Hamiltonian. This is done by utilizing a PQC to prepare
trial states, and then optimizing the circuit parameters classically to minimize
the expectation value of the Hamiltonian with respect to the trial states. QAOA
is another hybrid quantum-classical algorithm designed to solve combinatorial
optimization problems. It involves encoding the optimization problem into a
quantum state, and then evolving the state under a time-dependent Hamiltonian.
The Hamiltonian is constructed from a series of unitary operators, and the circuit
parameters are classically optimized to find the best approximate solution to the
optimization problem.
Additionally, we explored several popular data encoding methods. Among them,
angle encoding arguably stands out as the simplest and efficient to implement,
while other methods have their own strengths and weaknesses, such as requiring
more advanced hardware or being better suited for specific use cases.
Moving forward, the next chapter will focus on quantum machine learning and

50

3.5 – Conclusions

delve into Generative Adversarial Neural Networks (GANs), providing an in-depth
exploration of both classical and quantum versions.

51

Chapter 4

Quantum Machine Learning

Quantum Machine Learning (QML) is an emerging field that investigates the
potential synergies between quantum computing and machine learning. Quantum
computing, as we have seen, refers to information processing using devices that
operate based on the principles of quantum theory. Machine learning, on the
other hand, is a multidisciplinary area that combines statistics, mathematics, and
computer science. It involves the analysis of large datasets, which are typically
characterized by complex and nonlinear relationships, to enable computers to learn
from past examples. This allows them to make predictions or solve problems
that have not been encountered before. Machine learning transitioned into an
industry-focused research field earlier and on a significantly larger scale compared to
quantum computing, primarily due to the remarkable success of Deep learning. This
machine learning approach involves constructing large architectures by stacking
highly modular algorithms − the well-known neural networks, which are fed with
vast amounts of data and trained using high-performance computing systems.
Proposals to combine quantum computing and machine learning have been around
since the 1980s, but the term QML only came into use in 2013, when the authors of
[45] mentioned it in their manuscript. Since then, the interest in the subject grew
substantially, leading to a rapidly expanding collection of literature that explored
various aspects of integrating the two fields. Presently, quantum machine learning
is recognized as an active sub-discipline within quantum computing research,
encompassing a variety of sub-areas.
There are different definitions of the term QML, but for the context of this chapter,
we will use a narrow definition, which refers to machine learning with quantum
computers or quantum-assisted machine learning. In this sense, QML explores the
possibilities that the ongoing development of quantum computers presents within
the context of intelligent data mining. To provide some generic examples, one might
use a quantum computer as part of a model that needs to be trained; alternatively,
one might use data generated by a quantum process or use a quantum computer

53

Quantum Machine Learning

Figure 4.1: The four main categories of quantum machine learning, classified
based on the types of models and data they utilize. This work focuses on the CQ
category in the chart. Here, the input data is made up of observations from classical
systems, such as text, images, or time series. These data are then processed by a
quantum computer for analysis. Image adapted from [34].

to process quantum-generated data.
A classification proposed by [46] identifies four methods for integrating quantum
computing and machine learning, contingent on whether the data is assumed to be
generated by a quantum or classical system, and whether the information processing
device is quantum or classical. This is schematically depicted in Figure 4.1.
In the CC scenario, both the data and computers are classical, but a quantum

aspect is incorporated into the process. In other words, we can regard quantum-
inspired classical machine learning techniques as part of quantum machine learning.
An instance of this is the utilization of tensor networks, originally designed for
quantum many-body systems, in the training of neural networks [47]. The QC
section in the diagram corresponds to classical machine learning algorithms that
depend on quantum data. Essentially, it involves either data generated by quantum
processes or the use of classical machine learning techniques to quantum computing.
In this chapter, we will concentrate on the type of quantum machine learning
denoted by the CQ designation in the chart. This refers to machine learning that
depends on classical data and integrates quantum computing into either the model
or the training process. Lastly, the QQ category involves working on quantum
data using quantum computing in either the models or training processes. Unlike
CQ quantum machine learning, the quantum data in this case does not necessarily
have to be acquired through measurements, and it can be directly integrated

54

4.1 – Feed-Forward Neural Networks

into a quantum model. Although this area shows great potential, the necessary
technologies are still in an early stage of development.
In this work, we will focus on the use of Generative Adversarial Networks (GAN) as
a machine learning model. We will begin with a brief introduction to Feed-Forward
Neural Networks (FFNN), followed by an exploration of the fundamental concepts
underlying the classical GAN model. Next, we will shift our attention to examine
different types of quantum GAN (qGAN) and their potential advantages.

4.1 Feed-Forward Neural Networks
Deep learning is a paradigm that has revolutionized numerous areas, such as
computer vision, natural language processing, and speech recognition. By employing
artificial neural networks with multiple layers, deep learning algorithms can learn
complex patterns and representations from large datasets.
A Feed-Forward Neural Network (FFNN) is a type of artificial neural network where
the connections between the units do not form a cycle. The information flows only
in one direction, from the input layer, through the hidden layers, and finally to the
output layer. This architecture is also known as a multi-layer perceptron.
The basic building block of a FFNN is the artificial neuron, which is also known as
a perceptron. A perceptron takes several inputs, combines them using a weighted
sum, adds a bias term, and applies an activation function to produce an output.
This process is represented in Figure 4.2.

The activation function introduces non-linearity into the network, enabling it to
learn complex relationships between inputs and outputs. Frequently used activation
functions encompass:

• Sigmoid: σ(x) = 1
1+exp(−x) . The sigmoid function maps inputs to a range of

(0, 1), making it appropriate for binary classification tasks or as an output
layer activation function for networks modeling probabilities.

• Rectified Linear Unit (ReLU): ReLU(x) = max(0, x). The ReLU function is
favored due to its straightforward nature and ability to tackle the vanishing
gradient issue [48].

• Hyperbolic Tangent (tanh): tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) . The tanh function

assigns input values to a range between (−1, 1), offering a similar shape to
the sigmoid function but with an expanded output range. Additionally, it is
centered around zero, providing benefits in specific situations.

• Leaky ReLU: LeakyReLU(x) = max(αx, x). This activation function repre-
sents a modification of the ReLU function, addressing its drawback of dead

55

Quantum Machine Learning

x2

x1

x0 = 1

...

xn

q
qn

i=1 wixi + b

w2

w1

b

...
wn

y

inputs

weights

activation function

output

Figure 4.2: Schematic representation of a perceptron. The inputs are multiplied
by suitable weights, and the resulting weighted sum is fed into an activation function
that generates the output.

neurons by introducing a small slope for negative input values, with α being a
small constant (e.g., 0.01).

The output of a perceptron is calculated as:

y = φ

A
nØ

i=1
wixi + b

B

where xi is the i−th input, wi is the weight associated with the i−th input, b is
the bias term, n is the number of inputs, and φ(·) is the activation function.
To create a FFNN, several layers of perceptrons are stacked together. The first
layer is called the input layer, and it contains the input variables. The last layer
is called the output layer, and it produces the final output of the network. The
layers in between the input and output layers are called the hidden layers. Figure
4.3 shows an example of FFNN with three hidden layers.

Each layer in a FFNN is fully connected to the next layer. This means that
each perceptron in a layer is connected to every perceptron in the next layer. To
calculate the output of a FFNN, the inputs are fed forward through the network,
layer by layer. Specifically, the l−th layer is defined as

yl = φl(Wl yl−1 + bl)

56

4.1 – Feed-Forward Neural Networks

Figure 4.3: A Feed-Forward Neural Network with three hidden layers.

for l = 1, . . . , L, where yl−1 is an nl−1−dimensional input, yl is an nl-dimensional
output, Wl is an nl × nl−1 matrix of weights connecting layer l − 1 to layer l, bl is
an nl−dimensional bias vector, and φl(·) is a non-linear activation function applied
element-wise.
The input to the first hidden layer is simply the input data x = (x1, . . . , xn)T itself.
Subsequent layers take the output of the previous layer as their input. Therefore,
a multi-layer perceptron with L layers is obtained by setting y = yL and y0 = x,
and can be described by the following input-to-output map

y = φL(WLφL−1(WL−1φL−2(. . . φ1(W1x) . . .)))

parametrized by weight matrices W1, . . . ,WL and bias vectors b1, . . . , bL. The
output of the final layer is the output of the entire network. In a classification
task with k classes, the output layer typically has k neurons, each representing the
probability of the input belonging to a particular class.
To train the network, a loss function (e.g., mean squared error or cross-entropy)
is used to measure the difference between the predicted outputs and the actual
labels. During training, the weights and biases of the network are updated using
an optimization algorithm (e.g., backpropagation [32]) to minimize the loss.
The universal approximation theorem [49] also shows that Feed-Forward Neural
Networks are capable of approximating any continuous function, making them a

57

Quantum Machine Learning

versatile and effective tool for solving a variety of problems. However, like all ma-
chine learning models, they require careful tuning and selection of hyperparameters
to achieve optimal performance.

4.2 Generative Adversarial Networks

Generative models are a class of deep learning techniques that are designed to learn
the underlying structure and distribution of data, enabling them to generate new,
realistic samples based on the learned patterns. Some popular generative models
include Variational Autoencoders [50], Boltzmann Machines [51], and Gaussian
Mixture Models [52].
Proposed by Ian Goodfellow et al. in 2014, Generative Adversarial Networks
(GANs) [53] are a powerful class of generative models that have demonstrated
remarkable results in generating realistic images, texts, and other types of data.
The key innovation in GANs lies in the training process, which involves two deep
neural networks, the generator and the discriminator, engaged in a continuous
adversarial game to improve their respective performances. The goal of the generator
is to create synthetic data that closely resembles the true data distribution. It
takes random noise as input (usually from a Normal or Uniform distribution) and
transforms it into a synthetic sample through a series of layers and nonlinear
transformations. The quality of the generated samples improves iteratively as the
generator learns to better mimic the true data distribution during the training
process. The discriminator, on the other hand, acts as a binary classifier trained
to differentiate between real data and synthetic data produced by the generator.
It takes samples from both real and generated sources as input and outputs a
probability indicating whether the input is real or fake. During training, the
discriminator learns to correctly tell apart samples, while the generator attempts
to deceive it by generating increasingly realistic synthetic data.
A very popular example to illustrate the GAN model involves comparing the
generator to a counterfeiter who produces fake currency, while the discriminator
takes on the role of detective, identifying genuine money from fake. The objective
of the generator is to create counterfeit samples that are indistinguishable from the
genuine samples, while the discriminator must accurately distinguish between the
two. This process is depicted in Figure 4.4.
To formalize the GAN model, let X = {x0, . . . , xM−1} ⊂ Rkout be a classical training
dataset drawn from an unknown probability distribution preal. The generator and
discriminator networks are represented by two functions, namely Gθ : Rkin → Rkout

and Dϕ : Rkout → {0,1}, respectively. Each of these functions is differentiable with
respect to the corresponding network parameters, which are denoted by θ ∈ RkG

and ϕ ∈ RkD for the generator and discriminator, respectively. The generator

58

4.2 – Generative Adversarial Networks

Figure 4.4: Analogy between a counterfeiter and a detective demonstrating the
GAN logic, reproduced from [54]. The generator in GAN acts like the counterfeiter,
trying to create fake money and constantly improving their techniques to deceive
the detective. On the other hand, the discriminator embodies the role of the
detective, constantly improving their methods to catch the counterfeiter. This
ongoing competition between the two results in both of them becoming more
proficient at their respective tasks.

transforms samples z from a fixed prior distribution pprior in Rkin into samples that
are expected to be indistinguishable from those of the real distribution preal in
Rkout [55]. In contrast, the discriminator Dϕ attempts to tell apart fake and real
data, and outputs a single scalar value representing the probability of the input
coming from preal.
The cost function of each player is defined based on the parameters of both players.
Specifically, the discriminator aims to minimize LD(θ, ϕ) by controlling only ϕ,
while the generator aims to minimize LG(θ, ϕ) by controlling only θ. As the cost of
each player depends on the other player’s parameters, but neither player can control
the other’s parameters, this situation is best described as a game rather than an
optimization problem [56]. In general, the solution to an optimization problem is a
(local) minimum, i.e., a point in the parameter space where all neighboring points
have greater or equal cost. In contrast, the solution to a game is called a Nash
equilibrium, which we refer to here as a local differential Nash equilibrium according
to the terminology introduced by [57]. In such a case, a Nash equilibrium describes
a combination of parameter values (θ, ϕ) that represents a local minimum of LG

59

Quantum Machine Learning

with respect to θ and a local minimum of LD with respect to ϕ.
Within the framework of GANs, there are multiple cost functions that can be
utilized. Actually, all the games developed for GANs share a common cost function
for the discriminator network, while the variation among these games is limited to
the cost adopted for the generator.
The discriminator cost function is

LD(θ, ϕ) = −Ex∼preal
[logDϕ(x)] − Ez∼pprior

[log(1 −Dϕ(Gθ(z)))] (4.1)

which is nothing but the ordinary cross-entropy cost used for training binary
classifiers with a sigmoid output. However, in GAN the classifier is trained using
two separate minibatches of data - one from the real dataset, with all patterns
labeled as 1, and the other from the generator, where all examples are labeled as 0.
Equation (4.1) is minimized by the discriminator in all GAN variations to achieve
its objective. Training the discriminator in a GAN enables us to estimate the ratio

preal(x)
pG(x)

for every data point x, where pG denotes the probability distribution implicitly
defined by the generated data samples G(z). Despite being referred to as "adver-
sarial" due to its analysis with game theory, GANs can alternatively be seen as
cooperative because the discriminator estimates such density ratio and provides
feedback to the generator to improve, thus acting more like a teacher than an
adversary.
The zero-sum game is the simplest form of the GAN framework, where the sum of
costs for all players is always zero, and the generator and discriminator costs are
thus related by LG = −LD. In this case, the entire game can be summarized with
a value function V that specifies the discriminator’s payoff, i.e.,

V (θ, ϕ) = −LD(θ, ϕ) (4.2)

This type of game is also known as a minimax game, since it involves minimizing
in an outer loop and maximizing in an inner loop:

min
θ

max
ϕ

V (θ, ϕ) = Ex∼preal
[logDϕ(x)] + Ez∼pprior

[log(1 −Dϕ(Gθ(z)))] (4.3)

The minimax game formulation of GANs is attractive for theoretical analysis due to
its simplicity. [53] demonstrated that learning in this game is similar to minimizing
the Jensen-Shannon divergence [58] between the data and generated distribution,
and that convergence to equilibrium is possible if the policies of both players can
be updated in function space. However, these theoretical results may not apply in
practice since the players are usually represented by deep neural networks and the

60

4.2 – Generative Adversarial Networks

updates are made in parameter space, which can violate convexity assumptions.
Therefore, the cost function for the generator in the minimax game (4.3) is helpful
for theoretical analysis, but not very effective in practice. Moreover, equation
(4.3) may not yield a strong enough gradient for the generator to learn effectively
in practice. Typically, the generator performs poorly during the initial stages of
learning, and its generated samples are noticeably distinct from the training data.
As a result, the discriminator can confidently reject the generated samples. In such
circumstances, the term log(1 −D(G(z))) saturates.
To tackle this issue, an alternative approach is to retain cross-entropy minimization
for the generator but modify the target used to calculate the cross-entropy cost
(rather than simply changing the sign of the discriminator’s cost to derive the
generator’s cost). This results in the following updated cost function for the
generator:

LG(θ, ϕ) = −Ez∼pprior
[log(Dϕ(Gθ(z)))] (4.4)

In the minimax game, the generator aims to minimize the log-probability of the
discriminator being correct. However, in this modified version of the game, the
generator aims to maximize the log-probability of the generated samples being
classified as real. This modification is based on heuristics rather than theoretical
concerns, and its primary objective is to ensure that each player has a strong
gradient when they are losing the game [56]. This version of the game is referred
to as the non-saturating game. It is no longer a zero-sum game and cannot be
described by a single value function.
During practical implementation, the expected values are estimated using batches
of size m. As a result, the cost function for the discriminator and the generator
can be expressed as

LD(θ, ϕ) = − 1
m

mØ
i=1

[logDϕ(xi) + log(1 −Dϕ(Gθ(zi)))] (4.5)

LG(θ, ϕ) = − 1
m

mØ
i=1

[log(Dϕ(Gθ(zi)))] (4.6)

for xi ∈ X and zi ∼ pprior.
The process of training a GAN hence involves finding a Nash-equilibrium of the
game

min
ϕ

LD(θ, ϕ) (4.7)

min
θ

LG(θ, ϕ) (4.8)

Generally, the optimization process for equations (4.7) and (4.8) involves alter-
nating update steps for the generator and discriminator parameters. However,
this approach leads to non-stationary objective functions because updates to the

61

Quantum Machine Learning

Figure 4.5: Advancements made by Generative Adversarial Networks (GANs)
trained on facial images. From left to right, the images are from: GAN [53] (2014);
CoGAN [61] (2016); Progressive GAN [62] (2018); StyleGAN [63] (2019).

generator’s or discriminator’s network parameters will also affect the loss function
of the other player. To address this issue, adaptive-learning rate, gradient-based
optimizers like ADAM [59] and AMSGRAD [60] are commonly used to perform the
update steps. These optimizers use an exponentially decaying average of previous
gradients and are well-suited for solving non-stationary objective functions. In Ap-
pendix A, we provide an overview of the most common gradient-based optimization
algorithms used for training neural networks and various other machine learning
algorithms.
Since the introduction of the classical GAN model, several GAN variants have

been proposed that have improved the stability and quality of generated outputs.
Some notable GAN variants include conditional GANs [64], which allow for control
over the output by conditioning on additional information, such as labels or input
images; DCGANs [65], which utilize deep convolutional architectures for both the
generator and discriminator networks; CoGANs [61], which learn joint distributions
of multiple domains; Progressive GANs [62], which generate high-resolution images
by incrementally adding layers to the generator network; and StyleGANs [63], which
use adaptive instance normalization and style transfer techniques to improve image
quality and diversity. StyleGAN has also been introduced to enable the control of
high-level attributes of generated images such as facial expressions, hairstyles, and
clothing styles. As shown in Figure 4.5, these GAN variants have demonstrated
impressive results on a variety of image generation tasks and continue to be an
active area of research in the machine learning community.

4.3 Quantum Generative Adversarial Networks
One area of research in the field of QML investigates the possibilities presented by
quantum Generative Adversarial Networks (qGANs) [66, 67, 68]. A qGAN operates
similarly to a classical GAN, with a discriminator and a generator competing
against each other. However, a quantum GAN incorporates a quantum model,

62

4.3 – Quantum Generative Adversarial Networks

usually in the form of a quantum neural network (i.e., a PQC that can be trained
as either generative or discriminative machine learning models), to perform part
of the model. Despite the quantum aspect, training a quantum GAN follows the
same principles as training a classical GAN.
The architecture of quantum GANs can vary depending on the problem being
addressed, but they all share the fundamental components of a competing discrimi-
nator and generator. In general, quantum GANs can be classified into one of the
following categories:

• Use of quantum data with discriminator and generator both quantum: qGAN
architecture with a fully quantum model utilizes quantum data (i.e., quantum
states), where both the generator and discriminator are quantum circuits that
operate on such quantum states. Because all components of the qGAN are
quantum circuits, feature maps or measurement operations in the middle of
the model are not required, resulting in a unique architecture that is seamlessly
integrated.

• Use of quantum data with a quantum generator and a classical discriminator:
When a qGAN utilizes quantum data with a quantum generator and a clas-
sical discriminator, the resulting architecture will resemble that of classical
GANs. The quantum generator produces quantum states that are eventually
transformed into classical data through a measurement operation, allowing
them to be fed into the classical discriminator network. It is important to note
that the original quantum data will also need to be measured in this scenario.

• Use of classical data with a quantum generator or discriminator: In cases
where classical data is utilized with a quantum generator or discriminator,
qGANs can best resemble their classical counterparts. This approach involves
replacing the generator or discriminator, or both, with a quantum model that
has classical inputs and outputs. If a quantum discriminator is used, a feature
map is required to load classical data into a quantum state.

Since classical data is much more readily available than quantum data, this last type
of architecture has been extensively studied by the quantum computing community.
The remainder of the section is devoted to discussing two different variants of
qGAN that fall into this category: QuGAN [69] and qGAN for Learning and
Loading Random Distributions [55]. In the first model, both the generator and the
discriminator are quantum, while the second model utilizes a hybrid architecture
with a quantum generator and a classical discriminator network.

63

Quantum Machine Learning

4.3.1 QuGAN
QuGAN [69] is a quantum GAN architecture that utilizes quantum state fidelity
for both the quantum discriminator and generator. This approach enables the use
of quantum-based loss functions, which are calculated using a swap test on qubits.
The swap test is a quantum computational procedure that measures the degree of
difference between two quantum states, and enables the use of quantum fidelity
measurements as loss functions in QuGAN.
Figure 4.6 shows the quantum circuit used in the test, which was originally intro-
duced in the context of quantum fingerprinting [70]. This quantum circuit involves
two qubit registers prepared in |ψ⟩ ⊗ |φ⟩ = |ψ⟩|φ⟩, and an ancillary qubit (the
qubit in the first register) in the |0⟩ state. The circuit comprises three gates: two
Hadamard gates H and a controlled SWAP gate (controlled by the first qubit),
denoted by CSWAP. The Hadamard gates transform the |0⟩ state into a super-
position 1√

2(|0⟩ + |1⟩) , and the |1⟩ state into a superposition 1√
2(|0⟩ − |1⟩). The

controlled SWAP operation swaps the states |ψ⟩ and |φ⟩ if the ancillary qubit is in
the state |1⟩. However, when the ancillary qubit is in state |0⟩, the states remain
in their original order. The sequence of operations performed by the circuit is thus
as follows:

|0⟩|ψ⟩|φ⟩ H→ |0⟩ + |1⟩√
2

|ψ⟩|φ⟩ CSWAP→ |0⟩|ψ⟩|φ⟩ + |1⟩|φ⟩|ψ⟩√
2

H→ 1
2 |0⟩ ⊗

1
|ψ⟩|φ⟩ + |φ⟩|ψ⟩

2
+1

2 |1⟩ ⊗
1
|ψ⟩|φ⟩ − |φ⟩|ψ⟩

2 (4.9)

After completing the circuit, the state of the ancillary qubit is measured. The
outcome where the measurement results in the 0 state is referred to as "outcome
0", while the outcome where the measurement results in the 1 state is referred to
as "outcome 1". To determine the probability of measuring the ancillary qubit in
the state 0, also known as the acceptance probability p0, we isolate the coefficients
of the |0⟩ state and square them, obtaining

p0 = P(ancillary qubit = 0) = 1
2

3
⟨ψ|⟨φ| + ⟨φ|⟨ψ|

41
2

3
|ψ⟩|φ⟩ + |φ⟩|ψ⟩

4
= 1

2 + 1
2 |⟨φ|ψ⟩|2

(4.10)

When the two states are identical, the outcome is 0 with probability 1. In this case,
swapping the qubit’s positions has no impact, and there is no entanglement with
the ancillary qubit. However, if the input states are different, both outcomes are
possible; this means that outcome 1 can only occur for different states. In such
instances, we say that the states "fail" the test. When two states fail the test, we
can definitively conclude that they are different. Conversely, if the states "pass"

64

4.3 – Quantum Generative Adversarial Networks

|0⟩ H H

|ψ⟩
swap

|φ⟩

|Ψ1⟩ |Ψ2⟩ |Ψ3⟩

Figure 4.6: Quantum circuit for SWAP test. This setup includes three quantum
gates: a controlled-SWAP gate and two Hadamard gates. |Ψ1⟩ denotes the quantum
state resulting from the application of the first Hadamard gate on the ancillary
qubit (the qubit in the first quantum register). This state is then transformed
into |Ψ2⟩ by using the controlled-SWAP gate on the two registers |ψ⟩ and |φ⟩,
conditioned on the ancillary qubit being in state |1⟩. The final state, |Ψ3⟩, is
obtained by applying the second Hadamard gate on the first qubit. At this time,
the probability of observing the ancillary qubit in state 0, which represents the
acceptance probability p0 = 1

2 + 1
2 |⟨φ|ψ⟩|2 of the test, is computed. This quantity

measures the fidelity of the two states and is bounded in
è

1
2 ,1
é
. If the states are

orthogonal, then the overlap |⟨φ|ψ⟩|2 will be zero and the fidelity will be 1
2 . On

the other hand, if the states are identical, then |⟨φ|ψ⟩|2 = 1 and the fidelity will
also be 1.

the test (outcome 0), it does not necessarily mean that they are equal.
From equation (4.10), we can notice that the acceptance probability p0 depends on
the absolute square of the inner product between states |φ⟩ and |ψ⟩. This quantity
is known as overlap of the input states, and it provides a reliable estimate of how
similar (i.e., close) the two states are. Notably, if the two states being compared
are orthogonal, then |⟨φ|ψ⟩|2 = 0 and the probability of passing the test is p0 = 1

2 .
Conversely, for non-orthogonal states, the probability of passing the test increases
as the states become more similar.
In the more general scenario where the two input states are mixed states represented
by the density operators ψ and φ, the same method can be used, and the acceptance
probability of the test is given by [71]

p0 = 1
2 + 1

2 Tr(ψρ) (4.11)

It is worth noting that in this case the expression ψρ is not an abbreviation for the
tensor product, but a proper operator product. However, in the following we will
consider equation (4.10) for the sake of simplicity.
Figure 4.7 depicts the architecture design of the QuGAN system, which operates

65

Quantum Machine Learning

Figure 4.7: QuGAN Architecture

through iterative exchanges between a classical and quantum computer. The
process involves a classical computer passing a parameterized quantum circuit to a
quantum computer, which measures the quantum state fidelity and sends it back
to the classical computer.
The QuGAN system begins by pre-processing classical data, which is normalized and
then transformed into quantum data. This step is performed only once per dataset.
Depending on the stage of the training algorithm, either a generator/discriminator
circuit or a real data/discriminator circuit is passed to the quantum computer. The
fidelity of the states induced by the quantum circuit is determined by measuring
the expectation value of a single ancillary qubit, and this fidelity information
is subsequently transmitted to the classical computer for further processing and
analysis. If the system is being optimized, the fidelity is utilized to compute
the gradient of each gate in relation to the cost function, and it is then used to
adjust the parameters of the generator and discriminator circuits. The process of
loading quantum circuits, measuring state fidelity, and updating gate parameters
is repeated until the desired convergence is achieved or sufficient epochs have been
completed. Furthermore, once model training is finished, the quantum computer is
no longer required to return a state fidelity, but instead produces a (classical) data
point by sampling from the quantum circuit of the generator.

66

4.3 – Quantum Generative Adversarial Networks

The role of the quantum computer is dependent on the two possible types of
circuits that can be prepared. If real data is being prepared, the circuit prepares
the discriminator state using a PQC, while the data is encoded using some encoding
scheme and fed onto the circuit alongside the discriminator. On the other hand, in
the case of the generator, both the discriminator and generator states are prepared
using their respective PQCs. Notably, the discriminator and generator losses can
be expressed as

Dloss = −E[log(|⟨ζ|δ⟩|2)] − E[log(1 − (|⟨γ|δ⟩|2))] (4.12)
Gloss = −E[log(|⟨γ|δ⟩|2)] (4.13)

where |δ⟩, |γ⟩ and |ζ⟩ denote the quantum states corresponding to the discriminator
D, generator G, and real data X, respectively. The logarithmic terms in the above
equations are related to the normalization of the quantum fidelity measurement to
a [0,1] scale. Indeed, using a range of [0.5, 1] for the input may not be effective in
a logarithmic optimization problem, so the SWAP test value is normalized to a
range of [0, 1] instead. This is why there is no 1

2 term in the above equations.
To create a sample, the quantum state corresponding to the generator is induced
and sampled q times. Each qubit’s average measurement represents the output for
a specific dimension.
We can update the network parameters in a manner similar to a classical GAN by
utilizing quantum gate differentiation [72] and gradient descent (see Appendix A).
By differentiating a quantum gate, we obtain the gradient of a quantum function
(i.e., a function mapping gate parameters to an expectation) with respect to the
gate parameters. The system measures the discriminator loss relative to both the
generator and real data and then updates the parameters of the corresponding PQC
to improve performance. The generator also analyzes its performance against the
discriminator and updates its PQC parameters to improve performance accordingly.
[72] demonstrated that the gradients of quantum measurement expectation values
can be estimated using the same or nearly the same architecture that executes the
original circuit. Specifically, to perform gradient descent of each gate, we consider
the following parameterized differential equation

∂f(θ)
∂µ

= 1
2

3
f
3
µ+ π

2

4
− f

3
µ− π

2

44
(4.14)

where µ ∈ θ is one of the gate parameters, and f is the quantum cost function,
which in our case is defined by equations (4.12) and (4.13). This method enables
analytical differentiation of the Quantum Neural Network, but it has the drawback
of being computationally expensive because the network must be induced twice
per gate to obtain the gradient.

67

Quantum Machine Learning

4.3.2 qGAN Distribution Learning
The process of loading classical data into a quantum register is recognized as a
crucial challenge of NISQ devices that can undermine the effectiveness of several key
quantum processing algorithms. It is widely believed that classical data loading will
continue to pose a significant obstacle, unless quantum parallel access to information
is possible through the use of quantum random access memories (qRAMs) [73].
Therefore, recent discussions in the literature have focused on the concept of
efficiently loading approximate data by adapting machine learning techniques to
quantum hardware.
In general, the most effective methods for loading a generic data structure into
an n−qubit state require O(2n) gates to achieve an exact representation. [55]
introduced a hybrid quantum-classical algorithm that uses quantum Generative
Adversarial Networks to efficiently and approximately load generic probability
distributions into quantum states. This is done by learning the representation of
the probability distribution underlying the data samples through a combination of
a quantum channel, like a parametrized quantum circuit, and a classical neural
network. Such loading process only requires O(poly(n)) gates, which could allow
for the utilization of quantum algorithms that may be advantageous, like Quantum
Amplitude Estimation (QAE) [74]. Hence, efficient qGANs could prove beneficial for
data loading in virtually every field that currently utilizes Monte Carlo simulations
[75], as Quantum Amplitude Estimation is considered the counterparty of Monte
Carlo integration in quantum computing. Indeed, QAE is capable of working with
approximate state preparation because it is not significantly affected by small errors
in the input state. In other words, minor deviations in the input state only result
in minor deviations in the outcome.
In this situation, the goal of the qGANs is not to generate classical samples that
match a set of given classical training data, but to teach the quantum generator how
to produce a quantum state that accurately represents the underlying probability
distribution of the data. More precisely, the quantum generator is trained to
convert an n−qubit input state |ψin⟩ to an n−qubit output state |gθ⟩ described by

Gθ |ψin⟩ .= |gθ⟩ =
2n−1Ø
j=0

ñ
pj

θ |j⟩ (4.15)

where pj
θ represents the occurrence probabilities of the basis states |j⟩. Therefore,

the quantum generator, once trained, is expected to represent an n−qubit quantum
state given by the equation

|gtrained⟩ =
M−1Ø
j=0

√
pj |xj⟩, (4.16)

68

4.3 – Quantum Generative Adversarial Networks

In this equation, the basis states |xj⟩ correspond to the data items in the training
dataset X = {x0, . . . , xM−1}, with M ≤ 2n, while pj represents the probability of
sampling |xj⟩.
In order to achieve this representation, we must first map the samples from
continuous probability distribution into discrete values. The number of possible
values that can be represented depends on the number of qubits used in the mapping.
For instance, if we use 4 qubits to represent one feature, we can represent 16 discrete
values. To obtain these discretized values, we can use an affine map such as

{0,1, . . . , 2n − 1} ∋ i → high− low

2n − 1 · i+ low (4.17)

which transforms an input value i into a value within the range [low, high], where
the values for low and high are usually selected as the 5th and 95th percentiles
of the dataset X. This is done to reduce the number of required qubits for a
reasonable representation of the distribution. In the training process, the affine
mapping can be applied in a classical manner by measuring the quantum state.
However, if the resulting quantum channel is utilized in another quantum algorithm,
the mapping must be executed as part of the quantum circuit. It has been shown
that this affine mapping can be implemented in a gate-based quantum circuit using
a linear number of gates [76].
The quantum generator is created using a variational form that consists of a
parametrized quantum circuit, while the discriminator is implemented as a classical
deep neural network. To train the qGAN, the generator output state |gθ⟩ is
measured in the computational basis to obtain samples, where the measurement
outcomes can be any |j⟩, j ∈ {0,1, . . . , 2n − 1}. Unlike classical sampling, the
sampling process does not require a stochastic input, as it is based on the intrinsic
stochasticity of quantum measurements. The measurements produce classical
information, with pj defined as the measurement frequency of |j⟩.
To extend this scheme to d−dimensional distributions, d qubit registers can be
selected, each with ni qubits, i = 1, . . . , d and finally a multidimensional grid is
constructed.
The choice of an appropriate input state |ψin⟩ can aid in reducing the complexity
of the quantum generator and the number of training epochs while avoiding local
optima during quantum circuit training. However, it is crucial that the preparation
of such input state does not dominate the overall gate complexity, and thus it should
be loadable using O(poly(n)) gates. This is achievable for efficiently integrable
probability distributions, such as log-concave distributions (e.g., the exponential
and normal families), which are characterized by the property that ∂2

∂x2 log p(x) < 0.
In practical applications, the statistical analysis of the training data can assist
in selecting an appropriate initial state from a set of distributions that can be
loaded efficiently, for instance by comparing the expected value and variance of the

69

Quantum Machine Learning

distributions. The classical discriminator is a deep neural network that includes
multiple layers that apply nonlinear activation functions. As in the classical case,
its role is to process data samples and classify them as either real or generated.
It is important to carefully choose the topology of the networks, including the
number of nodes and layers, to prevent the discriminator from becoming too
dominant over the generator or vice versa.
The qGAN loss functions are determined by consideringm data samples gi generated
by the quantum generator and m training data samples xi chosen randomly, and
are given by

LD(θ, ϕ) = − 1
m

mØ
i=1

[logDϕ(xi) + log(1 −Dϕ(gi))] (4.18)

LG(θ, ϕ) = − 1
m

mØ
i=1

[log(Dϕ(gi))] (4.19)

Here, ϕ denotes the weight vector of the deep neural network used as the discrimina-
tor, while θ corresponds to the parameter vector of the PQC used as the generator.
The training process is illustrated in Figure 4.8. To calculate the analytical gradient
of the generator quantum circuit, we can exploit the fact that equation (4.19) can
be rewritten as

LG(θ, ϕ) = −
2n−1Ø
j=0

pj
θ [log(Dϕ(gj))] (4.20)

where
pj

θ = |⟨j|gθ⟩|2 (4.21)

To update the parameters θ using gradient-based methods, we need to evaluate
the expression

∂LG(θ, ϕ)
∂µ

= −
mØ

j=1

∂pj
θ

∂µ
[log(Dϕ(gj))] (4.22)

for all gate parameters µ ∈ θ. As seen in section 4.3.1, quantum gradients can be
evaluated according to the equation

∂pj
θ

∂µ
= 1

2
1
pj

µ+ π
2

− pj
µ− π

2

2
(4.23)

Similar to the classical scenario, the optimization of the loss functions is performed
alternately by adjusting the parameters of the generator and the discriminator.

70

4.4 – Conclusions

Figure 4.8: qGAN for probability distribution learning. In this case, the quantum
generator - which is a parametrized quantum circuit - is trained to convert an
input state |ψin⟩ into an output state |gθ⟩ that accurately reflects the probability
distribution underlying the data. To train the qGAN, samples are obtained by
measuring the output state |gθ⟩ in the computational basis. Similar to the classical
scenario, the discriminator aims to distinguish between the generated samples and
the actual training samples. The generator and discriminator are trained in an
iterative and alternating manner to improve their respective performances.

4.4 Conclusions
In this chapter, we introduced the exciting field of Quantum Machine Learning,
which combines the power of quantum computing with classical machine learning
techniques. Specifically, we focused on the quantum-assisted machine learning
paradigm that integrates quantum computing either into the model or the training
process. To provide context, we briefly described classical Feed-Forward Neural
Networks, which are fundamental building blocks in classical machine learning.
Additionally, we provided a detailed explanation of the classical GAN model,
which has been instrumental in generative modeling in recent years. Finally, we
discussed two versions of quantum GAN: QuGAN, which is a fully quantum model
based on quantum state fidelity, and qGAN for distribution learning, which uses a
quantum generator and a classical discriminator to load an approximate probability
distribution into a quantum state. These concepts set the stage for the next chapter,
where we will illustrate the application of these techniques in numerical experiments.
Notably, we will consider the application of QuGAN to quantum image generation,
and present the results related to the loading of a univariate and bivariate Student’s

71

Quantum Machine Learning

t-distribution using qGAN for distribution learning.

72

Chapter 5

Applications and Numerical
Experiments

This chapter presents the results obtained from applying the previously defined
quantum machine learning models to real datasets. Firstly, we will analyze the
QuGAN performance in the classical task of image generation using the MNIST
dataset [77], which comprises of 70,000 hand-drawn digit images labeled with their
respective classes. Secondly, we will evaluate the effectiveness of the qGAN in
loading univariate and multivariate Student’s t-distributions, which have become
popular models for economic and financial data due to their various applications
such as modeling of stock returns [78], European option pricing [79], measuring
Value-at-Risk [80] and many more.
All the numerical experiments were implemented using Python 3.9 frameworks,
including Qiskit [81] and PennyLane [82]. Our primary focus is to evaluate the
accuracy of the proposed methods rather than computational time, and to highlight
the benefits and possible improvements of a hybrid approach over a classical one.

5.1 QuGAN applied on MNIST dataset

5.1.1 Dataset and Data Qubitization
The MNIST dataset is widely used as a benchmark for evaluating the performance
of various machine learning models in image classification tasks. This dataset
contains 60,000 images of handwritten digits (0-9) for training and 10,000 images
for testing, each of which is labeled with its corresponding class. The images are
grayscale and have a resolution of 28×28 pixels. Figure 5.1 illustrates a random
sample of 14 images from the dataset.
To translate a classical numerical pixel value xi into a quantum state, we first

75

Applications and Numerical Experiments

Figure 5.1: Random sample of 14 images from the MNIST dataset.

scale it to fit within the range [0, 1]. Afterward, we apply a rotation around the
y−axis, where the rotation angle is defined as

θxi
= 2 sin−1(√xi) (5.1)

The resulting qubit expectation, when measured against the Z basis, corresponds
to the xi value of the classical data that the qubit encodes.

5.1.2 Dimensionality Reduction
The primary criterion for evaluating success in the image generation field is the
perceived realism of generated images to the human eye. However, generating images
with a resolution of 784 pixels would require a number of qubits that is currently
infeasible for existing quantum hardware, necessitating the need for dimensionality
reduction of the original images. This reduced representation is referred to as
the latent vector of the image. Nevertheless, reducing the dimensionality while
maintaining fidelity is challenging.
In this work, we implement an autoencoder to reduce the dimensionality of the data.
An autoencoder is a type of neural network that utilizes its inherent nonlinear
characteristics to enable more advanced dimensionality reduction, compared to
standard techniques such as Principal Component Analysis [83].

It is composed of two main parts: an encoder and a decoder. The encoder takes
the input data and maps it to a lower-dimensional representation, while the decoder
takes this lower-dimensional representation and maps it back to the original input
space. Mathematically, an autoencoder can be defined as follows. Let x ∈ Rd be an
input data point, and let z ∈ Rm be its corresponding encoded representation, with
m ≪ d. The encoder can be represented by a function f : Rd → Rm, which maps
the input data x to its encoded representation z. The decoder can be represented
by a function g : Rm → Rd, which maps the encoded representation z back to
the original input space. During training, the autoencoder learns to minimize a

76

5.1 – QuGAN applied on MNIST dataset

Figure 5.2: Illustration of an autoencoder architecture in action, showing the
process of encoding an input image to a compressed (latent) representation and
subsequently decoding it to reconstruct the original image.

reconstruction loss, which measures the difference between the original input data
and its reconstructed version. One common choice of reconstruction loss is the
mean squared error (MSE) loss, which is defined as follows:

LMSE = 1
M

MØ
i=1

1
xi − g(f(xi))

22
(5.2)

where xi is the i-th input data point, i = 1, . . . ,M .
The goal of the autoencoder is to learn a compressed representation that captures
the most important features of the input data. Figure 5.2 illustrates an example of
such network.
In this case, the QuGAN is trained to generate 4-dimensional latent vectors that
can be decoded into a 784-dimensional vector that represents the pixel values of a
handwritten image. The whole system is composed of both classical and quantum
elements, combining the encoder, the QuGAN used for training, and the decoder
utilized for inference.

5.1.3 Quantum Circuit Ansatz
Based on [69], we utilize a parameterized quantum circuit approach by considering
three essential types of quantum gates, namely single qubit unitary, dual qubit
unitary, and an entanglement unitary. The single qubit unitary applies an Ry(θ)

77

Applications and Numerical Experiments

gate on a single qubit, rotating its position around the y−axis by an angle of
θ. This gate manipulates a single qubit’s superposition. The dual qubit unitary
Ryy(θ) rotates two qubits around the y−axis by a shared parameter θ. This gate
manipulates the superposition of two qubits. The entanglement unitary employed
by QuGAN is a CRy(θ) gate, which rotates a qubit around the y−axis by θ if the
control qubit measures 1.

The unitary matrices of these gates are given by

Ry(θ) =
cos

1
θ
2

2
− sin

1
θ
2

2
sin

1
θ
2

2
cos

1
θ
2

2 (5.3)

Ryy(θ) =

cos

1
θ
2

2
0 0 i sin

1
θ
2

2
0 cos

1
θ
2

2
−i sin

1
θ
2

2
0

0 −i sin
1

θ
2

2
cos

1
θ
2

2
0

i sin
1

θ
2

2
0 0 cos

1
θ
2

2

 (5.4)

CRy(θ) =

1 0 0 0
0 1 0 0
0 0 cos

1
θ
2

2
− sin

1
θ
2

2
0 0 sin

1
θ
2

2
cos

1
θ
2

2
 (5.5)

The discriminator and generator circuits have been both designed equally, giving
them the same ability to learn the ideal quantum state. Figure 5.3 provides a
visualization of the architecture of the generator and discriminator, depicting three
of the four main components: the discriminator, ancillary qubit, and generator. In
the case of a real sample, the trainable rotations in q5 through q8 are replaced with
the latent vector representing a data point.

5.1.4 Results and Discussion
The autoencoder used in this work consists of three layers in both the encoder
and decoder, namely a dense layer with 256 units, a dense layer with 64 units,
and a dense layer with 4 units. The input and output layers consist of 784 units
each, representing the pixel values of the handwritten images. The total number of
trainable parameters (i.e., weights) is 436,116.
To train the autoencoder, we used the Keras deep learning library [84] with the
mean squared error (MSE) loss function and Adam optimizer with a learning rate
of 10−3. The model was trained for 15 epochs with a batch size of 128 and shuffle
set to true. In the context of machine learning, a training epoch is a complete
pass through the entire training dataset during the training phase of a model. The
number of epochs is a hyperparameter that determines the number of times the

78

5.1 – QuGAN applied on MNIST dataset

Figure 5.3: Architecture of the implemented QuGAN circuit. Qubits q1 to q4
serve as the discriminator, while qubits q5 to q5 are used for generator parameters
or data loading. Qubit q0 is used as the ancillary qubit for the SWAP test, allowing
for measuring quantum state fidelity and enabling inter-circuit communication.

model is trained on the entire dataset. Batch size refers to the number of data
points that are processed together in a single forward and backward pass through
the neural network during training. A larger batch size means that more data
points are processed at once, which can speed up training time, but also requires
more memory. Finally, shuffling refers to the randomization of the order of data
points within the training dataset before each epoch. This is typically done to
prevent the model from learning spurious correlations based on the order of the
data points.
The validation data used was the test set consisting of 10,000 handwritten images.
After training, the autoencoder achieved a loss value of 0.0282 on the training set
and a validation loss of 0.0287. Figure 5.4 shows some examples of the autoencoder’s
performance on handwritten digit images from the test set. We can see that the
autoencoder successfully captures the essential features of the input images and
generates high-quality reconstructions.

The QuGAN model was trained using a subset of the MNIST dataset. We
employed PennyLane [82] to simulate the quantum circuit of the QuGAN during
the training process. To verify that the QuGAN learned the intrinsic probability
distribution and that the success of the autoencoder’s training did not affect the
QuGAN output, we trained the model on a subset of the original data: the images

79

Applications and Numerical Experiments

Figure 5.4: Examples of reconstructed images from the MNIST dataset with the
trained autoencoder.

labeled as "0" or "5". This approach helped us confirm the QuGAN training success
and independence from the autoencoder. The initial parameters for the generator
and discriminator circuits were randomly initialized within the range [0, π]. The
hyperparameters of the training procedure, including the batch size, learning rate,
and number of iterations for the discriminator and generator circuits, were carefully
selected to optimize the performance of the QuGAN. The best results in terms
of image quality were obtained with a batch size of 5, a learning rate of 10−3, 50
epochs, 100 iterations for the discriminator on generated data, and 15 iterations
for the generator circuit.
In Figure 5.5, we present a selection of 15 images that were produced by the QuGAN
using the hyperparameters and training data previously described. These images
represent a combination of zeros and fives, and they were obtained by sampling the
generator circuit for q = 30 times and computing the mean measurement per qubit.
To assess the performance of the trained QuGAN, we used the Hellinger Distance
[85] as a metric to measure the similarity between the generated distribution and
the original dataset distribution. The Hellinger distance is defined as:

H(P ||Q) = 1√
2

öõõô nØ
i=1

(√pi − √
qi)2 (5.6)

where n is the size of the support and pi and qi are the probabilities assigned by
P and Q to the i−th element of the support. Intuitively, the Hellinger distance
measures how well one distribution can be approximated by the other. It ranges
from 0 to 1, where a value of 0 indicates that the two distributions are identical,
and a value of 1 indicates that they are completely dissimilar. To compute the
Hellinger distance between the generated images and the original dataset, we
used 1000 samples generated from the generator circuit. We converted each set
of data to a probability distribution by computing a histogram of the data and
normalizing it to sum to 1. The resulting Hellinger Distance value obtained was
0.29142. While this value is not zero, it indicates that the generated distribution
is somewhat similar to the original dataset, demonstrating that the QuGAN has

80

5.2 – qGAN for Loading Student’s t-Distributions

Figure 5.5: Sample of 15 images generated by the QuGAN. The images were
produced using the hyperparameters and training data described in the text. The
QuGAN achieved nice results with some degree of variation and detail, but also
some imperfections. Overall, these results show the potential of QuGANs for image
generation with fewer parameters than classical GANs.

learned some of the statistical features of the restricted MNIST dataset, even
when trained on a compressed version using the autoencoder preprocessing step.
Compared to classical GANs, the QuGAN requires significantly fewer parameters
(only 11 rotations for both the generator and the discriminator), which highlights
the potential of quantum computing for image generation tasks. As quantum
computing technology continues to advance, we expect to see more applications of
QuGANs with higher dimensionality and broader applicability.

5.2 qGAN for Loading Student’s t-Distributions

5.2.1 Student’s t-Distribution and its Generalization
The distributional form of returns on underlying assets is a critical aspect to
consider in finance, particularly under derivative valuation theories. Heavy-tailed
distributions are commonly used as a substitute for the Normal distribution in
financial studies, with the Student’s t-distribution being a popular example. These

81

Applications and Numerical Experiments

types of distributions are important in finance and risk management because they
can better model situations where extreme events, such as market crashes or major
price fluctuations, are more likely to occur. Therefore, when analyzing real market
data, heavy-tailed distributions offer a more suitable alternative to the Normal
distribution. The Student’s t-distribution is particularly useful for fitting the
distributions of logarithmic asset returns with ν degrees of freedom, typically falling
within the range of 3 ≤ ν ≤ 5 [86].
In its general form, the Student’s t-distribution is a bell-shaped distribution that
depends on three parameters, namely the degrees of freedom ν, a location parameter
µ, and a dispersion parameter σ2 [87]. The degrees of freedom determine the
thickness of the tails, with larger values of ν resulting in thinner tails and smaller
values of ν resulting in heavier tails. When ν tends to infinity, the Student’s
t-distribution approaches the Normal distribution. The location parameter µ
indicates the center of the distribution, while the dispersion parameter σ2 controls
the spread of the distribution. In the case where µ = 0 and σ2 = 1, the resulting
distribution is called the standard Student’s t-distribution.
Given a random variable X following a Student-t distribution with parameters ν,
µ, and σ2, i.e., X ∼ St(ν, µ, σ2), its probability density function can be expressed
as

fν,µ,σ2(x) =
Γ
1

ν+1
2

2
Γ
1

ν
2

2 1√
νπσ2

A
1 + 1

ν

(x− µ)2

σ2

B− ν+1
2

(5.7)

where Γ(·) is the gamma function

Γ(z) =
Ú ∞

0
tz−1e−tdt

The standard parameters that describe the properties of the Student’s t-distribution,
namely expected value, standard deviation, and skewness, are given by

E[X] = µ

Sd[X] = ν

ν − 2
√
σ2

Sk[X] = 0

(5.8)

and they are defined for ν > 1, 2, and 3 respectively.
Extending the Student’s t distribution to a random vector X ∈ RN is a straight-
forward process, resulting in the multivariate Student’s t-distribution. We denote
such distribution by X ∼ St(ν,µ,Σ), where µ ∈ RN is a location parameter vector
that determines the highest point of the distribution, and Σ is a symmetric N ×N
positive-definite matrix that determines the shape of the distribution around its
peak. The degrees of freedom ν determine the importance of the peak of the

82

5.2 – qGAN for Loading Student’s t-Distributions

distribution in comparison to its tails. The probability density function of the
multivariate Student’s t-distribution can be expressed as

fν,µ,Σ(x) = (νπ)− N
2

Γ
1

ν+N
2

2
Γ
1

ν
2

2 |Σ|−
1
2

3
1 + 1

ν
(x − µ)T Σ−1 (x − µ)

4− ν+N
2

(5.9)

where |Σ| denotes the determinant of Σ. The expected value and the covariance
matrix of X are given by

E[X] = µ

Cov[X] = ν

ν − 2Σ
(5.10)

The generic marginal distribution is still Student’s t-distributed; additionally, the
Student’s t-distribution is invariant under affine transformations. However, unlike
the Normal distribution, the conditional distribution of a Student’s t-distribution is
not generally a Student’s t-distribution. As a result, the marginal and conditional
distributions cannot be the same, leading to the conclusion that random variables
that have a joint Student’s t-distribution are not independent [87]. The multivariate
Student’s t-distribution converges to the multivariate Normal distribution in the
limit as ν → ∞, similar to the one-dimensional case.

5.2.2 qGAN Architecture and Implementation
The design of the parameterized quantum circuit is a critical aspect influencing
the performance of any quantum machine learning model. For the implementation
of the quantum generator in our qGAN, we employed a hardware-efficient SU(2)
2-local circuit, which consists of layers of single-qubit operations from the special
unitary group SU(2) and controlled-X (CX) gates for entanglement. The special
unitary group SU(2) comprises 2 × 2 unitary matrices with determinant equal
to 1, such as the Pauli rotation gates. In our implementation, we utilized Ry(θ)
and Rz(θ) single-qubit gates and a reversed linear entanglement strategy, whereby
qubit i is entangled with qubit i+ 1, i ∈ {n− 2, n− 3, . . . , 1, 0}. This configuration
provides the same unitary transformation as the full entanglement strategy, where
each qubit is entangled with all the others, but requires fewer entangling gates,
making it a more efficient choice [88]. The circuit starts with a layer of Ry(θ) and
Rz(θ) rotations, followed by k repetitions of alternating CX gates and additional
Ry(θ) and Rz(θ) layers, as shown in Figure 5.6. The parameter k is closely linked
to a crucial property of a quantum circuit known as circuit depth. Circuit depth
quantifies the number of layers of quantum gates executed in parallel to perform
the computation prescribed by the circuit itself [89]. As quantum gates require time
for execution, the depth of a circuit is closely related to the approximate execution
time on a quantum computer. Notably, a shallow circuit is desirable for efficient

83

Applications and Numerical Experiments

Figure 5.6: Variational form of the quantum generator. After a first layer of
Ry(θ) and Rz(θ) rotations, the circuit consists of k alternating repetitions of CX
layers and further layers of Ry(θ) and Rz(θ) gates.

quantum computation as it reduces the execution time and the risk of error due to
decoherence. Therefore, circuit depth serves as an important metric to determine
if a quantum circuit can run on a specific quantum device. Mathematically, circuit
depth is defined as the length of the longest path in a directed acyclic graph (DAG)
that represents the evolution over time of a qubit’s state. However, to provide an
intuitive understanding of circuit depth, one can draw an analogy to the popular
game Tetris [90], where the falling blocks in different shapes and layers correspond
to the quantum gates executing in parallel layers. By grasping this analogy, which
is illustrated in Figure 5.7, one can visualize how the circuit depth impacts the
execution time and resource requirements of a quantum circuit.
The variational circuit has a total of (k + 2)n parametrized single-qubit gates

and kn two-qubit gates if it acts on n qubits. Increasing the depth of the circuit,
similar to adding layers in deep neural networks, allows the circuit to represent
more complex structures and results in an increase in the number of parameters.
The hardware-efficient SU(2) 2-local circuit design offers several justifications for
its use in training a qGAN model. Firstly, it addresses hardware constraints by
minimizing the number of physical gates required for implementation, making
it well-suited for near-term quantum devices with limited connectivity and high
error rates. Moreover, the hardware-efficient SU(2) 2-local circuit design sets the
foundation for scalability. As quantum devices continue to advance, larger and more
complex systems are being developed. By employing a circuit design optimized for
hardware efficiency, the qGAN model can be readily scaled up to larger quantum
systems in the future, enabling the transfer of training techniques to more advanced
hardware platforms.
To perform our tests, we used the Qiskit library [81], which offers the option to
run quantum circuits on different types of devices. These device types include:

84

5.2 – qGAN for Loading Student’s t-Distributions

Figure 5.7: Analogy with Tetris game to explain the concept of circuit depth,
reproduced from [89]. The depth of a quantum circuit can be compared to the
height of a Tetris game board, and adding more layers of gates to a circuit is like
stacking more Tetris pieces on top of each other. In the same way that it takes
more time and effort to clear a higher stack of Tetris pieces, a deeper quantum
circuit requires more time and resources to execute. Figure (b) summarizes the
steps involved in the computation of the depth for the circuit shown in Figure (a),
which is equal to 9.

1. the statevector simulator, which computes the exact state of the circuit under
ideal conditions;

2. the noiseless simulator, which simulates ideal conditions, but provides an
approximate output based on the number of measurements specified (a.k.a.
shots);

3. the noisy simulator, which introduce a noise model to the gate executions;

4. real quantum hardware, which utilizes IBM’s devices available in the cloud.

Initial experiments indicated that the convergence behavior of the training process
differs significantly between results obtained from the statevector simulator and
the noiseless simulator. This is because the limited number of measurements in
the noiseless simulation approximation causes stronger oscillations in the neural
network. As a result, a larger parameter space must be evaluated to determine the
gradient and prevent local flatness [73]. In the noisy simulator, a basic noise model
generated automatically by Qiskit was utilized, incorporating information extracted
from real quantum systems snapshots. These snapshots encompass important
details regarding the quantum system, including the coupling map, basis gates,
and qubit properties such as the relaxation time constants and the readout error

85

Applications and Numerical Experiments

Figure 5.8: Histogram of the initial training data, consisting of 20,000 samples
drawn from a standard Student’s t-distribution with ν = 3 degrees of freedom.

probability. Specifically, the IBM Quantum system known as "ibmq_manila", which
consists of 5 qubits, was considered for this purpose. The difference between the
noiseless and noisy simulators was found to be minimal, which may be due to
neural networks’ ability to handle noise and the shallow depth of the implemented
circuits. However, the execution time is significantly longer in noisy simulations
because it requires the artificial replication of noise in the simulator. Given the
current state of technology, it is challenging to conduct extensive testing of hybrid
algorithms on quantum hardware due to the significant time and effort required to
connect to the backends. This challenge is amplified in hybrid approaches, where
iterative querying of the quantum computer is necessary, leading to an increase of
the total computational time required by the algorithm. Therefore, we opted to
perform our training process on the noiseless simulator as it offers the best balance
between execution time and result significance for our purposes.

5.2.3 Results and Discussion
In this section, we present the results of an extensive simulation study that in-
vestigates various training settings for qGANs. The study focuses on generating
two different target distributions, namely univariate and bivariate standard Stu-
dent’s t-distributions. For the univariate case, we used a quantum generator that
operates on n = 3 and n = 4 qubits, enabling the representation of 23 = 8 and
24 = 16 discretized values, respectively. Figure 5.8 shows a histogram of the initial

86

5.2 – qGAN for Loading Student’s t-Distributions

Figure 5.9: Histograms of the discretized training data for the n = 3 (left) and
n = 4 (right) cases, obtained from a standard Student’s t-distribution with ν = 3
degrees of freedom. The discretized values were obtained using the affine map
(4.17) and selecting the 2nd and 98th percentiles of the dataset as low and high
values, respectively. The resulting distributions preserve the heavy-tailed nature of
the target distribution while maintaining a bell shape.

training data, which consists of 20,000 samples drawn from a standard Student’s
t-distribution with ν = 3 degrees of freedom. To discretize the samples, we applied
the affine map (4.17) and selected the 2nd and 98th percentiles of the dataset as
low and high values, respectively. This approach, chosen considering the limited
number of qubits used in our study, not only allowed to preserve the heavy-tailed
nature of the distribution but also to maintain a bell shape. The histograms of
the discretized training data for n = 3 and n = 4 cases are illustrated in Figure
5.9. The initial state |ψin⟩ of the generator was prepared in accordance with a
discrete uniform distribution, necessitating the use of n = 3 and n = 4 Hadamard
gates, i..e., one per qubit. The discriminator, implemented using PyTorch [91], is
a standard deep neural network consisting of two hidden layers. Specifically, the
intermediate nodes use the Leaky ReLU activation function with a negative slope
of 0.2, while the output node uses sigmoid activation.
To train the qGAN, we used AMSGrad (see Appendix A) with an initial learning
rate of 10−3. This optimization technique is robust for non-stationary objective
functions and noisy gradients due to the use of first and second momentum terms.
These parameters were set to (β1, β2) = (0.7, 0.99) for both the discriminator and
the generator. During each training epoch, the generator’s objective is to produce
probabilities that the discriminator would classify as probabilities from the real
training data distribution. To obtain such probabilities, the generator output state
|gθ⟩ is measured based on the specified number of shots s. On the other hand, the

87

Applications and Numerical Experiments

Figure 5.10: An example of a qGAN run that appears to have converged based
on loss function analysis, but that still results in a suboptimal approximation of
the target distribution.

discriminator aims to distinguish between the original data distribution and the
probabilities generated by the generator.
In the classical GAN literature, it is acknowledged that the convergence of the model
cannot solely be determined by the analysis of loss functions. While a run may
appear to have converged, it is still possible to obtain a suboptimal approximation
of the target distribution, as shown in Figure 5.10. This can happen due to two
main reasons: firstly, the optimizer may find a solution that is not the global opti-
mum but a local minimum, resulting in an imperfect approximation. Secondly, the
chosen ansatz may not have the capability to reach a point that is close enough to
the target distribution, leading to an inadequate representation. Hence, it becomes
crucial to incorporate additional metrics besides loss functions for a comprehensive
evaluation of the generated samples and overall performance of the qGAN model.
The Kolmogorov-Smirnov statistic [92] and relative entropy [93] are commonly used
metrics to assess the training performance of quantum representations of probabil-
ity distributions underlying the training data. The Kolmogorov-Smirnov statistic
compares the empirical cumulative distribution functions P (X ≤ x) and Q(X ≤ x)
of two probability distributions P and Q. It quantifies the largest vertical distance
between these CDFs, thus serving as a measure of the goodness-of-fit between the
distributions, and its expression is given by

DKS(P ||Q) = sup
x∈X

|P (X ≤ x) −Q(X ≤ x)| (5.11)

Assuming the null hypothesis that the probability distribution obtained from |gθ⟩
is equal to the underlying probability distribution of the training data, the KS
statistic determines whether the null hypothesis should be rejected or not at a

88

5.2 – qGAN for Loading Student’s t-Distributions

specified confidence level (1 − α). To perform the test, we collected 2,000 samples
from both distributions and chose a significance level of α = 0.05. If the resulting
p-value is less than 0.05, we reject the null hypothesis in favor of the alternative
hypothesis, indicating that the two distributions are different. A larger KS statistic
leads to a smaller p-value, providing evidence against the null hypothesis and
supporting the alternative hypothesis.
The relative entropy, also known as Kullback-Leibler divergence, is an additional
measure that can be utilized to assess the similarity between two discrete probability
distributions P (x) and Q(x). This entropy-based measure is defined as follows:

DRE(P ||Q) =
Ø
x∈X

P (x) log
A
P (x)
Q(x)

B
(5.12)

The relative entropy is always non-negative, i.e., DRE(P ||Q) ≥ 0, and it equals
zero when P (x) = Q(x) for all values of x.
To implement a qGAN for a particular application, it is crucial to determine the
optimal configuration that allows the trained circuit to closely approximate the
target distribution. Our testing involved experimenting with various combinations
of hyperparameters, as summarized in Table 5.1. For the n = 3 qubit case, the
optimal configuration was achieved with a generator consisting of k = 1 repetition,
(h1, h2) = (50,20) nodes for the discriminator network, a learning rate of η = 10−3

for both the generator and discriminator, a maximum of Emax = 2,000 epochs,
and s = 10,000 shots for the generator circuit. Similarly, for n = 4, the optimal
configuration was achieved with k = 2 repetitions, (h1, h2) = (50,25) nodes, a
learning rate of η = 10−3, maximum epochs of Emax = 2,500, and s = 10,000 shots.
Figures 5.11(a) and 5.11(b) show the losses of both the discriminator and gen-
erator, as well as the resulting trained distributions for the cases of n = 3 and

Parameters Tested Values
n 3, 4
k 1, 2, 3, 4

(h1, h2) (32,16), (50,20), (50,25), (50,30), (64, 32)
η 10−4, 5 · 10−4, 10−3

Emax 1000, 1500, 2000, 2500
s 2000, 5000, 10000

Table 5.1: Tested hyperparameters and their corresponding values. The table
includes the number of qubits n, the number of repetitions of quantum layers k,
the number of nodes of discriminator hidden layers (h1, h2), the learning rate η,
the maximum number of epochs Emax, and the number of shots for the quantum
circuit s.

89

Applications and Numerical Experiments

(a)

(b)

Figure 5.11: Experimental results for univariate standard Student’s t-distributions
obtained by training the qGAN with optimal hyperparameter configurations for
n = 3 (Figure (a)) and n = 4 (Figure (b)) qubits. The figure displays the losses of
both the discriminator and generator, as well as the resulting trained distributions.
These results demonstrate the effectiveness of the qGAN approach in approximating
the target distributions in both cases. The optimal hyperparameter configurations
were determined through a systematic exploration of various combinations, as
summarized in Table 5.1.

n = 4 qubits, respectively. These experimental results indicate that the qGAN
algorithm successfully converged for both n = 3 and n = 4 qubits. The losses of the
discriminator and generator reached stable values, suggesting an effective training
process. Furthermore, the resulting trained distributions exhibited a high degree

90

5.2 – qGAN for Loading Student’s t-Distributions

of fidelity to the target distributions, demonstrating the effectiveness of qGAN in
generating accurate approximations.
After completing the training process, we evaluated the performance of the qGAN
models based on the metrics defined earlier. Specifically, for n = 3 qubits, the
qGAN generated a distribution with a relative entropy of DRE = 0.00074 and a
KS statistic of DKS = 0.01899, with a corresponding p-value equal to 0.84128.
Similarly, for the n = 4 qubit case, the qGAN produced a distribution with a
relative entropy of DRE = 0.01057 and a KS statistic of DKS = 0.01382, with
a corresponding p-value of 0.98740. The low values of the relative entropy and
KS statistic, as well as the high p-values, further demonstrate that the qGAN
approach was effective in generating accurate approximations for our given target
distributions.

Bivariate Case

For the bivariate standard Student’s t-distribution, we discretized each dimension
using 3 qubits, resulting in an 8 × 8 grid of data points. The (continuous) bivariate
probability density function was evaluated at each grid point, and the resulting
probabilities were then normalized to ensure a consistent discrete distribution. The
obtained discretized PDF is visualized in Figure 5.12. Similar to the univariate
scenario, training the qGAN for the bivariate case required testing various combi-
nations of hyperparameters to achieve satisfactory results.
Table 5.2 summarizes the parameter values experimented with during the training
process. Notably, the optimal configuration for the qGAN was achieved with a
generator consisting of k = 7 repetitions, (h1, h2) = (50,25) nodes for the discrimi-
nator network, a learning rate of η = 10−3 for both the generator and discriminator,
a maximum of Emax = 2,000 epochs, and s = 10,000 shots for the generator

Parameters Tested Values
(n1, n2) (3, 3)

k 3, 4, 5, 6, 7
(h1, h2) (32,16), (50,20), (50,25), (50,30), (64, 32)

η 10−4, 5 · 10−4, 10−3

Emax 1,000, 1,500, 2,000, 2,500
s 2,000, 5,000, 10,000

Table 5.2: Tested hyperparameters and their corresponding values for the bivariate
scenario. (n1, n2) denotes the number of qubits used to discretize each dimension
of the bivariate Student’s t-distribution.

91

Applications and Numerical Experiments

Figure 5.12: Discretized probability density function (PDF) for the bivariate
standard Student’s t-distribution with ν = 3 degrees of freedom. The distribution
was discretized using a 3-qubit representation for each dimension, which yielded an
8 × 8 grid of data points over the interval (−3.5, 3.5).

circuit. The resulting losses of the discriminator and generator, along with the
corresponding trained distribution, are illustrated in Figure 5.13. Regarding the
number of repetitions in the generator circuit, we noticed that achieving satisfactory
results in the bivariate case needed a higher number of repetitions compared to
the univariate scenario. This increased requirement can be attributed to the fact
that in the bivariate setting, the generator needs to learn 64 probabilities, which
demands a more complex representation.
Upon comparing the generated probabilities to the real probabilities, we observed
differences ranging from magnitudes of 10−3 to 10−5. These variations indicate
that the qGAN successfully learned the underlying bivariate distribution and ap-
proximated the true distribution with good accuracy. In evaluating the qGAN’s
performance for the bivariate case, we focused on using the relative entropy as
evaluation metric. Unlike the univariate scenario, we did not perform a Kolmogorov-
Smirnov test for goodness-of-fit. This choice was made considering that most
existing goodness-of-fit tests are mostly developed for univariate distributions, with
limited options available for multivariate distributions, except for cases such as
multivariate normality. The obtained relative entropy value of DRE = 0.02487

92

5.3 – Conclusions

Figure 5.13: Experimental results for the bivariate standard Student’s t-
distributions obtained by training the qGAN with optimal hyperparameter con-
figuration. The differences between generated probabilities and real probabilities
range from from 10−3 to 10−5 in magnitude, suggesting that the qGAN successfully
learned the underlying bivariate distribution.

indicated a relatively small divergence, suggesting that the qGAN performed well
in approximating the true bivariate distribution. These findings highlight the
potential of qGANs for modeling complex multivariate distributions and provide a
foundation for further research and exploration in this field.

5.3 Conclusions
In this chapter, we investigated some practical applications of the quantum machine
learning models defined in Chapter 4 using data with similar complexity to real-
world applications. Firstly, we evaluated the performance of the QuGAN model
in the classical task of image generation using the MNIST dataset. Despite the
training was performed on a compressed version of the dataset obtained through
an autoencoder preprocessing step, the generated distribution exhibited similarity
to the original dataset. This indicates that the QuGAN effectively captured some
of the statistical features of the restricted MNIST dataset. Notably, the QuGAN
achieved this performance with significantly fewer parameters compared to classical
GANs. Furthermore, the experimental results highlighted the effectiveness of the
qGAN algorithm in loading Student’s t-distributions, both in the univariate and
bivariate cases. The convergence of the qGAN algorithm was successfully achieved,
as indicated by the stable values reached for the losses of the discriminator and

93

Applications and Numerical Experiments

generator. The resulting trained distributions exhibited a remarkable level of
fidelity to the target distributions, providing a foundation for future research and
application of quantum machine learning techniques in the field of economics and
finance.

94

Chapter 6

Conclusions

We began our work by providing an overview on quantum computers, emphasizing
their distinctive properties rooted in quantum mechanics. We discussed the concept
of quantum supremacy, highlighting that quantum devices are not intended to
surpass classical computers in every aspect. This led us to explore the areas where
researchers believe quantum computers can bring significant advancements, with a
particular focus on machine learning, which serves as core of this work. Further-
more, we recognized the current period as the NISQ (Noisy Intermediate-Scale
Quantum) era, characterized by the availability of quantum devices with a limited
number of qubits and inherent noise, highlighting the challenges and constraints
associated with working on current quantum hardware.
We established the theoretical foundations of quantum computing, covering topics
such as qubits, state superposition, the Bloch sphere, density operator, observables,
and the dynamics of closed quantum systems. We explored single-qubit gates, two-
qubit gates, gate decompositions, and the concept of entanglement. We discussed
the physical realizations of quantum computers, focusing on superconducting qubits,
photonic qubits, and trapped ion qubits. The significance of quantum simulators for
algorithm development and testing was highlighted. We introduced Parametrized
Quantum Circuits (PQCs) as versatile tools for machine learning and optimization
applications. We examined hybrid quantum-classical algorithms like the Variational
Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algo-
rithm (QAOA). Data encoding methods were explored, emphasizing their impact
on algorithm runtime. We further explored quantum-assisted machine learning,
which combines classical data with quantum computing techniques to enhance
computational capabilities and tackle complex learning tasks.
The scope of this work was to explore several quantum extensions of the classical
Generative Adversarial Networks (GANs) and investigate their potential benefits
in the field of quantum machine learning. Classical GANs have emerged as a
powerful class of generative models that have demonstrated remarkable capabilities

97

Conclusions

in generating realistic images, texts, and other types of data. In this work, we
investigated two versions of quantum GANs: QuGAN and qGAN for distribution
learning. Both of these models make use of classical data, but with distinct ar-
chitectures. Notably, QuGAN employs a fully quantum approach, where both
the generator and discriminator are represented by PQCs. On the other hand,
qGAN for distribution learning adopts a hybrid architecture, combining a quantum
generator with a classical discriminator network.
QuGAN introduces the utilization of quantum state fidelity for both the quantum
discriminator and generator. This approach enables the incorporation of quantum-
based loss functions, computed using a swap test on qubits. This architecture
exhibits stable convergence and requires significantly reduced parameter sets com-
pared to its classical counterparts. The second quantum GAN we investigated
centers around the efficient loading of approximate data onto quantum hardware.
By reducing the gate complexity, this method offers a more efficient and scalable
solution for loading data onto quantum systems. Additionally, the corresponding
quantum channel is implemented using a gate-based quantum algorithm, allowing
for seamless integration into other gate-based quantum algorithms.
The first experiment we conducted in this study aimed to assessing the perfor-
mance of the QuGAN model in the task of image generation using the classical
MNIST dataset. Due to the current limitations of quantum hardware, generating
high-resolution images with a large number of qubits is infeasible. To address
this, we employed an autoencoder, a neural network that leverages its nonlinear
characteristics for advanced dimensionality reduction. This enabled us to reduce
the dimensionality of the data and facilitate the training process. To validate the
effectiveness of QuGAN in learning the underlying probability distribution indepen-
dently from the autoencoder, we trained the model exclusively on images labeled
as "0" or "5". This approach confirmed the success of training and demonstrated
the model’s independence from the autoencoder. The results obtained showed that
the QuGAN effectively learned some of the statistical features of the restricted
MNIST dataset. The generated images of the digits "0" and "5" exhibited a certain
level of variation and detail, although some imperfections were present. Notably,
compared to classical GANs, the QuGAN required significantly fewer parameters,
demonstrating promising performance with reduced computational requirements.
In the second experiment, we investigated the effectiveness of the qGAN in loading
univariate and bivariate Student’s t-distributions. These distributions are particu-
larly important in finance and risk management, as they provide a more accurate
modeling of situations where extreme events are more likely to occur due to their
heavy-tailed nature. To obtain satisfactory results, an extensive exploration of
hyperparameter configurations was conducted. Indeed, similar to classical machine
learning, it is not initially evident which model structure is most appropriate for a
given problem, nor which training strategy will yield the optimal results. Despite

98

Conclusions

the necessity for careful tuning, the qGAN algorithm demonstrated successful
convergence in both cases, as evidenced by the stable values reached for the dis-
criminator and generator losses. The resulting trained distributions exhibited a
remarkable level of fidelity to the target distributions, both in the univariate and
bivariate cases. Moreover, the metrics utilized to evaluate the performance of the
trained distributions showed satisfactory results.
In conclusion, the results obtained from our experiments provide encouraging
insights and motivate further exploration in the field of quantum machine learning.
They shed light on the current limitations of quantum devices and simulators,
particularly in terms of the limited number of qubits that can be effectively utilized.
While these limitations are evident, it is crucial to recognize the importance of
ongoing research in this field. By enhancing the quality of quantum hardware, we
can tackle increasingly complex tasks across various domains, ultimately improving
both the quality and speed of computations.

99

100

Bibliography

[1] Peter W. Shor. «Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer». In: SIAM J. Comput. 26.5
(Oct. 1997), pp. 1484–1509. issn: 0097-5397. url: https://doi.org/10.
1137/S0097539795293172.

[2] Lov K. Grover. «A Fast Quantum Mechanical Algorithm for Database
Search». In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA:
Association for Computing Machinery, 1996, pp. 212–219. isbn: 0897917855.
url: https://doi.org/10.1145/237814.237866.

[3] David G. Cory, Amr F. Fahmy, and Timothy F. Havel. «Ensemble quantum
computing by NMRspectroscopy». In: Proceedings of the National Academy
of Sciences 94.5 (1997), pp. 1634–1639. url: https://www.pnas.org/doi/
abs/10.1073/pnas.94.5.1634.

[4] Neil A. Gershenfeld and Isaac L. Chuang. «Bulk Spin-Resonance Quantum
Computation». In: Science 275.5298 (1997), pp. 350–356. url: https://
www.science.org/doi/abs/10.1126/science.275.5298.350.

[5] Lieven MK Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S
Yannoni, Mark H Sherwood, and Isaac L Chuang. «Experimental realization
of Shor’s quantum factoring algorithm using nuclear magnetic resonance».
In: Nature 414.6866 (2001), pp. 883–887.

[6] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. «Experimental
Implementation of Fast Quantum Searching». In: Phys. Rev. Lett. 80 (15
Apr. 1998), pp. 3408–3411. url: https://link.aps.org/doi/10.1103/
PhysRevLett.80.3408.

[7] Ming Gong, Shiyu Wang, and et al. «Quantum walks on a programmable
two-dimensional 62-qubit superconducting processor». In: Science 372.6545
(May 2021), pp. 948–952. url: https://doi.org/10.1126%5C%2Fscience.
abg7812.

101

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/237814.237866
https://www.pnas.org/doi/abs/10.1073/pnas.94.5.1634
https://www.pnas.org/doi/abs/10.1073/pnas.94.5.1634
https://www.science.org/doi/abs/10.1126/science.275.5298.350
https://www.science.org/doi/abs/10.1126/science.275.5298.350
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://doi.org/10.1126%5C%2Fscience.abg7812
https://doi.org/10.1126%5C%2Fscience.abg7812

BIBLIOGRAPHY

[8] Frank Arute, Kunal Arya, and et al. «Quantum Supremacy using a Pro-
grammable Superconducting Processor». In: Nature 574 (2019), pp. 505–510.
url: https://www.nature.com/articles/s41586-019-1666-5.

[9] On “Quantum Supremacy”. https://www.ibm.com/blogs/research/
2019/10/on-quantum-supremacy/.

[10] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction
to Quantum Computing. USA: Oxford University Press, Inc., 2007. isbn:
0198570007.

[11] Gregg Jaeger. Entanglement, Information, and the Interpretation of Quantum
Mechanics. 1st. Springer Publishing Company, Incorporated, 2009. isbn:
3540921273.

[12] Fabio Nicola and Luigi Rodino. «Spectral Theory». In: Global Pseudo-
Differential Calculus on Euclidean Spaces. Basel: Birkhäuser Basel, 2010,
pp. 153–201. doi: 10.1007/978-3-7643-8512-5_6.

[13] S. E. Rasmussen and N. T. Zinner. «Simple implementation of high fidelity
controlled-iswap gates and quantum circuit exponentiation of non-Hermitian
gates». In: Phys. Rev. Res. 2 (3 July 2020), p. 033097. url: https://link.
aps.org/doi/10.1103/PhysRevResearch.2.033097.

[14] Deanna M. Abrams, Nicolas Didier, Blake R. Johnson, Marcus P. da Silva,
and Colm A. Ryan. «Implementation of XY entangling gates with a single
calibrated pulse». In: Nature Electronics 3.12 (Nov. 2020), pp. 744–750. url:
https://doi.org/10.1038%5C%2Fs41928-020-00498-1.

[15] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz,
Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver. «Superconducting
Qubits: Current State of Play». In: Annual Review of Condensed Matter
Physics 11.1 (2020), pp. 369–395. url: https : / / doi . org / 10 . 1146 /
annurev-conmatphys-031119-050605.

[16] Rigetti Computing. https://www.rigetti.com/about-rigetti-computin
g.

[17] Simon J Devitt, William J Munro, and Kae Nemoto. «Quantum error
correction for beginners». In: Reports on Progress in Physics 76.7 (June 2013),
p. 076001. url: https://dx.doi.org/10.1088/0034-4885/76/7/076001.

[18] David P. DiVincenzo. «The Physical Implementation of Quantum Com-
putation». In: Fortschritte der Physik 48.9-11 (2000), pp. 771–783. doi:
https://doi.org/10.1002/1521- 3978(200009)48:9/11<771::AID-
PROP771>3.0.CO;2-E.

102

https://www.nature.com/articles/s41586-019-1666-5
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://doi.org/10.1007/978-3-7643-8512-5_6
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033097
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033097
https://doi.org/10.1038%5C%2Fs41928-020-00498-1
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://www.rigetti.com/about-rigetti-computing
https://www.rigetti.com/about-rigetti-computing
https://dx.doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E

BIBLIOGRAPHY

[19] Sanskriti Joshi and Sajjad Moazeni. Scaling up Superconducting Quan-
tum Computers with Cryogenic RF-photonics. 2022. arXiv: 2210.15756
[quant-ph].

[20] Quantum-Centric Supercomputing: The Next Wave of Computing. https://r
esearch.ibm.com/blog/next-wave-quantum-centric-supercomputing.

[21] IBM’s roadmap for building an open quantum software ecosystem. https:
//research.ibm.com/blog/quantum-development-roadmap.

[22] Rajeev Acharya and et al. Suppressing quantum errors by scaling a surface
code logical qubit. 2023. url: https://doi.org/10.1038/s41586-022-
05434-1.

[23] Google Plans to Build a Practical Quantum Computer by 2029 at New Center.
https://www.insidequantumtechnology.com/news-archive/google-
plans-to-build-a-practical-quantum-computer-by-2029-at-new-
center/.

[24] E Knill, R Laflamme, and G J Milburn. «A scheme for efficient quantum
computation with linear optics». In: Nature 409.6816 (2001), pp. 46–52. issn:
0028-0836. url: https://doi.org/10.1038/35051009.

[25] Joshua W. Silverstone, Damien Bonneau, Jeremy L. O’Brien, and Mark G.
Thompson. «Silicon Quantum Photonics». In: IEEE Journal of Selected
Topics in Quantum Electronics 22.6 (2016), pp. 390–402. doi: 10.1109/
JSTQE.2016.2573218.

[26] Xanadu. https://www.xanadu.ai/.
[27] PsiQuantum and GLOBALFOUNDRIES to Build the World’s First Full-

scale Quantum Computer. https://psiquantum.com/news/psiquantum-
and - globalfoundries - to - build - the - worlds - first - full - scale -
quantum-computer.

[28] IonQ Forte: The First Software-Configurable Quantum Computer. https:
//ionq.com/resources/ionq- forte- first- configurable- quantum-
computer.

[29] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-
Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. «A
variational eigenvalue solver on a photonic quantum processor». In: Nature
Communications 5.1 (July 2014). url: https://doi.org/10.1038%5C%
2Fncomms5213.

[30] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approxi-
mate Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].

103

https://arxiv.org/abs/2210.15756
https://arxiv.org/abs/2210.15756
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://research.ibm.com/blog/quantum-development-roadmap
https://research.ibm.com/blog/quantum-development-roadmap
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://www.insidequantumtechnology.com/news-archive/google-plans-to-build-a-practical-quantum-computer-by-2029-at-new-center/
https://www.insidequantumtechnology.com/news-archive/google-plans-to-build-a-practical-quantum-computer-by-2029-at-new-center/
https://www.insidequantumtechnology.com/news-archive/google-plans-to-build-a-practical-quantum-computer-by-2029-at-new-center/
https://doi.org/10.1038/35051009
https://doi.org/10.1109/JSTQE.2016.2573218
https://doi.org/10.1109/JSTQE.2016.2573218
https://www.xanadu.ai/
https://psiquantum.com/news/psiquantum-and-globalfoundries-to-build-the-worlds-first-full-scale-quantum-computer
https://psiquantum.com/news/psiquantum-and-globalfoundries-to-build-the-worlds-first-full-scale-quantum-computer
https://psiquantum.com/news/psiquantum-and-globalfoundries-to-build-the-worlds-first-full-scale-quantum-computer
https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer
https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer
https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer
https://doi.org/10.1038%5C%2Fncomms5213
https://doi.org/10.1038%5C%2Fncomms5213
https://arxiv.org/abs/1411.4028

BIBLIOGRAPHY

[31] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. «Pa-
rameterized quantum circuits as machine learning models». In: Quantum
Science and Technology 4.4 (Nov. 2019), p. 043001. doi: 10.1088/2058-
9565/ab4eb5.

[32] Shun-ichi Amari. «Backpropagation and stochastic gradient descent method».
In: Neurocomputing 5.4 (1993), pp. 185–196. issn: 0925-2312. doi: https:
//doi.org/10.1016/0925-2312(93)90006-O.

[33] Walter Greiner, Ludwig Neise, and Horst Stöcker. «The Models of Ising and
Heisenberg». In: Thermodynamics and Statistical Mechanics. New York, NY:
Springer New York, 1995, pp. 436–456. doi: 10.1007/978-1-4612-0827-
3_18.

[34] M. Schuld and F. Petruccione. Machine Learning with Quantum Computers.
Quantum Science and Technology. Springer International Publishing, 2021.
isbn: 9783030830984. url: https://books.google.it/books?id=-N5IEA
AAQBAJ.

[35] Sheir Yarkoni, Elena Raponi, Thomas Bäck, and Sebastian Schmitt. «Quan-
tum annealing for industry applications: introduction and review». In: Re-
ports on Progress in Physics 85.10 (Sept. 2022), p. 104001. doi: 10.1088/
1361-6633/ac8c54.

[36] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd,
and Oded Regev. Adiabatic Quantum Computation is Equivalent to Standard
Quantum Computation. 2005. arXiv: quant-ph/0405098 [quant-ph].

[37] Masuo Suzuki. «General theory of higher-order decomposition of exponential
operators and symplectic integrators». In: Physics Letters A 165.5 (1992),
pp. 387–395. issn: 0375-9601. doi: https://doi.org/10.1016/0375-
9601(92)90335-J.

[38] Quantum Approximate Optimization Algorithm explained. https://www.
mustythoughts.com/quantum-approximate-optimization-algorithm-
explained.

[39] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel. «Quan-
tum approximate optimization algorithm for MaxCut: A fermionic view».
In: Phys. Rev. A 97 (2 Feb. 2018), p. 022304. doi: 10.1103/PhysRevA.97.
022304.

[40] Minh Do, Zhihui Wang, Bryan O’Gorman, Davide Venturelli, Eleanor Rieffel,
and Jeremy Frank. Planning for Compilation of a Quantum Algorithm for
Graph Coloring. 2020. arXiv: 2002.10917 [quant-ph].

104

https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1007/978-1-4612-0827-3_18
https://doi.org/10.1007/978-1-4612-0827-3_18
https://books.google.it/books?id=-N5IEAAAQBAJ
https://books.google.it/books?id=-N5IEAAAQBAJ
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1088/1361-6633/ac8c54
https://arxiv.org/abs/quant-ph/0405098
https://doi.org/https://doi.org/10.1016/0375-9601(92)90335-J
https://doi.org/https://doi.org/10.1016/0375-9601(92)90335-J
https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained
https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained
https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://arxiv.org/abs/2002.10917

BIBLIOGRAPHY

[41] Frank Leymann and Johanna Barzen. «The bitter truth about gate-based
quantum algorithms in the NISQ era». In: Quantum Science and Technology
5.4 (Sept. 2020), p. 044007. doi: 10.1088/2058-9565/abae7d.

[42] Ryan LaRose and Brian Coyle. «Robust data encodings for quantum clas-
sifiers». In: Phys. Rev. A 102 (3 Sept. 2020), p. 032420. doi: 10.1103/
PhysRevA.102.032420.

[43] Seth Lloyd. «Universal Quantum Simulators». In: Science 273.5278 (1996),
pp. 1073–1078. doi: 10.1126/science.273.5278.1073.

[44] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders.
«Efficient Quantum Algorithms for Simulating Sparse Hamiltonians». In:
Communications in Mathematical Physics 270.2 (2007), pp. 359–371. issn:
1432-0916. doi: 10.1007/s00220-006-0150-x.

[45] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms
for supervised and unsupervised machine learning. 2013. arXiv: 1307.0411
[quant-ph].

[46] Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. «Machine Learning
in a Quantum World». In: Advances in Artificial Intelligence. Ed. by Luc
Lamontagne and Mario Marchand. Springer Berlin Heidelberg, 2006, pp. 431–
442.

[47] Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. From probabilistic
graphical models to generalized tensor networks for supervised learning. 2019.
arXiv: 1806.05964 [quant-ph].

[48] Sepp Hochreiter. «The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions». In: International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr. 1998), pp. 107–
116. doi: 10.1142/S0218488598000094.

[49] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The
Expressive Power of Neural Networks: A View from the Width. 2017. arXiv:
1709.02540 [cs.LG].

[50] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2021. arXiv:
2003.05991 [cs.LG].

[51] Ruslan Salakhutdinov and Geoffrey Hinton. «Deep Boltzmann Machines».
In: ed. by David van Dyk and Max Welling. Vol. 5. Proceedings of Machine
Learning Research. Hilton Clearwater Beach Resort, Clearwater Beach,
Florida USA: PMLR, 2009, pp. 448–455. url: https://proceedings.mlr.
press/v5/salakhutdinov09a.html.

[52] Douglas A. Reynolds. «Gaussian Mixture Models». In: Encyclopedia of
Biometrics. 2009.

105

https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1007/s00220-006-0150-x
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1806.05964
https://doi.org/10.1142/S0218488598000094
https://arxiv.org/abs/1709.02540
https://arxiv.org/abs/2003.05991
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html

BIBLIOGRAPHY

[53] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].

[54] Lore Goetschalckx, Alex Andonian, and Johan Wagemans. «Generative
adversarial networks unlock new methods for cognitive science». In: Trends
in Cognitive Sciences 25.9 (2021), pp. 788–801. issn: 1364-6613. doi: https:
//doi.org/10.1016/j.tics.2021.06.006.

[55] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. «Quantum Generative
Adversarial Networks for learning and loading random distributions». In: npj
Quantum Information 5.1 (Nov. 2019). doi: 10.1038/s41534-019-0223-2.

[56] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. 2017.
arXiv: 1701.00160 [cs.LG].

[57] Lillian J. Ratliff, Samuel A. Burden, and S. Shankar Sastry. «Characteriza-
tion and computation of local Nash equilibria in continuous games». In: 2013
51st Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton). 2013, pp. 917–924. doi: 10.1109/Allerton.2013.6736623.

[58] M.L. Menéndez, J.A. Pardo, L. Pardo, and M.C. Pardo. «The Jensen-
Shannon divergence». In: Journal of the Franklin Institute 334.2 (1997),
pp. 307–318. issn: 0016-0032. doi: https://doi.org/10.1016/S0016-
0032(96)00063-4.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[60] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of
Adam and Beyond. 2019. arXiv: 1904.09237 [cs.LG].

[61] Ming-Yu Liu and Oncel Tuzel. Coupled Generative Adversarial Networks.
2016. arXiv: 1606.07536 [cs.CV].

[62] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. 2018. arXiv:
1710.10196 [cs.NE].

[63] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks. 2019. arXiv: 1812.04948
[cs.NE].

[64] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
2014. arXiv: 1411.1784 [cs.LG].

[65] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks.
2016. arXiv: 1511.06434 [cs.LG].

106

https://arxiv.org/abs/1406.2661
https://doi.org/https://doi.org/10.1016/j.tics.2021.06.006
https://doi.org/https://doi.org/10.1016/j.tics.2021.06.006
https://doi.org/10.1038/s41534-019-0223-2
https://arxiv.org/abs/1701.00160
https://doi.org/10.1109/Allerton.2013.6736623
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1606.07536
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1511.06434

BIBLIOGRAPHY

[66] He-Liang Huang and et al. «Experimental Quantum Generative Adversarial
Networks for Image Generation». In: Physical Review Applied 16.2 (Aug.
2021). doi: 10.1103/physrevapplied.16.024051.

[67] Seth Lloyd and Christian Weedbrook. «Quantum Generative Adversarial
Learning». In: Physical Review Letters 121.4 (July 2018). doi: 10.1103/
physrevlett.121.040502.

[68] Pierre-Luc Dallaire-Demers and Nathan Killoran. «Quantum generative
adversarial networks». In: Physical Review A 98.1 (July 2018). doi: 10.
1103/physreva.98.012324.

[69] Samuel A. Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang
Li, Bo Fang, and Shuai Xu. «QuGAN: A Quantum State Fidelity based
Generative Adversarial Network». In: 2021 IEEE International Conference
on Quantum Computing and Engineering (QCE). 2021, pp. 71–81. doi:
10.1109/QCE52317.2021.00023.

[70] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. «Quan-
tum Fingerprinting». In: Physical Review Letters 87.16 (Sept. 2001). doi:
10.1103/physrevlett.87.167902.

[71] Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. Quantum
Merlin-Arthur Proof Systems: Are Multiple Merlins More Helpful to Arthur?
2008. arXiv: quant-ph/0306051 [quant-ph].

[72] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. «Evaluating analytic gradients on quantum hardware». In: Physical
Review A 99.3 (Mar. 2019). doi: 10.1103/physreva.99.032331.

[73] Gabriele Agliardi and Enrico Prati. «Optimal Tuning of Quantum Generative
Adversarial Networks for Multivariate Distribution Loading». In: Quantum
Reports 4.1 (2022), pp. 75–105. issn: 2624-960X. doi: 10.3390/quantum401
0006.

[74] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. 2002. doi: 10.1090/conm/305/
05215.

[75] Gabriele Agliardi, Michele Grossi, Mathieu Pellen, and Enrico Prati. «Quan-
tum integration of elementary particle processes». In: Physics Letters B 832
(Sept. 2022). doi: 10.1016/j.physletb.2022.137228.

[76] Stefan Woerner and Daniel J. Egger. «Quantum risk analysis». In: npj
Quantum Information 5.1 (2019), p. 15. issn: 2056-6387. doi: 10.1038/
s41534-019-0130-6.

107

https://doi.org/10.1103/physrevapplied.16.024051
https://doi.org/10.1103/physrevlett.121.040502
https://doi.org/10.1103/physrevlett.121.040502
https://doi.org/10.1103/physreva.98.012324
https://doi.org/10.1103/physreva.98.012324
https://doi.org/10.1109/QCE52317.2021.00023
https://doi.org/10.1103/physrevlett.87.167902
https://arxiv.org/abs/quant-ph/0306051
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.3390/quantum4010006
https://doi.org/10.3390/quantum4010006
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1016/j.physletb.2022.137228
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6

BIBLIOGRAPHY

[77] Li Deng. «The MNIST database of handwritten digit images for machine
learning research». In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–
142.

[78] Emmanuel Afuecheta, Stephen Chan, and Saralees Nadarajah. «Flexible
Models for Stock Returns Based on Student’s T Distribution». In: The
Manchester School 87.3 (2019), pp. 403–427. doi: https://doi.org/10.
1111/manc.12234.

[79] Daniel T. Cassidy, Michael J. Hamp, and Rachid Ouyed. «Pricing European
options with a log Student’s t-distribution: A Gosset formula». In: Physica
A: Statistical Mechanics and its Applications 389.24 (2010), pp. 5736–5748.
issn: 0378-4371. doi: https://doi.org/10.1016/j.physa.2010.08.037.

[80] S. Huschens and J.-R. Kim. «Measuring Risk in Value-at-Risk Based on
Student’s t-Distribution». In: Classification in the Information Age. Ed. by
Wolfgang Gaul and Hermann Locarek-Junge. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 453–459. isbn: 978-3-642-60187-3.

[81] Qiskit contributors. Qiskit: An Open-source Framework for Quantum Com-
puting. 2023. doi: 10.5281/zenodo.2573505.

[82] Ville Bergholm, Josh Izaac, Maria Schuld, Thomas Fink, and Nathan Kil-
loran. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. Version 0.18.0. 2022. url: https://pennylane.ai/.

[83] Jonathon Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv:
1404.1100 [cs.LG].

[84] François Chollet et al. Keras. https://keras.io. 2015.
[85] Frank Nielsen. «Closed-form information-theoretic divergences for statistical

mixtures». In: Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012). 2012, pp. 1723–1726. url: https://ieeexplore.
ieee.org/document/6460482.

[86] Sandya Nilmini Kumari. «Characterization of Student’s T- Distribution with
some Application to Finance». In: Mathematical Theory and Modeling 3
(Oct. 2013), pp. 1–9.

[87] A. Meucci. Risk and Asset Allocation. Springer Finance. Springer Berlin
Heidelberg, 2007. isbn: 9783540279044. url: https://books.google.it/
books?id=bAS63cyIp0EC.

[88] Qiskit Documentation, EfficientSU2. https://qiskit.org/documentatio
n/stubs/qiskit.circuit.library.EfficientSU2.html.

[89] Qiskit Documentation, Quantum Circuits. https://qiskit.org/document
ation/apidoc/circuit.html.

108

https://doi.org/https://doi.org/10.1111/manc.12234
https://doi.org/https://doi.org/10.1111/manc.12234
https://doi.org/https://doi.org/10.1016/j.physa.2010.08.037
https://doi.org/10.5281/zenodo.2573505
https://pennylane.ai/
https://arxiv.org/abs/1404.1100
https://keras.io
https://ieeexplore.ieee.org/document/6460482
https://ieeexplore.ieee.org/document/6460482
https://books.google.it/books?id=bAS63cyIp0EC
https://books.google.it/books?id=bAS63cyIp0EC
https://qiskit.org/documentation/stubs/qiskit.circuit.library.EfficientSU2.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.EfficientSU2.html
https://qiskit.org/documentation/apidoc/circuit.html
https://qiskit.org/documentation/apidoc/circuit.html

BIBLIOGRAPHY

[90] Tetris. https://en.wikipedia.org/wiki/Tetris.
[91] PyTorch. https://pytorch.org/.
[92] Frank J. Massey. «The Kolmogorov-Smirnov Test for Goodness of Fit». In:

Journal of the American Statistical Association 46.253 (1951), pp. 68–78.
issn: 01621459. url: http://www.jstor.org/stable/2280095.

[93] S. Kullback and R. A. Leibler. «On Information and Sufficiency». In: The
Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/
aoms/1177729694.

[94] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2010. doi: 10.1017/CBO9780511976667.

[95] S. Ganguly. Quantum Machine Learning: An Applied Approach: The Theory
and Application of Quantum Machine Learning in Science and Industry.
Apress, 2021. isbn: 9781484270974. url: https://books.google.it/
books?id=8JJizgEACAAJ.

[96] Filip Wojcieszyn. Introduction to Quantum Computing with Q# and QDK.
Quantum Science and Technology. Springer Cham, 2022. isbn: 978-3-030-
99378-8. url: https://doi.org/10.1007/978-3-030-99379-5.

[97] A. Jacquier, O. Kondratyev, A. Lipton, and M.L. de Prado. Quantum
Machine Learning and Optimisation in Finance: On the Road to Quantum
Advantage. Packt Publishing, 2022. isbn: 9781801817875. url: https://
books.google.it/books?id=22SXEAAAQBAJ.

[98] K. Blum. Density Matrix Theory and Applications. Springer Series on
Atomic, Optical, and Plasma Physics. Springer Berlin Heidelberg, 2012. isbn:
9783642205613. url: https://doi.org/10.1007/978-3-642-20561-3.

[99] In: Quantum Machine Learning. Ed. by Peter Wittek. Boston: Academic
Press, 2014. isbn: 978-0-12-800953-6. doi: https://doi.org/10.1016/
B978-0-12-800953-6.00015-3.

[100] M. Nakahara and T. Ohmi. Quantum Computing: From Linear Algebra to
Physical Realizations. Taylor & Francis, 2008. isbn: 9780750309837. url:
https://books.google.it/books?id=O937mAEACAAJ.

[101] Giovanni Acampora, Ferdinando Di Martino, Alfredo Massa, Roberto Schi-
attarella, and Autilia Vitiello. «D-NISQ: A reference model for Distributed
Noisy Intermediate-Scale Quantum computers». In: Information Fusion 89
(2023), pp. 16–28. issn: 1566-2535. doi: https://doi.org/10.1016/j.
inffus.2022.08.003.

109

https://en.wikipedia.org/wiki/Tetris
https://pytorch.org/
http://www.jstor.org/stable/2280095
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1017/CBO9780511976667
https://books.google.it/books?id=8JJizgEACAAJ
https://books.google.it/books?id=8JJizgEACAAJ
https://doi.org/10.1007/978-3-030-99379-5
https://books.google.it/books?id=22SXEAAAQBAJ
https://books.google.it/books?id=22SXEAAAQBAJ
https://doi.org/10.1007/978-3-642-20561-3
https://doi.org/https://doi.org/10.1016/B978-0-12-800953-6.00015-3
https://doi.org/https://doi.org/10.1016/B978-0-12-800953-6.00015-3
https://books.google.it/books?id=O937mAEACAAJ
https://doi.org/https://doi.org/10.1016/j.inffus.2022.08.003
https://doi.org/https://doi.org/10.1016/j.inffus.2022.08.003

BIBLIOGRAPHY

[102] J.D. Hidary. Quantum Computing: An Applied Approach. Springer Inter-
national Publishing, 2021. isbn: 9783030832742. url: https : / / link .
springer.com/book/10.1007/978-3-030-83274-2.

[103] Dawid Kopczyk. Quantum machine learning for data scientists. 2018. arXiv:
1804.10068 [quant-ph].

[104] Benjamin Schumacher and Michael Westmoreland. Quantum Processes Sys-
tems, and Information. Cambridge University Press, 2010. doi: 10.1017/
CBO9780511814006.

[105] András Gyenis, Agustin Di Paolo, Jens Koch, Alexandre Blais, Andrew
A. Houck, and David I. Schuster. «Moving beyond the Transmon: Noise-
Protected Superconducting Quantum Circuits». In: PRX Quantum 2 (3
Sept. 2021), p. 030101. doi: 10.1103/PRXQuantum.2.030101.

[106] Andreas Bengtsson and et al. «Improved Success Probability with Greater
Circuit Depth for the Quantum Approximate Optimization Algorithm». In:
Physical Review Applied 14 (Sept. 2020). doi: 10.1103/PhysRevApplied.
14.034010.

[107] M. Schuld and F. Petruccione. Supervised Learning with Quantum Computers.
Quantum Science and Technology. Springer International Publishing, 2018.
isbn: 9783319964249. url: https://link.springer.com/book/10.1007/
978-3-319-96424-9.

[108] Manuela Weigold, Johanna Barzen, Frank Leymann, and Marie Salm. «En-
coding patterns for quantum algorithms». In: IET Quantum Communication
2.4 (2021), pp. 141–152. doi: https://doi.org/10.1049/qtc2.12032.

[109] E.F. Combarro, S. Gonzalez-Castillo, and A. Di Meglio. A Practical Guide to
Quantum Machine Learning and Quantum Optimization: Hands-on Ap-
proach to Modern Quantum Algorithms. Packt Publishing, 2023. isbn:
9781804618301. url: https://books.google.com/books?id=1OK0EAA
AQBAJ.

[110] Multi-layer Perceptron. https://vistalab-technion.github.io/cs2366
05/lecture_notes/lecture_03/.

[111] Sebastian Ruder. An overview of gradient descent optimization algorithms.
2017. arXiv: 1609.04747 [cs.LG].

[112] Christopher M Bishop. Pattern Recognition and Machine Learning. Vol. 4.
4. Springer, 2006, p. 738. doi: 10.1117/1.2819119.

[113] Adam - latest trends in deep learning optimization. https://towardsdat
ascience.com/adam-latest-trends-in-deep-learning-optimization-
6be9a291375c.

110

https://link.springer.com/book/10.1007/978-3-030-83274-2
https://link.springer.com/book/10.1007/978-3-030-83274-2
https://arxiv.org/abs/1804.10068
https://doi.org/10.1017/CBO9780511814006
https://doi.org/10.1017/CBO9780511814006
https://doi.org/10.1103/PRXQuantum.2.030101
https://doi.org/10.1103/PhysRevApplied.14.034010
https://doi.org/10.1103/PhysRevApplied.14.034010
https://link.springer.com/book/10.1007/978-3-319-96424-9
https://link.springer.com/book/10.1007/978-3-319-96424-9
https://doi.org/https://doi.org/10.1049/qtc2.12032
https://books.google.com/books?id=1OK0EAAAQBAJ
https://books.google.com/books?id=1OK0EAAAQBAJ
https://vistalab-technion.github.io/cs236605/lecture_notes/lecture_03/
https://vistalab-technion.github.io/cs236605/lecture_notes/lecture_03/
https://arxiv.org/abs/1609.04747
https://doi.org/10.1117/1.2819119
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

BIBLIOGRAPHY

[114] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the Convergence
of A Class of Adam-Type Algorithms for Non-Convex Optimization. 2019.
arXiv: 1808.02941 [cs.LG].

[115] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. «swap test and
Hong-Ou-Mandel effect are equivalent». In: Physical Review A 87.5 (May
2013). doi: 10.1103/physreva.87.052330.

[116] Lov Grover and Terry Rudolph. Creating superpositions that correspond
to efficiently integrable probability distributions. 2002. arXiv: quant-ph/
0208112 [quant-ph].

[117] Rui Li and Saralees Nadarajah. «A review of Student’s t distribution and
its generalizations». In: Empirical Economics 58.3 (2020), pp. 1461–1490.
issn: 1435-8921. doi: 10.1007/s00181-018-1570-0.

111

https://arxiv.org/abs/1808.02941
https://doi.org/10.1103/physreva.87.052330
https://arxiv.org/abs/quant-ph/0208112
https://arxiv.org/abs/quant-ph/0208112
https://doi.org/10.1007/s00181-018-1570-0

Appendix A

Gradient Descent
Optimization Algorithms

Gradient Descent is a widely used optimization algorithm in neural networks. While
it is popular, its various implementations can be difficult to understand as they are
often used as black-box optimizers without a clear explanation of their strengths
and weaknesses. Here, we provide an overview of different variants of gradient
descent, summarize the challenges associated with them, and introduce some of
the most commonly used optimization algorithms.
Gradient descent is a technique used to minimize an objective function C(θ) which
relies on the parameters θ ∈ Rd of a given model. This involves updating the
parameters by moving them in the direction opposite to the gradient ∇θ C(θ) of
the objective function with respect to the parameters. In other words, we move
the parameters in the direction of the greatest rate of decrease of the cost function.
The size of the step we take towards the minimum is determined by the learning
rate η, which is a hyperparameter. To put it differently, we take small steps in the
direction of the negative gradient until we reach a valley on the surface defined by
the objective function.

A.1 Gradient Descent Variants

Gradient descent has three distinct variants that differ based on the amount of data
used to calculate the gradient of the objective function. The quantity of data used
is significant since it impacts the trade-off between the accuracy of the parameter
update and the time required to execute the update.

113

Gradient Descent Optimization Algorithms

A.1.1 Batch Gradient Descent
Batch Gradient Descent calculates the gradient of the cost function with respect to
the parameters θ using the entire training dataset, and updates the parameters
according to the equation

θ(τ+1) = θ(τ) − η∇θ C(θ(τ)) (A.1)

where τ labels the iteration step. Since batch gradient descent needs to process the
entire set in each step to evaluate ∇θ C, this method can become very slow and is
impractical for datasets that are too large. Additionally, batch gradient descent
does not allow for online updates of the model, meaning that new examples cannot
be incorporated as they come in.
To achieve a sufficiently accurate minimum, it might be necessary to execute
a gradient-based algorithm several times, using distinct starting points chosen
randomly, and then comparing the performance of each attempt on a separate
validation set. If the error surface is convex, batch gradient descent is guaranteed
to converge to the global minimum, while for non-convex surfaces, it will likely
converge to a local minimum.

A.1.2 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD), which is also referred to as online gradient
descent or sequential gradient descent, updates the weight vector of a model using
a single training example at a time by applying the rule

θ(τ+1) = θ(τ) − η∇θ C(θ(τ);xi, yi) (A.2)

Here, (xi, yi)i=1,...,M denotes the i−th data pattern and its corresponding label,
respectively. Batch Gradient Descent involves repetitive computations for large
datasets since it recomputes gradients for similar examples before each parameter
update. In contrast, SGD avoids this redundancy by performing one update at a
time, making it faster and suitable for online learning. However, the use of a single
pattern at a time in SGD can introduce noise into the cost function, leading to
fluctuations in its value, as shown in Figure A.1. In some cases, these fluctuations
can be beneficial because they help the algorithm to escape from local minima and
explore potentially better areas of the cost function landscape. Nonetheless, if the
learning rate is too high, the algorithm may oscillate around the minimum or even
diverge.
Research has demonstrated that the learning rate schedule is an important factor
in determining the convergence behavior of SGD. Notably, if the learning rate is
gradually decreased, SGD can achieve the same convergence behavior as Batch
Gradient Descent. This implies that SGD is likely to converge to a local or the

114

A.1 – Gradient Descent Variants

global minimum, depending on whether the optimization problem is convex or
non-convex, respectively.

Figure A.1: Sketch of the cost function during the training process using Batch
Gradient Descent and Stochastic Gradient Descent optimization methods. In BGD,
the model parameters are updated using the gradient of the cost function with
respect to the entire batch of training examples at once. This results in smooth
updates that typically lead to a monotonically decreasing cost function. In contrast,
in SGD, the high variance of the frequent updates can cause the cost function to
fluctuate heavily.

A.1.3 Mini-Batch Gradient Descent
Mini-Batch Gradient Descent combines the benefits of Batch Gradient Descent and
Stochastic Gradient Descent by performing an update for every mini-batch of k
training examples, so that

θ(τ+1) = θ(τ) − η∇θ C(θ(τ);x(i:i+k), y(i:i+k)) (A.3)

This approach reduces the variance of the parameter updates, resulting in more
stable convergence. Additionally, mini-batch gradient descent can take advantage
of highly optimized matrix optimizations that are common in state-of-the-art deep
learning libraries, making the computation of the gradient with respect to a mini-
batch very efficient [111]. The mini-batch size typically ranges between 50 and 500
but can vary depending on the application.

115

Gradient Descent Optimization Algorithms

Mini-batch gradient descent is commonly the preferred algorithm for training neural
networks, and the term SGD is often used even when mini-batches are employed.
In the following, we will omit the parameters x(i:i+k) and y(i:i+k) for the sake of
simplicity.

A.2 Challenges
There are several challenges associated with mini-batch gradient descent that need
to be addressed for effective optimization:

• Difficulty in choosing a proper learning rate: Selecting an appropriate learning
rate is crucial for successful convergence. If the learning rate is too small,
convergence will be extremely slow, while a large learning rate may cause the
loss function to fluctuate around the minimum or even diverge.

• Inflexible learning rate schedules: Learning rate schedules attempt to modify
the learning rate throughout training by reducing it based on a predetermined
schedule or when the difference in costs between epochs falls below a specific
threshold. However, these schedules and thresholds must be established
beforehand, making them incapable of adapting to the unique characteristics
of a dataset.

• Uniform learning rate for all parameter updates: Vanilla mini-batch gradient
descent applies the same learning rate to all parameter updates. In cases
where the data is sparse and features have varying frequencies, it may be more
appropriate to perform updates of different magnitudes, with larger updates
for infrequent features, rather than updating all features to the same extent.

• Difficulty in escaping saddle points: Minimizing highly non-convex error
functions, which are common for neural networks, presents challenges due
to the risk of getting trapped in suboptimal local minima or saddle points.
Saddle points are points where one dimension slopes up and another slopes
down, and they are typically surrounded by a plateau of the same error [111].
Since the gradient is close to zero in all dimensions near a saddle point, it is
difficult for SGD to escape, which can slow down or hinder convergence.

To address these challenges, researchers have developed more advanced optimization
algorithms, such as adaptive learning rate methods (e.g., AdaGrad, RMSProp,
Adam, and AMSGrad), which adapt the learning rate for each parameter update
and can better handle sparse data, saddle points, and complex error surfaces. In
the following, we will discuss the two algorithms used during numerical experiments,
namely Adam and ASMGrad.

116

A.3 – Adam

A.3 Adam
Adam [59] is a method for efficient stochastic optimization that employs adaptive
learning rates, calculating distinct learning rates for various parameters. The name
stems from adaptive moment estimation, as it utilizes estimates of the first and
second moments of the gradient to adjust the learning rate for each weight within
the neural network.
Suppose we have a stochastic scalar function C(θ) that is differentiable with respect
to its parameters θ. Our goal is to minimize the expected value of this function
with respect to θ

min
θ

E[C(θ)] (A.4)

It is important to note that the gradient of the cost function for a neural network
can be seen as a random variable due to its evaluation on a small random batch
of data (mini-batch). To simplify the notation, we define g(τ) .= ∇θ C(θ(τ)) as the
gradient of the objective function with respect to the parameters θ at time step τ .
The first moment of a random variable corresponds to the mean, while the second
moment corresponds to the uncentered variance. To estimate these moments,
Adam uses exponentially weighted moving averages that are calculated based on
the gradient evaluated on the current mini-batch:

m(τ) = β1m
(τ−1) + (1 − β1)g(τ) (A.5)

v(τ) = β2v
(τ−1) + (1 − β2)(g(τ))2 (A.6)

for τ = 1, . . . , T . Here, m(τ) and v(τ) represent estimates of the first and second
moment of the gradient, (g(τ))2 denotes the element-wise square g(τ) ⊙g(τ) (meaning
that each entry of the gradient is multiplied by itself), and β1, β2 ∈ [0,1) are two
hyperparameters that control the exponential decay rates of these moving averages
[59]. At the initial time step, we fix the initial parameter vector θ(1) and initialize
the first and second moment vectors m(0) and v(0).
As we desire unbiased estimators for the first and second moments, we want to
ensure that the following properties hold:

E[m(τ)] = E[g(τ)] (A.7)
E[v(τ)] = E[(g(τ))2] (A.8)

However, since m(τ) and v(τ) are initially set to vectors of 0’s, these estimates tend
to be biased towards zero, especially at the beginning of the optimization process,
and particularly when the decay rates are small (i.e., β1 and β2 are close to 1). To
correct these biases, we compute bias-corrected estimates of the first and second
moments according to:

m̂(τ) = m(τ)

1 − βτ
1

(A.9)

117

Gradient Descent Optimization Algorithms

v̂(τ) = v(τ)

1 − βτ
2

(A.10)

where βτ
1 , β

τ
2 denote β1 and β2 to the power τ .

To perform weight update in Adam, we use the moving averages computed in
(A.9) and (A.10) to scale the learning rate of each parameter individually. This is
achieved by dividing the bias-corrected first moment estimate m̂(τ) by the square
root of the bias-corrected second moment estimate v̂(τ) plus a correction factor ϵ
(to avoid division by 0), and then multiplying by the step size η. The update rule
for Adam is hence given by

θ(τ+1) = θ(τ) − η · m̂(τ)
√
v̂(τ) + ϵ

(A.11)

The default values suggested for the hyper-parameters are 0.9 for β1, 0.999 for
β2, and 10−8 for ϵ. Empirical evidence demonstrates that Adam performs well in
practical applications and is competitive with other adaptive learning algorithms.

A.4 AMSGrad
AMSGrad [60] is a variant of the Adam optimizer that addresses a potential issue
with Adam where the learning rate can decay too quickly in certain situations.
In Adam, the second moment estimate v(τ) is used to scale the learning rate,
but in AMSGrad, the maximum value of v(τ) up to time τ is used instead. This
modification ensures that the learning rate never decreases as τ increases, preventing
a situation where the learning rate becomes too small and slows down convergence.
More specifically, in AMSGrad, the estimate of the second moment is computed as:

v̂(τ) = max(v̂(τ−1), v(τ)) (A.12)
To simplify the method, the authors have also eliminated the debiasing step,
resulting in the following update rule:

m(τ) = β1m
(τ−1) + (1 − β1)g(τ)

v(τ) = β2v
(τ−1) + (1 − β2)(g(τ))2

v̂(τ) = max(v̂(τ−1), v(τ))

θ(τ+1) = θ(τ) − η · m(τ)
√
v̂(τ) + ϵ

(A.13)

In practice, AMSGrad has been shown to improve upon Adam in certain scenarios,
such as in training generative adversarial networks or with large-scale language
modeling. However, it is important to note that the performance of AMSGrad
may depend on the specific problem being solved and the values chosen for the
hyperparameters.

118

	Introduction
	Foundations of Quantum Computing
	Qubit and Quantum State
	Multiple Qubits
	Pure and Mixed States
	Measurement of Quantum States
	Time-Evolution of a Closed System
	Quantum Gates
	Single-Qubit Gates
	Two-Qubit Gates
	Quantum Gate Decompositions

	Entanglement
	Quantum Hardware and Challenges
	Physical Realizations of Quantum Computers
	Superconducting Qubits
	Photonic Qubits
	Trapped Ion Qubits

	Conclusions

	Parametrized Quantum Circuits and Data Encoding
	Parametrized Quantum Circuits
	Variational Quantum Eigensolver
	Quantum Approximate Optimization Algorithm
	Data Encoding Strategies
	Basis Encoding
	Amplitude Encoding
	Angle Encoding
	Hamiltonian Encoding

	Conclusions

	Quantum Machine Learning
	Feed-Forward Neural Networks
	Generative Adversarial Networks
	Quantum Generative Adversarial Networks
	QuGAN
	qGAN Distribution Learning

	Conclusions

	Applications and Numerical Experiments
	QuGAN applied on MNIST dataset
	Dataset and Data Qubitization
	Dimensionality Reduction
	Quantum Circuit Ansatz
	Results and Discussion

	qGAN for Loading Student's t-Distributions
	Student's t-Distribution and its Generalization
	qGAN Architecture and Implementation
	Results and Discussion

	Conclusions

	Conclusions
	Bibliography
	Gradient Descent Optimization Algorithms
	Gradient Descent Variants
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent

	Challenges
	Adam
	AMSGrad

