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Chapter 1

Introduction

Traffic engineering is an important mechanism for Internet network providers that
traditionally allows optimal allocation of available network resources to achieve
the highest performance in traffic delivery. Routing optimization plays a key role
in traffic engineering, finding efficient routes so as to achieve the desired network
performance.
Increasing concerns on security of data in transit in the Internet, due to an extensive
use of networked communications from end users as well critical service providers,
demand a different, more transparent and secure way of using network resources.
Traffic engineering is then required to not only search for the highest performance
given the available resources, but also having to satisfy security requirements for
data in transit by different users. Techniques such as Constraint-based Shortest
Path First(CSPF) aim at identifying a path that satisfies a set of quality of
service (QoS) constraints. These techniques are heavily used within the scope of a
single domain, where all resources are well known and under the control of a single
network operator.
For inter-domain traffic engineering, often Border Gateway Protocol (BGP)
communities are used. In this case, constraints on QoS are difficult to be satisfied
as they require an extended exchange of control messages prior to data-plane
communications. Path computation in a large, multi-domain networks like the
Internet is complex and may require special computational components and co-
operation between the elements in different domains. The Path Computation
Element(PCE)-based model addresses this problem space in [1].
PCEs can compute paths based on a set of defined constraints and distribute
network functionality (e.g. routing) within a network domain. PCEs match the
Internet model and coexist with each Label Switching Router (LSR) in the
network, but are also able to augment functionalities in the network by allowing
traffic engineering information to be exchanged between PCEs in different network
domains.
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There are multiple experiments showing the potential of using the Path Computa-
tion Element Communication Protocol (PCEP) as a standard communication
protocol between PCEs, using well-defined requests and replies, like [2] and [3].
We observed, however, a lack of security features that makes the communication
between the PCEs critical. We found potential threats and attack vectors that
can be exploited to harm the systems involving PCEP, especially when there are
multiple domains involved and the endpoints of the communication are in two
different autonomous systems (ASs).
This is where the need for a more secure version of PCEP comes in, to protect the
relying parties, for instance against leakage of sensitive data and information or to
maintain confidentiality and integrity of the computed paths.
In the following work a new framework will be presented, UPIN (User-driven
Path verification and control in Inter-domain Networks) [4], which aims to fulfill
these new trust requirements for the networks and it is built using the PCE and
PCEP technologies. The framework advances the state of the art by defining
components needed to incorporate transparency, accountability, and controllability
into the network. One way to approach these properties, as stated in [5] is through
Responsible Internet, a security paradigm that aims to provide users with more
control over the network, both in terms of metadata defining the network’s structure
and operation as well as how the network transports their data. However nowadays
the Internet infrastructure has problems and limitations regarding transparency
and control over routing of data. In this scenario, the UPIN framework comes
in handy as a framework that supports definition of network behaviour from its
users. The user becomes the real driver of how the communication takes place and
gains a new awareness of the network that he always lacked until now [6]. User
requirements can differ from simple performance indicators (KPIs) to precise and
specific functions such as firewalling services or IDS. UPIN consists of a set of func-
tions and components that, when coupled together, enable inter-domain networks
to fulfill the requirements of transparency, accountability and controllability. The
structure of the framework is composed mainly by four components:

• Domain Explorer;

• Path Controller;

• Path Tracer;

• Path Verifier;

• Frontend.

To explain briefly the operative flow, once a request for data transfer is issued
by the user, the Path controller and the Path Tracer components will guarantee

2
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the transfer occurs according to the request; the Path Verifier component will
check if the intent of the user is respected. From the Frontend the user receives
a confirmation from the Path Verifier about his intention, more precisely if his
intention is respected or not.

1.1 Thesis Scopes

Our research will be focused on one of the main components of UPIN, the Path
Controller, which is built upon PCEs devices that rely on the PCEP protocol. It is
in charge to set proper forwarding rules based on the preferences chosen by the
users and to send them to every routers belonging to the domain.
We will explore the inner protocol insecurities, a way to make a transition to a
more secure one defining the new PCEPS protocol and how this one will change the
network behaviour in single and multi-domain environment both from a security
point of view and a technical one. We will present experimental setups used to test
and create the new protocol following also the guidelines of the [7], which devices
have been used and the evaluations that we made. In the end we will present
the improvements that PCEPS brings and the possible attacks that can still be
exploited.
We will answer the question of how we can perform multi-domain segment routing
in the Path Controller using a brand new version of the old PCEP protocol and
if it is worth building the Path Controller using PCE devices, if this protocol is
secure enough for all the system or, on the contrary, it introduces new critical
weaknesses and vulnerabilities from a UPIN user point of view that wants to trust
this framework.
The rest of the thesis is structured as follows:
First, the concepts of Responsible Internet and the UPIN project, with all its
part and functionalities, are explained in chapter 2 to grasp the range of this
research; in chapter 3 will be made a deep PCEP protocol analysis, to show how it
works, how it is structured, its strong and weak points, with a more focus on the
vulnerabilities and possible mitigation; in chapter 4 and 5 the design considerations
for the implemented approaches are clarified together with the description of our
experimental setups; the implementation of the approaches is further detailed in
chapter 6; last, the analysis, experiments and results are provided in chapters 6
and 7 before discussing and making conclusions in chapter 8.

3
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1.2 CompSys 2022
This work was also presented and discussed at the 5th Dutch Computer Science
Conference (CompSys 2022), june 8-10 2022, with the extended abstract Implica-
tions of using PCEPS in PCE-based multi-domain networks [8], a work of Leonardo
Boldrini, Matteo Bachiddu and Paola Grosso from University of Amsterdam, MSN
department and Politecnico di Torino, Netgroup research group.

4



Chapter 2

Responsible Internet

Before diving into technical details about the protocols involved and the security
issues, it is crucial to talk about Responsible Internet and, after that, present and
explain the structure of the UPIN framework, the devices chosen in the architecture,
the setups used and the evaluations that we made to build the architecture, in
particular regarding the Path Controller, what kind of PCE was used and how the
PCE Communication Protocol (PCEP) works.

2.1 Background
The evolution of the Internet in the current days has brought many regions in
the world such as Europe, in particular for the policy makers, to be more and
more concerned about the concepts of sovereignty and trustworthiness regarding
their digital economy, since it often relies on external systems that are located
elsewhere. An interesting point is that for instance, the top biggest digital and
Internet companies are all from United States or China and none of them are from
Europe; moreover the number of European tech companies that are getting acquired
from other regions companies is increasing. This development can potentially lead
to European service providers and, as a consequence the users, to lose control over
data and how they are treated.
To solve this issue, which can be generalized to whatever region, the solutions
proposed are mostly from policy makers and consist in new policy proposals leaving
almost completely untouched the Internet architecture and infrastructure, without
giving them too much attention.
For this reason,following [5], we discuss the notion of Responsible Internet, which
proposes a new level of trust and sovereignty for critical service providers and all
types of users, building the Internet infrastructure more transparent, accountable
and controllable at network level.

5
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Following this approach allows the users to be free from the concept of black box
Internet, that is to say the set of all the Internet components that builds the
structure of the network and allows the proper functioning of the Internet, but
that is almost completely obscure to the users. The notion of Responsible internet
brings two new distributed and decentralized systems: the Network Inspection
Plane (NIP) and the Network configuration Plane (NCP). They work together
with a Policy Framework that apply a set of policies that manage and shape the
network.

2.1.1 Network Inspection Plane
The Network Inspection Plane (NIP) uses descriptions of the Internet infrastructure,
based on requested measurements, to depict all the chain of operators that manage,
process and handle users’ data, both in terms of flows and properties. It is really
important because it increases transparency and accountability properties. The
descriptions bring information about useful properties of network operators, for
instance their infrastructure, jurisdiction and which kind of relations they have
with other network operators. These descriptions are important because they are
information abstracted from the underlying technical infrastructure of network
operators, so they can be used also by users that would otherwise not have this
kind of knowledge. The NIP also allows to verify the data source used to create
the network descriptions, increasing users trust.

2.1.2 Network Control Plane
The NCP permits users to choose how they want the Internet infrastructure
to manage their data relying on the NIP information obtained before; in doing
so, the controllability is improved significantly. It is a set of control and data
plane services that map programmable network functions to users’ expectations
of the network. The NCP also helps to improve the transparency using open
programmable telemetry functions.

2.1.3 Policy Framework
The policy Framework defines a set of policies that network operators have to
follow to achieve a proper level of transparency, accountability, controllability and
usability. For instance, for a high level responsibility, the policy framework could
oblige a network operator to share details regarding its legal jurisdiction, details on
its relation with other operators, source code of data and control plane and audits
of its software.

6
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Figure 2.1: Responsible Internet applied in a possible use case scenario with NIP,
NCP and a set of policies.

2.1.4 Benefits of the Responsible Internet

Critical infrastructures providers, policy makers and network operators are the
ones that benefit the most from Responsible Internet: the first ones gain more
control over their dependencies on the network, which is crucial to achieve more
security and protection of their services and prevent and mitigate incidents, which
otherwise could have a huge impact on the end users; policy makers could use a
new type of policy making, using a more data-driven and proactive approach, based
on information about the network description but also faster and more efficient
policy mediation and policy enforcement; network operators instead can retrieve
and use metadata about network descriptions more easily to handle incidents and
attacks in a more efficient way.
Furthermore, we expect a wide range of benefits that also the people using the
Internet can have from Responsible Internet. For instance, users of VoIP services
can check where their data flows end up and how they are handled just easily
requesting a network description and, if they want, they can also change the region
of the service endpoint.
The UPIN framework, which is the framework used for the work of this thesis, is a
possible solution that implements all the components of Responsible Internet and
can achieve the transparency, accountability and controllability properties.

7
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2.2 UPIN structure
As we said, the UPIN framework consists in a set of components that, when working
together, enable inter-domain networks to achieve the requested requirements of
transparency, accountability and controllability. In the table below there is the list
of the components and the requirements that each of them allows to achieve:

Table 2.1: Components and fulfilled requirements

Component Transparency Accountability Controllability
Domain Explorer ✓ ✓ ✓
Path Controller ✓

Path Tracer ✓ ✓
Path Verifier ✓ ✓

Frontend ✓ ✓ ✓

2.2.1 Domain explorer
The domain explorer is the component responsible to gather, store and keep updated
information and metadata about all that is related to security, administrative and
environmental properties of the domain’s equipment. For instance, typical domain
metadata are: routers’ source code, organization and composition of the routers in
the domain, state of the routers and geographical properties like the location.
This component has a deep and detailed knowledge of its domain, that is information
about every node inside the domain. Other domains can request information like
metadata about a domain via the domain’s frontend which interfaces with the
Domain Explorer, for instance to support inter-domain data transfer. Moreover
The Domain Explorer also applies policies regarding what type of metadata about
the domain wants to share with other domains.

2.2.2 Path Controller
The Path Controller is in charge to set proper forwarding rules based on the
preferences chosen by the users and to send them to every routers belonging to the
domain.
This component has a local scope, so it has control only over the nodes of its
domain and not on the others belonging to another domain.
In figure 2.1 we have two UPIN enabled domains; if the user specifies a particular
constraint, the Path Controller must steer the data accordingly.

8
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Figure 2.2: UPIN Architecture in 2 UPIN enabled domains.

2.2.3 Path Tracer
This component gathers all the real-time data and information about the traffic
in the data plane and stores all the useful information in order to do further
verifications.
Tracers are technology indipendent,so it is not specified which kind of implementa-
tion should be used per domain, but only the tools that analyze it.

2.2.4 Path Verifier
The Path Verifier is in charge to check if the user’s intent is respected or not. In
order to do that it uses the original user request and the output data processed
by the Path Tracer. The goal of this component is to determine and understand
until which level of precision the actual path properties match the user’s request.
Therefore the verification result is not always certain and well defined, given that
traces from the Path Verifier could be incomplete or non-UPIN enabled domains
are considered along the transfer of data.
The user can choose different verification grains options, for instance the hop-by-hop
verification or domain-by-domain. All it’s components, which are running locally
in their own domain, gather together all the results of the local verification of other
domains.

2.2.5 Frontend
This component allows the communication between user and a UPIN-enabled
domain. It is an interface that the user uses to configure the settings. First it

9
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is necessary to set up the destinations and the desired properties to use, then
the system computes the available routes that fulfill the requirements using the
metadata obtained from the Domain Explorer. With this kind of approach, the
user can clearly see if the trust requirements could be met for the destination.
Moreover in case the current configuration chosen can’t be achieved anymore, the
user can configure behaviours to react to this kind of situations.

2.3 VNF chains: Segment Routing & PCEP
It is crucial to discuss also about another concept related to the implementation of
the UPIN framework: the Virtual Network Function (VNF) chains using Segment
Routing and Path Computation Element Communication Protocol (PCEP) proto-
col.
Following [2], Network Functions Virtualization (NFV) is an architectural approach
that allows to virtualize and deploy dynamically a wide range of network func-
tions, usually hardware-bound, into network nodes to implement communication
or architectural services, such as firewall and intrusion detection system. When
these virtualized services are all packed and connected together in succession as a
multiple of functions, we have the Virtual Network Functions (VNF) chain. The
source Routing paradigm, implemented as segment routing (SR), helps the dynamic
use of VNFs and VNF chains. With segment routing, each network path is specified
at ingress of the network and attached to each packet, so it is possible to direct
them to through the proper VNFs.
In the UPIN framework, it is used the SR-MPLS data plane with segment routing
for IPv4 together with the PCEP protocol to build and control the paths.

2.3.1 Source Routing & Segment Routing
Source Routing is a routing paradigm that allows to specifies the routes that
Internet packets take through the network attaching the complete path inside the
header IP . Compared to the standard IP routing, where is the destination that
decides the route to follow, Source routing is useful to traffic engineering because
allows the users to choose the route to take. This paradigm leads to less overhead
for the routers because, as we said before, only the source router has to compute
and attach the complete path inside the packets, so all the transit routers only need
this information to decide which route to take. On the contrary, the source router
has more complexity and the packets have a larger size. On the other hand, from a
security point of view, we will explain in later chapters that there is a possibility
for Spoofing attack together with a Man in the Middle attack.
This paradigm is implemented in UPIN framework in its variant, the segment
routing [9], where the paths are represented as a sequence of segments, each of
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them identified by a unique segment identifier (SID). The segments can define a
node in the network, a prefix, an adjacency (a link between two nodes) or the
anycast traffic.

MPLS Segment Routing

MPLS is a transport protocol that aims to be as simple as possible in order to
work theoretically with every other underlying protocol. Each packet has a label,
which identifies a path to take and that is used by the transit routers to make the
forwarding decisions. Every hop that receives a packet can decide to add a new
label, remove the top one or change the current label.
MPLS reduces significantly the complexity and overhead on the routers side
compared to the standard IP forwarding.
As stated in [10] and [11], using MPLS inside a network allows to implement
segment routing using its variant SR-MPLS, where segments are specified through
MPLS labels. So thanks to MPLS it is possible to distribute the segments as labels
that have the SID information, using an intra-domain protocol that is to say IGP.
Furthermore, this approach gives a global meaning to the labels in the network, as
opposed to the normal MPLS that use the labels with a local purpose.
Together with the concept of the Network Function Virtualization, it’s easier to
define a VNF chain as a sequence of segments, in turn, represented as SR-MPLS
labels.

2.3.2 SDN controller & PCEP
For the UPIN framework, the Software Defined Network controller is used, which
is useful to support the deployment of the VNF service chains. In our work, the
controller needs two functionalities: first, to have a clear picture of the network
structure and second to control it. The Border Gateway Protocol (BGP) in its
Link State version (BGP-LS) comes in handy to achieve the first functionality,
since permits to share, with an external component, traffic information and link
state information with a description of links, nodes and prefix in order to have a
topological view for the SDN controller.
In order to have control over the network elements, Path Computation Element
Communication Protocol is required, which has the goal to communicate and share
network paths.

Path Computation Element Communication Protocol

PCEP is a protocol designed and based on Generalized Multi-Protocol Label
Switching (GMPLS) paradigm, in order to ease the communication between two
new entities explained later in the paragraph, the PCC and PCE. The duty of
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PCEP is to create a communication between the entities and using information
inside the packets, with SR-LSPs information, help them to compute paths and
spread these to the routers in the network.
PCEP defines a specific set of requests and messages:

Table 2.2: PCEP messages

Message Type Summary
Open First message sent to open a PCEP session
PCReq This type of message is sent if the PCC requests a path
PCRep Message sent from the PCE to the PCC as a response
PCUpd The PCE updates a specific path on the PCC
PCNtf PCE send a notification to the PCC
PCErr Message that notifies an error
PCRpt PCC sends a message to the PCE regarding the path state
Close Message sent to close the PCEP session

As we said, PCEP introduces two new network entities: the Path Computation
Element (PCE), which computes the paths requested and pushes them directly to
the Path Computational Client (PCC), the one that can request a path information
to be computed.

Path Computation Element

The Path Computation Element (PCE) is an entity inside the network designed
to compute paths based on a fixed set of constraints, that is to say the paradigm
Constraint-based Shortest Path First (CSPF). It can be stateful or stateless; if
it is stateful, the PCE keeps in memory all the paths computed before. A path
can be erased from the memory if it is no longer needed or it is destroyed. If the
PCE is stateless, it will not keep track of the already computed paths, but uses
the Traffic Engineering Database (TED)to compute a new path. The possible
workflow between the PCE and PCC is as follow: each PCEP session consists of a
Transmission Control Protocol (TCP) connection between two parties. The initial
setup of a LSP starts with a PCC sending a path computation request. Then the
PCE computes a path and creates a response message that could contain: an error
message if was not possible to create the requested path or the information about
the path computed. If the PCE wants to update a path, it could send an update
message bringing the new label stack for that LSP.
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Chapter 3

PCEP Analysis

In this chapter we perform a complete analysis of the protocol, studying his
functioning and discussing its packet flows.
Starting from the standardization of PCEP made in [12], we analyse its workflow,
some use cases and its insecurities.

3.1 Overview
PCEP is a protocol created with the purpose of allowing the communications
between a PCC and a PCE or a PCE and another PCE. Generally, a PCC that ask
for a specific LSP sends a path computation request to a PCE using PCEP and
in response, the PCE may reply with computed paths that satisfy the constraints
given from the PCC.
PCEP works over the Transmission Control Protocol (TCP), so there is no need
for PCEP to add new features regarding a reliable connection or control flow.
As in chapter 2, the table below shows the set of PCEP message with a more in
depth description of some of them:

• Open/Keepalive: the Open message is used to initiate a PCEP protocol
session with another party; the Keepalive message has the purpose to mantain
the communication up.

• PCRep: this message is sent by a PCE to a PCC as a response of a path
computation request and usually contains the LSPs computed, if there were
any, or a negative response which specifies the reason of the impossibility to
find any path.

• PCNtf : the notification can be sent by a PCC to a PCE or by a PCE to a
PCC if some event occured.
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Table 3.1: PCEP messages

Message Type Summary
Open First message sent to open a PCEP session
PCReq This type of message is sent if the PCC requests a path
PCRep Message sent from the PCE to the PCC as a response
PCUpd The PCE updates a specific path on the PCC
PCNtf A notification sent to notify of a specific element
PCErr Message that notifies an error
PCRpt PCC sends a message to the PCE regarding the path state
Close Message sent to close the PCEP session

A PCC or a PCE can have multiple PCEP sessions with more than one party.
There is not a standard mechanism to discover all available PCEs, therefore the
set of PCEs can be dynamically discovered or statically configured.

3.2 PCEP packets
PCEP packets have a fixed structure that is composed by a Common Header and
a variable length body that depends on the type of message. Some of them have
inside the body a mandatory object, which will trigger an error if it is missing,
others have an empty body.

3.2.1 Common header
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ver flags Message-Type Message-Length

Figure 3.1: Common header

The Common header is composed of four different fields:

• Version: this 3-bits field shows the version of the PCEP protocol used;

• Flags: 5-bits field that is reserved for future use. Is set to zero on transmission
and ignored when the packet is received;

• Message-Type: This field (8-bits) shows the type of the PCEP message
inside the packet. Its values are from 1 to 7, one number for each type;

• Message length: 16-bits field that shows the length in bytes of the PCEP
message including the Common header.
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3.2.2 Open

It is the first message sent after the establishment of the TCP connection to initiate
the PCEP session. It has inside the Common header the type field set to 1. It is
composed of the Common header followed by a message body. Inside the body,
there are different parameters that are exchanged by the peers and that will be
used to set the PCEP session. If both parties agree on this parameters, the new
PCEP session can be established, otherwise will be resolved in an error. The packet
structure is as follows:

<Open Message>::= <Common Header> <OPEN>

where <OPEN> is the body of the message and consists of one OPEN object and
contains the parameters exchanged to set the PCEP session.
When both peers have established the TCP connection, they start the KeepWait
timer in order to wait for a Keepalive message or a PCErr message. If the timer
expires and none of these messages are received, it will trigger an error to be sent
with a PCErr message to the other peer and the closing of the TCP connection.
When a peer sends an Open message, it starts the OpenWait timer in order to wait
an Open message from the other peer. If this timer expires without having received
the Open message, it triggers an error to send to the other peer through a PCErr
message and after that, it will close the TCP connection.

3.2.3 Keepalive

The Keepalive is the message sent by both peers to keep the session in the active
status. It is also sent after having received the Open message to notify it to the
other peer. The packet is composed by the Common Header, with the Type field
set to 2, followed by an empty body. The packet structure of the Keepalive message
is as follows:

<Keepalive Message>::= <Common Header> .

As said before, the Keepalive message is sent at the frequency specified in the
parameter inside the Open message during the initialization of the PCEP session.
Sending the Keepalive message is optional and depends on the PCE/PCC imple-
mentation; also the frequency of the Keepalive can be asynchronous from the peers
perspective.
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3.2.4 PCReq
The PCReq is a PCEP message sent by a PCC to a PCE to ask a path computation.
Inside this message there can be more than one path computation request. The
packet is composed by a Common header, with the Type field set to 3, followed by
a body that carries inside the requests.
The structure of the packet is as follows:

• <PCReq Message>::= <Common Header>[<svec-list>]<request-list>;

• <svec-list>::=<SVEC>[<svec-list>];

• <request-list>::=<METRIC>[<metric-list>];

• <request>::=
<RP><END-POINTS>[<LSPA>][<BANDWIDTH>][<metric-list>]
[<RRO>[<BANDWIDTH>]][<IRO>][<LOAD-BALANCING>];

where SVEC, RP, END-POINTS, LSPA, BANDWIDTH, METRIC, RRO, IRO
and LOAD-BALANCING are all objects.

3.2.5 PCRep
The Path Computation Reply is a message sent by a PCE as a response to a
computation request (PCReq) received from a PCC. The packet is composed by a
Common header, with the Type field set to 4, followed by a body.
The structure of the packet is as follows:

• <PCReq Message>::= <Common Header><response-list>;

• <response-list>::=<response>[<response-list>];

• <response>::=<RP>[<NO-PATH>][<attribute-list>][<path-list>];

• <path-list>::=<path>[<path-list>];

• <path>::=<ERO><attribute-list>;

• <attribute-list>::=[<LSPA>][<BANDWIDTH>][<metric-list>][<IRO>];

• <metric-list>::=<METRIC>[<metric-list>]
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It is possible for a PCE to bind many path computation responses into a single
PCRep if, for instance, a PCC has sent different path computation requests that
are received asynchronously by the PCE.
Inside the body there can be a positive or negative response for the related requests.
The PCRep message contains for each reply inside itself a RP object, which has a
Request-Id-number equals to the one carried by the PCReq received before.
If the request is positively resolved, the reply contains Explicit Route Objects
(EROs) to specify the set of computed paths that match the request. If the
request is resolved negatively, the PCRep message contains a NO-Path object and
information about the reason of the failure.

3.2.6 PCNtf
This message is sent by the PCC or PCE to notify to the other peer that a specific
event has occurred. The packet is composed by a Common header, with the Type
field set to 5, followed by a body.
The structure of the packet is as follows:

• <PCNtf Message>::= <Common Header><notify-list>;

• <notify-list>::=<notify>[<notify-list>];

• <notify>::=[<request-id-list>]<notification-list>;

• <request-id-list>::=<RP>[<request-id-list>];

• <notification-list>::=<NOTIFICATION><notification-list>.

Inside the PCNtf message there is at least one NOTIFICATION object, but there
can also be multiple of them if a peer wants to notify the other of different events.

3.2.7 Error message
The PCErr message is sent or received when specific conditions that occur trigger
an error: a malformed packet is received, a protocol error is met, PCEP parameters
specified inside the packets are not allowed or there are policy violations. The
packet is composed by a Common header, with the Type field set to 6, followed by
a body that carries inside information about the errors.
The structure of the packet is as follows:

• <PCErr Message>::= <Common Header>
(<error-obj-list> [Open]) | <error>[<error-list>];

• <error-obj-list>::=<PCEP-ERROR>[<error-obj-list>];
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• <error>::=[<request-id-list>]<error-obj-list>;

• <request-id-list>::=<RP>[<request-id-list>];

• <error-list>::=<error><error-list>.

The PCErr can be sent as a response to a request or in an unsolicited way; if it is
sent in response, the PCErr message will contain the set of RP objects related to
the pending requests that raised the error.

3.2.8 Close
This message is sent by a peer that wants to close the an opened PCEP session.
The packet is composed by the Common Header, with the Type field set to 7,
followed by a body that carries inside information about the closing procedure.
The packet structure of the Close message is as follows:

• <Close Message>::= <Common Header><CLOSE> .

When a peer receives the Close message, it has to clear all the pending requests,
then close the TCP connection and lastly stop the communication with the other
peer.

3.2.9 PCEP object format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Object-Class OT Res P I Object Length
Object body

Figure 3.2: Common object header structure

Many types of PCEP messages contain some objects that carry important
information. Every object has a structure, precisely they have a fixed common
object header followed by a variable body, an object specific field that depends on
the type of object. The figure above shows the structure of the common object
header, where:

• Object-class/Object Type(OT): identify respectively the PCEP object
class and Object type; together they identify uniquely the PCEP object;

• Res: flags that identify the reserved fields; they are set to zero by the sender
and ignored by the receiver;
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• P: the processing-rule flag indicates if the object has to be taken into account
during the processing of the path computation at the PCE side. It is set by
the PCC in a PCReq message;

• I: the ignore flag is used inside the PCRep message and indicates whether an
optional object was processed by the PCE or not;

• Object-length): indicates the total length of the object, header included.
Object length must be a multiple of 4; moreover the maximum value of the
object content length is 65528 bytes.

3.3 Packet Flows
In this section we analyse the packet flows of PCEP protocol going through each
phase of a PCEP session, starting from its initialization.

3.3.1 Initialization Phase
Before starting the initialization of a PCEP session comes the establishment of a
TCP connection between a PCC and a PCE with the 3-way handshake, only then
the initialization phase can start.

After the TCP establishment, the two peers can initiate the PCEP session. This
initialization consists in the exchange of an Open message, which carries various
information for the establishment of the new connection, such as the keepalive timer,
the DeadTimer and other policy or rules information that can specify conditions
for the PCE path computation. If the establishment fails, because a peer does
not respond before the establishment timer runs out or because both peers cannot
agree on the session parameters, the TCP connection is closed. Several retries are
possible, but the number of them are left to implementation.
If the establishment ends positively, the Keepalive messages are sent by both parties
to maintain the communication up.
The first message that a peer has to receive right after the TCP establishment
must be an Open message. Therefore, with a TCP connection already established,
the peers both start a timer called OpenWait to wait for an Open message. If no
Open message is received and the timer runs out, a PCEP error is triggered and
the TCP connection is closed.
Any messages received that are not an Open must trigger the end of the TCP
connection and a PCEP protocol error.
When an Open message has been sent by a peer, this peer starts a timer called
KeepWait, at the end of which, if no Keepalive nor PCEP error message are received,
the TCP connection is closed after a PCEP error is sent.
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Figure 3.3: Initialization phase

3.3.2 Keepalive Session
After a PCEP session has been established, a peer has to know if the other party
is still available for the communication. In order to do that, the PCEP protocol
uses a Keepalive timer, a DeadTimer and the Keepalive message.
The keepalive timer is started by both peers and is restarted every time one party
sends a message. After its expiration, the relative party sends a Keepalive message
to the other.
When the PCEP session end, a DeadTimer is started by both peers; if no message
is received after its expiration, the session is declared closed. This timer restarts
every time a message is received in the ending session phase.

3.3.3 Path Computation Request
Once the PCEP session is established and well configured with at least one PCE,
there can be an event that occurs and triggers the PCC to ask the PCE to compute
a path or a set of paths with a path computation request.
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Figure 3.4: Initialization phase with keepalive

Therefore, the PCC chooses a PCE and sends a PCReq message that specifies the
endpoints of the path and also the constraints and attributes for the path that the
PCE has to find. The requests are identified by a request id number and addresses
of PCE and PCC.
After the PCE have received the request, it starts the path computation, which
can have two outputs:

• the computation has a solution: the PCE found at least path with all the
constraints and requirements satisfied, hence it returns to the PCC the set of
paths inside a PCEP reply (PCRep) message;

• the computation resolved in errors: the PCE could not find a path that satisfies
the requirements and constraints given by the PCC, so the computation led
to a failure; inside the PCRep message there is the reason of the failed path
computation.
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Figure 3.5: path computation request from a PCC to a PCE

3.3.4 Notification phase

This phase starts when a specific event occurs, hence the PCE or the PCC wants to
notify of this event the other peer, since it may change the response for the other
endpoint. For instance, a PCC that has already requested a path computation
to a PCE but wants to cancel this request due to another event, can notify the
same PCE with a Path Computation Notify (PCNtf ) message to ask to erase the
pending request. Another case could be a PCE, which has too much requests from
different PCCs and wants to notify that a delay for the response can occur.
The figures 3.4 and 3.5 below show the packet flow of two possible cases.

3.3.5 Error handling

When some parameters of the request cannot be valid or a protocol error condition
occurs, PCEP error messages are sent by peers to notify the type of error to the
other party and which was the reason that produced the error: unknown type of
message, malformed packet, parameter non supported, unknown policy, unexpected
packet and many other reasons.
The figure 3.6 below shows the packet flow of the error handling.
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Figure 3.6: notification by a PCC to a PCE

Figure 3.7: notification by a PCE to a PCC to notify delays

3.3.6 Ending session phase

A peer can end the communication and consequently the session whenever it wants
by sending a PCEP Close message to the other peer, in order to notify the ending
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Figure 3.8: error handled by the PCE

of the session and then the closure of the TCP connection. When a PCE ends the
session, the PCC clears all the pending requests sent before. when is the PCC
to end the communication, the PCE does the same and clears the pending path
computation requests received before.

In figure 3.7 there is an example of the packet flow.

3.4 Security Analysis
As we can see, security of the PCEP messages is not guaranteed by design. For
instance, theoretically it is possible to change path computation responses in a
malicious way that leads the PCC to set incorrect paths/LSPs. This paths can
potentially redirect the network traffic to a part of the network under control of a
malicious entity that has the means to destroy the service or manipulate the traffic.

3.4.1 Protocol vulnerabilities
To attack path computation responses there may be different possibilities: it is
possible to intercept PCRep packets, manipulate them and resend them, since
there is no authentication mechanism in PCEP protocol; similar to this approach,
a malicious entity can intercept PCReq packets and manipulate them to force the
PCE to make a different path computation from the original one; another way is
to pretend to be a valid PCE and forge fake PCRep messages with incorrect LSPs
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Figure 3.9: PCC ends the PCEP session after it received the reply from a previous
request

inside.
It may be also possible to attack the PCE through different kinds of Denial of
Service attacks (DoS); these attacks can make the PCE totally unavailable to
resolve the path computation requested or just too much congested to answer back
with acceptable delays for a peer. After all these consideration we can assume
that confidentiality, integrity and authentication properties are not guaranteed by
PCEP. So in general, PCEP protocol can be targeted by these kind of attacks:

• Spoofing: an entity impersonates a PCC or a PCE in order to manipulate or
change the PCEP traffic;

• Snooping: an entity intercepts PCEP network traffic in order to manipulate
it;

• Falsification: an entity forges fake PCEP messages;

• Denial of service: the normal functioning of a PCE is slow down or completed
denied by an entity.

As we also said before and with the knowledge of the PCEP packets that we
discussed in the previous section, we know that some of them (for instance, PCReq
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and PCRep messages) contain vital information that show the topology of the
network, the routing of the packets and as a consequence, where services related
to specific packet flows are located. Therefore, it is really important to protect
these information, since an attacker could easily understand by looking at them
how services work, where they are located and where the traffic is routed and the
prepare a variety of attacks to disrupt the network.

3.4.2 Proposed security techniques
Various techniques exist to improve security in PCEP protocol at different network
levels. At TCP level, it is possible to use TCP-MD5 to protect the communication
channel underlying PCEP, however we from [13] know that MD5 is prone to some
limitations and insecurity that do not let to provide the right level of security that
the network using PCEP protocol needs.
So the use of TCP-MD5 it should be only the basic security on which other more
valuable and newer techniques lie on. Another possible technique for TCP is the
TCP Authentication Option (TCP-AO), as stated in [14] whose implementation
must support TCP-MD5 and take into account the transition time window where
not all PCEP implementations deployed have the TCP-AO set, so policies for
communication between peers are needed.
Also, a valuable technique that can be used as a solution could be the use of
Transport Layer security (TLS) protocol. It gives protection against tampering,
falsification, snooping and guarantees confidentiality . Opening a TLS channel for
PCEP communication would secure the TCP channel underlying (only from the
moment that the TLS channel starts) and all the PCEP important messages which
may contain sensible information. The side effect of this solution is that would
require to design and to implement the PCEP instantiation of a TLS channel, TLS
handshaking and how to interpret TLS parameters.

Confidentiality

PCEP Privacy must be ensured, especially in a context like ours, where we are in
a multi-domain environment and theoretically PCEP messages may pass through
different autonomous systems and an attacker can intercept vital information from
PCEP packets. In order to do that, we can use different approach:

• IPsec: it is possible to use IPsec tunnels to encrypt all TCP traffic an
provide encryption. This may arise problems from an operational point of
view and regarding configurations since theoretically PCEP is used in large
scale networks. IPsec also gives authentication and integrity;

• TLS: TLS ensure encryption using pairs of public and private keys. Moreover
it ensures the perfect forward secrecy if the option is enabled but, on the other
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hand, all the peers using TLS need to have private and public key, something
that is not so common.

Keys configuration

As we saw before, using TLS requires the configuration of keys for encryption ,but
it is not the only technique that requires their use: in general for authentication,
protection against tampering and encryption with other techniques, they are needed.
If the network includes a small amount of PCCs and PCEs, than it is possible
to manually configure key pairs and use them inside a session, but this is also
prone to several vulnerabilities such as configuration errors and social engineering
exploitation. However this approach is not feasible for large scale networks with
many PCEs and PCCs, since it is too complex for operators to configure each PCE
and PCC and keep every key pair updated. Also manually configured key pairs
require manual updates and this is potentially risky from a security point of view.
Another possible configuration for PCEs and PCCs is the use of group keys. An
operator can generate and set for instance a group key for all the PCCs and
PCEs belonging to the same Autonomous System (AS) or domain since they are
in the same area of trust. This approach can significantly decrease the complex
configuration work for operators; however, it is important to stress that the more
are the entities that know the group keys, the more are the potential vulnerability
risks which arise concerning their disclosure. Lastly with the group keys approach,
the operators need to configure a different key for the communication between two
PCEs, each from a different domain.
There are also further consideration to do for keys configuration regarding PCE
discovery and its relation with the key exchange, but since it is out of the scope of
this work, they are left to future works.

Denial of Service attacks

Denial of Service attacks are possible at TCP level but also in a already established
PCEP session. Regarding TCP, the vulnerability are the same of many other
protocol that run over TCP an a variety of attacks are possible (for instance the
SYN attack). As mitigation for DoS attacks, PCEP implementations can provide
features like the use of single registered port from which all the communications are
expected and that does not allow multiple parallel connections from the same peer;
another possibility is the creation of an access list that register all the authorized
peers in order to avoid all the users that are not trusted.
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3.4.3 Final considerations
After all the analysis, knowing the requirements for the experimental setup build,
which will be shown in chapter 4 and 5, we decided to use the TLS approach to
improve PCEP, since it covers almost all the security problems that the PCEP has
and it is easier to implement from a technical point of view considering the type of
PCE that we chose for the setup (java-based netphony-pce).
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Chapter 4

Experimental Network
Setup

In order to test and showcase the behaviour of the PCEP Communication Protocol
and discuss about its security implication in a multi-domain environment, we
need to build a setup with at least two separate domains, each of them with its
own Path Communication Element (PCE). These PCEs must communicate in the
beginning through the PCEP Communication Protocol for testing and analysing
the communication. After that, a more secure communication protocol will be
implemented, PCEPS.
Each domain will consists of routers that are able to support MPLS Segment
Routing (SR-MPLS) and implement a Path Computation Client (PCC).
In the following sections will be given a more in depth descriptions on how the
setup is build and the decisions that were taken.

4.1 Network Topology
The figure below (Figure 4.1) shows our experimental network setup composed of
two domains. Each domain has four routers connected in a circle, with one of these
connected to the domain’s PCE.
The two PCEs are connected and they can communicate with each other. Lastly,
there are two hosts connected respectively to router 1 (R1) and router 2 (R2) that
can receive or generate network traffic.

4.1.1 Router Software Selection
The only requirements for the router software are the support for SR-MPLS or
Segment Routing over IPv6 dataplane (SRv6) and the communication through the
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Figure 4.1: test setup with 2 domains and 2 PCEs.

PCEP Communication Protocol. Additionally we need a router that is able to
behave as a PCC to receive routes from the PCE and delegate Label Switch Paths
(LSPs) to the PCE.
The export of the topology information towards the PCE can be done using OSPF-
TE, ISIS-TE or Border Gateway Protocol Link-State (BGP-LS). In the end we
chose to adopt the Free Range Routing (FRR), a router open-source implementation
that supports all the features needed and easily modifiable if needed.

4.1.2 Protocol Selection
The decisions that we made about protocol selections were taken based on past
experimental setups, related to the UPIN framework, in order to use the results of
this work also for other works that are out of the scope of this thesis. Therefore, we
chose OSPF as Interior Gateway Protocol (IGP) and SR-MPLS for our underlay,
since SRv6 implementation inside FRR was not finished.

4.2 Path Computation Element
For the Path Computation Element (PCE) deployment and implementation deci-
sions, we used the same approach as for the protocol selections. They were based
on past UPIN works to maintain the continuity with past works.
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4.2.1 PCE Deployment

The only defined RFC for communication between PCEs is through the use of a
Hierarchical Path Computation Element (H-PCE). This deployment type is not
suitable for our requirements, since with this approach, the parent PCE needs a
connection to each PCE where the path will traverse through. This method does
not scale.
We need a distributed setup where each PCE of each domain only has to keep
a connection to the PCE of the neighbouring PCEs. Segment Routing Traffic
Engineering (SR-TE) policies are stateful, so the PCE needs to keep in memory a
list of active policies.

4.2.2 TED population

The netphony-pce supports multiple ways of populating the TED, from BGP-LS,
OSPF-TE or a predefined network description file. Since our domain topology is
simple and the setup is based on another UPIN related experiment, we use the
same method, that is using a description file to load the nodes, edges and SIDs
into the PCE.

4.2.3 Path Allocation

The netphony-pce has a flexible algorithm plugin that allows to define custom path
allocation algorithms.
Since currently there was not one implemented yet for segment routing with MPLS,
we used a customized algorithm done for a past UPIN related setup.
It is a simplified algorithm based on [15]: when the PCE receives a computation
request, it resolves the domain for both the destination and the start endpoints;
when one of them is unknown, a no-path-possible error is sent back; if both
endpoints exist in their domain, it computes a local path and sends it back; if
the destination endpoint is not a member of the local domain but exists in the
reachability manager and the latter has an entry to reach the PCE of this domain,
it will forward the request to this PCE; if the domain has forwarded the request, it
will wait for a response; if it gets a no-path-found response, this is sent back to the
requester; if the PCE does not contain both the start and end destination node,
but both have an entry in the reachability manager, it forwards the request to the
PCE for the destination node and sends back the partial path to the requester.
This algorithm will take the shortest route possible between the two nodes. It
disregards any other information or special requests.
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4.2.4 PCE Chaining
RFC5441 [15] discusses the procedure on how to perform the Backwards Recursive
Path Computation (BRPC) procedure to compute paths through multiple domains
and the relevant extensions needed to the PCEP. The draft [16] extends stateful
paths to interdomain deployments. Both RFCs leave the domain discovery and
resolving to the implementation. Therefore, for this experimental setup we used
the same simple approach of past works, that is to configure each PCE with an
XML configuration file.
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Chapter 5

Design considerations and
technology evaluations

In this chapter we will introduce the evaluations that we did, following another
assessment in a previous PCE related thesis work, in order to build a proper
multi-domain Path Computation Element (PCE) setup. We will briefly explain
the design choices that were made before the current work and now, and the
technologies used inside the setup.
Later in this study, we will focus on the security issues of the PCEP protocol and
what kind of approaches we wanted to use to improve the protocol on the working
setup.

5.1 PCE technical requirements
Before presenting the experimental setup, how it is structured and how it works
with the PCE, it is crucial to define what kind of technical requirements and
features are needed for our PCE.
First we needed to perform path computation across multiple domains. So in order
to do that, we needed a network that supports segment routing, therefore a PCE
that implements at least [17] and [18] both for segment routing and stateful PCE.

5.1.1 Domain Discovery
Since currently there is not a proper defined way for a PCE to discover if another
domain has a PCE or if there is a part of a domain controlled by a PCE, the only
possible architectural solution is a PCEP extension, that is the Hierarchical Path
Compute Element (H-PCE) extension. With this approach, the PCE in charge
of a domain can share to a "parent" PCE, that is in charge of inter-domain PCE
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communications, which OSPF, ISIS domain/Autonomous System (AS) it controls.
But this method is unfeasible in a multi-domain setup, since it requires a central
PCE that handles all domains and all of these must take a decision on who has the
control over the central PCE. A possible solution to solve this issue is to build a
setup where each domain run its parent PCE, with the latter that has connections
to every domain-specific PCE. Lastly, we need support at a minimum level for
H-PCE extension, just to signal another PCE to continue the path computation.

5.1.2 Function Chaining
It is mandatory for the architecture to be able to support encoding specific path
requirements in the request, in order to request paths to pass through specific
functions. A valuable option is the support for the Explicit Route Object (ERO),
that allows to encode a sequence of AS numbers, areas or IP addresses where the
path needs to go through at minimum. Thanks to this, we are able to explicitly
request a set of functions if we already know their identifiers or their location.
Another option is the Objective Function Extension, which allows to ask the PCE
to compute a path that matches the requirements of a specific Object Function.

5.1.3 Path Confidentiality
When a PCE receive a path allocation request, this PCE has to send back the
complete segment list to spread it throughout the network. Nevertheless, it could
happen that some operators do not want to lo leak the entire path. A way to
overcome this issue is to encode the path in a generated segment list. Doing this,
the path in the other domain will be encoded as a path key sub object.

5.2 PCE Evaluation
In this section we analyse the existing implementations of the PCE. For the
evaluation, it was crucial to choose implementations that are open source or easily
obtainable closed source, which implements the PCEP protocol, in order to adapt
them to our needs and test them for different use case scenarios.
We also analysed which security features where already implemented, if there were
any.

5.2.1 OpenDaylight Controller
OpenDaylight controller is an open source modular automation platform JVM, that
supports a wide range of protocols to achieve vendor-agnostic network automation
and control. Applications make use of northbound APIs exposed by the controller to
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interact. Its goal is to be a one-stop-shop solution for Software-Defined Networking
(SDN) and Network Functions Virtualization (NFV) deployments.
Currently, in OpenDaylight the PCE support is in an active development status
that for now include the initial Request For Comments (RFC) for the PCEP
protocol; furthermore, it supports Segment Routing, stateful paths, binding labels,
objective functions and route objects.
The OpenDaylight PCE has implemented some cryptographic features but does
not have anything regarding a new PCEP secure protocol, neither regarding
authentication and integrity of PCEP messages.

5.2.2 NorthStar Controller
NorthStar is the SDN controller released by Juniper Networks. It supports PCEP,
but also NETCONF to interact with the routers in order to deploy paths. Fur-
thermore it supports RSVP-TE. Regarding the PCE, it provides stateful paths,
binding labels, segment routing extensions and support to initiate paths. Nothing
concerning security has been implemented.

5.2.3 pceplib
Pceplib is an open source library that implements PCEP, developed by Volta
Networks as a fork of libpcep, in turn developed by Acreo. The library is only a
component to implement a fully functional PCE. Because of this it offers great
flexibility for implementing extra standards, since it only handles the session
management for PCEP. A big issue is that this library ships only one functional
part implemented, that is the Path Computation Client (PCC), and implementing
a fully functional PCE with a Traffic Engineering Database (TED) is out of the
scope of the thesis, since we need an already functional one in order to study more
in depth the PCEP protocol. Concerning security, nothing is implemented yet.

5.2.4 ONOS
ONOS is an open source network operating system that provides the control plane
in an SDN. It provides the PCEP southbound interface to communicate with
network devices. It supports the relevant standard for PCE Central Controller
(PCE-CC) but on the other hand, no support for the H-PCE extension.

5.2.5 Cisco IOS XR
IOS XR is a networking operating system developed by Cisco. Based on the
available documentation, it is not clear what features of SR-PCE are supported by
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IOS XR; we can say it supports version 2 of the protocol and the relevant Segment
Routing (SR) extensions. Cisco recommends a different kind of deployment for
multi-domain setups.

5.2.6 Netphony-PCE

Used in multiple other papers to simulate PCE communication, also across multiple
domains, netphony-PCE is a fully functional java based open source implementa-
tion of a PCE that follows the RFC 4655 architecture, and furthermore, it also
implements a functional PCC.
It currently supports the following standards:

• Segment Routing;

• H-PCE extension;

• Path initiation.

There is a development branch, developed by Telefonìca, that supports some of the
current RFCs, however almost nothing about the security is taken in consideration.

5.3 Comparison & Final Evaluations

Table 5.1: comparison between different PCEs

OpenDaylight NorthStar ONOS IOS XR Netphony-pce
Open source yes no yes no yes

H-PCE no no yes no yes
SR support yes yes yes yes yes

Stateful yes yes yes yes yes
Extendable yes no yes no yes
Full PCE no yes yes yes yes
OSPF-TE no yes yes yes yes
BGP-LS yes yes yes yes yes
ISIS-TE no yes yes yes no
Security yes no no no no
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5.3.1 PCE Implementation
Initially, the netphony-pce only implemented older drafts of the multiple PCE RFCs.
However, the backend library that this PCE is using for the protocol implementation,
called netphony-network-protocols, has a newer development version. This version
implements the non-drafts Request For Comments (RFCs) that our setup needed
for the communications.
In our porting to the non-draft RFCs version of the implementation, all the parts
that the experimental setup didn’t required were removed or changed: the multilayer
and Generalized Multi-Protocol Label Switching (GMPLS) support were removed;
specific objects, that were moved or renamed in later RFCs, were reshuffled.
However the netphony-network-protocols library has not implemented anything
concerning the PCEP protocol security.

5.3.2 Comments
Based on the evaluation of implemented features that we need, as we can see from
the comparison table above, Netphony-pce seems to implement most features and
RFCs that are required and, since it is open source, we can eventually change the
code to our needs and implement extra RFCs if we are missing specific required
extensions. OpenDaylight could also be a valuable option, however the code is too
much complex for our scope and not entirely open source. So we will explore more
in depth the Netphony-pce in order to build a setup and analyse in this work the
entire behaviour with a focus on the security issues and implication for the multi
domain setup.
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Chapter 6

PCEPS improvements and
implementation

In this chapter we will show a possible implementation of PCEP with TLS, called
PCEP secure (PCEPS), starting from an analysis of an old RFC draft never
standardized [7] and then showing how it works inside the already presented
experimental setup in chapter 4 together with considerations of improvings that it
brings and possible new vulnerabilities that may arise.

6.1 Transport Layer Security (TLS)
TLS is currently the most widely adopted network security protocol. In the origin
it was named SSL (Secure Socket Layer): this term should not be used anymore
because the term refers to a protocol that has been discontinued because it was
weak and had vulnerabilities. The version that has been later standardized is TLS.
TLS creates a secure transport channel on top of layer 4 (also called session level
security, even if it does not implement full session management) and it is also
named layer 4.5 protocol. Its security features are:

• Peer authentication: it is compulsory for the server and optional for the
client. If there is single peer authentication it is only the server, otherwise
there is mutual peer authentication for both server and client. It is based
on asymmetric challenge-response authentication so a proof of possession of
private key is needed. For the server that is implicit because it is using its
private key to create all the other keys for the other security features. On the
contrary for the client there is an explicit signature performed and the user
has no control over this. If peer authentication fails, the channel cannot be
opened.
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• Message confidentiality: it means that the content of each record transferred
over TLS is optionally encrypted. It depends on the version of the protocol,
in which in some cases is optional in others is mandatory.

• Message authentication and integrity: for each message sent over TLS
channel these two properties are guaranteed. This type of authentication
(data authentication) is different from peer authentication, because in this
case is the proof that the data exchanged on the channel is really coming from
the other peer that we are communicating with. By integrity we mean that
the data in transit have not been manipulated, however this doesn’t mean it
prevents the manipulation.

• Protection against replay and filtering attacks: TLS provides replay
protection, because if an old message is replayed another time, it is detected. In
the same way it provides protection against message cancellation, which could
change the meaning of the data that is exchanged. This kind of protection
is obtained thanks to an implicit record numbering, which means that each
message sent across TLS is a numbered record. This is because TLS is layered
on top of TCP, which has the property of no data loss and it receives the record
in the same order as they are sent. Since record number is used in message
authentication, if there is a message received two times, then authentication
fails. the same is for the cancellation of messages.

TLS handshake change cipher spec TLS alert protocol app protocol
TLS record protocol

reliable transport protocol (e.g. TCP)
network protocol (e.g. IP)

Figure 6.1: TLS protocol structure

The figure above shows how TLS protocol is structured: from an architectural point
of view there is the basic network protocol, which in our case is IP protocol, then a
reliable transport protocol is needed (again, in our case is TCP). On top of that
there is the TLS record protocol, which encapsulates the data being transmitted.
Of course then there is our application protocol which will be used inside TLS, that
in our case will be PCEP protocol. Lastly there are TLS specific protocols, TLS
handshake protocol, TLS change cipher spec protocol and TLS alert protocol. The
handshake protocol is executed at the beginning when the TLS channel is created
and it is the most vulnerable part, that is when an unprotected TCP channel is
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transformed in a secured TCP channel; change cipher spec protocol is the one that
can be used for changing keys or algorithms without closing the channel; the alert
protocol is the one being used every time there is an issue.

6.2 Path Communication Element Protocol Se-
cure (PCEPS)

As we saw in chapter 3, inside the communications with PCEP protocol there
are interactions between the peers that can be critical for network operations and
resources. So it is vital to keep secure all the PCEP architecture implementing
security features accordingly to [19].
We analysed in chapter 3 the security issues and threats of the protocol and from
RFC5440 we also have some proposal of security techniques that can be used
against some major attacks. From RFC6952 instead we know that confidentiality
is essential and must be ensured, since there can be the possibility that the two
peers that are communicating through PCEP are in different Autonomous System
(AS) and there is an higher risk for snooping attacks leaking sensitive information
about the network.
As we said in the previous section, TLS provides message confidentiality, message
integrity and peers authentication, which are the security feature most needed for
PCEP. Moreover, we are using in the experimental setup the java-based netphony-
pce and the library network-protocols made by TelefonicaId, so it is easier to
implement TLS in the PCE and expand the already present PCEP protocol library
to have the implementation of PCEPS.

6.3 PCEPS messages

In order to implement the Path Communication Element Protocol Secure, it is
required to add only one new message for the protocol, that is the StartTLS
message; all the other standard PCEP message are used once the TLS channel
is established. Also new types of errors, encapsulated inside the PCEP PCErr
message are defined. The StartTLS message packet is composed by the Common
Header, with the Type field set to 13, followed by an empty body. The packet
structure of the StartTLS message is as follows:

<StartTLS Message>::= <Common Header> .
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6.3.1 New Errors
Table 6.1 shows the new types of errors introduced with PCEPS and their value
with their related meanings.

Table 6.1: new error values introduced with PCEPS

Error-Type Meaning Value
25 PCEP StartTLS Failure 0: TBA

1:received StartTLS after other msgs
2:received other msg before StartTLS
3:failure, no connection without TLS
4:failure, connection without TLS ok
5:no StartTLS before timer expired

6.4 PCEPS phases
In order to initiate a PCEPS session there are different phases to walk through:

• Initialization and establishment of a TCP connection;

• StartTLS message sent by both peers (PCE/PCC) to initiate TLS;

• Negotiation of TLS parameters and establishment;

• PCEP messages over TLS are sent.

Each phase follows the best practises for the TLS protocol showed in other RFCs
for its standardization.

6.4.1 Initialization
Since peers using PCEP can communicate without TLS or using it and knowing
that there is the transition problem (that will be analysed later), a new message is
introduced to let a peer notify to the other that he wants to initiate a new secure
TLS channel: the StartTLS message. That means that before the open message,
but after the TCP establishment, the peers agree on a TLS session and then the
normal PCEP messages are sent; in this way the TCP channel is secured even
before starting the real PCEP session.
A peer that wants to communicate with PCEPS instead of PCEP must start first
the StartTLSWait Timer to keep waiting from the other peer a StartTLS message
and not the OpenWait Timer.
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How a PCEPS peer may discover if there are others that can communicate with
PCEPS is out of the scope of this work and is left for future work.
It is important to stress that it is not possible to secure an already opened PCEP
session, but it is necessary to close the ongoing session and re-create another one
using the proper methods and messages described later.
As we said, for the initialization phase of PCEPS, after the TCP establishment, a
peer (so a PCC or a PCE) first has to send to the other party a StartTLS message
to notify its intention of opening a TLS channel; if the other peer agrees, it will
answer back with another StartTLS message. If a peer is configured to operate
only with TLS, it can send the StartTLS immediately after the TCP establishment,
otherwise it has to wait if the other peer’s intentions, thus waiting for an Open or
a StartTLS message. When the peer receives a StartTLS message and has sent its
own, the TLS establishment can start. In figure 6.2 we can see the packet flow for
the initialization phase.
So in the end, the first message right after the TCP establishment is the StartTLS,

Figure 6.2: PCEPS initialization phase

and if any other PCEP message is received before the StartTLS must be handled
like an unexpected message and therefore a proper PCErr message will be sent or
received with the consequence of the closure of the TCP connection.
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6.4.2 Possible Use Cases

The configuration of the PCE/PCC that speaks PCEPS regarding how to handle a
new PCEPS session, leads to different use cases based on if the strict TLS option
is enabled or not and if a peer can speak PCEPS or not.
Additionally new error cases are introduced to handle and notify these kind of
issues.

Use Case: Strict TLS

If both peers (for instance, a PCC that wants to communicate with a PCE) are
configured to only speak PCEPS, each peer sends the StartTLS right upon the
establishment of the TCP connection without waiting first the other peer.
Figure 6.3 shows the packet flow for the initialization of a PCEPS session between
a PCC and a PCE with both the strict TLS enabled. When each of them has both
sent and received StartTLS messages then the normal TLS establishment can start
and when this ends successfully, they can begin the secured PCEP communication.

Figure 6.3: both PCE and PCC communicate only with TLS so right after the
TCP establishment they both send a StartTLS message
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Use Case: one peer speaks PCEPS, the other one does not

In this case we have a PCC, which can speak both PCEP with TLS and standard
PCEP, that tries first to open a PCEPS session with the PCE, which on the
contrary cannot communicate with PCEP over TLS. So first the PCC sends a
StartTLS message to the PCE to notify its intention. The PCE on the other hand
cannot process the StartTLS message, so it handles it like an unknown packet: it
sends a PCErr message to notify its error to the PCC. As a consequence the PCC
immediately closes the TCP connection after having sent a Close message.
At this point the PCC, since is configured to communicate also with PCEP if
PCEPS is unabled, re-establishes the TCP connection with the PCE and sends a
normal Open message to open a standard PCEP session with the other peer. The
PCE finally sends its own Open message to the PCC and a standard PCEP session
begins.
The figure 6.4 shows the packet flow of this case.

Figure 6.4: PCC which speaks both PCEP and PCEPS sends StartTLS msg to
open a PCEPS session but PCE does not speaks PCEPS
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Use Case: both peers speak PCEPS but cannot establish a TLS channel

Here we find a PCC that sends to a PCE the StartTLS to notify its intention
to open a secure channel and start to communicate through PCEPS; the PCE
responds with its own StartTLS message, then they agree on the TLS session
parameters during the TLS establishment. In the meantime, an error occurs during
this establishment, so they immediately close the TCP connection. Eventually,
if both peers are configured to enable the retries of the establishment, they will
re-open a TCP connection and retry to establish a TLS channel for a number of
time equivalent to the value configured inside each peer. Otherwise, if they are
unable to perform retries, they will no longer communicate with each other and
the other party will be signed as no longer available. The latter situation occures
only if the peers are strict TLS, otherwise they will maybe try to open a standard
PCEP session.
In figure 6.5 it is shown the packet flow of this case.

Figure 6.5: PCC and PCE agree to open a TLS channel but they cannot due to
a failure

Use Case: a peer speaks only PCEPS, the other one only PCEP

The PCC that is pre-configured to operate with strict TLS only sends the StartTLS
message to open a secure channel with the PCE and communicate through PCEPS.
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The PCE is not able to understand PCEPS, so it treats the StartTLS as an
unknown packet. Then it sends a PCErr message to notify the internal error and
after that, it sends a Close message to the PCC to close the session and the TCP
connection. Since The PCC operates with strict TLS, it will not try to re-open a
session with the PCE through standard PCEP.
The packet flow is shown in figure 6.6.

Figure 6.6: PCC sends a StartTLS to open a secure PCEPS session but PCE
speaks PCEP only, so it closes the connection without retries with PCEP

6.4.3 Negotiation of TLS parameters and establishment
After the Initialization phase of a PCEPS session between the two peers is finished,
the TLS establishment can start, accordingly to TLS connection establishment
procedure.
There are some feature that the peers has to support: first the minimum TLS version
supported must be TLS 1.2 or above; certificate based authentication is required for
peer authentication; a proper ciphersuite for integrity and confidentiality is required
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and moreover, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 has to
be supported at minimum.
Peer authentication is done following two possible models:

• X.509 with Public Key Infrastructure (PKI): a list of trusted Certification
Authorities (CAs) must be included inside the implementation and the valida-
tion of certificates must follow all the standard and best practices for PKI;
revocation methods inclusion inside PCEPS is optional but recommended as
best practise;

• X.509 with certificate fingerprints: there can be a list of trusted certificates in
the implementation, in order to identify peers; these certificates are identified
by a fingerprint encoded using Distinguished Encoding Rules (DER).

Finally after the TLS connection parameter have been decided and the TLS channel
is established, the two peers can start to exchange PCEP packets; first the peers
start the Openwait Timer and send their own Open message. If everything goes as
expected, a PCEPS connection is established correctly.

6.4.4 TLS establishment Failure
If the negotiation phase of TLS parameters fails or the peer authentication resolve
in errors for whatever reason, the peers need to close the connection immediately.
If a peer is configured for connection retries, then it can start the retry procedure.

6.5 The Transition Problem
Everything new that is implemented with PCEPS works just fine without interfere
with the normal PCEP mechanisms. That means that a PCEPS user can establish
a work flow with a standard PCEP user without disrupt the connection or trigger
unexpected behaviours, as we saw in the previous sections.
This means that everything will still work during the so called transition time period,
a time window where upgraded PCEPS devices have to coexist with standard
old PCEP devices that gradually will be upgraded with new versions supporting
PCEPS. So a PCEP device should always accept a connection and sessions with or
without TLS until every peer in the network is able to speak PCEPS. For instance,
a PCE will wait for a connection request from a PCC and will answer back based
on the first message received: if it is an Open message, it will allow a standard
PCEP session, otherwise if it is a StartTLS message, it will set up a secure channel
to communicate through PCEPS.
If a PCC supports the communication both with PCEPS and PCEP , it will try
first to open a secure channel sending a StartTLS message to the other peer;
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if the latter is unable to speak PCEPS, it will close the connection and may try to
establish a standard PCEP session.

6.5.1 Downgrade attacks

Now we consider the case related to the transition time period where a PCC and a
PCE that can communicate with or without TLS, want to open a PCEPS session.
Normally, the PCC sends to the PCE a StartTLS message to notify its intention
and the latter will answer back with another StartTLS message to start the TLS
establishment. But we know that if a peer wants to communicate with another one
that is unable to open a PCEPS session, the communication after the StartTLS
from the first peer will resolve in a failure with the second peer that sends back
a PCErr message with error type value 1 (received malformed Open message or
a non Open msg). After that, the PCC may retry to establish a standard PCEP
session: this introduce a possible vulnerability to the system that can be exploited.

Use case 1: an attacker performs a MITM attack and inject a PCErr
msg

There is a possibility that an attacker performs a MITM (Man-in-the-middle)
attack and so gains undetected access to the packets in transit between for instance
a PCC and a PCE that are communicating with each other.
In this particular case the man-in-the-middle can intercept the packets, manipulate
the and even inject fake PCE/PCC responses in order to control the communication
flow without being noticed. In figure 6.7 is depicted a possible attack where the
attacker is placed undetected between a PCC and a PCE trying to open a secure
channel and establish a PCEPS session. However the attacker wants to sniff the
packets and steal sensitive data encapsulated inside PCEP packets (e.g. computed
paths to see where some particular services are located inside the network), which
in a secure channel would be inaccessible due to the encryption. So as depicted in
the figure below, he intercepts the two StartTLS messages from both PCC and
PCE and inject inside the communication fake PCErr messages to force the use
of standard PCEP, pretending to be the endpoint of the communication from the
PCE/PCC point of view. The PCC and PCE receive the fake PCErr messages and
then they start the closing procedure. Since they are configured to retry the PCEP
session establishment without TLS in case of impossibility of a secure channel, they
will open a Standard PCEP session. Now the attacker is able to sniff the packets
and steal all the data in clear without being noticed.
That is why a network using PCEPS should use the strict TLS option enabled.
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Figure 6.7: a MITM inject a PCErr msg in order to downgrade from PCEPS to
PCEP

Use case 2: TLS downgrade attack

Using [20] and [21], we know that there are various versions of TLS: the original
SSL, version 2, 3 and then TLS 1.0, 1.2 and 1.3. Typically the older versions have
security problems and should not be used unless explicitly required.
Normally, client sends within ClientHello message the highest supported version
and the server notifies (in ServerHello) the version to be used, which is the highest
in common with the client.
A standard version negotiation between client and Server is like the following:

• Agreement on TLS 1.2

– (C →S) 3,3 (e.g. major version 3, minor version 3, which is TLS 1.2 by
default)

– (S →C) 3,3 (server agrees)

• Fallback to TLS 1.1

– (C →S) 3,3
– (S →C) 3,2 (Server downgrades to a previous version)
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Here comes the problem: some servers, rather than sending the correct response,
close the connection; then the client has no choice but to try again with a lower
protocol version.
This raises the Downgrade attack: the attacker perform a MITM (Man-in-the-
middle attack) and then sends fake server response, to force repeated downgrade
until reaching a vulnerable version (e.g. SSL-3) and then execute a suitable attack.
So the implementation of PCEP over TLS should follow the best practises listed in
[22].
In figure 6.8 is shown a schema of how the TLS downgrade attack works.

Figure 6.8: MITM performs a TLS downgrade attack during TLS negotiation

6.6 Experimental implementation
For the implementation of all the PCEPS features mentioned in the previous
sections, as we said we started first from the Netphony-network-protocols library,
developed by TelefonicaId, that is a java-based open source collection of libraries
containing the code implementation for many network protocols, in particular
PCEP but also other protocols, for instance OSPF, which we needed for our
experimental setup.
Afterwards, we worked on the PCE/PCC code, that is the Netphony-pce (evaluated
in chapter 3 for the experimental setup), a java-based implementation of a PCE
(that also works as a PCC): here we added all the features needed to support
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PCEPS.
All the source code, documentation and scripting used for simulations and test for
our work can be found in a public repository1.

6.6.1 Netphony-network-protocols library
The netphony-network-protocols implements four networking protocols: PCEP
protocol, BGP-LS protocol and support for BGP-LS-TE, RSVP-TE and OSPF-TE
with OSPF version 2.
We mainly worked on the PCEP protocol adding new features to support PCEPS.
In particular, different changes were made in the source code:

• a file named PCEPStarttls.java located in
netphony-network-protocols/src/main/
/src/main/java/es/tid/pce/pcep/messages/
is added: it contains a new java class that build the new message type StartTLS
to the implementation;

✞ ☎
1 public class PCEPStarttls extends PCEPMessage {
2 // No elements inside
3
4 /**
5 * Create new Starttls
6 */
7 public PCEPStarttls () {
8 this. setMessageType ( PCEPMessageTypes . MESSAGE_STARTTLS );
9 }

10
11 public PCEPStarttls (byte [] bytes ) throws PCEPProtocolViolationException {
12 super ( bytes );
13 }
14
15 public void encode () throws PCEPProtocolViolationException {
16 this. setMessageLength (4);
17 this. messageBytes =new byte[this. getLength () ];
18 encodeHeader ();
19 }
20 }
21✝ ✆
• in the same location of PCEPSStarttls, inside the file PCEPMessageTypes.java,

which contains constant variables to define the types of different PCEP
messages, we added the definition of a new constant, that is the new message
type StartTLS with the value 13 as defined in the previous sections:

1https://bitbucket.org/leoboldrini/workspace/repositories
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1 pub l i c s t a t i c f i n a l i n t MESSAGE_STARTTLS = 13 ;
2

• minor changes were also made to add the new error values of PCEPS.

6.6.2 Netphony-pce
For the netphony-pce we did major changes on how the PCE session works and on
the behaviour of the PCE/PCC during the initialization phase. The TLS version
used for this implementation is the 1.3.
Here we list all the major changes:

• inside the file PCEPValues.java we added for testing purpose the constant
variable that is used inside the code of the netphony to trigger the new
implementation of PCEPS as we will see later and another constant that
define a new state, the StartTLS wait state, in which the pce is waiting for a
StartTLS message from the other peer;

1 pub l i c s t a t i c f i n a l i n t PCEP_STATE_STARTTLS_WAIT = 5 ;
2 pub l i c s t a t i c f i n a l i n t PCEP_TLS=1;
3

• we created a file, StartTlsWaitTimer.java, to define a the new timer for the
StartTLS wait state following the guidelines discussed in the previous sections;

• we decided to easily test our setup to manually generate a key pair and a
certificate for both PCC and PCE to be used during the TLS establishment
phase for the authentication;

• inside GenericPCEPSession.java, we defined a new method that handles the
creation and setting up of the TLS context with the keys and certificate
configurations: we create an SSLSocket and configured with TLSv1.3 and for
encryption, we enabled the algorithm AES_128_GCM_SHA256;

• again inside the file GenericPCEPSession.java, which contains the code that
handle and menage new PCEP sessions both client side (PCC) and server side
(PCE), we rewrite the portion of the code that handles the initialization of
a new PCEP session, changing the behaviour accordingly to the guidelines
discussed in the previous sections; in this portion of the code the StartTlsWait,
OpenWait and KeepWait timers are instantiated, then if the starttlsOn value
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✞ ☎
1 public class StartTlsWaitTimer extends TimerTask {
2
3 // private DataOutputStream out=null;
4 // Use this to send messages to peer
5
6 private PCEPSession parentPCESession ;
7 private Logger log;
8
9 public StartTlsWaitTimer ( PCEPSession parentPCESession ) {

10 this. parentPCESession = parentPCESession ;
11 log = LoggerFactory . getLogger (" PCEServer ");
12 }
13
14
15 public void run () {
16 log.warn (" STARTTLS WAIT Timer OVER ");
17 PCEPError perror = new PCEPError ();
18 PCEPErrorObject perrorObject = new PCEPErrorObject ();
19 perrorObject . setErrorType ( ObjectParameters
20 . ERROR_ESTABLISHMENT );
21 perrorObject . setErrorValue ( ObjectParameters
22 . ERROR_ESTABLISHMENT_NO_STARTTLS_MESSAGE );
23 ErrorConstruct error_c = new ErrorConstruct ();
24 error_c . getErrorObjList ().add( perrorObject );
25 perror . setError ( error_c );
26 log.info (" Sending Error ");
27 parentPCESession . sendPCEPMessage ( perror );
28 this. parentPCESession . killSession ();
29 return ;
30 }
31 }
32✝ ✆

Figure 6.9: StartTlsWaitTimer
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✞ ☎
1 public SSLSocket CreateTLSContext () throws Exception
2 {
3 try {
4 SSLContext context = SSLContext . getInstance (" TLS ");
5 KeyManagerFactory keyManagerFactory = //
6 KeyManagerFactory . getInstance (" SunX509 ");
7 KeyStore keyStore = KeyStore . getInstance (" JKS ");
8
9 keyStore .load(new FileInputStream (

10 "/ vagrant /temp/ keystore .test ") , //
11 " storepass ". toCharArray ());
12 keyManagerFactory .init(keyStore , " storepass "
13 . toCharArray ());
14 TrustManagerFactory trustManagerFactory = //
15 TrustManagerFactory . getInstance (" SunX509 ");
16 KeyStore trustStore = KeyStore . getInstance (" JKS ");
17 trustStore .load(new FileInputStream (
18 "/ vagrant /temp/ truststore .test ") , " storepass "
19 . toCharArray ());
20 trustManagerFactory .init( trustStore );
21 context .init( keyManagerFactory . getKeyManagers () , //
22 null , null);
23 SSLSocketFactory sslSf = context . getSocketFactory ();
24 SSLSocket secureSocket = //
25 ( SSLSocket ) sslSf . createSocket (this.socket ,
26 this. socket . getInetAddress (). getHostAddress () ,
27 this. socket . getPort () , true);
28 secureSocket . setEnabledCipherSuites (
29 new String []{ " TLS_AES_128_GCM_SHA256 " });
30 return secureSocket ;
31 } catch ( GeneralSecurityException e)
32 {
33 throw new IOException (e);
34 }
35 }
36✝ ✆

Figure 6.10: createTLSContext
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✞ ☎
1 protected void initializePCEPSession (
2 boolean zeroDeadTimerAccepted ,
3 int minimumKeepAliveTimerAccepted ,
4 int maxDeadTimerAccepted ,
5 boolean isParentPCE , boolean requestsParentPCE ,
6 Inet4Address domainId , Inet4Address pceId ,
7 int databaseVersion , boolean isClient
8 )
9 {

10 remotePeerIP = ( Inet4Address ) socket . getInetAddress ();
11 /**
12 * Byte array to store the last PCEP message read.
13 */
14 byte [] msg = null;
15 // First get the input and output stream
16 try {
17 out = new DataOutputStream ( socket . getOutputStream ());
18 in = new DataInputStream ( socket . getInputStream ());
19 } catch ( IOException e) {
20 log.info (" Problem in the sockets ,
21 ending PCEPSession ");
22 killSession ();
23 return ;
24 }
25 pcepSessionManager . notifyPeer (( Inet4Address ) socket . getInetAddress

());
26
27 StartTlsWaitTimer swt = new StartTlsWaitTimer (this);
28 OpenWaitTimerTask owtt = new OpenWaitTimerTask (this);
29 KeepWaitTimerTask kwtt = new KeepWaitTimerTask (this);
30
31 // value just to try pce with tls set on.
32 // set this value to 0 PCEPValues . PCEP_TLS to change to normal pcep
33 int starttlsOn = PCEPValues . PCEP_TLS ;
34 if( starttlsOn >0)
35 {
36 this. setFSMstate ( PCEPValues . PCEP_STATE_STARTTLS_WAIT );
37 log.info (" Entering PCEP_STATE_STARTTLS_WAIT ");
38 log.info (" Scheduling STARTTLS Wait Timer ");
39 this. timer . schedule (swt , 60000) ;
40 log.info (" Sending STARTTLS msg ");
41 PCEPStarttls p_starttls_snd =new PCEPStarttls ();
42 sendPCEPMessage ( p_starttls_snd );
43 }
44 else {
45 // set up and send the first open message of the session ;
46 initializeOpen (swt , owtt , kwtt , isParentPCE ,
47 requestsParentPCE , domainId , pceId ,
48 databaseVersion );
49 }
50 ...
51 }
52✝ ✆

Figure 6.11: initializePCEPSession
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(took from the constant value in the PCEPValues.java file) is set >0, then
the FSM state is set to the value PCEP_STATE_STARTTLS_WAIT (again
defined in PCEPValues.java); then the StartTlsWait timer is scheduled for
60000 ms and a new StartTLS message is created and send to the other peer;

• in this portion of the code there is the handling of the received packets; inside
the try block we have different lines of code that are commented. These are the
version of the code that can be use when uncommented for encryption when
the PCE is inside a setup where is impossible to establish a TLS connection,
but encryption is mandatory. Note that AES GCM not only encrypts, but
also guarantees integrity of the packets:

✞ ☎
1 //Now , read messages until we are in SESSION UP
2 while (this. FSMstate != PCEPValues . PCEP_STATE_SESSION_UP )
3 {
4 try {
5 if( tls_enabled == true){
6 // msg= readEncMsg (in , cipherDec );
7
8 // byte [] iv = new byte [16];
9 // random . nextBytes (iv);

10 // gcmSpec = new GCMParameterSpec (128 , iv);
11 // cipherEnc = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
12 // cipherEnc .init( Cipher . ENCRYPT_MODE , new SecretKeySpec ("0123456789 abcdef ".

getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
13 // cipherDec = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
14 // cipherDec .init( Cipher . DECRYPT_MODE , new SecretKeySpec ("0123456789 abcdef ".

getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
15 // this. sslIn =new CipherInputStream ( sslInputStream , cipherDec );
16 // this. sslOut =new CipherOutputStream ( sslOutputStream , cipherEnc );
17 // msg= readMsgEnc ( sslIn );
18 msg = readMsg (in);
19 }
20 else{
21 msg = readMsg (in);
22 }
23 } catch ( IOException e) {
24 log.info (" Error reading message , ending session " +
25 e. getMessage ());
26 killSession ();
27 return ;
28 }
29 if (msg != null)
30 {// If null , it is not a valid PCEP message
31 switch ( PCEPMessage . getMessageType (msg)) {
32 case PCEPMessageTypes . MESSAGE_STARTTLS :
33 log.info (" STARTTLS message received ");
34 if(this. FSMstate == PCEPValues \\
35 . PCEP_STATE_STARTTLS_WAIT )
36 {
37 PCEPStarttls p_starttls ;
38
39 try {
40 p_starttls =new PCEPStarttls (msg);
41 log. debug ( p_starttls . toString ());
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42 swt. cancel ();
43
44 try {
45 sslSocket = CreateTLSContext ();
46 if( isClient == false )
47 sslSocket . setUseClientMode ( false );
48 this. socket = sslSocket ;
49 this. sslInputStream = sslSocket . getInputStream ();
50 this. sslOutputStream = sslSocket . getOutputStream ();
51
52 // parameters for aes gcm encryption
53 // byte [] iv = new byte [16];
54 // random . nextBytes (iv);
55 // gcmSpec = new GCMParameterSpec (128 , iv);
56 // cipherEnc = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
57 // cipherEnc .init( Cipher . ENCRYPT_MODE , new SecretKeySpec ("0123456789

abcdef ". getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
58 // cipherDec = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
59 // cipherDec .init( Cipher . DECRYPT_MODE , new SecretKeySpec ("0123456789

abcdef ". getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
60 // this. sslIn =new CipherInputStream ( sslInputStream , cipherDec );
61 // this. sslOut =new CipherOutputStream ( sslOutputStream , cipherEnc );
62 // this.out = new DataOutputStream ( sslOut );
63 // this.in = new DataInputStream ( sslIn );
64 this.out = new DataOutputStream ((( SSLSocket ) socket ). getOutputStream ())

;
65 this.in = new DataInputStream ((( SSLSocket ) socket ). getInputStream ());
66 tls_enabled =true;
67 log.info (" SECURE SOCKET OPENED WITH TLS 1.3") ;
68 initializeOpen (swt , owtt , kwtt , isParentPCE , requestsParentPCE ,

domainId , pceId , databaseVersion );
69 } catch ( Exception e) {
70 e. printStackTrace ();
71 }
72 } catch ( PCEPProtocolViolationException e1) {
73 log.info (" Malformed STARTTLS , INFORM ERROR and close ");
74 e1. printStackTrace ();
75 PCEPError perror = new PCEPError ();
76 PCEPErrorObject perrorObject = new PCEPErrorObject ();
77 // FIX: change error object parameter adding starttls error type
78 perrorObject . setErrorType ( ObjectParameters . ERROR_ESTABLISHMENT );
79 perrorObject . setErrorValue ( ObjectParameters .

ERROR_ESTABLISHMENT_INVALID_OPEN_MESSAGE );
80 ErrorConstruct error_c = new ErrorConstruct ();
81 error_c . getErrorObjList ().add( perrorObject );
82 perror . setError ( error_c );
83 log.info (" Sending Error and ending PCEPSession ");
84 sendPCEPMessage ( perror );
85 pcepSessionManager . notifyPeerSessionFail (( Inet4Address ) this. socket .

getInetAddress ());
86 killSession ();
87 }
88
89
90 }
91 else
92 {
93 log.info (" ignore STARTTLS message , already one received ");
94 }
95 break ;
96✝ ✆
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If the state is different from PCEP_STATE_SESSION_UP and is equal
to PCEP_STATE_STARTTLS_WAIT, the PCE/PCC reads the received
message and if it is of type MESSAGE_STARTTLS then it will stop the
StartTlsWait timer, try to open a secure socket and start the Open message
initialize procedure. If a StartTLS message was already received, then this
new StartTLS will be just ignored;

• we also added code for handling and ignore possible StartTLS messages
received when the session is already up in many PCEP session files (for
Domain PCE session, PCC session and server parent PCE session):

✞ ☎
1 while (this. FSMstate == PCEPValues . PCEP_STATE_SESSION_UP ) {
2 try {
3 if( tls_enabled == true){
4 // msg= readEncMsg (in , cipherDec );
5 // byte [] iv = new byte [16];
6 // random . nextBytes (iv);
7 // gcmSpec = new GCMParameterSpec (128 , iv);
8 // cipherEnc = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
9 // cipherEnc .init( Cipher . ENCRYPT_MODE , new SecretKeySpec ("0123456789 abcdef ".

getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
10 // cipherDec = Cipher . getInstance (" AES/GCM/ PKCS5Padding ");
11 // cipherDec .init( Cipher . DECRYPT_MODE , new SecretKeySpec ("0123456789 abcdef ".

getBytes ( StandardCharsets . UTF_8 ), "AES ") , gcmSpec );
12 // this. sslIn =new CipherInputStream ( sslInputStream , cipherDec );
13 // this. sslOut =new CipherOutputStream ( sslOutputStream , cipherEnc );
14 // msg= readMsgEnc ( sslIn );
15 msg = readMsg (in);
16 }
17 else{
18 msg = readMsg (in);
19 } catch ( IOException e) {
20 // cancelDeadTimer ();
21 // cancelKeepAlive ();
22 // timer . cancel ();
23 // try {
24 // in. close ();
25 // out. close ();
26 //} catch ( IOException e1) {
27 //}
28 log.warn (" Finishing PCEP Session abruptly ");
29 this. killSession ();
30 return ;
31 }
32 if (this.msg != null) {
33 // If null , it is not a valid PCEP message
34 boolean pceMsg = true;
35 // By now , we assume a valid PCEP message has arrived
36 // Depending on the type a different action is performed
37 boolean STARTTLSmsg = false ;
38 switch ( PCEPMessage . getMessageType (this.msg)) {
39
40 case PCEPMessageTypes . MESSAGE_OPEN :
41 log. debug (" OPEN message received ");
42 // After the session has been started , ignore subsequent OPEN

messages
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43 log.warn (" OPEN message ignored ");
44 break ;
45 case PCEPMessageTypes . MESSAGE_STARTTLS :
46 log. debug (" STARTTLS message received ");
47 // After the session has been started , ignore subsequent STARTTLS

messages
48 log.warn (" second STARTTLS message
49 received ");
50
51 break ;
52 ...
53 }
54 ...
55 }
56 ...
57 }
58✝ ✆
• another work that we did was also on the readMsg() function: we optimized

the normal function that was already present in the code and, based on
this one, we added two new functions called readEncMsg(), which reads an
encrypted message from the SSLSocket and makes the deciphering procedure
to give the deciphered message to the instructions that read the header and
all the message fields to reconstruct the message object, and readMsgEnc()
which takes a CipherInputStream as a parameter and uses that instead of
the DataInputStream to perform the deciphering; this two functions where
used as test to see if the chosen encryption algorithm could be used for the
PCEP message format. However they can also be used if, as mentioned before,
the TLS connection is impossible to use in a setup but still the encryption is
mandatory. In our case using TLS, the normal readMSg() function can be
used:

✞ ☎
1 protected byte [] readMsg ( DataInputStream in ) throws IOException {
2 byte [] ret = null;
3
4 byte [] hdr = new byte [4];
5 byte [] temp = null;
6 boolean endHdr = false ;
7 int r = 0;
8 int length = 0;
9 boolean endMsg = false ;

10 int offset = 0;
11
12 while (! endMsg ) {
13 try {
14 if ( endHdr ) {
15 r = in.read(temp , offset , 1);
16 } else {
17 r = in.read(hdr , offset , 1);
18 }
19 } catch ( IOException e) {
20 log.info (" Mistake reading data: " + e. getMessage ());
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21 throw e;
22 } catch ( Exception e) {
23 log.info (" readMsg Oops: " + e. getMessage ());
24 throw new IOException ();
25 }
26
27 if (r > 0) {
28 if ( offset == 2) {
29 length = (( int) hdr[ offset ] & 0xFF) << 8;
30 }
31 if ( offset == 3) {
32 length = length | ((( int) hdr[ offset ] & 0xFF));
33 temp = new byte[ length ];
34 endHdr = true;
35 System . arraycopy (hdr , 0, temp , 0, 4);
36 }
37 if (( length > 0) && ( offset == length - 1)) {
38 endMsg = true;
39 }
40 offset ++;
41 } else if (r == -1) {
42 log.info (" End of stream has been reached from " + this. remotePeerIP );
43 throw new IOException ();
44 }
45 }
46 if ( length > 0) {
47 ret = new byte[ length ];
48 System . arraycopy (temp , 0, ret , 0, length );
49 }
50 return ret;
51 }✝ ✆
✞ ☎

1 protected byte [] readEncMsg ( DataInputStream in , Cipher cipher ) throws
IOException {

2 byte [] decryptedMsg =null;
3 byte [] encryptedMsg =null;
4 ByteArrayOutputStream baos = new ByteArrayOutputStream ();
5 CipherInputStream cis = new CipherInputStream (in , cipher );
6 byte [] buffer = new byte [1024];
7 int bytesRead ;
8 while (( bytesRead = cis.read( buffer )) != -1) {
9 baos. write (buffer , 0, bytesRead );

10 }
11 encryptedMsg = baos. toByteArray ();
12 System .out. println (new String ( encryptedMsg , StandardCharsets . UTF_8 ));
13
14 // Decifra il messaggio
15 try {
16 decryptedMsg = cipher . doFinal ( encryptedMsg );
17 } catch ( IllegalBlockSizeException e) {
18 log.info (" Error decrypting message due to illegal block size: " + e.

getMessage ());
19 throw new IOException ();
20 } catch ( BadPaddingException e) {
21 log.info (" Error decrypting message due to bad padding : " + e. getMessage

());
22 throw new IOException ();
23 }
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24 // leggi il messaggio decifrato come se fosse un altro DataInputStream
byte [] ret = null;

25 DataInputStream decryptedIn = new DataInputStream (new ByteArrayInputStream
( decryptedMsg ));

26 byte [] hdr = new byte [4];
27 byte [] temp = null;
28 boolean endHdr = false ;
29 int r = 0;
30 int length = 0;
31 boolean endMsg = false ;
32 int offset = 0;
33
34 while (! endMsg ) {
35 try {
36 if ( endHdr ) {
37 r = decryptedIn .read(temp , offset , 1);
38 } else {
39 r = decryptedIn .read(hdr , offset , 1);
40 }
41 } catch ( IOException e) {
42 log.info (" Mistake reading data: " + e. getMessage ());
43 throw e;
44 } catch ( Exception e) {
45 log.info (" readMsg Oops: " + e. getMessage ());
46 throw new IOException ();
47 }
48
49 if (r > 0) {
50 if ( offset == 2) {
51 length = (( int) hdr[ offset ] & 0xFF) << 8;
52 }
53 if ( offset == 3) {
54 length = length | ((( int) hdr[ offset ] & 0xFF));
55 temp = new byte[ length ];
56 endHdr = true;
57 System . arraycopy (hdr , 0, temp , 0, 4);
58 }
59 if (( length > 0) && ( offset == length - 1)) {
60 endMsg = true;
61 }
62 offset ++;
63 } else if (r == -1) {
64 log.info (" End of stream has been reached from " + this.

remotePeerIP );
65 throw new IOException ();
66 }
67 }
68 if ( length > 0) {
69 ret = new byte[ length ];
70 System . arraycopy (temp , 0, ret , 0, length );
71 }
72 return ret;
73 }✝ ✆
✞ ☎

1 protected byte [] readMsgEnc ( CipherInputStream in ) throws IOException {
2
3 ByteArrayOutputStream outputStream = new ByteArrayOutputStream ();
4
5 byte [] buffer = new byte [1024];
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6 int bytesRead ;
7 while (( bytesRead = in.read( buffer )) != -1) {
8 outputStream . write (buffer , 0, bytesRead );
9 }

10
11 byte [] decryptedData = outputStream . toByteArray ();
12 ByteArrayInputStream bais = new ByteArrayInputStream ( decryptedData );
13 DataInputStream dis = new DataInputStream (bais);
14 byte [] ret = null;
15
16 byte [] hdr = new byte [4];
17 byte [] temp = null;
18 boolean endHdr = false ;
19 int r = 0;
20 int length = 0;
21 boolean endMsg = false ;
22 int offset = 0;
23
24 while (! endMsg ) {
25 try {
26 if ( endHdr ) {
27 r = dis.read(temp , offset , 1);
28 // log.info (" TEST PRINT after end hdr: "+ new String (temp ,

StandardCharsets . UTF_8 ));
29 } else {
30 r = dis.read(hdr , offset , 1);
31 // log.info (" TEST PRINT hdr: "+ new String (hdr , StandardCharsets . UTF_8

));
32 }
33 } catch ( IOException e) {
34 log.info (" Mistake reading data: " + e. getMessage ());
35 throw e;
36 } catch ( Exception e) {
37 log.info (" readMsg Oops: " + e. getMessage ());
38 throw new IOException ();
39 }
40
41 if (r > 0) {
42 if ( offset == 2) {
43 length = (( int) hdr[ offset ] & 0xFF) << 8;
44 }
45 if ( offset == 3) {
46 length = length | ((( int) hdr[ offset ] & 0xFF));
47 temp = new byte[ length ];
48 endHdr = true;
49 System . arraycopy (hdr , 0, temp , 0, 4);
50 log.info (" TEST PRINT after end hdr: "+ new String (temp , StandardCharsets

. UTF_8 ));
51 }
52 if (( length > 0) && ( offset == length - 1)) {
53 endMsg = true;
54 }
55 offset ++;
56 } else if (r == -1) {
57 log.info (" End of stream has been reached from " + this. remotePeerIP );
58 throw new IOException ();
59 }
60 }
61 if ( length > 0) {
62 ret = new byte[ length ];
63 System . arraycopy (temp , 0, ret , 0, length );

62



PCEPS improvements and implementation

64 }
65 return ret;
66 }
67✝ ✆

For the ReadEncMsg function, since we still used a DataOutputStream object
associated with a CipherOutputStream that contains a Cipher object with
the encrypting algorithm, the initialization vector and the session key, all the
written output data are automatically enciphered. For the input, we used
also the DataInputStream object associated with a CipherInputStream that
contains a Cipher object with the encrypting algorithm, the initialization
vector and the session key, so the input data read from the SSLSocket are
automatically decrypted without other instruction. As a consequence, the
standard readMsg function can be used and the readEncMsg function is used
only when the CipherInputStream is disabled or not supported.

63



Chapter 7

Simulation and Testing

The simulation is done building a virtual machine that uses a Unix environment
(Debian Bullseye OS) with the Vagrant tool; we built two virtual setups with the
same topology described in chapter 4: the first virtual setup is with the two PCEs
without PCEPS support, the second one instead has full PCEPS support for the
PCEs .
Since we could not change the FRR code of the routers, the routers cannot speak
PCEPS, so they will only use PCEP in our setup. That is why we focused on the
analysis of the communication between the two PCEs.
First, we see if the changes to implement the new secure protocol(PCEPS) are
working and how the PCEs now behave compared to the original Netphony-PCEs;
furthermore we check if the two PCEs respect the packetflow and initialization
rules of PCEPS how described before; lastly, we see if the encryption works and
the performances for the setup with encryption and authentication enabled are still
acceptable.

7.1 Setups Testing
In the following figures we have the packets flow and full output of the setup
simulation with PCEPS disabled, so as we described in the previous sections, with
the value PCEP_TLS inside the PCEPValues.java file set to zero:

Here we reported the full output of the PCE1 in domain1 and PCE2 in domain2
but with the value PCEP_TLS set to 1:

As we can see in figures 7.1, 7.2, 7.3, if we look at Thread 13 PCE1 first waits
for a connection and then, when PCE2 starts running and opens a tcp channel with
PCE1, it enters in PCEP_STATE_STARTTLS_WAIT and keeps waiting for a
StartTLS message from PCE2 after the start of the STARTTLS wait timer; in the
meanwhile it sends a StartTLS message to PCE2 in order to notify its intention of
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Figure 7.1: PCE1 in domain1 establishes a PCEP session with PCE2 in domain2

Figure 7.2: PCE1 in domain1 establishes a PCEP session with PCE2 in domain2

opening a secure channel with TLS.
When PCE2 StartTLS message is received from PCE1, it stops the STARTTLS
wait timer and opens a secure TLS channel with parameters and algorithms that we
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Figure 7.3: PCE1 in domain1 establishes a PCEP session with PCE2 in domain2

Figure 7.4: PCE1 in domain1 establishes a PCEPS session with PCE2 in domain2

described in the code showed in the previous sections (we can see that everything
until now works as intended from the log message displayed that says SECURE
SOCKET OPENED WITH TLS 1.3).
At this point the initialization of the secure channel between the two peers is done
correctly, so they are both now speaking PCEP over TLS; now the initialization
phase of a PCEP starts, so as we can see PCE1 enters in Open wait state, schedule
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Figure 7.5: PCE1 in domain1 establishes a PCEPS session with PCE2 in domain2

Figure 7.6: PCE1 in domain1 establishes a PCEPS session with PCE2 in domain2

the OpenWait timer correctly and sends to PCE2 an Open message with all the
correct parameter inside. After a while PCE1 receives from PCE2 an Open message,
it decodes it correctly and from this message, it sets all the session parameters
accordingly. Now the PCE1 has officially established successfully the PCEPS
session and enters in the KeepWait state.
In this state the two peers (PCE1 and PCE2) send to each other Keepalive messages
to keep up the connection. From here on now the communication between the two
peers can be considered secure since its all over TLS.

Figures 7.7, 7.8, 7.9 show the output of the simulation from PCE2 point of view
with the packets flow of the initialization phase, that has the same behaviour as
the PCE1 packets flow that was described and shown before.
With this setup confidentiality of the packets (in this case the Open packets and
all their parameters) is guaranteed, but also the integrity of the packets, since
AES in GCM mode also assures this property. The simulation was configured once
with the TLS client authentication disabled (so only the server authentication was
enabled), then with client authentication enabled in order to see how the setup
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Figure 7.7: PCE2 in domain2 establishes a PCEPS session with PCE1 in domain1

Figure 7.8: PCE2 in domain2 establishes a PCEPS session with PCE1 in domain1

performances could change.
Inside the simulation we could also see the packets using the sniffer tool Tshark on
PCE1-PCE2 virtual link in order to capture the TLS packets and PCEP messages:
we could see notice that Open packets and Keepalive packets were all well encrypted
(in particular the Open packets, which contain sensitive data for the PCEPS session)
and the TLS handshake with peer authentication is done correctly.
From a performance point of view, we could not see any meaningful changes
comparing the PCEPS enabled setup and standard PCEP setup, even when client
authentication was enabled. Still it is important to notice that we didn’t use any
key exchange algorithm for the session key of PCE1 and PCE2 because we simply
hard coded the session key inside the Netphony-PCE modified source code, just
as an academic demonstration. However it is unluckily that using a key exchange
algorithm could have a significant impact on the performances.
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Figure 7.9: PCE2 in domain2 establishes a PCEPS session with PCE1 in domain1

7.2 Discussion

In this thesis we have looked at the practical feasibility of deploying a multi-domain
Path Computation Element (PCE) setup that is scalable and secure, in order to
guarantee security properties that are needed to be used as the Path Controller
part of the UPIN framework.
The research focus was to analyse the PCE Communication protocol, find the
vulnerabilities, weaknesses, the actual state of the art technology and in the end find
a valid implementation which can be used inside the setup already used to develop
the UPIN framework. Our proof of concept shows the successful provisioning of the
computation and installation of a multi-domain switch path (LSP) using a secure
and reliable communication.
The first roadblock in this research was that currently, almost all commercial
deployments do not support any security features for PCE based communication,
and the only one that does it is an incomplete secure implementation and not
open-source. We have shown our evaluation of the available PCEs in chapter 3.
In order to make future researches easier, we chose a lightweight and open-source
router stack on top of Linux, the Free Range Routing (FRR), which support PCEP
protocol and its possible new implementations. Note that this setup has some
limitations: first of all, the Free Range Routing (FRR) PCEP implementation is
still experimental and not completely released while working on this thesis; second,
the Multi-Protocol Label Switching (MPLS) implementation of the linux-kernel
has some limitations, for instance the kernel can pop at most one label. To forward
the packets from the Area Border Router (ABR) toward the other domain, a php
script from a previous work was used. All of this can be a problem in different
use cases regarding the Segment Identifiers. However this problem were out of the
scope of this work but it is important to address them in future works.
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Concerning the PCEP protocol, there is still the Transition problem: at the moment
of this work there are no devices that support PCEPS, so like in our setup with
PCEPS implemented in TLS, you can choose to allow also standard PCEPS sessions
with the routers which cannot establish a PCEPS connection until every node in
the network is upgraded or you can put a limitation and strictly allow only secure
connection and block any attempt of standard PCEP session establishment from
node that are still not updated. With the first option, it is easier to manage the
network even if old devices are present, however it is prone to malicious attacks
that can disrupt the network.
It is also possible to at least make an implementation of a PCE without TLS and
all the security features of PCEPS (so without the initialization and new packet
flow present in PCEPS) but with the use of cryptographic algorithm in order to
have a small set of security features guaranteed. Also in this case note that for
the key exchange algorithms and other cryptographic features, a key pair and a
certificate could be needed and have them is not always the case for every devices.
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Chapter 8

Conclusion

We aimed in this research to answer the question of how we can perform multi-
domain segment routing in the Path Controller part of the UPIN framework, which
is build upon PCE devices that rely on an insecure protocol, that is the PCEP
protocol, developing a new version of it more secure and reliable. Also we asked
ourselves which was the current state of the art technologies.
We explored the inner protocol insecurities, analysed its behaviour and evaluated
different possibilities to improve it. Furthermore, we also discussed the Transition
problem that occurs when the upgraded PCEs and PCEPS protocol are introduced
in an old network setup and what are the possible solutions to deal with it; we also
presented the new possible attacks against a new version of the Path Controller
that makes use of these new technologies.
While building the proof of concept we ran on multiple limitations that were
unknown beforehand. Currently there are no PCE implementations that take
in consideration security features, and the only one that has at least a TLS
implementation is not open-source, so it is not possible to modify for our own needs.
Also the current support and implementation of the PCEP protocol in most of the
routers are still not enough mature to deal in an efficient way with the Transition
problem, so further security layers are needed to take care of the remaining attack
vectors; lastly the guidelines for PCEP over TLS it is only in its draft phase.
The main contribution of this research is showing which are the insecurities of
PCEP, which could be its improvements and to present a possible implementation
that also works in a multi-domain environment.
In the end, with this work we achieve a new improvement for a crucial part of the
UPIN framework, making the Path Controller more secure and reliable.
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8.1 Future Works
For future works, it is possible to search a way to implement a valid key exchange
algorithm and improve the PCEPS part concerning when it is really needed the
client authentication and when it is not and evaluate the level of performances;
Moreover it is possible using our setup to evaluate exactly which could be the
data that must be protected and which could be left unprotected in order to treat
efficiently the Transition problem deciding when to use the new technologies and
when it is possible to still use the old one.
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