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Abstract 
 
Porosity assessment is essential for reservoir characterization. While laboratory 
measurements and conventional well-logs have traditionally been used to estimate porosity, 
they may not always provide accurate results in carbonate reservoirs, due to their extremely 
heterogeneous pore system. This is where nuclear magnetic resonance (NMR) tools offer a 
valuable solution. NMR logging technology allows for more accurate quantification of different 
porosity types, including total, effective, and free-fluid porosity. However, acquiring NMR logs 
can be costly and challenging due to factors such as the activation of wireline equipment, 
signal-to-noise ratio, environmental factors, and the properties of the formation fluid. To 
overcome these challenges and provide an alternative approach, we are interested in 
developing predictive models, using conventional well-logs as input data.  
 
The objective of this research is to develop a Python code, from scratch, that implements 
supervised machine learning (ML) algorithms, specifically Random Forest (RF) and Gradient 
Boosting (GB), to build ML models for accurately predicting both NMR logs and various types 
of conventional well-logs. The code is available as an open source on GitHub under the 
repository named “Well-Logs_Predictive_Models” [https://github.com/VittoDePe98/Well-
Logs_Predictive_Models.git]. This open accessibility encourages wider usage and collaboration 
among researchers. Two separate case studies are conducted to evaluate the functionality and 
effectiveness of the code. In both studies, the ML models are trained on a first well (training 
well) and tested on a second well (test well). The first case study focuses on the São Francisco 
onshore Brazilian basin. It serves as a preliminary exercise for model development and data 
familiarization. The goal is to predict two conventional well-logs: the calculated effective 
porosity and the measured compressional wave slowness logs. The second case study centers 
around the Santos offshore Brazilian basin, particularly the deep-water pre-salt carbonate 
reservoir area of the Itapu Oil Field. The attention of this research is primarily directed toward 
this second case study. The target is to predict high technological well-logs, including NMR 
total, effective, and free fluid porosity logs. 
 
The results of the research demonstrate that both models are consistent and reliable, 
exhibiting low regression errors (MSE, RMSE, MAE) and high accuracy (R2) values, in predicting 
the calculated effective porosity, for both training and test wells. However, when it comes to 
predicting the measured compressional wave slowness log, the models exhibit limitations and 
show poor performance on the test well. The limitations become even more apparent when 
predicting NMR porosity logs on the evaluation well. The models exhibit significantly reduced 
performance, yielding negative accuracy values.  

 

 

https://github.com/VittoDePe98/Well-Logs_Predictive_Models.git
https://github.com/VittoDePe98/Well-Logs_Predictive_Models.git
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List of Abbreviations 

1. AdaBoost: Adaptive Boosting 

2. ANN: Artificial Neural Network  

3. AT10:  Array induction resistivity log, investigation 10 inches (ohm.m) 

4. AT30:  Array induction resistivity log, investigation 30 inches (ohm.m) 

5. AT90:  Array induction resistivity log, investigation 90 inches (ohm.m) 

6. BVI: Bulk volume immovable (m3/m3) 

7. BVM: Bulk volume movable (m3/m3) 

8. CastBoost: Categorical Boosting 

9. CBW: Clay-bound water (m3/m3) 

10. DTCO: Delta T compressional wave, compressional slowness log (μs/ft) 

11. DTSM: Delta S shear wave, shear slowness log (μs/ft) 

12. ESPEC: Undefined elemental spectroscopy log (-) 

13. FL: Fuzzy Logic 

14. GB: Gradient Boosting  

15. GR: Gamma-ray log (API) 

16. HCAL: Caliper log. Borehole diameter (inches) 

17. MAE: Mean absolute error (m3/m3) 

18. ML: Machine Learning 

19. MLPNN: Multilayer Perceptron Neural Network  

20. MSE: Mean squared error (m3/m3)2 

21. NMR: Nuclear magnetic resonance  

22. NMRFF: Nuclear magnetic resonance free fluid log (m3/m3) 

23. NMRPHIE: Nuclear magnetic resonance effective porosity log (m3/m3) 

24. NMRPHIT: Nuclear magnetic resonance total porosity log (m3/m3) 

25. NPHI: Thermal neutron porosity log (m3/m3) 

26. PEFZ: Photo-electric log (unitless) 

27. PHIE_HILT: HILT effective porosity (m3/m3) 

28. R2: Coefficient of determination (%) 

29. RES: Undefined resistivity log (ohm.m) 

30. RF: Random Forest  
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31. RHGX_HILT: HILT Grain Density (g/cm3) 

32. RHOZ: Formation density log (g/cm3) 

33. RMSE: Root mean squared error (m3/m3) 

34. XGBoost: Extreme Gradient Boosting 
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1 Introduction 
 

1.1 Background & Goal Definition 
Porosity is a crucial feature in reservoir characterization and plays a significant role in various 
aspects of hydrocarbon exploration and production. It is commonly used to estimate the 
volume of hydrocarbons present in a reservoir and evaluate the productive potential of a well, 
etc. (Mustafa et al., 2023). In the context of porosity, the term “total porosity” encompasses 
the combined contribution of different components within a rock formation. This includes clay-
bound water, capillary-bound water, free water, and hydrocarbon. Fig. 1.1 likely provides a 
graphical representation demonstrating the various components contributing to total porosity.  
 

Fig. 1.1: Schematic representation of the constituents of a rock. 

Conventional logging tools, including neutron porosity, density, and sonic logs, are commonly 
employed for total porosity estimation. However, estimating total porosity in carbonate 
reservoirs poses challenges due to the complex and diverse nature of their porous systems, 
influenced by various geological processes (Rocha et al., 2019). Indeed, traditional porosity 
tools are less accurate in carbonate reservoirs, as lithology strongly affects their measurements 
(Farmanov et al., 2023). 

Among available techniques, the nuclear magnetic resonance (NMR) tools have been proven 
to be the most reliable and accurate method for total porosity determination, especially in 
carbonate reservoirs. Unlike conventional tools, NMR is not influenced by lithology and 
quantifies total porosity by detecting the response of the hydrogen nuclei in fluids (water and 
hydrocarbons), under an applied artificial magnetic field (Mustafa et al., 2023).  
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However, acquiring NMR well-logs can be challenging, time-consuming, and expensive, leading 
to their limited availability for all drilled wells. As NMR measurements provide valuable insights, 
machine learning (ML) models can serve as powerful tools for predicting NMR porosity in 
carbonate reservoirs where direct NMR logs are not obtained (Tamoto, Gioria and Carneiro, 
2023). By utilizing a single conventional well-log dataset, the benefits of NMR porosity 
determination can be extended to a broader range of wells within the reservoir, even without 
direct NMR measurements.  
 
The widespread distribution of carbonate rocks across various regions of Brazil, such as 
Central-West, North, Southeastern, and Northeast Brazil (Pinheiro Junior et al., 2021), presents 
challenges in acquiring direct NMR well-logs. However, recent studies have showcased the 
success of employing ML techniques to generate synthetic NMR logs for these carbonate areas. 
For instance, (González Carrasquilla and Tapia Briones, 2019) developed unsupervised and 
supervised ML models, specifically the Fuzzy Logic (FL), and Artificial Neural Network (ANN), 
for the offshore carbonate area of Campos Basin in Southeastern Brazil. These models utilized 
conventional well-logs as input data and were trained on a consistent dataset and tested on a 
single well. Their findings showed that the ANN model outperformed the FL model, highlighting 
the utility of this alternative methodology when direct NMR well-logs are unavailable. 
Another study by (Tamoto, Gioria and Carneiro, 2023) focused on the offshore carbonate area 
of Santos Basin, also in Southeastern Brazil. They developed four supervised ML models, 
namely Multilayer Perceptron Neural Network (MLPNN), Adaptive Boosting (AdaBoost), 
Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost), employing 
conventional well-logs as input data. In this case, the ML models were trained on a wide 
training dataset of over 30,000 data points and tested on three different wells. Remarkably, 
these ML models achieved impressive results, with differences between real NMR well-logs 
and the ML outputs being less than 5% for most of the well-logging interval. This research 
further emphasizes the significance of supervised ML predictive models in predicting NMR 
porosities for carbonate zones.  
Building upon these previous studies, the objective of this research is to develop supervised 
ML models, starting from scratch, to predict NMR well-logs in the Santos Basin, utilizing 
conventional well-logs as input data. Given the complexity of predicting NMR well-logs in 
carbonate areas, the models are initially developed to predict conventional well-logs for the 
non-carbonate area of the São Francisco Basin, Brazil. Consequently, two separate case studies 
are conducted. Case study 1 serves as a preliminary exercise to familiarize with the 
functionality of these models. The focus is on predicting two conventional well-logs: the 
calculated effective porosity and measured compressional wave slowness logs. Case study 2 
represents the primary application of the developed models. The target is to predict NMR total, 
effective, and free fluid porosity logs for the pre-salt carbonate area of the Itapu Oil Field, in 
the Santos Basin, Brazil. By conducting these two case studies, the research aims to 
demonstrate the effectiveness and applicability of the supervised ML models in predicting both 
convectional well-logs and NMR well-logs in carbonate zones.  
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1.2 Machine Learning Algorithms  
ML algorithms are mainly divided into four categories: supervised learning, unsupervised 
learning, semi-supervised learning, and reinforcement learning (Sarker, 2021). As already 
mentioned, we are interested in the supervised learning category, and we briefly discuss its 
scope. Supervised learning learns a function that correlates an input to an output, and it uses 
labeled training data. The two most typical supervised tasks are classification, when the target 
variable is discrete, and regression when it is continuous (Sarker, 2021). In this study, the 
regression problem is of our interest.  
The Ensemble-Based Decision Tree algorithms belong to the family of supervised learning 
(Farmanov et al., 2023). The two most popular ensemble learning algorithms are bagging, 
which means “to combine”, and boosting, which means “to improve”, regressors. An example 
of bagged and boosted decision tree algorithms is given by the Random Forest (RF) and the 
Gradient Boosting (GB), respectively (Mahesh, 2020). Although the mentioned previous studies 
have not explored these specific algorithms in the context of predicting NMR well-logs, our 
research focuses on evaluating their capability in this domain.  
Before describing the RF and GB algorithms, we briefly recap the concept of the Decision Tree. 
A Decision Tree is a tree-like graph that shows decisions and their outcomes. The elements of 
a decision tree are decision nodes, leaf nodes, and branches. The decision node represents a 
choice; the leaf node gives an outcome or decision, and a branch is an alternative. In Fig. 1.2 
and Fig. 1.3 we provide a schematic representation of a single decision tree: 

 
Fig. 1.2: Elements of a single decision tree. 

 

 
Fig. 1.3: Example of a single decision tree. 
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1.2.1 Random Forest Algorithm  
The mechanism of the RF method involves building, simultaneously, N-independent decision 
trees, where the data used to build each tree, and the features selected at each node are 
randomly chosen. For regression problems, the output, which is our prediction, is given by 
averaging the results from each regression tree (Farmanov et al., 2023). The final RF model is 
an average model. As follows, a schematic representation of the RF Decision Tree (Fig. 1.4). The 
dataset is the training dataset.  

 
Fig. 1.4: Architecture of the RF Decision Tree. 
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1.2.2 Gradient Boosting Algorithm  
Unlike the RF method, the GB technique builds N-dependent regression trees, called the weak 
learners, additively. This means that each tree is built one after another (Mahesh, 2020). The 
general idea is that the subsequent models should be able to correct the mistakes committed 
by the older ones, which means minimizing their errors (Tamoto, Gioria and Carneiro, 2023). 
As follows, a schematic representation of the GB Decision Tree (Fig. 1.5): 

 
Fig. 1.5: Architecture of the GB Decision Tree. 

From Fig. 1.5 we can understand that, at each iteration, the values of the weights applied to 
each of the input variables, used to predict the target variable, are adjusted. The final 
prediction is the sum of all the results coming from each weak learner. The final GB model is a 
strong learner model.  
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2 Available Data & Methodology 
 
2.1 Available Well-Log Data  
In Fig. 2.1 and Fig. 2.2, we display the geographical mapping of the wells of interest, providing a 
visual representation of their locations.  

 
Fig. 2.1: Location of well 1-BRSA-871-MG (deepskyblue), and well 1-BRSA-948-MG (orange) for São Francisco 
Basin. The borders of the Brazilian sub-regions are highlighted in red (‘Brazilian Sub-Regions Coordinates’, 2023). 

 
Fig. 2.2: Location of well 1-BRSA-1116-RJS (deepskyblue), and well 3-BRSA-1215-RJS (orange) for Santos Basin. The 
borders of the Brazilian states are highlighted in magenta (‘Brazilian States Coordinates’, 2023). 
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The available well-log data for the São Francisco basin (onshore), and Santos basin (offshore) 
are provided by the ANP (Agência Nacional de Petróleo). However, while the onshore well-log 
data are publicly published, the offshore well-log data are delivered physically in hard drive 
form. Table 2.1 summarizes the measured well-log data for the São Francisco basin, while  
Table 2.2 provides a summary of the available data for Santos basin, as sourced from (‘ANP-
TERRESTRE’, 2023). 
 

 
Table 2.1: Available measured well-log data for each well (São Francisco basin). 

 
Table 2.2: Available measured well-log data for each well (Santos basin). 

Additionally, calculated parameters are provided for each well in both basins. These calculated 
parameters include Effective Porosity (PHIE_HILT), and the Grain Density (RHGX_HILT). 
 
 

2.1.1 Well-Log Data Information     
As follows, we briefly explain the importance of each Wireline Logging Curve used in this work.  
While we provide a brief explanation here, more comprehensive information about these logs 
and their applications can be found in open sources such as the glossary provided by 
(Schlumberger, 2023) or in books like “The log analysis handbook” written by (Crain and Ganz, 
1986). The order of explanation follows the presentation in Table 2.1, and Table 2.2. 
 
The Sonic log, in our case Compressional Wave Slowness (DTCO) and Shear Wave Slowness 
(DTSM), provides measurements of the slowness of a refracted elastic wave that reaches the 
wellbore wall with a specific inclination angle, known as the critical angle. It is primarily used 
to derive the porosity of a formation. 
 
The Elemental Spectroscopy log (ESPEC) measures the elemental concentrations in the 
formation, such as calcium, magnesium, and silicon. The ESPEC tool emits gamma-rays into the 
formation, which interact with the atomic nuclei of the surrounding elements. Consequently, 
gamma-rays undergo energy changes that are indicative of the elemental composition of the 
formation. These measurements allow for more accurately defining the clay content, 
mineralogy, and matrix properties in each potential zone. 
 
The Gamma-Ray log (GR) provides a reading of the natural radioactivity emitted by the 
reservoir formation. It is useful for identifying shaly zones, which are characterized by high 
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radioactivity. It also helps calculate shale volume and identify the type of clay mineral present 
in the shale.  
 
The Caliper log (HCAL) represents a measurement of the diameter of the well, in inches, and it 
gives information on the borehole shape. It is important for quality control of most of the logs 
since they are sensitive to variations in the borehole diameter. 
 
The Nuclear Magnetic Resonance log (NMR) is the most important acquired log. An NMR 
returns the porosity as partitioned in clay-bound water (CBW), bulk volume immovable (BVI) 
which represents the irreducible water, in our case the capillary-bound water, and bulk volume 
movable (BVM) that is the volume occupied by the mobile fluids, like hydrocarbons, and water. 
For a detailed description of this powerful tool, we can refer to (Westphal et al., 2005). 
 
The Neutron Porosity log (NPHI) provides a reading of the formation’s response when it is 
subjected to a radioactive bombardment of fast neutrons. Its response is an indicator of the 
porosity of the formation.  
 
The Photo-Electric Factor log (PEFZ) gives a reading of the so-called photo-electric absorption 
by the formation, which refers to the absorption of gamma rays under a certain threshold. It is 
an extremely good indicator of the lithology.  
 
The Resistivity log (RES) measures the electrical resistivity of the formation, specifically the 
apparent formation resistivity. In this research, investigation depths of 10-30-90 inches (AT10, 
AT30, and AT90) are considered. The resistivity curves are used as a water saturation 
indication; we have low resistivity values for water-bearing zones and high resistivity values for 
hydrocarbon-bearing zones. 
 
The Formation Density log (RHOZ) measures the response of the formation to a radioactive 
bombardment of gamma rays. Its response is an indicator of the bulk density of the formation.  
 
 

2.1.2 Well-Log Data Visualization  
To gain a comprehensive understanding of the well-logging features, and their correlation with 
the measured depth, Fig. 2.3, Fig. 2.4, Fig. 2.5, and Fig. 2.6 provide an example of a complete 
well-logging feature analysis.  
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Fig. 2.3: Composite well-log of well 1-BRSA-871-MG. Track 1: Measured well depth. Track 2: Gamma-Ray (GR) log. 
Track 3: Induction Electric Resistivity logs. Investigation depth of 90 (AT90) inches. Track 4: Formation Density 
(RHOZ), and Neutron Porosity (NPHI) logs. Track 5: Compressional Wave Slowness (DTCO) log. 
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Fig. 2.4: Composite well-log of well 1-BRSA-948-MG. Track 1: Measured well depth. Track 2: Gamma-Ray (GR) log. 
Track 3: Neutron Porosity (NPHI) log. Track 4: Compressional Wave Slowness (DTCO) log. 
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Fig. 2.5: Composite well-log of well 1-BRSA-1116-RJS. Track 1: Measured well depth. Track 2: Gamma-Ray (GR) 
and Caliper (HCAL) logs. Track 3: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), 
and 90 (AT90) inches. Track 4: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) 
logs. Track 5: Compressional Wave Slowness (DTCO) and Shear Wave Slowness (DTSM) logs. Track 6: Nuclear 
Magnetic Resonance Porosity logs. Total Porosity (nmrPHIT), Effective Porosity (nmrPHIE), and Free Fluid (nmrFF). 
In deepskyblue, the reservoir rock. 
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Fig. 2.6: Composite well-log of well 3-BRSA-1215-RJS. Track 1: Measured well depth. Track 2: Gamma-Ray (GR) 
and Caliper (HCAL) logs. Track 3: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), 
and 90 (AT90) inches. Track 4: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) 
logs. Track 5: Compressional Wave Slowness (DTCO) log. Track 6: Nuclear Magnetic Resonance Porosity logs. Total 
Porosity (nmrPHIT), Effective Porosity (nmrPHIE), and Free Fluid (nmrFF). In deepskyblue, the reservoir rock.  
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We provide a qualitative description of the plotted well-logging curves for the mentioned wells. 
 
Well 1-BRSA-871-MG: the GR log helps identify different lithologies. From depths of 3,241 to 
3,300 meters, there is dolomite; from 3,300 to 3,350 meters, there is sandstone; from 3,350 
to 3,375 meters, there is sandstone with some dolomite layers, and from 3,375 to 3,425 
meters, there is shale with some silt layers. The shale exhibits the highest GR values, reaching 
up to 200 gAPI. The NPHI and RHOZ logs indicate the presence of a gas-bearing zone within the 
depth interval of 3,350 to 3,375 meters, approximately.  
 
Well 1-BRSA-948-MG: the GR log displays values ranging from 5 to 50 gAPI, which are typical 
for sandstone formation.  
 
Well 1-BRSA-1116-RJS: the GR log shows values ranging from 10 to 40 gAPI, characteristic of 
limestone lithology. The HCAL log indicates a consistent well diameter of 8 inches, indicating a 
relatively uniform borehole size. The PEFZ log displays a value of 5 (barns/electron), which is 
typical for limestone lithology. The NMR and RES logs show a relationship, with high resistivity 
values corresponding to high values of free fluid (water + hydrocarbon), indicating areas with 
increased fluid content. Hydrocarbon-bearing zones can be identified based on these 
observations. The oil-bearing is located between depths of 5,360 and 5,600 meters, with the 
oil-water contact at approximately 5,600 meters. This implies that 90% of the well is reservoir 
formation, while the remaining 10% is non-reservoir formation.  
 
Well 3-BRSA-1215-RJS: like well 1-BRSA-1116-RJS, GR, HCAL, and PEFZ logs indicate the 
presence of limestone lithology. The relationship between the NMR and RES logs is even more 
evident in this well. The oil-bearing zone is found within the depth interval of 5,450 to 5,500 
meters, with only 20% of the formation representing reservoir rock, and the remaining 80% 
being non-reservoir rock.  
 
 

2.1.3 Geological Info about São Francisco and Santos Basin 
São Francisco basin belongs to the state of Minas Gerais, and it extends over an area of 350,000 
square kilometers. The geological understanding of the basin is still limited, but ongoing 
hydrocarbon exploration activities and regional mapping initiatives are gradually improving our 
knowledge of the area (Reis et al., 2017). The presence of surface gas seeps and gas flows 
observed in the drilled wells throughout the basin supports its petroleum potential (Mello, de 
Mio and Bruno, 2018).  
According to info provided by (‘ANP-TERRESTRE’, 2023), the formations drilled by the wells of 
interest are Serra de Santa Helena, Sete Lagoas, and Jequitai. For a detailed description of 
lithostratigraphy, (Reis et al., 2017) provide comprehensive information. 
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Santos basin is the largest offshore basin in Brazil, situated to the east of the states of São Paulo 
and Rio de Janeiro. It is currently the nation's largest oil-producing basin. With a water depth 
of up to 3,000 meters (deep-water basin), the basin covers an area of about 350,000 square 
kilometers. The formation of the Santos basin can be attributed to the separation of South 
America and Africa, during the Cretaceous period (145 to 66 million years ago), because of the 
rupture of the Supercontinent Gondwana, and the subsequent opening of the Atlantic Ocean 
(Lupinacci et al., 2023). Fig. 2.7 illustrates a schematic representation of the layer types found 
in the Santos basin. 
 

 
Fig. 2.7: Pre-salt oil and gas layer, salt layer, post-salt layer, and water depth for the Santos basin (PETROBRAS). 

The pre-salt layers are located at a depth interval of 6,000-7,000 meters. They represent one 
of the most significant offshore petroleum discoveries in the last two decades. The discovery 
stands out due to its large volumes of resources in place, high reservoir productivity, the thick 
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and high-quality seal mostly composed of halite and anhydrite, and the presence of high-
quality oil, with an API gravity of about 28-30° (Souza et al., 2022).  
To provide further insight into the lithostratigraphy, it is worth mentioning that the wells of 
interest have drilled the Ariri and Barra Velha formations. For a simplified stratigraphic chart 
of the Santos basin, (Gomes et al., 2020) offers valuable information.  
 
Moreover, Fig. 2.8 provides additional context by presenting an example of schematic 
lithological columns of the areas of interest. In the Santos basin, the drilled wells encountered 
a carbonate section consisting of limestone, which is capped by a halite layer, followed by an 
anhydrite layer, at the top, and by a shale layer, at the bottom.  
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Fig. 2.8: Schematic lithological columns for well 1-BRSA-871-MG (first column), well 1-BRSA-948-MG (second 
column), well 1-BRSA-1116-RJS (third column), and well 3-BRSA-1215-RJS (fourth column) (‘ANP-TERRESTRE’, 
2023). 
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Table 2.3: Lithology tables for São Francisco and Santos basins. 

 
 

2.1.4 General Information about the Itapu Oil Field, Santos Basin 
In the Santos basin, which consists of various pre-salt fields, our study focuses on the Itapu oil 
field (Fig. 2.9), which is situated at a water depth of 2,000 meters and approximately 200 
kilometers offshore Rio de Janeiro. Itapu is a significant oil field with an estimated in situ oil 
volume of 1.3 billion barrels of oil and is operated by the state-run oil and gas company, 
Petroleo Brasileiro, Petrobras (Offshore Technology, 2021). The discovery of Itapu was made 
in December 2012 through the drilling of the 1-BRSA-1116-RJS exploratory well. A formation 
test, conducted on the well, confirmed the excellent productivity of the reservoir (Offshore 
Technology, 2021). 

 
Fig. 2.9: Location map of Santos basin and the main pre-salt fields. Itapu field is highlighted in red (Equinor, 2017). 
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2.2 Applied Methodology 
The methodology employed in this research adheres to the workflow depicted in Fig. 2.10. We 
will go through each phase and step.  

 
Fig. 2.10: Schematic diagram showing the research methodology applied in this study. 
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Moreover, we present a schematic representation (Fig. 2.11) that showcases the wells included 
in the study and the corresponding predicted well-logs, for each Brazilian basin.  
 

 
Fig. 2.11 Scheme of the available wells and predicted well-logs for each basin. 

 
Each phase and step, summarized in Fig. 2.10, is entirely implemented using the Python 
Programming Language. The following Python libraries are employed in this study:  
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1. DLISIO library is used to read DLIS files, which contain well-log data provided by Brazil’s 

National Agency for Petroleum, Natural Gas and Biofuels (‘ANP-TERRESTRE’, 2023). 

2. Folium library is employed for mapping purposes, specifically to visualize the locations 
of the wells.  

3. JSON library is used to read JSON files, which assist in mapping the coordinates of 
different regions and sub-regions in Brazil (‘Brazilian States Coordinates’, 
2023)(‘Brazilian Sub-Regions Coordinates’, 2023).  

4. Matplotlib library, known as the plotting library, is utilized for visualizing and plotting 
well-log data. 

5. LASIO library is employed to read LAS files. In some cases, the DLIS files may be 
converted to LAS format, for convenience.  

6. NumPy library is used to provide support to multi-dimensional arrays. Throughout the 
implementation of the code, different arrays are manipulated.  

7. Pandas library is employed to import data from different formats and to create 
different data frames.  

8. Pickle library is used to read pickle files, which are used to save the ML Models in this 
research.  

9. QB Styles library, short for “Quantum Black Styles”, contains light and black Matplotlib 
styles. In this study, the light style is chosen for the plots.  

10. Scikit-Learn library, known as a comprehensive ML library, offers efficient tools for 
various data analysis tasks, including classification, regression, clustering, 
dimensionality reduction, model selection, and pre-processing. In this research, the 
focus is on regression tasks (‘Scikit-learn, Machine learning in Python’, 2023). 

In Appendix 7 we report some lines of the Python code that we implemented to predict NMR 
porosity logs. The code follows the structure outlined in Fig. 2.10. Furthermore, the complete 
work is available on GitHub at the following link:   
[https://github.com/VittoDePe98/Well-Logs_Predictive_Models.git].  
We created a repository named Well-Logs_Predictive_Models, that is organized as follows: 

o Introduction – Project Objective. 
o Well-Log Datasets Used. 
o 3 Folders Containing Notebooks. 
o Software Used. 
o Citation.  

Of particular interest is the “3 Folders Containing Notebooks” section, which is organized as 
follows (Fig. 2.12): 
 

https://github.com/VittoDePe98/Well-Logs_Predictive_Models.git
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Fig. 2.12: Notebooks present within the GitHub repository. 

In the Lithology_Visualization folder, a tool has been developed to display lithological columns. 
This tool allows for the visualization of lithological information in a graphical format. In the 
LogData_Collection_and_Visualization folder, the well-log data obtained from different DLIS 
files are saved into data frames. This step involves extracting the required well-log data from 
the available DLIS files and organizing them in a structured format. Additionally, a tool has been 
implemented to visualize the well-log data, enabling the analysis of the log data through plots 
and visual representations. Finally, the Logs_Prediction folder is of particular importance as it 
contains the implementation of the ML predictive models required for the prediction task. 
These three folders collectively represent the key components of the research 
implementation. 
 

2.3 Well-Log Data Collection  
In the first phase of the workflow (Fig. 2.10), the focus is on collecting the well-log data from 
the available DLIS files for the selected wells. For case study 1, wells 1-BRSA-871-MG and 1-
BRSA-948-MG are chosen for data collection. Similarly, for case study 2, wells 1-BRSA-1116-
RJS and 3-BRSA-1215-RJS are selected.  
The LogData_Collection_and_Visualization folder contains the necessary information and tools 
to collect and visualize the well-log data for these wells.  
 
 

2.4 Well-Log Data Pre-Processing  
The “Well-Log Data Cleaning” phase, as part of the LogData_Collection_and_Visualization 
folder, focuses on preparing the collected well-log data for modeling. This phase consists of 
two steps: 



Vittoria De Pellegrini  36 

 
o Splicing data into a single data frame: since the well-log data are sourced from different DLIS 

files, the first step involves performing a splice operation to merge the data into a single data 
frame, for each well. This operation ensures that all the relevant data, for a particular well, are 
consolidated in one place. 

o Removal of non-sense and NaN values: the focus is on removing non-sense and NaN (not a 
number) values from the well-log data. These NaN values can interfere with the accuracy and 
performance of the ML models. Therefore, it is crucial to identify and remove these values to 
ensure the quality of the dataset.  

 

2.5 Machine Learning Workflow 
The ML workflow consists of different steps. As follows, we will provide only a brief and 
qualitative explanation of each step. The detailed implementation of each step can be found 
in Appendix 7, or in the Logs_Prediction folder.  
 

2.5.1 Machine Learning Algorithm Selection    
As already mentioned, we decide to work with two supervised ML algorithms, RF and GB. 
 

2.5.1.1 Random Forest Algorithm Implementation 
To implement this algorithm, we import the RandomForestRegressor function from the Scikit-
Learn library. This function uses different hyper-parameters to fit the model to the input data; 
they will be specified during the Optimization phase. Moreover, this function can predict more 
than one variable at a time.  
Additionally, the "tree.plot_tree" function is employed to extract and visualize individual 
decision trees. In Fig. 2.13, the first decision tree, with a limited depth (max_depth=2), built for 
the prediction of NMR porosity logs when the RF model is trained on well 3-BRSA-1215-RJS, is 
shown. 

 
Fig. 2.13: Schematic representation of the decision process occurring within the RF algorithm.  

True False 
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The first node (white square) represents the Root Node, whereas all the other colored nodes 
are the Decision Nodes. They contain the following elements: 

1. The input feature and its value to split the node on, which are chosen randomly. They 
are indicated with the index value; for instance, 6 corresponds to AT90. 

2. The mean squared error (MSE) of the node. 
3. The number of data points in the node. 
4. The prediction target; in this case, three prediction outcomes.  

The darker the node, the lower the error for that prediction.  
 
 

2.5.1.2 Gradient Boosting Algorithm Implementation 
The GB algorithm is implemented using the GradientBoostingRegressor function that is 
imported from the Scikit-Learn library. It uses similar hyper-parameters as those defined for 
the RandomForestRegressor, in the Optimization phase. This function can predict only one 
variable at a time; thus, we need to import the MultiOutputRegressor function.  
 
 

2.5.2 Well-Log Data Organization 
We select the training and the validation/test wells. The training well is used to build the model 
and it helps to capture the relationships between the input and the target variables. On the 
other hand, the test well is an “unseen” well, meaning it is not used during the ML model-
building process. It allows for assessing the performance and generalization ability of the 
trained ML model on new and unseen data.  
In case study 1, the training well is 1-BRSA-871-MG, and the validation well is 1-BRSA-948-MG.  
In case study 2, we distinguish two attempts. In the first attempt, the training well is 3-BRSA-
1215-RJS, and the test well is 1-BRSA-1116-RJS. In the second attempt, the training well is 1-
BRSA-1116-RJS, and the validation well is 3-BRSA-1215-RJS. 
 
Moreover, we specify the input variables to the ML models, which in this case are limited to 
conventional well-log data, and the output variables that the ML models aim to predict.  
In case study 1, we have two different predictions. For the calculated PHIE_HILT log, the input 
parameters used are GR, NPHI, and RHGX_HILT. For the measured DTCO log, only two input 
variables are used, which are GR and NPHI.  
In case study 2, the focus is on predicting NMR porosity logs. The input parameters for this 
prediction include AT90, DTCO, GR, HCAL, NPHI, PEFZ, and RHOZ.  
 
The selection of the input features is not random but based on the knowledge of how the 
target variables are calculated or related to specific well-log measurements.  
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For the prediction of the calculated PHIE_HILT log, we know that GR, NPHI, and RHOZ logs 
provide information about the total porosity, which is then used in equation (Eq. 2.1): 
 
 𝜙𝐸 =  𝜙𝑇  −  𝜙𝑊𝐵 

 
Eq. 2.1 

where 𝜙𝐸  is the effective porosity, 𝜙𝑇 is the total porosity, and 𝜙𝑊𝐵 is the porosity occupied 
by the clay-bound water. According to Eq. 2.1, we can understand that PHIE_HILT is indirectly 
related to GR, NPHI, and RHOZ logs. In addition, instead of the RHOZ log, we use the RHGX_HILT 
log, which is calculated from it.  
 
The DTCO log provides information about the total porosity, and the GR and NPHI logs 
contribute to estimating this total porosity.  
 
In the case of predicting NMR porosity logs, RHOZ, DTCO, GR, HCAL, NPHI, PEFZ, and AT90 logs, 
collectively provide information about the rock matrix, mineral composition, fluid change, and 
rock porosity; these are relevant factors in predicting NMR porosities.  
 
We summarize the well-log predictors and outputs in Table 2.4, Table 2.5, and Table 2.6: 
 

WELL NUMBER LITHOLOGY WELL LOG PREDICTORS WELL LOG OUTPUTS 

1 – BRSA – 871 – MG 

Dolomite 
Diamictite 
Limestone 

Loam 
Sandstone 

Shale 
Silt 

GR 
NPHI 

RHGX_HILT 
PHIE_HILT 

1 – BRSA – 948 – MG 
Grainstone 
Limestone 

Shale 

GR 
NPHI 

RHGX_HILT 
PHIE_HILT 

Table 2.4: Predictors and Outputs for each well, with the corresponding lithology (São Francisco basin) 

 
WELL NUMBER LITHOLOGY WELL LOG PREDICTORS WELL LOG OUTPUTS 

1 – BRSA – 871 – MG 

Dolomite 
Limestone 
Sandstone 

Shale 
Silt 

GR 
NPHI 

DTCO 

1 – BRSA – 948 – MG Sandstone 
GR 

NPHI 
DTCO 

Table 2.5: Predictors and Outputs for each well, with the corresponding lithology (São Francisco basin) 
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WELL NUMBER LITHOLOGY WELL LOG PREDICTORS WELL LOG OUTPUTS 

1 – BRSA – 1116 – RJS Limestone 

AT90 
DTCO 

GR 
HCAL 
NPHI 
PEFZ 
RHOZ 

NMRFF 
NMRPHIE 
NMRPHIT 

3 – BRSA – 1215 – RJS Limestone 

AT90 
DTCO 

GR 
HCAL 
NPHI 
PEFZ 
RHOZ 

NMRFF 
NMRPHIE 
NMRPHIT 

Table 2.6: Predictors and Outputs for each well, with the corresponding lithology (Santos basin) 

 
We develop a total of eight supervised models: two models for predicting the PHIE_HILT log 
(single-output models), two models for predicting the DTCO log (single-output models), and 
four models for predicting NMR porosity logs (multi-output models).  
 
Just in case the mentioned abbreviations are not clear, Table 2.7 provides a reference table 
that associated each abbreviation with its corresponding extended log name. 
 

ABBREVIATION EXTENDED LOG NAME 

AT90 
DTCO 

GR 
HCAL 
NMR 
NPHI 
PEFZ 

PHIE_HILT 
RHGX_HILT 

RHOZ 

Array induction resistivity log, investigation 90 in 
Delta T compressional wave, compressional slowness log 

Gamma-ray log 
Caliper log 

Nuclear magnetic resonance log 
Thermal neutron porosity log 

Photo-electric log 
HILT effective porosity log 

HILT grain density log 
Formation density log  

Table 2.7: Abbreviations and Extended Log Names. 
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2.5.3 Training Phase  
We consider the original dataset of the training wells, and by means of the “train_test_split” 
function, it is randomly split into two parts: the training and the test datasets. The training 
dataset comprises 80% of the data and is used to train the model, while the remaining 20% is 
used to test the model. The training dataset allows the algorithm to understand the patterns 
that exist between the input and the output data, whereas the test dataset, which is the 
unseen dataset by the algorithm, serves to evaluate the predictive power of the trained model. 
The relationship that is established between the input and output variables is unknown, thus 
this function can be seen as a “black box”. The random shuffling process employed in the RF 
and GB algorithms is a key feature. In Fig. 2.14, we provide a schematic representation of the 
random shuffling process. 
 

 
Fig. 2.14: Random Shuffling of the original dataset performed during Training and Test Split 

 
Now we consider only the training dataset, and we proceed to train our models using it. 
However, to ensure more accurate training, it is recommended to apply one of the Cross-
Validation techniques. We employ the K-Fold Cross-Validation (KFCV) technique. The data 
points of the training dataset are randomly assigned to K folds or called groups. In this case, 
we set K equal to 10, resulting in 10-Fold Cross-Validation. In an iterative process consisting of 
10 iterations, each time one of the K folds is selected as the validation dataset, while the 
remaining (K-1) folds form the new training dataset. This procedure is repeated K times, 
ensuring that each group is selected as the validation dataset once. During each iteration, an 
accuracy value is calculated and an average accuracy value, across the 10 iterations, is obtained 
(Maleki et al., 2020). Fig. 2.15 presents a schematic representation of the KFCV technique. 
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Fig. 2.15: k-Fold Cross-Validation, where k=10. 

The result of the training phase is a trained model that has learned the relationship between 
the input and output features. However, since ensemble-based decision tree approaches 
involve randomness, the results may vary each time the model is trained. To ensure 
reproducibility, we fixed the value of the “random_state” parameter, for instance, 42.  
The next step is to tune/optimize the trained models.  
 
 

2.5.4 Optimization Phase 
The RandomForestRegressor, and the GradientBoostingRegressor functions have a set of 
hyperparameters that can be tuned to optimize the model’s performance. The complete list 
and meanings of all the hyperparameters are available on the official Sckit-Learn webpage 
(‘Scikit-learn, Machine learning in Python’, 2023). For simplicity, we consider only the following 
hyper-parameters: n_estimators, and max_depth for the RF Regressor; n_estimators, 
max_depth, and learning_rate for the GB Regressor. We summarize the meaning of each 
parameter (Farmanov et al., 2023):  

o n_estimators is the number of independent trees in the ensemble. The RF and GB 
models perform better when it is increased, but doing so increases the computational 
time. 

o max_depth is the maximum depth of each tree in the ensemble. Larger depths 
sometimes result in better model performance but exponentially longer computational 
time. 

o learning_rate represents how fast the model learns. It controls the change of the 
weights applied to the input data.  
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Additional hyper-parameters that we do not consider can be the min_samples_split, which is 
the lowest number of samples required to split a node, and the min_samples_leaf, which is the 
minimum number of samples required to be at a leaf node.  
 
To choose the best hyperparameter values we need to perform “Hyperparameter Optimization 
or Hyperparameter Tuning”, which is extremely important since our target is to optimize the 
performance of RF and GB regressors. In this process, we rely on the Randomized Search Cross-
Validation technique, using the “RandomizedSearchCV” function which allows determining the 
optimal hyperparameter values for RF and GB, while the models are cross-validated on these 
random combinations. The best hyperparameter couple is the one that maximizes the accuracy 
(R2) of the model and minimizes its error (MSE, RMSE, and MAE). The “RandomizedSearchCV” 
function explores multiple random combinations of hyperparameters. In Fig. 2.16 a schematic 
representation of the random search grid is provided.  
 

 
Fig. 2.16: Random Search Grid 

 
 
 
The point of strength of the ensemble-based decision tree approaches is that intensive 
parameter tuning is not required compared to other models (Babasafari et al., 2022). 
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The optimized hyperparameters found for each algorithm are summarized in Table 2.8, Table 
2.9, and Table 2.10 as follows: 
 

Effective Porosity Prediction – Optimal Couple 

Random Forest Gradient Boosting 
n_estimators max_depth n_estimators max_depth learning_rate 

250 20 250 5 0.3 
Table 2.8: Optimal couple for Effective Porosity Prediction for both RF and GB (São Francisco basin) 

Compressional Wave Slowness Prediction – Optimal Couple 
Random Forest Gradient Boosting 

n_estimators max_depth n_estimators max_depth learning_rate 

150 10 250 5 0.3 
Table 2.9: Optimal couple for Compressional Wave Slowness Prediction for both RF and GB (São Francisco basin) 

NMR Porosities Prediction – Optimal Couple 
Random Forest Gradient Boosting 

n_estimators max_depth n_estimators max_depth learning_rate 
400 20 250 5 0.3 

Table 2.10: Optimal couple for NMR Porosities Prediction for both RF and GB (Santos basin) 

 

2.5.5 Test Phase 
Once our models are trained and tuned, we need to test them. The test phase consists of two 
steps. In the first step, we apply the models to the test dataset (20%) of the same training well. 
In the second step, the most important and critical one, we apply the models to the entire 
dataset of the test well. This last step is crucial because it tests the ability of the models to 
generalize and make accurate predictions on completely unseen data. 
 

2.5.6 Prediction Phase 
The predicted well-log results are compared with the measured well-log data. The synthetic 
well-logs, generated by the models, are plotted alongside the measured ones. This allows us 
to have a first assessment of the quality of the predictions by visually inspecting how well the 
synthetic well-logs align with the measured well-logs. 
 

2.5.7 Evaluation Phase 
We use regression/evaluation metrics such as R2, MSE, RMSE, and MAE to quantitatively assess 
the performance of the ML models. These metrics allow for comparing the predicted well-log 
data with the measured well-log data. Having high accuracy values and low errors does not 
necessarily mean that a model is capable of generalizing for any dataset.  
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3 Methodology Application & Outcomes 
 
In this chapter, a comprehensive presentation of the results obtained from the applied 
methodology is provided to observe the differences in the performance of the two models. We 
compare the measured well-log data with their corresponding synthetic counterparts, 
presenting the findings in the form of scatter plots and as a function of the dataset index and 
measured depth.  
The results encompass the test dataset, the total dataset for the training well, and the total 
dataset for the test well. By including both the test and the total datasets, we aim to visualize 
the predicted curves not only in relation to the data sample index but also in terms of the 
measured depth.  
 
To emphasize the most significant outcomes, we highlight the relevant plots in red.  
 
 

3.1 Case Study 1: Effective Porosity Log 
In this section, we aim to assess the ability of RF and GB models to predict a calculated well-
log parameter, the effective porosity, thereby evaluating their understanding of the unknown 
deterministic function that relates the input well-log data and the target well-log variable. Our 
expectation is that the models perform well on training well 1-BRSA-871-MG, indicating their 
ability to learn the underlying function. Moreover, we anticipate that the models can 
accurately predict the data of the test well 1-BRSA-948-MG, as we assume the same underlying 
function applies to both wells.  
 
It is important to note that the training dataset consists of 7596 data points (80% of 9496), 
while the test dataset comprises only 1288 data points. Therefore, we anticipate that the 
predictions for the second well should be highly accurate given the ample training data 
available.  
 
The following results  (Fig. 3.1, Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9) 
illustrate the outcomes of our analysis and support our evaluation of the model’s prediction 
capabilities.  



Vittoria De Pellegrini  45 

 
 

 
 
 

 
 

Fig. 3.1: Scatter plots of predicted versus measured effective porosity (m3/m3), for the RF and GB Models, applied 
to the Test Dataset of well 1-BRSA-871-MG.  
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Fig. 3.2: Comparing the match between the predicted and measured effective porosity, for the RF Model, across 
the Test Dataset Index of well 1-BRSA-871-MG. Plot 1: Predicted and Measured Effective Porosity (m3/m3) for the 
range 0 - 1900. Plot 2: Predicted and Measured Effective Porosity (m3/m3) for the range 500 - 750.  
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Fig. 3.3: Comparing the match between the predicted and measured effective porosity, for the GB Model, across 
the Test Dataset Index of well 1-BRSA-871-MG. Plot 1: Predicted and Measured Effective Porosity (m3/m3) for the 
range 0 - 1900. Plot 2: Predicted and Measured Effective Porosity (m3/m3) for the range 500 - 750. 
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Fig. 3.4: Scatter plots of predicted versus measured effective porosity (m3/m3), for the RF and GB Models, applied 
to the Entire Original Dataset of well 1-BRSA-871-MG. 
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Fig. 3.5: Comparing the match between the predicted and measured effective porosity, for the RF Model, across 
the Entire Original Dataset Index of well 1-BRSA-871-MG, which corresponds to the Measured Well Depth. Plot 1: 
Predicted and Measured Effective Porosity (m3/m3) for the range 0 - 9496. Plot 2: Predicted and Measured Effective 
Porosity (m3/m3) for the range 5000 - 6000. 
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Fig. 3.6: Comparing the match between the predicted and measured effective porosity, for the GB Model, across 
the Entire Original Dataset Index of well 1-BRSA-871-MG, which corresponds to the Measured Well Depth. Plot 1: 
Predicted and Measured Effective Porosity (m3/m3) for the range 0 - 9496. Plot 2: Predicted and Measured Effective 
Porosity (m3/m3) for the range 5000 - 6000. 
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Fig. 3.7: Scatter plots of predicted versus measured effective porosity (m3/m3), for the RF and GB Models, applied 
to the Entire Original Dataset of well 1-BRSA-948-MG. 
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Fig. 3.8: Comparing the match between the predicted and measured effective porosity, for the RF Model, across 
the Entire Original Dataset Index of well 1-BRSA-948-MG, which corresponds to the Measured Well Depth. 
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Fig. 3.9: Comparing the match between the predicted and measured effective porosity, for the GB Model, across 
the Entire Original Dataset Index of well 1-BRSA-948-MG, which corresponds to the Measured Well Depth. 
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A qualitative interpretation of the plotted results confirms our expectations, as both ML 
models demonstrate excellent performance on both training and test wells. The visual analysis 
of the results indicates that the developed ML models effectively capture the underlying 
patterns and relationships within the data, leading to accurate predictions. The satisfactory 
performance of the models on unseen test data validates their robustness and generalizability. 
 
 

3.2 Case Study 1: Compressional Wave Slowness Log 
In this section, we focus on evaluating the performance of the RF and GB models in predicting 
compressional wave slowness, a measured well-log parameter. Considering the limitations of 
our training dataset, which comprises only 916 data points (80% of 1146), we anticipate that 
the models will perform well on the training well 1-BRSA-871-MG but may struggle on the test 
well 1-BRSA-948-MG. This is further compounded by the fact that the range of the 
compressional wave slowness log we aim to predict differs from the one used in the training 
phase.  
 
The results presented in Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13, Fig. 3.14, Fig. 3.15, Fig. 3.16, Fig. 3.17, 
and Fig. 3.18 showcase the outcomes of our analysis, confirm our expectations, and provide 
insights into the initial limitations of our models concerning the size of the training dataset and 
the range of prediction.  
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Fig. 3.10: Scatter plots of predicted versus measured compressional wave slowness (μs/ft), for the RF and GB 
Models, applied to the Test Dataset of well 1-BRSA-871-MG. 
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Fig. 3.11: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the RF Model, across the Test Dataset Index of well 1-BRSA-871-MG.  
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Fig. 3.12: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the GB Model, across the Test Dataset Index of well 1-BRSA-871-MG. 
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Fig. 3.13: Scatter plots of predicted versus measured compressional wave slowness (μs/ft), for the RF and GB 
Models, applied to the Entire Original Dataset of well 1-BRSA-871-MG. 
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Fig. 3.14: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the RF Model, across the Entire Original Dataset Index of well 1-BRSA-871-MG. 
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Fig. 3.15: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the RF Model, across the Entire Original Dataset Index of well 1-BRSA-871-MG. 
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Fig. 3.16: Scatter plots of predicted versus measured compressional wave slowness (μs/ft), for the RF and GB 
Models, applied to the Entire Original Dataset of well 1-BRSA-948-MG. 
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Fig. 3.17: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the RF Model, across the Entire Original Dataset Index of well 1-BRSA-948-MG. 
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Fig. 3.18: Comparing the match between the predicted and measured compressional wave slowness (μs/ft), for 
the RF Model, across the Entire Original Dataset Index of well 1-BRSA-948-MG. 
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3.3 Case Study 2: NMR Porosity Logs  
In this section, our focus is on evaluating the performance of the RF and GB models in 
predicting NMR porosities, as measured well-log parameters. We want to conduct a more 
accurate analysis, and for this reason, we undertake two attempts to assess the model’s 
predictive capabilities. By conducting two attempts, we can gather more insights and validate 
the robustness of the models in different scenarios. 
 
In the first attempt, we use well 3-BRSA-1215-RJS as the training well, and well 1-BRSA-1116-
RJS as the test well. Conversely, in the second attempt, we reverse the roles, using well 1-BRSA-
1116-RJS as the training well and well 3-BRSA-1215-RJS as the validation well. Our supposition 
is that, in both cases, the models will exhibit excellent predictive performance on the training 
well. However, we expect to achieve improved predictions on the test well on the second 
attempt, and there are several reasons to support this expectation.  
 
Firstly, well 1-BRSA-1116-RJS is predominantly composed of good reservoir rock, accounting 
for 90% of its composition, with the remaining 10% being a non-reservoir rock. This indicates 
that it exhibits favorable properties for hydrocarbon reservoirs. Conversely, well 3-BRSA-1116-
RJS consists of only 20% of reservoir rock, with the remaining 80% being non-reservoir rock. 
This distinction implies that the model trained on well 1-BRSA-1116-RJS may have a higher 
capability to predict the reservoir portion of the test well, which represents 20% of the total 
formation. And that the model trained on well 3-BRSA-1215-RJS may not be able to predict the 
reservoir portion of the test well, which is the predominant portion.  
 
Secondly, well 1-BRSA-1116-RJS has a larger starting dataset of 2282 datapoints, providing a 
substantial training dataset compared to well 3-BRSA-1215-RJS, which has 1579 data points 
and a smaller training dataset. This difference in dataset size suggests that the model trained 
on well 1-BRSA-1116-RJS may have more information to learn from, potentially leading to 
better predictive performance.  
 
Consequently, considering these factors, we anticipate that the second attempt will result in 
improved predictions on the test well compared to the first attempt. For this specific case, the 
larger training dataset, and the higher concentration of reservoir rock, in the training well, 
provide an advantage for the model to learn, enabling it to make more accurate predictions on 
unseen data.  
 
However, it is worth noting that the predictions on the test well may still be weak, even in the 
second attempt, due to significant differences in the NMR porosity distributions between the 
training and the test well. The dissimilarity in the distributions, despite the similarity in lithology 
between the two wells, suggests potential challenges in accurately predicting NMR porosities. 
This difference is highlighted in a histogram overview, specifically shown in Fig. 3.19, illustrating 
the disparities in the porosity distributions of the training and test wells.  
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Fig. 3.19: NMR Porosity distribution for well 1-BRSA-1116-RJS, and well 3-BRSA-1215-RJS. Histogram 1: NMR Total 
Porosity distribution (m3/m3). Histogram 2: NMR Effective Porosity distribution (m3/m3). Histogram 3: NMR Free 
Fluid distribution (m3/m3).  
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3.3.1 First Attempt: Training on Well 3-BRSA-1215-RJS and Validation 

on Well 1-BRSA-1116-RJS  
The results depicted in Fig. 3.20, Fig. 3.21, Fig. 3.22, Fig. 3.23, Fig. 3.24, Fig. 3.25, Fig. 3.26, Fig. 3.27, 
Fig. 3.28, Fig. 3.29, Fig. 3.30, Fig. 3.31 provide further evidence to support our previous 
statements. These figures illustrate the outcomes of our analysis and reinforce the 
observations made regarding the predictive capabilities of the RF and GB models on test well.  
The visual comparison between the predicted and the measured well-logs confirms that our 
expectations are indeed met. However, for a more accurate analysis, we need to rely on 
regression metrics, which will be presented at a later stage, to provide a quantitative 
assessment of the model’s performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vittoria De Pellegrini  67 

 
 

  
 

 
 

 
 

Fig. 3.20: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Test Dataset 
of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: NMR Total 
Porosity (m3/m3). 
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Fig. 3.21: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Test Dataset Index of well 3-BRSA-1215-RJS. Track 1: Predicted and Measured NMR Effective Porosity (m3/m3). 
Track 2: Predicted and Measured NMR Free Fluid (m3/m3). Track 3: Predicted and Measured NMR Total Porosity 
(m3/m3). 
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Fig. 3.22: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Test Dataset 
of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: NMR Total 
Porosity (m3/m3). 
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Fig. 3.23: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the 
Test Dataset Index of well 3-BRSA-1215-RJS. Track 1: Predicted and Measured NMR Effective Porosity (m3/m3). 
Track 2: Predicted and Measured NMR Free Fluid (m3/m3). Track 3: Predicted and Measured NMR Total Porosity 
(m3/m3). 
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Fig. 3.24: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Entire Original 
Dataset of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.25: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Entire Original Dataset Index of well 3-BRSA-1215-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.26: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Entire Original 
Dataset of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.27: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the 
Entire Original Dataset Index of well 3-BRSA-1215-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.28: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Entire Original 
Dataset of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.29: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Entire Original Dataset Index of well 1-BRSA-1116-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.30: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Entire Original 
Dataset of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.31: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the 
Entire Original Dataset Index of well 1-BRSA-1116-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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3.3.2 Second Attempt: Training on Well 1-BRSA-1116-RJS and 

Validation on Well 3-BRSA-1215-RJS  
Also in this case, results shown in Fig. 3.32, Fig. 3.33, Fig. 3.34, Fig. 3.35, Fig. 3.36, Fig. 3.37, Fig. 3.38, 
Fig. 3.39, Fig. 3.40, Fig. 3.41, Fig. 3.42, Fig. 3.43 support our previous statements and reinforce the 
observations regarding the predictive capabilities of RF and GB models on the test well. These 
figures visually confirm that our expectations have been met. A more detailed analysis, 
including regression metrics, will be presented later to provide a comprehensive and 
quantitative assessment of the RF and GB models performance.  
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Fig. 3.32: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Test Dataset 
of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: NMR Total 
Porosity (m3/m3). 
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Fig. 3.33: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Test Dataset Index of well 1-BRSA-1116-RJS. Track 1: Predicted and Measured NMR Effective Porosity (m3/m3). 
Track 2: Predicted and Measured NMR Free Fluid (m3/m3). Track 3: Predicted and Measured NMR Total Porosity 
(m3/m3). 
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Fig. 3.34: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Test Dataset 
of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: NMR Total 
Porosity (m3/m3). 
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Fig. 3.35: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Test Dataset Index of well 1-BRSA-1116-RJS. Track 1: Predicted and Measured NMR Effective Porosity (m3/m3). 
Track 2: Predicted and Measured NMR Free Fluid (m3/m3). Track 3: Predicted and Measured NMR Total Porosity 
(m3/m3). 
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Fig. 3.36: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Entire Original 
Dataset of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.37: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Entire Original Dataset Index of well 1-BRSA-1116-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.38: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Entire Original 
Dataset of well 1-BRSA-1116-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.39: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the 
Entire Original Dataset Index of well 1-BRSA-1116-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.40: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the Entire Original 
Dataset of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.41: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the 
Entire Original Dataset Index of well 3-BRSA-1215-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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Fig. 3.42: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the Entire Original 
Dataset of well 3-BRSA-1215-RJS. Plot 1: NMR Effective Porosity (m3/m3). Plot 2: NMR Free Fluid (m3/m3). Plot 3: 
NMR Total Porosity (m3/m3). 
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Fig. 3.43: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the 
Entire Original Dataset Index of well 3-BRSA-1215-RJS, which corresponds to the Measured Well Depth. Track 1: 
Predicted and Measured NMR Effective Porosity (m3/m3). Track 2: Predicted and Measured NMR Free Fluid 
(m3/m3). Track 3: Predicted and Measured NMR Total Porosity (m3/m3). 
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4 Discussion of the Results  
 
To quantitatively evaluate the performance of the Tree-Based Ensemble Methods, we use the 
following Regression Metrics: Coefficient of Determination (R2), Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) (Farmanov et al., 2023). 
 
The Coefficient of Determination (R2) represents the predictive power of a model as a value 
between -inf and 1.00. The closer to 1.00, the better the prediction. A negative R2 value 
indicates that the fit does not follow the trend data and can occur with non-linear regression 
models. It is expressed in percentage. As follows, its formulation (Eq. 4.1): 
  

𝑅2 = 1 −  
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁

𝑖

∑ (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑛)2𝑁
𝑖

 

 

Eq. 4.1 

 
where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  and 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  represent the predicted and measured values, respectively; 
𝑦𝑚𝑒𝑎𝑛 indicates the mean value of the measured values, and N is the number of samples. 
 
The Mean Squared Error (MSE) indicates the average squared difference between the 
predicted and measured values. It takes numbers in the range of 0.00 and +inf. The closer to 
0.00, the better. It makes use of the same scale of the measured data but to the power of two. 
The equation for MSE is shown below (Eq. 4.2): 
  

𝑀𝑆𝐸 = 
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁

𝑖
𝑁

 

 

Eq. 4.2 

 
 
The Root Mean Squared Error (RMSE) is the squared root of the Mean Squared Error, and it 
ranges between 0.00 and +inf. The closer to 0.00, the better. It uses the same scale as the 
measured data. As follows, its equation (Eq. 4.3): 
  

𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁
𝑖

𝑁  

 

               Eq. 4.3 

 
The Mean Absolute Error (MAE) determines the average absolute difference between the 
predicted and the measured values. It can assume a value between 0.00 and +inf. The closer 
to 0.00, the better. It has the same scale as the measured data. The structure of MAE is 
illustrated by (Eq. 4.4), as follows: 
  

𝑀𝐴𝐸 =  
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|𝑁

𝑖
𝑁

  

 

              Eq. 4.4 
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4.1 Case Study 1: Effective Porosity Log 
The summarized results for R2 and MSE, RMSE, and MAE scores using the best hyperparameter 
configuration, for RF and GB models, are presented in Table 4.1, and Table 4.2. The scores 
specifically refer to the predictions made on the test dataset of well 1-BRSA-871-MG (training 
well) and the total dataset of well 1-BRSA-948-MG (test well). These datasets were chosen as 
they represent unseen data for the models and allow for a reliable evaluation of their 
performance. 

ML Algorithm R2 (test) (%) RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 
Random Forest 97.85 0.0053 0.0 0.0024 

Gradient Boosting 98.15 0.0049 0.0 0.0025 
Table 4.1: Regression Metrics of RF and GB Models for estimation of Effective Porosity on the Test Dataset of 

well 1-BRSA-871-MG. 

 
ML Algorithm R2 (%) RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 

Random Forest 84.78 0.0036 0.0 0.0029 
Gradient Boosting 62.32 0.0057 0.0 0.0044 
Table 4.2: Regression Metrics of RF and GB Models for estimation of Effective Porosity on the Entire Original 

Dataset of well 1-BRSA-948-MG. 

Overall, both models demonstrate reasonably good performance in predicting the calculated 
effective porosity. The GB model tends to outperform the RF model in terms of accuracy (R2) 
and regression errors (MSE, RMSE, and MAE) on the training well. On the other hand, the RF 
model performs better on the test well. These results suggest that the GB model is more 
effective in capturing the patterns and variations in the training well data, while the RF model 
generalizes better to unseen data and performs well on the test well. We can conclude that 
the prediction is good in both wells since the two wells have similar lithology, the size of the 
training dataset is big, and the range of prediction is similar. 
 

4.2 Case Study 1: Compressional Wave Slowness Log 
Also in this case we present a summary of the R2 and MSE, RMSE, and MAE scores using the 
best hyperparameter configuration, for RF and GB models, in Table 4.3, Table 4.4: 

ML Algorithm R2 (test) (%) RMSE (μs/ft) MSE (μs/ft)2 MAE (μs/ft) 
Random Forest 90.94 1.4186 2.0124 0.7955 

Gradient Boosting 90.78 1.4311 2.0482 0.8528 
Table 4.3: Regression Metrics of RF and GB Models for estimation of Compressional Wave Slowness on the Test 

Dataset of well 1-BRSA-871-MG. 

 
ML Algorithm R2 (%) RMSE (μs/ft) MSE (μs/ft)2 MAE (μs/ft) 

Random Forest -8670.76 6.2050 38.5024 6.1696 
Gradient Boosting -8737.31 6.2285 38.7945 6.1530 

Table 4.4: Regression Metrics of RF and GB Models for estimation of Compressional Wave Slowness on the Entire 
Original Dataset of well 1-BRSA-948-MG. 
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Both models perform well on the training well, but they perform poorly on the test well. The 
negative R2 scores and high regression errors (MSE, RMSE, and MAE) indicate that the models 
have not been able to capture the patterns and relationships in the test well data effectively. 
As explained before, the reason is associated with the small training dataset and the different 
DTCO log data distribution between the two wells.  
 

4.3 Case Study 2: NMR Porosity Logs  
In this section, we present the results of the R2 and MSE, RMSE, and MAE scores using the best 
hyperparameter configuration for both attempts (Table 4.5, Table 4.6, Table 4.7, Table 4.8). 
These scores provide a measure of the predictive performance of the models on the test 
dataset of the training well and on the entire dataset of the test well. Additionally, to enhance 
the visualization of the error scores, we use bar plots to display the results, only for the first 
attempt (Fig. 4.1). Furthermore, we include bar plots that showcase the importance of each 
input feature for predicting the output parameters (Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.5). These plots 
help identify the most influential features in the model’s predictions.  
 

4.3.1 Regression Metrics for the First Attempt   
 
Variable ML Algorithm R2 (test) 

(%) 
RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 

Total 
Porosity 

Random Forest 88.56 0.0131 0.0002 0.0099 
Gradient Boosting 85.27 0.0148 0.0002 0.0112 

Effective 
Porosity 

Random Forest 94.63 0.0123 0.0002 0.0083 
Gradient Boosting 94.54 0.0124 0.0002 0.0089 

Free Fluid  
Random Forest 97.24 0.0087 0.0001 0.0051 

Gradient Boosting 97.11 0.0089 0.0001 0.0055 
Table 4.5: Regression Metrics of RF and GB Models for estimation of (NMR) Total Porosity, Effective Porosity, and 

Free Fluid on the Test Dataset of well 3-BRSA-1215-RJS. 

 
Variable ML Algorithm R2 (%) RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 

Total 
Porosity 

Random Forest -21.25 0.0623 0.0039 0.0458 
Gradient Boosting -40.32 0.0670 0.0045 0.0503 

Effective 
Porosity 

Random Forest -53.32 0.0802 0.0064 0.0653 
Gradient Boosting -57.10 0.0812 0.0066 0.0652 

Free Fluid  
Random Forest -122.94 0.0752 0.0057 0.0632 

Gradient Boosting -118.24 0.0744 0.0055 0.0617 
Table 4.6: Regression Metrics of RF and GB Models for estimation of (NMR) Total Porosity, Effective Porosity, and 

Free Fluid on the Entire Original Dataset of well 1-BRSA-1116-RJS. 
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Fig. 4.1: Regression Metrics for RF and GB Models. Root Mean Squared Error (RMSE), Mean Squared Error (MSE), 
and Mean Absolute Error (MAE). Bar Plot 1: NMR Effective Porosity (m3/m3). Bar Plot 2: NMR Free Fluid (m3/m3). 
Bar Plot 3: NMR Total Porosity (m3/m3). 
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The results indicate that the RF model performs slightly better than the GB model in predicting 
the three output parameters, as it exhibits higher R2 values and lower regression errors on the 
training well. Overall, both models can predict the output parameters reasonably well on the 
training well 3-BRSA-1215-RJS, as evidenced by the close resemblance between the synthetic 
well-logs generated by the models and the real logged data.  
 
However, when it comes to the validation on the test well, both models show inconsistent 
accuracy, with negative R2 scores. This indicates that the models struggle to accurately predict 
the output parameters on the test well. There are several reasons for this lack of accuracy in 
the validation phase.  
 
Firstly, the training well 3-BRSA-1215-RJS predominantly consists of non-reservoir rock (80%), 
making it challenging for the models to generalize to the test well 1-BRSA-1116-RJS, which is 
almost entirely composed of reservoir rock (90%), even if they are made of the same lithology.  
 
Secondly, the training dataset itself is limited, comprising less than 1579 data points. The small 
size of the training dataset restricts the model’s ability to capture the underlying relationships 
between the input features and the output parameters, accurately.  
 
Additionally, the porosity range used for training differs significantly from the target porosity 
range for prediction. This discrepancy is evident in Fig. 3.19, which depicts the porosity 
distributions of the training and test wells. The difference in porosity range further contributes 
to the model’s inability to effectively predict the porosity values on the test well.  
 
As follows the importance of each feature for predicting the output parameters (Fig. 4.2, and 
Fig. 4.3): 
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Fig. 4.2: Feature Importance for RF Model (first attempt). Bar plot 1: feature importance scores for NMR Effective 
Porosity (m3/m3). Bar plot 2: feature importance scores for NMR Free Fluid (m3/m3). Bar plot 3: feature importance 
scores for NMR Total Porosity (m3/m3). 
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Fig. 4.3: Feature Importance for GB Model (first attempt). Bar plot 1: feature importance scores for NMR Effective 
Porosity (m3/m3). Bar plot 2: feature importance scores for NMR Free Fluid (m3/m3). Bar plot 3: feature importance 
scores for NMR Total Porosity (m3/m3). 
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The conclusions drawn from Fig. 4.2, and Fig. 4.3 suggest that the resistivity log plays a more 
significant role in the learning process compared to other logs. This finding aligns with 
expectations, as there is a strong correspondence between resistivity and NMR logs, as shown 
in Fig. 2.5. The resistivity log can effectively capture the fluid change that we have in well 3-
BRSA-1215-RJS, while logs such as NPHI, and DTCO logs may be less affected by these changes, 
leading to reduced importance in the prediction process.  
 
Furthermore, the results indicate that in the GB model, the formation density log is the primary 
parameter for predicting the total porosity. This suggests that the GB model can successfully 
identify the strong relationship between total porosity and formation density logs, which 
seems to not be significantly impacted by changes in fluid properties.  
 

4.3.2 Regression Metrics for the Second Attempt  
 
Variable ML Algorithm R2 (test) 

(%) 
RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 

Total 
Porosity 

Random Forest 54.45 0.0356 0.0013 0.0239 
Gradient Boosting 46.93 0.0384 0.0015 0.0246 

Effective 
Porosity 

Random Forest 69.26 0.0340 0.0012 0.0221 
Gradient Boosting 69.94 0.0337 0.0011 0.0220 

Free Fluid  
Random Forest 77.17 0.0244 0.0006 0.0169 

Gradient Boosting 76.81 0.0246 0.0006 0.0157 
Table 4.7: Regression Metrics of RF and GB Models for estimation of (NMR) Total Porosity, Effective Porosity, and 

Free Fluid on the Test Dataset of well 1-BRSA-1116-RJS. 

 
Variable ML Algorithm R2 (%) RMSE (m3/m3) MSE (m3/m3)2 MAE (m3/m3) 

Total 
Porosity 

Random Forest 32.86 0.0289 0.0008 0.0222 
Gradient Boosting -3.24 0.0358 0.0013 0.0242 

Effective 
Porosity 

Random Forest 36.26 0.0376 0.0014 0.0278 
Gradient Boosting 41.86 0.0359 0.0013 0.0265 

Free Fluid  
Random Forest 37.62 0.0366 0.0013 0.0214 

Gradient Boosting -134.05 0.0709 0.0050 0.0668 
Table 4.8: Regression Metrics of RF and GB Models for estimation of (NMR) Total Porosity, Effective Porosity, and 

Free Fluid on the Entire Original Dataset of well 3-BRSA-1215-RJS. 

 
Table 4.7, and Table 4.8 indicate that both models perform well in predicting the training well 
1-BRSA-1116-RJS. However, the accuracy values are relatively lower compared to the first 
attempt. This can be attributed to the absence of a strong relationship between individual 
input parameters and the output variables in this well. Instead, all the input parameters 
contribute significantly to the prediction, indicating their collective importance in capturing the 
complex behavior of the well. The findings in Fig. 4.4, and Fig. 4.5 further support this 
observation.  
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Moreover, it is notable that almost all the accuracy values for the NMR porosities, on the test 
well, are positive. This suggests that the models are beginning to capture the trends in the test 
well, even though there is still space for improvement. Overall, these results indicate that the 
models are making progress in predicting the NMR porosity values on the test well, based on 
the considerations done previously.  
 
As follows the importance of each feature for predicting the output parameters (Fig. 4.4, Fig. 
4.5): 
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Fig. 4.4: Feature Importance for RF Model (second attempt). Bar plot 1: feature importance scores for NMR 
Effective Porosity (m3/m3). Bar plot 2: feature importance scores for NMR Free Fluid (m3/m3). Bar plot 3: feature 
importance scores for NMR Total Porosity (m3/m3). 
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Fig. 4.5: Feature Importance for GB Model (second attempt). Bar plot 1: feature importance scores for NMR 
Effective Porosity (m3/m3). Bar plot 2: feature importance scores for NMR Free Fluid (m3/m3). Bar plot 3: feature 
importance scores for NMR Total Porosity (m3/m3). 
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The conclusions drawn from Fig. 4.4, and Fig. 4.5 support the expectation that the prediction of 
NMR porosities is influenced by the contribution of different input parameters. However, 
certain logs have a more pronounced impact on the predictions. Specifically, the DTCO, RHOZ, 
GR, NPHI, and AT90 logs are identified as having a predominant role in predicting NMR 
porosities. These logs likely contain valuable information about the formation characteristics 
and the fluid content that directly relate to the NMR porosity. In this case, the AT90 log is not 
the dominant predictor for NMR porosity logs because there is not a clear correlation between 
the trend of the resistivity logs and the NMR porosity logs, as shown in Fig. 2.6. 
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5 Conclusion  
 
In this research, the main objective was to develop a Python code, from scratch, to implement 
two supervised learning algorithms, Random Forest (RF) and Gradient Boosting (GB), for the 
prediction of various types of well-logs using conventional well-logs as input data. We 
conducted two distinct case studies: one for the São Francisco onshore Brazilian basin, aiming 
to predict the calculated effective porosity (PHIE_HILT) and the measured compressional wave 
slowness (DTCO) logs; and another for the Santos offshore Brazilian basin, focusing on the 
prediction of nuclear magnetic resonance (NMR) porosity logs, which is of primary interest. 
Our implemented code successfully generated PHIE_HILT, DTCO, and NMR synthetic well-logs 
for the training wells. However, we obtained poor results for the prediction of DTCO, and NMR 
logs on the test wells. This issue can be attributed to the size and range of the training dataset 
initially used to train the Machine Learning (ML) models. For this reason, these results provided 
valuable insights into the characteristics that an ideal training dataset should possess, for this 
specific application, with particular attention given to the results obtained from the NMR logs 
prediction. 
 
Based on our findings, we concluded that a carefully selected training dataset should contain 
a sufficient number of data points, preferably a minimum of 10,000. The training well should 
include a mix of reservoir and non-reservoir formations, and ideally, it should encompass all 
the lithologies that need to be predicted, ensuring a robust representation of the data, and 
improving the model’s generalization ability. By incorporating a wide range of geological 
variations in the training data, the model becomes more capable of capturing the complexities 
and patterns present in different formations. Considering the insights gained from this 
research, the two models can be trained again on an improved training dataset of a larger size, 
which would lead to more accurate prediction results. This recommendation is further 
supported by a research conducted by (Tamoto, Gioria and Carneiro, 2023), in the Santos 
basin, where their supervised ML models, trained on a large dataset, achieved impressive 
results on the test wells. 
 
Furthermore, the synthetic NMR porosity well-log curves generated can be used to calculate 
the irreducible water saturation of the formation. This, in turn, can be utilized to estimate the 
permeability of the formation using an equation that is directly proportional to the total 
porosity and inversely proportional to the irreducible water saturation, of the formation. These 
results can be further validated using core analysis data.  
 
In conclusion, this research contributes to the understanding of using supervised ML 
algorithms for well-logs prediction and highlights the importance of selecting an appropriate 
training dataset to improve the accuracy of the model’s predictions.  
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7 Appendixes    
 

7.1 Building Machine Learning Models – Complete Workflow 
We have included specific lines of Python code that were written for predicting NMR porosity 
logs. The complete Python code can be accessed through the link provided in the Introduction 
Chapter.  
 
IMPORTING MODELS AND REQUIRED DEPENDENCIES 
 

%pip install --upgrade scikit-learn==1.2.2                                                          

%pip install qbstyles                                                                               

 

# Importing the models  

from sklearn.ensemble import RandomForestRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.multioutput import MultiOutputRegressor                                                

 

# Importing the dependencies  

import numpy as np 

import pandas as pd  

import matplotlib.pyplot as plt 

import matplotlib.patches as mpatches                                                               

import pickle 

 

from qbstyles import mpl_style 

mpl_style(dark=False)                                                                               

 

from sklearn.model_selection import train_test_split                                                

from sklearn.model_selection import cross_val_score, KFold                                          

from sklearn.metrics import r2_score, mean_squared_error, mean_squared_error, mean_absolute_error   

 

from matplotlib_inline.backend_inline import set_matplotlib_formats                                 

set_matplotlib_formats('svg')  

 

LOADING THE WELL LOG DATA (WELL 3-BRSA-1215-RJS) 
 

# Load the csv well log data to Pandas DataFrame  

df = pd.read_csv("df_1_ML.csv") 

df 
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SPECIFYING PREDICTORS & TARGETS 
 

predictors = ["GR","HCAL","PEFZ","RHOZ","DTCO","NPHI","AT90"]   

outputs = ["CMRP_3MS","CMFF","TCMR"]  # They are predicted at the same time  

 

X = df[predictors] 

y = df[outputs] 

 
TRAINING & TEST WELL-LOG DATASETS 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Shape of the training and test datasets  

print(X.shape, y.shape, X_train.shape, X_test.shape, y_train.shape, y_test.shape) 

 

TRAINING & TUNING OF THE RANDOM FOREST MODEL 
 

# Import the dependencies  

from sklearn.model_selection import RandomizedSearchCV 

 

# RANDOM FOREST Hyperparameters 

 

# Number of trees to be used 

rf_n_estimators = [100, 150, 200, 250, 300, 350, 400] 

 

# Maximum number of levels in tree 

rf_max_depth = [5, 10, 15, 20, 25] 

 

# Criterion to split on 

rf_criterion = ['squared_error']                          

 

# Create the grid  

rf_grid = {'n_estimators': rf_n_estimators, 

           'max_depth': rf_max_depth, 

           'criterion': rf_criterion} 

 

# Model to be tuned  

rf_model = RandomForestRegressor(random_state=42)        # Shuffle=True by default 

 

# Create the random search Random Forest  
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rf_random = RandomizedSearchCV(rf_model, rf_grid, n_iter=20, cv=10,random_state=42) 

 

# Fit the random search model  

rf_random.fit(X_train, y_train) 

 

TRAINING & TUNING OF THE GRADIENT BOOSTING MODEL 
 

# GRADIENT BOOSTING Hyperparameters  

 

# Number of trees to be used  

gb_n_estimators = [100, 150, 200, 250, 300, 350, 400] 

 

# Maximum number of levels in tree 

gb_max_depth = [5, 10, 15, 20, 25] 

 

# Learning rate  

gb_rate = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] 
 

# Criterion to split on 

gb_criterion = ['squared_error']                      # It is optional  

# Create the grid  

gb_grid = {'estimator__n_estimators': gb_n_estimators, 

           'estimator__max_depth': gb_max_depth, 

           'estimator__learning_rate': gb_rate, 

           'estimator__criterion': gb_criterion} 

 

# Model to be tuned  

gb_model = GradientBoostingRegressor(random_state=42) # Shuffle=True by default  

 

# Create the random search Gradient Boosting 

gb_random = RandomizedSearchCV(MultiOutputRegressor(gb_model), gb_grid, n_iter=20, cv=10, 

random_state=42) 

 

# Fit the random search model  

gb_random.fit(X_train, y_train) 

 

PREDICTION WITH THE TEST DATASET 

 
# Create the tuned Random Forest  
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rf_final_model=RandomForestRegressor(n_estimators=400, max_depth=20, random_state=42, criterion = 

'squared_error') 

 

# Create the tuned Gradient Boosting  

gb_final_model=MultiOutputRegressor(GradientBoostingRegressor(n_estimators=250, learning_rate=0.3, 

max_depth=5, random_state=42)) 

 

# Train the tuned Random Forest  

rf_final_model.fit(X_train, y_train) 

 

# Train the tuned Gradient Boosting  

gb_final_model.fit(X_train, y_train) 

 

# Prediction on Test data (RF) 

y_pred_rf = rf_final_model.predict(X_test) 

 

# Prediction on Test data (GB) 

y_pred_gb = gb_final_model.predict(X_test) 

 

# Prediction on Test data (GB) 

y_pred_gb = gb_final_model.predict(X_test) 

 

# Extract output 1, output 2 and output 3 

y_test_out1 = y_test.drop(columns=["CMFF","TCMR"])      # CMRP_3MS 

y_test_out2 = y_test.drop(columns=["CMRP_3MS","TCMR"])  # CMFF 

y_test_out3 = y_test.drop(columns=["CMRP_3MS","CMFF"])  # TCMR 

 

# Otput 1, Output 2 and Output 3 should be converted into arrays  

y_test_out1_ = np.array(y_test_out1) 

y_test_out2_ = np.array(y_test_out2) 

y_test_out3_ = np.array(y_test_out3) 

# Extract the predicted values for output 1, output 2 and output 3 (RF) 

y_pred_out1_rf = y_pred_rf[:, 0] 

y_pred_out2_rf = y_pred_rf[:, 1] 

y_pred_out3_rf = y_pred_rf[:, 2] 

 

# Extract the predicted values for output 1, output 2 and output 3 

y_pred_out1_gb = y_pred_gb[:, 0] 

y_pred_out2_gb = y_pred_gb[:, 1] 

y_pred_out3_gb = y_pred_gb[:, 2] 
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EVALUATING THE PERFORMANCE OF THE MODELS WITH REGRESSION METRICS 
 

# RANDOM FOREST MODEL 

 

# List of variables  

test_data = [y_test_out1_, y_test_out2_, y_test_out3_] 

predicted_data = [y_pred_out1_rf, y_pred_out2_rf, y_pred_out3_rf] 

 

# Create "for loop" that calculates the Regression Metrics for each variable, separately 

def regression_metrics_rf(): 

    for i in range(len(test_data)): 

        rmse = mean_squared_error(test_data[i], predicted_data[i], squared = False)  

        rmse = round(rmse,4) 

     

        mse = mean_squared_error(test_data[i], predicted_data[i], squared = True) 

        mse = round(mse,4) 

     

        mae = mean_absolute_error(test_data[i], predicted_data[i]) 

        mae = round(mae,4) 

         

        print("Regression metrics for Variable", i+1) 

        print("Root Mean Squared Error:", rmse) 

        print("Mean Squared Error:", mse) 

        print("Mean Absolute Error:", mae) 

        print("="*90) 

 

# Call function  

regression_metrics_rf() 

 

 

# GRADIENT BOOSTING MODEL  

 

# List of variables  

test_data = [y_test_out1_, y_test_out2_, y_test_out3_] 

predicted_data = [y_pred_out1_gb, y_pred_out2_gb, y_pred_out3_gb] 

# Create "for loop" that calculates the Regression Metrics for each variable, separately 

def regression_metrics_gb(): 

    for i in range(len(test_data)): 
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        rmse = mean_squared_error(test_data[i], predicted_data[i], squared = False)  

        rmse = round(rmse,4) 

     

        mse = mean_squared_error(test_data[i], predicted_data[i], squared = True) 

        mse = round(mse,4) 

     

        mae = mean_absolute_error(test_data[i], predicted_data[i]) 

        mae = round(mae,4) 

         

        print("Regression metrics for Variable", i+1) 

        print("Root Mean Squared Error:", rmse) 

        print("Mean Squared Error:", mse) 

        print("Mean Absolute Error:", mae) 

        print("="*90) 

 

# Call function  

regression_metrics_gb() 

 

FEATURE IMPORTANCE 

 

# RANDOM FOREST MODEL 

 

features_rf_1 = np.round(rf_final_model.estimators_[0].feature_importances_,4) 

features_rf_2 = np.round(rf_final_model.estimators_[1].feature_importances_,4) 

features_rf_3 = np.round(rf_final_model.estimators_[2].feature_importances_,4) 

 

# Print Features  

features_rf_1, features_rf_2, features_rf_3 

 

 

# GRADIENT BOOSTING MODEL  

 

features_gb_1 = np.round(gb_final_model.estimators_[0].feature_importances_,4) 

features_gb_2 = np.round(gb_final_model.estimators_[1].feature_importances_,4) 

features_gb_3 = np.round(gb_final_model.estimators_[2].feature_importances_,4) 

 

# Print Features  

features_gb_1, features_gb_2, features_gb_3 
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SAVE THE RANDOM FOREST AND GRADIENT BOOSTING MODELS AS PICKLE FILES 

 

import pickle  # Library for save and load scikit-learn models 

 

 

# RANDOM FOREST MODEL 

 

# Define file name. ".pickle" as file extension. A pickle file is a binary file.  

filename = "random_forest.pickle" 

 

# Save Random Forest Model by means of "pickle.dump" function to store the object data to the file.  

# This function takes 2 arguments: 

# Object that you want to store. 

# File object you get by opening the desired file in write-binary (wb) mode. 

pickle.dump(rf_final_model, open(filename, "wb")) 

 

# Load Random Forest Model by means of the "pickle.load" function. 

# The primary argument of the function is the file object you get by opening the desired file in read-binary (rb) 

mode. 

random_forest_model_loaded = pickle.load(open(filename, "rb"))  

 

# To print the trained and tuned random forest model  

print(random_forest_model_loaded) 

 

 

# GRADIENT BOOSTING MODEL  

 

# Define file name. ".pickle" as file extension. 

filename = "gradient_boosting.pickle" 

 

# Save Gradient Boosting Model by means of "pickle.dump" function to store the object data to the file.  

pickle.dump(gb_final_model, open(filename, "wb")) 

 

# Load Gradient Boosting Model by means of the "pickle.load" function. 

gradient_boosting_model_loaded = pickle.load(open(filename, "rb"))  

 

# Print the trained and tuned random forest model  

print(gradient_boosting_model_loaded) 
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LOAD SAVED MODELS & PERFORM NEW PREDICTION ON WELL 1-BRSA-1116-RJS 

 

# Load the csv well log data to Pandas DataFrame  

df1 = pd.read_csv("df_0_ML.csv") 

df1 

 

# RANDOM FOREST MODEL 

 

# Load the trained and tuned Random Forest Model  

RandomForestModel = pd.read_pickle('random_forest.pickle') 

 

# Print the Model  

RandomForestModel 

 

 

# Compute new predictions by using the "unseen data" of WELL 1-BRSA-1116-RJS 

predictors = ["GR","HCAL","PEFZ","RHOZ","DTCO","NPHI","AT90"]   

outputs = ["CMRP_3MS","CMFF","TCMR"]  # They are predicted at the same time  

 

X = df1[predictors] 

y = df1[outputs] 

 

# New prediction on the entire dataset 

y_predicted_rf1 = RandomForestModel.predict(X) 

 

# Extract the predicted values for output 1, output 2 and output 3 

y_predicted_out1_rf1 = y_predicted_rf1[:, 0] 

y_predicted_out2_rf1 = y_predicted_rf1[:, 1] 

y_predicted_out3_rf1 = y_predicted_rf1[:, 2] 

 

# Extract output 1, output 2 and output 3 

y_out1_1 = y.drop(columns=["CMFF","TCMR"])      # CMRP_3MS 

y_out2_1 = y.drop(columns=["CMRP_3MS","TCMR"])  # CMFF 

y_out3_1 = y.drop(columns=["CMRP_3MS","CMFF"])  # TCMR 

 

# Otput 1, Output 2 and Output 3 should be converted into arrays  

y_out1_1_ = np.array(y_out1_1) 

y_out2_1_ = np.array(y_out2_1) 

y_out3_1_ = np.array(y_out3_1) 
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# GRADIENT BOOSTING MODEL  

 

# Load the trained and tuned Gradient Boosting Model 

GradientBoostingModel = pd.read_pickle('gradient_boosting.pickle') 

 

# Print the Model  

GradientBoostingModel 

 

# Compute new predictions by using the "unseen data" of WELL 1-BRSA-1116-RJS 

predictors = ["GR","HCAL","PEFZ","RHOZ","DTCO","NPHI","AT90"]   

outputs = ["CMRP_3MS","CMFF","TCMR"]  # They are predicted at the same time  

 

X = df1[predictors] 

y = df1[outputs] 

 

# New prediction on the entire dataset 

y_predicted_gb1 = GradientBoostingModel.predict(X) 

 

# Extract the predicted values for output 1, output 2 and output 3 

y_predicted_out1_gb1 = y_predicted_gb1[:, 0] 

y_predicted_out2_gb1 = y_predicted_gb1[:, 1] 

y_predicted_out3_gb1 = y_predicted_gb1[:, 2] 

 

EVALUATING THE PERFORMANCE OF THE MODELS WITH REGRESSION METRICS 
 

# RANDOM FOREST MODEL 

 

# List of variables  

data = [y_out1_1_, y_out2_1_, y_out3_1_] 

predicted_data = [y_predicted_out1_rf1, y_predicted_out2_rf1, y_predicted_out3_rf1] 

 

# Create "for loop" that calculates the Regression Metrics for each variable, separately 

def regression_metrics_rf1(): 

    for i in range(len(data)): 

         

        r2 = r2_score(data[i], predicted_data[i]) 

        r2 = round(r2,4) 
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        r2 = r2*100 

         

        rmse = mean_squared_error(data[i], predicted_data[i], squared = False)  

        rmse = round(rmse,4) 

     

        mse = mean_squared_error(data[i], predicted_data[i], squared = True) 

        mse = round(mse,4) 

     

        mae = mean_absolute_error(data[i], predicted_data[i]) 

        mae = round(mae,4) 

         

        print("Regression metrics for Variable", i+1) 

        print("Coefficient of Determination:", r2) 

        print("Root Mean Squared Error:", rmse) 

        print("Mean Squared Error:", mse) 

        print("Mean Absolute Error:", mae) 

        print("="*90) 

 

# Call the function 

regression_metrics_rf1() 

 

 

# GRADIENT BOOSTING MODEL  

 

# List of variables  

data = [y_out1_1_, y_out2_1_, y_out3_1_] 

predicted_data = [y_predicted_out1_gb1, y_predicted_out2_gb1, y_predicted_out3_gb1] 

 

# Create "for loop" that calculates the Regression Metrics for each variable, separately 

def regression_metrics_gb1(): 

    for i in range(len(data)): 

         

        r2 = r2_score(data[i], predicted_data[i]) 

        r2 = round(r2,4) 

        r2 = r2*100 

         

        rmse = mean_squared_error(data[i], predicted_data[i], squared = False)  

        rmse = round(rmse,4) 
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        mse = mean_squared_error(data[i], predicted_data[i], squared = True) 

        mse = round(mse,4) 

     

        mae = mean_absolute_error(data[i], predicted_data[i]) 

        mae = round(mae,4) 

         

        print("Regression metrics for Variable", i+1) 

        print("Coefficient of Determination:", r2) 

        print("Root Mean Squared Error:", rmse) 

        print("Mean Squared Error:", mse) 

        print("Mean Absolute Error:", mae) 

        print("="*90) 

 

# Call the function 

regression_metrics_gb1() 
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