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Summary

The study and prediction of crack behavior in materials have always been central to
classical theories of solids. Since Griffith’s 1921 seminal paper, all subsequent literature
on brittle fracture has built on his work.
In this thesis, we focus on the extended variational setting of Francfort and Marigo,
which aims at studying quasi-static brittle fracture by incorporating an interplay between
elastic and fracture energies and a minimization over admissible crack evolutions. The
assumptions and limitations of the model are clearly stated, as are the similarities and
differences with Griffith’s model.
Some existence results are needed for an appropriate formalization in the context of the
calculus of variations. By focusing on two dimensional anti-plane cracks, we can avoid
setting the problem in spaces of (special) functions of bounded variation or deformation,
but this comes at the price of requiring some results on the fine properties of Sobolev
functions and sets in metric space, as well as approximation results for the crack set. The
existence of the quasi-static evolution is then obtained by discretizing the crack evolution
and letting the time step tends to 0. We prove that Griffith’s criteria can be obtained
from this setting, as well as certain results on the regularity of the energy release rate and
the stress intensity factor.
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Introduction

Classical fracture mechanics was born almost entirely due to A. A. Griffith [2, 3] and,
ever since, subsequent contributions to the engineering viewpoint have built on his works.
Notable results were obtained by G. R. Irwin [7, 8], and J. R. Rice and G. P. Cherepanov
[9, 11, 12, 13], expanding on Griffith’s framework. The main ideas behind this framework
were that the macroscopic cracks were the effect of microscopic defects in the atomic lat-
tice, the actors involved could be represented by energy densities at each point, and the
crack propagation was the result of an energy interplay between the growth of surface
energy and the decrease of bulk energy. This last point in particular was quite the novelty
in the literature at that time, and it proved useful for the next century or so.
Up until the end of the 20th century, mathematicians did not involve with matters of
fracture, also due the to lack of appropriate tools, but with the advent of supercomputers,
the engineering community felt the need for a formalization of Griffith’s to do numeri-
cal simulations with it. Mathematical tools like measure theory and appropriate spaces
of functions became widespread and well-researched, and eventually, the first variational
model for fracture appeared in 1998 due to G. A. Francfort and J. J. Marigo [22], which
dealt with a quasi-static crack evolution in a brittle material, similar to Griffith’s setting.
After just two years Francfort and Marigo, together with B. Bourdin [25], started to pave
the way for the so-called phase-field models, essential in the numerical formulation.
This model, although seemingly powerful, lacked an existence result for its solutions for a
few years. This turned out to be a challenging task, and the first result in that direction
came from G. Dal Maso and R. Toader in 2002 [28], which analyzed a case of two dimen-
sional anti-plane elasticity. Just one year later A. Chambolle [29] published an existence
result for generalized two dimensional elasticity, and Francfort and C. J. Larsen [30] pub-
lished an existence result for generalized anti-plane elasticity, both of which adopted the
delicate framework of functions of bounded variations [24]. Up until now, a general exis-
tence result for three dimensional elasticity still seems formidable to obtain, and this has
caused many mathematicians to start to look for alternative ways, like frameworks taken
from continuum mechanics [32], from the engineering world [34], and more importantly,
to look for local minima for the energies through artificial viscosity or gradient flows
approaches [35, 36]. In addition to this, until recently there were no results regarding
dynamic fracture, where kinetic effects are non-negligible and there might be transitions
from linear to non-linear elastic behavior.
These difficulties arising from the mathematical formulation brought what felt like a sep-
aration between the mathematical and engineering worlds of fracture, which originally
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Introduction

worked together, but are now perceived as quite diverse. It must not come as a surprise,
since the needed mathematical tools are quite difficult to work with and can intimidate
many due to their apparent distance from the real world, while the engineering commu-
nity is known to be concerned with more practical matters. In this work, our goal was
in part to address this issue and show comparisons with the existing mathematical and
engineering literature and results. In particular, we analyzed the Francfort-Marigo model
for quasi-static brittle fracture and properly deduced the existing result of Dal Maso and
Toader for two dimensional anti-plane elasticity and the behavior of solutions at the crack
tip, all while making connections with classical fracture mechanics.
In Chapter 1 we briefly describe the classical theory of elastic fracture mechanics, starting
from the reasoning behind the original energetic Griffith’s criterion, derived from Inglis’
computations of stress field around an elliptical hole in an infinite plate [1]. This global
energetic argument is then localized following the works of Irwin, which described the
strength of the singularity around a crack tip through a parameter called Stress Intensity
Factor and described the different ways in which a crack can propagate. For a more
modern approach, we described the general framework of the Rice-Cherepanov J-integral,
which also incorporates non-linear elastic behaviors, and thus obtained the modern dissi-
pative formulation of Griffith’s criterion.
In Chapter 2 we described the Francfort-Marigo model for quasi-static brittle fracture,
aiming at making clear its strengths against Griffith’s criterion, as well as its weaknesses,
and describing some more realistic models. Following an already-established idea in the
calculus of variations, the crack evolution has to be in such a way that at every time the
crack is a stationary point for the total energy and it satisfies an energy balance condition.
We show how this model can accurately capture the phenomena of crack initiation and
failure, as well as predict the crack path.
In Chapter 3 we introduce the necessary mathematical tools required for an appropriate
formalization of the two dimensional anti-plane case. The concept of the capacity of a set
is introduced to formalize the idea of sets being invisible to certain Sobolev spaces, like
the Deny-Lions spaces used in the setting of the model. We recalled the notion of the
Hausdorff dimension, which is a real-valued dimension for sets, as well as the Hausdorff
distance between compact sets, essential to the description of the crack evolution. More-
over, we also linked the concept of harmonic conjugate for the solution to a harmonic
problem with mixed boundary problems, which is useful in converting the boundary value
problems into something more manageable.
In Chapter 4 we describe the two dimensional anti-plane case of Dal Maso and Toader,
showing how the model is simplified under certain assumptions. We first prove the con-
vergence of minimizers to the minimum problem under appropriate convergence of the
crack set and the boundary loadings. Then we study the behavior in time of a general
compact-valued non-decreasing function representing the crack evolution, and from this,
we deduce the existence result following a time-discretization and a study of convergence
of solutions to the discretized problem when the time-step goes to zero.
In Chapter 5 we study the behavior of solutions near the crack tip, to show how the
dissipative formulation of Griffith’s criterion and the existence of a Stress Intensity Fac-
tor measuring the strength of the singularity are both obtained through this variational
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Introduction

model. This requires a study of solutions to harmonic boundary-value problems in polyg-
onal domains, which shows that certain angles can create singularities in the solution,
whereby a singularity means a function that is in H1 but not in H2. This was done by
treating the Laplacian as an operator from the space of strong solutions to L2 and apply-
ing Fredholm’s alternative theorem. Moreover, to show Griffith’s criteria we straightened
the crack with a diffeomorphism and localized the problem around the crack tip: after a
few tedious computations, we deduce Irwin’s formula, essential to the final result.
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Chapter 1

Classical theory of elastic
fracture mechanics

1.1 First studies and Griffith’s approach
At the end of the nineteenth century, solid mechanics, intended as the study of defor-
mations and motion of bodies subjected to external agents, was an already established
tool to be applied in many real-life scenarios, for both construction and risk assessment
of structures. However, the work done up to this point almost never included the study
of bodies with simply connected but not connected geometries, that is bodies with holes,
and in particular, in the studies of bodies with cracks, the resistance was studied with
the classical criteria for brittle failure (Mohr-Coulomb, Tresca, Rankine, etc). This was
because of two reasons: the appropriate mathematical tools were not yet fully developed;
and the study of structures with holes or cracks, which were known to cause catastrophic
effects, was mainly carried out with experiments.

Figure 1.1: Inglis’ setting

These experiments though showed how a thor-
oughly polished material could withstand way more
externally imposed stresses than a real material, with
defects and micro-cracks, a result which was not
availed by the state of the art of theoretical solid
mechanics. This could mean that either classical re-
sistance criteria were wrong and needed to account
also for defects, or theoretical methods for computing
stresses and strains in a real material were wrong by
at least an order of magnitude.

Following the second option, in 1913 Inglis pub-
lished a theoretical study [[1]] of stresses around an
elliptical hole in an infinite plate, undergoing an ex-
ternally imposed uniform vertical traction σ0 (see Fig.
1.1). The ellipse has major and minor axis respectively
equal to 2a and 2b, with the minor axis parallel to the
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Classical theory of elastic fracture mechanics

traction, while for simplicity the setting is that of a linear elastic, homogeneous, and
isotropic material. To solve this problem, Inglis used a system of curvilinear coordinates
around the ellipse and complex potentials reminiscent of conformal mappings to deduce a
formula for the tangential stress at the rightmost part and the upmost part of the ellipse:

σ1,2
!
x1 = a, x2 = 0

"
= σ0

3
1 + 2

a

b

4
, σ2,1

!
x1 = 0, x2 = b

"
= −σ0.

As Inglis observed from the results, in the upper part there is always a tangential com-
pression equal to the imposed stress σ0, independently from the dimensions of the ellipse.
On the other hand, in the rightmost part there is always tangential traction greater or
equal to the imposed stress, and its value is dependent on the ratio a

b : when a
b = 1 there

will be a circular hole, and the traction will be equal to 3σ0, that is with a Stress Con-
centration Factor (SCF) of 3. Since a and b can be independently varied, one can also
consider extreme cases, in particular letting one of the dimensions approach 0: with a → 0
the ellipse will approach a vertical crack of length 2b, parallel to the imposed stress, with
rightmost traction of σ0, so SCF equal to 1.
When b → 0 things get very interesting because a

b → ∞, with a horizontal crack of length
2a, perpendicular to the imposed stress. In this case, the traction at the rightmost part
approaches ∞, which is something that will cause all existing resistance criteria to fail.
It is also important to note that this result does not really depend on the value of the
imposed stress, meaning that an arbitrarily small stress can still generate infinite stresses
at the crack tips, and it did not take long to understand that another criterion was needed
for bodies with cracks. In the same article, Inglis also did the calculations using the cur-
vature of the hole, getting the analogous result that the smaller the curvature, the bigger
the stress, and the stress approaches ∞ when the curvature is zero.
To be completely fair, Inglis did not dare to consider degenerate ellipses, as that was not
his goal. It was not until 8 years later that Griffith, in his pioneering work [2], thought of
using Inglis work to compute stresses at the tip of cracks. His interest in this computation
arose after he conducted two experiments, in which he found that a thin iron rod with
spiral cracks and a thin glass plate with a horizontal crack were way less resistant to
vertical traction than their smooth counterparts.
Since, after the work of Inglis, it was suggested that stresses at the crack tip were always
infinite, and so the crack would propagate for whatever imposed stress, Griffith thought
of a different formulation for the criterion, one which could explain why real crack tend
to have a critical imposed stress that makes them propagate. He thought of the imposed
stress as energy given to the system, and so he formulated his energetic formulation: in the
setting of brittle materials (which are easier to treat), he assumed that the solid would
have surface energy which was to increase if the crack propagated, and this was to be
compensated by a decrease in bulk energy and an overall decrease in total energy, thus
meaning that a stable configuration was to be a minimum of the total energy. Defining
Et total energy, Ee elastic strain energy, Ep potential energy due to external loads, and
Ef the new surface energy used to create new cracks, the relation would be:

Et = Ee + Ep + Ef .
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1.1 – First studies and Griffith’s approach

For two dimensional systems with a single crack, one could write every energy in terms
of the extension ℓ of the crack, and the equilibrium of a configuration would be the same
as the equilibrium with respect to a virtual extension of the crack:

dEt(ℓ)
dℓ =

dEe(ℓ)
dℓ +

dEp(ℓ)
dℓ +

dEf (ℓ)
dℓ = 0. (1.1)

Griffith considered an infinite plate with a crack of length 2ℓ, and his goal was to actually
compute the energies as a function of ℓ and then substitute them in (1.1) to compute the
critical imposed stress, which is the stress after which the crack propagates.
Using Clapeyron’s Theorem for linear elastic materials, the potential energy for external
loads can be expressed conveniently as

Ep(ℓ) = −2Ee(ℓ) =⇒ Et(ℓ) = −Ee(ℓ) + Ef (ℓ).

Figure 1.2: Griffith’s setting

In order to define the surface energy term, Griffith
decided to make a simple assumption, that is that the
surface energy is proportional to the dimension of the
crack (in our simple case the length), with a propor-
tionality constant of 2 · 2γ, so that

Ef (ℓ) = 4γℓ,

where γ is the surface energy for unit area, consid-
ered as a constant of the chosen material, and the pre-
multiplied factor 4 is there because we are considering
a crack expanding in two ways, both having two lips.
The computation of the elastic strain energy in terms
of the length of the crack has had a weird history -
it was initially obtained by Griffith in [2], using Inglis
relations for the stresses around an elliptical hole [1],
only problem was that the formula was wrong because
there was no continuity between the stress field at infinity and the imposed tractions. This
was corrected by Griffith in [3], but without shedding light on his new calculations, which
of course did not convince many contemporary engineers, and they were forced to come
up with other ways to derive the formula. It was not until 1967 that [10] could finally use
Inglis relations in the correct way, even though many others reached the same conclusions
using alternative methods.
The right formula for the elastic strain energy thus was

Ee(ℓ) = E0
e + ∆Ee(ℓ) = E0

e +
πσ2

0ℓ
2

E ′ ,

where E0
e is the elastic strain energy of the uncracked specimen, trivially independent from

the length ℓ. Moreover, the modified Young’s modulus E ′ is such that E ′ = E for plane
stress and E

′ = E
1−ν2 for plane strain, with E being Young’s modulus, and ν Poisson’s
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Classical theory of elastic fracture mechanics

modulus. Substituting everything found up till now:

Et(ℓ) = Ee(ℓ) + Ep(ℓ) + Ef (ℓ)
= Ee(ℓ) − 2Ee(ℓ) + Ef (ℓ)
= −E0

e − ∆Ee(ℓ) + Ef (ℓ)

= −E0
e −

πσ2
0ℓ

2

E ′ + 4γℓ. (1.2)

Substituting this in the crack equilibrium equation (1.1), the critical value of the imposed
stress can finally be found:

dEt(ℓ)
dℓ = 0 =⇒ 4γ =

2πσ2
0cℓ

E ′ =⇒ σ0c =

ó
2E ′

γ

πℓ
. (1.3)

This result proposed a shift in the common perspective about cracks: a crack resistance
to propagation is not that much about the stress field around the crack tip, which we
have seen being always infinite, but more about the energy given to the system in a sense
(in our case it is the imposed tension on the boundary). Simply put, when the given
energy reaches a certain critical value, then and only then the crack propagates. This
seems wonderful, and this model was regarded as the best model for fracture for some
decades, but it has its obvious limitations: first of all, it works only for linear elastic
brittle materials; moreover, the critical stress is inversely proportional to the length of the
crack, meaning that for an undamaged material (ℓ = 0), the critical stress is infinite, so
the material will never crack. This is obviously not true based on common knowledge,
which led Griffith to hypothesize the existence of micro-cracks and defects at the atomic
level in every material. Last thing, for a given imposed tension σ0, from (1.2) the critical
length of the crack can be deduced

2ℓc =
4E ′

γ

πσ2
0
,

so that if ℓ < ℓc then the crack will not propagate: in other words, the body will be called
invisible to cracks; if that is not the case, obviously the crack will propagate as predicted
by the model.
What the formulae tell is that the total energy has a stationary point, and this point is
a maximum or minimum of the energy (or neither) by looking at the sign of the second
derivative in length. In the case study, there will be a maximum since the second derivative
is negative, so this configuration is unstable, meaning that once the propagation has
started, there is no way to tell in what configuration it will stop. Obreimoff [4] in 1930
showed a configuration with a positive second derivative, a stable one, meaning that by
knowing the imposed stress one can always compute the end configuration of the crack.
Summing up:

d2Et(ℓ)
dℓ2


< 0 unstable;
= 0 neutral;
> 0 stable.

(1.4)
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1.2 – Irwin’s approach and modes of fracture propagation

Some years later, Irwin [7] decided to make (1.1) into an actual criterion for crack propa-
gation:

−
1
2

3dEe

dℓ +
dEu

dℓ

4
ü ûú ý

=:G

=
1
2

dEf

dℓü ûú ý
=:Gc

. (1.5)

The left term G is called energy release rate (ERR) and represents the elastic energy for
unit length (unit surface in general) available for the crack to initiate propagation, and it
was the same Irwin that chose the letter G for the symbol, as a tribute to Griffith. The
right term Gc represents the energy needed for making the crack propagate for a unit
length, and from Griffith’s hypotheses, it is a constant of the chosen material. For the
model analyzed, by substituting everything obtained:

G = −
1
2

3dEe

dℓ +
dEu

dℓ

4
=

1
2

dEe

dℓ =
πσ2

0cℓ

E ′ =⇒
πσ2

0ℓ

E ′ = Gc. (1.6)

By looking at this form of Griffith criterion, one can imagine that if G < Gc then the
propagation will not initiate, since the available energy is less than the needed energy, and
this was also Griffith’s idea, even though he did not say anything about the case G > Gc,
which is something that can definitely happen, judging from (1.6).

1.2 Irwin’s approach and modes of fracture propaga-
tion

The first who tried to actually change Griffith’s perspective on fracture was Irwin in 1958
[8], which wanted to study the singular stress field around the crack tip.

Figure 1.3: Irwin’s setting

By reading Griffith’s work, he noticed that what
Griffith called the energy given to the system, was in
his framework an imposed traction on the bound-
ary, that always generated infinite stresses at the
crack tip. Irwin thought that a change in the im-
posed stress must bring some change in the stress
field around the crack, which he knew had to be sin-
gular, but he hypothesized that the singularity had
a kind of strength dependent on the imposed stress.
In order to measure this strength of singularity, he
used a combination of complex potentials, Airy stress
functions, and eigenvalues problems, quite lengthy
to follow. There will be presented here a simplified
treatment, in an anti-plane shear case: let Ω be a set
in R2, fixed on ∂DΩ, thus with Dirichlet condition
u = g; it will have a crack K with length ℓ, whose
upper and lower lips will be respectively K+ and K−. On ∂N Ω = ∂Ω \ (∂DΩ ∪ (∂Ω ∩K))
there will be a Neumann condition, with an imposed traction T .
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Classical theory of elastic fracture mechanics

There is also the assumption of no bulk forces. Let us assume also a linear elastic,
homogeneous, and isotropic body, so that its constitutive equation will be represented by
Hooke’s Law:

σij = λεkkδij + 2µεij .

Given the anti-plane shear, it is more than reasonable to assume a displacement field
u = (u1, u2, u3) in the form of:

u = (0, 0, u3(x, y)) ,

and that the stress field will be so that only σ13 and σ23 are non-zero. Eventually, the
constitutive equation will boil down to:

σ13 = 2µε13, σ23 = 2µε23,

with ε13 = 1
2u3,1 and ε23 = 1

2u3,2. Given the absence of bulk forces, the equilibrium
equation will be:

∇ · σ = 0 =⇒
∂σ31

∂x1
+
∂σ32

∂x2
= 0 =⇒

∂ε31

∂x1
+
∂ε32

∂x2
= 0

=⇒
∂2u3

∂x2
1

+
∂2u3

∂x2
2

= 0 =⇒ ∆u3 = 0.

Following the assumption of the absence of traction on the lips of the crack, the boundary
condition will be:

σ · n = 0 on K± =⇒
∂u3

∂y
= 0 on K±.

In addition to these, there will also be adequate boundary conditions on ∂DΩ and ∂N Ω,
as previously described. Since the ultimate goal is to study the behavior of the material
near the crack tip, let us focus on:

∆u3 = 0 ∀x ∈ Ω,

lim
y→0+

∂u3

∂y
(x, y) = 0 ∀x < 0,

lim
y→0−

∂u3

∂y
(x, y) = 0 ∀x < 0.

(1.7)

The objective of this treatment is not to study the general properties and regularity of
solutions of this system, which requires the introduction and study of some Sobolev-like
function spaces. For an adequate study, the reader is advised to consult the next chapters
and [19]. Let us now look for solutions in polar coordinates centered at the crack tip of
the form:

w(r, θ) = rα âu3(θ),

where α is the proposed degree of singularity. Since the displacement cannot be singular
at the crack tip (nowhere in the body to be precise), this means that α > 0. By writing
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1.2 – Irwin’s approach and modes of fracture propagation

1.7 in polar coordinates, together with the boundary conditions at the crack lips, after a
bit of rearrangement, the system will be:Iâu′′

3 + α2âu3 = 0 ∀θ,âu′

3(±π) = 0.
(1.8)

The first equation is easily solvable and has the solution:

âu3(θ) = A cos (αθ) +B sin (αθ) .

By forcing the boundary conditions, and remembering the restriction α > 0, the degree
of singularity will be forced to be α = 1

2 + k, k ∈ N.
Since σi3 ∝ εi3 ∝ ∂u3

∂r ∝ rα−1, and since for this model there is the need for a stress
singularity at the origin, the only possible choice will be α = 1

2 .
For a general problem involving more complex settings, Irwin found that:

σij =
A
k

√
r

B
cos θ2 +

∞Ø
n=0

An r
n
2 gn

ij(θ),

where k is a constant (independent from r or θ, but possibly dependent on other vari-
ables) called Stress Intensity Factor (SIF), representing the sought-after strength of the
singularity. Moreover, Irwin was the first to provide a way to classify fractures, by pin-
pointing three different modes, in order to study each mode adequately. By looking at

Figure 1.4: a. Mode I - opening, b. Mode II - sliding, c. Mode III - tearing

Fig. 1.4, let us consider a flat fracture on the plane x2 − x3, extended through all of x3
(for visualization purposes, there is only a unit slice), propagating towards x2. Irwin’s
three different modes are

a. Mode I - opening: Ju1K /= 0, Ju2K = 0, Ju3K = 0;

b. Mode II - sliding: Ju1K = 0, Ju2K /= 0, Ju3K = 0;

c. Mode III - tearing: Ju1K = 0, Ju2K = 0, Ju3K /= 0.
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Classical theory of elastic fracture mechanics

These three modes are not mutually exclusive, and a fracture can be a combination of
more than one mode, in which case it is called mixed mode. The thing to keep in mind is
that in whatever the case may be, the singularity for r → 0 behaves like r− 1

2 , and what
actually changes from case to case is the constant k and the function fij(θ): the notation
for the three modes is KI for Mode I, KII for Mode II and KIII for Mode III; for the
stresses:

σI
ij =

KI√
2πr

f I
ij(θ), σII

ij =
KII√
2πr

f II
ij (θ), σIII

ij =
KIII√

2πr
f III

ij (θ).

In the case of a mixed mode, due to the linearity of the material, the stress becomes:

σij = σI
ij + σII

ij + σIII
ij =

1
√

2πr

1
KIf

I
ij(θ) +KIIf

II
ij (θ) +KIIIf

III
ij (θ)

2
.

At this point, since the strength of the singularity is determined by the Stress Intensity
Factor, taking from Griffith the idea that propagation starts due to an excess of stress,
Irwin hypothesized the existence of a critical strength of singularity which causes the crack
to propagate. He called this number Kc the tenacity to fracture, and the propagation
criterion was thus established:

K = Kc.

The only thing to clarify is maybe that the criterion is given in terms of one number,
but there are three different modes determining three different SIFs: there actually are
three different tenacities, and the fracture occurs in the mode which is the first to satisfy
the criterion. In general, one would expect KIc /= KIIc /= KIIIc, and usually KIc <
KIIc, KIIIc, so in most of the cases the Mode I controls the crack propagation.

For the Griffith model in Fig. 1.2, there is clearly a Mode I, and in this and in some
other simple cases, the SIF can be computed exactly. All the computations leading to it
are quite lengthy though, so let us start with a result due to Westergaard in 1939 [5] for
the stress in the x1 direction computed on the line x2 = 0 (see Fig. 1.2):

σ1,2(x) =
|x|σ0√
x2 − ℓ2

for |x| > ℓ.

Considering just the right part (x > ℓ), let us make the substitution x = ℓ + r, thus
obtaining:

σ1,2 =
(r + ℓ)σ0ð
r (r + 2ℓ)

=⇒ KI = lim
r→0

σ1,2
√

2πr = σ0
√
πℓ. (1.9)

From (1.9) it is quite clear that Irwin’s model is plagued by the same problem Griffith’s
model had: it cannot predict crack initiation. To see this, it suffices to write σ0

√
πℓ = Kc

and solve for ℓ: there will be the same factor
√
ℓ at the denominator as in (1.3).

Up to this point, there are two important descriptors of crack propagation: the Energy
Release Rate G, representing the change in potential energy due to a unit length propa-
gation; the Stress Intensity Factor K, representing the strength of the singularity of the

18
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stress field near the crack tip. Based on their formulae, it looks like G is a global parame-
ter, while K is a local parameter: however, there exists a relation between them, as easily
obtainable from (1.6) and (1.9). By combining them:

G =
K2

I

E ′ .

This is valid in our particular geometry, and in general for whatever crack propagating
in Mode I in a brittle linear elastic material. Irwin proved this, following a crack closure
procedure, with the application of a compression stress field on the crack. In the same
work [7], Irwin also gives the relation in the case of mixed mode, only valid though if the
Mode II crack propagates on the same plane as the other two modes:

G =
K2

I

E ′ +
K2

II

E ′ +
K2

III

2µ .

In the case of anti-plane fracture following a Mode III crack, the relation will be

G =
K2

III

2µ . (1.10)

We will derive this particular relation rigorously, in Chapter 5.

1.3 Dissipation analysis and J-integral
In both Griffith and Irwin formulations, it is not clear one of the key aspects of the
phenomenon under study: the irreversibility. This is the inability of the crack to heal,
that is to decrease its length, while some texts confuse it with the dissipative aspect of
fracture: this is also important, but the concepts are not the same. To better understand
this difference and their respective role, let us do a dissipation analysis of a body with
a crack, in the spirit of continuum mechanics: there will be the assumption of negligible
thermal effects (which requires the loading process to be quasi-static) so that the process
is isothermal. The setting is the same already considered in Fig. 1.3, we just need to
introduce the strain energy density as:

W (ε) :=
Ú ε

0
σ : dε.

The total dissipation Φ will be the difference between the power of applied forces and the
stored elastic energy. Just as before we assume the absence of bulk forces, so the forces
will all be applied at the boundary, hence:

Φ =
Ú

∂Ω

∂u

∂t
· (σ · n) ds−

d
dt

Ú
Ω
W (ε(u)) dV. (1.11)

Since the forces are applied at the boundary, and we also assume the crack lips to be
traction free, then the applied forces are independent of the propagation of the crack.
This means that the important contribution is the second integral in (1.11), in which the
domain changes with time.
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Figure 1.5: Integration around the
crack tip

Let us define a set VΓ with contour Γ, encapsulat-
ing the crack tip as in Fig. 1.5, and let us divide the
integral in the contributions from VΓ and Ω \ VΓ:Ú

Ω
W (ε(u)) dV =

Ú
Ω\VΓ

W (ε(u)) dV+
Ú

VΓ

W (ε(u)) dV.

Since VΓ is moving together with the crack tip, we
will simply have:

d
dt

Ú
VΓ

W (ε(u)) dV =
Ú

VΓ

∂W

∂ε
:
∂ε(u)
∂t

dV

=
Ú

VΓ

σ :
∂ε

∂t
dV.

For the other integral we will use the formula for the
material derivative of an integral with respect to a

non-material volume moving in the x1 direction, thus obtaining:

d
dt

Ú
Ω\VΓ

W (ε(u)) dV =
Ú

Ω\VΓ

σ :
∂ε

∂t
dV −

Ú
Γ
W (ε(u)) ℓ̇ n1 ds, (1.12)

where n1 = e1 · n, with e1 propagation direction of the volume and n the normal to said
volume, pointing outward.
Let us now write an energy balance for the region Ω \ VΓ:Ú

Ω\VΓ

σ :
∂ε

∂t
dV =

Ú
∂(Ω\VΓ)

∂u

∂t
· (σ · n) ds

=
Ú

∂Ω

∂u

∂t
· (σ · n) ds−

Ú
Γ

∂u

∂t
· (σ · n) ds. (1.13)

By using (1.11), (1.12), (1.13) we will get to:

Φ =
Ú

Γ

3
W (ε(u))ℓ̇n1 +

∂u

∂t
· (σ · n)

4
ds−

Ú
VΓ

σ :
∂ε

∂t
dV.

If we statically observe the system, then the integrand of the second integral is independent
of VΓ, so it will vanish if we let the measure of VΓ go to 0, summed up in Γ → 0.

Φ = lim
Γ→0

Ú
Γ

3
W (ε(u))ℓ̇n1 +

∂u

∂t
· (σ · n)

4
ds. (1.14)

The key point is that due to the movement of the crack tip, the singularity in u moves
with velocity ℓ̇ e1. This is also reflected in the singularity in ∂u

∂t , which has a singular
contribution of the form −ℓ̇ ∂u

∂x1
. Substituting in (1.14) we will get:

Φ = J · ℓ̇,

J = lim
Γ→0

JΓ = lim
Γ→0

Ú
Γ

3
W (ε(u))n1 −

∂u

∂x1
· (σ · n)

4
ds.

(1.15)
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1.3 – Dissipation analysis and J-integral

This integral J is called Rice-Cherepanov J-integral, and it was independently studied by
Rice [12, 13] and Cherepanov [9, 11]. It can be written in another way, which generalizes
it:

J = lim
Γ→0

Ú
Γ

51
W I − ∇u⊤DW

2
n

6⊤
τ ds (1.16)

where I is the identity matrix, n is the normal to the integration path, and τ is the tangent
to the crack path at the crack tip, which in our case is (0 1)⊤. The term W I − ∇u⊤DW
is known in the literature as the Eshelby tensor.
From now on, we will follow the classic treatment by Rice, in which the curve Γ is oriented
anticlockwise.

This integral, which we obtained with a fairly simple procedure, has some important
properties, among which we have that it is always equal to 0 for contours without singu-
larities. Let us call Γ∗ a contour without singularities in its inner set B∗. Then we can
apply the divergence theorem:

JΓ∗ =
Ú

Γ∗

3
Wn1 −

∂u

∂x1
· (σ · n)

4
ds =

Ú
Γ∗

3
We1 −

∂u

∂x1
· σ
4

· n ds

=
Ú

B∗
div
3
W e1 −

∂u

∂x1
· σ
4

dV.

Figure 1.6: Path independence

We can rewrite the integrand of the last integral in
indicial notation to show that it is always equal to 0:è

Wδ1j − uk,1σkj

é
,j

= W,1 − uk,1jσkj − uk,1σkj,j

= σmnεmn,1 − uk,1jσkj

= σmnum,n1 − um,n1σmn

= 0.

Moreover, JΓ is independent of the chosen path: let
us consider the closed path Γ = Γ1CBΓ2AD depicted
in Fig. 1.6. Since it does not contain singularities,
for what we have just shown, the total integral has to
vanish JΓ = 0. Due to linearity, we can write:Ú

Γ1

[. . .] dsü ûú ý
=:JΓ1

+
Ú B

C
[. . .] dsü ûú ý

=:JCB

+
Ú

Γ2

[. . .] dsü ûú ý
=:−JΓ2

+
Ú D

A
[. . .] dsü ûú ý

=:−JAD

= 0.

where [. . .] = Wn1− ∂u
∂1 ·(σ · n), and the minus signs are there to preserve the anticlockwise

orientation. The integrals JCB and JAD are equal to 0 since their normals have no com-
ponent in the x1 direction (n1 = 0), and also because, as we said earlier, we are assuming
the crack lips to be traction free (σ ·n = 0). We can thus conclude that JΓ1 = JΓ2 , proving
the path independence in the case of no bulk forces and with parallel and flat crack lips.
The last property is quite an astonishing result since it says that the J-integral is equal
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to the Energy Release Rate G. By looking at the setting of Fig. 1.3, the potential energy
will be:

Ee(ℓ) + Ep(ℓ) =
Ú

Ω
W dV −

Ú
∂ΩT

T · u ds.

As in Irwin’s study, let us suppose the absence of bulk forces, the independence of T from
the crack length ℓ, and crack lips to be traction-free. Differentiating with respect to ℓ:

d
dℓ
1
Ee(ℓ) + Ep(ℓ)

2
=
Ú

Ω

dW
dℓ dV −

Ú
∂Ω
T ·

du
dℓ ds, (1.17)

where we switched ∂N Ω with ∂Ω because du
dℓ = 0 on ∂DΩ. Moreover, since T = 0 on K,

we can also switch ∂Ω with the contour Γ of the J-integral.
Let us now introduce a change of coordinates x̃1 − x̃2, attached to the crack tip, such that
x̃1 = x1 − ℓ. We will have:

d
dℓ =

∂

∂ℓ
+

∂

∂x1

∂x1

∂ℓüûúý
=−1

=
∂

∂ℓ
−

∂

∂x1üûúý
= ∂

∂x̃1

=
∂

∂ℓ
−

∂

∂x̃1
.

Substituting this in (1.17):

d
dℓ
1
Ee(ℓ) + Ep(ℓ)

2
=
Ú

Ω

5
σ : ∇

3
∂u

∂ℓ

4
−
∂W

∂x1

6
dV −

Ú
Γ
T ·
5
∂u

∂ℓ
−

∂u

∂x1

6
ds. (1.18)

Furthermore, if we treat ∂u
∂ℓ as a kinematically admissible displacement field, we can write

the principle of virtual work as follows:Ú
Ω

5
σ : ∇

3
∂u

∂ℓ

46
dV =

Ú
Γ
T ·

∂u

∂ℓ
ds.

Substituting this in (1.18) we will get:

−
d
dℓ
1
Ee(ℓ) + Ep(ℓ)

2
=
Ú

Ω

∂W

∂x1
dV −

Ú
Γ
T ·

∂u

∂x1
ds,

where we can apply the divergence theorem to the first integral. From the boundary
conditions we have T = σ · n, so we will finally find:

−
d
dℓ
1
Ee(ℓ) + Ep(ℓ)

2
ü ûú ý

=:G

=
Ú

Γ

5
Wn1 −

∂u

∂x1
· (σ · n)

6
dsü ûú ý

=:J

=⇒ J = G. (1.19)

This means that we can compute the value of G by computing the J-integral, and this
can be done more easily by conveniently choosing the contour Γ. Besides, we never made
any assumptions on the linearity of the elastic equations, so it is valid also in non-linear
settings, which at times can be considered part of plastic deformation theory.
Going back to (1.15), we can now write Φ = G · ℓ̇: in the formalization of analytical
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thermodynamics, the term G represents the thermodynamic dual in dissipation to ℓ̇. It
represents, in a sense, the force due to the singularity propagating, and since dimensionally
it is energy dissipated per unit length, it makes sense to introduce a dissipation-based
propagation criterion, equivalent to Griffith criterion thanks to previous results: it exists
a critical dissipated energy Gc so thatI

G < Gc =⇒ ℓ̇ = 0;
G = Gc =⇒ ℓ̇ ≥ 0.

(1.20)

If G > Gc, the propagation is labeled unstable or dynamic (see [17]), and kinetic and
thermal effects start to come into play. To remove this difficult case, we will restrict our
study to a quasi-static crack evolution.
All these results, together with the irreversibility of crack length, are summed up in what
is now known as the modern formulation of Griffith criterion for a quasi-static evolution
of a crack in a brittle material: 

ℓ̇ ≥ 0;
(Gc −G) ≥ 0;
(Gc −G) ℓ̇ = 0.

(1.21)

The first equation is about the irreversibility of the process; the second equation is about
the quasi-static nature of the process; the third equation is the true Griffith criterion.
This treatment can be readily seen as an application of the Clausius-Duhem inequality
for dissipation, with the introduction of a new thermodynamical variable, the crack length.
This is the form of Griffith criterion which is usually used in theoretical works in solid
mechanics, and also the one which modern theories of fracture in applied mathematics
want to reconstruct, based on different principles from Griffith.

23



24



Chapter 2

Francfort-Marigo model for
quasi-static brittle fracture

As we have said in Chapter 1, the Griffith model of linear elastic quasi-static brittle frac-
ture, although powerful and widely used, has some obvious disadvantages, as discussed
before.
First of all, as seen with the original Griffith model and subsequent classical models, if
the length ℓ of the crack goes to 0, that is an entirely uncracked material, then the critical
stress goes to +∞, effectively rendering the criterion useless. This boils down to not hav-
ing singularities in the stress field on the inside of the body, where the crack tips should
be. In hindsight, this can be adjusted by permitting stress singularities on the boundary
of the body, for example by having a non-convex shape admitting notches on the edge.
Moreover, as observed from 1.21, the Griffith criterion uses just the length of the crack,
as a function of time, but it does not give indications on what path the crack will follow,
nor if the path evolution will be smooth or it admits some jumps, that is isolated points in
time where the crack length jumps instantaneously from length ℓ1 to length ℓ2. This is not
even far from reality, because in many experiments a crack jump is observed, especially
in cases near failure. Truth be told, in a pure quasi-static setting, a crack jump would be
impossible to obtain, as one would always have G < Gc, a stable propagation. Of course,
there have been some experimental results to try and predict the crack path, but they
assume the path to be piecewise C1 curves, a quite strong hypothesis.
This model, proposed in 1998 by G.A. Francfort and J.J. Marigo, was created with the
intent of solving these issues contained within Griffith’s approach, by setting the elastic
brittle fracture problem in a variational setting. This model does not arise as a general-
ization of Griffith’s criteria, but just as an independent model borrowing some hypothesis
from Griffith. To be fair, no model is perfect as of now, and we will do our best to point
out the strengths and weaknesses of this model, as we have done in Chapter 1 with Grif-
fith’s model.
The basic idea of the model is that the total energy is a sum of two terms: the bulk
part of the body, that is the crack-free part has a certain energy; the cracks have another
energy, possibly depending on the crack length. The evolution of the crack must be so

25



Francfort-Marigo model for quasi-static brittle fracture

that at every time, the crack minimizes the total energy among all possible crack paths
containing the crack paths at previous times. We will give now the details of the model,
giving some proofs where possible, without going into the details of the existence and reg-
ularity of the eventual solutions of the model, as that, especially in the case of a general
three dimensional domain, would require an extensive amount of theoretical framework,
to begin with.

2.1 Model formulation

2.1.1 Domains and energies

The domain Ω will be a bounded connected open subset of RN , with 1 ≤ N ≤ 3, with
Lipschitz boundary. From a configurational viewpoint, it represents the crack-free refer-
ence configuration of the body, which is subjected to Dirichlet conditions on a relative
open subset ∂DΩ ⊂ ∂Ω, and to Neumann conditions on ∂N Ω = ∂Ω \ ∂DΩ.
The crack set will be a compact subset of the domain, K ⊂ Ω, which may possibly inter-
sect ∂DΩ and ∂N Ω. It need not be the image of a single curve, in the sense that the crack
can also present some kind of branching in its path; moreover, it need not be connected,
as we can have different crack paths starting at different points of the domain.
The variable that we will study at first, and on which we will apply the boundary condi-
tions is the displacement field v. In the cracked configuration, the boundary conditions
will slightly change, taking into account also the crack, to which we will impose a traction-
free condition, which is a homogeneous Neumann condition. We need just to be cautious
of the intersection between the crack and the boundary: specifically, on ∂DΩ ∩ K, on
K ∩ Ω, and on ∂N Ω we will impose a traction-free condition, while on ∂DΩ \ K we will
impose a Dirichlet condition.
The traction-free nature of the crack has to be read as a no-contact condition between the
lips of the crack, and in a quasi-static setting, this makes total sense. If the setting were
to be of dynamic fracture, then one would have to also factor in some kind of contact be-
tween the lips, be it with or without friction. Of course, one can also see what happens in
a quasi-static setting with a contact condition, but this would require a more appropriate
formalization.
This would be it if this was not a variational model, but since it is, we need to define
the set of admissible displacement fields, from where we can later extract the set of test
functions. In the strong formulation, we denote the imposed Dirichlet loading as g, im-
posed on ∂DΩ \K; in the variational formulation, we will then have a space of functions
whose gradient is in L2(Ω \ K;RN ), which we will denote for now just L1,2(Ω \ K), and
we will leave the formalization details for the next chapter. We require the gradient to be
at least square-integrable since, as we will see, the elastic energy density depends on the
symmetrized gradient ε(v) = 1

2(∇v + ∇T v) of the displacement field v.
As we have thus seen, the set of admissible displacement fields depends obviously on the
boundary condition U (we consider ∂DΩ to be fixed), but it also depends on the crack set
K, since in a sense it represents the current state of the body, and the more the fracture
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propagates, the less control we have on the admissible displacements. This will be par-
ticularly clear when studying the failure of the materials undergoing cracking. Thus, the
space of admissible displacements will be:

V(g,K) :=
î
v ∈ L1,2(Ω \K) : v = g on ∂DΩ \K

ï
. (2.1)

As for the energies involved, the idea is that the total energy E is equal to:

E = Eb + Ef ,

with Eb being the bulk energy, and Ef being the energy of the crack.
In order to define the bulk energy, we have to define the material we will be working with.
For simplicity, we will consider only infinitesimal elasticity, even though a setting with
finite elasticity should not be too challenging to pose in this variational setting.
We define the elastic energy density as a function of both space and the symmetrized
gradient, W = W (x, ε(v)(x)), defined only on the crack-free part of the domain Ω \ K.
In general, since we need to integrate this density over the domain, and since for the
appropriate minimization we need growth and coercitivity conditions, we require:

1. W (x, ξ) is measurable in x and continuous in ξ for a.e. x ∈ Ω, strictly convex and
p-homogeneous in ξ;

2. α|ξ|p ≤ W (x, ξ) ≤ β(|ξ|p + 1) with α, β > 0 for a.e. x ∈ Ω.

In particular, linearized elasticity is always taken into consideration, where

W (x, ξ) =
1
2A(x)ξ · ξ s.t. A(x) = AT (x), αI ≤ A(x) ≤ βI for a.e. x ∈ Ω.

This is the most used setting, especially in the setting of an isotropic homogeneous linear
elastic material, as the constitutive equations are well known. To be general, we will try
to deduce the result in this chapter for a general class of elastic densities, namely the ones
which are p-homogeneous in ξ, and depend implicitly on x through a symmetric matrix,
as in the linearized elasticity case.
Note that, if we keep K fixed, the loading on the boundary defines the displacement field
which reaches elastic equilibrium by means of a minimization of the total elastic energy
on Ω \K among all admissible displacement fields. Then we can define the bulk energy:

Eb(g,K) := inf
v∈V(g,K)

Ú
Ω\K

W (x, ε(v)(x)) dx. (2.2)

As we will see, such an infimum exists due to the Lipschitzianity of the boundary and
the restrictions on the set of possible cracks. Moreover, it is easy to see that, for a fixed
external loading g, the bulk energy Eb is monotonically decreasing in K, meaning that if
the crack grows, then the bulk energy will decrease, as a consequence of the integral over
Ω\K. Also, in the setting of linearized elasticity, changing the external load g by a factor
of c, results in the minimum of the bulk energy to be multiplied by a factor of c as well.
This, due to the p-homogeneity of the linearized elastic density in ξ, translates into the
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p-homogeneity of the bulk energy in g.
Of course, the bulk energy may also be generalized to more complex elastic materials,
maybe also with a density depending on the second derivatives of the displacement fields.
Following the energetic approach by Griffith, the total energy will also be due to the
energy related to the crack. In Griffith’s approach, the energy of the crack was simply
proportional to its length. Here we are presented with a question that Griffith did not
ponder: what kind of length are we to deal with? More precisely, what kind of cracks are
we excluding with the choice of the proper measure of length? The normal choice would
be to use the N − 1 dimensional Hausdorff measure HN−1. Of course, this implies two
major things, that is:

• compact subsets of Ω with Hausdorff dimension strictly greater than N − 1 have
an infinite HN−1-measure, hence they cannot be created as they would give a crack
with infinite energy;

• conversely, compact subsets of Ω with Hausdorff dimension strictly lower than N −1
have zero HN−1-measure, hence they can be created without the expense of energy.

The first point solves itself, but the second may be troublesome: luckily, in most applica-
tions, we have N = 3, and as we will see in the next chapter, sets of zero H2-measure also
have zero capacity, meaning they are invisible to the Sobolev-type spaces we will use.
Back to the model, we also want that the energy required to create an infinitesimal crack is
not the same at every point in the crack and that it may, in principle, change. This density,
or toughness of the material, will be denoted by k(x), and it is such that k(x) ≥ k0 > 0
so that energy has to be always used in order to create new cracks. This toughness in
principle can also approach ∞, in points where the material is close to impossible to break.
Hence the energy of the crack will be the integral of this toughness over the length of the
crack:

Ef (K) =
Ú

K
k(x) dHN−1(x). (2.3)

It is trivial to see that the energy of the crack increases with the crack, due to the integral
over K.
Let us observe that as of this choice of model, the energy of the crack does not depend on
the external loading g. This implies that the total energy may be written in two equivalent
formulations:

E(g,K) := Eb(g,K) + Ef (K)

= min
v∈V(g,K)

IÚ
Ω\K

W (x, ε(v)(x)) dx
J

+
Ú

K
k(x) dHN−1(x) (2.4)

= min
v∈V(g,K)

IÚ
Ω\K

W (x, ε(v)(x)) dx+
Ú

K
k(x) dHN−1(x)

J
. (2.5)

These two formulations are useful because we need to study the convergence of minimizers
of the former, in order to study the convergence of minimizers for the latter.
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2.1.2 The quasi-static evolution law
The formulas for the total energy given in the previous subsection are written not consid-
ering time as a variable. We will not change the expression for the total energy to account
for time, but we will write the evolution of the crack by means of a quasi-static evolution
which minimizes at every time the total energy. The idea, given a certain loading g(t)
applied to ∂DΩ (which is fixed), and given an initial crack set K0 (which may also be
empty), is that at a given time t, the crack evolves such that K(t) ⊂ Ω minimizes the
total energy E(g(t), K) among all admissible sets K containing all the cracks at previous
times, K(s) ⊆ K for s < t.
This is quite a simple idea, yet it contains some strong assumptions about the model.
First of all the simple fact that the crack minimizes the energy at every time speaks for
the quasi-static nature of the process: indeed this may not be true in all cases, for ex-
ample when thermal effects are considered, or simply with external loading quite steep in
time. It is important to observe that, while the 1.21 formulation of Griffith’s criterion is
quasi-static in the sense that the energy release rate is not allowed to become bigger than
the critical value, in the Francfort-Marigo model the quasi-static nature is shifted in the
time evolution dynamics of the system, and it does not express on the energy release rate.
However, under some mild assumptions, we will prove that this model predicts entirely
the Griffith criterion, as well as the more modern 1.21 formulation.
Second of all, this model involves a step of global minimization of the total energy, but it
would be more realistic to study some local minimizers of the energy and their properties.
Lastly, the hypothesis that the crack has to contain all the cracks at previous times, as in
1.21, expresses the irreversibility of a dissipative process, and the absence of crack healing.
In some models, this assumption may fall, as in more complex materials the cracks can
actually heal under some conditions. To see a recent real-life example of this, we refer
to [40], where the scope is far from mathematical, but it provides a nice insight into the
concept of self-healing materials being used in ancient times.
Now the precise formulation of this quasi-static process requires a time discretization,
after which the time step goes to 0. Of course, one must be careful in formalizing this
process, and that is not the scope of this chapter: right now we just give an idea of the
process.
In the discretized setting, given δ > 0, we define the time steps to be tδi := iδ for
0 ≤ i ≤

% tf

δ

&
where tf is the final time, and we consequently define gδ

i := g(tδi ). Then the
discretized crack evolution Kδ

i has to satisfy

Kδ
i−1 ⊆ Kδ

i , E(gδ
i , K

δ
i ) ≤ E(gδ

i , K), for every K ⊇ Kδ
i−1. (2.6)

It follows that the continuous crack evolution is constructed by taking the limit of the
discrete crack evolution as δ → 0. Under some mild assumptions on the regularity of the
loading g(t), we will prove that this procedure makes sense. In fact, for a general class of
loadings, we will see that the next result holds true.

Proposition 2.1.1. A quasi-static evolution of a crack has to satisfy these conditions:

1. K(t) is non-decreasing in t, and K0 ⊆ K(0);
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2. K(t) minimizes the energy among all possible crack such that

E(g(t), K(t)) ≤ E(g(t), K) ∀K ⊇
Û
s<t

K(s);

3. The function t → E(g(t), K(t)) is absolutely continuous, and for a fixed loading g(t),
we have that K(t) is a stationary point for the function s → E(g(t), K(s)), that is

d
dsE(g(t), K(s))

---
s=t

= 0 for a.e. t.

The first condition is quite straightforward, and we will show that if g(0) = 0 then
K(0) = K0. In fact, since we know thatK0 ⊆ K(0), due to Ef (K) being strictly increasing
in K, we also know that Ef (K0) ≤ Ef (K(0)). Moreover, if there are no external loadings
applied, then the total energy is only made up of the energy of the crack set: then, by the
second condition we have:

Ef (K(0)) = E(0, K(0)) = E(g(0), K(0)) ≤ E(g(0), K0) = E(0, K0) = Ef (K0).

Thus we know that Ef (K(0)) = Ef (K0), and again due to Ef (K) being strictly increasing
in K, this implies that K(0) = K0.
The second condition expresses the minimality of the energy in K(t) with respect to all
cracks bigger than the cracks at previous times. The third condition is a stability condi-
tion of the energy at time t with respect to all the crack evolution.
For simplicity we will examine in this chapter a special class of loadings, called Mono-
tonically Increasing Loadings (MIL), such that the loading is of the form g(t) = φ(t)g0
for t ≤ 0, for a non-decreasing and non-negative function φ(t), and for a certain function
g0 ∈ H1(Ω). Under this class of loadings, the first condition implies that K(t) is increasing
and that K(0) = K0 (as seen before) and we have:

Proposition 2.1.2. Under a continuous evolution as in Proposition 2.1.1, if the loading
is non-decreasing in time, then the third condition is equivalent to:

E(g(t), K(t)) ≤ E(g(t), K(s)) ∀s ≤ t. (2.7)

The formal derivation of this reformulation requires a bit of work, but it can be formally
deduced from the discretized crack evolution. Let us take two crack sets K,K ′ such that
K ⊂ K

′ , and then s ≥ t. Then, since g(t) is a MIL, we know that the bulk energy Eb is
p-homogeneous in g, and since Eb is also decreasing in K for a fixed loading, we find that:

E(g(s), K) − E(g(s), K ′)
=E(g(t), K) − E(g(t), K) + E(g(s), K) − E(g(t), K ′) + E(g(t), K ′) − E(g(s), K ′)
=E(g(t), K) − E(g(t), K ′) + (φ(s)p − φ(t)p)(Eb(g0, K) − Eb(g0, K

′))
≥E(g(t), K) − E(g(t), K ′).

Hence if E(g(t), K ′) ≤ E(g(t), K), then also E(g(s), K ′) ≤ E(g(s), K) ∀s ≥ t. Then if
we take Ki to be a solution to the discretized evolution with discretized MIL loading Ui,
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since Ki ⊃ Ki−1, then we know E(g(t), Ki) ≤ E(g(t), Ki−1) ∀t ≥ ti. Then taking t = ti,
it is clear that

E(gi, Ki) ≤ E(gi, Ki−1) ≤ E(gi, Ki−2) ≤ · · · =⇒ E(gi, Ki) ≤ E(gi, Kj) ∀j ≤ i.

Now we can formally take the limit as the step δ goes to 0, and take ti = t, so that
Ki = K(t) and Kj = K(s) with s ≤ t, thus obtaining precisely 2.7.

2.2 Properties of the Model
As explained at the beginning of the chapter, this simple yet powerful model permits us
to compute some things that were inaccessible with Griffith’s previous theory, as we will
now see. All these results assume the existence of a well-behaved solution of the model,
where, by a solution, we mean the evolution of the crack given the initial crack set (also
empty) and the evolution of the external loadings in time. For the results in this section,
we will assume the loadings to be MIL, and we will be especially careful in pointing out
where this assumption is used.

2.2.1 Crack initiation and failure
One of the first key points of this model is the ability the predict the onset of cracks
even in a crack-free material, contrary to Griffith’s model, which predicts infinite imposed
stresses.
We first define the set of cracks that eliminate the bulk energy at a given time t, the
bulk-free cracks, simply as:

F(g)(t) :=
)
K : Eb(g(t), K) = 0

*
.

This simply implies that for K ∈ F(g)(t) we have E(g(t), K) = Ef (K). This set of bulk-
free cracks in general depends on time, as the loading depends on time, but in the case of
MIL loadings the formulation simplifies, as

Eb(g(t), K) = Eb(φ(t)g0, K) = φ(t)pEb(g0, K) = 0.

Then in this case the set does not depend on time, and we get

F(g) :=
)
K : Eb(g0, K) = 0

*
.

We will go with the convention that when we indicate time in F(g) then we are using a
general loading.
This set is not empty, as whatever crack separating the body from the physical object
providing the Dirichlet condition, effectively gives a homogeneous Dirichlet condition,
and we have already seen that this makes the bulk energy equal to 0 because then v = 0
becomes an admissible displacement field. Then ∂DΩ ∈ F(g)(t) and also whatever K
such that K ⊃ ∂DΩ. Moreover, it is easy to see that if K ∈ ∂DΩ ∈ F(g)(t) then also
K

′ ⊃ K is in the same set. Let us also note that in the case of MIL loadings, K0 = ∅
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can never be a bulk-free crack if g0 /= 0.
We also define the time at which the eventual crack onset takes place, also called initiation
time, with ti:

ti := sup
t≥0

)
t : K(t) = K0

*
.

Of course, this time may take any value in [0,+∞], as the crack may propagate right at
the beginning or can also never propagate.

Proposition 2.2.1. In the case of MIL loadings, the crack never propagates, that is
ti = +∞, if and only if the initial crack is bulk-free, K0 ∈ F(g)(0).

Proof. If K0 ∈ F(g), then since any eventual evolution is such that K(t) ⊃ K0, then
we also have K(t) ∈ F(g) hence Eb(g(t), K(t)) = 0 for t > 0. Since the loading is
MIL, we know that E(g(t), K(t) ≤ E(g(t), K(0)) = E(g(t), K0) for t > 0 which implies
Ef (K(t)) ≤ Ef (K0) for t > 0. However K(t) ⊃ K0 and Ef (K) is increasing in K, so
Ef (K(t)) ≥ Ef (K0) hence the two energies are equal. Since the fracture toughness is
strictly positive, then it must be that K(t) = K0 for t ≥ 0, hence ti = +∞.
Conversely if ti = +∞, then obviously K(t) = K0 for t ≥ 0. Then using the second
property of the cracks and the MIL loading we have:

φ(t)pEb(g0, K0) + Ef (K0) ≤ φ(t)pEb(g0, K) + Ef (K) K ⊇ K0.

Let us now take a particular crack K that is the union of the initial crack and a bulk-free
crack K

′ , such that K = K0 ∪ K
′ . This is always possible since at this stage we do

not require any connectedness, and in we are always sure we can take K ′ = ∂DΩ. Since
K ⊃ K

′ , then K is also bulk-free. Thus, rewriting the previous formula yields:

φ(t)pEb(g0, K0) + Ef (K0) ≤ Ef (K).

This has to be true even if we let t approach +∞, and since the energies are positive, the
only solution is if Eb(g0, K0) = 0.

Since in the case of MIL loadings, this result says that a necessary and sufficient
condition for no crack initiation is that the initial crack is bulk-free, this also implies that
if the initial crack is not bulk-free, or simply such that Eb(g(0), K0) /= 0, then the crack
will start to propagate always in a finite time. In particular, if K0 = ∅ then a crack will
always form in a finite time.
Another point interesting to the literature is the eventual failure of the sample, which
can intuitively be thought of as a crack that split the sample. Analogously to the crack
initiation, let us define now the least possible bulk energy as

Emin
b := inf

t

)
Eb(g(t), K) : K ⊃ K0

*
.

Just as before, in the case of MIL loadings, we get a superfluous term φ(t)p, and we can
rewrite it as

Emin
b := inf

)
Eb(g0, K) : K ⊇ K0

*
.
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A most useful observation is that, if F(g) /= ∅, as we are supposing, then there exists a
crack for which Eb(g0, K) = 0, and due to the non-negativity of the energies, we would
have Emin

b = 0.
Then, again under the case of MIL loadings, we have:

Proposition 2.2.2. In the case of MIL loading:

• lim
t→∞

Eb(g0, K(t)) = Emin
b ;

• if the limit value is attained at a time tf < +∞, then K(t) = K(tf ) ∀t ≥ tf .

Proof. Let us take (Kn) as a minimizing sequence for the least possible bulk energy. Then,
since the bulk energy is monotonically decreasing in K for fixed g(t), then also (Kn∪K(t))
is a minimizing sequence for every t ≥ 0. The second condition of 2.1.1 tells us that

φ(t)pEb(g0, K(t)) + Ef (K(t)) ≤ φ(t)pEb(g0, Kn ∪K(t)) + Ef (Kn ∪K(t))
≤ φ(t)pEb(g0, Kn) + Ef (Kn) + Ef (K(t)).

Dividing now by φ(t)p and letting n → ∞ we get

Eb(g0, K(t)) ≤ Emin
b +

1
φ(t)p

(Ef (Kmin + Ef (K(t))) ,

where Kmin is a set such that Emin
b = Eb(g0, Kmin). Letting now t → ∞ gives us half

of the first result, limt→+∞Eb(g0, K(t)) ≤ Emin
b , where the other inequality is obtained

thanks to the bulk energy being decreasing in K.
Now, if the limit is attained at a time tf < +∞, by the third condition in the monotone
continuous evolution we can say that

E(g(t), K(t)) ≤ E(g(t), K(tf )) ∀tf ≤ t,

φ(t)pEb(g0, K(t)) + Ef (K(t)) ≤ φ(t)pEb(g0, K(tf )) + Ef (K(tf )) ∀tf ≤ t,

φ(t)pEmin
b + Ef (K(t)) ≤ φ(t)pEmin

b + Ef (K(tf )) ∀tf ≤ t,

Ef (K(t)) ≤ Ef (K(tf )) ∀tf ≤ t.

Now, since if t ≥ tf then K(t) ⊇ K(tf ), we deduce that Ef (K(t) = Ef (K(tf ) ∀t ≥ tf ,
which lets us conclude that K(t) = K(tf ) ∀t ≥ tf .

What this tells us is that under monotone increasing loadings, the sample will reach
(eventually in an infinite time) a state of least bulk energy, which, under our assumptions,
is obtained by a bulk-free crack.
There is also a result that lets us combine the crack initiation and crack failure mecha-
nisms.

Proposition 2.2.3. If we have a strictly increasing MIL loading, and if K0 /∈ F(g), then

0 ≤ ti ≤ φ−1

 p

ó
inf
)
Ef (K \K0) : K ⊇ K0, K ∈ F(g)

*
Eb(g0, K0)

 ≤ tf ≤ +∞.
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Proof. Let us take a bulk-free crack K ∈ F(g) such that K ⊃ K0. If ti = 0 the first
inequality is trivial. Hence if ti > 0 we know that K(t) = K0 for every 0 ≤ t < ti. From
the second condition on continuous evolution, we can then say for such a time t < ti:

φ(t)pEb(g0, K0) + Ef (K0) ≤ φ(t)pEb(g0, K) + Ef (K),
φ(t)pEb(g0, K0) + Ef (K0) ≤ Ef (K),

φ(t)pEb(g0, K0) ≤ Ef (K) − Ef (K0) = Ef (K \K0),

φ(t)p ≤
Ef (K \K0)
Eb(g0, K0) ∀K ∈ F(g) : K ⊃ K0.

Taking the inf over such set of K, then taking the p-th square root and taking the limit of
t → ti, we obtain the first inequality, since φ(t) is strictly increasing and thus invertible.
For the second part, we assume tf < +∞, otherwise the statement would be trivial.
In such a case, taking t > tf means that K(t) = K(tf ). Keeping in mind that for a
MIL loading we have Eb(g0, K(tf )) = Emin

b = 0, the third law of continuous monotone
evolution would yield for a time t ≥ tf :

φ(t)pEb(g0, K(t)) + Ef (K(t)) ≤ φ(t)pEb(g0, K(s)) + Ef (K(s)) ∀s ≤ t,

s = 0 =⇒ φ(t)pEb(g0, K(tf )) + Ef (K(tf )) ≤ φ(t)pEb(g0, K0) + Ef (K0),
Ef (K(tf )) ≤ φ(t)pEb(g0, K0) + Ef (K0),

Ef (K(tf ) \K0) ≤ φ(t)pEb(g0, K0).

Noting that K(tf ) ∈ F(g) and K(t) ⊃ K0, we can then provide an upper bound for the
inf taken before as:

inf
)
Ef (K \K0) : K ⊇ K0, K ∈ F(g)

*
≤ Ef (K(tf ) \K0) ≤ φ(t)pEb(g0, K0).

Dividing by Eb(g0, K0), taking the root and then the limit t → tf just as before, we obtain
the second part of the inequality.

It is interesting to observe that in the case when 0 < ti = tf < +∞, the evolution can
be brutal if K0 /= Kmin, in the sense that at time ti = tf , K(t) goes instantaneously from
K0 to Kmin. This brutal behavior will be better studied in the next subsection.

2.2.2 Comparison with Griffith’s criterion
Even though this model was not created with the idea of being an offspring of Griffith’s
theory, it can be considered an extension of it, as the dissipative formulation of Griffith’s
criterion can be obtained through this model.
Some work needs to be done though, because Griffith’s model only concerned itself with
the crack length and not the crack path. So first of all we will put this constraint in the
model, that of a Predefined Crack Path (PCP). We assume the existence of regular simple
arc Γ parameterized by its arc length ℓ via a path ϕ : [ℓ0, ℓ1] → Ω, where ℓ0 and ℓ1 are
respectively initial and final length. We identify the crack set K with the rectifiable curve
K(ℓ(t)) = K0 ∪ Γ. , of total length ℓ1, and initial point x0 and final point x1. As we take
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x0 to be the endpoint of the initial crack set K0, which we assume to have length ℓ0, we
will then define

K(ℓ(t)) := K0 ∪ Γ(ℓ(t)) = K0 ∪
)
ϕ(❧) : ℓ0 ≤ ❧ ≤ ℓ(t)

*
.

At the moment we do not concern ourselves with the question of the regularity of energies
and length, as that is a question for the following chapters: for now, we will assume all
the necessary regularity.
Let us briefly recall a certain notion of continuity used in a lot of results.

Definition 2.2.4. A function f : [a, b] → R is said to be absolutely continuous on [a, b] if
for every ε > 0, there exists δ > 0 such that

nØ
i=1

|f(yi) − f(xi)| < ε,

for an arbitrary collection of mutually disjoint sub-intervals {[xi, yi] : i = 1, . . . , n} of [a, b]
with

qn
i=1 |yi − xi| < δ.

A much more useful definition of absolute continuity is the following, which establishes
an equivalence with the existence of an integrable derivative.

Definition 2.2.5. We say that a function f : [a, b] → R is absolutely continuous if and
only if there exists an integrable function g on [a, b] such that

f(x) = f(a) +
Ú x

a
g(t)dt ∀x ∈ [a, b].

If such a g exists, then f
′ = g a.e. in [a, b].

We also give a definition of absolute continuity for curves in a general metric space:
this will be useful in the next chapters.

Definition 2.2.6. Let (X, d) be a metric space. We say that a curve u : [a, b] → X is
absolutely continuous from [a, b] to X if there exists a function m ∈ L1([a, b]) such that:

d
!
u(s), u(t)

"
≤
Ú t

s
m(τ) dτ ∀a ≤ s ≤ t ≤ b.

What we want to study right now is the behavior of the function t → ℓ(t). Under
the assumption of an absolute continuous evolution, we have the main theorem of this
chapter:

Theorem 2.2.7. If ℓ(t) is an absolutely continuous function of time, then the dissipative
Griffith’s criteria are satisfied. Namely:

1. ℓ̇(t) ≥ 0;

2.
3
k
1
x
!
ℓ(t)

"2
+

dEb

!
g(t), K(ℓ

"
dℓ

---
ℓ=ℓ(t)

4
≥ 0;
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3.
3
k
1
x
!
ℓ(t)

"2
+

dEb

!
g(t), K(ℓ

"
dℓ

---
ℓ=ℓ(t)

4
· ℓ̇(t) = 0.

Proof. The first item is obvious from the definition.
For the second item, we use the second condition of continuous evolution, with a test
crack of length ℓ(t) + ε, such that K(ℓ(t)) ⊂ K(ℓ(t) + ε):

Eb(g(t), K(ℓ(t))) + Ef (K(ℓ(t))) ≤ Eb(g(t), K(ℓ(t) + ε)) + Ef (K(ℓ(t) + ε)).

By rearranging and dividing everything by ε, we getA
Eb(g(t), K(ℓ(t) + ε)) − Eb(g(t), K(ℓ(t)))

ε

B
+
A
EfK(ℓ(t) + ε)) − Ef (K(ℓ(t)))

ε

B
≥ 0.

Taking now the limit of ε → 0+ we get:

dEb(g(t), K(ℓ))
dℓ

---
ℓ=ℓ(t)

+
dEf (K(ℓ))

dℓ
---
ℓ=ℓ(t)

=
dEb(g(t), K(ℓ))

dℓ
---
ℓ=ℓ(t)

+ k
!
x(ℓ(t))

"
≥ 0.

For the third item, we consider the third condition from the continuous evolution:

d
ds

3
Eb

1
g(t), K

!
ℓ(s)

"2
+ Ef

1
K
!
ℓ(s)

"24----
s=t

= 0,

dEb

!
g(t), K

!
ℓ
""

dℓ
---
ℓ=ℓ(t)

·
dℓ(s)

ds
---
s=t

+
dEf

!
K
!
ℓ
""

dℓ
---
ℓ=ℓ(t)

·
dℓ(s)

ds
---
s=t

= 0,3dEb

!
g(t), K(ℓ)

"
dℓ

---
ℓ=ℓ(t)

+ k
1
x
!
ℓ(t)

"24
· ℓ̇(t) = 0,

which is precisely what we wanted.

Let us observe that we did not use the assumption of MIL loadings, so this result
is quite general, and looking at the original dissipative formulation of Griffith’s criteria
(1.21), we may conclude that:

G(t) = −
dEb

!
g(t), K(ℓ)

"
dℓ

---
ℓ=ℓ(t)

,

Gc(t) = k
1
x
!
ℓ(t)

"2
.

(2.8)

If we drop altogether the hypothesis of continuity for ℓ(t), there may also be some jumps
in the path, points in time where the length goes instantaneously between two different
values.

Proposition 2.2.8. If at a time t0 we have ℓ+(t0) := lim
t→t−

0

ℓ(t) /= lim
t→t+

0

ℓ(t) =: ℓ−(t0), then:

−
!
Eb(g(t0), K(ℓ+(t0))) − Eb(g(t0), K(ℓ−(t0)))

"
≤ Ef (K(ℓ+(t0))) − Ef (K(ℓ−(t0))).

Moreover, if the loading is MIL, there is the equality.
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Proof. We can apply the second condition of continuous evolution at time t0 − ε, with
test crack K

!
ℓ(t0 + ε)

"
, obtaining:

Eb(g(t0−ε), K(ℓ(t0−ε)))+Ef (K(ℓ(t0−ε))) ≤ Eb(g(t0−ε), K(ℓ(t0+ε)))+Ef (K(ℓ(t0+ε))).

Rearranging and taking the limit as ε → 0 we get precisely:

−
!
Eb(g(t0), K(ℓ+(t0))) − Eb(g(t0), K(ℓ−(t0)))

"
≤ Ef (K(ℓ+(t0))) − Ef (K(ℓ−(t0))).

We cannot use the third condition of the general continuous evolution since that derivative
is not defined in t0, but in case the loading is MIL we can use the third condition of the
monotone continuous evolution, with t = t0 + ε and s = t0 − ε. By taking the limit as
before, we directly get:

Eb(g(t0), K(ℓ+(t0))) + Ef (K(ℓ+(t0))) ≤ Eb(g(t0), K(ℓ−(t0))) + Ef (K(ℓ−(t0))).

Rearranging we get the opposite inequality, thus the equality.

2.2.3 Progressive or brutal evolution
We now would like to study the assumptions under which the crack evolution is progres-
sive (continuous) or brutal (discontinuous). This will permit us to overcome one of the
limitations of the original Griffith’s theory, which is the inability to predict what happens
when G > Gc.
As in the previous subsection, we assume a Predefined Crack Path (PCP); moreover, we
also assume throughout this subsection, that the loadings are MIL, such that the bulk
and crack energies can be parameterized only in terms of the crack length ℓ, as follows:I

Eb(ℓ) := Eb(g0, K(ℓ)),
Ef (ℓ) := Ef (K(ℓ)) − Ef (K0).

We chose to subtract Ef (K0) from Ef (ℓ) such that the crack energy has a minimum
in ℓ = 0. Of course, since the bulk and crack energies are respectively monotonically
decreasing and increasing with K, then their parameterized counterpart will be as well,
but in ℓ. As before, we do not ask about the regularity of these parameterized energies,
but we will be careful in stating the needed regularity for the next results, as this will be a
key point for the distinction between progressive and brutal growth, as well as convexity.
Since during crack propagation, the length always grows, then also the crack energy must
grow. It then makes sense to try and re-parameterize the bulk energy in terms of the
crack energy as follows: I

λ := Ef (ℓ),âEb(λ) := Eb(E−1
f (λ)).

This is permitted since Ef (ℓ) is non-negative and strictly increasing in ℓ, and thus in-
vertible at least locally: since ℓ can exhibits localized jumps, then it will be invertible on
every interval without a jump. Moreover its inverse E−1

f (λ) is strictly increasing as well,
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which means that âEb(λ) is decreasing in λ. It is not strictly decreasing since ℓ can exhibit
jumps.
With this change of variables, and keeping in mind that this time the crack path is fixed
a priori, the monotone continuous evolution gets translated into:

Proposition 2.2.9. Under the assumptions of Predefined Crack Path and Monotone In-
creasing Loadings, we get:

1. λ(t) is increasing in t and λ(0) = 0;

2. φ(t)p âEb(λ(t)) + λ(t) ≤ φ(t)p âEb(λ) + λ ∀λ ≥ λ−(t);

3. φ(t)p âEb(λ(t)) + λ(t) ≤ φ(t)p âEb(λ(s)) + λ(s) ∀s ≤ t.

Moreover, we can also translate the jump condition 2.2.8 in terms of this parameteri-
zation:

Proposition 2.2.10. If at a time t0 we have λ+(t0) /= λ−(t0), then:

−φ(t0)p
1 âEb

!
λ+(t0)

"
− âEb

!
λ−(t0)

"2
= λ+(t0) − λ−(t0).

If âEb is continuous in λ, there is a nice result that lets us link the progressive or brutal
evolution with properties of convexity.

Proposition 2.2.11. If âEb(λ) is continuous and φ(0) = 0, then for each t, λ(t) is one of
the minimizers of φ(t)p âEb(λ) + λ on the interval [0, Ef (L)].

Since L is the total possible length of the fixed crack set, then Ef (L) is the maximum
possible value of the crack energy.

Proof. We will prove that λ(t) is a solution of the fixed monotone evolution if and only if
it is a minimizer to φ(t)p âEb(λ) + λ on the interval [0, Ef (L)].
If λ(t) is a minimizer, the minimum with t = 0 is obtained when λ = 0, and since the
function to minimize grows with t, then also the minimum must increase with time, so
the first condition of the fixed evolution is satisfied. Then, due to the minimality in λ(t),
the second and third conditions are trivially satisfied. Hence λ(t) is also a solution.
Conversely, if λ(t) is a solution, then the second condition of the fixed evolution is already
half of the minimal inequality. We now need to extend the inequality to λ ∈ [0, λ−(t)).
Now, if λ(t) is continuous on such interval, then by the third condition we can conclude.
Conversely, λ might have a finite or countable number of isolated jump discontinuities,
which we will label (tn) with the corresponding jump [λ−n , λ+

n ], such that the minimum
λ(tn) ∈ [λ−n , λ+

n ]. Let us note that if t ∈ (tn−1, tn) for some n, then the opposite inequality
is satisfied by the third condition. We can now write the third condition in the fixed
evolution with t = tn + ε, such that:

φ(tn + ε)p âEb(λ(tn + ε)) + λ(tn + ε) ≤ φ(tn + ε)p âEb(λ(t)) + λ(t) ∀t ≤ tn + ε;
lim

ε→0+
=⇒ φ(tn)p âEb(λ+

n ) + λ+
n ≤ φ(tn)p âEb(λ) + λ ∀λ ≤ λ+

n ,
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which is the inequality for λ = λ+
n . Then, rearranging 2.2.10 for tp and using the second

condition of the fixed evolution we get:

φ(tn)p âEb(λ−n ) + λ−n = φ(tn)p âEb(λ+
n ) + λ+

n ≤ φ(tn)p âEb(λ) + λ ∀λ ≥ λ−n ,

which proves the inequality for λ = λ−n . Now, since âEb is decreasing in λ, we can conclude
that ∀λ ∈ (λ−n , λ+

n ):

φ(t)p âEb(λ+
n ) + λ+

n ≤ φ(tn)p âEb(λ+
n ) + λ+

n + (φ(t)p − φ(tn)p) âEb(λ+
n )

≤ φ(tn)p âEb(λ+
n ) + λ+

n + (φ(t)p − φ(tn)p) âEb(λ)
≤ φ(tn)p âEb(λ) + λ+ (φ(t)p − φ(tn)p) âEb(λ)
= φ(t)p âEb(λ) + λ,

which means that the at every time t, λ(t) is a minimizer.

If the function âEb(λ) has also a continuous derivative, then the minimizers will be
among the stationary points, and if the function is also convex, the minimizers will be
unique and equal to the unique stationary point of the derivative. From this observation
follows this important result.

Theorem 2.2.12.

1. If âEb(λ) is a strictly convex and C1 function, and φ(t) is strictly increasing, then
λ(t) is given by:

λ(t) =


0 if 0 ≤ t ≤ ti,âE ′ −1

b

A
−

1
φ(t)p

B
if ti < t < tL,

Ef (L) if tL ≤ t,

(2.9)

where the times are given by:
ti = φ−1

A
p

ó
− 1âE ′

b(0)

B
,

tL = φ−1

A
p

ó
− 1âE ′

b

!
Ef (L)

"B .
2. If âEb(λ) is a concave and C0 function, and φ(t) is strictly increasing, then λ(t) is

given by:

λ(t) =
I

0 if 0 ≤ t < tJ ,

Ef (L) if tJ < t,
(2.10)

where the time tJ is given by:

tJ = φ−1

 p

öõõô− Ef (L)âEb

!
Ef (L)

"
− âEb(0)

 .
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Proof. For the first part, if âEb is strictly convex and C1, then also φ(t)p âEb(λ) + λ has
the same properties, hence it has a unique minimizer. Using 2.2.11, if the minimum is in
(0, Ef (L)) then the minimum is found by setting the first derivative to 0:

φ(t)p âE ′

b(λ) + 1 = 0 =⇒ λ = âE ′ −1
b

A
−

1
φ(t)p

B
.

In addition, due to the strict convexity, the minimum is at λ = 0 if the derivative in that
point is non-negative, φ(t)p âE ′

b(0)+1 ≥ 0. However, since increasing t makes the minimum
of the extended function move rightward, there will be a value ti such that:

φ(ti)p âE ′

b(0) + 1 = 0 =⇒ ti = φ−1
A

p

ó
− 1âE ′

b(0)

B
,

and for t < ti the minimum is in λ = 0. Analogously, the minimum is at λ = Ef (L) is the
derivative in that point is non-positive, φ(t)p âE ′

b

!
Ef (L)

"
+ 1 ≤ 0. For the same reason as

before, decreasing t makes the minimum of the extended function move leftward, so there
exists a value tL such that:

φ(tL)p âE ′

b

!
Ef (L)

"
+ 1 = 0 =⇒ tL = φ−1

A
p

ó
− 1âE ′

b

!
Ef (L)

"B ,
and for t > tL the minimum is in λ = Ef (L).
For the second part, if âEb is continuous and concave, then also φ(t)p âEb(λ)+λ has the same
properties. This means that the minimum can only be either in λ = 0 or in λ = Ef (L):
for small t it will surely be the first case, while for large t it will be the second. Since
increasing t means that the minimum increases, there has to be a point tJ where the
minimum jump between these two values. For this time tJ , the function has the same
values in λ = 0 and λ = Ef (L), meaning that:

φ(tJ)p âEb(0) + 0 = φ(tJ)p âEb

!
Ef (L)

"
+ Ef (L) =⇒ tJ = φ−1

 p

öõõô− Ef (L)âEb

!
Ef (L)

"
− âEb(0)

 ,
while for t < tJ the minimum is λ = 0 and for t > tJ the minimum is λ = Ef (L).

What this theorem is telling us is conditions such that the growth is progressive or
brutal.
If âEb is convex but not strictly convex, it may have parts where it is linear: in those
parts, there will be a brutal growth of the crack, and to generalize it further, if the
function is not convex, the minimum points will coincide with the minimum points of the
convex envelope. Hence, considering the convex envelope, the growth will be progressive
on the strictly convex parts, and brutal in the linear parts, which in the original function
translates to the concave parts. This means that the growth can be studied for an arbitrary
continuous function.
What we discussed until now regarded just the speed of propagation, and the conditions
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on the energies. We disregarded completely the study of the path of the crack by fixing
a crack path, and that is fine with us since such a study would require at least some
existence and regularity results on the solutions of this model. Nonetheless, even having
fixed the crack path, we are forgetting about another important condition for the crack
to propagate, which is inherently linked with energies and loadings: the displacement and
stress fields in the domain.
This is evident in Griffith’s and Irwin’s formulation for a two dimensional domain, where
the singularities of displacement and stress play an essential role. In Sect. 1.2, we derived
that around the crack tip, the stress field has a r− 1

2 -singularity, and the displacement field
has a r 1

2 -singularity. These kinds of singularities may arise not only on crack tips, but also
on the non-smooth parts of the domain (the so-called concave corners of the domain), and
also in points of the boundary experiencing a change in boundary conditions, like when
the propagating crack intersects ∂DΩ. All of these conditions can be summarized in the
next assumption: given u0 = u(g0, K0) the displacement field giving elastic equilibrium
in Ω \ K0, and given (xj) a finite collection of singular points for the displacement field
inside Ω, we assume that u0 is of the form

u0(x) = âu(x) +
nØ

j=1
r

αj

j vj(θj),

where âu is the singularity-free part of the field, (rj , θj) are polar coordinates centered in
the singular points, and αj is the degree of singularity, assumed to be 0 < αp < 1. Such
a restriction on the degree of singularity is because the stresses have to be unbounded, as
we already discussed in 1.2, which gives αj < 1, and also because due to the minimization
the bulk energy has to be finite, which gives αj > 0. We also assume, just like in Griffith’s
model, we say that the fracture toughness is a constant, meaning that in a neighborhood
of the singular points, k(x) = κj .
As a last assumption, we take a stronger condition than the Predefined Crack Path,
namely that of Predefined Incremental Crack Path (PICP), such that for small times the
crack propagates along n+ 1 rectifiable curves Γℓj of finite length ℓj , where for j ≤ n the
curves are located in a neighborhood of a singular point, while for j = n+ 1, the curve is
away from such neighborhoods.
This assumption, which is relevant only for small times, is useful for studying the propaga-
tion speed at the initiation time. To do that, we need an expansion of the bulk energy in
terms of the lengths of crack curves, which is provided by [18], given that Eb(g0, K0) > 0:

Eb

g0, K0 ∪
n+1Û
j=1

Γℓj

 = Eb(g0, K0) −
n+1Ø
j=1

î
Sjℓ

2αj

j + o
1
ℓ

2αj

j

2ï
, (2.11)

where Sj is a factor depending on the shape of the defect and the strength of singularity,
such that for j ≤ n we have Sj > 0, while for j = n+ 1, we have Sj ≥ 0.
Proposition 2.2.13. In the setting described above:

1. if at least one of the singularities has αj <
1
2 , the ti = 0, the growth will be progres-

sive, and under PICP assumption, the length corresponding to such singularities will
behave like t

2
1−2αj ;
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2. if, under PICP assumption, every singularity has αj >
1
2 , then ti ∈ (0,∞) and the

growth will be brutal;

3. if, under PICP assumption, there is a singularity with α = 1
2 , and all other singu-

larities having αj <
1
2 , then ti ∈ (0,∞);

4. if, under PICP assumption, there are no singular points (αj = 1), then either the
crack will not propagate, or ti ∈ (0,∞) and the growth will be brutal.

This provides yet another result about the growth of the crack, proving again the
superiority of this model to Griffith’s model. We remind that in Irwin’s theory, the
displacement has α = 1

2 , and assuming no other singularities, this predicts that the crack
will have a non-zero finite initiation time, under ever-increasing loadings.
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Chapter 3

Mathematical preliminaries

The results presented in the previous chapter seem to be quite precise and formal. Still,
as we said multiple times, they lose all rigor in the absence of some results of existence for
the continuous evolution given the initial crack and the loadings. This question though
is no mere task, especially for an arbitrary body in R3, arbitrary loadings, and arbitrary
constitutive law for the material. Since a complete study has not been done, we will
focus on linearly elastic homogeneous isotropic material, with Lamé coefficients λ and µ.
Moreover, we will restrict ourselves to a two dimensional anti-plane shear, to avoid using
the spaces of special functions of bounded variations.
We can start now the computation of the bulk energy under these assumptions: for ease of
calculation, we will use the reduced elasticity tensor, under the assumptions of symmetry.
In general, if the displacement is of the form u = (u1, u2, u3), then the infinitesimal strain
tensor ε and Cauchy stress tensor σ are two second-order tensors described by:

ε =

εx,x γxy γxz

γyx εyy γyz

γzx γzy εzz

 σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


where εi,i = ∂ui

∂xi
and εi,j = ∂ui

∂xj
+ ∂uj

∂xi
. These two tensors are related through the elasticity

tensor C, a fourth-order tensor with 81 entries, such that σ = Cε. At this point in general,
for a linear elastic material, the elastic energy per unit volume turns out to be

dW =
1
2σ
⊤ε dx =

1
2 ε
⊤Cε dx. (3.1)

It can be easily proved that ε and σ are symmetric tensors, hence they both have 6
independent entries: we can thus define two vectors, with these 6 respective entries,
obtaining

ε0 :=
#
εx εy εz γxy γxz γyz

$
=
5
∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂u1

∂x2
+
∂u2

∂x1

∂u1

∂x3
+
∂u3

∂x1

∂u2

∂x3
+
∂u3

∂x2

6
,
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and also:

σ0 :=
#
σx σy σz τxy τxz τyz

$
.

With these definitions, it follows that the elasticity tensor C can be reduced to a 6 × 6
tensor, therefore greatly reducing the number of entries. Under the further assumptions
of isotropy and homogeneity, it can be further simplified: it can be proved that it depends
on two parameters, the already mentioned Lamé coefficients λ and µ. Hence σ0 and ε0
are linked through the reduced elasticity tensor H, such that:

σ0 = Hε0 H :=



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 . (3.2)

In our case, the reference configuration is an infinite cylinder Ω ×R, with Ω ⊂ R2, so that
for every (x1, x2, y) ∈ Ω × R the displacement field has the special form

!
0, 0, u3(x1, x2)

"
,

which yields a simpler form of the energy. Moreover, the cracks will be of the form K×R,
where K ∈ K(Ω), the sets of non-empty compact subsets of Ω. In this setting, the bulk
and crack energies for the whole body will be infinite, as the length of the cylinder is
infinite. Still, we can consider them as energies of a cylinder of unit length.
From these assumptions, we get:

ε0 =
5
0 0 0 0

∂u3

∂x1

∂u3

∂x2

6
.

Substituting in (3.1) we get that the elastic energy per unit volume is:

dW =
1
2 ε
⊤
0 Hε0 dx =

µ

2

53
∂u3

∂x1

42
+
3
∂u3

∂x2

426
dx =

µ

2 |∇u3|2 dx. (3.3)

The bulk elastic energy for a given displacement will then be:

Eb(u3, K) :=
µ

2

Ú
Ω\K

|∇u3|2 dx,

where µ, already introduced as the second Lamé coefficient, is also known as the shear
modulus of the material. The crack energy will be the area of the crack, but since we
consider it with unit height, we can write

Ef := γH1(K),

where γ is the constant fracture toughness, borrowed from Griffith’s work.
The set Ω will be a bounded connected open set, with a sufficiently regular boundary, such
that ∂Ω can be divided in ∂DΩ, the Dirichlet part, and ∂N Ω = ∂Ω \ ∂DΩ, the Neumann
part. On the Dirichlet part of the boundary, a displacement will be imposed, through a
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sufficiently regular function g defined on Ω \K.
As we do not impose a displacement across the entire body, but just a boundary displace-
ment, we will need to minimize the total energy across all displacement satisfying the
boundary condition, as follows:

Eb(g,K) := min
v∈V(g,K)

Eb(v,K) = min
v∈V(g,K)

I
µ

2

Ú
Ω\K

|∇v|2 dx
J
.

The set on which we look for the minimizer V(g,K) has to be a space of functions with
a square-integrable gradient on Ω \ K: for now it would be too restrictive to assume
v ∈ H1(Ω \ K) since we do not need the global square integrability of the function, but
it would also be too general to assume the structure of distributions since it would not
be easy to work with due to the presence of non-regular distributions. Hence we choose
to work with a subspace of the distributions with square-integrable gradient, that is the
Deny-Lions space L1,2(Ω\K) of locally square-integrable functions with square-integrable
gradient, so that

V(g,K) =
î
v ∈ L1,2(Ω \K) : v = g on ∂DΩ \K

ï
.

The value of the function at the boundary has to be taken carefully since its regularity is
not clear. To do this, the concept of quasi-everywhere has to be introduced, basically the
analog of almost-everywhere but for Sobolev spaces.
With all of this in mind, the total energy will be

E(g,K) := Eb(g,K) + Ef (K)
= min

v∈V(g,K)
{Eb(v,K)} + Ef (K)

= min
v∈V(g,K)

I
µ

2

Ú
Ω\K

|∇v|2 dx+ γH1(K)
J
.

In most of the next results, we will usually denote the admissible displacements with v
and the minimum with u, if not mentioned otherwise.

In this chapter, we will present some results that are needed in Chapter 4 in order
to formalize in a mathematically rigorous way the Francfort-Marigo model. Not every
result presented will be used in this thesis, as this is also a really short and self-contained
introduction to some of these concepts.

3.1 Capacity of a set and Deny-Lions spaces
First of all, we say that an open set Ω ⊂ RN has a Lipschitz boundary, if for some
a, r ∈ (0,+∞), and for every x0 ∈ ∂Ω, there is an orthogonal reference system with origin
precisely in x0, a cylinder C = C

′ × (−a, a), with C
′ = BN−1(r) being the open ball in

RN−1 with radius r, and a Lipschitz function ϕ : C ′ → (−a, a) with ϕ(0) = 0 such that
∂Ω ∩ C =

)
(x′
, ϕ(x′)) : x′ ∈ C

′*; (3.4)
Ω ∩ C =

)
(x′
, xN ) : x′ ∈ C

′
, xN > ϕ(x′)

*
. (3.5)
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This definition simply states that each point in ∂Ω has a neighborhood in ∂Ω which is
the graph of a Lipschitz function, whose graph divides Ω from its complementary. This
definition could also be employed for every single point, in which case the set of points
for which such a function exists is called the Lipschitz part of the boundary, and will be
identified with ∂LΩ.
For appropriately describing the fine properties of functions in Sobolev spaces, the appro-
priate kind of measure of negligible sets is not the Lebesgue measure, as in Lp(Ω) spaces,
but a notion of outer measure on Ω called p-capacity.

Definition 3.1.1. Let Ω be a bounded open set in RN , and A ⊂ Ω an arbitrary subset.
We define W(A; Ω) to be:

W(A; Ω) :=
)
u ∈ W 1,p

0 (Ω) ∩ C(Ω) : A ⊆ {u ≥ 1}
*
,

that is the space of functions in W 1,p(Ω), vanishing at the boundary of Ω, that are greater
than 1 in a neighborhood of A. Then we can finally define the p-capacity as:

Capp(A; Ω) := inf
u∈W(A;Ω)

Ú
Ω

|∇u|p dx.

Sometimes another definition of capacity is used:

capp(A; Ω) := inf
u∈W(A;Ω)

Ú
Ω

(|u|p + |∇u|p) dx;

W(A; Ω) :=
)
u ∈ W 1,p

0 (Ω) ∩ C(Ω) : A ⊆ {u ≥ 1}
*
.

We will stick with the definition involving only the integral with the gradient because it
only requires a p-integrable gradient, which is precisely what is needed in our treatment.
Let us observe that, based on the definition just given, we can also restrict ourselves to
functions u such that 0 ≤ u ≤ 1. We will stick with the definition given, but in some
results, we will use this equivalent formulation.
We are now going to present a list of results about capacity, and we refer to [38, 39] for a
more delicate treatment.

Theorem 3.1.2. The function A → Capp(A; Ω) has the following properties:

1. Capp(∅; Ω) = 0;

2. if A1 ⊂ A2 ⊂ Ω, then Capp(A1; Ω) ≤ Capp(A2; Ω);

3. if A ⊂ Ω1 ⊂ Ω2, then Capp(A; Ω2) ≤ Capp(A; Ω1);

4. if K1, K2 are two compact subset of Ω, then

Capp(K1 ∪K2; Ω) + Capp(K1 ∩K2; Ω) ≤ Capp(K1; Ω) + Capp(K2; Ω),

this is sometimes called Choquet’s property;

5. if Ki are decreasing compacts such that K =
u
Ki, then Capp(K; Ω) = limi→∞Capp(Ki; Ω);
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6. if Ai are increasing sets such that A =
t
Ai, then Capp(A; Ω) = limi→∞Capp(Ai; Ω);

7. if Ai are arbitrary sets such that A =
t
Ai, then Capp(A; Ω) ≤

q
Capp(Ai; Ω).

Proof. 1. Clearly if A = ∅, then we can take u = 0 as a minimizer.

2. If A1 ⊂ A2 ⊂ Ω, then W(A2; Ω) ⊂ W(A1; Ω), hence the result.

3. Analogously, if A ⊂ Ω1 ⊂ Ω2, then W(A; Ω1) ⊂ W(A; Ω2). Thus

inf
u∈W(A;Ω2)

Ú
Ω2

|∇u|p dx ≤ inf
u∈W(A;Ω1)

Ú
Ω2

|∇u|p dx = inf
u∈W(A;Ω1)

Ú
Ω1

|∇u|p dx,

since if u ∈ W(A; Ω1), then it is extended to Ω1 by setting it to 0.

4. Since first-order Sobolev spaces are closed under absolute values, if u1 ∈ W(K1; Ω)
and u2 ∈ W(K2; Ω), thenÚ

Ω
|∇ max(u1, u2)|p dx+

Ú
Ω

|∇ min(u1, u2)|p dx =
Ú

Ω
|∇u1|p dx+

Ú
Ω

|∇u2|p dx.

From the properties of the admissible sets we can easily deduce that:

max(u1, u2) ∈ W(K1 ∪K2; Ω), min(u1, u2) ∈ W(K1 ∩K2; Ω).

From these last two conclusions, it follows that:

Capp(K1 ∪K2; Ω) + Capp(K1 ∩K2; Ω) ≤
Ú

Ω
|∇u1|p dx+

Ú
Ω

|∇u2|p dx.

Taking the infimum over all u1 ∈ W(K1; Ω) and u2 ∈ W(K2; Ω), we get the result.

5. Since Ki ⊃ K for every i, we get that:

b = lim
i→∞

Capp(Ki; Ω) ≥ Capp(K; Ω).

Due to the properties of the inf, ∀ε > 0 there exists u ∈ W(K; Ω) such thatÚ
Ω

|∇u|p dx < Capp(K; Ω) + ε.

For i large enough, the set Ki is sufficiently close to K, such that Ki ⊂ {u ≥ 1 − ε}.
Then we can say

b = lim
i→∞

Capp(Ki; Ω) ≤ Capp({u ≥ 1 − ε}; Ω) ≤ (1 − ε)−p
Ú

Ω
|∇u|p dx.

Letting ε → 0 yields the result.
For the last two points, we will need this lemma.
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Lemma 3.1.3. Suppose E1, . . . , Ek ⊂ Ω, and (Fi)i=k
i=1 such that Fi ⊂ Ei for every i, and

Capp

!tk
i=1 Fi; Ω

"
< ∞. Then

Capp

A
kÛ

i=1
Ei; Ω

B
− Capp

A
kÛ

i=1
Fi; Ω

B
≤

kØ
i=1

1
Capp(Ei; Ω) − Capp(Fi; Ω)

2
.

Proof. The key point here is that, for three compact subsets C,K, F of Ω such that C ⊂ K,
it follows from previous results that

Capp(K ∪ F ; Ω) + Capp(C; Ω) ≤ Capp(K ∪ (C ∪ F ); Ω) + Capp(K ∩ (C ∪ F ); Ω)
≤ Capp(K; Ω) + Capp(C ∪ F ; Ω).

Rearranging we get:
Capp(K ∪ F ; Ω) − Capp(C ∪ F ; Ω) ≤ Capp(K; Ω) − Capp(C; Ω).

The lemma then follows by iterating this procedure in the case when Ki = Ei and Fi = Ci

are compact, and then it is easily extended to the case of open sets and then arbitrary
sets.

6. Thanks to the already proven monotonicity of capacity, we only need to prove the
opposite inequality:

Capp(A; Ω) ≤ lim
i→∞

Capp(Ai; Ω).

Let us fix ε > 0 and choose open sets Ui such that Ai ⊂ Ui ⊂ Ω and
Capp(Ui; Ω) ≤ Capp(Ai; Ω) + ε2−i.

Due to the increasing nature of the sets, Capp(
tk

i=1 Ai; Ω) = Capp(Ak; Ω) < ∞, and
from the lemma it follows that:

Capp

A
kÛ

i=1
Ui; Ω

B
− Capp

A
kÛ

i=1
Ai; Ω

B
≤

kØ
i=1

1
Capp(Ui; Ω) − Capp(Ai; Ω)

2

≤
kØ

i=1
ε2−i

< ε.

From this it follows that if K ⊂
t∞

i=1 Ui is a compact, then K ⊂
tk

i=1 Ui, and:

Capp (K; Ω) ≤ Capp

A
kÛ

i=1
Ui; Ω

B
≤ Capp

A
kÛ

i=1
Ai; Ω

B
+ ε ≤ lim

k→∞
Capp (Ak; Ω) + ε.

From this we can conclude:

Capp (A; Ω) ≤ Capp

A ∞Û
i=1

Ui; Ω
B

= sup
K⊂
t∞

i=1 Ui

Capp (K; Ω)

≤ lim
k→∞

Capp (Ak; Ω) + ε.

The inequality is then obtained by taking the limit of ε → 0.
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7. This is a consequence of the previous point. Let us observe that, by taking Fi = ∅,
the lemma implies

Capp

A
kÛ

i=1
Ai; Ω

B
≤

kØ
i=1

Capp(Ai; Ω).

The union is increasing, meaning that we can use the previous point to conclude,
due to the capacity being a non-negative quantity.

Note that properties 1), 2), and 7) are used to describe an outer measure, so it follows
that capacitable set are defined with the usual Carathéodory construction. Moreover,
if a set function satisfies properties 2), 5) and 6), it describes what is called a Choquet
or generalized capacity relative to Ω. It can be proved that for this kind of generalized
capacity, all Borel subsets A of Ω are capacitable.
This is sometimes called variational capacity due to its definition as an infimum, and
in certain cases, it reminds us of the capacity of a capacitor with the walls being the
boundaries of A and Ω. Besides, it was introduced as a means to study the properties
of solutions of elliptic equations in non-linear potential theory. From a heuristical point
of view, based on the definition, it seems likely an appropriate minimizer of that integral
would have to be exactly equal to 1 on an open subset of the interior of A, and exactly
equal to 0 on an open subset of Ω \ A, in order to minimize the norm of the gradient. In
fact, on a compact set, we can conclude

Proposition 3.1.4. If K ⊂ Ω is a compact, then Capp(K; Ω) = Capp(∂K; Ω).

The importance of this notion of measure comes from the fact that it is both used to
define invisible (or removable) sets, such that a Sobolev space is isomorphic to the Sobolev
space without the set, and to define fine properties of Sobolev functions and the concept
of quasi-everywhere and quasi-continuity.
We define a set E ⊂ RN to be of zero p-capacity (Capp(E) = 0) if

Capp(E ∩ Ω; Ω) = 0 ∀Ω ⊂ RN ,

and we say that a certain property holds quasi-everywhere if it holds except for a set of
p-capacity 0. As a connection with the Lebesgue measure, we have:

Proposition 3.1.5. If a set E is of zero p-capacity, then it is also of zero Lebesgue
measure.

Proof. Let us fix a small enough ε > 0. Since Capp(E ∩ Ω; Ω) = 0 ∀Ω ⊂ RN , we
can choose a bounded open Ω such that there exists an open neighborhood U ⊂ Ω of
E ∩ Ω, such that Capp(U ; Ω) < ε. We can now choose a compact K ⊂ U , and a function
φ ∈ W(A; Ω) such that: Ú

Ω
|∇φ|p dx ≤ Capp(K; Ω) + ε ≤ 2ε.

Since Ω is bounded, and φ has zero trace at the boundary, we can use Poincare’s inequality
to deduce that:

|K| =
Ú

K
dx ≤

Ú
K

|φ|p dx ≤
Ú

Ω
|φ|p dx ≤ C

Ú
Ω

|∇φ|p dx ≤ 2Cε.
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We can now conclude thanks to the inner regularity of the Lebesgue measure, letting then
ε → 0.

In general, the converse is not true, and this result only shows that the capacity is finer
than the Lebesgue measure. Interestingly, there is a simple counter-example in the case
p > N , because it turns out that every singleton has non-zero capacity. To prove this, we
need Morrey’s inequality, whose proof can be found in [38].

Lemma 3.1.6 (Morrey’s inequality). Let Ω be a bounded connected open set with Lipschitz
boundary, and let v ∈ W 1,p(Ω) with p > N and p < ∞. Then there exists a constant
C = C(N, p,Ω) > 0 such that--v(z) − v(y)

-- ≤ C|z − y|1−
N
p
..∇v..

Lp(Ω) (3.6)

for almost every z and y in Ω.

Proposition 3.1.7. If p > N , then Capp({x},Ω) > 0 for every x ∈ Ω.

Proof. Take x ∈ Ω and a function v ∈ W({x},Ω). Then there exists a neighborhood of x
where the v ≥ 1. Without loss of generality, we can say that v(y) ≥ 1 for every y ∈ Br(x),
for a certain small enough r, such that

r <
1
5 dist({x}, ∂Ω).

Let’s take a truncation function η ∈ C∞0 (B2r(x)), such that 0 ≤ η ≤ 1, and η = 1 in
Br(x), with a bounded gradient |∇v| ≤ 2

r .
By Lemma 3.1.6 applied to ηv ∈ W 1,p

0 (Ω), there exists a constant C = C(N, p,Ω) > 0
such that --(ηv)(y) − (ηv)(z)

-- ≤ C|y − z|1−
N
p
..∇(ηv)

..
Lp(Ω)

for almost every y, z ∈ Ω. Let us observe that ∥∇(ηv)∥Lp(Ω) = ∥∇(ηv)∥Lp(B2r(x)), since
η ≡ 0 outside B2r(x). Let us now choose y ∈ Br(x) and z ∈ B4r(x) \B2r(x), such that

(ηv)(y) ≥ 1, (ηv)(z) = 0, |y − z| ≤ 5r.

Then we can writeÚ
B2r(x)

|∇(ηv)|p dy = ∥∇(ηv)∥p
Lp(Ω)

≥
1
Cp

|y − z|N−p
--(ηv)(y) − (ηv)(z)

--p
≥

1
Cp

5N−p rN−p

We can also derive another bound on the integral, assuming r < 1:Ú
B2r(x)

|∇(ηv)|p dy ≤ 2p

AÚ
B2r(x)

|v∇η|p dy +
Ú

B2r(x)
|η∇v|p dy

B
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= 2p

AÚ
B2r(x)

|v|p |∇η|p dy +
Ú

B2r(x)
|η|p |∇v|p dy

B

≤ 2p

A
2p

rp

Ú
B2r(x)

|v|p dy +
Ú

B2r(x)
|∇v|p dy

B

≤ 2p

A
2p

rp

Ú
B2r(x)

|v|p dy + 2p
Ú

B2r(x)
|∇v|p dy

B

=
4p

rp

AÚ
B2r(x)

|v|p dy + rp
Ú

B2r(x)
|∇v|p dy

B

≤
4p

rp

AÚ
B2r(x)

|v|p dy +
Ú

B2r(x)
|∇v|p dy

B

≤
4p

rp

3Ú
Ω

|v|p dy +
Ú

Ω
|∇v|p dy

4
=: 4p

rp

..v..p

W 1,p(Ω).

These two together show that

..u..p

W 1,p(Ω) ≥
rp

4p

Ú
B2r(x)

|∇(ηv)|p dy ≥
rp

4p

1
Cp

5N−p rN−p =: C0 > 0

for every u ∈ W({x},Ω), hence Capp({x},Ω) > 0.

What this tells us is that this concept of capacity is only useful when p ≤ N , as is our
case of study.
As for the quasi-continuity, intuitively it may be continuity except for a set of small
capacity.

Definition 3.1.8. We define a function u : A → R to be quasi-continuous if for every
ε > 0 there exists an open set Uε ⊂ A such that Capp(Uε; Ω) < ε, and u restricted to
A \ Uε is continuous.

This concept of quasi-continuity is especially useful with a new set of functions, more
complicated than the usual Sobolev space. It is somewhat linked to our model since
this space requires the gradient to be p-integrable, and the function to be locally p-
integrable, since in the formula (2.2) the displacement at the boundary can theoretically
be unbounded, but their gradient must be square-integrable. We will define this space by
following the original treatment by Deny and Lions [6].
Let Ω ∈ RN be a connected open set, and let DΩ be the set of complex-valued compactly-
supported test functions in Ω, along with the usual topology. As usual, its dual D′

Ω will
be the set of distributions on Ω, endowed with the dual topology. Let us now choose E as
a topological vector space, locally convex, separable and complete, contained in D′

Ω and
endowed with a finer topology.

Definition 3.1.9. We define a Beppo Levi space on E, denoted as BL(E), to be the
subspace of distributions T ∈ D′

Ω such that ∂
∂xi
T ∈ E ∀i, endowed with the least fine

topology such that the applications T → ∂
∂xi
T are continuous from BL(E) to E.
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Upon further inspection, if T ∈ BL(E), then also T + c ∈ BL(E) ∀c ∈ R, meaning
that the application T → ∂

∂xi
T is continuous but not injective. If we could make it so that

this application is injective, then since E is separable, also its image space would be as
well. To do this, by a standard argument, we define the quotient of BL(E) with respect
to the kernel of the application, which in this case is simply the space of constants R. By
making this, we know that the quotient space is separable, hence:

Definition 3.1.10. We define BL◦(E) = BL(E)⧸R as the separable topological vector
space defined by this quotient.

Proposition 3.1.11. The space BL◦(E) is complete.

The most famous example of these spaces is when E = Lp(Ω), in which case it is
endowed with the norm on the gradient:

∥∇T∥p
Lp(Ω;RN ) =

NØ
i=1

..... ∂

∂xi
T

.....
p

Lp(Ω)
.

In general BL◦(Lp) is a Banach space, but when p = 2 it is a Hilbert space. In many
applications, it is better to consider the T to be in a p-integrable type subspace of the
distributions, since the original space may contain too many functions. In general:

Definition 3.1.12. We define the Deny-Lions space

L1,p(Ω) :=
)
v ∈ Lp

loc(Ω) : ∇v ∈ Lp(Ω;RN )
*
,

to be the space of locally p-integrable distributions with a p-integrable gradient, equipped
with the norm ∥∇v∥Lp(Ω;RN ).

Theorem 3.1.13. The space L1,p(Ω) is complete. In particular this implies that the set)
∇v : v ∈ L1,p(Ω)

*
is closed in Lp(Ω;RN ).

There is an interesting connection between the space L1,2(Ω) and the classic Sobolev
space H1(Ω), in the presence of a Lipschitz regularity for the boundary.

Proposition 3.1.14. Let u be a function in L1,2(Ω), and x be a point on the Lipschitz part
of the boundary ∂LΩ. Then there exists a neighborhood I(x) of x, such that u restricted
to Ω ∩ I(x) is in the Sobolev space, u|Ω∩I(x) ∈ H1(Ω ∩ I(x)). In particular, if the set Ω is
bounded and with a Lipschitz boundary, we can take the neighborhood to be the whole Ω,
from which follows that L1,2(Ω) = H1(Ω).

This is useful since in general, it is not clear how one can define traces at the boundary
of a function in L1,2(Ω), and in some cases, it is not even possible. This is due to the fact
that functions in L1,2(Ω) are only in L2

loc(Ω), which means that if Ω′
⋐ Ω, then u ∈ L2(Ω′).

On the other hand, this is not a problem in H1(Ω), as the theory of traces is well-defined.
This helps as 3.1.14 states that if u ∈ L1,2(Ω) and ∂LΩ /= ∅, then u is locally a function
on H1(Ω ∪ Γ) with Γ ⊂ ∂LΩ. Then u has a well-defined trace everywhere on the relative
interior of ∂LΩ.
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Moreover, if Ω is connected, we can take Γ as before, and define the Deny-Lions space of
functions vanishing quasi-everywhere on Γ. From now on we will identify quasi-everywhere
with q.e., hence:

L1,p
0,Γ(Ω) :=

)
u ∈ L1,p(Ω) : u = 0 q.e. on Γ

*
.

In the case when Γ = ∂LΩ = ∂Ω, we will simply write L1,p
0 (Ω).

From now on we are going to focus on the case p = 2. As before, we indicate with
(L1,2)◦(Ω) the separable space that is the quotient between L1,2(Ω) and the space of
constants R. For ease of notation, we will indicate (L1,2)◦(Ω) also with L1,2(Ω).
One would question whether or not the space L1,2

0,Γ(Ω) has some nice properties, first of
all being Hilbertian. We have the following result, deriving from Theorem 3.1.13 and
Proposition 3.1.14:

Corollary 3.1.15. With the same notation as before, we have that the space L1,2
0,Γ(Ω) is a

Hilbert space endowed with the norm of the gradient ∥∇u∥L2(Ω;RN ). In addition, a bounded
sequence admits a sub-sequence whose gradients converge weakly in L2(Ω;RN ).

Proof. Since Γ ⊂ ∂LΩ, we iteratively construct a sequence of connected open sets (Ωk) in
such a way: Ω1 is so that Ω1 ⊂ Ω and (∂Ω1 ∩ ∂Ω) ⊂ Γ; then Ω2 is such that Ω1 ⊂ Ω2 ⊂ Ω
and (∂Ω1 ∩ ∂Ω) ⊂ (∂Ω2 ∩ ∂Ω) ⊂ Γ. Thus we can easily construct an increasing sequence
such that they all have a Lipschitz boundary since ∂Ωk ∩ ∂Ω ⊂ Γ ⊂ ∂LΩ, and also
Ω =

t
Ωk and Γ =

t
(∂Ωk ∩ ∂Ω).

Now let (vn) be a Cauchy sequence in L1,2
0,Γ(Ω). Thanks to Proposition 3.1.14 we have

L1,2(Ωk) = H1(Ωk) so the functions (vn) restricted to Ωk belong to H1(Ωk) and vn =
0 q.e on ∂Ωk ∩ ∂Ω. By using a generalized Poincaré inequality for L1,2(Ωk) to control the
norm, we can conclude that (vn) is also a Cauchy sequence in H1(Ωk) which we know to
be complete, hence vn → v ∈ H1(Ωk) strongly such that v = 0 q.e. on ∂Ωk ∩ ∂Ω. This is
valid for every k, so we can take the union of the sets and construct a function v such that
v = 0 q.e. on Γ which is in H1(Ω) = L1,2(Ω), with vn → v ∈ H1(Ωk) ∀k. Then also ∇vn

converges strongly in L2(Ωk;RN ) due to the completeness of the space, and in particular
it converges also in L2(Ω;RN ), hence vn → v strongly in L1,2

0,Γ(Ω). This means that every
Cauchy sequence has a strong limit, so the space is complete.
For the second part, let us take (un) to be a bounded sequence in L1,2

0,Γ(Ω). For what
we have discussed in the first part, (un) is also a bounded sequence in H1(Ωk) ∀k: so
there exists a weakly convergent sub-sequence converging to a function u ∈ L1,2(Ω). By
Mazur’s lemma there exists a convex combination of the functions un, converging to u
strongly in H1(Ωk), and this, in turn, implies u = 0 q.e on ∂Ωk ∩ ∂Ω, hence u ∈ L1,2

0,Γ(Ω).
To conclude, we note that also (∇un) is bounded in L2(Ω;RN ), so ∇un → ∇u weakly in
the same space.

For more results on these kinds of spaces we refer the reader to the much more exhaus-
tive treatment in [37].

The proof of this next result is quite long and requires some theory on maximal op-
erators in Sobolev spaces: being outside the scope of this thesis, we will only state it
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without proof. Besides, its importance in this treatment is confined to being able to use
a quasi-continuous representative for function in a Deny-Lions or Sobolev space.

Theorem 3.1.16. Let u ∈ L1,p(Ω), 1 < p < ∞, with Ω ⊂ RN . Then outside of a set
E : Capp(E) = 0 there is a p-quasi-continuous representative ũ defined p-quasi-everywhere
on Ω ∪ ∂LΩ, defined by:

ũ(x) := lim
r→0+

−
Ú

Br(x)∩Ω
u(y) dy ∀x ∈ (Ω ∪ ∂LΩ) \ E.

Moreover the quasi-continuous representative ũ satisfies:

lim
r→0+

−
Ú

Br(x)∩Ω
|u(y) − ũ(x)| dy = 0 ∀x ∈ (Ω ∪ ∂LΩ) \ E.

The extension of ũ on the Lipschitz part of the boundary is a consequence of the well-
known extension operators for Lipschitz domains in Sobolev spaces, and for Deny-Lions
spaces it is a direct consequence of the equivalence with H1 near ∂LΩ. From now on, we
will always identify each function in L1,2 with its quasi-continuous representative.
A nice link between functions defined quasi-everywhere and the usual Sobolev space is the
next result, which links functions with zero trace on the boundary with a quasi-continuous
function.

Theorem 3.1.17. Let u ∈ W 1,p(Ω). Then u ∈ W 1,p
0 (Ω) if and only if there exists a

p-quasi-continuous function v in RN such that v = u a.e. in Ω and v = 0 q.e. on ∂Ω.

Note the difference between the almost everywhere inside the domain, and the quasi
everywhere on the boundary.
As briefly introduced before, another important application of capacity is to understand
when a set in invisible (or removable) for a Sobolev space, and we will see this will be
useful in the existence results for discarding sets of Hausdorff dimension strictly lower
than N − 1. As a notation, if X and Y are two normed spaces, we will write X = Y when
there exists an isometric isomorphism between them.

Theorem 3.1.18. Let E be a relatively closed subset of Ω. Then

• E has zero p-capacity if and only if L1,p
0 (Ω) = L1,p

0 (Ω \ E);

• if E has zero p-capacity then L1,p(Ω) = L1,p(Ω \ E).

Proof. We will split the proof into two points.

• Suppose Capp(E) = 0. Then it is also of zero Lebesgue measure. Now, since the
inclusion L1,p

0 (Ω \ E) ⊆ L1,p
0 (Ω) is trivial, we focus on the opposite inclusion. Let

uj ∈ L1,p
0 (Ω) with 0 ≤ uj ≤ 1, be a sequence such that uj = 1 in a neighborhood of

E, and such that uj → 0 in L1,p(Ω). Let now φ ∈ C∞0 (Ω), then (1 − uj)φ ∈ L1,p
0 (Ω),

but since it has compact support in Ω \ E, then it also is in L1,p
0 (Ω \ E). Moreover,

it converges to φ in L1,p(Ω \ E), such that φ ∈ L1,p
0 (Ω \ E), from which follows the

reverse inclusion.
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Suppose now that L1,p
0 (Ω \ E) = L1,2

0 (Ω). Let K ⊂ E be a compact set. If we
are able to prove that K is of p-capacity zero, then we are done, due to the outer
continuity of capacity. Let us pick φ ∈ C∞0 (Ω) such that φ = 1 in a neighborhood of
K. Due to the equivalence of spaces, we can take a sequence φj ∈ C∞0 (Ω \ E) such
that φj → φ in L1,p(Ω), and ϕ − ϕj = 1 in a neighborhood of K, since the support
of the φj does not contain K. This means that φj − φ ∈ L1,p

0 (Ω), which implies

Capp(E; Ω) ≤ lim
j→∞

Ú
Ω

|∇φ− ∇φj |p dx = 0.

The conclusion follows.

• As before, the inclusion L1,p(Ω\E) ⊆ L1,p(Ω) is trivial since E has also zero Lebesgue
measure. For the other inclusion, let us take u ∈ L1,p(Ω \E): we need to show that
u can be approximated in L1,p(Ω \ E) by a sequence in L1,p(Ω). Let us then take a
sequence (vj) ⊂ L1,p(Ω), such that 0 ≤ vj ≤ 1, vj = 1 in an open neighborhood Uj of
E, and such that vj → 0 in L1,p(Ω). Then it follows that the functions uj := (1−vj)u
are in L1,p(Ω \ E) since it is basically a truncation of u to Ω \ Uj ⊂ Ω \ E, and
in L1,p(Uj) since uj = 0 q.e. in Uj up to a set of capacity zero (E), and thus
uj ∈ L1,p(Ω \ E) ∩ L1,p(Uj) = L1,p

!
(Ω \ E) ∪ Uj

"
= L1,p(Ω). Since uj → u in

L1,p(Ω \ E) because Uj gets closer and closer to E, we can then conclude, having
found the sequence.

If Ω has a Lipschitz boundary, then this last result can be used to prove that the
Deny-Lions space L1,2

0 (Ω) is isometrically isomorphic to L1,2(Ω), only if the boundary
is of zero p-capacity. Keep in mind that the assumption of the Lipschitz boundary is
needed, because otherwise, as already discussed, we would not be able to define traces at
the boundary.

Theorem 3.1.19. L1,p(Ω) = L1,p
0 (Ω) if and only if ∂Ω has zero p-capacity.

Proof. Suppose ∂Ω is of zero p-capacity. The inclusion L1,p
0 (Ω) ⊆ L1,p(Ω) is trivial. For

the other inclusion, we can use the previous theorem to deduce that:

L1,p(Ω) ⊆ L1,p(RN \ ∂Ω) = L1,p(RN )
= L1,p

0 (RN ) = L1,p
0 (RN \ ∂Ω) ⊆ L1,p

0 (Ω).

Suppose now that L1,p
0 (Ω) = L1,p(Ω). We can then say:

L1,p
0 (RN ) = L1,p(RN ) ⊆ L1,p(Ω) = L1,p

0 (Ω) ⊆ L1,p
0 (RN ).

Thanks to this we have:

L1,p
0 (RN ) = L1,p

0 (Ω) ⊆ L1,p
0 (RN \ ∂Ω).

Since the other inclusion L1,p
0 (RN \ ∂Ω) ⊆ L1,p

0 (Ω) is trivial, we deduce that L1,p
0 (RN ) =

L1,p
0 (RN \ ∂Ω). Thanks to the previous theorem we can conclude that ∂Ω has zero p-

capacity.
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As the last result of this section, we present a property of constant L1,2(Ω) functions
on two connected sets.

Proposition 3.1.20. Let u ∈ L1,2(Ω) with Ω ⊂ R2 and C1, C2 two connected open subsets
of Ω ∪ ∂LΩ such that C1 ∩ C2 /= ∅. Then if u is constant q.e. on C1 and C2, it is also
constant q.e. on C1 ∪ C2.

Proof. We assume C1, C2 to have more than one point each. We assume the constant
values on each set to be different, such that u = c1 q.e. on C1 and u = c2 q.e. on C2 with
c1 /= c2. Since the intersection of the closure is non-empty, we can take

x ∈ (C1 ∩ C2) ⊂ Ω ∪ ∂LΩ,

and by using Proposition 3.1.14 we can assume u ∈ H1(Br(x)) for a certain r > 0, with
r small enough so that Ci ∩ Br(x) /= ∅. This implies Ci ∩ ∂Bρ(x) /= ∅ ∀ρ ∈ (0, r).
Considering u as its quasi-continuous representative, we know that for every ϱ ∈ (0, r), u
takes two distinct values c1 and c2 in at least two points. Due to the quasi-continuity, since
the minimizing function for the Dirichlet functional is linear when the boundary conditions
are both Dirichlet, we can estimate the integral by constructing a linear function going
around ∂Bϱ(x), attaining the values c1 and c2 in two points. We do not know anything
about where these points will be positioned, but we can parameterize it with the angular
distance θ between them. We will then obtain a function of θ, which we can further
minimize, therefore obtaining:Ú

∂Bρ(x)
|∇u|2 dH1 ≥

(c2 − c1)2

ρ (2π − θ) +
(c2 − c1)2

ρθ
≥

2 (c2 − c1)2

ρπ
.

This implies that the integral over all Br(x) diverges, so ∇u /∈ L2(Br(x);R2), hence
u /∈ H1(Br(x)), contradicting our assumption. In hindsight, the only way that integral
could be non-divergent is if c1 = c2.

This proposition is not straightforward due to the functions being defined quasi-
everywhere, hence in principle, we could have a set with zero p-capacity disconnecting
the sets, or maybe the interiors of the sets are disjoint, but the closures intersect in one
point: as we have just proved, this is enough so that the function has the same constant
values of C1 and C2.

3.2 Hausdorff measure and Hausdorff distance be-
tween compact sets

In Proposition 3.1.20 of the last section, we briefly used in the integral the so-called
Hausdorff measure H1, which is the correct measure for dealing with integrals of surfaces
embedded in a space of higher dimension. This notion of measure has actually some nice
properties, and we will present a brief treatment.
Let h(A) be a non-decreasing set function called Gauge function, such that if A1 ⊂ A2
then h(A1) ≤ h(A2). Moreover, h(∅) = 0 and it is continuous in 0. Given a covering A
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of a certain set A, we define it to be a hε-covering if for all the sets in the covering (Ai),
we have h(Ai) ≤ ε: we will refer to these coverings with Aε.

Definition 3.2.1. The set function defined by

∆h(E) = sup
ε→0

∆h
ε (E) = sup

ε→0
inf
Aε

Ø
A∈Aε

α(h)h(A),

is an outer measure, whose restriction to all the sets E for which

∆h(E) = ∆h(E ∩ U) + ∆h(E ∩ U∁) ∀U ⊂ RN ,

is a proper measure.

This definition is quite general, but for most of the purposes in the literature, it
suffices to choose h(A) =

!
diam(A)

"s. With this choice of Gauge function, the measure
thus defined will be the s dimensional Hausdorff measure, denoted by Hs(E). As we can
see, the choice of s is quite important, since it is supposed to be the dimension of the set
we want to measure. Moreover, one would expect this notion of measure to be equal to
the Lebesgue measure when s = N . That is the case, though with the constant α equal
to

α(s) =
π

s
2

Γ
!

s
2 + 1

".
We can easily observe that, even though the Lebesgue measure is defined only for sets
with integer dimension, in the definition of the Hausdorff dimension, the exponent s can
take any value s > 0. In fact:

Proposition 3.2.2. Let X be a metric space, and E ⊆ X an arbitrary Borelian subset.
It follows from the definition of the s dimensional Hausdorff measure that there exists
at most one value s for which Hs(E) ∈ (0,∞). We will call this value the Hausdorff
dimension of the set E, defined by

dimH(E) := inf
)
s ∈ [0,∞) : Hs(E) = 0

*
.

The importance of this measure comes from the fact that it is used to determine the
fractal dimension of a set. For more results on this and Hausdorff measure in general we
refer to [23, 33].
The concepts of Hausdorff measure and capacity are linked by the next proposition, which
requires this next lemma to be proved. Let us keep in mind that with the classic Lebesgue
measure, the measure of the ball B(x, r) scales like rN .

Lemma 3.2.3. Let x ∈ Ω ⊂ RN , and let 0 < r ≤ 1 be such that B(x, r) ⋐ Ω. Then there
exists a constant C = C(N, p) such that:

Capp(B(x, r); Ω) ≤ CrN−p.
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Proof. Let us take a small enough ε > 0 such that B(x, r(1 + ε)) ⊂ Ω. We next define a
function u(y) such that:

u(y) :=


1 y ∈ B(x, r),
1
ε

3
1 + ε− ∥y − x∥

r

4
y ∈ B(x, r(1 + ε)) \B(x, r),

0 y ∈ Ω \B(x, r(1 + ε)).

This function is such that 0 ≤ u ≤ 1, it is 1
εr -Lipschitz and also |∇u| ≤ 1

εr a.e. in Ω.
This means that u ∈ H1,p(Ω). Moreover u has also zero trace at the boundary, hence
u ∈ H1,p

0 (Ω), and thus u ∈ W(A; Ω). Then

Capp(B(x, r); Ω) ≤
Ú

Ω
|∇u(y)|p dy ≤

Ú
B(x,r(1+ε))

|∇u(y)|p dy

≤
1

εprp
|B(x, r(1 + ε))| ≤

C0

εprp
(1 + ε)N rN = CrN−p.

Hence the natural scaling for the p-capacity is rN−p.

Proposition 3.2.4. Assume that 1 < p < N . Then for any subset E ⊂ Ω, there exists a
constant C = C(N, p) such that:

Capp(E; Ω) ≤ C HN−p(E).

Proof. Let Bδ be the family of coverings of E of the type
!
B(xi, ri)

"
i
, such that E ⊂t

i B(xi, ri) and that ri ≤ δ for every i. Then the sub-additivity of the p-capacity and
Lemma 3.2.3 imply:

Capp(E; Ω) ≤
∞Ø

i=1
Capp(B(xi, ri); Ω) ≤ C

∞Ø
i=1

rN−p
i .

Since this is true for all coverings, we can take the infimum across Bδ, obtaining precisely
the definition of HN−p

δ (E). Then we conclude by:

Capp(E; Ω) ≤ C HN−p
δ (E) ≤ C HN−p(E).

In particular this implies that if HN−p(E) = 0, then Capp(E; Ω) = 0.

This result can also be extended to the case p = N , by using a Gauge function of the
form

h(A) =
3

log
3 1

diam(A)

441−N

,

though we are not going to dwell on the much more difficult proof: we refer to the already
mentioned books on the subject. Keep in mind that, as said in the previous section, the
capacity only makes sense when p ≤ N .
There is also another important concept, also studied initially by Hausdorff, which is a
kind of distance between sets.
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Let X be a metric space with metric d(x, y), and A,B ⊆ X. Given r > 0, we define the
open r-neighborhood of A as

Nr(A) :=
)
y ∈ X : d(x, y) < r for some x ∈ A

*
.

In 1914 Hausdorff defined a distance between two sets as

D(A,B) := inf
)
r > 0 : A ⊆ Nr(B) B ⊆ Nr(A)

*
.

This distance does not define a metric on the set of all subsets of X because, if we consider
the simple case X = R, then:

• D({0}, [0,∞)) = ∞, so we restrict to bounded sets;

• D(∅, {0}) = ∞, so we restrict to non-empty sets;

• D((0,1), (0,1]) = 0 even though the sets are not the same, so we restrict to closed
sets.

Turns out this distance is actually a metric on the set K(Ω) of all compact non-empty
subsets of Ω, and for two compact non-empty sets K1, K2 ⊂ Ω its formulation is equivalent
to:

D(K1, K2) := max
)

sup
x∈K1

d(x,K2), sup
y∈K2

d(y,K1)
*
,

with d(x,∅) = diam(Ω) and supx∈∅[. . .] = 0.

Theorem 3.2.5. Let Ω ⊆ X be a subset of a metric space, and let K(Ω) be the collection of
all compact non-empty subsets of Ω. Then if X is complete, then the Hausdorff distance D
is a metric which renders K(Ω) also complete. Moreover, if X is also compact, then K(Ω)
will also be compact, meaning that every sequence in K(Ω) has a subsequence converging
to a set K ∈ K(Ω) in the Hausdorff metric.

The Hausdorff metric and Hausdorff measure are related through various results, first
of all, this lower semi-continuity result for connected sets. For this, we have to introduce
a new space of compact sets, and some more that will be useful later on.
We define Kf (Ω) :=

)
K ∈ K(Ω) : H1(K) < ∞

*
to be the set of compacts with Hausdorff

dimension 1. We then define, given an integer m ≥ 1, Km(Ω) to be the set of K ∈ K(Ω)
with at most m connected components. Consequently, we define Kf

m(Ω) :=
)
K ∈ Km(Ω) :

H1(K) < ∞
*
, the collection of compact sets with finite length and limited connected

components. Also the set Kλ
m(Ω) :=

)
K ∈ Km(Ω) : H1(K) < λ

*
of compacts with limited

length and limited connected components will be used.

Theorem 3.2.6. Let (Kn) be a sequence in K1(Ω) converging to a set K in the Hausdorff
metric. Then K ∈ K1(Ω) and ∀U ⊂ R2 open:

H1(K ∩ U) ≤ lim inf
n→∞

H1(Kn ∩ U).
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Remark 3.2.7. If the sets are not connected, one can exhibit a counterexample. In R we
can take:

Kn =
2n−1Û
i=0

5
i

2n
,
i+ 0.5

2n

6
.

Then H1(Kn) = 0.5, but one can check that Kn → [0,1] in the Hausdorff metric. The
problem here lies not in the set being disconnected, but in the fact that the number of
connected components of the set is unbounded.
In reality, this result can be extended to the case of at most m connected components, since
one can easily prove that there exists a sequence of each connected component converging
to the connected components of K.

Corollary 3.2.8. Let m ≥ 1, and (Kn) a sequence in Km(Ω), such that Kn → K in the
Hausdorff metric. Then K ∈ Km(Ω) and ∀U ⊂ R2 open:

H1(K ∩ U) ≤ lim inf
n→∞

H1(Kn ∩ U).

Proof. Let K1
n, . . . , K

kn
n , with kn ≤ m, be the connected components of Kn. Then there

exists k ≤ m such that, up to a sub-sequence, kn = k for every n. By the compactness of
the Hausdorff space we know that K1

n → âK1, . . . , Kk
n → âKk, and âKi ∈ K1(Ω).

Then, for every x ∈ K there exists a sequence xn → x with xn ∈ Kn. Then there also
exists a certain index jn such that xn ∈ Kjn

n , with jn ≤ k. As before, up to a sub-sequence,
we can take jn = j, which translates to x ∈ âKj . From this, it follows that

K ⊆ âK1 ∪ · · · ∪ âKk,

which implies that K as at most k ≤ m connected components. Then, from Theorem.
3.2.6 applied to each âKi, we deduce that

H1( âKi ∩ U) ≤ lim inf
n→∞

H1(Ki
n ∩ U).

It now follows that

H1(K ∩ U) ≤
kØ

i=1
H1( âKi ∩ U)

≤
kØ

i=0
lim inf
n→∞

H1(Ki
n ∩ U)

= lim inf
n→∞

H1(Kn ∩ U)

which concludes the proof.

Corollary 3.2.9. Let (Hn) be a sequence in K(Ω) converging to H. Let m ≥ 1 and (Kn)
a sequence in Km(Ω) converging to K. Then

H1(K \H) ≤ lim inf
n→∞

H1(Kn \Hn).
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Proof. Let ε > 0, and Nε(H) be the ε-neighborhood of H. Obviously Hn ⊂ Nε(H) for n
large enough due to the convergence in the Hausdorff metric. This implies Kn \Nε(H) ⊂
Kn \Hn. By applying Theorem 3.2.6 in the extended case of m ≥ 1, with U = R2 \Nε(H),
since K ∩ U = K ∩ (Nε(H))∁ = K \Nε(H) we have:

H1(K \Nε(H)) ≤ lim inf
n→∞

H1(Kn \Nε(H)) ≤ lim inf
n→∞

H1(Kn \Hn).

Letting ε → 0 we get the result.

We will now prove three lemmas, used for the proof of an approximation result used
in the next chapter.

Lemma 3.2.10. Let H ∈ K1(Ω) and (Hn) a sequence in Kp(Ω) converging to H. Then
there exists a sequence (Kn) in K1(Ω) with Kn → H, Hn ⊆ Kn and H1(Kn \Hn) → 0.

Proof. Let H1
n, . . . , H

kn
n be all the connected components of Hn. Since Hn ∈ Kp(Ω) we

have kn ≤ p for every n: this means that up to a sub-sequence (without renaming)
there exists a constant k ≤ p such that every Hn has exactly k connected components
H1

n, . . . , H
k
n.

Due to the compactness of the space, every connected component converges to a compact
and connected set H1

n → âH1, . . . , Hk
n → âHk, and obviously H = âH1 ∪ · · · ∪ âHk.

As H ∈ K1(Ω), it will be connected hence every set in âH1, . . . , âHk will have at least a
non-empty intersection with at least another set in the same family. Let us then fix a
point in a non-empty intersection xi,j ∈ âH i ∩ âHj . By the convergence stated above, there
will exists points xi,j

n ∈ H i
n and yi,j

n ∈ Hj
n such that xi,j

n → xi,j and yi,j
n → xi,j .

Since we have a Lipschitz boundary, there will be Lipschitz curves (hence H1-measurable)
X i,j

n and Y i,j
n connecting respectively xi,j

n and xi,j
n to xi,j . Due to the convergence, ob-

viously H1(X i,j
n ) → 0 and H1(Y i,j

n ) → 0. Since these curves are compacts, we can then
define a compact non-empty set as

Kn := Hn ∪
Û
i,j

X i,j
n ∪

Û
i,j

Y i,j
n .

Thanks to the sub-additivity of the H1 measure, it is clear that Hn ⊆ Kn, Kn → H in
the Hausdorff metric, and H1(Kn \ Hn) → 0. To conclude, the set Kn is also connected
since the connected components H1

n, . . . , H
k
n of Hn are connected to one another through

X i,j
n and Y i,j

n which start respectively in xi,j
n ∈ H i

n and yi,j
n ∈ Hj

n and intersect at the end
in xi,j .

Lemma 3.2.11. Let K ∈ Kf
1 (Ω) and H ⊆ K be a non-empty compact with p ≥ 2

connected components H1, . . . , Hp. Then there exists a family of connected components of
K \H, connecting all the disjoint connected components of H.

Proof. First of all K\H /= ∅, since this would imply p = 1. By hypothesis, K is connected
and K \H is open in the K-subspace topology, so every connected component C of K \H
is open as well in the K-subspace topology. On the contrary, each C is closed in the
(K \ H)-subspace topology, so by definition C = C ∩ (K \ H). If C = C then K would
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contain a set which is both open and closed in the K-subspace topology, which then is a
connected component. But K is connected, hence C /= C. Since C = C ∩ (K \ H), then
∅ /= C \ C ⊂ H, therefore C ∩H /= ∅ for every connected component C of K \H.
Given the collection of connected components of H, we define the collection of connected
components of K \H such that C ∩Hj /= ∅ as Cj := (Cj,1, . . . , Cj,ℓj ). Let us now define
a collection of sets ( âK1, . . . , âKp) such that

âKj := Hj ∪
ℓjÛ

i=1
Cj,i.

We now prove that these sets are open. To do this we prove that K \ âKj is closed, so we
aim at proving that every converging sequence in K \ âKj converges also to an element
in K \ âKj , that is to an element not in âKj . Let us then pick a sequence (xn) ⊂ K \ âKj

converging to x ∈ K.
If xn ∈ H \Hj for n > n0, then x ∈ H \Hj due to closure, so x /∈ Cj and x /∈ Hj , which
implies x /∈ âKj .
If there is a connected component C0 of K \H such that C0 ∩Hj = ∅, and if xn ∈ C0 for
n > n0, then x ∈ C0 due to closure, and of course x /∈ âKj since C0 ∩Cj,i = ∅ ∀Cj,i ∈ Cj .
In the remaining case, there is a sequence (Cn) of connected components such that Cn ∩
Hj = ∅, and such that, up to a sub-sequence, xn ∈ Cn. Since K is a connected compact,
it has finite H1 measure, hence H1(Cn) → 0. This implies dist(xn, H \ Hj) → 0 which
gives x ∈ H \ Hj due to closure. This implies as well x /∈ âKj . Hence âKj is always open
in K.
Since every connected component of K \ H has non-empty intersection with H, we have
K ⊆ âK1 ∪ · · · ∪ âKp since âKj is open for every j, from which obviously follows K =âK1 ∪ · · · ∪ âKp. Since we know K to be connected, we know that for a family of indices,âKi ∩ âKj /= ∅. Obviously H i ∩Hj = ∅, so there will be a family of connected components
of K \H such that H i ∩ Ci,j /= ∅ /= Hj ∩ Ci,j , thus connecting the family Hj .

Lemma 3.2.12. Let p > 0 be an integer, and let (Hn) be a sequence in Kf
p (Ω) converging

to H ∈ Kf
p (Ω). Let K ∈ Kf

1 (Ω) such that H ⊂ K. Then there exists a sequence (Kn) in
Kf

1 (Ω) such that Kn → K, Hn ⊆ Kn and H1(Kn \Hn) → H1(K \H).

Proof. We assume H /= ∅, since in the opposite case we could take Kn = K. Let
H1, . . . , Hk with k ≤ p be its connected components. If there is only one connected
component, we can take âK := H = H1. If k ≥ 2, by Lemma 3.2.11 there exists a family
of ℓ connected components {Γj} of K \H such that the set

âK := H ∪
ℓÛ

j=1
Γj ,

is connected. Given this set, we would like to construct a sequence of connected sets
satisfying the Lemma stated above.
Let us fix a small enough ε > 0 such that Nε(H i) ∩ Nε(Hj) = ∅ for every i /= j, andåH i

n :=
)
x ∈ Hn : x ∈ Nε(H i)

*
. By definition åH i

n ∈ Kf
p (Ω) and in general it holds
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t åH i
n ⊆ Hn, but for n large enough there is enough separation between the sets ( åH i

n) sot åH i
n = Hn. Moreover, due to the assumption of ε, we have åH i

n → H i for n → ∞.
By Lemma 3.2.10 applied to each H i, there is a sequence ( âH i

n) ⊂ Kf
1 (Ω) such that âH i

n →
H i, åH i

n ⊆ âH i
n and H1( âH i

n \ åH i
n) → 0. We now need to find the appropriate sequence âKn.

As before, if H has only a single connected component, then âKn := âH1
n.

If k ≥ 2, for every disjoint pair H i and Hj and its connected component Γσ(i,j) of K \H,
we can pick xi ∈ H i ∩ Γσ(i,j) and yj ∈ Hj ∩ Γσ(i,j). Due to the Hausdorff convergence inâH i

n stated above, there are points xi
n ∈ âH i

n and yj
n ∈ âHj

n such that xi
n → xi and yj

n → yj

as n → ∞. As in the proof of Lemma 3.2.10, since the domain has a Lipschitz boundary,
we can take the Lipschitz curves X i

n connecting xi
n to xi and Y j

n connecting yj
n to yj .

These will be H1-measurable and as n → ∞ we will have H1(X i
n) → 0 and H1(Y j

n ) → 0.
We can now define âKn :=

kÛ
i=1

âH i
n ∪

ℓÛ
j=1

Γj ∪
ℓÛ

j=1
Xj

n ∪
ℓÛ

j=1
Y j

n .

Since
t âH i

n →
t
H i = H, it holds that âKn → âK for n → ∞. Moreover

lim sup
n→∞

H1( âKn \Hn)

≤ lim sup
n→∞

H1
A

kÛ
i=1

âH i
n \Hn

B
+ H1

 ℓÛ
j=1

Γj

+ H1

 ℓÛ
j=1

Xj
n

+ H1

 ℓÛ
j=1

Y j
n


≤ lim sup

n→∞
H1
A

kÛ
i=1

âH i
n \Hn

B
+ H1( âK \H) = H1( âK \H).

These sets âKn will be compacts, since they are the union of compact sets, and also
connected, but they still do not satisfy all the requests, since âKn ↛ K. To solve this, we
could add to âKn the connected components of K \ âK. These connected components are
also connected components of K \H, so as in the proof of Lemma 3.2.11 we can conclude
that each connected component C is open in the K-subspace topology and C ∩ H /= ∅.
Moreover, K is separable, so these connected components {Ci} are at most countable.
For every Ci we pick zi ∈ Ci ∩H. Due to the Hausdorff convergence, there will be points
zi

n ∈ Hn such that zi
n → zi. As before, due to the Lipschitz boundary, there will be a

Lipschitz curve Zi
n connecting zi

n to zi, and H1(Zi
n) → 0. We would like to control the

sum of the H1 measure of these sets, being careful if they are countable since the sum
could explode to ∞ for every n. To avoid this, we restrict the sum to a certain number of
terms, which grows with n, such that at every step it is not infinite. We call this sequence
(hn) such that

lim
n→∞

hnØ
i=1

H1(Zi
n) = 0.

If the connected components are finite, we can just take a constant number of terms in
the sum, hn = h. Finally, we can define

Kn := âKn ∪
hnÛ
i=1

Zi
n ∪

hnÛ
i=1

Ci.
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These sets are obviously compact and connected, they contain Hn from the definition ofâKn, and now we also have Kn → K. At this point

H1(Kn \Hn) ≤ H1( âKn \Hn) +
hnØ
i=1

H1(Zi
n) +

hnØ
i=1

H1(Ci).

Noting that the connected components (Ci) are disjoint, taking the lim sup we can write

lim sup
n→∞

H1(Kn \Hn) ≤ lim sup
n→∞

H1( âKn \Hn) + H1
1Û

Ci

2
≤ H1( âK \H) + H1

1Û
Ci

2
= H1(K \H).

From 3.2.9 we can then deduce

lim sup
n→∞

H1(Kn \Hn) ≤ H1(K \H) ≤ lim inf
n→∞

H1(Kn \Hn),

from which we can conclude.

Proposition 3.2.13. Let p,m > 0 be integers, (Hn) be a sequence in Kf
p (Ω) converging

to H ∈ Kf
p (Ω), and let K ∈ Kf

m(Ω) such that H ⊆ K. Then there exists a sequence (Kn)
in Kf

m(Ω) such that Kn → K, Hn ⊆ Kn and H1(Kn \Hn) → H1(K \H).

Proof. As usual let K1, . . . , Kk with k ≤ m be the connected components of K. Similar
to the proof of Lemma 3.2.11, we choose ε > 0 small enough such that the sets Nε(Ki)
are disjoint. We then define

âH i
n :=

)
x ∈ Hn : x ∈ Nε(Ki)

*
.

These sets will have at most the number of connected components of Hn, so âH i
n ∈ Kf

p (Ω),
and as before, for n large enough we have Hn = âH1

n ∪ · · · ∪ âH i
n. Moreover due to the

separation of the ε-neighborhoods, we have âH i
n → H i := H ∩ Ki as n → ∞. We can

now apply Lemma 3.2.12 to every connected component Ki, so for every i we will get
(Ki

n) ⊂ Kf
1 (Ω) such that Ki

n → Ki, âH i
n ⊆ Ki

n, and H1(Ki
n \ âH i

n) → H1(Ki \ H i). To
conclude we just need to take

Kn := K1
n ∪ · · · ∪Kk

n,

which ticks all the boxes of the proposition.

3.3 Harmonic conjugate for boundary value problems
It is known from complex analysis that a necessary condition for a function to be holomor-
phic on a domain is that the real and imaginary parts of the function have to satisfy the
Cauchy-Riemann conditions in the domain. In particular, these imply that the real and

64



3.3 – Harmonic conjugate for boundary value problems

imaginary parts are harmonic, that is they satisfy the Laplace equation in the domain.
One can also show that if a function u is harmonic and the domain is simply connected,
then there exists a so-called harmonic conjugate v such that it is harmonic, and they
are the real and imaginary part of a holomorphic function. The harmonic conjugate is
not unique though, as is defined up to an additive function, and that u is the harmonic
conjugate of v if and only if v is the harmonic conjugate of −u. Geometrically u and
v have orthogonal trajectories, such that the gradients are perpendicular, there exists a
rotation matrix R with R · e1 = e2 and R · e2 = −e1, such that ∇u = R∇v. We are now
going to study the properties of this harmonic conjugate in the setting of our model.
From now on, the boundary ∂Ω will be divided in ∂N Ω, fixed and relatively open, on
which we will impose Neumann boundary conditions, and in ∂DΩ = ∂Ω \ ∂N Ω fixed and
relatively open as well, on which we will impose Dirichlet boundary conditions. Both ∂N Ω
and ∂DΩ are supposed to have a finite number of connected components. We can observe
that by the properties of the harmonic conjugate v of a harmonic function u, the Neumann
condition on ∂N Ω gets rotated in the direction tangential to the boundary, meaning that
v will be constant along ∂N Ω. Since we impose the cracks to be traction-free, v will also
be constant along K.
Given K ∈ K(Ω) which will represent the cracks, we have this boundary value problem:


∆u = 0 in Ω \K;
∂u

∂ν
= 0 on ∂(Ω \K) ∩ (K ∪ ∂N Ω).

(3.7)

By a weak solution of 3.7 we mean a function u ∈ L1,2(Ω \K) satisfying:

Ú
Ω\K

∇u⊤∇z dx = 0 ∀z ∈ L1,2
0,∂DΩ\K(Ω \K). (3.8)

As we can see, there is no boundary condition on ∂DΩ, so as of now, we do not have any
constraint on the value of the function on the boundary, meaning that the solution will
not be unique. If we want to prescribe a Dirichlet boundary condition, we can take:

g ∈ L1,2(Ω \K), u = g q.e. on ∂DΩ. (3.9)

With this boundary condition, the problem 3.8 is solvable, and since by Corollary 3.1.15
we know that L1,2

0,∂DΩ\K(Ω \K) is a Hilbert space, by the Babuška–Lax–Milgram Lemma
we know that there exists a unique solution in the connected components of Ω \K whose
boundaries intersect ∂DΩ \ K, and in all the other connected components the solution
will be defined up to an additive constant. As a consequence, since the solution is either
unique or defined up to a constant, the gradient will be unique across all the domain and
also square-integrable.
Due to this uniqueness the map g → ∇u is linear and satisfies a nice inequality: if we
consider the function u− g ∈ L1,2(Ω \K), we notice it will also be in L1,2

0,∂DΩ\K(Ω \K) so
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we can use it as a test function in 3.8, obtaining:

∥∇u∥2
L2(Ω\K;R2) =

Ú
Ω\K

∥∇u∥2
R2 dx

=
Ú

Ω\K
∇u⊤∇g dx

≤ ∥∇u∥L2(Ω\K;R2) · ∥∇g∥L2(Ω\K;R2).

Since ∥∇u∥ /= 0 when g /= 0, this implies:

∥∇u∥L2(Ω\K;R2) ≤ ∥∇g∥L2(Ω\K;R2). (3.10)

By the same procedure, one can take an arbitrary function in the set

V(g,K) :=
î
v ∈ L1,2(Ω \K) : v = g on ∂DΩ \K

ï
.

As before, for whatever v ∈ V(g,K) we have u− v ∈ L1,2
0,∂DΩ\K(Ω \K) and we can use it

as a test function in the weak formulation to obtain that the solution u is such that ∇u
is a solution of:

min
v∈V(g,K)

Ú
Ω\K

|∇u|2 dx. (3.11)

As a side note, if the boundary datum is in H1(Ω \ K) ∩ L∞(Ω \ K), hence bounded,
then one can use a version of the maximum principle to show that the solution u is also
bounded and u ∈ H1(Ω\K)∩L∞(Ω\K), therefore we can spare the use of the Deny-Lions
spaces. We refer to [28] for further details.
Due to the uniqueness of the gradient in Ω \K, from now on we will extend the gradient
to Ω by setting ∇u = 0 on K.

Lemma 3.3.1. Let (Kn) be a sequence in K(Ω) converging to K, and let (un) be a sequence
such that un ∈ L1,2

0,∂DΩ\Kn
(Ω \ Kn), and such that (∇un) is bounded in L2(Ω;R2). Then

there exists a sub-sequence (un) converging to u ∈ L1,2
0,∂DΩ\K(Ω \K) such that ∇un ⇀ ∇u

weakly in L2(U ;R2) for every U ⋐ Ω \K. Moreover, if H1(Kn) → H1(K), then the weak
convergence is in L2(Ω;R2).

Proof. Let C be a connected component of Ω \K: we pick x ∈ C and we choose a ε such
that 0 < ε < dist(x, ∂C). Then it is well-defined the set

N ε :=
)
x ∈ R2 : dist(x, ∂N Ω ∪K) ≤ ε

*
,

which is the closed ε-neighborhood of ∂N Ω ∪ K: it follows that due to the Hausdorff
convergence of Kn → K, for n large enough we have Kn ⊂ N ε. We denote by Cε the
connected component of C \N ε such that x ∈ Cε.
For every C we have two cases, either it touches the Dirichlet boundary or it does not.
If ∂C ∩ (∂DΩ \ K) /= ∅, for ε small enough we will have ∂Cε ∩ ∂DΩ /= ∅, so we will
denote the relative interior of this intersection contained in ∂Cε by Γε. We know that
un = 0 on ∂DΩ \Kn, and since Kn ⊂ N ε, we deduce un = 0 on Γε, hence un ∈ L1,2

0,Γε(Cε).
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We know that the sequence (∇un) is bounded, hence from Corollary 3.1.15 we know that
∃u ∈ L1,2

0,Γε(Cε) such that ∇un ⇀ ∇u in L2(Cε;R2). Due to the arbitrariness of ε, and
since by construction C =

t
ε C

ε, we can extend the limit to u ∈ L1,2
0,(∂C∩∂DΩ)\K(C) such

that ∇un ⇀ ∇u in L2(U ;R2) for every open U ⋐ C.
On the other hand, if ∂C ∩ (∂DΩ \ K) = ∅, if we consider the domain Cε, the sequence
(∇un) is still bounded, so there is a converging sub-sequence. Due to the compactness
of the space

)
∇u : u ∈ L1,2(Cε)

*
, there exists u ∈ L1,2(Cε) such that ∇un ⇀ ∇u in

L2(Cε;R2). As before, we extend the limit analogously to u ∈ L1,2(C) such that the
gradients converge weakly for every open U ⋐ C.
In any case, we have constructed u ∈ L1,2

0,∂DΩ\K such that ∇un ⇀ ∇u in L2(U ;R2) for
every open U ⋐ Ω \K.
We now assume H1(Kn) → H1(K). We will use that, due to the absolute continuity of
the integral, given a function ψ ∈ L2(Ω;R2), ∀ε > 0 ∃δ > 0 and ∃A ⊂ R2 with H2(A) < δ
such that

∥ψ∥2
L2(A;R2) =

Ú
A

|ψ|2 dx < ε2.

Let us now take a open U ⋐ Ω \ K such that H2!(Ω \ K) \ U
"
< δ. Since for n large

enough we also have U ⋐ Ω \Kn, and since the sets Kn converge in measure, we deduce
H2!(Ω \Kn) \ U

"
< δ. Then-----

Ú
Ω\Kn

!
∇un − ∇u

"⊤
ψ dx

----- ≤
----Ú

U

!
∇un − ∇u

"⊤
ψ dx

----+
-----
Ú

(Ω\Kn)\U

!
∇un − ∇u

"⊤
ψ dx

-----
≤
----Ú

U

!
∇un − ∇u

"⊤
ψ dx

----+ ∥ψ∥ · ∥∇un − ∇u∥

≤
----Ú

U

!
∇un − ∇u

"⊤
ψ dx

----ü ûú ý
=0

+ε
1
∥∇un∥ + ∥∇u∥

2
.

Since the sequence ∇un is bounded, by taking the lim sup of the left hand side we deduce:

lim sup
n

-----
Ú

Ω\Kn

!
∇un − ∇u

"⊤
ψ dx

----- ≤ Cε.

From the arbitrariness of ε, it follows that the gradients converge weakly on Ω \K.

From the properties of a generic harmonic conjugate, we look for a result that guaran-
tees these properties at least locally.

Theorem 3.3.2. Let K ∈ K(Ω) and u be a solution of (3.8), and let U ⊆ Ω be a Lipschitz
open set. Then there exists v ∈ H1(U ∩ Ω) such that ∇v = R∇u a.e. on U ∩ Ω, and v is
constant q.e. on the connected components of U ∩K and U ∩ ∂N Ω.

Proof. Let ϕ ∈ C∞c (U ∩Ω) be a test function. Due to the compact support ϕ = 0 on ∂DΩ,
so we can use it as a test function in 3.8, and since ∇u = 0 a.e. in K, we have:Ú

U∩Ω
∇u⊤∇ϕ dx =

Ú
Ω\K

∇u⊤∇ϕ dx = 0.

67



Mathematical preliminaries

This implies ∇ · (∇u) = 0 on the space of distributions over U ∩ Ω. This in turn implies
also ∇ × (R∇u) = 0 on the same space, because:

∇ ×
!
R∇u

"
=

∂

∂x1

1
R∇u

2
2

−
∂

∂x2

1
R∇u

2
1

=
A
∂2

∂x2
1

+
∂2

∂x2
2

B
u

= ∇ ·
!
∇u
"

= 0.

The domain U ∩ Ω is simply connected and since we are assuming Ω to have a Lipschitz
boundary, it will also have a Lipschitz boundary. Hence, since ∇ × ∇f = 0, there exists
v ∈ H1(U ∩ Ω) such that ∇v = R∇u a.e. in U ∩ Ω.
Due to the traction-free nature of the lips of the cracks, we know that ∇v = 0 a.e. in
U ∩ K, which implies that v is constant on each connected component C of U ∩ K. We
now need to extend this result to the domain U ∩K, to have a compact as well.
Let us write K as K = ∩jKj with Kj+1 ⊂ Kj ∀j and (Kj) ⊂ K(Ω), such that K is
contained in the interior of Kj for every j.
We can write problem 3.8 restricted to the set (U ∩ Ω) \ K, since for every test function
z ∈ L1,2

0,∂DΩ\K(Ω \K) can be restricted to (U ∩ Ω) \K by then setting z = 0 in (Ω \U) \K:Ú
(U∩Ω)\K

∇u⊤∇z dx = 0 ∀z ∈ L1,2
0,∂(U∩Ω)\K((U ∩ Ω) \K). (3.12)

The solution u to this problem is in L1,2((U ∩ Ω) \ K), and since K ⊂ Kj , we also have
u ∈ L1,2((U ∩ Ω) \ Kj). We can use this u as a Dirichlet boundary for another problem
with solution uj :

uj ∈ L1,2(U ∩ Ω) \Kj) uj = u q.e. on ∂(U ∩ Ω) \Kj ;Ú
(U∩Ω)\Kj

∇u⊤j ∇z dx = 0 ∀z ∈ L1,2
0,∂(U∩Ω)\Kj

((U ∩ Ω) \Kj). (3.13)

Using a method used before, we can now choose uj − u as a test function in the prob-
lem above, to obtain that ∥∇uj∥ ≤ ∥∇u∥ ≤ C ∀j, hence the gradients are uniformly
bounded. From Lemma 3.3.1, since due to the decreasing nature of (Kj) we have that
(U ∩ Ω) \ Kj → (U ∩ Ω) \ K in the Hausdorff metric, we can deduce that there exists
u∗ ∈ L1,2((U ∩ Ω) \ K), with u∗ = u q.e. on ∂(U ∩ Ω) \ K, such that ∇uj ⇀ ∇u∗ in
L2(U ∩ Ω;R2).
We can now also use uj − u∗ as a test function in the same problem to obtain an integral
relation between the gradients in (U ∩ Ω) \ Kj , which we can extend on U ∩ Ω because
the gradients are equal to 0 on Kj .
We now need to prove that ∇u∗ = ∇u a.e. in (U ∩ Ω) \ K. Since the gradients of the
solutions are uniquely defined, we need to prove that u∗ satisfies the same problem as
u, Problem 3.12. If z is a test function such that z ∈ L1,2

0,∂(U∩Ω)\K((U ∩ Ω) \ K), by a
truncation argument we know also z ∈ L1,2

0,∂(U∩Ω)\Kj
((U ∩Ω)\Kj) since K ⊂ Kj and since

we can choose a z such that z = 0 on (U ∩ Ω) ∩ Kj . Then we can use z also as a test
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function on Problem 3.13, and to conclude, we just need to pass the limit for j → ∞,
obtaining Problem 3.12.
Now we know that for each j there is a function vj ∈ H1(U ∩ Ω) such that ∇v = R∇u
in U ∩ Ω. Let now K0 be a connected component of U ∩ K. Then there will exist a
connected component C of the interior of U ∩Kj such that K0 ⊂ C ∪ ∂LC since K ⊂ Kj

and the Lipschitz part follows from the Lipschitzianity of the boundary of U and Ω. Due
to uj being the solution to 3.13, we know vj will be constant q.e. on C ∪ ∂LC since it is
constant q.e. also on K0.
Since a harmonic conjugate is defined up to a constant, we can assume:

−
Ú

U∩Ω
vj dx = 0 ∀j.

From a previous result in the proof, we know that ∇vj → R∇u in L2(U ∩ Ω;R2): using
now the Poincaré–Wirtinger inequality we know...vj − −

Ú
U∩Ω

vj dx
...

L2(U∩Ω)
≤ C∥∇vj∥L2(U∩Ω;R2),

hence (vj) converges strongly also inH1(U∩Ω). Then there exists a function v ∈ H1(U∩Ω)
satisfying ∇v = R∇u on U ∩ Ω. Moreover, since vj is constant q.e. on K0, then also
v will be constant q.e. on K0, hence v is constant on all the connected components of
U ∩K.
For the last part of the proof, we need to show that v is also constant on the connected
components of U ∩ ∂N Ω. It is enough to prove that v is constant q.e. for every V ⊂ U
with Lipschitz boundary such that V ∩ ∂Ω = V ∩ ∂N Ω since we are only interested in
what happens on the boundary. Let us now extend the vector field ∇u to a vector field
ψ on V such that ψ = ∇u q.e. on V ∩ Ω and ψ = 0 q.e. on V \ Ω. As before, we now
know that ∇ · ψ = 0 on the space of distributions over V . This implies ∇ × (Rψ) = 0
over the same space. Just as before, this implies the existence of z ∈ H1(V ) such that
∇z = Rψ a.e. in V . By construction ∇z = 0 a.e. in V \ Ω, but due to the compactness
of the space of gradients in the Deny-Lions space, we also know ∇z = 0 a.e. in V \ Ω.
On the other hand, on V ∩ Ω we know that ∇z = Rψ = R∇u = ∇v, then for the same
reason ∇(z − v) = 0 q.e. in V ∩ Ω. Since (V ∩ Ω) ∩ (V \ Ω) = V ∩ ∂Ω = V ∩ ∂N Ω then
by combining the two previous result we know that ∇v = 0 q.e. on V ∩ ∂N Ω.

Theorem 3.3.3. Let K ∈ K(Ω) be locally connected, and let u ∈ L1,2(Ω \ K). Assume
that for every point in Ω there exists an open neighborhood U of that point and a function
v ∈ H1(U ∩ Ω) satisfying the properties of a harmonic conjugate in U ∩ Ω. Then u is
harmonic and is a solution of 3.8.

Proof. To show that u is a solution of 3.8, it is enough to show that for every point in Ω
there exists an open neighborhood V such that u is a solution to 3.8 restricted to V ∩ Ω
since then it suffices to piece together the solutions.
Let U be the neighborhood given in the theorem. We assume U ∩ Ω to have a Lipschitz
boundary, and we know from the statement that v is constant q.e. on each connected
component of U ∩K and U ∩ ∂N Ω. Let now V be an open neighborhood of a point such
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that V ⋐ U . Since K is a locally connected compact set, the connected components of
U ∩ K are open in K. This implies that only a finite number of them intersect with
V ∩K. The same goes for V ∩ ∂N Ω. The connected components of V ∩K and V ∩ ∂N Ω
are respectively disjoint, but they can intersect between the two families, let us say m
times. Since v is constant on all of them, using 3.1.20, we can show that there exist m
compact sets ( âKi) such that

(V ∩K) ∩ (V ∩ ∂N Ω) = V ∩ (K ∪ ∂N Ω) = âK1 ∪ · · · ∪ âKm,

such that v = ci q.e. on âKi.
Let us now construct a sequence of functions vn ∈ C∞(R2) such that vn → v in H1(V ∩Ω)
and vn = ci in a neighborhood U i

n of âKi for each i, such that U i
n ∩ U j

n = ∅ for i /= j.
Let now z ∈ L1,2

0,(V ∩∂DΩ)\K((V ∩ Ω) \ K) be a test function of Problem 3.8 restricted to
V ∩ Ω. Let also ϕi

n be a test function in U i
n such that ϕi

n = 1 in a neighborhood ofâKi contained in U i
n. Let us now define ψn = 1 −

q
i ϕ

i
n, a function which is equal to 1

everywhere except for a neighborhood of âKi, where it is equal to 0. Then, since U ∩Ω has
a Lipschitz boundary, by Proposition 3.1.14, the function zψn ∈ L1,2

0,(V ∩∂DΩ)\K((V ∩Ω)\K)
belongs also to H1((V ∩ Ω) \K). By Theorem 3.1.17, since by multiplying by ψn we are
forcing z to be 0 also around K, we deduce also that zψn ∈ H1

0 ((V ∩ Ω) \K).
Since vn is constant in U i

n around âKi, hence ∇vn = 0, we can say that the ψn = 1 if
∇vn /= 0, thus:Ú

(V ∩Ω)\K
∇v⊤n R⊤∇z dx =

Ú
(V ∩Ω)\K

∇v⊤n R⊤∇(zψn) dx

= −
Ú

(V ∩Ω)\K
∇ · (R∇vn) zψn dx = 0,

since ∇ · (R∇vn) = ∇ × (∇vn) = 0 and for what just discussed zψn ∈ H1
0 ((V ∩ Ω) \K).

Since, due to the properties of the rotation by 90 degrees, if ∇v = R∇u, then also
∇u = −R∇v. Passing to the limit for n → ∞ we have:Ú

(V ∩Ω)\K
∇u⊤∇z dx = −

Ú
(V ∩Ω)\K

∇v⊤R⊤∇z dx = 0.

If z is a test function of the restricted problem, then this implies that u is a solution to
such a problem.
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Chapter 4

Existence results in two
dimensional anti-plane setting

Using the tools explained in the previous section, our goal is now to prove the existence of
a continuous evolution satisfying the conditions of the Francfort-Marigo model. We will
make some natural assumptions about the agents involved, in order to better formalize
our setting, and also to state the full version of the model studied.
First of all, we are studying the system at time t ∈ [0,1], under a time-dependent load-
ing g(t), such that g ∈ AC

!
[0,1];H1(Ω)

"
, with the usual Bochner notation. The use of

absolutely continuous functions is useful since for compact intervals it implies uniform
continuity, and also implies that the derivatives are integrable. At every time t, the total
energy is minimized across all admissible displacements:

E(g(t), K(t)) := min
v∈V(g(t),K(t))

I
µ

2

Ú
Ω\K(t)

|∇v|2 dx+ γH1(K(t))
J

;

V(g(t), K(t)) :=
î
v ∈ L1,2(Ω \K(t)) : v = g(t) on ∂DΩ \K(t)

ï
.

While the evolution of g(t) is fixed, we need to describe the evolution of the crack set K.
We will consider as an evolution a compact-valued non-decreasing function K : [0,1] →
Kf

m(Ω). This evolution has to satisfy these conditions, taken from 2.1.1:

• K(t) minimizes the energy among all possible crack K such that K ⊇
t

s<t(K(s));

• K(t) is a stationary point for the function s → E(g(t), K(s)).

The result that we want to obtain is the following:

Theorem 4.0.1. Let g ∈ AC
!
[0,1];H1(Ω)

"
and K0 ∈ Kf

m(Ω). Then there exists a con-
tinuous evolution K : [0,1] → Kf

m(Ω) such that:

1. K0 ⊆ K(s) ⊆ K(t) for 0 ≤ s < t ≤ 1;

2. E(g(0), K(0)) ≤ E(g(0), K) ∀K ∈ Kf
m(Ω), K ⊇ K0;
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3. for t ∈ (0,1], E(g(t), K(t)) ≤ E(g(t), K) ∀K ∈ Kf
m(Ω), K ⊇

t
s<t K(s);

4. the function t → E(g(t), K(t)) is absolutely continuous on [0,1];

5.
d
dsE(g(t), K(s))

---
s=t

= 0 for a.e. t ∈ [0,1].

Moreover, if every function K : [0,1] → Kf
m(Ω) satisfies all these conditions, then it

also satisfies:

d
dtE(g(t), K(t)) = µ

Ú
Ω\K(t)

∇u(t)⊤∇ġ(t) dx for a.e. t ∈ [0,1],

where u(t) is a solution of the minimum problem defining E(g(t), K(t)).

This result is basically the existence result for the continuous evolution, given an
arbitrary loading, the equivalent of Proposition 2.1.1. We will also prove that under
non-decreasing and non-negative loadings, the conditions on the previous theorem imply:

E(g(t), K(t)) ≤ E(g(t), K(s)) ∀s ≤ t,

which is the third condition in the monotone continuous evolution 2.1.2.
This theorem will be proven by a time discretization process, where we will first derive the
solutions for a discrete evolution, and then study the properties of these solutions as the
time step approaches 0. To do this, we must first establish the proper convergence of the
solution to the minimum problems defining E(g,K) under appropriate sequences (gn)n

and (Kn)n. Then we will study the properties of a general continuous evolution, which
is simply a compact-valued increasing function. At last, we will tackle the discretization
process and its difficulties.

4.1 Convergence of minimizers
As discussed, the first thing is to study the convergence of the minimums of the problems
defining the total energy under converging sequences. To do this we need some results
on the convergence of solutions of boundary value problems under domain perturbation,
which we will just present without giving proofs. These will be used for an important
lemma, which tells us that if vn = 0 quasi-everywhere in Kn, then this property is stable
under limits.
First of all, we say that an open set Ω ⊆ B ⊂ RN has the (r, C)-capacity condition if:

∀x ∈ ∂Ω
Cap2

!
Ω∁ ∩Br(x);B2r(x)

"
Cap2 (Br(x);B2r(x)) ≥ C.

Now, if r < 1, we define the following family of open subsets of B:

Or,C(B) := {Ω ⊆ B : ∀r0 ∈ (0, r) Ω has the (r0, C)-capacity condition} .
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We now define the convergence in the Hausdorff complementary topology, simply the
notion distance defined on the complement of the sets:

Kn
H∁

−−→ K ⇐⇒ K∁
n

H−→ K∁.

Now, for an arbitrary f ∈ L2(B), we can define as uΩ the solution to the Dirichlet problem:

−∆uΩ = f uΩ ∈ H1
0 (Ω).

The main result is the following:

Theorem 4.1.1. Let B ∈ RN be an arbitrary open set. Let (Ωn) be a sequence in Or,C(B),
such that Ωn

H∁

−−→ Ω for a certain open Ω. Then uΩn → uΩ strongly in H1
0 (B).

The reader can find the proof of this theorem in [21]. Moreover, if B ⊂ R2, from the
previous theorem we can deduce a result from [20]:

Corollary 4.1.2. Let B ∈ R2 be an arbitrary open set, and κ a positive integer. Define
the set

Oκ := {Ω ⊆ B : number of connected components of B \ Ω is ≤ κ} .

Then it follows that the set Oκ is compact in the H∁-topology and the application Oκ ∋
Ω → uΩ ∈ H1

0 (B) is continuous, meaning that if a sequence of sets converges in the
Hausdorff complementary topology, then the solutions to the respective boundary value
problems converge strongly in H1

0 (B).

This last result will play a key role in this section.
We will now define another notion of convergence, which can be used both for sets and
operators. This notion was introduced in [14], and is thus called Mosco convergence. His
original definition goes as follows:

Definition 4.1.3. Let (Zn)n be a sequence of closed convex subsets of a reflexive Banach
space X. Let us define two sets:

S
)
(Zn)n

*
:= {v ∈ X : ∃(vn)n, vn ∈ Zn, vn → v} ;

W
)
(Zn)n

*
:= {v ∈ X : ∃(vk)k, vk ∈ Znk

, vk ⇀ v} .

We say that the sequence converges in the sense of Mosco to a closed convex subset Z,
denoted by Zn

M−→ Z or M − limZn = Z if:

S
)
(Zn)n

*
= W

)
(Zn)n

*
= Z =⇒ Zn

M−→ Z.

What this tells us is that if every weakly convergent sequence with vn ∈ Zn converges
also strongly, then we can define the Mosco limit set. From the definition, it follows that
is Zn

M−→ Z /= ∅, then Zn /= ∅ for every n ≥ n0. Moreover, even if Zn /= ∅ for every n,
this does not imply Z /= ∅.
From this general definition, one can deduce another equivalent one, which gives more
characterization to the Mosco limit set:
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Definition 4.1.4. A sequence (Zn)n of closed convex subsets of a reflexive Banach space
X converges in the sense of Mosco to a closed convex subset Z if:

1. for every v ∈ Z there exists a sequence (vn)n, vn ∈ Zn for every n, such that vn → v;

2. if
!
nk

"
k

is an increasing sequence of positive integers, and vnk
∈ Znk

for every k,
then wherever vnk

⇀ v ∈ X, this implies v ∈ Z.

This notion of convergence, just as the more famous Γ-convergence, can also be writ-
ten in terms of functionals on X. The definition is quite similar to the one of the Γ-
convergence, and the M -convergence, as it is sometimes referred to, is also phrased as
weak Γ-liminf and strong Γ-limsup.

Definition 4.1.5. Let (Fn)n be a sequence of functionals on X. This sequence converges
in the sense of Mosco to another functional F if:

1. for every sequence (vn)n ⊂ X such that vn ⇀ v ∈ X, then

F (v) ≤ lim inf
n→∞

Fn(vn);

2. for every v ∈ X there exists a sequence (vn)n ⊂ X with vn → v, such that

lim sup
n→∞

Fn(vn) ≤ F (v).

This notion of convergence of sets has proven to be very useful in studying boundary
value problems under domain perturbation. For a Dirichlet problem with purely Dirichlet
boundary conditions, in [15] it was proven that:

Theorem 4.1.6. Let (Zn)n, Z be a sequence of non-empty closed convex subsets of a
reflective Banach space X. Then the following are equivalent:

• the sequence (Zn)n converges in the sense of Mosco to Z;

• uZn → uZ strongly in X, with uΩ being the solution to the Dirichlet problem, as
outlined above.

Lemma 4.1.7. Let (Kn) be a sequence in K1(Ω) of connected compacts such that Kn → K
in the Hausdorff metric. Let (vn) be a sequence in H1(Ω) such that vn ⇀ v in H1(Ω). Let
us also assume that vn = 0 q.e. on Kn for every n. Then it follows that the limit function
v is such that v = 0 q.e. on the limit set K.

Proof. Since we know from the assumption of the model that Ω is bounded, then also Ω
is bounded. We can then take a ball B centered in the origin, with a big enough radius
such that Ω ⊂ B. We know that if vn, v ∈ H1(Ω) such that vn ⇀ v in H1(Ω), then, since
Ω has a Lipschitz boundary, we can extend these functions to vn, v ∈ H1

0 (B) such that
vn ⇀ v in H1(B). Moreover, trivially if we have A ⋐ B, then we can extend a function
u ∈ H1

0 (A) to a function u ∈ H1
0 (B) by setting u = 0 in the difference set B \ A. Then,

by applying Theorem 3.1.17, we can say:

H1
0 (A) =

î
u ∈ H1(A) : u = 0 q.e. on ∂A

ï
=
î
u ∈ H1(B) : u = 0 q.e. on B \ A

ï
. (4.1)

74



4.1 – Convergence of minimizers

Looking now at the sequence of sets
!
(B \ Kn)∁

"
n
, it always has a finite number of

connected components, hence from Corollary 4.1.2, since obviously

B \Kn
H∁

−−→ B \K,

we can deduce that, given f ∈ L2(B), we have uB\Kn
→ uB\K strongly in H1

0 (B), with
uB\Kn

and uB\K being the solutions to the Dirichlet problems:

uB\Kn
∈ H1

0 (B \Kn) ∆uB\Kn
= f in B \Kn;

uB\K ∈ H1
0 (B \K) ∆uB\K = f in B \K.

Thanks to the equivalence theorem 4.1.6, we now know that H1
0 (B \Kn) M−→ H1

0 (B \K)
in the space H1

0 (B). Since vn = 0 q.e. on Kn, from (4.1) we know vn ∈ H1
0 (B \Kn) since

v = 0 q.e. on B \ (B \ Kn) ⊃ Kn. Thanks to the second point of the definition 4.1.4 of
Mosco convergence, since vn ∈ H1

0 (B \Kn) and vn ⇀ v in H1(B) from the hypotheses of
the theorem, we deduce that v ∈ H1

0 (B \K). We can conclude that v = 0 q.e. on K.

Theorem 4.1.8. Let m ≥ 1 and λ ≥ 0, and let (Kn) be a sequence in Kλ
m(Ω), such that

Kn → K in the Hausdorff metric. Let (gn) be a sequence in H1(Ω) such that gn → g in
H1(Ω). For every n let un be a solution (not necessarily unique since in certain parts of
the domain it can be defined up to a constant) of the problem:

min
v∈V(gn,Kn)

Ú
Ω\Kn

|∇v|2 dx, V(gn, Kn) =
î
v ∈ L1,2(Ω \Kn) : v = gn q.e. on ∂DΩ \Kn

ï
,

and analogously let u be a solution of:

min
v∈V(g,K)

Ú
Ω\K

|∇v|2 dx, V(g,K) =
î
v ∈ L1,2(Ω \K) : v = g q.e. on ∂DΩ \K

ï
.

Then it follows that ∇un → ∇u in L2(Ω;R2).

Proof. Since the minimum problems are equivalent to (3.8), then we know that ∥∇un∥ ≤
∥∇gn∥ < +∞ for every n, and ∥∇u∥ ≤ ∥∇g∥ < +∞, meaning that (∇un) is a bounded
sequence in L2(Ω;R2). Then from 3.3.1 we know that there exists u∗ ∈ L1,2(Ω \K) such
that u∗ = g q.e. on ∂DΩ\K, and also ∇un ⇀ ∇u∗ in L2(U ;R2) with U ⋐ Ω\K. Moreover,
since the sets Kn have a finite number of connected components and finite H1-measure,
and due to the lower semicontinuity of the H1-measure:

H1(K) ≤ lim inf
n→∞

H1(Kn) ≤ λ =⇒ K ∈ Kλ
m(Ω).

It also follows that H1(Kn) → H1(K), which tells us that ∇un ⇀ ∇u∗ in L2(Ω;R2).
What we want now to prove is that ∇u∗ = ∇u a.e. in Ω \ K, and to do this, due to the
uniqueness of the gradients, it is enough to show that u∗ is a solution of 3.8. Instead of
proving this directly, we will use Theorem 3.3.3 by showing that there exists a harmonic
conjugate. Thanks to a localization argument, we can take for every x ∈ Ω a neighborhood
U , and we will prove that there exists v ∈ H1(U ∩ Ω) such that ∇v = R∇u∗ in U ∩ Ω,
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and v is constant on the connected components of U ∩K and U ∩ ∂N Ω.
Let us choose x ∈ Ω and an open neighborhood U , and let us take a set V ⊆ Ω such
that U ⋐ V , and let us define δ := dist(U, ∂V ). We now want to estimate the number
of connected components C of V ∩ Kn, such that C ∩ (U ∩ Kn) /= ∅. If C ∩ ∂V /= ∅,
then C connects points in U with points in ∂V , hence H1(C) ≥ δ. But then we know
that H1(V ∩ Kn) ≤ H1(Kn) ≤ λ, hence the cardinality of this subset of the connected
components is ≤ λ

δ . On the contrary, if C ∩ ∂V = ∅, then C is a connected component of
Kn, hence the cardinality in this case is ≤ m. Summing up, we have that #C ≤ m+ λ

δ .
Let K1

n, . . . , K
kn
n be the connected components of V ∩Kn intersecting U ∩Kn. For what

we just said, kn ≤ m + λ
δ , hence, following a procedure outlined in the previous chapter,

up to a sub-sequence we can take kn = k for every n, such that K1
n → âK1, . . . , Kk

n → âKk,
with âKi ∈ K1(Ω). As in the proof of Corollary 3.2.8, we can deduce that

U ∩K ⊂ âK1 ∪ . . . ∪ âKk.

Let us take now a harmonic conjugate vn of un in V ∩ Ω, such that ∇vn = R∇un. Since
a harmonic conjugate is defined up to a constant, we can assume that:

−
Ú

V ∩Ω
v dx = 0.

From what shown before we can assert that ∇vn ⇀ R∇u∗ in L2(V ∩Ω;R2). Moreover, by
the Poincaré-Wirtinger inequality, we can also say that there exists a v such that vn ⇀ v
with ∇v = R∇u∗ in H1(V ∩ Ω).
Now, if âKi has just one point, then of course v = ci. If it has more than one point, then
we know that vn = ci

n on Ki
n, hence vn −ci

n is bounded in H1(V ∩Ω). Since vn is bounded
in H1(V ∩ Ω), since vn converges weakly, then cn has to be bounded. Then it has a limit
ci, such that vn − ci

n ⇀ v− ci. But then we can apply 4.1.7, since vn − ci
n = 0 q.e. on Ki

n,
it follows that v − ci = 0 q.e. on âKi. To finish this first part, by Proposition 3.1.20, ifâKi ∩ âKj /= ∅, it follows that v is constant in âKi ∪ âKj , such that v is constant on U ∩K.
For the part about U ∩∂N Ω, we know that vn is constant in ∂N Ω: then vn is also constant
in V ∩ ∂N Ω. We know that vn ⇀ v, then by Mazur’s lemma there exists a convex
combination of the elements in the sequence such that, up to a sub-sequence, vn → v.
This implies that v is constant in V ∩ ∂N Ω, hence also in U ∩ ∂N Ω.
Therefore, v is a harmonic conjugate for u∗, and this, in turn, implies that u∗ is a solution
of 3.8. To conclude, it is enough to remember that ∇un ⇀ ∇u, and ∇gn → ∇g, such thatÚ

|∇un|2 dx =
Ú

∇u⊤n ∇gn dx →
Ú

∇u⊤∇g dx =
Ú

|∇u|2 dx,

∥∇un∥ → ∥∇u∥.

From this it follows that ∇un → ∇u strongly in L2(Ω;R2).

From what we said in the previous proof, we can easily deduce an extension of this
result to the whole energy:

Corollary 4.1.9. Let m ≥ 1 and λ ≥ 0, and let (Kn) be a sequence in Kλ
m(Ω), such that

Kn → K in the Hausdorff metric. Let (gn) be a sequence in H1(Ω) such that gn → g

76



4.2 – Behavior in time of admissible crack sets and loadings

in H1(Ω). Let un and u be the solutions to the minimum problems defining E(gn, Kn)
and E(g,K) respectively. Since from previous result we know that ∇un → ∇u strongly in
L2(Ω;R2) then we can deduce that E(gn, Kn) → E(g,K).

Proof. Since ∇un → ∇u strongly in L2(Ω;R2), we know that Eb(gn, Kn) → Eb(g,K)
since the gradients are assumed to be zero on the crack sets. Moreover, since the sets
Kn have a finite number of connected components and finite H1-measure, due to the
lower semi-continuity of the H1-measure we also know that K ∈ Kλ

m(Ω). It follows that
H1(Kn) → H1(K), which implies that Ef (Kn) → Ef (K).

4.2 Behavior in time of admissible crack sets and
loadings

Up till now, we have not really studied the behavior in time of the admissible evolution. We
will consider thus a non-decreasing function K : [0,1] → K(Ω). We are already assuming
the evolution to be non-decreasing: it makes sense since we are excluding crack healing.
Most of these results will be the extension of properties of real-valued monotone functions
to compact-valued functions. To prove the first result about continuity we will need the
following lemma.

Lemma 4.2.1. Let K1, K2 be to non-decreasing compact-valued functions defined on [0,1],
such that:

K1(s) ⊆ K2(t), K2(s) ⊆ K1(t), s ≤ t. (4.2)

Let us define Θ :=
)
t ∈ [0,1] : K1(t) = K2(t)

*
. Then the set [0,1] \ Θ is at most countable.

Proof. Let us define a function fi : Ω × [0,1] → R such that fi(x, t) = dist
!
x,Ki(t)

"
, with

the convention dist(x,∅) = diam(Ω). Now, it is known that, for a fixed time t, the
function x → fi(x, t) is Lipschitz continuous with Lipschitz constant 1. Moreover, since
Ki(t) is non-decreasing, for a fixed x the function t → fi(x, t) is non-increasing.
Let us now take a countable set D which is dense in Ω. For every x ∈ D, by Luzin’s
theorem there exists a countable set Nx ⊂ [0,1] such that fi(x, ·)

--
[0,1]\Nx

is continuous.
By (4.2) we can write

f1(x, s) ≥ f2(x, t), f2(x, s) ≥ f1(x, t), ∀x ∈ Ω ∀s, t ∈ [0,1] : s ≤ t.

By the continuity stated above, it follows that ∀x ∈ D, ∀t ∈ [0,1] \ Nx, then f1(x, t) =
f2(x, t). We now define N =

t
x∈D Nx, which is at most countable, since it is a countable

union of sets that are at most countable. Let us then take t ∈ [0,1] \ N , we will have
∀x ∈ D that f1(x, t) = f2(x, t). Due to the density of D, this implies that ∀t ∈ [0,1] \N ,
f1(x, t) = f2(x, t) for every x ∈ Ω. Looking at the definition of fi, this implies that
K1(t) = K2(t) ∀t ∈ [0,1] \N =: Θ. Then [0,1] \ Θ = N , which is at most countable.
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Theorem 4.2.2. Let K be a non-decreasing compact-valued function defined on [0,1]. We
can then define the analogous of the one-sided limits for real-valued functions as:

K− : (0,1] → K(Ω) K−(t) =
Û
s<t

K(s) 0 < t ≤ 1;

K+ : [0,1) → K(Ω) K+(t) =
Ü
s>t

K(s) 0 ≤ t < 1.

Obviously for every t ∈ (0,1) we have K−(t) ⊆ K(t) ⊆ K+(t). Let us define the set
Θ := {t ∈ (0,1) : K−(t) = K+(t)}. Then the set [0,1] \ Θ is at most countable and for
every t ∈ Θ and for every sequence (tn) ⊂ [0,1] such that tn → t, we have K(tn) → K(t)
in the Hausdorff metric.

Proof. From the definition of K−(t) and K+(t), it is clear that they are both non-
decreasing. Moreover if s < t, we have K−(s) ⊆ K+(t) and K+(s) ⊆ K−(t), hence
from previous lemma, defining the same Θ, we have that [0,1] \ Θ is at most countable.
Let us choose t ∈ Θ, and a sequence (tn) ⊂ [0,1] such that tn → t. Then due to the
compactness of the Hausdorff space, the sequence (K(tn)) converges to K∗.
Let us choose now s1, s2 ∈ [0,1] such that s1 < t < s2 with t ∈ Θ. Since tn → t, for n
large enough we have s1 < tn < s2, which implies K(s1) ⊆ K(tn) ⊆ K(s2). Taking now
the limit as n → ∞, since K∗ is closed, we get K(s1) ⊆ K∗ ⊆ K(s2). Taking also the
limits s1 → t− and s2 → t+, we get K−(t) ⊆ K∗ ⊆ K+(t). Recall now that t ∈ Θ, hence
K−(t) = K(t) = K+(t), from which follows that K∗ = K(t).

The next result is the equivalent of Helly’s selection theorem for real-valued mono-
tone functions, which states that a uniformly bounded sequence of real-valued monotone
functions admits a convergent sub-sequence.

Theorem 4.2.3. Let (Kn) be a sequence of compact-valued non-decreasing functions.
Then there exists a compact-valued non-decreasing function K, such that, up to sub-
sequences, Kn(t) → K(t) for every t ∈ [0,1].

Proof. Let D be a countable dense subset of [0,1]. Fixing t ∈ D, due to the compactness
of the Hausdorff space, the sequence

!
Kn(t)

"
n

admits a sub-sequence converging to K∗t .
For every n we have that Kn(t) ⊆ Kn(s) if t < s, hence taking the limit we get K∗t ⊆ K∗s .
We can then define K : D → K(Ω), where K(t) = K∗t for every t ∈ D from the previous
limits. We can now define an analogous of the functions K−(t) and K+(t), except only
for the set D:

K−D : (0,1] ∩D → K(Ω), K−(t) =
Û
s<t
s∈D

K(s) t ∈ (0,1] ∩D;

K+
D : [0,1) ∩D → K(Ω), K+(t) =

Ü
s>t
s∈D

K(s) t ∈ [0,1) ∩D.

Since D is dense in [0,1], these operators can be extended to K−D : (0,1] → K(Ω) and
to K+

D : [0,1) → K(Ω). Let us define the set Θ =
)
t ∈ [0,1] : K−D(t) = K+

D(t)
*
: since
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obviously if s < t we have K−D(s) ⊆ K+
D(t) and K+

D(s) ⊆ K−D(t), from 4.2.1 we deduce
that the set [0,1] \ Θ is at most countable.
For every t ∈ D we now have K−D(t) ⊆ K(t) ⊆ K+

D(t), and for every t ∈ Θ we have
K−D(t) = K+

D(t), we deduce that for every t ∈ Θ ∩ D we have K−D(t) = K(t) = K+
D(t).

Instead for t ∈ Θ \ D we can define K(t) := K−D(t) = K+
D(t), but we need to make

sure that Kn(t) → K(t) for t ∈ Θ \ D. Let us choose s1, s2 ∈ D and t ∈ Θ \ D such
that s1 < t < s2: we will then have Kn(s1) ⊆ Kn(t) ⊆ Kn(s2). Taking the limit as
n → ∞, due the compactness of the Hausdorff space we deduce that Kn(t) → K∗, hence
K(s1) ⊆ K∗ ⊆ K(s2). Taking now the limits as s1 → t− and s2 → t+, since K∗ is closed
we deduce K−D(t) ⊆ K∗ ⊆ K+

D(t). Since t ∈ Θ we have K−D(t) = K+
D(t), hence K(t) = K∗.

It remains to check the convergence in [0,1] \ (Θ ∪ D). Since we know that it is at
most countable, with the same method as the beginning of the proof, thanks to the
compactness of the Hausdorff space, we can find a sub-sequence (Kn) and a non-decreasing
limit K : [0,1] \ (Θ ∪D) → K(Ω) such that Kn(t) → K(t) for every t ∈ [0,1] \ (Θ ∪D).

We will now introduce the time dependence also in the loading. We need to have that
for each t the function g(t) ∈ H1(Ω), since it seems natural that the function g would be
in some Bochner-type space. We chose g ∈ AC

!
[0,1];H1(Ω)

"
, since it implies:


ġ ∈ L1![0,1];H1(Ω)

"
,

∇g ∈ AC
!
[0,1];L2(Ω;R2)

"
,

∇ġ ∈ L1![0,1];L2(Ω;R2)
"
;

=⇒


g(t) ∈ H1(Ω),
ġ(t) ∈ H1(Ω),
∇g(t) ∈ L2(Ω;R2),
∇ġ(t) ∈ L2(Ω;R2);

=⇒


∥ġ∥H1(Ω) ∈ L1([0,1]),
∥∇g∥L2(Ω;R2) ∈ AC([0,1]),
∥∇ġ∥L2(Ω;R2) ∈ L1([0,1]).

We will keep these in mind for the next proofs. We will now prove three lemmas which
will be used in the proof of the last result of this section.

Lemma 4.2.4. Let K ∈ Kf (Ω) and define F : H1(Ω) → R such that F (g) := E(g,K) for
every g ∈ H1(Ω). Then F is continuously Gateaux-differentiable and

dF (g)h = µ

Ú
Ω\K

∇u⊤g ∇h dx ∀g, h ∈ H1(Ω),

where ug is the solution to the minimum problem defining E(g,K).

Proof. Choose an ε > 0. Due to the linearity of the application g → ∇ug proved in
Section 3.3, we can consider g + εh as a loading, obtaining

∇ug+εh = ∇ug + ∇uεh = ∇ug + ε∇uh.

We can now write the first variation of the F as

F (g + εh) − F (g) =
µ

2

Ú
Ω\K

|∇ug + ε∇uh|2 dx−
µ

2

Ú
Ω\K

|∇ug|2 dx

= µε

Ú
Ω\K

∇u⊤g ∇uh dx+ ε2µ

2

Ú
Ω\K

|∇uh|2 dx

= µε

Ú
Ω\K

∇u⊤g ∇h dx+ ε2µ

2

Ú
Ω\K

|∇uh|2 dx,
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where the last equality follows from (3.8), taking z = uh −h ∈ L1,2
0,∂DΩ\K(Ω \K). Dividing

by ε and taking the limit as ε → 0, we get that

dF (g)h = lim
ε→0

F (g + εh) − F (g)
ε

= µ

Ú
Ω\K

∇u⊤g ∇h dx.

Since this limit exists for every h ∈ H1(Ω), we can then conclude that F is Gateaux-
differentiable at g. Moreover, we know that the application g → ∇ug is also bounded,
since ∥∇ug∥ ≤ ∥g∥, hence this implies that it is also continuous. This implies that dF (g)h
is also continuous, hence F is a C1 function.

Lemma 4.2.5. Let m ≥ 1 and λ ≥ 0. Let K : [0,1] → Kλ
m(Ω) be a non-decreasing

compact-valued function. We define the function in two variables F : H1(Ω) × [0,1] → R
as F (g, t) := E

!
g,K(t)

"
. Then the differential dgF with respect to g is continuous at

every point (g, t) ∈ H1(Ω) × [0,1] such that if tn → t then K(tn) → K(t) in the Hausdorff
metric.

Proof. From previous lemma we know that, keeping K(t) fixed, we have that

dgF (g, t)h = µ

Ú
Ω\K(t)

∇u⊤g ∇h dx,

and that dgF (g, t) is continuous in g. We need to check whether this is continuous in t
as well. If tn → t, from 4.1.8, taking Kn = K(tn) and K = K(t), gn = g for every n, we
deduce that ∇ug,n → ∇ug strongly in L2(Ω;R2).
We can then conclude that

dgF (g, tn)h = µ

Ú
Ω\K(tn)

∇u⊤g,n∇h dx → µ

Ú
Ω\K(t)

∇u⊤g ∇h dx = dgF (g, t)h.

Then we know that it is also continuous in t, whenever ∃(tn) with tn → t such that
K(tn) → K(t).

Lemma 4.2.6. Let X be a Hilbert space, and let F : X × [0,1] → R be a function such
that F (·, t) ∈ C1(X) for every t ∈ [0,1]. Fixing t0 ∈ [0,1] and g ∈ AC

!
[0,1];X

"
, we define

ψ(t) := F (g(t), t) and ψ0(t) := F (g(t0), t). We assume that t0 is a differentiable point for
ψ and g, and also a Lebesgue point for ġ. We also assume that the first differential dgF
is continuous as (g(t0), t0). Then ψ0 is differentiable at t0, and

ψ̇0(t0) = ψ̇(t0) − dgF (g(t0), t0)ġ(t0).

Proof. Let us keep in mind that ψ0(t0) = F (g(t0), t0) = ψ(t0). Then we can write:

ψ0(t) − ψ0(t0) = F (g(t0), t) − ψ(t0) + ψ(t) − F (g(t), t)
= F (g(t0), t) − F (g(t), t) + ψ(t) − ψ(t0)

= F (g(s), t)
---s=t0

s=t
+ ψ(t) − ψ(t0)

=
Ú t0

t
dgF (g(s), t)ġ(s) ds+ ψ(t) − ψ(t0).
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Dividing now by t− t0 we get
ψ0(t) − ψ0(t0)

t− t0
= −−

Ú t

t0

dgF (g(s), t)ġ(s) ds+
ψ(t) − ψ(t0)

t− t0
.

Taking now the limit as t → t0, due to the assumptions on t0 and on the continuity of
dgF , we can then deduce

ψ̇0(t0) = lim
t→t0

ψ0(t) − ψ0(t0)
t− t0

= −dgF (g(t0), t0)ġ(t0) + ψ̇(t0).

The quantities on the right side are finite, hence ψ0 is differentiable at t0.

We will now prove the last result of this section, which proves an equivalence used in
the next section to study the stability of the continuous evolution.
Theorem 4.2.7. Let m ≥ 1, and g ∈ AC

!
[0,1], H1(Ω)

"
an absolutely continuous loading,

and K : [0,1] → Kf
m(Ω) be a non-decreasing compact-valued function. We also assume that

the function t → E(g(t), K(t)) is in AC
!
[0,1]

"
. Then the following are equivalent:

1.
d
dsE(g(t), K(s))

---
s=t

= 0 for a.e. t ∈ [0,1];

2.
d
dtE(g(t), K(t)) = µ ⟨∇u(t),∇ġ(t)⟩L2(Ω;R2) for a.e. t ∈ [0,1];

Here u(t) is a solution to the minimum problem defining E(g(t), K(t)).
Proof. We define a function F : H1(Ω) × [0,1] → R as F (g, t) := E(g,K(t)). By 4.2.1
we know that, defining Θ =

)
t ∈ [0,1] : K−(t) = K+(t)

*
, then the set [0,1] \ Θ is at

most countable, hence of zero Lebesgue measure. Moreover, for every t ∈ Θ, there exists
(tn) ⊂ [0,1] with tn → t, such that K(tn) → K(t) in the Hausdorff metric. We can now
apply Lemma 4.2.5 to deduce that dgF is continuous in (g, t) for every g ∈ H1(Ω) in for
a.e. t ∈ [0,1] (since Θ has zero measure).
From Lemma 4.2.4, we know that, fixing K(t), then for every g, h ∈ H1(Ω we have

dgF (g, t)h = µ

Ú
Ω\K(t)

∇u⊤g ∇h dx ∀g, h ∈ H1(Ω), for a.e. t ∈ [0,1].

But, for what was discussed before about absolutely continuous functions, we know that
both g(t) and ġ(t) are in H1(Ω), hence we take g = g(t) and h = ġ(t), such that:

dgF (g(t), t)ġ(t) = µ

Ú
Ω\K(t)

∇u⊤g(t)∇ġ(t) dx = µ ⟨∇u(t),∇ġ(t)⟩L2(Ω;R2) for a.e. t ∈ [0,1].

Then, from 4.2.6, if we define

ψ(t) = F (g(t), t) = E(g(t), K(t)), ψ0(t) = F (g(t0), t) = E(g(t0), K(t)),

we can then deduce:
d
dsE(g(t0), K(s))

---
s=t0

= −µ ⟨∇u(t0),∇ġ(t0)⟩L2(Ω;R2) +
d
dtE(g(t), K(t))

---
t=t0

.

This will be valid for a.e. t ∈ [0,1], hence the theorem.
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4.3 Existence for irreversible quasi-static evolution
As outlined in the introduction to the previous chapter, the existence result for the contin-
uous evolution of the crack set will be obtained through a time discretization. For clarity
we will repeat the statement of the result we wish to prove, with a slight change at point
3):

Theorem 4.3.1. Let g ∈ AC
!
[0,1];H1(Ω)

"
and K0 ∈ Kf

m(Ω). Then there exists a con-
tinuous evolution K : [0,1] → Kf

m(Ω) such that:

1. K0 ⊆ K(s) ⊆ K(t) for 0 ≤ s < t ≤ 1;

2. E(g(0), K(0)) ≤ E(g(0), K) ∀K ∈ Kf
m(Ω), K ⊇ K0;

3. for t ∈ (0,1], E(g(t), K(t)) ≤ E(g(t), K) ∀K ∈ Kf
m(Ω), K ⊇ K(t);

4. the function t → E(g(t), K(t)) is absolutely continuous on [0,1];

5.
d
dsE(g(t), K(s))

---
s=t

= 0 for a.e. t ∈ [0,1].

Moreover, if every function K : [0,1] → Kf
m(Ω) satisfies all these conditions, then it also

satisfies
d
dtE(g(t), K(t)) = µ

Ú
Ω\K(t)

∇u(t)⊤∇ġ(t) dx for a.e. t ∈ [0,1],

where u(t) is a solution of the minimum problem defining E(g(t), K(t)).

The main idea is to compute the minimum not instantaneously, as in the quasi-static
setting, but at every successive time step, and then look for a convergence of some kind
as the time step goes to 0. Let us introduce then some notation: let us take δ > 0, and
define Nδ as the biggest integer such that δNδ ≤ 1. Then we define the discretized times
as tδi = iδ, and the discretized loadings as gδ

i = g(tδi ), for every 0 ≤ i ≤ Nδ. We will define
Kδ

i inductively, as the minimum of the evolution restricted to the discretized times and
loadings, as:

Kδ
i = argmin

K

î
E
1
gδ

i , K
2

: K ∈ Kf
m(Ω), K ⊇ Kδ

i−1

ï
, Kδ

−1 = K0. (4.3)

The first thing we need to make sure of is that this restricted evolution problem actually
has a solution.

Lemma 4.3.2. The minimum problem 4.3 has a solution.

Proof. We know already that Kδ
−1 = K0 ∈ Kf

m(Ω). We assume by induction that Kδ
i−1 ∈

Kf
m(Ω) is a minimum for E(gδ

i−1, K). Then, since Kδ
i−1 is admissible for the minimum of

E(gδ
i , K), there will be λ > 0 such that E(gδ

i , K
δ
i−1) < λ. Let us take (Kn) as a minimizing

sequence for this problem since we are sure that such a sequence always exists. Due to
the upper bound on the energy that we just deduced, we can assume Kn ∈ Kλ

m(Ω) for
n sufficiently large. Since Kn ⊇ Kδ

i−1 for every n, then due to the compactness of the
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Hausdorff space, there exists K∗ ⊇ Kδ
i−1 such that Kn → K∗ in the Hausdorff metric.

If we take now un as the minimum of the problem defining E(gδ
i , Kn), by Theorem 4.1.8

we can deduce that ∇un → ∇u∗ strongly in L2(Ω;R2), where u∗ is the minimum of the
problem defining E(gδ

i , K
∗). Moreover, from Corollary 3.2.8, we deduce that K∗ ∈ Km(Ω),

and also that

H1(K∗) ≤ lim inf
n→∞

H1(Kn) ≤ λ =⇒ K∗ ∈ Kλ
m(Ω) ⊂ Kf

m(Ω). (4.4)

Since ∇un → ∇u∗ strongly, then ∥∇un∥ → ∥∇u∗∥, which, together with (4.4), implies
that

E(gδ
i , K

∗) ≤ lim inf
n→∞

E(gδ
i , Kn).

Since (Kn) is a minimizing sequence, it then follows that K∗ is a solution to the minimum
problem.

Once we know that the restricted evolution has a solution, we can define some step
function analogous to the restricted problems, namely we define gδ, Kδ and uδ as step
function on [0,1] by setting;

gδ(t) := gδ
i , Kδ(t) := Kδ

i , uδ(t) := uδ
i , t ∈

è
tδi , t

δ
i+1

2
where uδ

i is a solution to the minimum problem defining E(gδ
i , K

δ
i ).

We will now give an estimate of the energy at a time step with respect to a previous time
step, which will be useful later in obtaining an upper bound for the norms of the step
functions defined above.

Lemma 4.3.3. There exists a positive function ρ (δ), with ρ (δ) → 0+ as δ → 0+, such
that:

µ

2
...∇uδ

j

...2
+ γH1

1
Kδ

j

2
≤
µ

2
...∇uδ

i

...2
+ γH1

1
Kδ

i

2
+ µ

Ú tδ
j

tδ
i

e
∇uδ(t),∇ġ(t)

f
dt+ ρ (δ) ,

for each 0 ≤ i < j ≤ Nδ.

Proof. Just to remember the framework we are in, we know that

gδ
i ∈ H1(Ω), Kδ

i ∈ Kf
m(Ω), uδ

i ∈ L1,2(Ω \Kδ
i ) uδ

i = gδ
i q.e. on ∂DΩ \Kδ

i .

Let us take now an integer r such that i ≤ r < j. By the absolute continuity of g, we
know that

gδ
r+1 − gδ

r =
Ú tδ

r+1

tδ
r

ġ(t) dt =⇒ ∇gδ
r+1 − ∇gδ

r =
Ú tδ

r+1

tδ
r

∇ġ(t) dt,

where the first and the second integrals are Bochner integrals, respectively on H1(Ω) and
on L2(Ω;R2).
Let us look now at the function uδ

r + gδ
r+1 − gδ

r : this is a sum of functions in L1,2(Ω \Kδ
r )
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and in H1(Ω), hence it is in L1,2(Ω\Kδ
r ). Moreover uδ

r +gδ
r+1 −gδ

r = gδ
r+1 q.e. on ∂DΩ\Kδ

r ,
hence it is an admissible function for the minimum defining E

!
gδ

r+1, K
δ
r

"
, hence:

E
1
gδ

r+1, K
δ
r

2
≤
µ

2
...∇uδ

r + ∇gδ
r+1 − ∇gδ

r

...2
+ γH1

1
Kδ

r

2
.

Now, since uδ
r+1 is a minimum for the problem defining E

!
gδ

r+1, K
δ
r+1
"
, and Kδ

r+1 ⊆ Kδ
r ,

we have that:

µ

2
...∇uδ

r+1

...2
+ γH1

1
Kδ

r+1

2
= E

1
gδ

r+1, K
δ
r+1

2
≤ E

1
gδ

r+1, K
δ
r

2
.

Combining these two relations we get:

µ

2
...∇uδ

r+1

...2
+ γH1

1
Kδ

r+1

2
≤
µ

2
...∇uδ

r + ∇gδ
r+1 − ∇gδ

r

...2
+ γH1

1
Kδ

r

2
≤
µ

2
...∇uδ

r

...2
+ µ

e
∇uδ

r,∇gδ
r+1 − ∇gδ

r

f
+
µ

2
...∇gδ

r+1 − ∇gδ
r

...2
+ γH1

1
Kδ

r

2
≤
µ

2
...∇uδ

r

...2
+ µ

Ú tδ
r+1

tδ
r

e
∇uδ

r,∇ġ(t)
f

dt+
µ

2

AÚ tδ
r+1

tδ
r

∥∇ġ(t)∥ dt
B2

+ γH1
1
Kδ

r

2
.

We know that uδ
r = uδ(t) for t ∈ [tδr, tδr+1), and also that:Ú tδ

r+1

tδ
r

∥∇ġ(t)∥ dt ≤ max
r=0,1,...,Nδ−1

Ú tδ
r+1

tδ
r

∥∇ġ(t)∥ dt =: σ(δ).

Due to the absolute continuity of the integral, if δ → 0, then also σ(δ) → 0. Hence we
get:

µ

2
...∇uδ

r+1

...2
+ γH1

1
Kδ

r+1

2
≤
µ

2
...∇uδ

r

...2
+ γH1

1
Kδ

r

2
+ µ

Ú tδ
r+1

tδ
r

⟨∇uδ(t),∇ġ(t)⟩ dt+
µ

2 σ(δ)
Ú tδ

r+1

tδ
r

∥∇ġ(t)∥ dt.

Iterating this inequality for i ≤ r < j we get:

µ

2
...∇uδ

j

...2
+ γH1

1
Kδ

j

2
≤
µ

2
...∇uδ

i

...2
+ γH1

1
Kδ

i

2
+ µ

Ú tδ
j

tδ
i

⟨∇uδ(t),∇ġ(t)⟩ dt+
µ

2 σ(δ)
Ú tδ

j

tδ
i

∥∇ġ(t)∥ dt

≤
µ

2
...∇uδ

i

...2
+ γH1

1
Kδ

i

2
+ µ

Ú tδ
j

tδ
i

⟨∇uδ(t),∇ġ(t)⟩ dt+
µ

2 σ(δ)
Ú 1

0
∥∇ġ(t)∥ dt,

which is the relation we are looking for, where ρ(δ) = µ
2σ(δ)

s 1
0 ∥∇ġ(t)∥ dt.
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Lemma 4.3.4. There exists a positive constant λ ∈ R, depending on g and K0, such that:...∇uδ
i

... ≤ λ H1
1
Kδ

i

2
≤ λ, (4.5)

for every δ > 0 and every i = 0, 1, . . . , Nδ.
Proof. Since gδ

i ∈ H1(Ω) ⊂ L1,2(Ω \ Kδ
i ), we have that v = gδ

i is an admissible func-
tion for the minimum problem defining E(gδ

i , K
δ
i ), whose minimum is uδ

i . Then by the
equivalence to 3.8 we know that

..∇uδ
i

.. ≤
..∇gδ

i

.. for every i, hence ∥∇uδ(t)∥ ≤ ∥∇gδ(t)∥
for every t. Since g ∈ AC

!
[0,1];H1(Ω)

"
, we know that ∥∇ġ(t)∥ ∈ L1 ([0,1]), and that

∇g(t) ∈ L2(Ω;R2), hence there exists a positive constant C1 depending only on g such
that ∥∇g(t)∥ ≤ C1 for every t. Then we can conclude with the first upper bound, since if
t = tδi , then we have ...∇uδ

i

... ≤
...∇gδ

i

... =
...∇g!tδi "... ≤ C1.

Looking now at (4.3) for i = 0, we can say that since Kδ
0 is the minimum, and since

∥∇u0∥ ≤ ∥∇g(0)∥, we know:

E
1
g(0), Kδ

0

2
≤ E (g(0), K0) =⇒

µ

2
...∇uδ

0

...2
+ γH1

1
Kδ

0

2
≤
µ

2 ∥∇g(0)∥2 + γH1 (K0) .

Using now Lemma 4.3.3 we can write:
µ

2
...∇uδ

i

...2
+ γH1

1
Kδ

i

2
≤
µ

2
...∇uδ

0

...2
+ γH1

1
Kδ

0

2
+ µ

Ú tδ
i

tδ
0

e
∇uδ(t),∇ġ(t)

f
dt+ ρ (δ)

≤
µ

2 ∥∇g(0)∥2 + γH1 (K0) + µ

Ú tδ
i

0

e
∇uδ(t),∇ġ(t)

f
dt+ ρ (δ) ,

From this it follows that there exists a positive constant C2 depending on g, K0 and δ
such that

H1
1
Kδ

i

2
≤

1
γ

A
µ

2 ∥∇g(0)∥2 + γH1 (K0) + µ

Ú tδ
i

0

e
∇uδ(t),∇ġ(t)

f
dt+ ρ (δ)

B
≤ C2.

To conclude we may take λ = max
)
C1, C2

*
.

One of the main results of this section, and one that is going to be used frequently in
the next results, is the following:
Theorem 4.3.5. Take λ as the constant of Lemma 4.3.4. Then there exists a non-
decreasing compact valued function K : [0,1] → Kλ

m(Ω) such that Kδ(t) → K(t) in the
Hausdorff metric as δ → 0, along a sequence independent of t.
Proof. From Theorem 4.2.3, we know that there exists a sub-sequence independent of
t, and a non-decreasing compact valued function K : [0,1] → K(Ω) such that for every
t ∈ [0,1], Kδ(t) → K(t) as δ → 0. By Lemma 4.3.4 we know that H1 !Kδ

i

"
≤ λ, hence

for every t ∈ [0,1] we have H1 (Kδ(t)) ≤ λ. Then we can conclude by Corollary 3.2.8 that
K(t) ∈ Km(Ω) and also that:

H1 (K(t)) ≤ lim inf
n→∞

H1 (Kδ(t)) ≤ λ.

Thus K(t) ∈ Kλ
m(Ω).
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Note that we just proved point 1) of Theorem 4.3.1. From now on, we will use the fact
that the limit is a non-decreasing compact-valued function, and the limit will be always
taken along the sub-sequence independent of t.

Lemma 4.3.6. For every t ∈ [0,1] we have that ∇uδ(t) → ∇u(t) in L2(Ω;R2), where
u(t) is the solution to the minimum defining E(g(t), K(t)).

Proof. Let us fix a t ∈ [0,1], and let uδ(t) be the solution to the minimum defining
E(gδ(t), Kδ(t)). Since we know that gδ(t) → g(t) in H1(Ω) and Kδ(t) → K(t) in the
Hausdorff metric, by Theorem 4.1.8 we can conclude that ∇uδ(t) → ∇u(t) strongly in
L2(Ω;R2) for every t ∈ [0,1].

We will now prove points 2) and 3) the 4.3.1.

Theorem 4.3.7. For every t ∈ [0,1], we have:

E (g(0), K(0)) ≤ E (g(0), K) , ∀K ∈ Kf
m(Ω), K ⊇ K0; (4.6)

E (g(t), K(t)) ≤ E (g(t), K) , ∀K ∈ Kf
m(Ω), K ⊇ K(t). (4.7)

Proof. For the first point let us fix K ∈ Kf
m(Ω) : K ⊇ K0. By the minimality of 4.3, we

have:

E (gδ(0), Kδ(0)) ≤ E (gδ(0), K) = E (g(0), K) ,
µ

2 ∥∇uδ(0)∥2 + γH1 (Kδ(0)) ≤ E (g(0), K) .

From Corollary 3.2.8 we deduce that:

H1 (K(0)) ≤ lim inf
δ→0

H1 (Kδ(0))

≤ lim inf
δ→0

1
γ

A
E (g(0), K) −

µ

2 ∥∇uδ(0)∥2
B

≤
1
γ

A
E (g(0), K) −

µ

2 ∥∇u(0)∥2
B
,

hence the conclusion follows:

E (g(0), K(0)) =
µ

2 ∥∇u(0)∥2 + γH1 (K(0)) ≤ E (g(0), K) ,

for whatever K ∈ Kf
m(Ω) : K ⊇ K0.

For the second point let us fix t ∈ [0,1], and K ∈ Kf
m(Ω) : K ⊇ K(t). Since Kδ(t) →

K(t) in the Hausdorff metric, from Proposition 3.2.13, we can deduce that there exists a
sequence (Kδ) ⊂ Kf

m(Ω) with Kδ → K in the Hausdorff metric, such that

Kδ(t) ⊆ Kδ, H1(Kδ \Kδ(t)) → H1(K \K(t)) δ → 0.
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Since K has finite H1-measure, then H1(Kδ) will be bounded for δ small enough.
Let us define now vδ as the solution to the minimum problem defining E (gδ(t), Kδ), and
v a solution to the minimum problem defining E (g(t), K). Since gδ(t) → g(t) in H1(Ω)
and Kδ → K in the Hausdorff metric, from 4.1.8 we know that ∇vδ → ∇v strongly in
L2(Ω;R2). Now, due to Kδ(t) being a solution to 4.3, we know

E (gδ(t), Kδ(t)) ≤ E (gδ(t), Kδ) ,
µ

2 ∥∇uδ(t)∥2 + γH1 (Kδ(t)) ≤
µ

2 ∥∇vδ∥2 + γH1 (Kδ) ,

µ

2 ∥∇uδ(t)∥2 ≤
µ

2 ∥∇vδ∥2 + γH1 (Kδ \Kδ(t)) .

Taking now the limit as δ → 0, we easily get

µ

2 ∥∇u(t)∥2 ≤
µ

2 ∥∇v∥2 + γH1 (K \K(t)) =⇒ E (g(t), K(t)) ≤ E (g(t), K) ,

for whatever K ∈ Kf
m(Ω) : K ⊇ K(t).

To show that also 4) and 5) are satisfied, we need the following estimate, a consequence
of Lemma 4.3.3:

Lemma 4.3.8. For every 0 ≤ s < t ≤ 1 we have:

µ

2 ∥∇u(t)∥2 + γH1 (K(t)) ≤
µ

2 ∥∇u(s)∥2 + γH1 (K(s)) +µ

Ú t

s
⟨∇u(τ),∇ġ(τ)⟩ dτ, (4.8)

Proof. Fix some 0 ≤ s < t ≤ 1, and choose δ small enough so that there exist i /= j such
that s ∈

#
tδi , t

δ
i+1
"

and t ∈
#
tδj , t

δ
j+1
"
. Define now sδ := tδi and tδ := tδj . Obviously sδ /= tδ,

and by Lemma 4.3.3 we get:

µ

2 ∥∇uδ(t)∥2 + γH1 (Kδ(t) \Kδ(s)) ≤
µ

2 ∥∇uδ(s)∥2 + µ

Ú tδ

sδ

e
∇uδ(τ),∇ġ(τ)

f
dτ + ρ (δ) .

From Corollary 3.2.9 we know that

H1 (K(t) \K(s)) ≤ lim inf
δ→0

H1 (Kδ(t) \Kδ(s)) ,

hence we can write

H1 (K(t) \K(s))
≤ lim inf

δ→0
H1 (Kδ(t) \Kδ(s))

≤ lim inf
δ→0

1
γ

C
µ

2 ∥∇uδ(s)∥2 −
µ

2 ∥∇uδ(t)∥2 + µ

Ú tδ

sδ

e
∇uδ(τ),∇ġ(τ)

f
dτ + ρ (δ)

D
.

Obviously ρ(δ) → 0 as δ → 0, and from Lemma 4.3.6 we know that ∇uδ(t) → ∇u(t)
strongly in L2(Ω;R2) for every t ∈ [0,1], and from Lemma 4.3.4 we get that ∥∇uδ(τ)∥ ≤ λ
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for every τ ∈ [0,1]. We just need to check if the integral converges: if δ → 0 then sδ → s
and tδ → t. We can then use the dominated convergence theorem by writing:----Ú tδ

sδ

e
∇uδ(τ),∇ġ(τ)

f
dτ
---- ≤

Ú t

s
✶[sδ ,tδ ]

---e∇uδ(τ),∇ġ(τ)
f--- dτ.

Since
✶[sδ ,tδ ]

e
∇uδ(τ),∇ġ(τ)

f
−→ ✶[s,t]

e
∇u(τ),∇ġ(τ)

f
δ → 0,

and

✶[sδ ,tδ ]

e
∇uδ(τ),∇ġ(τ)

f
≤ ✶[sδ ,tδ ] ∥∇uδ(τ)∥ ∥∇ġ(τ)∥ ∈ L1(Ω) ∀τ ∈ [0,1],

we can then conclude:

H1 (K(t) \K(s))

≤ lim inf
δ→0

1
γ

C
µ

2 ∥∇uδ(s)∥2 −
µ

2 ∥∇uδ(t)∥2 + µ

Ú tδ

sδ

e
∇uδ(τ),∇ġ(τ)

f
dτ + ρ (δ)

D

≤
1
γ

A
µ

2 ∥∇u(s)∥2 −
µ

2 ∥∇u(t)∥2 + µ

Ú t

s

e
∇u(τ),∇ġ(τ)

f
dτ
B
.

The conclusion now follows.

Now we can conclude the proof of Theorem 4.3.1. We have to recall the definition of
absolutely continuous function given in 2.2.4, 2.2.5, 2.2.6: these are all equivalent, but we
will use 2.2.6.
Theorem 4.3.9. The function t → E (g(t), K(t)) is in AC ([0,1]) and:

d
dtE (g(t), K(t)) = µ ⟨∇u(t),∇ġ(t)⟩L2(Ω;R2) for a.e. t ∈ [0,1]. (4.9)

Moreover:
d
dsE (g(t), K(s))

---
s=t

= 0 for a.e. t ∈ [0,1]. (4.10)

Proof. Fix 0 ≤ s < t ≤ 1, then from Lemma 4.3.8 we know that:

E
!
g(t), K(t)

"
− E

!
g(s), K(s)

"
≤ µ

Ú t

s

+
∇u(τ),∇ġ(τ)

,
dτ. (4.11)

From Lemma 4.3.4 there exists a constant C such that ∥∇u(τ)∥ ≤ C for every τ ∈ [0,1],
hence: ---E!g(t), K(t)

"
− E

!
g(s), K(s)

"--- ≤
----µ Ú t

s

+
∇u(τ),∇ġ(τ)

,
dτ
----

≤ µ

Ú t

s

---+∇u(τ),∇ġ(τ)
,--- dτ

≤ µ

Ú t

s

..∇u(τ)
.. ..∇ġ(τ)

.. dτ

≤ µC

Ú t

s

..∇ġ(τ)
.. dτ.
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Since
..∇ġ.. ∈ L1![0,1]

"
, this is equivalent to the definition of an absolutely continuous

function given in 2.2.6.
From Theorem 4.3.7 we know that

E
!
g(s), K(s)

"
≤ E

!
g(s), K(t)

"
, (4.12)

since K(t) ⊇ K(s), and from Lemma 4.2.4 with K = K(t), and h = ġ(τ) and integrating
with respect to τ from s to t, we have

dgE
!
g(τ), K(t)

"
ġ(τ) = µ

+
∇ut(τ),∇ġ(τ)

,
,

E
!
g(t), K(t)

"
− E

!
g(s), K(t)

"
= µ

Ú t

s

+
∇ut(τ),∇ġ(τ)

,
dτ, (4.13)

where ut(τ) is the solution to the minimum problem defining E
!
g(τ), K(t)

"
. Combining

(4.12) and (4.13) we get:

E
!
g(t), K(t)

"
− E

!
g(s), K(s)

"
≥ E

!
g(t), K(t)

"
− E

!
g(s), K(t)

"
= µ

Ú t

s

+
∇ut(τ),∇ġ(τ)

,
dτ. (4.14)

Notice that (4.11) and (4.14) are quite similar, but they differ in ∇u(τ) and ∇ut(τ). Let
us observe though that from Theorem 4.1.8 we know that ∇ut(τ) → ∇u(τ) as τ → t,
since g(τ) → g(t) strongly in H1(Ω) as τ → t.
From (4.11), we can divide by t− s and take the limit as s → t−, and we will obtain:

d
dtE (g(t), K(t)) ≤ µ lim

s→t−
−
Ú t

s

+
∇u(τ),∇ġ(τ)

,
dτ = µ

+
∇u(t),∇ġ(t)

,
.

Analogously from (4.14):

d
dtE (g(t), K(t)) ≥ µ lim

s→t−
−
Ú t

s

+
∇ut(τ),∇ġ(τ)

,
dτ = µ

+
∇u(t),∇ġ(t)

,
.

Combining these last two relations we get (4.9).
To conclude, we just need to apply the equivalence of Theorem 4.2.7 to obtain (4.10).

Hence the existence result 4.3.1 is proved. As we can see the assumptions taken are
quite natural, like the absolute continuity of the loading, which in most applications could
also be taken Lipschitz or even continuously differentiable. Even if the assumption on the
finite number of connected components of the crack set may seem quite technical, it
feels quite reasonable given the observed structure of a crack propagating through a real
material. Moreover, if this hypothesis is dropped, the convergence of Kδ(t) → K(t) in
the Hausdorff metric does not imply the convergence of the solutions to the respective
minimum problems. If the number of holes or cracks in the domain is allowed to be
infinite, the problem is known in the literature as Neumann sieve (see [31]).
One can see that the third point of 4.3.1 has a different formulation from 4.0.1, but
actually, it is a consequence:
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Theorem 4.3.10. Let K : [0,1] → Kf
m(Ω) a non-decreasing compact-valued function sat-

isfying the hypothesis of Theorem 4.3.1. Then:

E (g(t), K(t)) ≤ E (g(t), K) ∀K ∈ Kf
m(Ω) : K ⊇

Û
s<t

K(s) ∀t ∈ (0,1]. (4.15)

Proof. Fix t ∈ (0,1] and an arbitrary K ∈ Kf
m(Ω) such that K ⊇

t
s<t K(s).

If 0 ≤ s < t then K ⊇ K(s), hence from third point of 4.3.1 we deduce:

E (g(s), K(s)) ≤ E (g(s), K) .

We know that the functions t → E (g(t), K(t)) and t → E (g(t), K) are absolutely contin-
uous on a compact interval, hence they are continuous: taking then the limit as s → t−

we get:
E (g(t), K(t)) ≤ E (g(t), K) ,

for whatever K ∈ Kf
m(Ω) such that K ⊇

t
s<t K(s).

Observation 4.3.11. We can easily prove another proposition of Francfort and Marigo,
namely that if g(0) = 0 then K(0) = K0.
If g(0) = 0, then by the second point in 4.3.1 we have:

E (0, K(0)) ≤ E (0, K) ∀K ∈ Kf
m(Ω) : K ⊇ K0,

H1!K(0) \K
"

≤ 0 ∀K ∈ Kf
m(Ω) : K ⊇ K0,

max
K

H1!K(0) \K
"

≤ 0 ∀K ∈ Kf
m(Ω) : K ⊇ K0,

H1!K(0) \K0
"

≤ 0 =⇒ H1!K(0) \K0
"

= 0.

This implies that K(0) = K0 up to sets of zero H1-measure, which we have already seen
to be removable for this model.

In their model, Francfort and Marigo focused on a special class of loadings, called
MIL: Monotone Increasing Loadings. They formally asserted that under MIL loadings,
Proposition 2.1.1 implied Proposition 2.1.2. We will prove this result rigorously.
Proposition 4.3.12. Let K : [0,1] → Kf

m(Ω) a non-decreasing compact-valued function
satisfying the hypothesis of Theorem 4.3.1, and let g be an absolutely continuous function
on [0,1] with values in H1(Ω) with the particular form g(t) = φ(t)g0, where φ ∈ AC([0,1])
non-decreasing and non-negative, and g0 ∈ H1(Ω) a fixed function. Then:

E (g(t), K(t)) ≤ E (g(t), K(s)) ∀0 ≤ s < t ≤ 1. (4.16)

Proof. Fix s, t such that 0 ≤ s < t ≤ 1. Due to the structure of the model, we have

E (g(τ), K(τ)) = E (φ(τ)g0, K(τ)) =
µ

2 φ(τ)2 ∥∇v(τ)∥2 + γH1 (K(τ)) ,

where v(τ) is the solution to the minimum problem defining E (g0, K(τ)). Then u(τ) =
φ(τ)v(τ) where u(τ) is the solution to the minimum problem defining E (φ(τ)g0, K(τ));
moreover ġ(τ) = φ̇(τ)g0. From Theorem 4.3.1 we have

d
dtE(g(t), K(t)) = µ

Ú
Ω\K(t)

∇u(t)⊤∇ġ(t) dx for a.e. t ∈ [0,1].
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4.3 – Existence for irreversible quasi-static evolution

Integrating in time from s to t we get:

E (g(t), K(t)) − E (g(s), K(s)) = µ

Ú t

s

e
∇u(τ),∇ġ(τ)

f
dτ

From this, adding and subtracting E (g(s), K(s)) we get

E (g(t), K(t)) − E (g(t), K(s))

=µ

Ú t

s

e
∇u(τ),∇ġ(τ)

f
dτ + E (g(s), K(s)) − E (g(t), K(s))

=µ

Ú t

s

e
∇v(τ),∇g0

f
φ(τ)φ̇(τ) dτ +

µ

2
1
φ(s)2 − φ(t)2

2
∥∇v(s)∥2 .

Now, since v(τ) is such that v(τ) = g0 q.e. on ∂DΩ \ K(τ), we can take in (3.8) z =
v(τ) − g0, thus: e

∇v(τ),∇g0
f

L2(Ω;R2)
=
...∇v(τ)

...2

L2(Ω;R2)
.

Due to the monotonicity of K, if τ ≥ s then K(τ) ⊇ K(s), thus Ω \ K(τ) ⊆ Ω \ K(s).
If v(s) ∈ L1,2(Ω \K(s)), we can then truncate it on Ω \K(τ), therefore obtaining v(s) ∈
L1,2(Ω \ K(τ)) and v(s) = g0 q.e. on ∂DΩ \ K(τ), hence v(s) is an admissible function
for the minimum problem defining E (g0, K(τ)). Due to the minimality of v(τ) we get..∇v(τ)

..2 ≤
..∇v(s)

..2. Combining these results we get:

E (g(t), K(t)) − E (g(t), K(s))

=µ

Ú t

s

e
∇v(τ),∇g0

f
φ(τ)φ̇(τ) dτ +

µ

2
1
φ(s)2 − φ(t)2

2
∥∇v(s)∥2

=µ

Ú t

s

...∇v(τ)
...2
φ(τ)φ̇(τ) dτ +

µ

2
1
φ(s)2 − φ(t)2

2
∥∇v(s)∥2

≤µ
...∇v(s)

...2 Ú t

s
φ(τ)φ̇(τ) dτ +

µ

2
1
φ(s)2 − φ(t)2

2
∥∇v(s)∥2

=
µ

2
...∇v(s)

...2 5
2
Ú t

s
φ(τ)φ̇(τ) dτ + φ(s)2 − φ(t)2

6
=
µ

2
...∇v(s)

...2
CÚ t

s

d
dτ
1
φ(τ)2

2
dτ + φ(s)2 − φ(t)2

D
= 0,

from which the conclusion follows.

A nice corollary of Theorem 4.3.1 admits the existence of a left-continuous and a
right-continuous solution:

Corollary 4.3.13. Let K : [0,1] → Kf
m(Ω) a non-decreasing compact-valued function sat-

isfying the hypothesis of Theorem 4.3.1. Then:

E (g(t), K(t)) = E
!
g(t), K−(t)

"
0 < t ≤ 1, (4.17)

E (g(t), K(t)) = E
!
g(t), K+(t)

"
0 ≤ t < 1. (4.18)
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Existence results in two dimensional anti-plane setting

Proof. For the first part, fix a t ∈ (0,1], and a succession (tn) such that tn → t−. Then
we have K(tn) → K−(t) in the Hausdorff metric, and g(tn) → g(t) in H1(Ω) due to
the absolute continuity. From Theorem 4.1.8 then we have that ∇un → ∇u strongly in
L2(Ω;R2), where un, u− are the solutions to the minimum problems defining respectively
E (g(tn), K(tn)) and E (g(t), K−(t)). Moreover, from Corollary 3.2.8 we also know that
H1(K(tn)) → H1(K−(t)), hence we conclude that:

E (g(tn), K(tn)) → E
!
g(t), K−(t)

"
tn → t−.

From Theorem 4.3.1 we know that the function s → E (g(s), K(s)) is absolutely contin-
uous on a compact interval, hence it is continuous, hence by the uniqueness of the limit
we get:

E (g(t), K(t)) = E
!
g(t), K−(t)

"
,

for every t ∈ (0,1].
The second part follows analogously.

From this result, we deduce that the problem has a left-continuous and a right-
continuous solution, given by:

t → K→(t) :=
I
K(0) t = 0,
K−(t) 0 < t ≤ 1;

t → K←(t) :=
I
K+(t) 0 ≤ t < 1,
K(1) t = 1;

These are solutions to Theorem 4.3.1, since from Corollary 4.3.13 we have that the prop-
erties of 4.3.1 are invariant under changes from K to K+ or K−.
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Chapter 5

Study of solutions near the
crack tip

At this point we know that under some natural assumptions on the agents involved, the
proposed model always admits a solution, being a compact-valued non-decreasing function
representing the evolution of the crack set.
The strength of this model, as anticipated, is found not only in this existence result, but
also in the fact that it summarizes in a way the classical theory of brittle fracture. That
is why the objective of this chapter is three-fold:

1. first we want to study the behavior of the displacements near the crack tip, in order
to prove the existence of the Stress Intensity Factor and a certain dependence on the
square root of the distance from the crack tip;

2. then study the Energy Release Rate under propagation of the crack, to prove Irwin’s
relation between the Stress Intensity Factor and the Energy Release Rate in our case
of anti-plane shear;

3. reconstruct Griffith’s criteria in its dissipative formulation.

The tools that we will use in this chapter, especially in the first section, will be quite
different from the ones used up until now, and due to the amount of necessary introduction,
we will often omit the proofs of some results, for the sake of simplicity.

5.1 Regularity of displacements near the crack tip
To study this problem, we can avoid the propagation, and thus avoid considering the
energy of the fracture, which will be considered constant and thus will not contribute.
Effectively this is done by freezing the system in time and considering only the local
behavior of displacements. We will assume the crack to be a curve of class C2, in order that
it always exists a diffeomorphism that, in a sufficiently small neighborhood of the crack
tip, allows us to consider a straight crack. We will not give details for this diffeomorphism,
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Study of solutions near the crack tip

which can be constructed explicitly: we refer to [16] for further details.
We can take a neighborhood of the crack tip U , and then consider the truncated problem
through a function η ∈ D(U), in order to avoid having to consider non-homogeneous
boundary conditions. Under this setting, we consider U to be a polygonal boundary, of
the type in the right figure in Figure 5.1. For clarity, we will be studying the general case
in which the boundary has a concave corner, and then deduce the result for a crack.

Figure 5.1: Polygonal boundary being considered

Now for some notation, we define each vertex as Sj , with the canonical orientation, and
then each edge as Γj , connecting Sj to Sj+1. We define for each vertex the angle pointing
into the domain as ωj , and also a system of polar coordinates (rj , θj) where taken a point
M ∈ U , we get rj = M − Sj and θj equal to the angle between Γj+1 and M − Sj , as in
Figure 5.1: obviously θj ∈ [0, ωj ]. Given a vertex and its polar coordinates, we can define
a truncation function ηj ∈ D(U), function only of rj , such that ηj ≡ 1 near Sj , and it
decreases until ηj → 0 near Γk, for k /= j, j + 1. Moreover, these functions can be made
so that they have disjoint support.
We will now divide the edges between the Dirichlet and Neumann edges, dividing the
indices of the edges in a disjoint union of two sets, as {1, 2, . . . , N} = D ⊔ N , with the
obvious choice of notation. We will also divide the vertices in an analogous way, dividing
them as follows:

D2 :=
)
j : j ∈ D, j + 1 ∈ D

*
;

N 2 :=
)
j : j ∈ N , j + 1 ∈ N

*
;

M :=
)
j : j ∈ D, j + 1 ∈ N or j ∈ N , j + 1 ∈ D

*
.

Up until now, we have omitted the trace operator γ on the formulation we have given,
but now we will have to define a trace operator γk for each of the edges. Summing up,
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5.1 – Regularity of displacements near the crack tip

the problem we wish to study is the following:
∆u = 0 on U,

γku = 0 on Γk, k ∈ D,

γk
∂u

∂nk
= 0 on Γk, k ∈ N .

Define then the space of weak solutions V :=
)
u ∈ H1(U) : γku = 0 ∀k ∈ D

*
. From the

usual theory on boundary value problems, it is known that there exists always a solution
u ∈ V to this problem. Moreover, it can be proven that, is u ∈ V is a solution, and
φ ∈ D(U) such that its support only intersects the edges away from the vertices, then
φu ∈ H2(U), meaning that the solution is regular up to the corners.
Let us now define the space of strong solutions

V 2 :=
;
u ∈ H2(U) : γku = 0 ∀k ∈ D, γk

∂u

∂nk
= 0 ∀k ∈ N

<
.

Consider the Laplacian as an operator from V 2 to L2(U). What we want to do is prove
that the image of this operator is a closed subset of L2(U), meaning that for an arbitrary
polygonal boundary, we are not sure that there exists v ∈ V 2 such that ∆v = 0. In order
to make the operator surjective, we will need to add to the domain a space of a certain
dimension, and this will be done with the use of the theory of Fredholm operators, which
we will briefly introduce now without proofs: we refer to Section 3.3 of [26].

Definition 5.1.1. Let X and Y be Banach spaces, and T : X → Y be a bounded linear
operator. We say that T is a Fredholm operator if it satisfies these three conditions:

• KerT has finite dimension;

• ImT is closed in Y ;

• CokerT has finite dimension.

If T is a Fredholm operator we can define its index as

indT = dim(KerT ) − dim(CokerT )
= dim(KerT ) − Codim (ImT ).

Proposition 5.1.2. T : X → Y is a Fredholm operator if and only if there exists a
bounded linear operator R : Y → X such that both RT − IX and TR − IY are compact
operators.

As a standard notation, we define B(X, Y ) to be the set of bounded linear operators
between X and Y . We also now introduce Fred (X, Y ) to be the set of Fredholm operators
between X and Y .

Proposition 5.1.3. Fred (X, Y ) is an open subset of B(X, Y ), and the index is a contin-
uous function on Fred (X, Y ).
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Study of solutions near the crack tip

A property that is used frequently in the study of kernel operators is the following:

Proposition 5.1.4. If K ∈ B(X,X) is compact, then I +K ∈ Fred (X,X).

As a last property, the space of Fredholm operators is closed under composition.

Proposition 5.1.5. Let T ∈ Fred (X, Y ) and S ∈ Fred (Y, Z). Then ST ∈ Fred (X,Z)
and indST = indS + indT .

We will use the Fredholm alternative theory to solve our problems, which in our case
states that T is a second-order elliptic operator in a Hilbert space H, then the elliptic
problem Lu = 0 has a non-trivial weak solution. For further details, we refer to Section
6.2.3 of [38].
The first two properties of Fredholm operators are usually quite easy to prove, and for el-
liptic problems, they involve finding a certain inequality, for which we require the following
lemma.

Lemma 5.1.6. For each u ∈ V 2 we have

∥∆u∥2 = ∥∂11u∥2 + ∥∂22u∥2 + 2∥∂12u∥2.

Proof. By straightforward calculation, we get:

∥∆u∥2 = ∥∂11u∥2 + ∥∂22u∥2 + 2
Ú

U
∂11u∂22u dx.

Let us look at the last term on the right-hand side: we would like to prove thatÚ
U
∂11u∂22u dx =

Ú
U

(∂12u)2 dx ∀u ∈ V 2.

Thanks to density results, we can prove this for u ∈ V 2 ∩ H3(U). Integrating by parts
twice we get:Ú

U
∂11u∂22u dx

=
Ø

j

Ú
Γj

γj(∂1u)γj(∂22u)n1dσ −
Ú

U
∂1u∂122u dx

=
Ø

j

Ú
Γj

γj(∂1u)γj(∂22u)n1dσ −
Ø

j

Ú
Γj

γj(∂12u)γj(∂1u)n2dσ +
Ú

U
(∂12u)2 dx,

which brings to:Ú
U
∂11u∂22u dx−

Ú
U

(∂12u)2 dx =
Ø

j

Ú
Γj

γj(∂1u)
è
γj(∂22u)n1 − γj(∂12u)n2

é
dσ

=
Ø

j

Ú
Γj

γj(∂1u)d
#
γj(∂2u)

$
,
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5.1 – Regularity of displacements near the crack tip

which is well defined since u ∈ H3(U). Looking at the boundary conditions, they imply
γj(∇u · µj) = 0, where µj = τj is j ∈ D, and µj = nj if j ∈ N . Now, if µj is parallel
to the x axis, then γj(∂1u) = 0 and the conclusion follows. If µj is not parallel to the x
axis, we define αj and βj as the components of µj with respect to two axes: it follows
that βj /= 0. It follows that γj(∂2u) = −αj

βj
γj(∂1u), from which we deduce:

Ú
Γj

γj(∂1u)d
#
γj(∂2u)

$
= −

αj

βj

Ú
Γj

γj(∂1u)d
#
γj(∂1u)

$
= −

αj

2βj

è!
γj(∂1u)

"2(Sj) −
!
γj(∂1u)

"2(Sj−1)
é
.

Again, this is well defined since if u ∈ H3(U) then ∂1u ∈ C(U).
From the trace theorems we know that (γj∇u)(Sj) = (γj+1∇u)(Sj). Moreover, we also
know that (γj∇u)(Sj) is perpendicular both to µj and µj+1. Now, if µj ∦ µj+1 then
obviously (γj∇u)(Sj) = 0, from which the conclusion follows. If µj ∥ µj+1 then:

−
αj

βj

è!
γj(∂1u)

"2(Sj) −
!
γj(∂1u)

"2(Sj−1)
é

=
C
αj+1

βj+1
−
αj

βj

D
(γj∂1u)2(Sj) = 0,

from which the conclusion follows.

Theorem 5.1.7. Let U be a bounded polygonal open set, and let the set D of Dirichlet
edges be non-empty. Then there exists a constant C(U) such that

∥u∥H2 ≤ C(U) (∥∆u∥L2 + ∥u∥L2) .

Proof. We will look for a bound for every derivative. For the second derivative, from the
previous lemma we have:

|u|22 = ∥∂11u∥2 + ∥∂22u∥2 + 2∥∂12u∥2 = ∥∆u∥2.

For the first derivative, they are equivalent to the gradient, hence we can use Poincare
inequality to obtain:

∥∇u∥2 =
Ú

U
|∇u|2 dx = −

Ú
U
u∆u dx+

Ø
j

Ú
Γj

γjuγj

∂u

∂nj
dσ = −

Ú
U
u∆u dx

≤ ∥u∥∥∆u∥ ≤ C(U)∥∇u∥∥∆u∥.

This of course implies:
∥∇u∥ ≤ C(U)∥∆u∥.

We can now conclude by:

∥u∥H2 ≤ (1 + C(U))∥∆u∥L2 + ∥u∥L2 ≤ C(U) (∥∆u∥L2 + ∥u∥L2) ,

where we just renamed every constant with C(U).
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Study of solutions near the crack tip

Thanks to this theorem, since V 2 is compactly embedded in L2, we can prove the
semi-Fredholm property of ∆, because it follows that the operator has a finite dimensional
kernel and has a closed image, as shown in Section 2.3 of [19].
What we are missing is a result about the dimension of the Coker of ∆, or equivalently,
a result about the co-dimension of the image of ∆, which has to be finite. In order to
do this, we will study the orthogonal to the image of ∆, which we will call N , and we
will prove that its dimension is finite, by calculating it explicitly. This will prove that,
given f ∈ L2(Ω), then there exists a weak solution to ∆u = f , or in other words, the only
solution to ∆u = 0 is the trivial solution u ≡ 0. To do this, we need to define a new space
of functions:

D(∆, L2(U)) :=
)
v ∈ L2(U) : ∆v ∈ L2(U)

*
.

With this space, we will prove an equivalence relation between N and D(∆, L2(U)).

Proposition 5.1.8. If v ∈ N , then v ∈ D(∆, L2(U)) and is the solution to the following
adjoint problem: 

∆v = 0 in U ;
γjv = 0 per j ∈ D;

γj
∂v

∂nj
= 0 per j ∈ N .

This proposition makes sense since it can be proved that for every v ∈ H2, the mapping
v → {γjv, γj

∂v
∂nj

} has a unique continuous extension as an operator from D(∆, L2(U)) to
H−

1
2 (Γj) ×H−

3
2 (Γj).

Proof. By definition of N , if v ∈ N , then

v ∈ L2(U),
Ú

U
v∆u dx = 0 ∀u ∈ V 2.

This is true also for all u ∈ D(U), hence we can integrate by parts to obtain that v is
harmonic, with of course ∇v ∈ L2(U). It follows then v ∈ D(∆, L2(U)).
We now need to deduce the boundary conditions. Given φj ∈ D(Γj) for j ∈ D and
ψj ∈ D(Γj) for j ∈ N , from the trace embeddings we know that there exists u ∈ H2(U)
such that:

γju = φj γj

∂u

∂nj
= 0 j ∈ N ;

γju = 0 γj

∂u

∂nj
= ψj j ∈ D.

Using Green’s identity, adjusted for polygonal boundaries, we can write:
Ú

U
u∆v dx−

Ú
U
v∆u dx =

Ø
j

CK
γju, γj

∂v

∂nj

L
−
K
γjv, γj

∂u

∂nj

LD
.
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Since v is harmonic, and due to the properties of the chosen u, we get

Ø
j∈N

K
φj , γj

∂v

∂nj

L
−
Ø
j∈D

⟨γjv, ψj⟩ = 0.

Due to the arbitrariness of φj and ψj , we deduce the given boundary conditions.

To prove the converse of this proposition, we need to first introduce some new notation,
and prove an orthogonality result which will be useful in more results.
We define two subsets of M, namely:

M′ :=
î
j ∈ M : j ∈ N , j + 1 ∈ D, ωj = π

2 or ωj = 3π
2
ï

;

M′′ :=
î
j ∈ M : j ∈ D, j + 1 ∈ N , ωj = π

2 or ωj = 3π
2
ï
.

These sets may very well be empty, as they depend on the angles of the polygon.

Lemma 5.1.9. If v ∈ N , then v has to satisfy these three orthogonality conditions:Ú
U
v∆(ηj) dx = 0 ∀j ∈ N ,Ú

U
v∆(yjηj) dx = 0 ∀j ∈ M′

,Ú
U
v∆(xjηj) dx = 0 ∀j ∈ M′′

,

where xj = rj cos θj and yj = rj sin θj.

Proof. Since v ∈ N , then we know that v ∈ D(∆, L2(U)), ∆v = 0 and it satisfies boundary
conditions. Moreover, ηj , yjηj , xjηj ∈ D(U) hence they are differentiable and we can use
Green’s formula.
For the first formula, we get:Ú

U
v∆(ηj) dx =

Ú
U
ηj∆v dx+

Ø
k

=
γkv, γk

∂ηj

∂nk

>
−
Ø

k

=
γkηj , γk

∂v

∂nk

>

=
Ø
k∈N

=
γkv, γk

∂ηj

∂nk

>
−
Ø
k∈D

=
γkηj , γk

∂v

∂nk

>
= 0.

where the last equality is due to the supports of ηj being disjoint, and due to ηj depending
only on rj . In particular, the second term is equal to zero since in the first case j ∈ N 2,
hence if k ∈ D then γkηj = 0. This is the part that needs to be modified for the three
different cases: for example, if j ∈ M′ , then we need to check for j = k+ 1 ∈ D, but this
we obviously have yjηj = 0 due to the presence of yj . The same goes for j ∈ M′′ , hence
the conclusion.

Proposition 5.1.10. If v ∈ D(∆, L2(U)), solves the adjoint boundary value problem and
satisfies the orthogonality conditions in 5.1.9, then v ∈ N .
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Study of solutions near the crack tip

Proof. Since we want to prove v ∈ N , we will proveÚ
U
v∆u dx = 0 ∀u ∈ V 2.

By density we can consider u ∈ V 2 ∩H4(U), since this implies u ∈ C2(U). Then it is well
defined the function:

w := u−
Ø

j∈N 2

u(Sj) · ηj −
Ø

j∈M′

∂yju(Sj) · yjηj −
Ø

j∈M′′

∂xju(Sj) · xjηj .

Taking the Laplacian, multiplying by v and integrating we get:

∆w = ∆u−
Ø

j∈N 2

u(Sj) · ∆(ηj) −
Ø

j∈M′

∂yju(Sj) · ∆(yjηj) −
Ø

j∈M′′

∂xju(Sj) · ∆(xjηj)

v∆w = v∆u−
Ø

j∈N 2

u(Sj) · v∆(ηj) −
Ø

j∈M′

∂yju(Sj) · v∆(yjηj) −
Ø

j∈M′′

∂xju(Sj) · v∆(xjηj),

where the last equality is due to the orthogonality conditions of 5.1.9. This obviously
implies Ú

U
v∆w dx =

Ú
U
v∆u dx.

We observe that u(Sj) = 0 for all j ∈ D2 ∪ M: since this excludes j ∈ N 2, due to the
nature of the support of ηj we can conclude that w(Sj) = 0 for all j.
Looking now at ∇w, we know for a fact that ∇u⊤µj = 0 for all j, with the same µj

introduced a while ago, i.e. µj = nj if j ∈ N , while µj = τj if j ∈ D. In Sj we have
∇u(Sj) ⊥ µj , µj+1. If µj /∥ µj+1 then ∇u(Sj) = 0. On the other hand, µj ∥ µj+1 only
when j ∈ M′ or j ∈ M′′ : if j ∈ M′ , then γj+1u = 0 on Γj+1, hence ∂xju(Sj) = 0,
implying ∇w(Sj) = 0. Same goes for j ∈ M′′ : hence ∇w(Sj) = 0 for all j. Since we
know that

γjw ∈ H
3
2 (Γj), γj

∂w

∂nj
∈ H

1
2 (Γj), ∀j,

and u ∈ H2(U) ⊂ C1(U), we then deduce that

γjw = 0, γj

∂w

∂nj
= 0, ∀j.

We can apply Green’s formula to obtain:Ú
U
v∆w dx =

Ú
U
w∆v dx+

Ø
j

K
γjv, γj

∂w

∂nj

L
−
Ø

j

K
γjw, γj

∂v

∂nj

L
= 0,

where the last equality follows from the properties of w, hence the conclusion.

The next proposition will give us a result about the smoothness of v far from the
corners.
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5.1 – Regularity of displacements near the crack tip

Proposition 5.1.11. If v ∈ N , then v ∈ C∞(U \ I), where I is a neighborhood of all Sj.

Proof. From previous proofs we know that v is harmonic, hence it is smooth in every open
set contained in U . We just need to prove the smoothness along the edges, away from
corners. We can do this independently for every edge, so let us choose a j, and change
coordinates so that Γj ⊂ {x2 = 0} and U ⊂ {x2 ≥ 0}. Define now a rectangle R ⊂ U
such that R = (a, b) × (0, c), such that Γ0 = (a, b) × {0} is such that Γ0 ⊂ Γj .
Since v ∈ D(∆, L2(U)), this implies v ∈ D(∆, L2(R)). Moreover, since v ∈ N is a solution
to the adjoint problem, we also know γ0v = 0 on H 1

2 (a, b), where γ0 is the trace operator
on Γ0.
Now, if j ∈ D, we define an odd reflection through Γ0. If w ∈ L2(R) we define the
Laplacian of the odd reflection as

∆W = 2(γ0w) ⊗ δ(x2) in (a, b) × (−c, c),

which is defined for w ∈ D(R). Due to the density of D(R) in D(∆, L2(R)) and the
continuity of the trace operator, this equality is also true for w ∈ D(∆, L2(R)).
We can apply this identity to v ∈ N since this implies v ∈ D(∆, L2(R)). We also know
γ0v = 0, hence ∆V = 0, i.e. it is harmonic in (a, b) × (−c, c). This implies that V is
smooth in the reflected rectangle, and by restriction, is smooth on the rectangle with its
lower boundary.
If j ∈ N , the result works as well, we just need to use the even reflection.

The key point is to try and expand v as a function depending on the polar coordinates
centered on the corners. Let us in fact take a ρj > 0 such that the support of ηj is
contained in Dj := U ∩ B(Sj , ρj), it does not intersect other Di for i /= j, and it only
intersects the edges at Γj and Γj+1.
Since we proved that a function v ∈ N solves the adjoint problem, and is harmonic up to
the corners, we can write the Laplacian in polar coordinates with origin at Sj :

∂2v

∂r2
j

+
1
rj

∂v

∂rj
+

1
r2

j

∂2v

∂θ2
j

= 0 θj ∈ (0, ωj), rj ∈ (0, ρj). (5.1)

We also know that it must fulfill the following boundary conditions, which are well-defined
since v is smooth away from corners:

θj = 0 =⇒
I
v = 0 if j + 1 ∈ D,
∂v
∂θj

= 0 if j + 1 ∈ N ;
θj = ωj =⇒

I
v = 0 if j ∈ D,
∂v
∂θj

= 0 if j ∈ N ;

Due to the dependence on the second derivative with respect to θj in (5.1), we will need
to study the eigenvalues and eigenfunctions of φ → −φ′′ , with appropriate boundary
conditions on 0 and ωj , depending on the corner type. These results are well known, but
we will need to introduce some notation.
We define an unbounded operator as follows:

Υj : D (Υj) → Lj = L2(0, ωj) Υjφ = −φ′′ ∀φ ∈ D (Υj) ,
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Study of solutions near the crack tip

where D (Υj) is the domain of Υj , which depends on the boundary condition as follows:

if j ∈ D2 D (Υj) :=
î
φ ∈ H2(0, ωj) : φ(0) = 0, φ(ωj) = 0

ï
;

if j ∈ N 2 D (Υj) :=
î
φ ∈ H2(0, ωj) : φ′(0) = 0, φ′(ωj) = 0

ï
;

if j ∈ N , j + 1 ∈ D D (Υj) :=
î
φ ∈ H2(0, ωj) : φ(0) = 0, φ′(ωj) = 0

ï
;

if j ∈ D, j + 1 ∈ N D (Υj) :=
î
φ ∈ H2(0, ωj) : φ′(0) = 0, φ(ωj) = 0

ï
.

It can be proved that Υj is non-negative, self-adjoint, and with discrete spectrum, hence
the eigenvalues and eigenfunctions are well-defined. We will denote the eigenfunctions
with φj,m, m ≥ 1, and the eigenvalues in increasing order with λ2

j,m, m ≥ 1. We have:

j ∈ D2 m ≥ 1 φj,m(θj) =
ó

2
ωj

sin
mπθj

ωj
λj,m =

mπ

ωj
;

j ∈ N 2


m = 1 φj,1(θj) =

ñ
1

ωj
λj,1 = 0,

m ≥ 2 φj,m(θj) =
ñ

2
ωj

cos
(m− 1)πθj

ωj
λj,m =

(m− 1)π
ωj

;

j ∈ N , j + 1 ∈ D m ≥ 1 φj,m(θj) =
ó

2
ωj

sin
(m− 1

2)πθj

ωj
λj,m =

(m− 1
2)π

ωj
;

j ∈ D, j + 1 ∈ N m ≥ 1 φj,m(θj) =
ó

2
ωj

sin
(m− 1

2)π(ωj − θj)
ωj

λj,m =
(m− 1

2)π
ωj

.

If we fix rj > 0, we can write v in a compact way as v
!
rje

iθj
"
, which is obviously in D(Υj)

for rj ∈ (0, ρj). We can thus rewrite (5.1) as:

∂2v

∂r2
j

+
1
rj

∂v

∂rj
−

1
r2

j

Υjv = 0 rj ∈ (0, ρj), (5.2)

where we consider v ∈ C∞ ((0, ρj);D(Υj)). Due to this smoothness, we can now expand
it in a series with the eigenfunctions.

Proposition 5.1.12. Assume that v ∈ C∞ ((0, ρj);D(Υj)) is a solution of (5.2), and
assume that v ∈ L2 (Dj), where Dj = U ∩B(Sj , ρj). Then

v
1
rje

iθj

2
= v1,j(rj)φj,1(θj) +

Ø
m≥2

αj,mr
λj,m

j φj,m(θj) +
Ø

m : λj,m∈(0,1)
βj,mr

−λj,m

j φj,m(θj),

(5.3)
where

v1,j(rj) =
I
αj,1r

λj,1
j λj,1 > 0,

αj,1 + βj,1 log rj λj,1 = 0,

and αj,m, βj,m ∈ R, such that |αj,m| < Lρ
−λj,m

j when λj,m > 1, and fj,m(αj,m, βj,m) < 0
for a certain function fj,m depending on ρj and λj,m when λj,m ∈ (0,1).
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Proof. Since (φj,m)m is an orthonormal basis for Lj , if we fix rj ∈ (0, ρj) we can write:

v
1
rje

iθj

2
=
Ø
m≥1

vm(rj)φj,m(θj), vm(rj) =
Ú ωj

0
v
1
rje

iθj

2
φj,m(θj) dθj .

Since v ∈ C∞ ((0, ρj);D(Υj)), we can now write:

v
′′

m (rj) +
1
rj
v

′

m (rj) − λ2
j,m

1
r2

j

vm (rj) = 0 rj ∈ (0, ρj),

whose solutions are parameterized in a sense by λj,m. We know it to be positive, but the
critical case is when λj,m = 0. In any case, we have:I

vm (rj) = αj,mr
λj,m

j + βj,mr
−λj,m

j λj,m > 0;
vm (rj) = αj,m + βj,m log rj λj,m = 0.

(5.4)

Let us observe that λj,m = 0 only when j ∈ N 2 and m = 1.
At this point, since v ∈ L2(DJ), we can bound vm(rj) by:

v2
m(rj) =

3Ú ωj

0
v
1
rje

iθj

2
φj,m(θj) dθj

42
≤
Ú ωj

0

---v 1reiθj

2---2 |φj,m(θj)|2ü ûú ý
=1

dθj .

From this, we can deduce a bound on the L2 norm of vm:Ú ρj

0
v2

m(rj)rj drj ≤
Ú ρj

0

Ú ωj

0

---v 1reiθj

2---2 rj drj dθj ≤ ∥v∥2 < ∞.

Knowing that the norm has to be finite, we can substitute for vm(rj) obtained in (5.4).
When λj,m = 0, vm(rj) does not depend on λj,m, meaning that the integral will always be
finite, as can be checked with a quick calculation. When λj,m > 0, we have to write:Ú ρj

0
v2

m(rj)rj drj = α2
j,m

Ú ρj

0
r

1+2λj,m

j drjü ûú ý
<∞ if λj,m>−1

+2αj,mβj,m

Ú ρj

0
rj drjü ûú ý

<∞ ∀λj,m

+β2
j,m

Ú ρj

0
r

1−2λj,m

j drjü ûú ý
<∞ if λj,m<1

.

From this it follows that if λj,m ∈ (0,1), then the integral is surely finite; however, if
λj,m ≥ 1, then the last integral goes to ∞, hence in this case we require βj,m = 0.
When λj,m > 1, we can just write:

|αj,m|2
ρ

2+2λj,m

j

2 + 2λj,m
< ∥v∥2 =⇒ αj,m <

∥v∥
ð

2 + 2λj,m

ρjü ûú ý
=:L

ρ
−λj,m

j .

When λj,m ∈ (0,1), we write:

α2
j,m

ρ
2+2λj,m

j

2 + 2λj,m
+ αj,mβj,mρ

2
j + β2

j,m

ρ
2−2λj,m

j

2 − 2λj,m
− ∥v∥2 < 0,

hence the conclusion.
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Let us observe that the case in which λj,m = 0 appears to be quite troublesome, due
to the presence of the logarithm: this problem solves itself when v ∈ N .
We know that λj,m = 0 only when j ∈ N 2 and m = 1, in which case φj,1(θj) =

ñ
1

ωj
. We

remember now that if v ∈ N and j ∈ N 2, we can use the first orthogonality condition of
5.1.9, keeping in mind that ηj is a radial function.

0 =
Ú

U
v∆ηj dx

=
Ú ρj

0

Ú ωj

0
v
1
rje

iθj

2
∆ (ηj(rj)) rj drj dθj

=
3Ú ρj

0
v1(rj)∆ (ηj(rj)) rj drj

43Ú ωj

0
φj,1(θj) dθj

4
+
Ø
m≥2

3Ú ρj

0
vm(rj)∆ (ηj(rj)) rj drj

43Ú ωj

0
φj,m(θj) dθj

4
ü ûú ý

=0

.

The integral
s ωj

0 φj,m(θj) dθj is equal to 0 when m ≥ 2 because, if j ∈ N 2, we can
substitute and deduce:Ú ωj

0
φj,m(θj) dθj ∝

Ú ωj

0
cos

(m− 1)π
ωj

θj dθj ∝
Ú (m−1)π

0
cosψ dψ = 0.

We then get:

0 =
Ú ρj

0
v1(rj)∆ (ηj(rj)) rj drj

Ú ωj

0
φj,1(θj) dθj

=
Ú ρj

0
(αj,1 + βj,1 log rj)

A
η

′′

j (rj) + 1
rj
η

′

j(rj)
B
rj drj

Ú ωj

0

ó
1
ωj

dθj

= αj,1
√
wj

Ú ρj

0

1
rjη

′′

j (rj) + η
′

j(rj)
2

drj + βj,1
√
ωj

Ú ρj

0

1
rj log(rj)η

′′

j (rj) + log(rj)η
′

j(rj)
2

drj

= αj,1
√
ωj

1
rjη

′

j(rj)
2ρj

0
+ βj,1

√
ω1
1
rj log(rj)η

′

j(rj) − ηj(rj)
2ρj

0

= αj,1
√
ωj

1
ρjη

′

j(ρj)ü ûú ý
=0

2
+ βj,1

√
ω1
1
ρj log(ρj)η

′

j(ρj) − ηj(ρj)ü ûú ý
=0

+ ηj(0)ü ûú ý
=1

2
= βj,1

√
ωj ,

from which follows that βj,1 = 0 for all j ∈ N 2, as we wanted.
In order to explicitly compute the dimension of N , from the local estimates on the behavior
of v near each corner, we have to deduce the global behavior.

Lemma 5.1.13. For all j and for all λj,m ∈ (0,1), there exists zj,m ∈ N such that

zj,m − ηj(rj) r−λj,m

j φj,m(θj) ∈ H1(U). (5.5)

Proof. Let us define uj,m := ηj(rj) r−λj,m

j φj,m(θj). Due to the construction given in pre-
vious proofs, we know that ∆uj,m = 0 in D(Dj), hence also in D(U), and it satisfies the

104



5.1 – Regularity of displacements near the crack tip

boundary conditions.
Moreover, as recalled at the beginning of this section, there always exists v ∈ H1(U)
variational solution of the boundary value problem, such that

v ∈ N,

Ú
U

∇u⊤∇v dx = 0 ∀u ∈ V.

Let us define then zj,m = uj,m + v. This is from what we have discussed, zj,m ∈
D(∆, L2(U)) and it solves the adjoint problem, simply because it is a linear sum of func-
tions solving the adjoint problem. In order to prove that zj,m ∈ N , we still need to prove
the orthogonality conditions of 5.1.9.
If k ∈ N 2, since v ∈ H1 and ηk ∈ D(U) we can use integration by parts to deduce:Ú

U
zj,m∆ηk dx =

Ú
U
uj,m∆ηk dx+

Ú
U
v∆ηk dx

=
Ú

U
uj,m∆ηk dx−

Ú
U

∇v⊤∇ηk dx+
Ø

j

Ú
Γj

γjv γj

∂ηk

∂nj
dσ

=
Ú

U
uj,m∆ηk dx+

Ø
j∈N 2

Ú
Γj

γjv γj

∂ηk

∂nj
dσ

=
Ú

U
uj,m∆ηk dx, (5.6)

where the last equality is due to ηk being a radial function. In the integral that is left, if
j /= k then it vanishes since ηj and ηk have disjoint support. If j = k then we have:Ú

U
uj,m∆ηj dx =

Ú
Dj

ηj(rj) r−λj,m

j φj,m(θj)∆ηj dx

=
Ú ρj

0
ηj(rj) r1−λj,m

j ∆ηj(rj) drj

Ú ωj

0
φj,m(θj) dθjü ûú ý

=0

= 0,

because if λj,m /= 0, then the eigenfunction, as computed previously, has zero average.
If k ∈ M′ , then it means j ∈ N , j + 1 ∈ D and ωj is either π

2 or 3π
2 . Up to (5.6), the

procedure follows analogously. Then as before, if j /= k the integral is automatically zero.
If j = k we are left with:Ú

U
uj,m∆ (ykηk) dx =

Ú ρj

0

Ú ωj

0
ηj(rj)r1−λj,m

j φj,m(θj)∆
1
rj sin (θj) ηj(rj)

2
drj dθj .

Let us take a closer look at the Laplacian in the integral: by writing it in polar coordinates,
we can deduce:

∆
1
rj sin (θj) ηj(rj)

2
= sin(θj)

∂2rjηj(rj)
∂r2

j

+ sin(θj)
1
rj

∂rjηj(rj)
∂rj

+
1
r2

j

rjηj(rj)
∂2 sin(θj)
∂θ2

j

= sin(θj) f1(rj) + sin(θj) f2(rj) − sin(θj) f3(rj)
= sin(θj) f(rj).
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Substituting this in the integral we get:Ú
U
uj,m∆ (ykηk) dx ∝

Ú ρj

0
ηj(rj)r1−λj,m

j f(rj) drj

Ú ωj

0
sin(θj) sin

A3
m− 1

2

4
π

ωj
θj

B
dθj .

Since j ∈ M′ , we can either have ωj = π
2 or ωj = 3π

2 : from this, we can substitute these
two values and get:

ωj = π

2 =⇒
Ú π

2

0
sin(θj) sin

!
(2m− 1)θj

"
dθj = 0 ∀m /= 1;

ωj = 3π
2 =⇒

Ú 3π
2

0
sin(θj) sin

12m− 1
3 θj

2
dθj = 0 ∀m /= 2.

So the critical cases are when (ωj ,m) = (π
2 , 1) and (ωj ,m) = (3π

2 , 2): in these cases we
have:

(ωj ,m) = (π2 , 1) =⇒ λj,m =
3
m− 1

2

4
π

ωj
= 1

2
π

π
2 = 1;

(ωj ,m) = (3π
2 , 2) =⇒ λj,m =

3
m− 1

2

4
π

ωj
= 3

2
π

π

2
3 = 1.

In any case this is not an acceptable value of λj,m, hence the conclusion.
The case j ∈ M′′ follows analogously.

Theorem 5.1.14. The dimension of N is equal to:

dimN = χ =
Ø

j

#
)
m : λj,m ∈ (0,1)

*
.

Proof. By combining (5.3) and (5.5) we deduce:

v
1
rje

iθj

2
− v1(rj)φj,1(θj) −

Ø
m≥2

αj,mr
λj,m

j φj,m(θj) −
Ø

m : λj,m∈(0,1)
βj,mzj,m ∈ H1(Dj).

Let us now check that:

wj := v1(rj)φj,1(θj) +
Ø
m≥2

αj,mr
λj,m

j φj,m(θj) ∈ H1
1
D
1
ρ

′

j

22
,

where D
!
ρ

′

j

"
= U ∩ B(Sj , ρ

′

j), with ρ
′

j < ρj . It is obvious that wj ∈ L2!D!ρ′

j

""
, but

we need to check that its gradient is in L2!D!ρ′

j

"
;R2". Writing the gradient in polar

coordinates we get:

∇wj =
∂wj

∂rj
erj +

1
rj

∂wj

∂θj
eθj =⇒


∂wj

∂rj
=
Ø
m≥1

αj,mr
λj,m−1
j λj,mφj,m(θj);

1
rj

∂wj

∂θj
=
Ø
m≥1

αj,mr
λj,m−1
j φ

′

j,m(θj).
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By defining hj,m = max{1, λj,m}, together with the bounds for |αj,m|, we can deduce:

∥∇wj∥ ≤ c
Ø
m≥1

|αj,m|hj,mr
λj,m−1
j

≤ cL
Ø
m≥1

hj,m

r
λj,m−1
j

ρ
λj,m

j

,

which is in L2!D!ρ′

j

""
for ρ′

j < ρj . So what we just proved is that:

v
1
rje

iθj

2
−

Ø
m : λj,m∈(0,1)

βj,mzj,m ∈ H1
1
D
1
ρ

′

j

22
.

Since we know that v is smooth far from the corners, globally we have:

w := v −
Ø

j

Ø
m : λj,m∈(0,1)

βj,mzj,m ∈ H1(U).

By hypothesis on v and 5.1.13 we know that w ∈ N ∩ H1(U). Due to the compact and
disjoint supports of (ηj)j , and due to v being harmonic away from corners, we also easily
get ∆w = 0. Moreover, due to the properties of zj,m, w also satisfies boundary conditions.
This, together with the orthogonality condition implied by w being in N , impliesÚ

U
∇w⊤∇v dx = 0 ∀v ∈ V,

and thus w ≡ 0. Thus we have just shown that:

v =
Ø

j

Ø
m : λj,m∈(0,1)

βj,mzj,m. (5.7)

This means that v is a linear combination of the functions zj,m, which are linearly inde-
pendent due to their support.

For a general polygonal domain, we can study the contribution of each corner type by
studying the eigenvalues in each case, and checking whether they are in (0,1).

• j ∈ N 2: for m = 1 we have λj,1 = 0, not acceptable; for m = 2 we have λj,2 = π
ωj

,
which is less than 1 when ωj > π; for m ≥ 3 we have λj,m ≥ 2π

ωj
≥ 1, not acceptable.

• j ∈ D2: for m = 1 we have λj,1 = π
ωj

, which is less than 1 when ωj > π; for m ≥ 2
we have λj,m ≥ 2π

ωj
≥ 1, not acceptable.

• j ∈ M: for m = 1 we have λj,1 = π
2ωj

, which is less than 1 when ωj > π
2 ; for

m = 2 we have λj,2 = 3π
2ωj

which is less than 1 when ωj >
3π
2 ; for m ≥ 3 we have

λj,m ≥ 5π
2ωj

≥ 5
4 > 1, which is not acceptable.
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Figure 5.2: Corner types

For the specific choice of our domain, we can see from
Figure 5.2 the corner types. It follows that the only con-
tribution from the dimension of N comes from the cor-
ner around the crack tip, hence dimN = 1. This also
explains why we could restrict our problem to a neigh-
borhood of the crack tip.
What we proved is that basically V 2 is not a big enough
space to be sure that there exists a non-trivial solution
to ∆u = 0 in a polygonal boundary. We have to aug-
ment the space by adding a space of the same dimension
of N to V 2 because, by the Fredholm alternative theo-
rem, we know that if there exists a non-trivial solution,
then the space of such solutions has the same dimen-
sion of the orthogonal to the image of ∆. To define this
space, we need to define its basis. For a general polyg-
onal boundary, for each corner, and for each eigenvalue,
define:

Sj,m(rj , θj) := ηj(rj) rλj,m

j φj,m(θj). (5.8)

For all that we have discussed, the set of Sj,m has the same dimension of N , and every
function is the variational solution to the adjoint problem. Moreover, they are linearly
independent in V , due to the disjoint supports for different j, and the orthogonality of
φj,m for the same j. The final result of this section is the following.

Theorem 5.1.15. Assume U is a bounded polygonal open subset of R2. Then there exists
a unique variational solution

u ∈ V,

Ú
U

∇u⊤∇v dx = 0 ∀v ∈ V,

and there exist constants cj,m such that:

u −
Ø

j

Ø
m : λj,m∈(0,1)

cj,mSj,m ∈ H2(U).

Proof. Since Sj,m ∈ H1(U) \ H2(U), we have that Sj,m /∈ V 2. This implies that ∆Sj,m

does not belong to the image of V 2 through ∆, which we will denote with R. Since we
know that these functions (Sj,m) are linearly independent in V and they have the same
cardinality as the dimension of N , which is the orthogonal of R in L2(U), we can conclude
that each function in L2(U) can be written as a combination of a function in R and a
function ∆Sj,m. The conclusion comes from the uniqueness of the variational solution u:
basically, if we remove the badly-behaved function Sj,m from a neighborhood of a corner,
the corresponding solution is exactly in V 2, a subspace of H2(U).

This result may be extended to a non-homogeneous problem with f ∈ L2(U), gj ∈
H

3
2 (U) for j ∈ D, and hj ∈ H

1
2 (U) for j ∈ N , but some compatibility conditions for
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5.2 – Derivation of Griffith’s criteria

adjacent edges have to be introduced. Moreover, it can also be extended to curvilinear
polygons, which are an extended concept of polygonal domain in which edges are assumed
to be arbitrary C1,1 curves, meeting in a finite number of corners. The proofs, in either
case, require extensive generalizations, but the theorem holds without further assump-
tions. Just for closure, for our problem, since the dimension of N is just one and ω = 2π,
we have that in a bounded neighborhood U of the crack tip, there exists a constant κ such
that:

u−
k

µ

√
r cos

θ

2 ∈ H2(U \K) ∩H1,∞(U \K), (5.9)

where the H1,∞ comes from the fact that both functions have gradients that are bounded
on compact sets. We have also avoided the truncation function ηj , since we are assuming
to be on a small enough neighborhood of the tip, such that ηj ≡ 1.
We could extend this theorem to all of Ω, though assuming that ∂Ω has the necessary
regularity to use all of the theory thus written. We would need to be careful though, cause
the intersection between ∂Ω and K may generate additional terms in the global behavior:
due to the disjoint support of ηj though, this does not change the local behavior near each
corner.
To conclude, (5.9) reminds us of the formula that Irwin derived: in particular, κ now plays
the role of the Stress Intensity Factor, which in our two dimensional anti-plane shear is
translated to the SIF of the third mode of fracture.

5.2 Derivation of Griffith’s criteria

In order to derive Griffith’s criteria from this variational model, we have to study the
moving nature of the singularity at the crack tip, which we have studied in the previous
section. In order to apply the results there given, we will assume the crack to be moving
in the same leftward fashion. We will consider the same straight crack, because, for a
general crack represented by a C2 curve, it is always possible to define a diffeomorphism
that rectifies the crack in a neighborhood of the tip, therefore making it possible to apply
our result.
For simplicity, we will introduce some easy notation. We assume that the crack tip at the
beginning is in the origin, the initial crack set has length ℓ0, and the crack propagation
is parameterized by its straight length ℓ(t): since we want to study its behavior with
respect to the moving of the tip, we will assume the length to be strictly increasing in
the time frame we are analyzing, keeping in mind that in any case, the length is at most
non-decreasing. For this reason, for |s− s0| < δ with δ > 0 small enough, we define:

Kℓ(s0) :=
î
x ∈ Ω : 0 ≤ x1 ≤ ℓ(s0), x2 = 0

ï
;

Kℓ(s) :=
î
x ∈ Ω : ℓ(s0) − ℓ(s) ≤ x1 ≤ ℓ(s0), x2 = 0

ï
.
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Define the sets Ωℓ(s0) := Ω \Kℓ(s0) and Ωℓ(s) := Ω \Kℓ(s), and then further define:

Hℓ(s0) :=
î
w ∈ H1(Ωℓ(s0)) : w = 0 on ∂Ω \Kℓ(s0)

ï
;

Hℓ(s) :=
î
w ∈ H1(Ωℓ(s)) : w = 0 on ∂Ω \Kℓ(s)

ï
.

Our goal is to study the rate of change of the energy with respect to an increase in crack
length: since the fracture energy depends linearly on the length, its derivative will simply
be equal to γ, meaning that we can concentrate on the bulk energy, effectively rendering
the problem similar to the study of a Dirichlet problem. Since we are interested in the
local behavior, we are once again not interested in global boundary conditions, and thus
we will restrict ourselves to the local behavior by choosing a bounded open neighborhood
N of the crack tip with Lipschitz boundary, where only Dirichlet boundary conditions are
imposed, and defining the problem as follows:

E(g,K,N) := min
v∈V(g,K,N)

I
µ

2

Ú
(Ω∩N)\K

|∇v|2 dx+ γH1(K ∩ (N ∩ Ω))
J
,

V(g,K,N) :=
î
v ∈ H1((Ω ∩N) \K) : v = g q.e. on ∂(N ∩ Ω) \K

ï
,

where g ∈ H1(∂(N ∩ Ω) \K). Later, when we will actually apply this restricted problem,
we will not use the same g as the global problem, but just the restriction of the global
displacement solution to the set ∂(N ∩ Ω) \ K. For ease of notation, we will re-define
Ωℓ(s0) = (Ω ∩N) \Kℓ(s0) and Ωℓ(s) = (Ω ∩N) \Kℓ(s).
Remembering (3.8), with the notation just defined, we introduce these two weak formu-
lations:

uℓ(s0) :


uℓ(s0) ∈ Hℓ(s0),Ú

Ωℓ(s0)

∇u⊤ℓ(s0)(x) ∇w(x) dx = 0 ∀w ∈ Hℓ(s0);

uℓ(s) :


uℓ(s) ∈ Hℓ(s),Ú

Ωℓ(s)

∇u⊤ℓ(s)(x) ∇w(x) dx = 0 ∀w ∈ Hℓ(s).

In order to capture the propagation of the tip, since we are interested in vector fields
that modify only the crack set, we take a smooth vector field V with compact support
in Ω, such that V (x) = (V1(x) 0), with V1 ≡ −1 in a neighborhood of the origin.
Define then Fℓ(s)(x) := I(x) +

!
ℓ(s) − ℓ(s0)

"
V (x): if s ∈ (s0 − δ, s0 + δ) for δ > 0 small

enough, then Fℓ(s) is a small smooth perturbation of the identity, hence it is invertible,
with smooth inverse. As one can easily observe, due to the compact support of V we
have that Ωℓ(s) = Fℓ(s)(Ωℓ(s0)), and this prompts us to also define Uℓ(s) = uℓ(s) ◦ Fℓ(s) and
W = w ◦ Fℓ(s) for every w ∈ Hℓ(s), which now are functions defined on Ωℓ(s0).
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5.2 – Derivation of Griffith’s criteria

We can now rewrite the weak formulation for uℓ(s) as:

Ú
Ωℓ(s)

∇u⊤ℓ(s)(x)∇w(x) dx

=
Ú

Ωℓ(s0)

1
∇F−1

ℓ(s)(Fℓ(s)(x)) ∇Uℓ(s)(x)
2⊤ 1

∇F−1
ℓ(s)(Fℓ(s)(x)) ∇W (x)

2
det

1
∇Fℓ(s)

2
(x) dx

=
Ú

Ωℓ(s0)

∇U⊤ℓ(s)(x)
è
∇F−⊤ℓ(s)(Fℓ(s)(x)) ∇F−1

ℓ(s)(Fℓ(s)(x)) det
!
∇Fℓ(s)

"
(x)
é

ü ûú ý
=:A(x,ℓ(s))

∇W (x) dx. (5.10)

So we define the new parameterized operator A as:

A(x, ℓ(s)) = ∇F−⊤ℓ(s)(Fℓ(s)(x)) ∇F−1
ℓ(s)(Fℓ(s)(x)) det

1
∇Fℓ(s)

2
(x).

Since Fℓ(s) is a smooth invertible function with smooth inverse, we have that the function
ℓ(s) → A(x, ℓ(s)) is continuously differentiable, and moreover by computation we have
that

∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

= −∇V ⊤(x) − ∇V (x) + Idiv(V )(x),

which we know to be bounded for a.e. x ∈ Ωℓ(s0) thanks the properties of V .
We define now an operator T : R → Hℓ(s0) such that T (ℓ) = Uℓ. It is proved in [19] that
this operator is continuously differentiable, hence we can define

U̇(ℓ(s0)) := dT (ℓ)
dℓ

---
ℓ=ℓ(s0)

.

Now, keeping in mind that Uℓ(s0) = uℓ(s0) ◦ Fℓ(s0) = uℓ(s0) ◦ I = uℓ(s0), we can write:

Uℓ(s) = uℓ(s0) +
!
ℓ(s) − ℓ(s0)

"dT
dℓ
---
ℓ=ℓ(s0)

+ O
1!
ℓ(s) − ℓ(s0)

"22
= uℓ(s0) +

!
ℓ(s) − ℓ(s0)

"
U̇(ℓ(s0)) + O

1!
ℓ(s) − ℓ(s0)

"22
.

Thanks to this, we can actually write:

A(·, ℓ(s)) = I +
!
ℓ(s) − ℓ(s0)

"∂A(·, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

+ O
1!
ℓ(s) − ℓ(s0)

"22
= I +

!
ℓ(s) − ℓ(s0)

" 1
−∇V ⊤ − ∇V + Idiv(V )

2
+ O

1!
ℓ(s) − ℓ(s0)

"22
.
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We can now substitute in (5.10), and by calling for brevity O
1!
ℓ(s) − ℓ(s0)

"22 =: O we
get:Ú

Ωℓ(s)

∇u⊤ℓ(s)∇w dx

=
Ú

Ωℓ(s0)

∇U⊤ℓ(s)A(x, ℓ(s)) ∇W dx

=
Ú

Ωℓ(s0)

1
∇u⊤ℓ(s0) +

!
ℓ(s) − ℓ(s0)

"
∇U̇⊤(ℓ(s0)) + O

21
I +

!
ℓ(s) − ℓ(s0)

"∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

+ O
2
∇W dx

=
Ú

Ωℓ(s0)

∇u⊤ℓ(s0) ∇Wdx+
!
ℓ(s) − ℓ(s0)

" Ú
Ωℓ(s0)

∇u⊤ℓ(s0)
∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇W dx

+
!
ℓ(s) − ℓ(s0)

" Ú
Ωℓ(s0)

∇U̇⊤(ℓ(s0)) ∇W dx+ O.

Due to the weak formulations of uℓ(s) and uℓ(s0) we have:

0 =
!
ℓ(s)−ℓ(s0)

"AÚ
Ωℓ(s0)

∇u⊤ℓ(s0)
∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇W dx+
Ú

Ωℓ(s0)

∇U̇⊤(ℓ(s0)) ∇W dx
B

+O.

Dividing by
!
ℓ(s) − ℓ(s0)

"
we get:

0 =
Ú

Ωℓ(s0)

∇u⊤ℓ(s0)
∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇W dx+
Ú

Ωℓ(s0)

∇U̇⊤(ℓ(s0)) ∇W dx+ O
1
ℓ(s) − ℓ(s0)

2
,

and taking the limit as s → s+
0 we get:

0 =
Ú

Ωℓ(s0)

∇u⊤ℓ(s0)
∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇W dx+
Ú

Ωℓ(s0)

∇U̇⊤(ℓ(s0)) ∇W dx.

This result has to be read as an integration by parts of the weak problem, since:Ú
Ωℓ(s0)

∇U̇⊤(ℓ(s0)) ∇W dx = −
Ú

Ωℓ(s0)

∇u⊤ℓ(s0)
∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇W dx. (5.11)

Keeping in mind that this result hold for every W ∈ Hℓ(s0) such that W = w ◦ Fℓ(s) with
w ∈ Hℓ(s), we can apply it with w = uℓ(s). We can therefore write:

Eb(g,Kℓ(s), N) =
µ

2

Ú
Ωℓ(s)

|∇uℓ(s)|2 dx

=
µ

2

Ú
Ωℓ(s)

∇u⊤ℓ(s)∇uℓ(s) dx

=
µ

2

Ú
Ωℓ(s0)

∇U⊤ℓ(s)A(x, ℓ(s))∇Uℓ(s) dx.
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5.2 – Derivation of Griffith’s criteria

Since we know Eb to be absolutely continuous with respect to K, we can now derive with
respect to the crack length without having to worry about the domain dependence:

1
µ

∂Eb(g,Kℓ, N)
∂ℓ

---
ℓ=ℓ(s0)

=Ú
Ωℓ(s0)

C
∇U̇⊤(ℓ(s0))A(x, ℓ(s0)) ∇uℓ(s0) +

1
2∇u⊤ℓ(s0)

∂A(x, ℓ)
∂ℓ

---
ℓ=ℓ(s0)

∇uℓ(s0)

D
dx.

Thanks to A(x, ℓ(s0)) = I and (5.11), we can easily deduce:

1
µ

∂Eb(g,Kℓ, N)
∂ℓ

---
ℓ=ℓ(s0)

=
Ú

Ωℓ(s0)

∇u⊤ℓ(s0)

3
∇V −

1
2div(V )I

4
∇uℓ(s0) dx. (5.12)

We recall from the previous section, that uℓ(s0) has a particular behavior at the crack tip.
More precisely:

uℓ(s0) = R +
κ

µ
S, S =

√
r cos

θ

2,

with R ∈ H2(Ωℓ(s0)) ∩H1,∞(Ωℓ(s0)) and S ∈ H1(Ωℓ(s0)) \H2(Ωℓ(s0)). In order to do away
with this behavior, the usual way is to integrate on Ωε = Ωℓ(s0) \Bε with ε small enough
such that Bε ⊂ N , and then letting ε → 0, hoping that the singular terms vanish.

1
µ

∂Eb(g,Kℓ, N)
∂ℓ

---
ℓ=ℓ(s0)

= lim
ε→0+

Ú
Ωℓ(s0)\Bε

∇u⊤ℓ(s0)

3
∇V −

1
2div(V )I

4
∇uℓ(s0) dx.

By writing this in components we can greatly reduce this computation, since V2(x) ≡ 0.
For now, we will avoid writing the limit at every step, keeping it in mind for later usage:

=
Ú

Ωℓ(s0)\Bε

;
∂1V1 (∂1uℓ(s0))2 + ∂2V1 ∂1uℓ(s0) ∂2uℓ(s0) − 1

2 ∂1V1
è
(∂1uℓ(s0))2 + (∂2uℓ(s0))2

é<
dx

= −
Ú

Ωℓ(s0)\Bε

V1 ∂1uℓ(s0)

1
∂1,1uℓ(s0) + ∂2,2uℓ(s0)

2
dx

+
Ú

∂Bε

V1

5
cos(θ)

(∂1uℓ(s0))2 − (∂2uℓ(s0))2

2 + sin(θ)∂1uℓ(s0)∂2uℓ(s0)

6
dσ.

The volume term vanishes since ∂1,1uℓ(s0) + ∂2,2uℓ(s0) = ∆uℓ(s0), and we know that away
from corners ∆uℓ(s0) = 0. Now we choose ε small enough such that V1 ≡ −1, and we are
left with:

−
1
µ

∂Eb(g,Kℓ)
∂ℓ

---
ℓ=ℓ(s0)

=

lim
ε→0+

Ú
∂Bε

5
cos(θ)

(∂1uℓ(s0))2 − (∂2uℓ(s0))2

2 + sin(θ)∂1uℓ(s0)∂2uℓ(s0)

6
dσ.

There are two things we now need to do: firstly, we can now substitute uℓ(s0) = R + κ
µS,

in the formula, which, due to the presence of quadratic terms, will be equal to the sum

113



Study of solutions near the crack tip

of three terms, respectively an integral with only R terms, one with only S terms, and
one with R and S terms; secondly, since we are integrating on a circle of radius ε, we can
write everything in polar coordinates. The right-hand side is now:

= lim
ε→0+

Ú
∂Bε

5
cos(θ)

(∂1uℓ(s0))2 − (∂2uℓ(s0))2

2 + sin(θ)∂1uℓ(s0)∂2uℓ(s0)

6
dσ

= lim
ε→0+

Ú
∂Bε

5
cos(θ)

(∂1R)2 − (∂2R)2

2 + sin(θ)∂1R∂2R

6
dσ

+
κ

µ
lim

ε→0+

Ú
∂Bε

5
cos(θ)

1
∂1R∂1S − ∂2R∂2S

2
+ sin(θ)

1
∂1R∂2S + ∂1S ∂2R

26
dσ

+
κ2

µ2 lim
ε→0+

Ú
∂Bε

5
cos(θ)

(∂1S)2 − (∂2S)2

2 + sin(θ)∂1S∂2S

6
dσ

= lim
ε→0+

3
Rε +

κ

µ
RSε +

κ2

µ2Sε

4
.

The short end of this computation will be that the terms involving the regular contribution
to the displacement will go to 0 as ε → 0, and to prove this we will need some inequalities.
For RSε, due to the singular nature of the derivatives of S, we know that

|∂1S| ≤ ε−
1
2 , |∂2S| ≤ ε−

1
2 , on ∂Bε.

This allows us to write:

|RSε| ≤
Ú

∂Bε

5
| cos(θ)|

1
|∂1R| |∂1S| + |∂2R| |∂2S|

2
+ | sin(θ)|

1
|∂1R| |∂2S| + |∂1S| |∂2R|

26
dσ

≤ ε−
1
2

Ú
∂Bε

2
1
|∂1R| + |∂2R|

2
dσ

≤ 2ε− 1
2

Ú
∂Bε

|∇R| dσ

≤ 2ε− 1
2 ∥∇R∥L2(∂Bε) |∂Bε|

1
2

= C1∥∇R∥L2(∂Bε).

For Rε the estimate is simpler:

|Rε| ≤
Ú

∂Bε

5
| cos(θ)|12

1
|∂1R|2 + |∂2R|2

2
+ | sin(θ)| |∂1R| |∂2R|

6
dσ

≤
Ú

∂Bε

1
2 |∇R|2 dσ +

Ú
∂Bε

|∂1R| |∂2R| dσ

≤ C2

Ú
∂Bε

|∇R|2 dσ

= C2∥∇R∥2
L2(∂Bε).

In both cases, we can conclude on Rε and RSε if we prove that ∥∇R∥L2(∂Bε) → 0 as
ε → 0. From R ∈ H2 it follows that ∇R ∈ H1, hence the trace at the boundary ∂Bε is
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well-defined, and thus we can use the trace inequality to write:

∥∇R∥2
L2(∂Bε) ≤ C∥∇R∥2

L2(Bε) = C

Ú
Bε

|∇R(x)|2 dx = C

Ú
B1

|∇R(x)|2✶Bε(x) dx.

The last integral goes to 0 due to dominated convergence, because it obviously converges
pointwise to 0, and the integrand is also bounded by the square of the norm of the gradient,
which we know to be in L1,∞(B1) ⊂ L1(B1).
Now we can just focus on the last term Sε:

Sε =
Ú

∂Bε

5
cos(θ)

(∂1S)2 − (∂2S)2

2 + sin(θ)∂1S∂2S

6
dσ

=
Ú 2π

0

5
cos(θ)

(∂1S|r=ε)2 − (∂2S|r=ε)2

2 + sin(θ)∂1S|r=ε ∂2S|r=ε

6
ε dθ.

Writing the derivatives in polar coordinates we get:

∂
√
r cos( θ

2)
∂x

---
r=ε

=
1

2
√
ε

1
cos(θ) cos

1θ
2
2

+ sin(θ) sin
1θ

2
22

;

∂
√
r cos( θ

2)
∂y

---
r=ε

=
1

2
√
ε

1
sin(θ) cos

1θ
2
2

− cos(θ) sin
1θ

2
22
.

Substituting all of these derivatives, squaring, and summing, we are left at the end with a
surprising result: the integrand does not depend on ε, which is something that we hoped
for, but most importantly, it does not even depend on θ!

−
∂Eb(g,Kℓ, N)

∂ℓ

---
ℓ=ℓ(s0)

= µ
κ2

µ2 lim
ε→0+

Ú 2π

0

1
8ε
1

cos2(θ) + sin2(θ)
2
ε dθ

=
κ2

µ
lim

ε→0+

Ú 2π

0

1
8εε dθ

=
π

2
κ2

2µ.

This is a most interesting result: in Griffith’s theory, what we have just computed is the
Energy Release Rate in terms of the Stress Intensity Factor. In particular, under an easy
change of variable, this can be brought up to be precisely the Irwin relation for the third
mode (1.10): it suffices to define κ1 = κ

ñ
π
2 , which also transforms (5.9) into

uℓ(s0) = uR
ℓ(s0) +

κ

µ

ó
2r
π

cos
A
θ

2

B
.

We conclude this long streak of computations by writing the analogous formula including
also the fracture energy:

∂E(g,Kℓ, N)
∂ℓ

---
ℓ=ℓ(s0)

= −
π

2
κ2

2µ+ γ. (5.13)
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This is the formula that we will be using for deriving Griffith’s criteria: in fact, this is
precisely equal to G−Gc.
Let us take now the continuous evolution K : [0,1] → Kf

m(Ω): our goal is now to study
the propagation by parameterizing an already existing evolution with respect to the crack
length. Let us take 0 ≤ t0 < t1 ≤ 1, which is the time interval that we will be analyzing.
Given a certain initial crack K0 corresponding to the crack set at time t = t0, we assume
that the successive evolution can be described by a simple arc Γ ⊂ Ω, parameterized by
arc length by a C2 path ϕ : [ℓ0, ℓ1] → Ω, where ℓ0 and ℓ1 are the initial and final length
respectively, and there is a non-decreasing length function ℓ : [t0, t1] → [ℓ0, ℓ1] such that:

K(t) = K(t0) ∪ Γ(ℓ(t)) Γ(ℓ) :=
î
ϕ(❧) : ℓ0 ≤ ❧ ≤ ℓ

ï
.

In order to prove Griffith’s criteria, we first need a preliminary result connecting the global
solution of E(g,K) to the local solution of E(g,K,N).

Lemma 5.2.1. Let m ≥ 1, and H ∈ Kf
m(Ω) with h ≤ m connected components. Let g be a

function in H1(Ω), and u be the solution to the minimum problem defining E(g,H). Take
a bounded open subset N of Ω with Lipschitz boundary such that H ∩ N /= ∅, meaning
that this set is a neighborhood of the crack tip. Suppose also that there are q ≤ h ≤ m
connected components of H that intersect N . Now, if we have

E(g,H) ≤ E(g,K) ∀K ∈ Kf
m(Ω), K ⊇ H,

then we also have

E(u,H,N) ≤ E(u,K,N) ∀K ∈ Kf
q+m−h(N), K ⊇ H ∩N.

Proof. Let us take an arbitrary K ∈ Kf
q+m−h(N) such that K ⊇ H ∩ N , and define v as

the solution to the minimum problem defining E(u,K,N). Since v is defined on N \ K,
we can extend it by taking u on the rest of the domain. We then define:

w :=
I
v on N \K,
u on (Ω \N) \H.

Due to the formulation of E(u,K,N) we have that v = u q.e. on ∂N \K, meaning that
the function w does not have jumps across ∂N \K, and hence H1(Ω\(H∪K)). Moreover,
since u = g q.e. on ∂DΩ \ H, then we also have w = g q.e. on ∂DΩ \ (H ∪ K), meaning
that w is an admissible function for the minimum problem defining E(g,H ∪ K), and
thus:

E(g,H ∪K) ≤
µ

2

Ú
Ω\(H∪K)

|∇w|2 dx+ γH1(H ∪K) (5.14)

≤
µ

2

Ú
N\K

|∇v|2 dx+ γH1(K ∩N) +
µ

2

Ú
(Ω\N)\H

|∇u|2 dx+ γH1(H \N).
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5.2 – Derivation of Griffith’s criteria

Due to the minimality of u for the problem defining E(g,H), we have:

E(g,H) =
µ

2

Ú
Ω\H

|∇u|2 dx+ γH1(H) (5.15)

=
µ

2

Ú
N\H

|∇u|2 dx+ γH1(H ∩N) +
µ

2

Ú
(Ω\N)\H

|∇u|2 dx+ γH1(H \N).

Our goal now is to apply the second condition of the continuous evolution to the sets H and
H∪K: in order to do this, since we obviously have H∪K ⊇ K, we just need to prove that
H∪K ∈ Kf

m(Ω). We know from the hypotheses that the number of connected components
of H intersecting N is q ≤ h ≤ m. Since H has at q ≤ m connected components, it follows
that the number of connected components of H not intersecting N is h − q. Then every
connected component of H ∪ K intersecting N contains also a connected component of
K because N ∩ K /= ∅. Since the number of connected components of K is at most
q+m− h, it follows that the total number of connected components of H ∪K is at most
(h − q) + (q + m − h) = m. Then it follows that H ∪ K is an admissible competitor for
E(g,H). From:

E(g,H) ≤ E(g,H ∪K),

using (5.14) and (5.15) we can deduce:

µ

2

Ú
N\H

|∇u|2 dx+ γH1(H ∩N) +
µ

2

Ú
(Ω\N)\H

|∇u|2 dx+ γH1(H \N)

≤
µ

2

Ú
N\K

|∇v|2 dx+ γH1(K ∩N) +
µ

2

Ú
(Ω\N)\H

|∇u|2 dx+ γH1(H \N).

After a little simplification, we are left with:

µ

2

Ú
N\H

|∇u|2 dx+ γH1(H ∩N) ≤
µ

2

Ú
N\K

|∇v|2 dx+ γH1(K ∩N).

We know that v is the minimum for the problem defining E(u,K,N), but it is also obvious
that u is admissible for the minimum problem defining E(u,H,N). We thus write:

E(u,H,N) ≤
µ

2

Ú
N\H

|∇u|2 dx+ γH1(H ∩N)

≤
µ

2

Ú
N\K

|∇v|2 dx+ γH1(K ∩N) = E(u,K,N).

We then conclude by the arbitrariness of K.

Theorem 5.2.2. Let m ≥ 1, and let K : [0,1] → Kf
m(Ω) be a continuous evolution sat-

isfying the hypothesis for Theorem 4.0.1. Let g ∈ AC
!
[0,1], H1(Ω)

"
, and let u be the

solution to the minimum problem defining E(g(t), K(t)). Let 0 ≤ t0 < t1 ≤ 1 and let
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Study of solutions near the crack tip

K(t) = K(t0) ∪ Γ(ℓ(t)) with the same notation as before. Then we have:

ℓ̇(t) ≥ 0 for a.e. t ∈ (0,1),

γ −
π

2
κ2

2µ ≥ 0 for every t ∈ (0,1),3
γ −

π

2
κ2

2µ

4
ℓ̇(t) = 0 for a.e. t ∈ (0,1).

(5.16)

Proof. Take t ∈ (t0, t1) such that ℓ is continuous at t and such that the derivative ℓ̇(t0)
exists (this is possible since the derivative is defined almost everywhere).
Define a ball B as the neighborhood N of the local minimum, centered on the crack tip
ϕ(ℓ(t)), such that B ⊂ Ω, and with a small enough radius such that B ∩K(t0) = ∅. We
can assume, for a small enough radius, that:

B ∩ Γ(ℓ1) =
î
ϕ(ℓ) : ℓB

0 < ℓ < ℓB
1

ï
, ℓ0 < ℓB

0 < ℓ(t) < ℓB
1 < ℓ1.

Again, for a small enough radius, we may also assume that Γ(ℓ1) intersects ∂B only at
ϕ(ℓB

0 ) and ϕ(ℓB
1 ), in particular not tangentially.

All of these assumptions imply the possibility of a local parameterization inside B, namely:

B ∩K(s) = B ∩ Γ(ℓ(s)) =
î
ϕ(ℓ) : ℓB

0 ≤ ℓ ≤ ℓ(s)
ï
, ℓB

0 ≤ ℓ(s) ≤ ℓB
1 , (5.17)

which remains valid for s = t, or for every s sufficiently close to t if t is a continuity point
for ℓ.
Since we are considering just a simple branch, m = 1, and from Theorem 4.0.1 we have
that:

E(g(t), K(t)) ≤ E(g(t), K), ∀K ∈ Kf
1 (Ω), K ⊇ K(t).

Thanks to this, from Lemma 5.2.1 applied to B, we deduce:

E(u(t), K(t), B) ≤ E(u(t), K,B), ∀K ∈ Kf
1 (B), K ⊇ K(t) ∩B.

This, together with the local re-parameterization (5.17), implies:

E(u(t),Γ(ℓ(t)), B) ≤ E(u(t),Γ(ℓ), B), ℓ(t) ≤ ℓ ≤ ℓB
1 .

Due to the absolute continuity of the energy and formula (5.13), this implies:

∂E(u(t),Γ(ℓ), B)
∂ℓ

---
ℓ=ℓ(t)

≥ 0 =⇒ γ −
π

2
κ2

2µ ≥ 0.

Since the first condition of (5.16) is true for a.e. t ∈ (0,1) given the assumptions of the
theorem, we just need to prove the third condition.
From Theorem 4.0.1, we know that

∂E(g(t), K(s))
∂s

---
s=t

= 0, for a.e. t ∈ (0,1). (5.18)
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5.2 – Derivation of Griffith’s criteria

Let us choose a t ∈ (0,1) such that this derivative exists, and also that ℓ̇(t) exists. We can
then take s close enough to t such that, due to (5.17) and to the properties of the integral
and H1-measure, we have:

E
1
g(t), K(s)

2
≤ E

1
u(t),Γ

!
ℓ(s)

"
, B
2

+ E
1
u(t), K(t0) ∪ Γ(ℓB

0 ), B∁
2
. (5.19)

This is in general an inequality, but observe that it trivially becomes an equality for s = t.
We know from 4.0.1 that the functions s → E

!
g(t), K(s)

"
and s → E

!
u(t),Γ(ℓ(s)), B

"
are

absolutely continuous on (0,1), meaning that they have an integrable derivative almost
everywhere. We chose t precisely such that these derivatives exist at s = t, which is
something that we can do for a.e. t ∈ (0,1). Thus, since the last term in the (5.19) does
not depend on s, we can derive and thanks to (5.18), we deduce:

0 =
∂E(g(t), K(s))

∂s

---
s=t

(5.20)

=
∂E(u(t),Γ(ℓ(s)), B)

∂s

---
s=t

(5.21)

=
∂E(g(t),Γ(ℓ), B)

∂ℓ

---
ℓ=ℓ(t)

·
dℓ(s)

ds
---
s=t

(5.22)

=
3
γ −

π

2
κ2

2µ

4
ℓ̇(t). (5.23)

We can then conclude by noting that this is true for a.e. t ∈ (0,1).
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