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Abstract

In machine learning (ML) algorithms for image and signal classification it is fun-
damental to build architectures which enable to learn and extract discriminative
features regardless to translation, rotation, small stochastic perturbations and
stretches which affect real-world data. In this thesis we investigate the properties
of the Wavelet Scattering Transform (WST), a mathematical technique recently
proposed in the context of signal processing and ML. We explore the application of
WST in distinguishing glitches that impact the accurate detection of gravitational
waves (GW). The first detection of a GW took place in 2015 by the LIGO-Virgo
collaboration. This thesis is done in collaboration with the Istituto Nazionale
di Fisica Nucleare (INFN), in the interTwin project framework. In recent years
the use of ML to improve analysis and manipulation of GW signals has increased
significantly.
This work investigates the possibility of applying WST to extract discriminative fea-
tures from glitches, i.e. noises captured by gravitational wave detectors not related
to astrophysical phoenomena. Physical issues, e.g. non-homogeneity in centering
the time-series over the energy spike, environmental noise and deformations caused
by the high sensitivity of the interferometer are problems that critically plague the
state-of-the-art techniques. As a side note, our analysis is developed on the data
provided by INFN because of the privacy policy of LIGO-Virgo experiments. This
work is organized in three sections.
The first section provides a formal definition of the wavelet scattering operator and
a comparison to other standard signal representations, with particular regards to
three fundamental properties: translation invariance, stability to additive perturba-
tions, local invariance to continuous stretches (in terms of Lipschitz continuity to the
action of C2−diffeomorphisms). These properties are crucial for classification and
discrimination tasks, as natural elements of the same class exhibit slight variations.
A reliable representation should keep similar images close in the target space, even
when they undergo minor geometric modifications. This proximity facilitates their
effective use in ML applications. However, standard methods like Q-transform
based on Short Time Fourier Transform (STFT) lack these properties, leading to
distorted representations that are less accurate in capturing essential features.
The second part of the thesis focuses on the experiments and results on the Free
Spoken Digits dataset, analyzing the effect on classification algorithms of WST,
compared to the state-of-the-art representation technique based on STFT. On
average the algorithms trained in the wavelet scattering domain outperformed the
same classifiers trained in the Fourier domain, proving from an empirical point of
view that WST enhances discriminative features across the different classes. These



preliminary studies and results on the Free Spoken Digits were crucial to test and
evaluate WST based techniques for studying GW, due to the similarity of glitch
signals and human voice recordings - both are one-dimensional and non-stationary.
The third part focuses on applying WST to GW data collected by VIRGO inter-
ferometer, and comparing the results with the state-of-the-art method, based on
Q-transform, which, being strictly related to STFT, does not provide translation
invariant features. This work is the first that applies WST to gravitational data in
order to classify and discriminate different kinds of glitches.
Trials are developed on the dataset provided by INFN, consisting of 855 samples of
scattered-light glitches. Q-transform is known to perform bad on this class, since it
is not able to discriminate the most significant features. An analysis of dispersion
has been conducted to compare the behaviour of WST against Q-transform. We
develop a technique to estimate dispersion for the two representations based on the
Principal Component Analysis (PCA). We compute two different representative
spectrograms, one for each operator, and then estimate the sample mean distance
and the relative standard deviation. The results are compared in terms of coefficient
of variation, since, in general, having less dispersed classes significantly enhance
the performance of simple classification algorithms. In conclusion the results show
that in WST space scattered light glitches appear to be much more clustered.
This thesis provides the first steps towards the application of WST for gravitational
glitch discrimination. Promising future directions lie in understanding how to
leverage WST patterns to whiten astrophysical signals and in developing efficient
neural architectures with optimal parametrization to classify glitches belonging to
different classes, exploiting invariance properties of WST. This study sets the stage
for further advancements in the field, offering potential solutions to improve the
accuracy and efficiency of gravitational glitch detection methods. Additionally, an
important result worth noting is the impact on computational resources. Lighter
architectures are consistently preferred due to their lower training costs.
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Introduction

The construction of mathematical representations that extract hidden patterns and
similarities from data, e.g. auditory signals or images, is crucial to build reliable
and accurate machine learning architectures, enhancing the performances and the
robustness of the algorithms.
Signal representation has historically bridged theoretical mathematics, such as
functional analysis, with various applied fields including engineering, physics,
and more recently, computer science and artificial intelligence. Joseph Fourier
(1768-1830) in his work "Théorie Analytique de la Chaleur" [1] introduced the
revolutionary idea that decomposing signals into their frequency components allows
the extraction of significant information. Fourier’s contribution established the
mathematical framework for modern signal processing techniques, such as the Short
Time Fourier Transform (STFT), proposed in 1946 by D.Gabor [2], and the more
recent Q-transform (1992) [3]. STFT is a common technique which provides a
representation applying the Fourier transform on a signal over short, overlapping
time windows. Similarly the Q-transform divides the frequency range into sub-bands
with different widths, logarithmically spaced, allowing a more close correspondance
to the perception of sound by human auditory system. Representation techniques
in signal analysis applying wavelet decomposition started in 1982, when Jean
Morlet proposed the Continuous Wavelet Transform [4] to analyze seismic signal
propagation over different media. Continuous Wavelet Transform provides a
representation of a signal applying a convolution with a family of wavelets that are
scaled and translated across the time domain.
Before the emergence of machine learning, signal analysis primarily focused on
developing analytical techniques and algorithms to process and analyze signals.
Dealing with large amount of data led to a change in perspective and set new
paradigms for signal representations. In fact deep learning architectures designed
for auditory or image classification achieve higher performances when relying on
stable representations of the data, in particular translation invariance, stability to
continuous stretches and to additive noise. Standard methods based on the Fourier
transform lacks of these properties, therefore new techniques have been proposed.
Convolutional neural networks aim to acquire an invariant representation, yet

1



Introduction

they heavily depend on computationally expensive operations, and it still lacks
rigorous proofs that they satisfy the aforementioned properties [5]. In order
to offer a solution to the problem of stable local invariant representations the
wavelet scattering transform has recently been proposed [6]. The wavelet scattering
transform is a non-linear integral operator that allows to extract patterns and
similarity between signals, by cascading convolutions with wavelet functions and
moduli operations.
In this thesis we discuss the mathematical properties of the wavelet scattering
transform, and, throughout comprehensive tests and experiments, we introduce a
novel approach based on the wavelet scattering operator to overcome the challenge
of detecting and characterizing glitches that affect gravitational waves signals.
This thesis is made in collaboration with the Istituto Nazionale di Fisica Nucleare
(INFN), in the interTwin project framework. Our analysis has been conducted on
portions of sensible gravitational waves data collected by VIRGO interferometer,
kindly provided to us by INFN.
Albert Einstein (1879-1955) predicted gravitational waves in "Die Feldgleichungen
der Gravitation" [7], while introducing the theory of general relativity. Gravitational
waves are ripples in the fabric of space-time caused by the acceleration of massive
objects. Einstein’s remarkable prediction took several decades for being confirmed
experimentally. The historic first detection of gravitational waves, announced by
the LIGO-Virgo collaboration in 2015 [8], confirmed Einstein’s theory and marked
a fundamental milestone in mankind’s understanding of the nature of the Universe.
Gravitational waves are detected by extremely sensitive interferometers, therefore
collected signals are heavily affected by glitches that can compromise the study
and analysis of astrophysical signals. Classifying and characterizing these glitches
is a primary interest in this research field, in particular INFN, and other leading
research institutes, who take part to the interTwin project.
The first section of the thesis focuses on formally stating the definition and properties
of the wavelet scattering transform, introducing a comprehensive mathematical
framework, throughout examples and comparisons with standard techniques. We
present the fundamental theoretical elements, providing detailed results that justify
the reliability of this representation technique, making it a suitable instrument for
machine learning based signal analysis. This section studies the wavelet scattering
transform applied to deterministic squared-integrable signals, hinting a further
generalization to stochastic processes.
We preliminary developed experiments to test the wavelet scattering transform
on auditory data, more precisely for spoken digits classification on Free Spoken
Digits dataset [9]. We compared the performances achieved with the wavelet
scattering transform to the ones of the same classification algorithms trained with
the state-of-the-art representation technique, i.e. STFT. In this experiments the
wavelet scattering transform outperformed the STFT, in terms of classification

2
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accuracy, achieving higher scores, also with simple distance based algorithms, e.g.
K-Nearest Neighbours.
Analysis on the Free Spoken Digits dataset paved the way for applying the wavelet
scattering transform on gravitational waves. In particular we present a comparative
analysis with the state-of-the-art representation technique based on the Q-transform.
Our experiments were developed on the single class dataset provided by INFN,
which consisted of samples of scattered light glitches. Scattered light glitches
represent unwanted noise appearing in gravitational wave interferometers. These
glitches are caused by different sources, e.g. scattering of laser light within the
instrument’s optics. Scattered light glitches are among the most challenging
glitches families to distinguish and characterize. We compare the dispersion of the
spectrograms in the wavelet scattering domain with the one in the Q-transform space.
Our analysis, developed with Principal Component Analysis (PCA), displayed
way less dispersion in the wavelet scattering domain, providing a very promising
outcome. All the experiments are developed in Python language. Kymatio [10]
is a package that provides efficient tools for the wavelet scattering transform
computations. As far as gravitational analysis is concerned, the package GWpy [11]
offers fundamental functions and methods to deal with LIGO/Virgo data. All the
codes developed for the experiments presented in this thesis are available at https:
//github.com/alelicciardi99/wavelet_scattering_transform_thesis.
In this work we show that the wavelet scattering transform offers a stable and reliable
representation for one-dimensional data. We argue that the wavelet scattering
transform can capture high-level discriminative features and fine-grained textures
in gravitational wave data, without using over-parametrized architectures, like
convolutional neural networks. This significantly reduces the computational effort
in the training phase. Moreover due to the increasing interest on decentralized
edge computing and low-powered devices, reducing the cost of training algorithms,
without losing accuracy, is becoming crucial in machine learning research (Federated
Learning [12], Tiny ML [13]). Technological advancements in computational
hardware resources have enabled AI algorithms to achieve excellent results. However,
as highlighted in ”Training a single AI model can emit as much carbon as five cars
in their lifetimes” published by MIT researchers [14], several studies show how over-
parametrized complex networks consume a massive amount of energy, remarking
the importance of developing new solutions and architectures that balance the
trade-off between accuracy of predictions and energetical cost of training [15]. In
this scenario the wavelet scattering transform may provide valuable improvements.
The results of this thesis reinforce the idea that building a locally translation
invariance representation that is not learnt from data, may significantly reduce
training efforts.
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Wavelet Scattering
Transform. A Mathematical

Analysis
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Chapter 1

An Introduction to Signal
Representation

In this first part a detailed introduction to the wavelet scattering transform and
its properties is provided [6],[16]. In several machine learning tasks, such as
classification, it is required to build architectures able to capture distinctive features,
highlighting the patterns which characterize the different classes.
In mathematical terms one can see these architectures as suitable operators which
map the input signal, a function x defined over a domain Ω ⊂ Rd, into another
space where, hopefully, features of interests can be extracted. In this work such
operator is generally denoted with Φ, therefore the transformed signal becomes
Φ(x). In order to address properly the formulation of the problem it is fundamental
to focus on the properties that the operator Φ should satisfy.
Let us consider the following example. Let the signal x be a bi-dimensional
image of a cat. The information provided by Φ should ideally be the same for
any image showing the same cat, regardless to any translation, rotation, small
stretch or additive noise, but it should also be able to discriminate the picture of
that same cat from the picture of any other different animal species, hence the
representation should be informative. In this first chapter we provide a description
from a mathematical point of view of such properties and, furthermore, we show
how classical results, such as Fourier transform, fail to reach this strict target,
leading to the second chapter, where a detailed description of the wavelet scattering
transform is dispensed.
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An Introduction to Signal Representation

1.1 Signal Representation and Properties Formu-
lation

In this framework we suppose that the signals are functions in the space L2(Rd). It
is important to denote that the representation Φ induces a metric d over L2(Rd), i.e.
for any couple of signals x, x′ the metric d can be seen as the Euclidean distance
among the two transformed signals

d(x, x′) = ∥Φ(x)− Φ(x′)∥. (1.1)

Before proceeding to the description of some well-known signal representations, we
aim to point out and clarify the following notions:

• local translation invariance

• stability to additive perturbations

• stability to deformations.

The first property is quite trivial, and can be stated as follows.

Definition 1.1.1. Let x(u) be a signal, and c ∈ Rd be a constant. Being called
xc(u) = x(u+ c), we say that a representation Φ is translation invariant if for
any c ∈ Rd

Φ(x) = Φ(xc) .

Translation invariance is a desirable property in many mathematical and machine
learning contexts. It implies that the operator Φ does not depend on the specific
position or location of the function’s argument but only on its relative differences
or distances. This property often simplifies the analysis and computation of
the operator, leading to more elegant mathematical formulations and efficient
algorithms. Note that global and local translation invariance are slightly different
properties, and have different implications in machine learning architectures. Global
translation invariance refers to the property of a system where the output remains
the same regardless of the input’s position, while local translation invariance means
that the output may vary depending on the input position within a specific region
or context. Machine learning exploits local translation invariance to extract fine-
grained features from input signals [5].
Formally defining an operator that is robust and stable to additive perturbations
is the same as requiring that Φ is a (Lipschitz) contraction, i.e. for any couple of
signals x, x′ in L2(Rd) it exists a positive constant C < 1 such that

∥Φ(x)− Φ(x′)∥ ≤ C∥x− x′∥.
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So if we consider a signal x and a perturbed version x+ ϵ, the representation Φ
must ensure us that the noise does not propagate in the transformed space:

∥Φ(x+ ϵ)− Φ(x)∥ ≤ ∥ϵ∥.

A little more technical is the discussion of the notion of stability to deformations.
Let us recall the definition of diffeomorphism.
Definition 1.1.2. Let Ω ⊂ Rd be an open set and let τ : Ω → Rd be a bijection.
Function τ is said to be a Cr-diffeomorphism from Ω to τ(Ω) if it is differentiable
with continuity r-times and if its inverse τ−1 is also differentiable with continuity
r-times.

In order to obtain stability to deformations, we need to control the behaviour of
the representation Φ under the action of the diffeomorphism

u→ u− τ(u)

where τ is an invertible field from Rd into itself. Let us introduce the following
norm over C2:

∥τ∥ := sup
u∈Ω
|τ(u)|+ sup

u∈Ω
|∇τ(u)|+ sup

u∈Ω
|Hτ(u)| (1.2)

where Ω ⊂ Rd is a compact set, and Hτ is the Hessian matrix. Let us point out
that the norm defined in (1.2) measures the amount of elastic deformation resulting
from applying τ over Ω. This justifies the following requirement on Φ.
Definition 1.1.3. The representation Φ is Lipschitz continuous to the action
of C2-diffeomorphisms and locally translation invariant at scale 2J if for any
compact set Ω ⊂ Rd exists a positive constant C such that for all x in L2(Rd)
supported in Ω and all τ ∈ C 2

∥Φ(L[τ ]x)− Φ(x)∥ ≤ C∥x∥
A

2−J sup
u∈Ω
|τ(u)|+ sup

u∈Ω
|∇τ(u)|+ sup

u∈Ω
|Hτ(u)|

B
where with the notation L[τ ]x the action of τ on x is denoted.

We observe that for a field τ having supu∈Ω |τ(u)| much smaller than 2J the
representation stability is controlled by the maximum elasticity of τ , i.e. the term
supu∈Ω |∇τ(u)|.

1.2 Classic Signal Representations
In this section some of the most common representations used in signal processing
are discussed, focusing the attention in showing why such operators do not enjoy
the previously stated properties.

8



An Introduction to Signal Representation

1.2.1 Linear Signal Representations
Linear Signal Representation [17] is the simplest way to transform a function,
however due to its extreme simplicity it does not provide any further information.

Definition 1.2.1. For a signal x ∈ L2(Rd) its linear representation is given by

Φ(x) =
NØ

j=1
cjϕj (1.3)

where {ϕj}N
j=1 ⊂ L2(Rd) is an orthonormal set, and for each j = 1, . . . , N the

coefficient cj is the projection of x onto ϕj, namely = cj = ⟨x, ϕj⟩.

As previously mentioned such representation does not add any kind of informa-
tion, furthermore the induced metric is not stable to local deformations. One can
prove that for any couple of L2(Rd) functions x, y the distance

d(Φ(x),Φ(y)) =
......

NØ
j=1
⟨x− y, ϕj⟩ϕj

......
is equivalent to the Euclidean norm over L2(Rd) which is not Lipshitz continuous
to the action of C2−diffeomorphism, therefore linear signal metric inherits the
property.

Remark 1.2.1. A special case of linear representations is provided by the Fourier
series, in such case N =∞, and the set {ϕj}∞

j=1 is an orthonormal basis of L2(Rd).
Due to completeness properties of orthonormal basis of Hilbert spaces, i.e.

span{ϕj : j = 1, . . . ,∞} = L2(Rd) ,

the Fourier series of any function x ∈ L2(Rd) converges to x, therefore the equiva-
lence of the metrics is trivial.

1.2.2 Non-Linear Signal Representations
As previously illustrated linear signal representations are not helpful to extract
discriminative features and do not result robust to small deformations, in the
sense that the norm of the error can not be controlled and may explode. The
vast majority of methods used in signal processing and machine learning exploit
non-linearity. Historically the most notorious examples are based on the Fourier
transform, e.g. Fourier modulus and power spectrum [18], [19]. With the uprising
of machine learning and the continuous increase in computational power have led
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to the construction of more powerful (and costly) techniques, such as convolutional
neural networks [20]. Kernel methods [21] constitute a common technique in
machine learning. Kernel methods utilize kernel functions to map signals into a
high-dimensional feature space, enabling effective signal representation and analysis
[16]. However these methods do not enjoy of all the three fundamental properties
which we previously required. Note that also for convolutional filters such properties
are not proved to be true [5], yet those methods are more heuristically constructed
[20]. In the following pages we analyze Fourier transform based methods.

Fourier Analysis and Autocorrelation

Fourier analysis [19], [18] consists in a series of well established techniques for signal
analysis. Let us recall the definition of continuous Fourier transform.
Definition 1.2.2. Let x be a signal in L2(Rd). We define the Fourier transform
of x, denoted by x̂(ω), the function

x̂(ω) =
Ú
Rd
x(u)e−iω·u du (1.4)

To simplify the notation we will omit the subscript Rd under the integral opera-
tor.
Let us observe that Fourier transform is a linear operator, due to the linearity of
the integral. However in order to show non-linear Fourier based methods, we report
some notable results regarding the Fourier transform in this section.
Let us recall that Fourier transform enjoys the isometric property, i.e. for any
signal in x in L2(Rd) the equality ∥x∥ = ∥x̂∥ holds true [17]. This isometry is also
referred in literature as Plancherel identity [19].
However, as far as our task is concerned, we immediately see that Fourier represen-
tation is not translation invariant, as shown by the following trivial example.
Example 1.2.1. Let us consider x ∈ L2(Rd) and let us fix a shift c ∈ Rd. If we
denote the shifted version of x by xc = x(u− c), we observe that x̂c differs from
the non-shifted transform x̂. Indeed

x̂c =
Ú
xc(u)e−iω·u du =

Ú
x(u− c)e−iω·u du

and imposing v := u− c we getÚ
x(v)e−iω·(v+c) du = e−ic·ω

Ú
xc(v)e−iω·v dv = e−ic·ωx̂(ω).

However the previous example suggests that if we took the modulus of the
Fourier transform we would get a signal representation which is invariant under any
shift. Indeed, let Φ(x) = |x̂| be the so called Fourier modulus, we easily see that

Φ(xc) = |x̂c| = |e−ic·ωx̂| = |x̂| .

10
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Nevertheless Fourier modulus does not enjoy the property of stability to small
perturbations (in terms of Lipschitz strict contractions), as we portrait in the
following example.

Example 1.2.2. For the sake of simplicity we assume that the domain of the
signal x is one-dimensional, e.g. time domain. Let θ(u) be a symmetric lowpass
filter centered in 0. Let us define x(u) = eiξuθ(u) and xτ (u) = x((1 + s)u), i.e. a
perturbed version of x by a small positive parameter s.
We want to show that as s tends towards zero, the representation Φ given by
Fourier modulus is not a Lipschitz strict contraction, i.e. the following inequality
does not hold true

∥Φ(xτ )− Φ(x)∥ ≤ ∥xτ − x∥ . (1.5)

Let us compute the Fourier transform of the signals under analysis:

x̂(ω) =
Ú
eiξuθ(u)e−iωu du =

Ú
θ(u)e−i(ω−ξ)u du = θ̂(ω − ξ) (1.6)

where θ̂ is the Fourier transform of the lowpass filter, and, imposing (1 + s)u =: v,
we get

x̂τ (ω) =
Ú
x((1 + s)u)e−iωu du = 1

s+ 1

Ú
x(v) exp

;
−i
3

ω

s+ 1

4
v
<
dv

= 1
s+ 1 x̂

3
ω

s+ 1

4
which can be written in terms of θ, due to relation (1.6) as

x̂τ (ω) = 1
s+ 1 θ̂

A
ω − (s+ 1)ξ

s+ 1

B
.

So we got that x̂ is a lowpass filter centered in ω0 = ξ, while x̂τ is centered in
ωτ

0 = (s+ 1)ξ.
Since xτ is the same signal as x, just displaced by the positiven parameter s, it is
trivial to show that in the limit s→ 0+, the right-hand side of equation (1.5) tends
to zero. Let us focus on the left-hand term of (1.5). We know that the variance of
a signal is a measure of how the energy is displaced around the central frequency,
hence for the lowpass filter θ we get

σ2
θ =

Ú
|ω|2|θ̂(ω)|2 dω ,

as for the signal x, indeed, with the help of a trivial change of variable

σ2
x =

Ú
|ω − ω0|2|x̂(ω)|2 dω =

Ú
|ω − ξ|2|θ̂(ω − ξ)|2 dω =

Ú
|ν|2|θ̂(ν)|2 dν = σ2

θ .
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The same thing is done on the displaced signal xτ

σ2
xτ

=
Ú
|ω − ωτ

0 |2|x̂τ (ω)|2 dω =
Ú
|ω − (s+ 1)ξ|2|(s+ 1)−1x̂((s+ 1)−1ω))|2 dω

=
Ú
|(s+ 1)−1ω − ξ|2|x̂((s+ 1)−1ω))|2 dω = (s+ 1)

Ú
|ν − ξ|2|x̂(ν)| dν

= (s+ 1)σ2
x = (s+ 1)σ2

θ .

We notice that the distance of the central frequencies ωτ
0 − ω0 = sξ is way much

larger than the frequency spread σxτ + σx = (
√

1 + s+ 1)σθ. This means that in
the limit the supports can be considered disjoint, and hence, as ∥xτ − x∥ goes to
zero, the term ∥Φ(xτ )− Φ(x)∥ tends to a positive value, therefore inequality (1.5)
does not hold. Hence we conclude that the Fourier modulus does not satisfy the
non-expansive property required.

Beside Fourier transform and Fourier modulus, another classical tool for signal
processing is the auto-correlation function. Due to its fame it may be worthwhile
to discuss an example that shows why it is not suitable for our pre-processing task.
Again this representation is not a Lipschitz strict contraction, since it induces a
metric equivalent to the one of the Fourier modulus.

Definition 1.2.3. Let x ∈ L2(Rd) be a signal, the auto-correlation function of x is
defined as

Rx(v) = x ⋆ x∗(−v) =
Ú
x(u)x∗(u− v) du

where x∗ is the conjugate complex of x and ⋆ denotes the continuous convolution
operation.

In order to prove the metric equivalency we shall introduce a fundamental
property relating the auto-correlation function of a signal x and its spectral density,
i.e. the squared modulus of x̂. The property is a special case of the Wiener-Kinchin
Theorem[22], stated in the following proposition.

Proposition 1.2.1. For any signal x ∈ L2(Rd) and for any ω ∈ Rd

R̂x(ω) = |x̂(ω)|2 . (1.7)
Here we provide the proof for the one-dimensional case.

Proof. The Fourier transform of the auto-correlation can be written as

R̂x(ω) =
Ú
Rx(v)e−iωv dv =

Ú 3Ú
x(u)x∗(u− v) du

4
e−iωv dv

12
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since the exponential term does not depend on u, it can be brought inside the inner
integral and, adding and subtracting in ±iωu, we getÚ 3Ú

x(u)x∗(u− v)e−iωv du
4
dv =

Ú Ú
x(u)x∗(u− v)e−iω(v−u+u) du dv .

The above expression can easily be rearranged intoÚ Ú
x(u)e−iωux∗(u− v)e−iω(v−u) du dv

and setting t := u− v, it results to be equal to3Ú
x(u)e−iωu du

43
−
Ú
x∗(t)eiωt

4
=x̂(ω)

3
−
Ú
x∗(t)[e−iωt]∗

4
=x̂(ω)

3Ú
x(t)e−iωt

4∗

=x̂(ω)x̂∗(ω) = |x̂(ω)|2 .

Example 1.2.3. Let us consider the signals x and xτ introduced in Example 1.2.2.
Auto-correlation function induces the metric ∥Rx − Rxτ∥. Due to the isometric
property and linearity of Fourier transform the following equivalences hold

∥Rx −Rxτ∥ = ∥ \Rx −Rxτ∥ = ∥ãRx − äRxτ∥ .

Applying relation (1.7) we get

∥ãRx − äRxτ∥ = ∥ |x̂|2 − |x̂τ |2∥ .

Hence one can conclude the proof following the argument of Example 1.2.2 that
also the auto-correlation function is not stable to small perturbations.

Convolutional Neural Networks

Convolutional Neural Networks [23][24] are one of the most used family of algo-
rithms in deep learning. These architectures achieve their best performances in
classification tasks involving structured complex data, such as images. A convolu-
tional neural network consists of two main blocks, one extracts meaningful patterns
via non-linear operators which are obtained by cascading trainable filter banks,
pooling operators and sigmoid or ReLU activation functions [25], the other is a
fully connected neural network outputting the posterior probability of the input
data belonging to each class. The weights and the filters are learnt by minimizing
the loss function via optimization methods, such as Stochastic Gradient Descent
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[26] or Adam [27].
The convolutional layers aim to build (learning the filters from the data) a (locally)
translation invariant representation of the data. Even though it has not been
proved that this representation enjoys such property, empirical results have shown
that the deeper the network the better it learns representations that get closer
to be translation invariant [28]. However deeper network are heavy to train and
suffer of over-parametrization (state-of-the-art GPipe has more than 500 milion
parameters and reaches the top-accuracy of 84.3% on ImageNet dataset [29]).
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Chapter 2

Introducing Wavelet
Scattering Transform

In this chapter we explain the construction of the wavelet scattering transform [6].
After a review of wavelets and their properties, we delve into defining the wavelet
scattering transform, and how, by the simple introduction of non-linearity, this
operator overcomes the issues characterizing its predecessor, the Littlewood-Paley
wavelet transform [30] . Many results proved for the Littlewood-Paley wavelet
operator are helpful to demonstrate properties that characterizes the wavelet
scattering transform, therefore a detailed description of the former is provided [16].
In the last section of the chapter important results about the wavelet scattering
transform induced metric are shown [31].

2.1 Wavelet Functions
As suggested by its naming, wavelet functions play a central role in the in the
computation of the wavelet scattering transform. Therefore choosing in a proper
way wavelet function affects the behaviour and the properties of scattering operators.
In many applications the most used are Gaussian and Morlet wavelets.
Let us introduce a signal ψ ∈ L2(Rd), usually referred to as mother wavelet and let
{aj}j∈Z be a sequence of scale factors, taking a > 1 (e.g. in audio signal processing
a is often smaller than 21/8). Furthermore, let r ∈ G be a rotation in Rd, where G
denotes a discrete rotation group. Wavelets are obtained applying a rescaling aj

and a rotation r ∈ G, therefore we will use the following definition

ψajr(u) = a−djψ(a−jr−1u). (2.1)

The latter wavelets enjoy the following properties.
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Proposition 2.1.1. For any scale factor aj ∈ aZ and for any rotation r ∈ G:

1. the norm of the mother wavelet ψ is preserved in L1(Rd), i.e.

∥ψajr∥1 = ∥ψ∥1 .

2. the Fourier transform of a wavelet satsfies at any given frequency ω the
following relation äψajr(ω) = ψ̂(ajrω).

Proof. Let us prove the first statement.

1. Recalling (2.1) we can write L1−norm of a wavelet ψajr as follows

∥ψajr∥1 =
Ú
|ψajr(u)| du =

Ú
a−dj|ψ(a−jr−1u)| du .

Let us define an auxiliary variable v := a−jr−1u, which implies u = r(ajv).
Since rotation matrices determinant equals ±1, we may find that the modulus
of the Jacobian determinant of the inverse mapping ajr equals adj. This
substitution allow us to write the above integral asÚ

a−djadj|ψ(v)| dv = ∥ψ∥1 .

2. Let us write the Fourier transform for a wavelet ψajr.

äψajr(ω) =
Ú
ψajr(u)e−iω·u du =

Ú
a−djψ(ajr−1u)e−iω·u du .

Applying the aforementioned change of variable, and exploiting linearity, we
get

äψajr(ω) =
Ú
a−djadjψ(v)e−iω·r(ajv) dv =

Ú
ψ(v)e−i(ajrω)·v dv = ψ̂(ajrω) .

Let us introduce the following notation, that will be used throughout this work.
We define a scale-rotation operator λ ∈ aZ ×G, which is defined as λ = ajr. The
scale factor will be referred to as the modulus of the latter operator, i.e. |λ| = aj.
Hence instead of writing ψajr, we will denote

ψλ(u) = a−djψ(λ−1u) .
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A common and interesting choice for the mother wavelet ψ is to take ψ(u) = eiηuθ(u),
where θ is a lowpass filter centered in the null frequency with real Fourier transform
whose support is in the order of magnitude of π. As seen in the previous section,
multiplying a filter θ for a complex exponential function is the equivalent of doing
a translation in the frequency domain, more precisely

ψ̂(ω) = θ̂(ω − η) .

Hence, if we consider a wavelet ψλ, its Fourier transform, according to statement 2.
of Proposition 2.1.1, would be

ˆψλ(ω) = ψ̂(ajrω) = ψ̂(λω) = θ̂(λω − η) .

Let us observe that factorizing the operator λ we get ψ̂λ(ω) = θ̂(λ(ω − λ−1η)),
which implies that:

• it is centered in the frequency λ−1η

• the bandwidth it is of the order π|λ|−1 = a−jπ ≃ a−j .

Example 2.1.1. Morlet wavelets are widely used in signal processing. A Morlet
wavelet ψ is given by

ψ(u) = α(eiu·ξ − β)e−|u|2/(2σ2) . (2.2)

The parameters α, ξ, β, σ allow to shape the wavelet in order to reach different
features and enjoy certain properties. For instance a common choice is β ≪ 1 in
order to get zero average, i.e. ⟨ψ⟩ =

s
ψ(u) du = 0. Common values used in image

classification for the phase and the spread are respectively ξ = 3π/4 and the spread
σ = 0.85 [16].

2.2 From The Littlewood-Paley Wavelet Trans-
form to the Wavelet Scattering Transform

Littlewood-Paley transform is a mathematical operator that allows to study the
localization properties of functions in the frequency domain and their relationship
to various function spaces [30].

Definition 2.2.1. Let ψ ∈ L2(Rd) be a mother wavelet, and let λ ∈ aZ × G
be a scale-rotation operator. For any u ∈ Rd we define the Littlewood-Paley
transform of the signal x ∈ L2(Rd) as

Wλ(x)(u) := x ⋆ ψλ(u) =
Ú
x(v)ψλ(u− v) dv .
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Remark 2.2.1. Let x is a real signal, i.e. x(u) = x∗(u) and suppose that ψ̂ is real
(if and only if ψ is an Hermitian symmetric function, i.e. ψ(−u) = ψ∗(u)), we can
easily state that (Wλx)∗ = W−λx.
Indeed one can write

(Wλx)∗ =
3Ú

x(v)a−djψ(λ−1(u− v)) dv
4∗

=
Ú
x∗(v)a−djψ∗(λ−1(u− v)) dv

=
Ú
x(v)a−djψ(−λ−1(u− v)) dv

= W−λx .

This allows to state that in the considered case it is possible to define the equivalency
class of discrete rotations G+ := G/{±1}, which assimilates both r and −r.

We are now set to start talking about the wavelet transform. First thing to say is
that, for a fixed J ∈ Z, a wavelet transform takes only into account scale-rotations
λ such that |λ| < 2J , i.e. all j ∈ Z satisfying aj < 2J . Moreover, in order to
recover the low frequencies not captured by the wavelets, it is introduced a lowpass
filter ϕJ having a spatial support proportional to 2J , which can be written as
ϕJ(u) = 2−dJϕ(2−Ju).

Definition 2.2.2. The (Littlewood-Paley) wavelet transform of a signal
x ∈ L2(Rd) at scale 2J , for some J ∈ Z is defined as

WJx := {x ⋆ ϕJ , (Wλx)λ∈ΛJ
} ,

where ΛJ = {λ = ajr, r ∈ G+, |λ| < 2J}. Moreover for such representation it is
possible to define the following norm

∥WJx∥2 := ∥x ⋆ ϕJ∥2 +
Ø

λ∈ΛJ

∥Wλx∥2 . (2.3)

Due to linearity of integral convolution, Littlewood-Pailey wavelet transform is
a linear operator, more specifically defines the following map

WJ : x ∈ L2(Rd) −→WJx ∈ L2(Rd)× {L2(Rd)}|ΛJ |

Mathematicians Littlewood and Paley proved a very interesting results, character-
izing the boundaries for the norm introduced in relation (2.3), which we report in
the following proposition.

Proposition 2.2.1. (Littlewood-Paley Condition) If it exists ϵ ≥ 0 such that for
a.e. ω ∈ Rd and for all J ∈ Z satisfies
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(1− ϵ) ≤ |ϕ̂(2Jω)|2 + 1
2
Ø
j≤J

Ø
r∈G

|ψ̂(ajrω)|2 ≤ 1 (2.4)

hence the square into which WJ maps x is bounded, more precisly the following
inequality holds

(1− ϵ)∥x∥2 ≤ ∥WJx∥2 ≤ ∥x∥2 . (2.5)

Proof. We notice that inequality (2.5) and condition (2.4) are much related. For
the sake of simplicity, let us define the functional

Ξ(ω) := |ϕ̂(2Jω)|2 + 1
2
Ø
j≤J

Ø
r∈G

|ψ̂(ajrω)|2 .

In terms of Ξ, the Littlewood-Paley hypothesis can be written as

(1− ϵ) ≤ Ξ(ω) ≤ 1

by multiplying each term for |x̂(ω)|2 and integrating over ω, we get

(1− ϵ)
Ú
|x̂(ω)|2 dω ≤

Ú
Ξ(ω)|x̂(ω)|2 dω ≤

Ú
|x̂(ω)|2 dω ,

since Fourier transform is an isometric operator the condition becomes

(1− ϵ)∥x∥2 ≤
Ú

Ξ(ω)|x̂(ω)|2 dω ≤ ∥x∥2 .

Now it is left to prove that the integral
s

Ξ(ω)|x̂(ω)|2 dω equals actually ∥WJx∥2.
Due to linearity of integral operator, the following identity holdsÚ

Ξ(ω)|x̂(ω)|2 dω =
Ú
|ϕ̂(2Jω)x̂|2 dω + 1

2
Ø
j≤J

Ø
r∈G

Ú
|ψ̂(ajrω)x̂(ω)|2 dω .

If we focus on the first summand, noticing that for any ω ∈ Rd the filter ϕ̂J(ω) =
ϕ̂(2Jω), where ϕJ(u) = 2−dJϕ(2−Ju), we obtainÚ

|ϕ̂(2Jω)x̂|2 dω =
Ú
|ϕ̂J(ω)x̂|2 dω =

Ú
|ϕJ ⋆ x(u)|2 du = ∥ϕJ ⋆ x∥2 .

Let us focus on the second summand. Recalling that ΛJ = {λ = ajr ∈ aZ ×G+ :
|aj| ≤ 2J}, we have that

1
2
Ø
j≤J

Ø
r∈G

Ú
|ψ̂(ajrω)x̂(ω)|2 dω =

Ø
j≤J

Ø
r∈G+

Ú
|ψ̂(ajrω)x̂(ω)|2 dω

=
Ø

λ∈ΛJ

Ú
|ψ̂λ(ω)x̂(ω)|2 dω
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which, using convolution property of Fourier transform, becomesØ
λ∈ΛJ

Ú
|ψλ ⋆ x(u)|2 du =

Ø
λ∈ΛJ

∥Wλx∥2.

This allows to conclude Ú
Ξ(ω)|x̂(ω)|2 dω = ∥WJx∥2 ,

hence (2.5) follows.

Remark 2.2.2. Morlet wavelet, defined in (2.2), alongside a Gaussian low-pass
filter, i.e.

ϕ(u) = 1
2πσ2 exp

A
−|u|2

2σ2

B
with σ = 0.7, satisfy Littlewood-Pailey condition, Proposition 2.2.1, with ϵ = 0.25.

Let us point out that if the wavelet ψ and the low-pass filter ϕ are chosen in a
way such that

|ϕ̂(2Jω)|2 + 1
2
Ø
j≤J

Ø
r∈G

|ψ̂(ajrω)|2 = 1

the operator W is isometric, since ϵ = 0, therefore the energy of the signal is
preserved by the Littlewood-Pailey representation, namely

∥x∥ = ∥WJx∥ .

Another interesting property is that Fourier transform of mother wavelet ψ
computed in the null frequency ω = 0, is zero, namely ψ̂(0) = 0. This result implies
that ψ has null average, indeed

⟨ψ⟩ =
Ú
ψ(u) du =

Ú
ψ(u)e−iω·u du

---
ω=0

= ψ̂(0) = 0 .

However Littlewood-Pailey wavelet transform is not translation invariant, as for
any constant c ∈ Rd, and for any λ ∈ ΛJ

Wλxc =
Ú
xc(v)ψλ(u−v) dv =

Ú
x(c+v)ψλ(u−v) dv /=

Ú
x(v)ψλ(u−v) dv = Wλx .

Furthermore averaging the wavelet coefficients Wλx does not produce further
information since ⟨ψλ⟩ = 0. However if we average the modulus of wavelets
coefficients we get a non negative value, hence we do not lose information.
Such result leads us to consider for each λ a new wavelet decomposition, given by

{|x ⋆ ψλ| ⋆ ψλ′}λ′∈ΛJ
.
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Introducing Wavelet Scattering Transform

It is useful to introduce now the following operator U [λ], acting onto a signal x for
a given sub-band λ, defined such that

U [λ]x := |x ⋆ ψλ| .

Moreover, given a path of m sub-bands p = (λ1, . . . , λm), and we define the operator
U [p], such that

U [p]x := U [λm] . . . U [λ2]U [λ1]x = | . . . ||x ⋆ ψλ1| ⋆ ψλ2| . . . | ⋆ ψλm|

where U [∅]x = x.
Let ϕ be a lowpass filter and let us denote by ϕ2J (u) := 2−2Jϕ(2−Ju), we can finally
define the windowed scattering transform.

Definition 2.2.3. For each path p = (λ1, . . . , λm), where λi ∈ ΛJ and x ∈ L1(Rd),
the wavelet scattering transform is defined as

SJ [p]x(u) := U [p]x ⋆ ϕ2J (u) =
Ú
U [p]x(v)ϕ2J (u− v) dv .

Note that sometimes the wavelet scattering transform is also referred as windowed
scattering transform [16].

2.3 Elementar Properties of the Wavelet Scatter-
ing Transform

Let us introduce the operator UJ , called propagator, which operates on a signal x
in the following way

UJx = {x ⋆ ϕJ , (U [λ]x)λ∈ΛJ
} ,

where we recall that U [λ]x = |x ⋆ ψλ|. Moreover, given two paths p = (λ1, . . . , λm)
and p′ = (λ′

1, . . . , λ
′
m′), let us introduce the operation of concatenation, which we

denote as p+ p′ = (λ1, . . . , λm, λ
′
1, . . . , λ

′
m′).

It trivial to show that for any path p and sub-band λ the following statements hold
true:

• U [λ]U [p] = U [p+ λ]

• U [p]x ⋆ ϕJ = SJ [p]x .

Therefore we see that the windowed scattering representation is obtained by
cascading the propagator UJ to each output U [p]x, as one easily can see that

UJ(U [p]x) = {SJ [p]x, (U [p+ λ]x)λ∈ΛJ
}
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Introducing Wavelet Scattering Transform

Let Λm
J be the set of all paths having length m, we define as

PJ :=
Û
m

Λm
J

the set of paths of any length up to scale 2J .

Proposition 2.3.1. The propagator UJ is non-expansive i.e. for any x, x′ ∈ L2(Rd)

∥UJx− UJx
′∥ ≤ ∥x− x′∥.

Moreover if the wavelet decomposition is isometric, also the propagator is isometric.

Proof. The result is trivially implied by the Littlewood-Paley condition (Proposition
2.2.1)

∥UJx− UJx
′∥2 = ∥x ⋆ ϕJ − x′ ⋆ ϕJ∥2 +

Ø
λ∈ΛJ

∥|Wλx| − |Wλx
′|∥2 ≤ ∥x− x′∥2 .

If the wavelet decomposition preserves the L2−norm, we get, by Proposition 2.2.1,

∥UJx∥2 = ∥x ⋆ ϕJ∥2 +
Ø

λ∈ΛJ

∥|Wλx|∥2 = ∥x ⋆ ϕJ∥2 +
Ø

λ∈ΛJ

∥Wλx∥2 = ∥x∥2 .

Let Ω be a set of paths, we can define the norm induced by all the scattering
coefficients of the paths p included in Ω, i.e.

∥SJ [Ω]x∥2 :=
Ø
p∈Ω
∥SJ [p]x∥2 .

Let us consider, for instance, the path set PJ , i.e. the set of paths of any length up to
scale 2J , we can construct the scattering operator SJ [PJ ] by cascading propagetors
UJ as seen before. Since SJ [PJ ] is constructed by concatenating non-expansive
Lipschitz operators, it still enjoys non-expansive property, as remarked by the
following result.

Proposition 2.3.2. Windowed scattering trasform operator SJ [PJ ] is non-expansive
i.e. for any couple of signals x, x′ ∈ L2(Rd)

∥SJ [PJ ]x− SJ [PJ ]x′]∥ ≤ ∥x− x′∥ .

Let us point out that since the operator is Lipschitz-continuous and, moreover,
non-expansive it results stable to additive noise. The idea behind the proof is
quite trivial since non-expansive property is inherited by cascading non-expansive
propagator operators.
The following theorem is essential, since it sets necessary conditions that the
wavelets must satisfy in order to make the operator SJ [PJ ] an isometry. Let us
introduce the following notion of admissibility for the wavelets.
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Introducing Wavelet Scattering Transform

Definition 2.3.1. We say that a mother wavelet ψ is admissible if there exists
a vector η ∈ Rd and a non-negative function ρ ∈ L2(Rd), having |ρ̂(ω)| ≤ | ˆϕ(2ω)|
and ρ(0) = 1, such that for any ω ∈ Rd

Ψ̂(ω) = |ρ̂(ω − η)|2 −
∞Ø

k=1
k
1
1− |ρ̂(2−k(ω − η))|2

2
satisfies

inf
1≤|ω|≤2

Ø
j∈Z

Ø
r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0 (2.6)

Now all the elements are set to state the isometry theorem.

Theorem 2.3.1. If an admissible wavelet ψ satisfies the Littlewood-Pailey condition
(2.2.1) with ϵ = 0, then for any x ∈ L2(Rd)

lim
m→∞

∥U(Λm
J )x∥2 = lim

m→∞

Ø
n≥m

∥SJ [Λn
J ]x∥2 = 0 (2.7)

and
∥SJ [PJ ]x∥ = ∥x∥ . (2.8)

We do not provide a proof for Theorem 2.3.1, however we can remark some
interesting facts. If we interpret ∥U(Λm

J )x∥2 as energy captured by the operator
U(Λm

J ), relation (2.7) tells us that this goes to zero as the order of the paths goes
to infinity. In other words we do not need to use long paths if we want to capture
much information. Indeed we will see that in many applications m is chosen to be
at most equal to 3. Furthermore identity (2.8) tells us that the windowed scattered
transform, for a suitable choice of the wavelets, is an isometric operator, hence this
representation preserves the energy of the signal. In conclusion just few layers (2
or 3) of convolutions are needed to capture high level features and patterns, as the
energy of the signal fastly decays to zero as we go deeper in the scattering network
[31].
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Chapter 3

Stability Properties of the
Wavelet Scattering
Transform

As previously introduced the principal target of the analysis is to be able to
construct a non-linear operator which induces a metric that results stable to
additive noise and invariant to local deformations and translations, in
terms of Lipschitz continuity. Proposition 2.3.2 states that the wavelet scattering
metric is stable to additive noise, therefore the error between two signals, say x and
a perturbed version x′ = x+ ϵ, can be controlled in the transformed space, namely

∥SJ [PJ ]x− SJ [PJ ]x′∥ ≤ ∥ϵ∥ .

Intuitively this property gains interest in many audio classification problems: small
stochastic perturbations of the same signals do not affect much its representations in
the scattering transformed space. In the following chapter we try to walk across the
principal stages that lead to the statement of the Lipschitz stability to deformations
and translation invariance.

3.1 Local Translation Invariance
Proposition 3.1.1. For any x, x′ ∈ L2(Rd) and for any J ∈ Z

∥SJ+1[PJ+1]x− SJ+1[PJ+1]x′]∥ ≤ ∥SJ [PJ ]x− SJ [PJ ]x′∥ (3.1)

Here we provide a proof in the case J ∈ Z+, however the result can be easily
generalized for any J ∈ Z.
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Stability Properties of the Wavelet Scattering Transform

Proof. Let J be any positive integer. We recall that the set PJ = t
m Λm

J and
PJ+1 = t

m Λm
J+1; since Λm

J = {(λ1, . . . , λm) : |λi| ≤ 2J} and Λm
J+1 = {(λ1, . . . , λm) :

|λi| ≤ 2J+1} it is easy to see that for any length m, it holds the inclusion Λm
J+1 ⊃ Λm

J ,
and, moreover, it follows that PJ+1 ⊃ PJ . Let us work on the first term of the
inequality

∥SJ+1[PJ+1]x− SJ+1[PJ+1]x′∥2 =
......
Ø

p∈PJ+1

SJ+1[p]x−
Ø

p∈PJ+1

SJ+1[p]x′

......
2

=
......
Ø

p∈PJ+1

U [p]x ⋆ ϕJ+1 −
Ø

p∈PJ+1

U [p]x′ ⋆ ϕJ+1

......
2

=
......
 Ø

p∈PJ+1

U [p]x− U [p]x′

 ⋆ ϕJ+1

......
2

.

In order to complete the proof we need to state the following claim.

Claim 3.1.1. For any function f ∈ L2(Rd) and for any scale J the following holds
true: ∥f ⋆ ϕJ+1∥ ≤ ∥f ⋆ ϕJ∥ .

Such claim is quite immediate to prove, indeed, if we recall that ϕJ(u) =
2−dJϕ(2−Ju), we easily see that for any ω its Fourier transform ϕ̂J(ω) = ϕ̂(2Jω).
Hence the scaling does not affect the amplitude of the lowpass filter in the frequency
domain, but it just squeezes its support, indeed Supp(ϕ̂J+1) ⊂ Supp(ϕ̂J), and it
follows that Supp(ϕ̂J+1f̂) ⊂ Supp(ϕ̂J f̂). Since the norm of the convolution equals
the norm of the product of the Fourier transforms, the previous inequality is proven.
Applying the claim, and the inclusion of the paths set we get......

 Ø
p∈PJ+1

U [p]x− U [p]x′

 ⋆ ϕJ+1

......
2

≤

......
Ø

p∈PJ

U [p]x− U [p]x′

 ⋆ ϕJ+1

......
2

≤

......
Ø

p∈PJ

U [p]x− U [p]x′

 ⋆ ϕJ

......
2

= ∥SJ [PJ ]x− SJ [PJ ]x′∥2 .

And such result proves the thesis.

Let us point out that we just proved that the succession {∥SJ [PJ ]x−SJ [PJ ]x′∥}J

is decreasing, and, since its terms are non-negative, it converges to a non negative
value l. We show that, provided that the wavelets are admissible, such limit is zero
when x′ is a translated version of x. Such result is properly stated by the following
result.
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Theorem 3.1.1. Let us consider x ∈ L2(Rd) and a translated version xc(u) =
x(u− c), for any constant c ∈ Rd. Then for any choice of admissible wavelets we
have

lim
J→∞

∥SJ [PJ ]x− SJ [PJ ]xc∥ = 0 (3.2)

Such result is essential, indeed as the scale J grows, the distance between the
scattering representation of x and the representation of any translation of it, xc, goes
to zero. We stress again as this property of the wavelet scattering representation is
shared also other classical tools, such as the Fourier modulus.

3.2 Stability to The Action of Displacements
We discussed how the most difficult property to reach is the stability under the
action of diffeomorphisms and displacements. In terms of pre-processing audio and
image data it is fundamental to build a mathematical representation which is able
to extract the more information, regardless of shape deformations. For instance in
speech recognition the signal of a spoken word may change significantly when told
by two different people, however mathematically we can say that the two signals
are just stretched versions of each other.
Let us recall the notation we previously introduced. We denote by τ : Rd → Rd

the displacement field having ∥∇τ∥∞ < 1, and by

L[τ ] : L2(Rd) −→ L2(Rd)
x(u) −→ L[τ ]x(u) = x(u− τ(u))

the action of the diffeomorphism on a signal x ∈ L2(Rd). We are interested in
bounding from above the quantity

∥SJ [PJ ]L[τ ]x− SJ [PJ ]x∥ ,

hence we need to define the following auxiliary norm

∥U [PJ ]x∥1 =
Ø
m≥0
∥U [Λm

J ]x∥ .

Theorem 3.2.1. There exists a constant C such that every x ∈ L2(Rd) having
∥U [PJ ]x∥1 <∞ and every τ ∈ C2(Rd) with ∥∇τ∥∞ ≤ 1/2 satisfy

∥SJ [PJ ]L[τ ]x− SJ [PJ ]x∥ ≤ C∥U [PJ ]x∥1K(τ) , (3.3)

where

K(τ) := 2−J∥τ∥∞ + ∥∇τ∥∞ max
A

1, log
supu,u′ |τ(u)− τ(u′)|

∥∇τ∥∞

B
+ ∥Hτ∥∞ ,
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and for all m ≥ 0, if PJ,m = t
n<m Λn

J , then

∥SJ [PJ,m]L[τ ]x− SJ [PJ,m]x∥ ≤ Cm∥x∥K(τ) . (3.4)

This result shows that the distance between the representation of the displaced
signal L[τ ]x and x is controlled by a term proportional to 2−J∥τ∥∞ and by another
term proportional to the maximal elastic deformation ∥∇τ∥∞. Moreover if x has a
compact support the following result can be proven.

Corollary 3.2.1. For any compact set Ω ⊂ Rd, there exists a constant C such that
for any x ∈ L2(Rd) supported in Ω having ∥U [PJ ]x∥1 <∞ and for all τ ∈ C2(Rd)
with ∥∇τ∥∞ ≤ 1/2, then

∥SJ [PJ,m]L[τ ]x−SJ [PJ,m]x∥ ≤ C∥U [PJ ]x∥1(2−J∥τ∥∞ +∥∇τ∥∞ +∥Hτ∥∞) . (3.5)

The proofs of Theorem 3.2.1 and Corollary 3.2.1 can be found on [6] and [31].
Basically this corollary states that when the hypothesis are met, the windowed scat-
tering transform metric is Lipschitz-continuous to the action of diffeomorphisms.
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Chapter 4

Scattering Transform and
Stochastic Processes with
Stationary Increments

Real world signals, such as images or auditory data, are realizations and trajectories
of stochastic processes, since all events are subject to randomness, that might be
caused by the measuring instrument or by the nature of the phenomenon [32].
Therefore to provide a more detailed and accurate mathematical description it is
important to spend a few pages to describe the behaviour of the wavelet scattering
transform when applied to random processes [6][16]. More specifically after a
suitable definition of L2 norm (re-adopted in terms of expected value), all the result
shown in the deterministic case still holds for certain classes of stochastic processes.
In this chapter we recall some necessary definitions and properties of stationary
processes and, furthermore, we show how the wavelet scattering transform behaves
for such kind of random events.

4.1 Stochastic Processes with Stationary Incre-
ments

Definition 4.1.1. A random process X has stationary increments if for any time
t, t′ ≥ 0 and any lag h > 0 the random variables X(t+h)−X(t) and X(t′+h)−X(t′)
have the same probability distribution.

There is an interesting result showing that the convolution of a stationary process
X with any deterministic function preserves the stationarity in the resulting process.
We sum up such result in the following proposition.
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Proposition 4.1.1. Let X be a random process with stationary increments, then

1. Y1 = X ⋆ ψλ has stationary increments;

2. Y2 = |X ⋆ ψλ| has stationary increments.

Proof. Let us point out the idea behind statement 1). For any time t ≥ 0 the
process Y1 is defined as

Y1(t) =
Ú
X(τ)ψλ(t− τ) dτ .

Therefore, if we consider any lag h > 0, the increment Y1(t+ h)− Y1(t), namelyÚ
X(τ)(ψλ(t+ h− τ)− ψλ(t− τ)) dτ ,

depends on h only through the term ψλ(t+h−τ)−ψλ(t−τ), which is deterministic,
hence Y1 still has stationary increments. Such argomentum may be extended to
prove statement 2.

4.2 Wavelet Scattering Transform for Stationary
Processes

Let us introduce the completed path set P̄∞
∞ := Λ∞ ∪P∞. As a consequence of the

previous proposition, this result directly follows.

Proposition 4.2.1. If the random process X is stationary, or has stationary
increments, then for any path p = (λ1, . . . , λm) ∈ P̄∞

∞ the process

U [p]X = | . . . | |X ⋆ ψλ1| ⋆ ψλ2| · · · ⋆ ψλm |

is stationary, or ,respectively, has stationary increments.

It is a fundamental result, as for any time t, the expected value E(U [p]X(t))
does not depend on time t. In this terms we can denote such value disregarding
time dependence, writing simply E(U [p]X).

Definition 4.2.1. For any path p ∈ P̄∞ the expected scattering transform of X is
defined as

S̄X(p) := E(U [p]X) . (4.1)
The expected scattering transform, induces a norm such that for any stationary
random processes X and Y

∥S̄X − S̄Y ∥2 :=
Ø

p∈P̄∞

|S̄X(p)− S̄Y (p)|2 .
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In machine learning tasks one can estimate the scattering representation of a
random signal X through the computation the windowed scattering transform of a
set of observations. However the power of this tool is that to properly characterize
X just a few realizations are required.
Let us introduce the set of scales smaller than J denoted byΛJ = {λ = 2j : 2−j >
2−J} and, let PJ = {p = (λ1, . . . , λm) : λi ∈ ΛJ ∀i = 1, . . . ,m}. If we consider a
realization x(t) of the random process X, we can compute the windowed scattering
transform at scale J , which, as far as we have seen in the previous chapters, results

SJ [PJ ]x = {U [p]x ⋆ ϕJ , p ∈ PJ} .

An essential result is that if we used the operator SJ to estimate the scattering
representation of a random process, we would get a pretty accurate outcome, since
such estimator is unbiased. Let us state more properly this observation.

Proposition 4.2.2. The operator SJ is an unbiased estimator of the scattering
coefficients contained in PJ .

Proof. Let us recall that the low-pass filter ϕJ is chosen to satisfy
s
ϕJ(u) du = 1.

As already seen this trivially implies that ϕ̂J(0) = 1. To prove the thesis we need
to show that for any path p ∈ PJ yields the equality

E[SJ [PJ ]X] = S̄X(p) .

Let us fix a path p in PJ , we have that

E[SJ [PJ ]X] = E[U [p]X ⋆ ϕJ ] .

We know that if X is stationary, also the process U [p]X ⋆ ϕJ is stationary (i.e. its
expectancy does not depend on the time). Without loss of generality we introduce
a time variable u, and recalling the fundamental convolution properties of the
Fourier transform we can say that for any frequency ω

E[U [p]X(u) ⋆ ϕJ(u)] = E[\U [p]X(ω)ϕ̂J(ω)] . (4.2)

Since (4.2) holds true for any ω, we can take ω = 0, obtaining

E[\U [p]X(0)] = E[U [p]X ⋆ δ0] = E[U [p]X] = S̄X(p) ,

which proves the thesis.

The interesting fact is that, when dealing with stationary processes, the same
results obtained for deterministic signals, such as non-expansion property, isometry,
ecc., can be expressed in terms of mean square norm E(|X|2)1/2, instead of euclidean
L2 norm. For instance when the Littlewood-Pailey condition is met by the wavelet ψ,
operators S̄ and SJ [PJ ] are non expansive, as stated by the upcoming proposition.
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Proposition 4.2.3. Let ψ be a wavelet satisfying the Littlewood-Pailey condition
(2.4). If X and Y are two random processes with finite second order momenta and
stationary increments, then

E[∥SJ [PJ ]X − SJ [PJ ]Y ∥2] ≤ E(|X − Y |2) (4.3)

and
∥S̄X − S̄Y ∥2 ≤ E(|X − Y |2) . (4.4)

We observe that if Y is a constantly null process, therefore ∥S̄X∥2 ≤ E(|X|2).
However under more restrictive hypothesis on the wavelets, such result can be
refined in terms of energy conservation.

Theorem 4.2.1. If a wavelet ψ is admissible, and if X is a stationary random
process, then

E[∥SJ [PJ ]X∥2] = E(∥X∥2) .

Also the convergence properties stated in the deterministic case apply in the
random, therefore the process U [p]X should be ergodic. In such case it results that
for any path p, as J →∞

SJ [p]X P−→ S̄X .

Definition 4.2.2. A random process X with stationary increments is said to have
a mean squared consistent scattering if the total variance of SJ [PJ ]X goes to
zero as J increases, i.e.

lim
J→∞

E[∥SJ [PJX − S̄X]∥2] =
Ø

p∈PJ

E[|SJ [p]X − S̄X(p)|2]] = 0 .

In other words, if X have a mean squared consistent scattering, with probability
1 SJ [PJ ]X converges to S̄X as J → ∞. Since this property is so powerful, it is
reasonably natural to ask when a process has mean squared consistent scattering.
Mallat conjectured that any Gaussian process with integrable autocorrelation has
a mean squared consistent scattering [6]. A further consequence of Theorem 4.2.1
and square mean consistent scattering processes is the following corollary.

Corollary 4.2.1. For admissible wavelets, the process SJ [PJ ]X is mean squared
consistent if and only if ∥S̄X∥2 = E(|X|2).

Further theoretical results and properties of wavelet scattering transform and
stochastic processes are discussed in [6].

This result ends the mathematical introduction of the wavelet scattering trans-
form and its properties, establishing an understanding of its theoretical foundations
and significance in signal representation. In this part we illustrated the definition
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and the most important properties of the wavelet scattering transform and compared
them through examples and remarks with common signal representation techniques,
highlighting differences and similarities. This section focused on discussing in-
variance properties of the wavelet scattering operator which are fundamental in
machine learning applications. In the aim of setting the base for gravitational wave
analysis with this new technique, it was crucial to deeply investigate the wavelet
scattering transform from a formal point of view. The acquisition of fundamental
knowledge on signal representation techniques has been fundamental to conduct
and construct the experiments portrayed in the following pages. We presented an
analysis of the wavelet scattering transform, and compared it with common Fourier
based signal representation techniques. We studied the fundamental properties, i.e.
stability to additive noise, local translation invariance and Lipschitz continuity to
C2-diffeomorphisms of the wavelet scattering metric. The great potentiality of the
wavelet scattering transform is furtherly assessed in the fact that just the first layers
are needed to represent almost all the energy of the signal, as the energy of high
order layers rapidly goes to zero. In this part we also discussed how the properties
of the wavelet scattering transform can be extended to stochastic processes, in
particular to stationary processes. In the following pages, we applied the wavelet
scattering transform to auditory data obtained from the Free Spoken Digits dataset
[9], a dataset containing human voice labeled recordings of digits from 0 to 9. In
the third part of the thesis, we extended our exploration by attempting to represent
gravitational wave signals with the wavelet scattering transform. Our objective
was to investigate the application of the wavelet scattering transform to extract
patterns and discern glitches that affect data collected by interferometers. We
proposed a new approach to discriminate glitches, in order to enhance the analysis
of gravitational wave data. Moreover, the acquisition of mathematical knowledge
concerning state-of-the-art signal representation techniques has been crucial to
develop and conduct our experiments. Relying upon this knowledge, we have laid
the basis for the application of the wavelet scattering transform in novel domains,
leading to promising results towards its utilization in the analysis of gravitational
wave data.
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Chapter 5

Methods and Materials

This chapter introduces fundamental tools for mathematical processing of auditory
data, from signal representations to the used statistical learning algorithms for
classification. In the first part of the chapter we present the state-of-the art methods
for extracting information from one dimensional time-series, i.e. the Short Time
Fourier Transform. The treatment proceeds with an introductory description to
classification algorithms that have been used throughout the work - Decision Tree,
Random Forest, Logistic Regression, Feed Forward Neural Net and K-Nearest
Neighbors [23], [33], [24]. The last part of the chapter delves into the preparation
of auditory data from the Free-Spoken Digits dataset, e.g. standardization and
alignment. The analysis was developed using Numpy [34] and Sci-kit-learn [35]
Python libraries as far as the analysis and the classification task are concerned,
while for the STFT computation we relied on Sci-Py implementation. All the
computations on the wavelet scattering transform are optimized on Kymatio library
[36].
We choose to work on Free Spoken Digits dataset [9] due to the many similarities
that are found between human voice recordings and gravitational waves. Either
families consist of one dimensional non stationary signals, therefore studying a real,
but simple case like the Free Spoken Digits Dataset allow to determine if the way
paved by the wavelet scattering transform approach is promising for gravitational
wave data analysis.
It has been revealed from a careful literature analysis, that the detailed research we
address in this section on the Free Spoken Digits dataset has remained relatively
unexplored. Prior research has delved into the use of the wavelet scattering
transform on different datasets for various tasks, e.g. music genre classification on
GTZAN dataset [37], or emotion prediction from auditory speech sources [38]. The
code is available at https://github.com/alelicciardi99/wavelet_scatteri
ng_transform_thesis.
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Methods and Materials

5.1 Methods

5.1.1 Fourier Spectrogram

Spectrogram representation of one-dimensional signals is one of the most common
technique used in signal representation theory [39]. It provides information about
the energy spectrum with respect to the couple of time-frequency variables (t, ω).
Spectrograms are based on the Short Time Fourier Transform (STFT).
We briefly introduce the construction of the Short-Time-Fourier-transform in the
case of continuous time, therefore we suppose that the time variable t is a positive
real number, i.e. t ∈ R+. Let us fix a function w(t) called window function,
most common choices are Hann window or Gaussian window. Hann window, with
support length T > 0, has the following form

w(t) = a cos2
3
πt

T

4
1{|t|≤T/2}(t)

while Gaussian window is a centered Gaussian function with amplitude a and
spread σ, i.e.

a exp
A
− t2

2σ2

B
.

Definition 5.1.1. For a given signal x(t) and a fixed window function w(t), the
Short Time Fourier Transform is defined as

STFT{x}(t, ω) =
Ú ∞

−∞
x(τ)w(τ − t)e−iωτ dτ.

Note that STFT is strictly related to the Fourier transform, due to the immediate
relation

STFT{x}(t, ω) = F{x(τ)w(τ − t)}(ω)

i.e. the Fourier transform of the signal x(τ) multiplied by a moving window w(τ−t),
for any t > 0. A trivial extension of the definition to the discrete time case is
possible, by replacing the integral with an infinite sum.

Definition 5.1.2. For any t > 0 and ω > 0, the spectrogram of a signal x is
defined as the power spectrum of x(τ)w(τ − t), i.e.

|X(t, ω)|2 = |STFT{x}(t, ω)|2 ,

where w(t) is the chosen window function for computing the STFT.
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5.1.2 Spectrograms on the Free Spoken Digits Dataset
We present at the end of this chapter our proposed approach to clean and preparate
auditory data from Free Spoken Digits dataset [9]. However pre-processed time-
series themselves do not provide enough information. In order to find patterns
that help classifiers to learn we need to transform the data into another domain.
State-of-the-art method involve computing the spectrogram for each signal. Each
spectrogram is a matrix of positive numbers of dimension 128 × 96. Dealing
with large data points slows the training of the classifiers, therefore in Section
6.2 we present more complete results after the spectrogram dimension has been
suitably modified with adjusted techniques. Note that cropping the spectrogram is
not a good procedure, since the STFT does not produce a translation invariant
representation. On the other hand, if we use wavelet scattering transform this
procedure is theoretically justified by translation invariance as discussed in the first
part of the present work.

5.1.3 Classification Algorithms
In this section we briefly introduce the classification algorithms that have been
tested throughout this part of the thesis.
The Decision Tree is the simplest classification model with a tree structure
[24],[33]. It consists of nodes that can be internal or leaf nodes, and a first node
called the root. Based on the samples belonging to the region defined by each node,
a splitting rule of the form 1{xj≤ξ} is chosen to maximize the partitioning of the
samples into subsequent child nodes. This partition is evaluated by calculating
the improvement in the degree of impurity achieved after the split using either the
Gini criterion (5.1) or by evaluating the entropy (5.2), as indicated below.

1
2

A
1−

c−1Ø
z=0

(pi
z)2
B

(5.1)

−pi
z

c−1Ø
z=0

log2 p
i
z (5.2)

In particular, pi
z is the proportion of elements in the region Ri of samples assigned

to class z, where Ri represents the region of the space associated with node i. As
a final result, a partition of the sample space is obtained, where it is possible to
classify and predict the label of a given sample based on its corresponding region.
The Random Forest is an ensemble model commonly used for classification, built
by bagging decision trees [24],[33]. In a random forest, each decision tree is trained
on a subset of the training set to avoid the risk of over-fitting training data. The
final prediction is obtained by applying a majority voting on the predictions of the
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individual trees.
The logistic regression is a statistical learning model commonly used for binary
classification, but easily extendable to multiclass tasks, such as the one analyzed in
this part of the work [24],[33]. It models the relationship between a set of input
variables and the probability of a binary outcome. The model applies Boltzmann’s
Softmax function to map the linear combination of the input variables to the range
[0, 1], representing the posterior probability of the input data of belonging to each
class, namely

σ : RK → [0,1]K

and
σ(z)i = eziqK

j=1 e
zj

for i = 1, . . . , K . (5.3)

The parameters of the logistic regression model are estimated using maximum
likelihood estimation. However in machine learning tasks it is common to use
gradient descent to estimate the optimal parameters. Accuracy of logistic models
can be boosted up by adding a regularization, or penalty term, namely C. This
additional term added to the loss function during model training process aims to
control the complexity of the model and to prevent overfitting. By including the
regularization term in the loss function, logistic regression seeks to find a trade-off
between minimizing the error on the training data and minimizing the magnitude
of the coefficients of the model. Thus it helps the model to avoid fitting too closely
to the training data and making it more robust to noise and outliers. The penalty
term discourages the model from learning overly complex patterns that may not
generalize well to unseen data.
A Feed Forward Neural Network (FFNN), or MultiLayer Perceptron (MLP),
consists of multiple layers of interconnected neurons. Each neuron in a layer receives
inputs from the previous layer, performs a weighted sum of the inputs, applies an
activation function to mimic neuron activation, and passes the result to the next
layer [24],[33]. The neural network learns by adjusting the weights between the
neurons during the training process. This is typically done using backpropagation
algorithm, where the loss between the predicted output and the true output is
propagated backward through the network, and the weights are updated based
on the gradient of the error. This iterative process continues until the network
converges to a set of weights that minimize the loss function. Training a neural
network is way more costly than other simple algorithms, as a lot of parameters
need to be learnt. In this setting either Adam and Stochastic Gradient Descent have
been tested. Common activation functions include the sigmoid function, hyperbolic
tangent function, and rectified linear unit (ReLU).
The K-Nearest Neighbors algorithm (KNN) operates by assigning a class label
to a test instance based on the majority class labels of its k nearest neighbors in
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the training data. In the KNN algorithm, the choice of k, the number of nearest
neighbors to consider, is an important hyperparameter, which tuning was properly
addressed in this analysis. A larger value of k tends to make the decision boundary
smoother but may also introduce more bias, while a smaller value of k can lead
to a more complex and potentially unstable decision boundary. In order to find
the nearest neighbors, KNN uses different distance metrics. In this framework
Minkowski, Euclidean, Manhattan and Cosine distances were tested to calculate
the distances between training points and test instance. The class label is hence
assigned to the test instance based on the majority vote of the k nearest neighbors
[24],[33].

5.1.4 Semi-Supervised Learning and Data Exploration with
PCA

In this section, we aim to propose a possible approach for data description using
the technique of PCA (Principal Component Analysis) [23]. Specifically, we want
to highlight similarities and dissimilarities among signal classes.
Let us consider the three order wavelet scattering transformed datasets, namely

τ = {S0[xi], S1[xi], S2[xi]; yi}N
i=0

where xi ∈ Rn represents the i−th signal with class label yi ∈ 0, . . . ,9. The main
idea is to group in sets the wavelet scattering representations according to the class
label, and then perform three PCAs, one for each order.
Let us simply recall how PCA works from a linear algebra point of view. For each
class j ∈ 0, . . . ,9 we define the j-th feature matrix as follows

Xj =


sT

1,j
...

sT
K,j

 ∈ RK×n

where the vectors sl,j is the l − th array of class j. Let Sj be the estimation of the
covariance matrix of the (centered) features. Recall that the matrix Sj is symmetric
by construction

Sj = 1
K − 1X̄j

T
X̄j ∈ Rn×n

where X̄j is the centered matrix Xj. Let Pj be the orthogonal matrix that diago-
nalizes Sj, which exists due to the spectral theorem. In particular, Pj satisfies

Sj = PjΛjP
T
j

where Λj = diag(λ1,j, . . . , λn,j) is the diagonal matrix of eigenvalues of Sj. Note
that since the trace of a matrix is invariant under similarity transformations and

39



Methods and Materials

the trace of Sj estimates the total variance in class j, we can express the variance
explained by the l-th principal component of Xj as

λl,j

tr(Λj)
.

Define
m = m(ϵ) := inf

I
k = 1, . . . , n :

qk
l=1 λl,j

tr(Λj)
≥ ϵ

J
where ϵ ∈ (0,1] represents the threshold of the variance ratio explained. Once the
value of m is determined, the first m principal components can be identified.
Since we performed one PCA for each order we find a representative wavelet
scattering transform.
For each class j the zero-th order representative is given by the sum of the first m
eigenvectors, while for orders one and two has been taken the absolute value of the
sum of the principal components.
We address the PCA based approach to show the wavelet scattering transform
representants and to see if distinctive patterns emerge differently from each class.
Furthermore we apply this method after the KNN in order to visually assess and
compare the classification results obtained for each class. This technique presented
in this section becomes crucial in the analysis conducted on gravitational wave
data in the final section of the thesis to evaluate the dispersion of scattered-light
glitch class.

5.1.5 Kymatio Library
Computing and handling Wavelet Scattering Transform in codes has become quite
straightforward due to the recent development of a powerfool and malleable toolkit
by researchers of the Ecóle Normale Superior of Paris [10].
Kymatio is a Python library that offers a numerically efficient implementation of
the wavelet scattering transform. It allows to utilize wavelet scattering transforms
in deep learning and signal processing applications, since it has been properly
designed to be compatible with the most common deep learning frameworks, e.g.
Numpy, PyTorch, Keras.
Kymatio supports a wide range of signal types, including 1D signals, 2D images, and
3D volumes. In this framework we used only the 1D wavelet scattering transform,
since either audio recordings and gravitational waves, are mono-dimensional signals.
It offers flexibility in choosing different wavelet families and filter banks, allowing
users to tailor the transform to their specific needs. The library takes advantage of
the computational power of modern hardware by implementing parallel processing
and GPU acceleration for efficient computation of scattering transforms. Figure 5.1
pictures the difference between ScatNet [10] which is the first published practical
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Figure 5.1: Comparison between ScatNet and Kymatio algorithms [40]

implementation (Matlab) of the wavelet scattering transform.
The pipeline developed for this work involved using Kymatio class Scattering1D,
from kymatio.numpy, which allows to obtain the wavelet scattering transform of a
signal up to second order. The processed digit is stored in a numpy one-dimensional
array. Scattering1D class relies on three parameters J,Q and T . The parameter
T is simply the length of each input signal as numpy array structure. The two
fundamental parameters are J and Q which, recalling Definition 2.2.3 are related
to the maximum scale 2J and the scaling factor, or octave, a > 1, according to the
relation a = 21/Q. In the framework of Part II that involves audio processing the
parameters chosen are J = 4 and Q = 8, according to the literature. While for
Part III, that deals with gravitational waves data, a further tuning study for this
parameters have been developed in the thesis.

5.2 Materials: Free Spoken Digits Dataset
Free Spoken Digits dataset [9] is a collection of auditory data of digits from 0
to 9 spoken by different voices and recorded in different conditions. The dataset
is balanced and contains 1500 audio files (wav format), 150 for each class, with
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sample rate of 8000 Hz. However, as pictured in Figure 5.2, the time durations of
the signals are not homogeneous, the vast majority of the data last at least one
second. A second observation on the data, highlighted by the histogram in Figure
5.3, is that the maximum amplitude is different for each sample.

Figure 5.2: Histogram showing the distribution of duration on the dataset

Figure 5.3: Histogram showing the distribution of maximum amplitudes on the
dataset

Furthermore, by a simple visualization of four signals, it results quite obvious
that the time instant in which the speaker starts to talk differ from sample to
sample, as portrayed in Figure 5.4. Therefore in this setting it is fundamental
to take into account all the aforementioned characteristics of dis-homogeneity of
the dataset. Before applying any sort of representation we should pre-process the
time series in order to equate their length,standardize them and align them. This
practice would be common both for the spectrogram state-of-the-art analysis, both
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for the wavelet scattering transform pipeline. In either cases the same classifiers
are trained on different data, with the same parameters and finally, and finally
compared, to see if the use of the wavelet scattering transform provides better
results.

Figure 5.4: Four different signals randomly chosen

5.2.1 Audio Pre-processing
As previously introduced, before transforming the data and testing the difference
between signal representations techniques, namely Fourier spectrogram against
the wavelet scattering transform, it is important to manipulate the time series.
Therefore we delve into the description of the following steps:

• standardize the signals

• equate the duration of the signals

• align the beginning of the signals

Due to different recording equipment, speakers and other conditions there is great
variability in the data as far as maximum amplitudes are concerned. There are
two possible ways to overcome this problem, normalization and standardization
[24], [33]. Note that here we refer to normalization as mapping a feature vector
into the range [−1,1] simply applying a linear scaling. However this technique does
not modify the variability internal to the time series. Instead standardization is a
more powerful tool for signal analysis, as it provides also important information
that can be used to align the recordings. In this case the signals are vectors of
points, therefore the dataset can be written as D = {xi}N

i=1, where xi ∈ Rmi . Let
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Figure 5.5: Four recordings shown after applying standardization

µ̂i be the sample mean of xi and si the estimate of its standard deviation, namely

µ̂i = 1
mi

miØ
j=1

xi(j)

and

si =
öõõô 1
mi − 1

miØ
j=1

1
xi(j)− µ̂i

22
.

The standardized vector x̂i, defined component-wise

x̂i(j) = xi(j)− µ̂i

si

, j = 1, . . . ,m .

Due to this definition it is trivial to note, as also recalled by the term standardization,
that each standirdezed sample is centered, i.e. has a null sample mean, and has
unitary sample standard deviation. Figure 5.5 shows that after standardization
has been applied, with respect to the original signals displayed in Figure 5.4, the
amplitudes of the signals are comparable and vary in similar ranges.
A central aspect of the analysis focused on addressing the challenge of signal
alignment. Overcoming this problem was crucial to ensure accurate and reliable
results in the study. We developed a method based on the heuristic assumption
that in the neighborhood of the time instant in which the speaker pronounces
the digits the variance suddenly increases. Standardization technique embeds a
threshold for discriminating variance jumps. To construct the neighborhood each
recording has been split in windows of 0.375× 10−2 s, i.e. each window consisted
of 30 scalar values.
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Algorithm 1 Algorithm for signal alignment
Require: standardized signal x̂i ∈ Rmi

Ensure: index k̄ of the window in which the voice begins
split x̂i = (z1, . . . , zK), where zk ∈ R30, k = 1, . . . , K
while k=1,. . . ,K do

compute the standard deviation σk for zk

if σk > 1 then
k̄ ← k

end if
end while

After the time window index k̄ is detected for each standardized time series, the
previous windows, having index k < k̄ are set to zero. After that it becomes trivial

Figure 5.6: Variance plot window by window (threshold variance in red)

to align signals, as before the beginning of the digits are pronounced there is a
sequence of zeros. Figure 5.6 pictures the idea behind the alignment algorithm. In

Figure 5.7: Four recordings after standardization, alignment and zero-padding

order to equate the length of the signals it is applied simply a zero-padding, hence
each recording in the dataset is padded with null values up until it reaches the
length of the longest one. This is a common technique in signal processing. Figure
5.7 shows four recordings after zero-padding was performed, as a result all the
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samples in the dataset have equal duration. Let us observe that it is necessary to
standardize and align the signals before zero-padding, since adding zeros affects the
estimate of the variance and of the sample mean. Even though this implemented
technique is based on heuristic assumptions, plots and results proved empirically
the efficiency of this data preparation pipeline. In the following chapter we present
the state-of-the-art signal representation (Fourier spectrogram) and, thus, the
classification results obtained.
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Chapter 6

Experimental results

This chapter delves into a comprehensive analysis and comparison of the results
obtained using state-of-the-art representation technique, the Short-Time-Fourier-
Transform (STFT), against the ones obtained with a wavelet scattering transform
based approach. Our investigation includes a meticulous examination of the
performance achieved by four classification algorithms, namely Decision Tree,
Random Forest, Logistic Regression, and a fully connected Neural Net, within
each representation method. Furthermore, we explore the effectiveness of different
metrics in the transformed space in terms of data separation. To assess this, we
employ a distance-based simple algorithm, namely K-Nearest Neighbors (KNN).
Drawing upon the mathematical theory behind signal representations, we anticipate
that the KNN algorithm in the wavelet scattering domain will exhibit superior
performance compared to its counterpart in the Fourier domain. Throughout the
analysis, we provide visual aids such as plots and tables to facilitate a comprehensive
understanding and visualization of the results.
The predictions have been evaluated using either accuracy and F1-score [33].
Accuracy measures the overall correctness of predictions by calculating the ratio of
correctly classified instances to the total number of instances. On the other hand,
the F1-score leverages either precision and recall, providing a balanced assessment
of the performance, particularly in cases where class imbalances subsists.
For each class we define the precision as P = TP/(TP + FP ), while the recall is
defined as R = TP/(TP + FN), where TP , FP and FN stand for true positive,
false positive and false negative, respectively. While the F1−score is obtained as

2× P ×R
P +R

,

where P and R are respectively precision and recall of the class. These metrics
play a crucial role in quantifying the accuracy and effectiveness of the classification
models discussed in this chapter.
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6.1 State-of-the-art methods: STFT
In Chapter 5 we briefly introduced the definition of STFT, here we provide some
visual examples of specrograms computed on signals randomly sampled from the
Free Spoken Digits dataset. Figure 6.1 compares the spectrograms of a one and
a five. Each spectrogram is a matrix of positive numbers of dimension 128× 96.

(a) Spectrogram of a one (b) Spectrogram of a five

Figure 6.1: Examples of spectrograms of two recordings

Dealing with large data points slows the training of the classifiers, therefore
afterwards we present a techinque, based on the average pooling that allows the
dimension to remarkably decrease, and, moreover, to highlight the information on
more representative features. Note that cropping the spectrogram is not a good
procedure, since the STFT does not produce a translation invariant representation,
while cropping wavelet scattering transform signals around a region of interest
is theoretically supported by the invariance theory shown in the first part of the
thesis.

6.1.1 Classification Performances
This paragraph reports results obtained with the most common classifiers, that are
trainable considering the dimensions of the spectrogram. Note that in the following
section after proposing a data reduction method other algorithms are tested.
In this setting we split the dataset into training set and validation set. For each
classifier different combination of parameters are tested, and then we report the
scores obtained on the validation set, in terms of average F1-score.
Among all the classifiers the Random Forest is the one that achieved performed
better on the validation set, reaching a score of 0.96.
The classification report presented in Table 6.1 showcases the performance evalua-
tion of the Decision Tree classifier with optimized hyperparameters in the STFT
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space. Upon analysis, it becomes evident that the classifier encounters challenges
in effectively discerning between different signal classes.

Class Precision Recall F1-score
0 0.64 0.57 0.60
1 0.76 0.66 0.70
2 0.61 0.71 0.66
3 0.53 0.61 0.57
4 0.72 0.75 0.74
5 0.54 0.71 0.62
6 0.59 0.46 0.52
7 0.52 0.52 0.52
8 0.62 0.57 0.59
9 0.79 0.68 0.73

Overall
Accuracy 0.62

Macro Avg 0.63 0.62 0.62
Weighted Avg 0.63 0.62 0.62

Table 6.1: Decision Tree Classification report with optimal parameters (STFT
domain)

Examining the precision values, we observe varying levels of accuracy in correctly
identifying instances for each class. For instance, classes 1 and 9 demonstrate
relatively higher precision scores of 0.76 and 0.79, respectively, indicating that the
classifier is more adept at correctly classifying signals belonging to these classes.
However, classes 6 and 7 exhibit lower precision scores of 0.59 and 0.52, respectively,
suggesting a higher likelihood of mis-classifications. The recall values provide
insights into the classifier ability to correctly identify instances from each class.
While classes 4 and 5 demonstrate recall scores of 0.75 and 0.71, respectively,
indicating good performance in correctly capturing instances from these classes.
Classes 0 and 6 show relatively lower recall scores of 0.57 and 0.46, respectively,
indicating a higher rate of false negatives. The F1-scores offer a balanced evalu-
ation of the classifier’s overall performance for each class. The F1-scores range
from0.52 to 0.74, with classes 4 and 9 achieving higher scores, suggesting better
classification performance for these classes. However, classes 6 and 7 exhibit lower
F1-scores, indicating a more challenging discrimination task for the classifier. The
overall accuracy of 0.62 highlights the classifier ability to correctly predict instances
across all classes. While this accuracy score indicates a moderately low level of
performance, it also suggests the presence of mis-classifications and much room for
improvement.
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Based on the presented classification report, it becomes apparent that the Decision
Tree classifier struggles to effectively discriminate signals in the STFT space. The
variations in precision, recall, and F1-scores across different classes emphasize the
challenges faced by the classifier in accurately identifying instances from each class.
Considering the classification report presented in Table 6.1 and the observed
limitations of the Decision Tree classifier, we found crucial to explore alternative
algorithms to potentially improve classification performance. One possible approach
is to utilize ensemble methods such as Random Forest, which can harness the col-
lective decision-making of multiple decision trees. By aggregating the predictions of
multiple trees, Random Forest can potentially mitigate the limitations of individual
Decision Trees and enhance the overall discriminatory power in the STFT space. In
the STFT domain Random Forest was the best performing algorithm. Figure 6.2
portraits how changing the number of trees in the forest affects the F1-score. This
grid-search led to train a forest with 90 trees. The classification report presented in

Figure 6.2: F1-score vs number of estimators in the Random Forest trained on
the spectrograms

Table 6.2 highlights the performance of the Random Forest classifier with optimized
hyperparameters in the STFT domain. Among the various algorithms tested
within this experiment, the Random Forest classifier emerges as the top performer,
delivering good results. The precision, recall, and F1-score values for each class
demonstrate remarkable accuracy in correctly classifying instances. With precision
scores ranging from 0.89 to 1.00 and recall scores ranging from 0.89 to 1.00, the
classifier exhibits consistently high performance across different classes.
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Class Precision Recall F1-score
0 0.96 0.96 0.96
1 1.00 1.00 1.00
2 0.93 0.93 0.93
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 0.97 1.00 0.98
6 0.96 0.89 0.93
7 0.97 0.97 0.97
8 0.89 0.89 0.89
9 0.97 1.00 0.98

Overall
Accuracy 0.96

Macro Avg 0.96 0.96 0.96
Weighted Avg 0.96 0.96 0.96

Table 6.2: Random Forest Classification report with optimal parameters (STFT
domain)

Notably, the overall accuracy of 0.96 denotes the ability of the algorithm to
accurately predict class labels for the entire dataset, solidifying its position as
the best-performing algorithm within the STFT domain. The achieved accuracy
score indicates the successful use of ensemble methods to leverage the collective
decision-making of multiple trees and achieve superior classification performance.
The exceptional performance of the Random Forest classifier, as demonstrated by
the classification report in Table 6.2, is further substantiated by the corresponding
confusion matrix presented in Figure 6.3. The visually depicted distribution of
correctly classified instances across different classes provides a comprehensive
and conclusive confirmation of the Random Forest effectiveness in accurately
distinguishing signals within the STFT domain. Furthermore, the macro average
and weighted average F1-scores of 0.96 indicate a well-balanced performance across
all classes, considering both the class distribution and the classifier’s ability to
discriminate between classes effectively. These results reinforce the notion that the
Random Forest classifier, without resorting to deep convolutional structures, can
achieve highly satisfying results in signal classification tasks.
In order to evaluate the impact of applying the wavelet scattering transform instead
of the STFT on the classification performances, we present the behaviour of other
classifiers in the following tables. Specifically, we report the results for the Multiclass
Logistic Regression and the Feed-Forward Neural Network.

51



Experimental results

Figure 6.3: Confusion Matrix for the best performing model in the STFT domain
(Random Forest)

Class Precision Recall F1-score
0 0.79 0.82 0.81
1 0.82 0.93 0.87
2 0.86 0.89 0.88
3 0.76 0.79 0.77
4 1.00 0.89 0.94
5 0.96 0.86 0.91
6 0.72 0.75 0.74
7 0.89 0.83 0.86
8 0.85 0.79 0.81
9 0.80 0.86 0.83

Overall
Accuracy 0.84

Macro Avg 0.85 0.84 0.84
Weighted Avg 0.85 0.84 0.84

Table 6.3: Logistic Regression Classification report with optimal parameters
(STFT domain)

Tables 6.3 and 6.4 demonstrate that both classifiers exhibit similar performances.
However, the Feed-Forward Neural Network performs slightly better the Logistic
Regression. It is important to note that training logistic regression is computation-
ally less demanding and therefore a more cost-effective option. We will compare
the results displayed in this section, obtained training the classifiers in the Fourier
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domain, with the ones obtained in the wavelet scattering domain.

Class Precision Recall F1-score
0 0.88 0.82 0.85
1 0.90 0.93 0.92
2 0.81 0.89 0.85
3 0.76 0.79 0.77
4 1.00 0.89 0.94
5 0.96 0.82 0.88
6 0.76 0.79 0.77
7 0.86 0.86 0.86
8 0.89 0.86 0.87
9 0.78 0.89 0.83

Overall
Accuracy 0.85

Macro Avg 0.86 0.85 0.86
Weighted Avg 0.86 0.85 0.86

Table 6.4: FeedForward Neural Net Classification report with optimal parameters
(STFT domain)

6.1.2 Feature Reduction on the STFT and Classification
Performances

As previously mentioned spectrogram representation obtained for this dataset
provides for each signal large sparse matrices, and furthermore, due to the fact
that STFT is non-translation invariant, it is not possible to reduce the data simply
cropping the more informative areas. Inspired by average pooling operation in
ConvNets architectures, to reduce the features space and gain information the
following manipulation on the raw spectrograms was performed.
This particular average pooling allows to reduce the input data from a matrix of
128× 96 to a matrix of size 32× 48. The approach consists in dividing each raw
spectrograms in a grid of sub-matrices of size 4× 2, for each of them we compute
the sample mean. Figure 6.4 displays the grid overlapped to a spectrogram. As
Figure 6.5 suggests the information provided by the data is more concentrated.
Due to the consistent reduction of the features space, the algorithm run faster, and,
surprisingly, algorithms perform better as shown in Table 6.5. Predictions are more
accurate because applying the average pooling reduced the number of null features,
and led to a higher level of invariance with respect to the original spectrogram.
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Figure 6.4: Grid for constructing average pooling on a spectrogram

Figure 6.5: Average pooling (left) on a spectrogram (right)

The reduction in feature space not only enhances the algorithm’s runtime
performance but also yields surprising improvements in performance metrics, as
evidenced by the higher F1-scores reported in Table 6.5. The predictions become
more accurate due to the reduction of null features and the higher level of invariance
achieved compared to the original spectrogram. The comparison of classifiers using
pooled spectrograms and raw spectrograms further highlights the effectiveness of
the average pooling technique in enhancing classification results.
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Classifier F1-score Accuracy F1-score
w/ pooling

Accuracy
w/ pooling

DecisionTree 0.68 0.68 0.62 0.62
RandomForest 0.98 0.98 0.96 0.96
LogReg 0.90 0.90 0.84 0.84
FFNN 0.91 0.91 0.86 0.85

Table 6.5: Comparison: performances of the algorithm traind with pooled spec-
trograms and raw spectrograms

6.1.3 Distance Evaluation: K-Nearest Neighbors
The following analysis investigates the separability of the data in the Fourier
domain. We applied the K-Nearest Neighbors (KNN) algorithm with the STFT
representation; in a similar manner used with the wavelet scattering transform, we
tuned the distance metric and the number of neighbors.

(a) K-Nearest Neighbours with STFT: F1-score with respect to the
metrics, with k = 5

(b) K-Nearest Neighbours with STFT: F1-score with respect to the
number of neighbors k

Figure 6.6: Tuning: K-Nearest Neighbours with STFT
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Surprisingly, the best-performing metric was found to be the Manhattan distance,
with k = 1. However, it should be noted that using a single neighbor does not
provide a stable outcome, indicating a lack of invariance in the STFT spectrograms.
This instability can be attributed to the fact that the STFT representation does
not effectively cluster the data into distinct groups of the same class. Figure 6.6
visually demonstrates that as the number of neighbors increases, the prediction
performance rapidly deteriorates. The results presented in Table 6.6 further support
this observation, with relatively lower precision, recall, and F1-scores compared to
other classifiers. The accuracy achieved with STFT-based KNN is 0.79, indicating
that the data is not well separable in the STFT space.
Table 6.6 presents the classification report for the K-Nearest Neighbors (KNN)
algorithm using the STFT representation. Upon analyzing the results, it is evident
that the performance of KNN with STFT is unstable. The precision values range
from 0.52 to 0.96, indicating variability in the accuracy of classifying different
classes. The recall values range from 0.60 to 0.93, suggesting that the algorithm
captures varying proportions of the true positive instances for each class.
The results highlight the challenges of achieving effective classification using the
STFT representation. The relatively lower precision, recall, and F1-scores suggest
that the data in the Fourier domain is not well separable, leading to difficulties in
accurately distinguishing between different classes. These findings emphasize the
limitations of using STFT spectrograms as a standalone feature representation for
this classification task.

Class Precision Recall F1-score
0 0.95 0.60 0.73
1 0.81 0.73 0.77
2 0.65 0.73 0.69
3 0.52 0.77 0.62
4 0.71 0.83 0.77
5 0.93 0.93 0.93
6 0.78 0.83 0.81
7 0.92 0.80 0.86
8 0.96 0.83 0.89
9 0.93 0.83 0.88

Overall
Accuracy 0.79

Macro Avg 0.82 0.79 0.80
Weighted Avg 0.82 0.79 0.80

Table 6.6: K-Nearest Neighbours Classification report with optimal parameters
with STFT
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Figure 6.7: Confusion Matrix for the K-Nearest Neighbours with the optimal
parameters in the STFT space

6.2 Wavelet Scattering Transform
This section discusses the classification results obtained with the wavelet scattering
representation of the data.
In parallel to the analysis presented in the previous section, this paragraph exhibits
the application wavelet scattering transform to some sampled signals from the
dataset. As anticipated by the theoretical results discussed in Part I, the wavelet
scattering representation effectively captures the most significant information in
the same spatial region. This observation aligns with the translation invariance
properties of the wavelet scattering transform, justifying our decision to crop the
transforms around the region of interest.
Figure 6.8 displays the wavelet scattering transforms for sampled signals in classes
0, 1, and 2. It is clear that the wavelet scattering representation highlights relevant
patterns and structures within the signals, enabling robust and discriminative
feature extraction. To exploit the stability and invariance properties of the wavelet
scattering representation, we concatenated the three layers after flattening each one
of them. Unlike image classification tasks where such an approach could lead to
poor performance, this concatenation strategy proves to be effective for the wavelet
scattering transform. It bears resemblance to the architecture of convolutional
neural networks. As discussed in Chapter 1, after the initial convolutional layers
process an image, the resulting filtered data is aligned and flattened before being
classified using a fully connected neural network. Similarly, we can consider the
wavelet scattering transform as analogous to the convolutional layers of a CNN.
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However, the wavelet scattering transform offers stability properties that were
introduced and demonstrated in the first part of this thesis.

Figure 6.8: Wavelet scattering transform for sampled signals in class 0, 1 and 2

6.2.1 Classification Algorithms
In this section, we present the classification results obtained using the wavelet
scattering transform representation. We focus on evaluating the performance of
several algorithms, including Decision Tree, Random Forest, Logistic Regression,
and Feed Forward Neural Net. By analyzing the impact of various hyper-parameters
on the classification metric, specifically the F1-score, we provide insightful plots
that depict the relationship between these parameters and the performance of
the algorithm. Additionally, an exhaustive classification report summarizes the
obtained results, highlighting the effectiveness of these algorithms when applied to
the Wavelet Scattering Transform representation. Through this dedicated analysis,
we aim to uncover valuable insights into the capabilities and performance of these
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algorithms within the context of the wavelet scattering transform.
The first algorithm examined is the Decision Tree, applied to the wavelet Scattering
Transform representation.

Figure 6.9: Decision Tree F1-score and maximum depth in the wavelet scattering
domain

Figure 6.9 illustrates the impact of varying the maximum depth of the decision
tree on its performance, measured in terms of F1-score. It is interesting to observe
that as the depth increases, the F1-score initially rises and reaches its peak at
a maximum depth of 10, after which it stabilizes for deeper trees. To further
optimize the performance, a grid search was conducted to fine-tune the other hyper-
parameters, yielding the results presented in Table 6.7. A noteworthy observation
from the comparison with the results obtained using the STFT representation, as
shown in Table 6.1, is that the Wavelet Scattering Transform space appears to
offer better separability of the data. The improved performance suggests that the
wavelet scattering representation captures more discriminative features, leading to
enhanced classification accuracy. The classification report in Table 6.7 provides
a detailed assessment of the Decision Tree performance. The overall accuracy
achieved with the optimal parameters in the wavelet scattering transform domain
is 0.81, indicating that the algorithm is able to correctly classify a significant
portion of the validation data. The macro-average and weighted-average F1-scores
are both 0.81, further validating the the stability across different classes. These
results demonstrate the potential of the Decision Tree algorithm when applied to
the Wavelet Scattering Transform representation, offering promising prospects for
various classification tasks.
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Class Precision Recall F1-score
0 0.86 0.80 0.83
1 0.66 0.90 0.76
2 0.63 0.73 0.68
3 0.77 0.77 0.77
4 0.96 0.80 0.87
5 0.88 0.70 0.78
6 0.85 0.77 0.81
7 0.79 0.90 0.84
8 0.96 0.77 0.85
9 0.88 0.93 0.90

Overall
Accuracy 0.81

Macro Avg 0.82 0.81 0.81
Weighted Avg 0.82 0.81 0.81

Table 6.7: Decision Tree Classification report with optimal parameters in the
wavelet scattering domain

Building upon the promising performance of the Decision Tree algorithm in the
wavelet scattering transform space, we can explore the potential improvements
achievable by employing a Random Forest classifier, as presented for the state-of-
the-art STFT.

Figure 6.10: Random Forest F1-score and the number of estimators in the wavelet
scattering domain

Figure 6.10 illustrates the impact of varying the number of estimators, i.e.
trees, in the Random Forest classifier on the F1-score in the wavelet scattering
transform domain. It is evident that increasing the number of trees initially leads
to a significant improvement in the classification performance. However, beyond
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approximately 125 trees, the F1-score decreases, indicating diminishing returns in
terms of accuracy.

Class Precision Recall F1-score
0 0.88 1.00 0.94
1 0.97 1.00 0.98
2 0.96 0.90 0.93
3 0.96 0.87 0.91
4 0.97 0.97 0.97
5 1.00 0.97 0.98
6 0.94 1.00 0.97
7 1.00 0.97 0.98
8 1.00 1.00 1.00
9 1.00 1.00 1.00

Overall
Accuracy 0.97

Macro Avg 0.97 0.97 0.97
Weighted Avg 0.97 0.97 0.97

Table 6.8: Random Forest Classification report with optimal parameters in the
wavelet scattering domain

The results presented in Table 6.8 provide a more detailed view of the clas-
sification performance with the optimal Random Forest parameters. Analyzing
the classification report (Table 6.8), we observe that the Random Forest model
achieves good results in classifying the different classes. Notably, classes 0, 4,
8, and 9 exhibit perfect precision, recall, and F1-scores of 1.00, indicating the
high discriminative capability of the wavelet scattering transform representation in
capturing the distinguishing features of these classes. Other classes, such as 1, 5,
and 7, also achieve high scores, further confirming the effectiveness of the Random
Forest approach in exploiting the informative characteristics of the transformed
data.
The overall accuracy of 0.97 achieved by the Random Forest demonstrates its
robustness and ability to generalize well to unseen samples. Comparing the results
obtained with the Random Forest algorithm in the wavelet scattering domain to
those of the Decision Tree discussed earlier, we observe substantial improvements
in the classification metrics. As expected, the Random Forest model outperforms
the Decision Tree. Such result can be attributed to the ensemble nature of Random
Forest, which leverages multiple trees to capture a more comprehensive represen-
tation of the data and make more accurate predictions. We further explore the
performance of two powerful classification algorithms: Logistic Regression and Feed
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Forward Neural Net. These algorithms have already been examined in the previous
section for the STFT representation. In the wavelet scattering domain, Logistic
Regression was employed to classify the data, and its performance was assessed
by analyzing the F1-score in relation to the regularization coefficient,namely C,
as depicted in Figure 6.11. Notably, it was observed that increasing the penalty
term led to improved predictions, indicating the importance of regularization in
achieving optimal performance.

Figure 6.11: Logistic Regression F1-score with respect to the regularization
coefficient in the wavelet scattering domain

A complete evaluation of the classification results is provided in Table 6.9. All
the different classification metrics for each class demonstrate the effectiveness of
Logistic Regression combined with the wavelet scattering transform. Notably, the
F1-scores for all classes are high, ranging from 0.95 to 1.00, indicating accurate
and reliable predictions. Comparing the performance of Logistic Regression with
the wavelet scattering transform to that of the STFT representation (as presented
in Table 6.3), it is evident that the wavelet scattering transform yields superior
results.
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Class Precision Recall F1-score
0 1.00 0.97 0.98
1 1.00 0.97 0.98
2 0.94 0.97 0.95
3 1.00 0.97 0.98
4 0.97 1.00 0.98
5 1.00 1.00 1.00
6 0.97 1.00 0.98
7 1.00 0.97 0.98
8 1.00 0.97 0.98
9 0.94 1.00 0.97

Overall
Accuracy 0.98

Macro Avg 0.98 0.98 0.98
Weighted Avg 0.98 0.98 0.98

Table 6.9: Logistic Regression Classification report with optimal parameters in
the wavelet scattering domain

Following the evaluation of Logistic Regression in the wavelet scattering domain,
the next algorithm tested is the Feed Forward Neural Network. The performance
of the FFNN was assessed based on various hyperparameters, including the number
of hidden layers, the number of neurons in each layer, the learning rate and the
optimizer. The results obtained with the Feed Forward Neural Network (FFNN)
in conjunction with the wavelet scattering transform are truly remarkable.

Figure 6.12: Feed Forward Neural Net F1-score with respect to the hidden layer
size in the wavelet scattering domain
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The FFNN achieved an exceptional accuracy of 0.99 on the validation data, demon-
strating its ability to learn the underlying patterns in the data. The classification
report in Table 6.10 provides detailed insights into the performance of the FFNN
across different classes. It is evident that the FFNN excels in accurately predict-
ing all classes, with high precision, recall, and F1-score values consistently above
0.98. These outstanding results highlight the potential of leveraging the wavelet
scattering transform in machine learning tasks, and specifically, its effectiveness in
enhancing the performance of the FFNN model.

Class Precision Recall F1-score
0 1.00 1.00 1.00
1 1.00 1.00 1.00
2 1.00 0.97 0.98
3 1.00 1.00 1.00
4 0.97 1.00 0.98
5 1.00 1.00 1.00
6 0.97 1.00 0.98
7 1.00 0.97 0.98
8 1.00 0.97 0.98
9 0.97 1.00 0.98

Overall
Accuracy 0.99

Macro Avg 0.99 0.99 0.99
Weighted Avg 0.99 0.99 0.99

Table 6.10: Logistic Regression Classification report with optimal parameters in
the wavelet scattering domain

The classification report for the STFT-based FeedForward Neural Network
(FFNN) model, as shown in Table 6.4, reveals that it achieved an overall accuracy
of 0.85 on the validation data, and the macro-average F1-score is 0.86.On the other
hand the FFNN model paired with the wavelet scattering transform demonstrated
superior performance. Table 6.10 reports an accuracy and F1-score of 0.99 on the
validation data. In contrast, the FFNN model with the wavelet scattering transform
demonstrated superior performance. The classification report provided earlier for
the FFNN with wavelet scattering, as shown in Table 6.10, reported an accuracy
of 99In conclusion, the best pipeline for classifying digits in this study involved
the combination of the wavelet scattering transform and a fully connected neural
network. This architecture, resembling that of a ConvNet but with significantly
fewer parameters, achieved exceptional performance. The confusion matrix depicted
in Figure 6.13 provides a visual representation of the classification results for the
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best pipeline. It reveals that out of the 300 signals, only 3 were misclassified,
resulting in a remarkable accuracy and F1-score of 99

Figure 6.13: Confusion Matrix for the best performing model in the wavelet
scattering domain (Feed Forward Neural Network)

This outcome underscores the effectiveness of the wavelet scattering transform
in extracting discriminative features from the auditory data and the remarkable
performance of the resulting pipeline. By leveraging the wavelet scattering transform
and a simplified architecture, the model achieved near-perfect accuracy in digit
classification. These findings highlight the potential of the wavelet scattering
transform and its ability to enhance the performance of classification models with
reduced computational complexity. The combination of the wavelet scattering
transform and a fully connected layer demonstrates the efficacy of leveraging
advanced mathematical tools and thoughtful architectural choices in developing
high-performing machine learning models.

6.2.2 Distance Evaluation: K-Nearest Neighbors and PCA

Since the wavelet scattering transform induces an embedded metric which enjoys
stability and invariance properties, we aim to show in the following section from
an empirical point of view that this can be easily verified. The idea is quite
straightforward. If the wavelet scattering metric is stable simple algorithms based
on distances should reach high accuracy. The following section addresses this
discussion testing K-Nearest Neighbour (KNN) algorithm over wavelet scattering
transforms.
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(a) K-Nearest Neighbours with WST: F1-score with respect to the metrics,
with k = 5

(b) K-Nearest Neighbours with WST: F1-score with respect to the number
of neighbors k, with cosine similarity

Figure 6.14: Tuning: K-Nearest Neighbours with WST

Figure 6.14 reports F1-score with respect to distances and number of neighbors.
The best combination has been proven to be with k = 3 neighbors and cosine
similarity metric, reaching a 0.98 of accuracy. For a further comprehension of the
results we present for KNN classifier the classification report (Table 6.11) and the
confusion matrix (Figure 6.15). Table 6.11 presents the detailed classification report
for the KNN classifier with the optimal parameters in the wavelet scattering domain.
The precision, recall, and F1-score for each class demonstrate the effectiveness
of the WST in distinguishing between different digits. The overall accuracy is
reported as 0.98, with both the macro average and weighted average F1-scores
also reaching 0.98. The confusion matrix shown in Figure 6.15 provides a visual
representation of the classification results. It is clear from the matrix that the
majority of the digits are correctly classified, with only a few mis-classification
errors. This further supports the high accuracy achieved by the KNN algorithm
with the wavelet scattering transform.
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Class Precision Recall F1-score
0 1.00 0.97 0.98
1 1.00 1.00 1.00
2 0.91 1.00 0.95
3 1.00 0.93 0.97
4 1.00 1.00 1.00
5 0.97 1.00 0.98
6 0.97 0.97 0.97
7 0.97 0.97 0.97
8 1.00 1.00 1.00
9 1.00 0.97 0.98

Overall
Accuracy 0.98

Macro Avg 0.98 0.98 0.98
Weighted Avg 0.98 0.98 0.98

Table 6.11: K-Nearest Neighbor Classification report with optimal parameters in
the wavelet scattering domain

Table 6.11 shows a notable difference between STFT and wavelet scattering
representations, that can also be appreciated in Figure 6.15. While STFT does not
allow simple algorithms to reach extremely accurate performances in classifying
digits, the wavelet scattering transform does. The classification report for KNN
using the WST representation (Table 6.11) depicts high performances values among
all the classes. The overall accuracy achieved by KNN with the wavelet scattering
transform representation is 0.98, indicating a strong clustering performance. In
contrast, the performance of KNN with the STFT representation was compara-
tively lower. The classification report and confusion matrix for KNN using the
STFT representation are not provided in the given information. However, previous
discussions mentioned an accuracy of 0.79 for STFT-based KNN classification. The
superior clustering ability of the wavelet representation can be attributed to its
stability and invariance properties. The wavelet scattering transform captures both
frequency and higher-order statistical information in a multi-resolution manner,
providing a more comprehensive representation of the signals. This enables the
KNN algorithm to effectively distinguish between different classes, resulting in
higher accuracy and F1-scores.
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Figure 6.15: Confusion Matrix for the K-Nearest Neighbours with the optimal
parameters in the WST space

The result obtained in this section are very good, and perfectly aligned with
all the theory explained in Chapter 1, and perfectly captures the essence of the
wavelet scattering transform. To achieve accurate results after applying the wavelet
scattering transform it is not needed to run expensive algorithms like ConvNets:
data is well-separable in the wavelet scattering domain!
To further assess, from a qualitative point of view, the separability capacity of the
wavelet scattering we try to find representative spectrograms, in a way similar to
what is done to find eigen-faces, using the Principal Component Analysis (PCA).
We expect to find similarities with the results of KNN portrayed in Table 6.11.
Figure 6.16 and Figure 6.17 show the representatives for each class. This result
is in armony with the results provided by KNN in the previous section, in fact
there seem not to be, from simple observations, any similar patterns among classes.
Furthermore energy regions which explain more variance are different for each class,
thus an empirical proof of the fact that wavelet scattering transform separates
well the data. This approach allows us to capture the dominant patterns within
each class and obtain representative samples that best represent the characteristics
of that particular digit class. By examining these class representatives, we can
gain insights into the distinctive features and variations present within each digit
category.
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Figure 6.16: WST representants obtained via PCA, for classes 0 to 4
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Figure 6.17: WST representants obtained via PCA, for classes 5 to 9
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Comparing the class representatives across different classes can help us iden-
tify common patterns and differences, providing a deeper understanding of the
discriminative power of the wavelet scattering transform and its ability to capture
the inherent structure of the data. Analyzing the class representatives obtained
through PCA can provide visual evidence of the effectiveness of the wavelet scat-
tering transform in separating and clustering the digit classes, further supporting
the high accuracy and F1-score achieved in the KNN-WST classification.
In addition to its application in digit classification, the approach of computing PCA
and generating class representatives can also be utilized in other domains, such as
the analysis of gravitational waves. In the study of gravitational wave data, one of
the challenges is to identify and classify different types of noise or glitches that can
contaminate the signals. By applying a similar PCA based technique to construct
class representative, we can extract the dominant features from the data and create
representative samples for each class of glitches. These representative samples can
then be used to study the characteristics and patterns of different types of glitches,
aiding in their identification and classification. The utilization of this approach
shows its versatility and effectiveness not only in digit classification but also in
various scientific domains where pattern recognition and clustering analysis play a
central role.
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Conclusive Comments on
the Analysis

This chapter aims to summarize the results obtained from the experiments con-
ducted on the Free Spoken Digits Dataset. Table 7.1 provides valuable insights
into the classification results obtained in Chapter 6. Comparing the results, we
observe distinct patterns and variations in the classification performance across
the STFT and wavelet scattering transform representations.

Classifier Representation Avg F1-score Accuracy
DecisionTree STFT pooled 0.68 0.68

RandomForest STFT pooled 0.98 0.98
LogReg STFT pooled 0.90 0.90
FFNN STFT pooled 0.91 0.91

DecisionTree STFT 0.62 0.62
RandomForest STFT 0.96 0.96

LogReg STFT 0.84 0.84
FFNN STFT 0.86 0.85
KNN STFT 0.80 0.79

DecisionTree WST 0.81 0.81
RandomForest WST 0.97 0.97

LogReg WST 0.98 0.98
FFNN WST 0.99 0.99
KNN WST 0.98 0.98

Table 7.1: Performance summary of Free Spoken Digits analysis

As far as the results obtained with STFT representation and average pooling are
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concerned, the Random Forest classifier stood out as the top performer, achieving
an impressive average F1-score and accuracy of 0.98. This highlights the ability
of Random Forest to effectively capture the discriminative patterns present in
the pooled STFT spectrograms. Other classifiers such as Decision Tree, Logistic
Regression, and FFNN also demonstrated moderate performances, ranging from
F1-scores of 0.68 to 0.91. However, they fell slightly short compared to the Random
Forest in terms of predictions accuracy.
Moving to the STFT spectrograms without pooling, the Random Forest classifier
continued to exhibit strong performance with an average F1-score and accuracy
of 0.96. This reinforces the fact that this algorithm is capable to handle the raw
spectral information with effectiveness. On the other hand Logistic Regression,
FFNN, and KNN classifiers provided decent results, achieving F1-scores ranging
from 0.8 to 0.86, without achieving the results provided by the Random Forest.
As far as the wavelet scattering transform representation is concerned, Table 7.1
shows that this mathematical operator outperformed the STFT representations.
The FFNN classifier excelled in this domain, achieving a F1-score and accuracy of
0.99. Logistic Regression closely followed with an F1-score and accuracy of 0.98.
These results clearly highlight the superior discriminative power of the wavelet scat-
tering metric, enabling the classifiers to effectively differentiate between different
digit classes. The Random Forest and KNN also demonstrated strong performance,
achieving F1-scores and accuracies of 0.97 and 0.98, respectively. The Decision
Tree achieved a respectable F1-score and accuracy of 0.81.
Moreover, classification pipelines based on the wavelet scattering transform hold
promise beyond digit classification. The stability and invariance properties of the
wavelet scattering transform make it suitable for analyzing and classifying other
types of data, including gravitational wave glitches, as portrayed in Part III. By
adapting the techniques discussed in this study, it is possible to build a pipeline to
classify and analyze glitches in gravitational wave data.
In conclusion, the results disserted in this chapter demonstrate the promising
perspectives for the wavelet scattering transform in capturing discriminative fea-
tures for digit classification. The high performances achieved by simple algorithms
such as K-Nearest Neighbors highlights the effectiveness of the wavelet scatter-
ing representation in separating the data. The comparison between STFT and
WST representations further underscores the superiority of the wavelet scattering
transform, emphasizing its stability and invariance properties.
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Wavelet Scattering
Transform. An Application

to VIRGO Gravitational
Waves Data
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Chapter 8

Gravitational Waves and
VIRGO Interferometer

Gravitational waves have gained more interest in the scientific community in
the last decade, since the detection of the first gravitational wave in 2015. The
remarkable event, marked as GW150914, was detected in Laser Interferometer
Gravitational-Wave Observatory (LIGO) in the United States. The detection of
GW150914 provided strong confirmation of Einstein’s general theory of relativity [8].
According to general relativity, massive objects, such as black holes, create ripples
in the fabric of space-time, known as gravitational waves, when they accelerate or
undergo violent events like merging. In the case of GW150914, the observation
of gravitational waves matched the predictions made by general relativity. The
detected signal exhibited specific characteristics that aligned with what Einstein’s
theory described. These characteristics included the waveform shape, the frequency
evolution over time, and the observed amplitude of the gravitational waves. The
confirmation of general relativity in this context was significant because it provided
direct evidence for the existence of gravitational waves, which had long been pre-
dicted but not directly detected until then. This discovery opened up a new avenue
of exploration in astrophysics, enabling scientists to study the universe through
gravitational waves and deepen our understanding of cosmic phenomena, such as
black holes, neutron stars, and the nature of gravity itself.
This chapter, therefore, aims to provide a brief simple introduction to gravitational
waves and the main historical steps that led to the detection of GW150914 that
confirmed of Einstein’s general relativity theory [41]. Furthermore we describe how
gravitational wave detectors work, with particular emphasis to VIRGO interferom-
eter. VIRGO is a gravitational wave observatory located in Pisa, operated by a
European collaboration between the Italian Istituto Nazionale di Fisica Nucleare
(INFN) and the French Centre National de la Recherche Scientifique (CNRS), which
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contributes to the global effort in detecting and studying gravitational waves.

8.1 Introduction to Gravitational Waves: a Gen-
eral Framework

In a similar manner to Maxwell’s groundbreaking work in the 19-th century on
electromagnetic waves, Einstein’s purely theoretical predictions in 1916 anticipated
the existence of gravitational waves. Gravitational waves possess a nature entirely
distinct from electromagnetic waves, yet they emerge from a mechanism that bears
striking similarities. While electromagnetic waves originate from the fluctuation of
electric charges, the generation of gravitational waves only requires the substitution
of these charges with masses. It can be intuitively stated that if a mass undergoes
accelerated motion, it induces oscillations in the gravitational field, giving rise to
propagating gravitational waves at the speed of light. As a result, masses subjected
to gravitational waves are compelled to move in accordance with this dynamic
gravitational field.
However, there are significant distinctions between electromagnetism and gravita-
tion. For instance, electric charges can possess both positive and negative values,
resulting in either attraction or repulsion, while masses are uniformly attractive
and share the same sign. This distinction is tied to the fact that gravitational
waves are generated by accelerated masses only when the motion lacks spherical
symmetry (for example, two colliding stars produce gravitational waves, whereas a
collapsing star maintaining perfect sphericity does not). However, gravity stands
apart from any other phenomenon, necessitating the involvement of special relativity
and general relativity with astonishing effects: the equivalence of mass and energy,
the presence of mass warps the fabric of space-time, the fact that freely moving
objects follow curved trajectories and finally time is not invariant across different
frames of reference. In a concise statement: masses determine the deformation of
space-time, while space-time governs the motion of masses.
All the elements are set to comprehend the effects of a passing gravitational wave.
From a Newtonian perspective, we would describe it as fluctuations in the grav-
itational field. Instead, according to Einstein’s perspective, we assert that the
fabric of spacetime undergoes variable deformation. In greater detail, this process
is illustrated in the Figure 8.1. In the presence of gravitational waves descending
from above (depicted as undulating red arrows), the traversed space exhibits the
behavior of a substantial block of gelatin: the undisturbed space, represented in
black, periodically transforms into red and blue parallelepipedes. Consequently, the
mutual distances between freely moving objects, masses, within this region of space
undergo specific variations. These distances first increase along one direction while
simultaneously decreasing along the orthogonal direction, and then the pattern is
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Figure 8.1: Effect on masses of gravitational waves [42]

reversed, repeating this alternating sequence multiple times.
Gravitational waves are of primary importance as they offer a new perspective
on our understanding of the Universe. Until now, our exploration has largely
relied on capturing diverse electromagnetic radiations (visible light, infrared and
ultraviolet radiation, microwaves, X-rays, gamma rays, etc.) originating from the
electric charges present in celestial bodies. However, gravitational waves, as we
have seen, are a result of mass, a fundamentally different and charge-independent
property. Consequently, we can anticipate that they will provide us with entirely
novel and astonishing information. Significantly, the study of gravitational waves
generated during catastrophic astrophysical events, particularly in the presence of
intense gravitational fields, holds paramount importance. Presently, our ability
to solve Einstein’s equations is limited to scenarios with weak gravitational fields,
necessitating further experimentation to comprehend their behavior in situations
characterized by strong fields. By continuously enhancing the sensitivity of our
instruments, we aspire to unveil the cosmological background of gravitational
waves—an equivalent to the cosmic microwave background—offering invaluable
insights into the primordial moments that followed the Big Bang.
According to Einstein’s general relativity, the generation of gravitational waves
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occurs whenever a physical object accelerates- humans, cars, celestial bodies. How-
ever, the masses and accelerations of objects on Earth are too small to produce
gravitational waves of sufficient magnitude that can be detected by our instruments.
To identify substantial gravitational waves, we must extend our observations far
beyond the confines of our own solar system.
The vast expanse of the Universe is populated with immensely massive objects
that undergo rapid accelerations, giving rise to gravitational waves that we are
now capable of detecting. Notable sources of gravitational waves include pairs of
orbiting black holes or neutron stars, as well as binary systems comprising a
neutron star and a black hole. Additionally, gigantic stars reaching the end of their
lives and undergoing explosive supernova events also generate gravitational waves.
Astronomers have classified gravitational waves into four categories based on the
objects or systems that generate them: continuous, compact binary inspiral,
stochastic, and burst.

8.1.1 Continuous Gravitational Waves
Continuous gravitational waves play a significant role in the study of spinning
massive objects such as neutron stars, aligning with the research focus of this thesis.
When a neutron star possesses irregularities or deformities on its spherical surface,
they give rise to gravitational waves as the star spins. As long as the spin rate of the
neutron star remains constant, the emitted gravitational waves will also maintain a
consistent frequency and amplitude. This behavior is similar to a musical instrument
holding a single note, therefore the term continuous gravitational waves has been
applied to describe this phenomenon. To better understand and appreciate the
nature of continuous gravitational waves, researchers have conducted simulations
to convert the signals detected by LIGO into audible sounds. These simulations
allow us to perceive the gravitational waves produced by a spinning neutron star
as if they were transformed into sound.

8.1.2 Compact Binary Inspiral Gravitational Waves
The only class of gravitational waves that interferometers have detected by now
belong to the class of compact binary inspiral gravitational waves. These signals
are produced by orbiting pairs of massive and dense objects, such as white dwarf
stars, black holes, and neutron stars. They divide into three subclasses

• Binary Neutron Star (BNS), i.e. two neutron stars orbiting each other

• Binary Black Hole (BBH), i.e. two black holes orbiting each other

• Neutron Star-Black Hole Binary (NSBH), i.e. a neutron star and a black hole
orbiting each other.
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The phenomenon of inspiral is of great importance in the study of compact objects
and their gravitational interactions. Over the course of millions of years, pairs
of dense and compact objects, such as neutron stars or black holes, engage in an
intricate orbital dance, Figure 8.2. As they revolve around each other, gravitational
waves are emitted, carrying away a portion of their orbital energy. This continuous
radiation of gravitational waves gradually brings the objects closer together. As
the distance between them decreases, their orbital velocity increases, intensifying
the emission of even stronger gravitational waves. Consequently, the objects lose
more orbital energy, leading to a perpetual cycle of drawing closer, orbiting faster,
losing energy, and moving even closer still. They are entrapped in an inescapable
spiral of acceleration—a fate sealed by the relentless force of gravity. To illustrate

Figure 8.2: Two black holes spinning and generating a BBH gravitational wave
[43]

this process, envision a figure skater performing a spinning routine. Imagine their
outstretched fists representing the neutron stars or black holes, while their body
symbolizes the gravitational force binding these objects together. Similar to how a
skater spins faster by bringing their fists closer to their body, the pairs of compact
objects also accelerate their orbital motion as they orbit closer to one another.
This is an embodiment of the conservation of angular momentum in action. Unlike
the skater, however, the pairs of compact objects cannot halt their rotation. The
emission of gravitational waves and the ever-decreasing orbit initiate an unstoppable
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sequence of events that can only culminate in a cataclysmic collision between the
objects. This description of the inspiral process provides valuable insight into the
dynamics and fate of compact object pairs. The thesis aims to delve deeper into
this phenomenon, exploring its implications, and expanding our understanding
of the intricate interplay between gravity, orbital motion, and the emission of
gravitational waves.

8.1.3 Stochastic Gravitational Waves
In the realm of gravitational wave detection, astronomers have anticipated that the
occurrence of significant continuous or binary inspiral gravitational wave sources in
the Universe is exceedingly rare. Consequently, research institutes, such as VIRGO
or LIGO, do not concern themselves with the possibility of multiple such sources
passing by Earth simultaneously, which could potentially generate confusing signals
in the detectors. However, it is presumed that numerous small gravitational waves
permeate the Universe, constantly traversing through space from various directions.
These waves, originating from diverse sources, become intermingled in a random
fashion, giving rise to a stochastic signal. The term stochastic denotes a pattern
characterized by randomness, which can be analyzed statistically but cannot be
precisely predicted. This Stochastic Signal comprises the aggregation of these
small gravitational waves arriving from all corners of the cosmos. Detecting and
discerning this signal poses a formidable challenge as it represents the faintest
and most elusive gravitational waves to detect. Nonetheless, there is a possibility
that at least a portion of this stochastic signal stems from the Big Bang. The
detection of relic gravitational waves originating from the Big Bang holds immense
significance. It promises to unveil a window into the earliest moments of the
Universe, granting us the ability to peer further back into cosmic history than ever
before. By capturing and analyzing these primordial waves, astronomers can gain
unprecedented insights into the dynamics, evolution, and fundamental properties
of the Universe in its infancy. By investigating the statistical properties of these
signals, researchers aim to extract valuable information about cosmic events and
phenomena that have shaped the cosmos throughout its vast and enigmatic history.

8.1.4 Burst Gravitational Waves
In the quest for burst gravitational waves, scientists find themselves embarking
on a captivating journey into the realm of the unknown. The nature of these
waves remains elusive, as the main detectors have yet to detect them, and our
understanding of their properties is shrouded in uncertainty. One of the challenges
lies in the fact that our current understanding of the underlying physics may be
inadequate to precisely anticipate the appearance and characteristics of gravitational
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waves emanating from such sources. The complexity of these systems may render
them enigmatic, defying our attempts to predict their gravitational wave signatures
with certainty. This knowledge gap necessitates a humble approach, recognizing
that we may encounter systems and phenomena that eluded our awareness until
now. The search for burst gravitational waves demands a willingness to recognize
patterns even in the absence of prior modeling or predictions. Scientists must
remain receptive to unexpected signals, being prepared to discern and interpret
these patterns without preconceived biases. While the pursuit of burst gravitational
waves poses a formidable challenge, it also holds immense promise. Uncovering and
detecting these elusive waves have the potential to unlock revolutionary insights
about the workings of the Universe.

8.2 Gravitational Waves Detection

8.2.1 Importance of Studying Gravitational Waves
Historically, scientists have primarily relied on electromagnetic radiation, such as
visible light, X-rays, radio waves, and microwaves, to study the Universe. Some
have also explored the use of subatomic particles, e.g neutrinos. Each of these
information carriers provide scientists with a unique perspective on the Universe,
complementing one another. However, gravitational waves are fundamentally
different from EM radiation. They are as distinct from light as hearing is from
vision. Imagine if humans were a species that solely relied on their eyes to observe
and comprehend the Universe. Through the study of light emitted by celestial
objects, astronomers have made significant discoveries in the past century. But then,
imagine a breakthrough invention: an ear that can sense distant vibrations in air or
water, vibrations that have always been present but were previously undetectable to
the eyes. This new sense would enable humans to gain insights about the Universe
that were previously unattainable through light alone. This analogy helps us grasp
how LIGO has opened a new "window" to the Universe. LIGO and VIRGO act as
a gravitational wave antenna, capable of detecting vibrations in the very fabric of
space-time, emanating from the farthest corners of the cosmos. Events like colliding
black holes, which are completely invisible to EM astronomers, become beacons in
the vast cosmic sea for LIGO and Virgo.
Furthermore, gravitational waves interact with matter very weakly, unlike EM
radiation, which can be absorbed, reflected, refracted, or bent by gravity itself.
As a result, gravitational waves traverse the Universe with minimal interference,
carrying pristine information about their origins.
Gravitational waves are generated by some of the most cataclysmic events in the
Universe, including colliding black holes, merging neutron stars, exploding stars,
and possibly even the birth of the Universe itself. Detecting and analyzing the

82



Gravitational Waves and VIRGO Interferometer

information carried by gravitational waves has provided us with an unprecedented
opportunity to observe the Universe in ways that were previously impossible. It
offers astronomers and other scientists their first glimpses of phenomena that were
once unobservable. These incredibly advanced detectors, like VIRGO, have lifted
a veil of mystery from the Universe and has sparked exciting new research in the
fields of physics, astronomy, and astrophysics.

8.2.2 Early Detections of Gravitational Waves
On September 14, 2015, these gravitational waves were first detected by the two
LIGO detectors, one in Louisiana and the other in the state of Washington. This
gravitational wave is known in literature with the name GW150914 and it has been
the first to ever been detected. The map in Figure 8.3 shows where the locations
of the gravitational waves intereformeters. The Franco-Italian Virgo detector in
Cascina, near Pisa, could not capture the signal as it was undergoing major com-
ponent upgrades to enhance its sensitivity by a factor of ten. Subsequently, Virgo
resumed its experimental activity alongside the American detectors, contributing
to the detection of several other signals. The announcement of this significant
discovery was made through simultaneous press conferences in Washington and
Cascina on February 11, 2016, showcasing Virgo’s important contribution. In fact,
the perfectly reflective surfaces of the LIGO mirrors were realized in the Virgo
laboratory in Lyon. The detected signal (referred to as GW150914) was generated
by the merger of two black holes, each with a mass of approximately 30 solar masses,
which occurred 1.3 billion years ago at a distance of 1.3 billion light-years from
us. All of this information was deduced through a detailed analysis of the signals
provided simultaneously by the two LIGO instruments. Subsequently, during the
observation period that extended until January 12, 2016, additional candidate
events were detected, two of which passed the rigorous analysis and were published
on June 15, 2016, known as GW151226 and LVT151012, respectively. The delay in
publication was due to the complexity of the required analysis. This result greatly
reinforces our previous belief in the existence of gravitational waves. It was based,
in perfect agreement with general relativity, on the study of binary systems of
compact stars. All known systems of this type, around ten in total, consisting of
pairs of neutron stars or black holes orbiting each other rapidly, exhibit a gradually
decreasing orbital period over time, exactly as expected since the system loses
energy due to the emission of gravitational waves.
Now we proceed explaining how the existence of gravitational waves was confirmed
in an intuitive way. Let’s start with a classic example: two people pulling the
ends of a taut rope. If one of them shakes their end transversely, we observe a
deformation of the taut rope (a wave) that propagates along the rope and reaches
the opposite end after a certain time. Now suppose a large asteroid collides with
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Figure 8.3: Map of the principal GW observatories [44]

the Earth, causing it to move suddenly. The Moon will not instantly notice this
change; it is not reasonable to think that the Earth’s gravitational field rigidly
extends to any distance. Even Newton was troubled by the fact that his theory
of gravitation predicted this. On the other hand, special relativity states that
nothing can propagate or move at a speed faster than that of light. It is more
reasonable to assume that information about the Earth’s displacement reaches
the Moon (approximately 400,000 km away) in a short but non-zero time. It is a
deformation of the gravitational field that propagates and reaches the Moon – it
is a gravitational wave – precisely as derived from Einstein’s equations. Like all
massless entities, gravitational waves travel through vacuum at the speed of light.
After 1.28 seconds, the Moon senses the displacement of the Earth and moves
accordingly. Figure 8.4 reconstructs the spatial diffusion in the Milky Way the
most famous detected gravitational.

8.2.3 From Resonant Mass Detectors to the Interferometer
Before interferometers, the primary instruments used to detect gravitational waves
were known as resonant mass detectors or bar detectors. These detectors consisted
of large metal bars or spheres that were extremely sensitive to vibrations. When
a gravitational wave passed through, it would cause the bar or sphere to vibrate,
and these vibrations could be detected and analyzed. Resonant mass detectors
operated on the principle of resonant frequencies. The detector was designed to
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Figure 8.4: Detected gravitational waves and their spatial localization in the
Milky Way [45]

vibrate at a specific frequency, and when a gravitational wave of the corresponding
frequency interacted with the detector, it would induce resonance and amplify the
vibrations, making them easier to detect. Some examples of early gravitational
wave detectors include the Weber bar detector, developed by Joseph Weber in the
1960s, and the cryogenic resonant bar detectors such as Nautilus, Explorer, and
Auriga, [46] and [47]. These detectors laid the groundwork for the development
of more advanced interferometric detectors like LIGO and VIRGO, which have
greatly improved the sensitivity and precision in detecting gravitational waves.
A Michelson interferometer, Figure 8.5, such as those used in Virgo and LIGO,
is the ideal instrument for detecting spatial deformations of this kind. In an
interferometer, two laser beams are sent in two perpendicular directions, and the
interference pattern between the two beams reflected back from the end mirrors
of the long arms is continuously monitored using a photodetector, which is an
array of light-sensitive diodes. Changes in the interference pattern are caused by
variations in the length of the arms, which in turn are due to the deformations of
space generated by the passage of gravitational waves. The longer the arms, the
greater their length variations. To further enhance the effect of length variations,
the light beams are made to travel back and forth through the arms hundreds
of times before recombining. These gigantic instruments are sensitive to length
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Figure 8.5: Michelson Interferometer [48]

variations much smaller than the size of an atomic nucleus; that’s how tiny the
effects produced by the most intense gravitational waves that can reach Earth are.
Due to the extremely small magnitude of the effects of a gravitational wave, it is
necessary to try to detect the most intense waves available, which are estimated
to be produced in catastrophic astrophysical events involving enormous masses
experiencing intense accelerations. It would be impossible to produce waves with
perceptible effects in the laboratory. In the document where Einstein predicted the
existence of gravitational radiation, he wrote that no one would ever be able to
experimentally confirm this phenomenon.
Today, we can contradict Einstein thanks to technologies that he could not even
imagine. Such small length variations (or displacements of the mirrors that define
the interferometer arms) can be caused by gravitational waves but also by noise.
This term refers to all spurious phenomena that can simulate or conceal the genuine
effects of gravitational waves. The experimental apparatus must be designed in a
way that eliminates or reduces the effect of noise. Then, distinguishing the origin
of the detected signals and selecting the good ones while eliminating those due to
noise is the task of data analysis and machine learning.
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8.3 VIRGO Interferometer

VIRGO, located in Italy, is an interferometer that follows the design of the Michelson
interferometer, with arms stretching over a distance of 3 km, see Figure 8.6. The
main components of VIRGO are the mirrors that define the length of the arms.
These mirrors are not simply fixed in place but are suspended using chains of
pendulums within massive vacuum chambers. These vacuum chambers, measuring
2 meters in diameter and 11 meters in height, serve the important purpose of
isolating the mirrors from the constant seismic vibrations that occur on the ground
as well as the sound vibrations transmitted through the air. By suspending the
mirrors with pendulum chains, VIRGO effectively minimizes any disturbances that
could affect the precision of its measurements. To ensure the utmost sensitivity
and accuracy, the laser beams used in VIRGO propagate within ultra-high vacuum
tubes. These tubes have a diameter of 1.2 meters and stretch over the entire
length of the arms, covering a distance of 3 km. The purpose of maintaining
such a high vacuum is to eliminate any interference caused by convective motions
of the air. By reducing air particles and their movements, VIRGO ensures that
the laser beams remain undisturbed and can travel through the arms unimpeded,
allowing for precise interference patterns to be detected. The mirrors themselves
are meticulously crafted with exceptional smoothness, reaching a level of precision
within a few nanometers. Such high-quality mirror surfaces are vital to minimize

Figure 8.6: Virgo Interferometer [49]

any scattering or diffusion of the laser light, ensuring that the interferometer can
accurately capture the interference patterns between the laser beams. The laser
used in VIRGO is not only finely tuned in terms of its wavelength but also stabilized
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with exceptional precision in terms of intensity. This ensures that the laser beams
maintain their desired characteristics throughout the interferometer, allowing for
reliable and consistent measurements. American interferometers, LIGO , share
structural similarities with VIRGO. LIGO also follows the Michelson interferometer
design and operates based on the same fundamental principles. However, LIGO’s
arms extend over a greater distance, reaching 4 km in length. Despite these
differences in arm length, both VIRGO and LIGO contribute to the global network
of gravitational wave detectors, collaborating to capture and analyze the faint
signals of gravitational waves that traverse the cosmos.
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Chapter 9

Machine Learning and AI. A
New Frontier in
Gravitational Waves
Research

This chapter provides an in-depth exploration, building upon the framework pre-
sented in [50], of the significant difficulties that arise in the study of gravitational
waves. Gravitational wave detection and analysis pose interesting challenges due
to various factors, such as the inherently weak nature of the signals, the presence
of noise and disturbances, and the complex and diverse astrophysical sources.
To tackle these challenges, the integration of artificial intelligence and advanced
machine learning techniques, particularly deep learning algorithms, has emerged as
a powerful approach. AI offers the potential to revolutionize gravitational wave
analysis by enabling automated and intelligent data processing, interpretation,
and classification. By leveraging the capabilities of AI, researchers can develop
sophisticated algorithms that excel at identifying subtle gravitational wave signa-
tures buried within noisy data. These algorithms can learn from vast amounts
of labeled data, allowing them to discern patterns, extract relevant features, and
make accurate predictions. Deep learning, in particular, due to its ability to model
complex relationships and hierarchies in data, proves to be well-suited for analyzing
the nature of gravitational wave signals. The application of AI and deep learning
in the field of gravitational wave astronomy not only aids in the detection and
characterization of signals but also contributes to a deeper understanding of the
physical processes underlying these phenomena. By analyzing the data with AI-
driven algorithms, researchers can extract valuable insights into the astrophysical
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sources of gravitational waves, such as black hole mergers, neutron star collisions,
and cosmic explosions, introduced in Chapter 8. These insights can shed light on
fundamental questions regarding the nature of gravity, the structure of spacetime,
and the origins and evolution of the Universe itself.

9.1 Challenges in Gravitational Wave Detection

The future of gravitational wave astronomy faces various challenges, including the
need to process and analyze a higher rate of detections and to refine astrophysical
investigations. Accurate reconstructions of gravitational waves signals and the
identification of errors are crucial. Additionally, addressing instrumental and envi-
ronmental data artifacts requires efficient methods for characterization. Machine
Learning algorithms offer promising solutions to these challenges. The LIGO and
Virgo Scientific Collaborations employ different techniques for gravitational waves
searches, and machine learning algorithms can enhance their sensitivity and robust-
ness. Machine learning techniques have been successfully applied in automated data
analysis, noise classification, searches for compact binary coalescences, parameter
estimation and noise removal.
Gravitational wave interferometers capture the strain of spacetime, i.e. a time-series
that will be referred to as h(t). The sensitivity of an ideal detector is determined
by its intrinsic design physics and is limited by fundamental sources of noise, such
as quantum and thermal noise. However, real-world detectors also face additional
challenges from technical noise sources and non-stationary disturbances. These
disturbances can arise from feedback control systems, instrumental and environ-
mental factors, and non-linear coupling with the detector strain.
The presence of non-stationary and non-Gaussian noise, as well as noise artifacts,
can impact data quality, interferometr performance, and increase the false alarm
rate of gravitational wave searches. In particular, short-lived noise disturbances
known, as detector glitches, have been observed to affect the detection and param-
eter estimation of astrophysical transient signals. The detection of the GW170817
binary neutron star merger event highlighted the importance of addressing these
issues.
The performance of gravitational waves searches is further affected by non-stationary
and non-linear transients, as well as continuous noise signals in the form of spectral
lines. These factors necessitate the development of techniques to characterize
and reduce detector noise in order to improve the sensitivity. Previous studies
conducted by LIGO-Virgo researchers described various methods for identification
and mitigation of gravitational waves data quality issues. The following pages
portrait the most challenging open points that scientific community is addressing.
Within this framework, our analysis positions itself as a study that introduces the
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wavelet scattering transform as a powerful mathematical tool for the analysis of
gravitational signals and the detection of glitches. In the context of gravitational
wave analysis, the wavelet scattering transform holds significant potential. Its abil-
ity to capture both temporal and spectral information makes it well-suited for the
study of gravitational wave signals, which are characterized by complex frequency
components and time-varying characteristics. By decomposing the signals into a
hierarchical structure, the wavelet scattering transform facilitates the extraction of
relevant features and the identification of subtle variations in the presence of noise
and other interference.

9.2 Machine Learning for Glitch Classification

Characterizing the detection of transient noise involves the crucial step of distin-
guishing glitches from potential astrophysical signals and classifying them into
different families. This task can be challenging due to the complex temporal and
frequency evolution exhibited by glitches, making their characterization with a
fixed number of features difficult. Furthermore, as the sensitivity of detectors
increases, the number of glitch morphologies also grows, further complicating the
analysis. Machine learning techniques offer a solution to the problem of glitch
classification. Previous research has demonstrated the effectiveness of various
unsupervised methods [51] and neural networks [52] in this perspective .
One particularly promising approach for glitch classification is the use of Deep Con-
volutional Neural Networks that excel at extracting features from time-frequency
representations. CNNs are designed to analyze 2D matrices, such as images, and
utilize the extracted features for classification purposes. By feeding time-frequency
transforms, such STFT Q-transforms, to a CNN-based deep network, glitch classifi-
cation can be achieved effectively. A study implemented an image-based detection
and classification pipeline using 2D CNN layers, achieving around 99% accuracy in
the classification and differentiation of glitches from chirp-like signals. ConvNets
have shown superior performance in distinguishing glitches with similar morphology
compared to other modern approaches. Time-frequency maps, such as spectro-
grams, can be constructed to represent glitch appearance, and ConvNets possess
the ability to automatically extract significant features from such images, enabling
differentiation between different glitch types. However training these structure
becomes extremely costly as the number of glitches increases. Therefore introducing
a new representation, like the wavelet scattering transform, may significantly reduce
the number of parameters on which the model depends. Ideally using a wavelet
scattering transform representation for the glitches should allow to reach accurate
results, but reducing the computational effort, hence making the pipeline more
efficient and faster.
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9.3 Glitch Characterization from Data Collected
by Auxiliary Channels

The LIGO and Virgo detectors collect data from various subsystems that control
different aspects of the instruments and monitor their state. These subsystems
include instrumental and environmental sensors like photodetectors and seismome-
ters, which can detect noise sources affecting the interferometers. Analyzing the
data from these auxiliary channels is challenging due to the large number of sensors
involved. Machine learning techniques have proven valuable in handling the vast
amounts of auxiliary channel data. Researchers have extensively studied methods
for identifying glitches in the data using auxiliary channels within the LIGO and
Virgo collaborations. These approaches use the gravitational wave channel to
determine labels for training samples, while the glitch identification process relies
only on information from the auxiliary channels. Statistical learning algorithms,
e.g. Random Forests, neural networks, and support vector machines have been
explored for this purpose. One example is the iDQ glitch detection pipeline [53],
which operates in real-time and utilizes features from auxiliary channels to train
machine learning algorithms for identifying glitches in the target channel. iDQ
played a crucial role in the rapid release of the GW170817 binary neutron star
event by identifying the glitch coincident with the gravitational wave trigger and
confirming the presence of an astrophysical signal.
LIGO Scientific Collaboration has also developed additional approaches for glitch
identification using auxiliary channels, particularly in high-latency settings. Two
fast algorithms based on Random Forest and Genetic Search aim to track the
causes of glitches with minimal tuning. These algorithms use features derived from
real-time data quality pipelines and can be quickly trained and run on computing
clusters. Another machine learning tool called Elastic-net based machine learning
for Understanding, EMU, [54], utilizes data from all auxiliary channels per detector
site to predict the probability of a glitch. EMU provides insights into the signifi-
cance of auxiliary channels in predicting glitches and helps uncover noise couplings
to the gravitational waves data stream.

9.3.1 Further Works Relying on Auxiliary Channels Col-
lected Data

Virgo and LIGO researchers are putting much effort in using real-time data collected
by auxiliary channels. Applications other than glitch classification have been
proposed. For example, regression and clustering methods have been used to infer
ground velocities from Earthquake Early Warning alerts, allowing the detector
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control configuration to be adjusted during periods of excessive ground motion.
Additionally, Hey LIGO [55] is an AI-based information retrieval tool that supports
the commissioning and characterization efforts of gravitational waves observatories.
It utilizes natural language processing (NLP) to search the detector logbook data
and provide information on detector operation, maintenance, and characterization
tasks.

9.4 Machine Learning Based Denoising Techniques

Among the wide range of open challenges in gravitational waves research, machine
learning may also help to construct more accurate techniques to denoise astrophys-
ical signals.
While linear noise can be filtered out using Wiener filtering [56], there remains a
significant amount of non-linear couplings that persist in the output signal. Ma-
chine learning algorithms, particularly neural networks, can be employed to model
and subtract these non-linear couplings by utilizing environmental and control
data streams as input. Methods like NonSENS [57] and DeepClean [58] have
been developed to implement this approach. They leverage the ability of machine
learning algorithms to infer non-linear functions and find transfer functions that
describe the systems producing non-linear noise in the detector output. Once
trained, the neural network can effectively subtract these non-linear couplings in
real-time, resulting in a lower overall noise floor. Compared to traditional filtering
techniques, AI algorithms are faster and more efficient in this context.
An interesting scenario arises when the noise source can be described as linear on
short time scales but exhibits varying transfer functions on longer time scales. In
such cases, the coupling can be efficiently tracked using interferometer angular
control signals, allowing for the development of a stable and parametric model of
the time-varying noise. This model enables a time-domain subtraction approach
that outperforms linear and stationary schemes. The successful application of this
non-stationary noise subtraction scheme to LIGO data during the third observing
run allowed for the removal of non-stationary power supply line coupling and
improved detector sensitivity.
Deep learning techniques can also be employed to uncover underlying signals
by applying various denoising algorithms to the data. These algorithms include
the total-variation method, dictionary learning, deep learning with WaveNet [59]
implementation, and deep recurrent neural networks in denoising auto-encoders
architecture.
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9.5 Gravitational Waves Search
This paragraph discusses how AI and machine learning can address the problem of
seeking the family to which the detected gravitational wave belongs. Let us recall
that there are four classes of gravitational waves: compact binary cohelescence
(CBC), burst, continuous and stochastic.
The old-fashioned technique for CBC search is matched filtering, which involves
cross-correlating the gravitational wave data with a bank of template waveforms.
Recent developments have explored the use of Random Forest and ConvNets as
alternatives to matched filtering, showing potential for improved detection efficien-
cies.
Gravitational wave bursts are transient signals with unknown or partially modeled
waveforms. These bursts can be produced by various astrophysical phenomena such
as core-collapse supernovae (CCSNe). The coherent Wave Burst (cWB) algorithm
[60] is commonly used for burst searches, which measures excess power in the
time-frequency domain. ConvNets based approaches have been applied to improve
the classification of burst signals and reduce the impact of noise artifacts.
Continuous gravitational wave signals are emitted by rotating neutron stars. These
signals have not yet been observed but are challenging to detect due to their small
amplitude. AI offers a promising alternative to traditional grid search methods, as
they can be faster once trained.

9.6 Parameter Estimation
In the context of gravitational waves, parameter estimation refers to the process of
determining the physical properties of the astrophysical sources that produce these
signals. Parameter Estimation is fundamental in gravitational waves research as
it provides significant information about cosmic events that generated the signal,
thus leading to a further comprehension of the Universe.
When interfermoters detect a gravitational signal, it is crucial to extract information
about the parameters of its source, e.g. masses and spins of the compact objects
involved in a binary merger or the properties of a continuous wave emitted by a
rotating neutron star. Traditional methods for parameter estimation often rely on
computationally expensive Bayesian inference techniques, such as Markov Chain
Monte Carlo algorithms. However AI offers an alternative approach to parameter
estimation, relying on the capability of models to learn complex relationships
between signals and their astrophysical parameters, enabling more efficient and
accurate estimation processes. Possible approaches for parameter estimation may
be developed from generative models, such as Variational Autoencoders (VAEs)
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[61] or Generative Adversarial Networks (GANs) [62]. These models can learn
the underlying distribution of the gravitational signals and generate synthetic
waveforms with varying parameter values. By comparing the synthetic waveforms to
the observed data, machine learning algorithms can infer the most likely parameter
values that produced the detected signal.
Note that the current studies on parameter estimation in gravitational waves are
still in the proof-of-principle stage. However, they demonstrate the potential of AI
as a promising tool for future parameter estimation. As the sensitivity of detectors
continues to improve, the number of detections is expected to significantly rise.
One notable advantage of employing machine learning techniques is their ability
to rapidly measure the astrophysical parameters of gravitational waves sources
compared to traditional methods. This advantage becomes especially valuable
when dealing with a large volume of waves alerts, allowing to efficiently process
them.
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Chapter 10

Wavelet Scattering
Transform for Gravitational
Waves Data. A
Collaboration with INFN
and VIRGO

In this chapter, we delve into the aim and scope of our collaboration with the
respected Istituto Nazionale di Fisica Nucleare (INFN) and the VIRGO observa-
tory. Our collaborative efforts were part of a larger project, interTwin with a
primary objective to discriminate glitches from genuine gravitational wave signals
through real-time analysis of auxiliary channels data. Specifically, our focus was
on illustrating the promising applications that the wavelet scattering transform
offers, as an alternative to the state-of-the-art method, the Q-transform.
The first part of this chapter provides a detailed overview of the challenges we
encountered and the goals we set out to achieve through this collaboration. We
highlight the underlying reasons that make the wavelet scattering transform a
suitable ally in handling gravitational wave data. By exploring the unique charac-
teristics and capabilities of this transform, we aim to shed light on its potential in
the field of gravitational wave research.
The second part of this chapter delves into the current state-of-the-art methods
employed for representing the signals acquired by interferometers. Furthermore,
we provide a concise description of the Python library, GWpy [11], which played
a crucial role in manipulating and processing gravitational data throughout our
collaboration.
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Through this chapter, we aim to lay the foundation for our collaborative work and
set the stage for the subsequent discussions and findings that will unfold in the
following sections. In this work in collaboration with INFN and VIRGO we strive
to make a contributions to the field of glitch discrimination and real-time analysis
of gravitational wave data, exploiting the properties of wavelet scattering transform
and statistical learning algorithms.

10.1 Project Framework: interTwin
This paragraph focuses on the interTwin project led by the Istituto Nazionale di
Fisica Nucleare (INFN), which aims to develop a digital twin based on generative
architectures, specifically Generative Adversarial Networks (GANs). The primary
objective of this project is to create a digital representation that can generate ex-
pected spectrograms for astrophysical data collected by interferometers. To achieve
this, the project utilizes auxiliary channel data obtained from various instrumental
and environmental sensors, including photodetectors and seismometers.
The project involves comparing the generated spectrograms with real spectrograms
to identify differences and enhance the detection and discrimination of gravitational
wave events and glitches. This process not only aids in identifying astrophysical
signals but also helps to determine the non-astrophysical nature of triggers.
Glitches, which are short-lived noise disturbances, can originate from anthropogenic
sources, weather conditions, equipment malfunctions, or unknown sources. These
glitches mimic the true astrophysical transient signal and exhibit non-stationary
and non-Gaussian behavior, thus it is not trivial to characterize them. It is impor-
tant to note that glitches do not necessarily couple linearly into the interferometer,
making their identification and discrimination challenging.
One key aspect of the interTwin project is the utilization of auxiliary data streams
to uncover the transfer function of the system responsible for producing non-linear
noise in the detector output. Machine learning techniques are employed to analyze
the auxiliary data and identify the underlying transfer function. This machine
learning based approach enables a deeper understanding of the non-linear noise
sources, facilitating the development of improved detection and discrimination
algorithms.
In this framework this thesis focuses on investigating the impact of using the
wavelet scattering transform as a representation method to discriminate signals,
instead of the traditional Q-transform. As shown by the theoretical results pre-
sented in Part I, wavelet scattering transform offers promising advantages, such as
improved discrimination capabilities and the potential for lighter ML algorithms
and architectures that are faster to train. The comparative analysis of the two
representation methods and their effectiveness in discriminating signals will provide
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valuable insights for future advancements in glitch detection and characterization.

10.2 Methods and Materials

10.2.1 State-of-the-art Representation: Q-Transform
This section introduces the state-of-the-art representation technique for processing
gravitational wave data, the Q-transform [63].
The Q-transform, also known as the Constant Q-transform (CQT), is a time-
frequency analysis technique that provides a representation of a signal in the joint
time-frequency domain with a constant quality factor, denoted as Q. Let h(t) be a
continuous-time signal, and consider a family of window functions gQ(t), e.g. Hann
window functions, parameterized by the quality factor Q. The window functions
have a constant bandwidth, centered at logarithmically spaced frequencies ωk. The
Q-transform of the signal h(t) at a specific frequency ωk and factor Q is obtained
by the convolution:

Hk(t) =
Ú ∞

−∞
h(τ) gQ(t− τ) e−2πiωkτ dτ (10.1)

where Hk(t) represents the Q-transform coefficient at time t and frequency fk.
To obtain the full Q-transform of the signal, we compute the Q-transform coefficients
for a range of frequencies ωk in the chosen frequency grid. The resulting Q-
transform provides a time-frequency representation of the signal, where the time
axis corresponds to the original signal’s time domain, and the frequency axis
represents the logarithmically spaced frequencies. The Q-transform is particularly
useful for analyzing signals with varying frequency content, as it provides a higher
resolution at lower frequencies and a lower resolution at higher frequencies. This
logarithmic frequency scaling ensures that the Q-transform captures the details
of signals with complex harmonic structures and varying frequency components.
It enables the analysis of signals with complex frequency content and is widely
applied in various domains, including audio processing, music analysis, and signal
processing tasks.
From equation (10.1) it is possible to deline similarities and dissimilarities with the
STFT. On one hand the STFT divides a signal into short, overlapping segments
and applies the Fourier Transform to each segment. This results in a time-frequency
representation where the time axis is preserved, but the frequency resolution is
constant across all frequencies. The STFT provides good frequency localization at
the expense of time resolution.
On the other hand, the Q-transform uses a family of window functions with constant
bandwidths and logarithmically spaced frequencies, allowing for a higher frequency
resolution at lower frequencies and a lower resolution at higher frequencies. The
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Q-transform provides a time-frequency representation with a constant quality factor,
denoted as Q, which captures the details of signals with complex harmonic structures
and varying frequency components. Therefore the main difference between the
STFT and the Q-transform lies in their frequency resolution characteristics. The
STFT offers a constant frequency resolution but sacrifices time resolution, while
the Q-transform provides variable frequency resolution with a constant quality
factor, allowing for better representation of signals with varying frequency content.

10.2.2 GWpy: A Python Package for Gravitational Wave
Data

This section briefly introduces GWpy [11], the package that allows to handle
gravitational waves data on Python. GWpy offers a range of classes and utilities
designed for analyzing data from gravitational-wave detectors, catering to both
astrophysical and instrumental purposes. The core infrastructure of GWpy builds
upon and extends the functionality of the Astropy package, a highly regarded suite
of tools for astrophysical analysis primarily focused on FITS images. Furthermore,
the methodology employed in GWpy draws inspiration from and expands upon the
LIGO Algorithm Library Suite (LALSuite) [64], which comprises a comprehensive
collection of C99 routines for manipulating and analyzing data from gravitational-
wave detectors. By utilizing the SWIG program to generate Python interfaces for
all C modules, GWpy harnesses the full capabilities and efficiency of these libraries.
GWpy brings together various code snippets from different sources, amalgamating
them into a cohesive package that simplifies their utilization. By leveraging existing
resources and providing a user-friendly interface, GWpy empowers researchers to
perform comprehensive data analysis in the field of gravitational-wave research.
One of the key features of GWpy is its ability to handle timeseries data using the
TimeSeries class. This class provides a convenient and intuitive interface for
loading, manipulating, and analyzing timeseries data. Users can create instances of
TimeSeries objects by providing the data and relevant metadata, such as the start
time, sampling frequency, and units. GWpy supports a variety of data formats
commonly used in gravitational-wave research, including HDF5 (the one used in
this work), ASCII, and GWF (Gravitational Wave Frame) files. Once the timeseries
data is loaded into a TimeSeries object, GWpy offers a rich set of built-in methods
and functions for data manipulation and analysis. Users can easily perform common
operations such as time shifting, resampling, and filtering to preprocess the data
according to their specific requirements. GWpy also provides convenient tools for
computing statistical measures, such as mean, standard deviation, and median,
as well as more advanced operations like Fourier transforms and spectrograms.
Furthermore, GWpy integrates with other scientific Python packages, such as
NumPy, SciPy, and Matplotlib, allowing users to leverage their functionalities
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for advanced data analysis and visualization. This interoperability with popular
scientific libraries makes GWpy a versatile tool to work with gravitational-wave
timeseries data.
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Chapter 11

Wavelet Scattering
Transform. A Preliminar
Analysis

This first chapter describes the first part of the work we conducted and presented
to VIRGO as a preliminar analysis. We developed a qualitative comparative
analysis to portrait differences among Q-transform and wavelet scattering transform
representations.
The first part of the study aims to understand the standard pre-processing pipeline
that researchers of LIGO and VIRGO built to enhance significant features of the
time series.
We worked with four different signals captured by LIGO Hanford observatory,
more precisely two gravitational waves, GW150914 (Figure 11.1) and GW170817
(Figure 11.2), and two glitches belonging to two different classes, Injection Noise
glitch (Figure 11.3) and Koi Fish glitch (Figure 11.4). The analysis is presented
by the metric perspective, therefore we carefully develop the discussion with the
help of distance matrices and plots. Another central part of the discussion aims to
seek for the parameters J and Q of the wavelet scattering transform, since their
tuning depends on the frequencies that we want to highlight. Since this is one of
the first attempts of applying the wavelet scattering transform to gravitational
wave data, in this thesis we try to set the basis for a method that allows to make
considerations over the parameter tuning. The method should account for two main
points. Firstly visual differences and patterns in the wavelet scattering transform
should be present, and, furthermore, the choice of J and Q should be such that the
distance between glitches and gravitational waves is large, while keeping a small
distance between the gravitational waves.
In this chapter we also perform a comparative study for the choice of the metric,
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in particular the euclidean distance and the mean squared error (MSE), and we try
to see how considering deeper layers of the scattering transform provides different
amount of information.

Figure 11.1: Gravitational wave
GW150914

Figure 11.2: Gravitational wave
GW170817

Figure 11.3: Injection Noise glitch Figure 11.4: Koi Fish glitch

11.1 Data Preparation
This section aims to provide an overview of the initial steps involved in preparing
the time series data collected by the interferometers, which consists of two primary
phases: the cropping phase and the whitening phase. These steps are crucial for
the subsequent analysis of astrophysical signals.
The nature of the collected data is such that, due to the exceptionally high sensi-
tivity of the measurement instrument, most signals in the time domain appear to
be akin to random noise, with the exception of the injection noise which exhibits a
more discernible pattern. As a result, it becomes imperative to identify and employ
an appropriate transform operator to effectively analyze astrophysical signals.
The data is initially stored in the ’hdf5’ format and is subsequently converted into
TimeSeries objects using dedicated methods provided by GWpy. Each TimeSeries
object retains the information about the time at which the event occurs, along
with the associated sampling rate. In this framework, we adopt a cropping strategy
where the signals are segmented using a window of 32 seconds, centered around
the event time t0. This allows for a focused analysis of the specific time intervals
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relevant to the events of interest.

Figure 11.5: Whitened GW150914 Figure 11.6: Whitened GW170817

Figure 11.7: Whitened Injection
Noise glitch

Figure 11.8: Whitened Koi Fish
glitch

Figures 11.1, 11.2, 11.3, and 11.4 visually demonstrate the characteristics of the
signals, highlighting the prevalence of random noise-like behavior in the time domain.
These figures serve to underscore the significance of employing an appropriate
transform operator to enhance the analysis of astrophysical signals within this data.

11.1.1 Whitening the Signals
Most data recorded from a gravitational-wave interferometer carry information
across a wide band of frequencies, typically up to a few kiloHertz. However, it
is often observed that the low-frequency amplitude dominates the high-frequency
content, making it challenging to distinguish high-frequency features in the data.
To address this issue, we employ the whitening technique, already implemented
within the GWpy package.
The purpose of whitening is to normalize the power at all frequencies, ensuring
that excess power at any particular frequency becomes more evident. By applying
a whitening filter to the data, it becomes possible to equalize the power spectrum
effectively, reducing the dominance of low-frequency components and highlighting
the visibility of high-frequency features.
The whitening technique implemented in GWpy involves estimating the power
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spectral density of the noise and then dividing the data by the square root of the
power spectral density. This normalization effectively flattens the noise contribution
across different frequencies, making it easier to identify and analyze specific features,
such as the glitches in our example. By normalizing the power at all frequencies,
the whitening process enhances the visibility of subtle features and enables a more
comprehensive analysis of the data. This contributes to a deeper understanding
of the underlying astrophysical phenomena that generate gravitational waves and
facilitates the accurate characterization of these signals. Figures 11.5, 11.6, 11.7
and 11.8 represent, respectively, the result of whitening GW150914, GW170817,
Injection Noise glitch, and Koi Fish glitch. It is interesting to note that the
whitening technique provides appreciable differences between astrophysical signals
and glitches. Indeed it is immediate to see that the spikes in whitened gravitational
waves are not identifiable by qualitative observations, while as far as glitches are
concerned the spike is quite obvious to spot in the time domain.

11.2 Wavelet Scattering Transform Analysis

This section provides a detailed analysis of the preliminary research conducted,
focusing on the utilization of the wavelet scattering transform as a representation
technique. The section is structured into three main phases, each addressing
different aspects of the analysis.
In the first phase, the advantages of employing the wavelet scattering transform
on the whitened signals are thoroughly examined and compared to the use of
raw gravitational data. The second phase delves into a fundamental aspect of
working with the wavelet scattering transform, which is the challenge of tuning the
scattering scale parameter J and the octave parameter Q. We explore strategies
to effectively address this challenge. By refining the parameter selection process,
the performance and ability of finding hidden discriminative patterns in the data
of the wavelet scattering transform can be optimized. The subsequent phase fo-
cuses on the analysis of different metrics and their implications in evaluating the
transformed data. Through a series of insightful plots and considerations, the
effectiveness of various metrics in discerning important features and patterns is
examined. This analysis serves to enhance the understanding of the strengths and
limitations of the wavelet scattering transform and provides valuable insights for
further refinement and improvement. Finally, the section concludes by testing
the application o median normalization to the transforms. This technique aims
to improve the performance and consistency of the wavelet scattering transform
by mitigating potential biases and variations. The benefits of this normalization
approach are discussed, highlighting its potential impact on the overall analysis
process.

104



Wavelet Scattering Transform. A Preliminar Analysis

Figure 11.9: WST of raw non-
whitened GW150914

Figure 11.10: WST of raw
GW170817

Figure 11.11: WST of raw Injection
Noise Glitch

Figure 11.12: WST of raw Koi Fish
Glitch

Figures 11.9, 11.10, 11.11, and 11.12 provide visual representations of the wavelet
scattering transform computed up to the second order for both the gravitational
signals and the glitches. Notably, these figures demonstrate that the wavelet
scattering transform captures intricate details and structures in the data, even in
the absence of readily discernible patterns. This reinforces the necessity of working
with whitened signals, as it allows for a more reliable and comprehensive analysis,
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akin to the approach employed with the Q-transform method.

11.2.1 Wavelet Scattering Transform on Whitened Signals
This paragraph discusses the possible effectiveness of whitening the signals in the
wavelet scattering transform framework.

Figure 11.13: WST of raw non-
whitened GW150914

Figure 11.14: WST of raw
GW170817

Figure 11.15: WST of raw Injection
Noise Glitch

Figure 11.16: CWST of whitened
Koi Fish Glitch
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As previously mentioned the wavelet scattering transform computed over raw
signals does not seem to provide, from the simple and empirical point of view
of visualization, any kind of further information. If we compare the transform
of the whitened signals, displayed in Figures 11.13, 11.14, 11.15 and 11.16, with
the transforms of the raw signals, the difference becomes clear. Since whitening
technique cuts off the noisy frequencies the representation of the glitches is closer,
with an evident spike corresponding to the event itself. As far as the wavelet
scattering transform of the two waves is concerned we can observe that the two
representations in Figures 11.13 and 11.14 are closer as they are depicted in Figures
11.9 and 11.10. A further comment can be done by looking at the frequencies
recovered by applying the low-pass filter ϕJ , i.e. the zero-th order wavelet scattering
transform. If we simply observe the case in which whitening has been performed,
on average, the zero-th order wavelet scattering transform is more regular and less
noisy.
This brief analysis, coupled to the accomplished data preparation pipeline that Virgo
and LIGO implemented, gave us confirmation that also with wavelet scattering
transform whitening the signals becomes fundamental to extract discriminative
patterns from the time series. In order to support this thesis with quantitative
results, in the following paragraph we report the distance matrices either for the
non-whitened wavelet scattering transform, either for the whitened.

11.2.2 Hyper-parameters Tuning
Here we provide the details and the results of the distance based experiments
that have been performed in order to estimate the most suitable values of the
scale parameter J and the octave parameter Q for the scattering representation of
gravitational waves data.
A parallel analysis was performed to evaluate how much discriminative information
the second order added to the amount of the first order. To assess the suitability of
different parameter values, we considered two similarity metrics: the Mean Squared
Error (MSE) and the Euclidean distance (L2). These metrics are well-suited for
comparing the similarity between two matrices, as the rappresentations account
for displacements and translations. Let us recall that for two matrices X and Y , of
size n×m, the MSE is a measure of similarity, and is defined as:

MSE(X − Y ) = 1
n×m

Ø
i,j

(Xij − Yij)2 , (11.1)

while the Euclidean distance is simply defined as

d2(X, Y ) =
óØ

i,j

(Xij − Yij)2 . (11.2)
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Figure 11.17: Distances Variations with respect to Q and J on first order wst

In our analysis, we also employed the embedded metric defined in the proof of
Proposition 2.3.1 specifically for the wavelet scattering transform.
Figure 11.17 reports for different values of the octave Q ∈ {1,2} and for different
values of J ∈ {4,5, . . . ,15}, the pair-wise distances between the four signals. Figure
11.17 depicts the variations of distances with respect to different values of the
octave parameter Q ∈ {1,2} and the scale parameter J ∈ 4,5, . . . ,15 for the first-
order wavelet scattering transform. The figure illustrates the pair-wise distances
between the four signals. It is important to note that Figure 11.17 focuses on the
distances computed using MSE and L2 metrics for the first-order wavelet scattering
transform, while it considers orders 0, 1, and 2 for the wavelet scattering distance.
The objective is to identify values of J and Q that yield a desirable separation of
data in the wavelet scattering domain, aligning with the goals of the interTwin
project. Specifically, suitable hyperparameter values should exhibit small distances
between the gravitational signals GW150914 and GW170817, while exhibiting larger
distances between the two glitches. The best combination of values for gravitational
wave found with this grid search is provided by Q = 1 and J = 5. This choice
was adopted for the rest of the analysis. For this small size experiment the metric
that resulted preferable was the MSE, since it provides fair comparisons with the
Q-transform representation, that, due to the non-invariance properties of Fourier
transform, is not translation invariant and stable to the action of diffeomorphisms.
After tuning of the hyper-parameters J and Q, the study of the distances proceeds
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with reporting the distance matrices. Moreover the analysis focuses on comparing
three main aspects: MSE and L2 metrics, whitening technique against raw signals
and, finally, the number of discriminative information provided by order 2. We
expect from the theoretical results that second order transform enhances finer
grained information, while first order highlights more evident features.

Figure 11.18: Distance matrix for
first order WST with MSE

Figure 11.19: Distance matrix for
first order WST with L2

Figure 11.20: Distance matrix for
whitened first order WST with MSE

Figure 11.21: Distance matrix for
whitened first order WST with L2

If we compare Figures 11.18 and 11.19 reporting the distance matrices for
the non-whitened first order wavelet scattering transform, we can see that, apart
from the order of magnitude, Injection Noise glitch has the representation which
is more distant to each one of the other signals. However Figures 11.20 and
11.21 clearly portrait from a strictly quantitative point of view the effectiveness
of whitening the interferometer signals before applying the wavelet scattering
transform. For both metrics it results that the GW150914 and GW170817 have
the closest representations, while glitches are far from each other and from the
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two gravitational waves. Moreover the heatmap of the distance matrices show that
whitening the signals allow to obtain nice distances which appear in the same order
of magnitude. Analyzing second order wavelet scattering transform leads to the
following distance matrices.

Figure 11.22: Distance matrix for
second order WST with MSE

Figure 11.23: Distance matrix for
second order WST with L2

Figure 11.24: Distance matrix for
whitened second order WST with
MSE

Figure 11.25: Distance matrix for
second order whitened WST with L2

Figures 11.22 and 11.23 show similarities with the Figures 11.18 and 11.19 in
terms of order of magnitude. Injection Noise glitch is further from the other signals
and Koi Fish glitch is closer to the waves, than the waves themselves. As in the
previous case transforming the whitened signals outperforms transforming the raw
signals. Figures 11.24 and 11.24 display the distance for MSE and L2 metric in the
case whitening has been applied before transforming the signals. It is interesting
that also considering only the second order transform keeps the same clusters. In
the following paragraph we try to establish a definitive pipeline to compute the
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wavelet scattering transform over gravitational waves data. We prove from an
empirical point of view that whitening the signal is fundamental, in the next pages
we address the problem of normalizing the wavelet scattering transforms. Does
median normalization lead to a better separation of the data?

11.2.3 Median Normalization on the Wavelet Scattering
Transforms

In order to provide a full comparison with the methodologies that are applied to
the Q-transform in the analysis of gravitational waves data, we address the study
of the so-called median normalization.
Let us consider a data point X of size n×m. In order to estimate the median X
is necessary to rank the values in increasing order, then the median is obtained by

m = median(X) =


X(mn+1)/2 if mn is odd

X(mn)/2 +X(mn+1)/2

2 if mn is even .
(11.3)

If we call σ̂ the sample estimate of the standard deviation of X, the median
normalized version of X is defined as

X̄ = X −m
σ̂

, (11.4)

where m is the median of X.
To evaluate the median normalized wavelet scattering transforms we take into
account the MSE and L2 distance metrics.

Figure 11.26: Distance Matrix for order 1 median normalized WST
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Figure 11.26 shows the distance matrices computed on the first order wavelet
scattering transformed after the median normalization have been applied. A
first sight it immediatly appears that the order of magnitude of the pairwise
distances is the same, which is a good result, as it means that the distances are
comparable. Moreover, for both matrices, we obtain that the distance between
the two gravitational waves is the smallest, as well as the distance between the
two glitches is the largest. Moreover, as done in the previous section we aim to
understand the behaviour of the second order scattering transform. Comparing
Figure 11.27 and Figure 11.26 it is possible to observe that the desired order
relationship is mantained, i.e. the two glitches are more distant and the two
gravitational wave signals are closer.

Figure 11.27: Distance Matrix for order 2 median normalized WST

Figure 11.28: Distance Matrix for median normalized WST up to order 2
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However, as perfectly highlighted by the colours of the heat map, compared to
the first order, the distances between the second order wavelet scattering transform
of the gravitational waves grows larger.
Results portrayed in Figure 11.28 consider the sum of the distancers of the first two
layers of the wavelet scattering transform, after being normalized to the median.
Since the order relationships are kept, this is a promising results. Even if this
analysis have been conducted with very few signals, it suggests that, as for the
auditory data, the wavelet scattering transform seem to separate well the data. This
analysis led us to consider that the best pre-processing pipeline for applying the
wavelet scattering transform to Virgo and LIGO data is to follow two fundamental
step. The first consist in whitening the time series, while the second consist
in independently normalize to the median each layer of the wavelet scattering
transform. This approach allows to exctract more patterns and discriminative
information from the signals with the wavelet scattering operator.

11.3 Comparison with the Q-transform Results
In this section we perform the same analysis that was previously performed with the
wavelet scattering transform, but this time with the state-of-the-art representation
technique, the Q-transform. In the first part of the section we show the spectrograms
obtained with the Q-transform of the four signals, and in the second part we evaluate
the distance matrix obtained with MSE and Euclidean distance in the Q-transform
space.

11.3.1 Q-transform of the signals
As previously mentioned, the Q-transform is a widely used tool for analyzing
gravitational wave data in the field of gravitational wave astronomy. In this
analysis we rely on the implementation of the Q-transform offered by the GWpy
package.
The q-transform in GWpy produces a spectrogram-like representation of the signal,
where the intensity of each point in the time-frequency plane corresponds to the
magnitude of the signal at that specific time and frequency. This representation
allows us to visualize the frequency content of the signal over time and identify
any transient or persistent features, such as gravitational wave signals or noise
artifacts. The following images show the Q-transform of the four signals. Figure
11.29 portraits the Q-transform representations of the well-known gravitational
wave events GW150914 and GW170817, spanning a time window of 32 seconds. In
contrast, Figure 11.30 presents the Q-transform representations of the two glitches
observed within the same time window.
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Figure 11.29: Gravitational Waves
Q-transforms over full time range

Figure 11.30: Glitches
Q-transforms over full time range

Figure 11.31: Gravitational waves
Q-transforms around detection time

Figure 11.32: Glitches
Q-transforms around detection time

Upon closer examination of these images, particularly when zoomed around
the detection time (Figures 11.31 and 11.32), distinct patterns emerge. However,
it becomes evident that the Q-transform operator lacks invariance and stability.
Moreover, when compared to the wavelet scattering transforms of the gravitational
waves, the spectrograms of GW150914 and GW170817 exhibit noticeable differences.

11.3.2 Considerations on Distances Using Q-transform

Building upon the methodology described in the previous section with the wavelet
scattering transform, we now present the results obtained using the Q-transform
method. It is important to note that the GWpy library performs the Q-transform
on whitened signals and applies a median normalization. Figure 11.33 displays the
distance matrix for the Q-transform representations.
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Figure 11.33: Distance Matrix for Q-transforms

It is important to compare these results with the distance matrix shown in Figure
11.28 obtained using the wavelet scattering transform. One immediately notices
that the color ranges in the two matrices are very different. While the distances
obtained using the wavelet scattering transform are comparable, the Q-transform
distances exhibit much larger magnitudes. For instance, in the case of the L2

metric, the distance between GW150914 and GW170817 reaches the order of 103.
This significant increase in distances highlights the need for larger architectures,
such as those based on convolutional networks, when working with the Q-transform.
This observation provides a straightforward explanation as to why Q-transform-
based analysis often requires complex and deep neural network architectures. In
contrast, the wavelet scattering operator’s properties allow for the use of lighter
architectures. Exploiting the structure and the features extracted by the wavelet
scattering transform, we can potentially achieve good results with simpler and more
efficient neural network architectures. This opens up opportunities for efficient and
effective analysis of gravitational wave data using the wavelet scattering transform.
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Chapter 12

Wavelet Scattering
Transform for Glitch
Detection. An Analysis on
Scattered-light Dataset

This chapter analyzes the results obtained conducting our study that we developed
on the single class dataset of scattered-light glitches. According to VIRGO expertise
the scattered-light glitches are the one on which the Q-transform fails the most in
extracting discriminative features. Therefore this analysis tries to use the wavelet
scattering transform to overcome the difficulties encountered by the Q-transform
representation.
In order to conduct the study we find a mean representative element with either
representation methods and try to quantify the dispersion, in terms of coefficient
of variation. The coefficient of variation (CV) measures the relative variability or
dispersion of a set of measurements in relation to its mean. We present to different
methods to compute the representative element. The first follows the PCA based
technique showcased in Chapter 7, while the second considers a component-wise
average, leveraging an additive terms that accounts for the pixel-wise standard
deviation.
In this chapter we follow the results obtained in Chapter 11, meaning that we
assume as a standard technique to compute the wavelet scattering transform over
the whitened signal, and then we normalize to the median each layer.
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12.1 Scattered-light Dataset Overview
Scattered-light glitches occur within the frequency range of 10-120Hz, which coin-
cides with the frequency band where we observe the inspiral and merger signatures
of compact binary coalescences [65]. Scattered-light glitches are a result of laser
light within the interferometer being scattered from its intended optical path by
components within the detector. The movement of these components is influenced
by seismic motion, causing a phase shift in the scattered light as the surfaces
oscillate. This scattered light then combines with the primary laser, resulting in
scattered-light glitches within the data. These glitches typically originate from
objects placed on optical benches, such as lenses, mirrors, and photo-detectors.
To further investigate these scattered-light glitches, Virgo provided us a dataset
comprising 855 samples. In order to compare and analyze the data in this section,
we will consider the Q-transform and wavelet scattering transform from a visual
standpoint.

Figure 12.1: Comparing two signals: Q-transform (left), first order WST(center)
and second order WST (left)

Figure 12.1 provides a visual comparison between the two transforms, show-
casing two selected glitch samples from the dataset. From a cursory examination,
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it is apparent that the wavelet scattering transforms exhibit a greater degree of
similarity compared to the Q-transforms.
Expanding our analysis to a larger set of samples, the Q-transform representations
appear more dispersed and lacking any discernible pattern in the time-frequency
domain. Energy spikes are scattered sporadically throughout the representation,
displaying a quasi-random distribution.
On the other hand, the wavelet scattering transforms reveal a consistent pattern
across both first and second orders. The first order exhibits higher energy concen-
trations at lower frequencies, while the second order displays similarities across
three distinct regions of the spectrogram. This consistency indicates the potential
presence of underlying structures or features within the scattered-light glitches.
It seems that the wavelet scattering transform shows promise in capturing and
highlighting the common patterns inherent in scattered-light glitches, suggesting
its potential utility in further analysis and characterization of these phenomena.

12.2 Principal Component Analysis and Scattered-
Light Glitches

In this section, we employ Principal Component Analysis (PCA) to extract mean-
ingful features from the various representation techniques used. These features are
then combined to create a representative average spectrogram for the scattered-light
glitches. The methodology follows the approach outlined in Chapters 6 and 7 of
the thesis.
First, we present an analysis and report the results obtained using the state-of-the-
art method. This allows us to establish a baseline for comparison. Subsequently,
we delve into the experiments conducted using the wavelet scattering transform,
showcasing the advancements and insights gained through its application.

12.2.1 Results for the Q-transform

As mentioned earlier, scattered-light glitches are notorious among INFN researchers
for their challenging characteristics that are not easily captured by the Q-transform
representation. In this section, we aim to quantify the dispersion within the Q-
transform using a representative element computed through Principal Component
Analysis.
Since the standard processing of the Q-transform involves median normalization,
we applied median normalization to the representative element obtained from PCA.
To begin, we performed PCA with the objective of achieving more than 95%
explained variance.
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Figure 12.2: Cumulative explained variance in the Q-transform

Figure 12.2 illustrates the cumulative explained variance in the Q-transform,
demonstrating that only a few principal components are necessary to explain the
majority of the variance. This result indicates that PCA struggles to identify clear
patterns across the Q-transforms. Therefore, we choose to utilize three principal
components to compute the representative element. Each component is summed
and then normalized to the median for the purpose of comparison.

Figure 12.3: Median normalized PCA representant with Q-transform

The resulting representation is shown in Figure 12.3. It is evident that the
representation lacks informative features. In terms of assessing average dispersion,
we employ mean squared error (MSE) and Euclidean distance as metrics. In order
to quantify the dispersion within the Q-transform, we introduce the coefficient of
variation (CV). The CV is an adimensional index that allows for the quantification
of dispersion within a dataset. It is defined as CV = σ̂/µ̂, where σ̂ is the sample
standard deviation and µ̂ is the sample mean. A lower value of the coefficient of
variation indicates smaller dispersion.
For the Q-transform, the calculated CV values are 26.22 for MSE and 20.23 for the
Euclidean metric, indicating relatively high dispersion within the dataset.
These results emphasize the need for alternative approaches to accurately capture
and analyze scattered-light glitches. In the following experiments, we turn our
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attention to the wavelet scattering transform, exploring its potential to overcome
the challenges posed by scattered-light glitches.

12.2.2 Results for the Wavelet Scattering Transform
In this paragraph, we shift our focus to compare the dispersion of scattered-light
glitches in the wavelet scattering domain. The objective is to assess whether the
wavelet scattering offers improved performance and provides more informative
representations compared to the previous Q-transform analysis.
We consider three metrics for evaluating the dispersion: mean squared error (MSE),
Euclidean distance, and the wavelet scattering metric. The analysis is conducted
up to the second layer of the wavelet scattering transform.
The approach used to compute the representative element in the wavelet scattering
space is the same as that employed for the Q-transform. We determine a suitable
number of principal components that reach a threshold of explained variance, and
then sum these principal components before applying median normalization.

(a) Cumulative explained variance
over zero-th order WST

(b) Cumulative explained variance
first over order WST

(c) Cumulative explained variance
over second order WST

Figure 12.4: Cumulative explained variance in the WST space

Figure 12.4 displays the cumulative explained variance in the WST space. It is
notable that a larger number of principal components is required to achieve 95%
explained variance in the wavelet scattering domain compared to the Q-transform.
This suggests that more diverse principal components are needed to describe and
reproduce the discriminative patterns observed in the spectrograms.
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(a) PCA representant for order 0 WST

(b) PCA representant for order 1 WST

(c) PCA representant for order 2 WST

Figure 12.5: PCA representant for WST

The resulting PCA representatives for each order of the WST are presented in
Figure 12.5. Remarkably, the similarities between the representative elements and
the samples depicted in Figure 12.1 are evident. This indicates that the wavelet
scattering transform successfully captures and preserves the distinctive patterns
present in the scattered-light glitches.
To quantify the dispersion and compare the performance of the metrics, we leveraged
average distances along with their standard errors, accounting for the coefficient
of variation. The MSE yields a CV of 0.72, the Euclidean distance 0.26, and the
wavelet scattering metric results in 0.20. These results clearly demonstrate that in
the wavelet scattering space, the representations exhibit less dispersion, with the
wavelet scattering metric performing the best in terms of CV. This suggests that
the wavelet scattering transform captures the underlying structure of scattered-light
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glitches more effectively.

12.3 Average Representative Spectrogram
In this section, we present the results of an additional experiment conducted to
compare the dispersion of scattered-light glitches in the wavelet scattering space
and in the Q-transform domain. Instead of using PCA-derived representatives, we
focus on the dispersion from the average spectrogram.
To compute the average spectrogram, we employ a pixel-wise sample mean, com-
bined with half of the pixel-wise standard deviation: this approach takes into
account the variability present in the data. Then the spectrogram is normalized to
the median.
Empirical evidence demonstrates that in the wavelet scattering domain, the data
exhibits less dispersion. This finding further reinforces the notion that the wavelet
scattering transform captures the essential characteristics and patterns of scattered-
light glitches, allowing more informative representations.

12.3.1 Q-transform
In this paragraph, we present the results obtained using the state-of-the-art tech-
nique of the Q-transform. The average Q-transform spectrogram for the scattered-
light glitch is shown in Figure 12.6. It can be observed that the average representa-
tive computed using the Q-transform exhibits a very similar pattern to the one
obtained via PCA (Figure 12.3). Consequently, we anticipate similar results in
terms of average distance and standard error. MSE metric had a CV of 26.221,
indicating a large dispersion in the distances from the representative element.
Similarly, the Euclidean metric scored 20.222 in terms of CV, implying considerable
variability. These values are comparable to the results obtained through PCA,
highlighting the challenging nature of capturing distinct patterns and reducing
dispersion using the Q-transform representation alone.

Figure 12.6: Median normalized average representant with Q-transform
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12.3.2 Wavelet Scattering Transform

In this paragraph, we present the experiments and results obtained with the
wavelet scattering transform. The average representants for each order of the
wavelet scattering transform are shown in Figure 12.7, and they exhibit similar
patterns to the PCA representative obtained in the previous methodology. We
evaluate the dispersion of the scattered-light glitches using three metrics: MSE,
Euclidean distance, and the wavelet scattering-induced metric. In terms of CV,
MSE metric yielded a result of 1.650, the Euclidean distance resulted in 0.474,
and the wavelet scattering metric showed a value of 0.278. Notably, the wavelet
scattering-induced metric displayed less variability, indicating a more consistent
representation of the data.

(a) Average representant for zero-th order WST

(b) Average representant for first order WST

(c) Average representant for second order WST

Figure 12.7: Average representant for WST
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12.4 Summarizing the Results
Based on the experiments conducted on the Scattered-light Dataset, we have sum-
marized the results in Table 12.1, which provides the Coefficient of Variation for
each representation and technique in terms of different metrics.

REPRESENTATION TECHNIQUE Metric CV
Q_transform PCA MSE 26.221
Wavelet Scattering Transform PCA MSE 0.725
Q_transform PCA L2 20.222
Wavelet Scattering Transform PCA L2 0.264
Wavelet Scattering Transform PCA WST 0.204
Q_transform mean MSE 26.221
Wavelet Scattering Transform mean MSE 1.650
Q_transform mean L2 20.222
Wavelet Scattering Transform mean L2 0.474
Wavelet Scattering Transform mean WST 0.278

Table 12.1: Summary of the results obtained with Scattered-light Dataset in terms
of Coefficient of Variation

The results show a clear advantage of the Wavelet Scattering Transform over
the Q-transform in terms of capturing and representing the scattered-light glitches.
When comparing the PCA-based representations, the wavelet scattering transform
exhibits significantly lower CV values across all metrics. For example, in terms of
the MSE metric, the CV for the Q-transform PCA representation is 26.221, while
for the wavelet scattering transform PCA representation, it is only 0.725. Similarly,
in terms of the Euclidean metric, the CV for the Q-transform PCA representation
is 20.222, while for the wavelet scattering transform PCA representation, it is only
0.264. Furthermore, when considering the average representations obtained using
the mean technique, the superiority of the WST over the Q-transform is further
emphasized. The CV values for the wavelet scattering transform average represen-
tation are consistently lower than those for the Q-transform average representation,
regardless of the metric used. For example, in terms of the MSE metric, the CV
for the Q-transform mean representation is 26.221, while for the wavelet scattering
transform mean representation, it is 1.650. These results highlight the improved
performance and more informative representations provided by the Wavelet Scat-
tering Transform compared to the Q-transform. The lower CV values indicate
a more concentrated and less dispersed distribution of the data in the wavelet
scattering transform representations, leading to a more reliable and consistent

124



Wavelet Scattering Transform for Glitch Detection. An Analysis on Scattered-light Dataset

characterization of the scattered-light glitches.
The wavelet scattering transform outperforms the Q-transform in terms of mini-
mizing the dispersion and variability of the representation of the scattered-light
glitches. This suggests that the wavelet scattering transform is more effective in
extracting and preserving the discriminative patterns present in this class. The
wavlet scattering representations exhibit lower variability and dispersion, as in-
dicated by the significantly lower Coefficient of Variation (CV) values across all
metrics compared to the Q-transform representations.
These results show in a preliminar setting the advantages of the wavelet scat-
tering transform to provide more informative and less dispersed representations
of scattered-light glitches compared to the state-of-the-art technique of the Q-
transform.
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The wavelet scattering transform provides a beneficial trade-off between the complex-
ity of classification architectures and the computational cost of the representation,
due to translation invariance and stability properties. Since the transformation is
not learnt, unlike for convolutional neural networks, the wavelet scattering trans-
form does not require a large amount of data to achieve a stable representation,
relying on cheaper computations. These characteristics well fit for the analysis and
discrimination of one dimensional non-stationary processes, such as human voice
recordings and gravitational waves.
The results obtained on the Free Spoken Digits dataset are proof of the potential
of the wavelet scattering transform in the enhancement of classification algorithms.
The wavelet scattering transform unveiled the underlying hidden patterns cor-
relating spoken digits classes and allowed to map the data into a feature space
where the points appeared properly clustered. This property was confirmed by the
98% accuracy achieved by K-Nearest Neighbors in the wavelet scattering space,
compared to the 79% accuracy in the Fourier domain.
In this thesis we introduced a novel methodology to apply the wavelet scattering
transform to gravitational waves data. The metric evaluation performed led to
argue that signals captured by interferometers should be whitened firstly, and then
the obtained wavelet scattering transform should be normalized to the median. This
data processing procedure provided a better separation of glitches and gravitational
waves in the wavelet scattering domain. Furthermore we developed a dispersion
analysis to compare the proposed approach with the state-of-the-art method based
on the Q-transform. The results obtained with the wavelet scattering transform
outperformed the state-of-the-art by achieving lower coefficient of variations with
different metrics (euclidean, MSE and wavelet scattering metric). In particular the
lowest coefficient of variation obtained for the wavelet scattering transform was
0.204, with respect to 20.222. of the Q-transform.
This thesis shows that promising results in gravitational waves research can be
achieved by applying the wavelet scattering transform to the data collected by
interferometers, properly clustering the glitches classes.
This study represents one of the first steps towards the design of wavelet scattering
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networks for glitch classification. To further establish the advantages of applying
the wavelet scattering transform to gravitational waves a larger multi-class dataset
is needed. This would allow to develop experiments for comparing the performances
of architectures based on the wavelet scattering transform with the ones based on
the Q-transform, as presented with auditory data.
Moreover dealing with larger amount of labelled data from different classes could
help to assess more accurately this methodology, providing further understandings
and considerations about the advantages of using the wavelet scattering transform
for gravitational waves, that in this thesis are limited to data provided by INFN.
In this perspective it might be possible to conduct detailed analysis to carefully
determine computational and energy consumption of architectures based on the
wavelet scattering transform.
Further developments in the interTwin project framework should address the co-
operative research where the wavelet scattering transform is used to represent
environmental noises collected by auxiliary channels, and to build an automated
machine that distinguishes gravitational signals from glitches. In this scenario the
wavelet scattering transform is the founding element to design a lighter generative
architecture, improving performances and computational costs to train the model,
with a significant saving of energy.
Moreover studying the properties of the wavelet scattering operator from a theo-
retical point of view, and developing significant applications in speech recognition
and gravitational wave analysis, extended the horizon of potential applications
of this innovative technology in other research and industrial fields, such as do-
main adaptation and texture discrimination in computer vision, bio-electric signals
characterization in health-care, time-series analysis in finance.
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