
POLITECNICO DI TORINO

Master of Science course in
Data Science and Engineering

Master’s Degree thesis

Deep Anomaly Detection: an experimental
comparison of deep learning algorithms for

anomaly detection in time series data

Supervisors
Prof. D. APILETTI
Dott. S. MONACO

Candidate
ANTONIO ALBANESE

April 2023





ii





Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Types of classification models . . . . . . . . . . . . . . . . . . . . . 7

1.4 Deep Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Works 10

2.1 State-of-the-art methods . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 CNNs in Deep Anomaly Detection . . . . . . . . . . . . . . 11

2.1.2 GANs in Deep Anomaly Detection . . . . . . . . . . . . . . 12

2.1.3 AE in Deep Anomaly Detection . . . . . . . . . . . . . . . . 12

2.1.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Anomaly detection surveys and benchmarks . . . . . . . . . . . . . 14

2.2.1 Present work contribution . . . . . . . . . . . . . . . . . . . 16

3 Methods 18

iv



3.1 Research criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Selected Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 DeepAnT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 TanoGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 USAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Transformer Anomaly . . . . . . . . . . . . . . . . . . . . . 29

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Numenta Anomaly Detection Benchmark Dataset . . . . . . 33

3.3.2 Server Machine Dataset . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Mars Science Laboratory Dataset . . . . . . . . . . . . . . . 38

3.3.4 Secure Water Treatment Dataset . . . . . . . . . . . . . . . 40

4 Experimental results 42

4.1 Experiments implementation . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 The threshold problem . . . . . . . . . . . . . . . . . . . . . 44

4.2 Comparison Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 The influence of SEQ_LEN parameter . . . . . . . . . . . 48

4.3.2 Performance vs threshold . . . . . . . . . . . . . . . . . . . . 51

4.3.3 A new comparison metric: Discrimination Score . . . . . . . 56

5 Conclusions and future works 62

A Details of results obtained 65

Bibliography 68

v



List of Tables

3.1 Summary of experimented methods, for each, is reported if the

method has or not Multivariate Time Series capability, is originally

implemented in PyTorch or re-implemented by the author and if it

is semi-supervised or unsupervised in its publication . . . . . . . . . 21

3.2 Summary of the composition of the datasets used in this work and

the number of anomalies in each one of them. . . . . . . . . . . . . 34

4.1 Binary classification confusion matrix . . . . . . . . . . . . . . . . . 45

4.2 Optimal values of SEQ_LEN parameter found for each dataset. . 51

vi



List of Figures

1.1 Different types of anomalies . . . . . . . . . . . . . . . . . . . . . . 5

1.2 EEG signal registered over time in different channels [9] . . . . . . . 6

3.1 DeepAnT architecture: data is passed to the CNN that outputs a

prediction for the next time-series window, which then is compared

with the real next time-series window. . . . . . . . . . . . . . . . . . 23

3.2 TAnoGAN Architecture: Time Series Anomaly Detection with Gen-

erative Adversarial Networks [20] . . . . . . . . . . . . . . . . . . . 25

3.3 USAD architecture illustrating the information flow at training (left)

and detection stage (right). [25] . . . . . . . . . . . . . . . . . . . . 28

3.4 "Anomaly Transformer architecture. Anomaly-Attention (left) mod-

els the prior-association and series-association simultaneously. In

addition to the reconstruction loss, our model is also optimized by

the min-max strategy with a specially-designed stop-gradient mech-

anism (gray arrows) to constrain the prior- and series- associations

for more distinguishable association discrepancy." [27] . . . . . . . . 31

vii



3.5 Density plots for the NAB datasets employed in this work. On

the x-axis is reported the rug plot which shows the distribution of

anomaly and normal points . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Violin plot of top-5 features correlated with the class "Anomaly/Nor-

mal" of the SMD dataset. . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Box plot and bar plots for the MSL dataset of the top-5 correlated

features with the target feature. . . . . . . . . . . . . . . . . . . . . 39

3.8 Bar plots for the SWAT dataset of the top-5 correlated features with

the target feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 F1-Score obtained by each method when tested on different datasets

with different SEQ_LEN values. The star indicates the SEQ_LEN

value which gave the best performance for each method with the

same dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 F1-Score obtained by each method when tested on different datasets

with different SEQ_LEN values. The star indicates the SEQ_LEN

value which gave the best performance for each dataset when used

in different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Anomaly score example: data which score is below the threshold is

marked as normal, data which score is above the threshold is marked

as anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 F1-Score, Recall, and Precision for dataset MSL. The color of the

lines indicates the different models tested. . . . . . . . . . . . . . . 53

4.5 F1-Score, Recall, and Precision for dataset SMD. The color of the

lines indicates the different models tested. . . . . . . . . . . . . . . 53

viii



4.6 F1-Score, Recall, and Precision for dataset SWAT . The color of the

lines indicates the different models tested. . . . . . . . . . . . . . . 54

4.7 F1-Score, Recall, and Precision for NAB datasets. The color of the

lines indicates the different models tested. . . . . . . . . . . . . . . 55

4.8 SWAT anomaly score . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Discrimination Scores per each dataset of methods tested in this

work. A star indicates that the DS score is the best obtained for a

specific method, when there is a correspondence between the best

DS score and the best F1-Score the star is filled, and the star is

empty otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Best F1-Score per each dataset obtained by tested methods. . . . . 61

A.1 SEQ_LEN_DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2 SEQ_LEN_METHOD . . . . . . . . . . . . . . . . . . . . . . . 67

ix





Chapter 1

Introduction

In the last decades, thanks to the development of information technology, data have

proliferated doubling every year since the 1980s [1]. One of the biggest sectors that

produce huge amounts of data is Industry, in which the advent of IoT (Internet of

Things) enabled a new paradigm based on the automation of processes like data

collection or monitoring, indeed researchers need to analyze an ever-increasing

amount of data and doing so without the help of automated approaches has become

infeasible [2]. Cyber-physical systems employed in industry 4.0 or monitoring

systems used in medicine, aircraft, or servers usually record such data in the form

of Multivariate Time Series. The huge amount of time-related information that is

continuously recorded allows us to analyze such data not only to make predictions

but also to monitor systems and eventually identify deviations from the normal

behavior [3], in other terms having a big quantity of time-related information enable

us to look for anomalies in data that may indicate abnormal and dangerous events

in the monitored systems. The problem of finding such deviations in data is called

Anomaly Detection which is the main topic of this work. Below in this chapter,
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Introduction

we will describe the anomaly detection problem along with the time series data

and the opportunities that deep learning offers in anomaly detection applied to

Multivariate Time Series data.

1.1 Anomaly Detection

Anomaly detection problem refers to finding data instances that do not conform to

the expected and general behavior of data, the non-conforming patterns or points

found are usually called anomalies or outliers [4]. Sometimes more specific and

application-driven terms, which can better describe the meaning and implications of

an outlier in its field, may be used instead of the term anomaly. In fact, as we will see

later, the definition of anomaly is strictly dependent on the application domain, so

that in literature we can find references to terms like anomalies, outliers, exceptions,

discordant observations, aberrations, surprises, peculiarities, contaminants, and so

on [4].

Therefore in literature we can read of common and important challenges of

defining anomalies, as reported by Chandola et al. [4] the simple and abstract

definition of anomalies as instances that heavily deviate from the general data

trend, leads us to several challenges when searching for a more precise and technical

definition of the anomaly:

• It is quite difficult to define a zone of data that includes every conceivable

normal activity. Additionally, the boundary between regular activity and

anomalous behavior it’s not always clear. As a result, an observation near the

boundary may appear abnormal when it is normal and vice versa.

• Normal behavior may be dynamic and evolving over time, so it is impossible

to represent all future normal trends
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• The anomaly definition is different for different domains. For example, a small

deviation from the general trend may be seen as normal in stock markets data,

while the same small deviation in medical data may be a sign of a disease

• High-quality labeling for data requires time and domain experts making it

difficult and costly to obtain labels that are reliable enough to train a classical

classification model.

Due to these problems, it is not easy to formulate and solve a general problem

for anomaly detection. Most existing anomaly detection techniques are able to

(and tuned to) solve only field-specific formulations of the problem. That specific

formulation is every time induced by various factors such as the nature of the data,

the availability or not of the labels, the type of anomalies to be detected, and so

on.

One of the major issues in anomaly detection is to define which type of anomaly

we are in search of. In fact, anomalies can appear in different forms which can be

categorized into 3 types [2, 4, 5, 6, 7]:

• Point anomalies: it is the simplest type of anomaly. These anomalies occur

when a single point or instance of data significantly deviates from the rest of

the data. For example in Figure (1.1a) point p is a point anomaly compared

to normal points in the outlined region.

• Contextual anomalies: If a data instance is anomalous in a specific context,

but not otherwise, then it is termed a contextual anomaly [8]. Figure (1.1b)

illustrates a contextual anomaly in temperature data, where t1 and t2 have

the same allowed value, but t1 is a normal point since it is registered in the

winter period, whereas t2 is not normal because it is registered before June.
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• Collective anomalies: occur when a contiguous series of data points is

anomalous with respect to the general behavior of data. For example in

Figure (1.1c), which reports the graph of an ECG measurement, the high-

lighted region corresponds to an anomaly which indicates an Atrial Premature

Contraction in the patient, in fact, the signal persists for an abnormally long

time at the same value, while the value itself is not an anomalous value.

Another major challenge in anomaly detection is the rarity of anomalies in data.

Considering information collected from real-world applications, anomalies may

correspond to dangerous or catastrophic events, so it is obvious that anomalies are

very rare and roughly the entire data contains normal samples. In such a scenario

it is difficult to have enough records to train a proper classical and supervised

classification model, or even to perform validation and testing in a proper and

rigorous way. This fact points us also to the problem of choosing a good metric to

fairly evaluate models. We will better address these aspects in the next chapters.

1.2 Time Series Data

Time-related data are widely present in databases of various fields. Time-series data

are ordered collections of information obtained through repeated measurements

over time, indeed the ordering is assumed to be through the time associated with

the measurement.

Time series can occur in various fields such as production rates and prices from

industry or daily temperature and wind speed in meteorology, etc. The intrinsic

nature of this type of data is that observations are strictly dependent and correlated

with previous ones.
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(a) Point anomaly: in a 2-
dimensional space, the point p is
an anomaly with respect to other
points that are all-encompassed
with the green line
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(b) Contextual anomaly: point t2 is
a contextual anomaly because even
though its value is allowed and al-
ready present in the series (t1), it
heavily deviates from the normal be-
havior of near measurements [4, 5]
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(c) Collective anomalies: points in
the highlighted region do not follow
the normal behavior of the series,
and having all the points at that
signal level indicates the Atrial Pre-
mature Contraction disease [4]

Figure 1.1: Different types of anomalies

Time-based collections of data that report values of a single variable are gener-

ally referred to as Univariate Time Series, on the other hand when several related
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variables are observed simultaneously we talk about Multivariate processes. Mul-

tivariate time series data is defined as data taken from multiple sources at the

same time and where the output of each source depends on what is happening in

the other sources. A very common example of multivariate time series data is the

EEG-brain data, in which measurements are collected from different sensors which

usually are called channels, an example is reported in Figure(1.2)

Figure 1.2: EEG signal registered over time in different channels [9]

We can use a simple example to understand the complexity and the power

of time series data. Considering information about the daily inventory level of

ice cream and waffle cones in a local grocery store, an idea for having always

healthy inventory levels would be to use a time series analysis model fitted on

data from past years’ inventory to predict the demand level. Of course, doing so,

we would immediately notice that, besides the general trend of the two variables,

also a seasonality would emerge with fewer sales in the cold periods and a strong

increment during hot periods. Moreover, we would see how the demands of the two
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products are highly cross-correlated. Now we could also add another variable to

the series, which may be beverage demand. In that case, trends, seasonality, and

in particular cross-correlations with other variables, may be very underlying and

difficult to spot without a proper analysis framework.

Major time series-related tasks are forecasting, classification, and anomaly

detection. Time series analysis during the last decades has gained more and more

attention, and although a solid theoretical foundation underlies many time-series

analysis methods proposed by researchers, their great number and interdisciplinary

diversity make it very difficult to determine how methods developed in different

disciplines do relate to one another [10].

For this reason, when approaching time series tasks, it is important to identify

the best framework in which to operate, so that we can capture all the possible

information that is contained in the series and obtain results that are as consistent

as possible with reality.

1.3 Types of classification models

Since the Anomaly Detection task can be brought back to Classification we can

introduce a general categorization of models, based on the labeling of data we

use for training. Usually, Deep Learning algorithms are classified as: supervised,

semi-supervised, and unsupervised methods.

• Supervised methods need data to be accurately labeled before training the

model. In Anomaly Detection, as already explained this is a problem, since

labeling data requires strong domain knowledge and can be really expensive

and time-consuming. Moreover, the labeling is usually performed manually

by domain experts, so we can never be certain that it is error-free.
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• Unsupervised do not need data to be labeled and can learn distributions

and associations used to classify input without using any labels. For this

reason, supervised models are considered more immediate and of simple usage

in tasks like Anomaly Detection. In fact, even though some effort is needed to

setup the best configuration of the model, it can be more convenient because

we can avoid the labeling phase.

• Semi-supervised methods are usually in the middle between supervised and

unsupervised. A combination of labeled and unlabeled data is usually used to

train these methods, with the labeled sets generally smaller than the unlabeled

ones. In two-class classification tasks also models which assume that the

training set contains data concerning only one of the two classes are considered

semi-supervised models. For example, Generative Adversarial Networks for

Anomaly Detection are most of the time based on the assumption that the

training set is devoid of anomalies, containing only normal records.

1.4 Deep Anomaly Detection

As already said, we know that the problem of Anomaly detection, and more in

general time-series analysis, is strictly dependent on the data domain. Research

in anomaly detection has been active for many years, but as already explained

anomaly detection in Multivariate Time series data points out some challenges

that are difficult to overcome with classical statistical analysis frameworks and

methods [6]. In the last years, the advent of deep learning enabled new approaches

to Anomaly detection. In particular, the use of Deep Neural Networks allowed

researchers to work with a large amount of data in a more automatic way. In

fact, Deep Neural Networks are designed to identify hidden connections between
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variables without the need for prior knowledge, unlike classical methods that rely

on domain experts to manually examine data for significant patterns or points. It

is obvious that the classical approach has a high probability to be costly, difficult,

and yielding sub-optimal results when applied to large datasets.

All the best state-of-the-art Deep Anomaly Detection methods which are based

on different types of Neural Networks use a specific, and most of the time, unedited

way to calculate a score, which is often referred to as Anomaly Score on which a

threshold must be defined to find anomaly points and normal ones. The advantage

given by Deep Learning can give some difficulties in comparing results obtained

from different models. In fact, typically, each deep learning model generates its

own unique Anomaly Score calculation methodology, so we cannot simply compare

scores returned by different methods, but some deeper analysis of results is required

in order to understand which model performs better than others.
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Chapter 2

Related Works

The topic of Deep Anomaly detection in time series data has started its major

development in the last ten years. During this time we can find a lot of methods

that rapidly outperform previous ones. In this chapter, we will first describe some

basic concepts and the Deep Neural Network architectures which are at the basis

of state-of-the-art Deep Anomaly Detection models and lastly, we will provide

a description of some of the most cited surveys about this topic clarifying the

motivations and needs behind this work.

2.1 State-of-the-art methods

In our exploration of the Deep Anomaly Detection for Time-Series topic, we

decided to proceed with dividing explored methods based on the architecture used

to implement the deep neural network. In fact, one of the advantages of deep

learning is that different networks are able to learn and model the time dependence

and cross-correlations between variables in different ways, which can be more

suitable for different use cases. In this work, we will experiment with architecture
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based on Convolutional Neural Networks (CNN), Generative Adversarial Networks

(GAN), Transformers, and Auto-Encoders (AE), which, to the best of our knowledge,

are four of the most used, newest, and most promising architectures in this research

area.

2.1.1 CNNs in Deep Anomaly Detection

Convolutional Neural Network (CNN) is a well-known deep learning architecture

that is widely used in computer vision, and in general, is really powerful in image-

related tasks. CNNs are generally built on 3 types of layers: convolutional layers,

pooling layers, and fully-connected layers. In particular, the convolutional layer is

in charge of determining the output of neurons which correspond to local regions of

the input through the calculation of the scalar product between their weights and

the input region [11]. After big development in computer vision, CNNs have been

explored also with time series data. In this case convolutional and pooling layers

are used to extract deep features of the raw data which are consequently used to

perform the original task which in our case is Anomaly Detection [12, 13]. In the

last years CNNs have been used alone and in conjunction with other architectures

in many different approaches for time series anomaly detection [5, 6, 14, 12, 15,

16]. Ren et al in [17] at Microsoft propose a model based on Spectral Residual

(SR) and CNNs. Their work is the first that tries to borrow the SR model from

the visual saliency detection domain to time-series anomaly detection, moreover,

they combine SR with CNN improving the SR’s performances. Munir et al. in [12]

propose a model made of two CNN-based modules, which they call predictor and

anomaly detector, the first one is in charge of learning the data distribution and

predicting new data, the second one is in charge of learning the data distribution

and find anomalies comparing the predicted time series windows with real ones.
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2.1.2 GANs in Deep Anomaly Detection

Generative Adversarial Networks are deep learning models that gained great in-

terest in the last years. GANs are generative models, generally composed of two

modules named discriminator and generator, which goal is to learn the probability

distribution that generates the training samples and then use this knowledge to

generate more samples from the estimated probability distribution [18]. GANs

have been proposed in different publications, which preserve the basic process of

adversarial training while proposing novelties in the anomaly score evaluation and

base architectures. Li et al. in MAD-GAN [19] use a Generative adversarial network

in which the generator and the discriminator are implemented as Long-Short Term

Memory - Recurrent Neural Networks (LSTM-RNN) with the aim of capturing

the latent interactions amongst all the variables in the Multivariate Time Series,

in this way they could exploit both Discriminator and Generator to compute an

unedited anomaly score named DR-score. Geiger et al. in TadGAN [16] introduce

cycle-consistent GAN architectures for time series data, such that Generators can

be directly used for time series reconstructions and then use the reconstruction

error to compute the anomaly score. Bashar et al. in TAnoGAN [20] implement

both discriminator and Generator as LSTM-RNN with the goal of using the learned

feature representation to compute the anomaly score, the proposed architecture is

shown to be performing really well in particular on small dimensions datasets, but

also on the conventional benchmark datasets used in other studies.

2.1.3 AE in Deep Anomaly Detection

Auto-Encoders are neural networks that are designed to encode the input data

into a valuable and meaningful compressed representation and then decode it back
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such that the reconstructed data is as similar as possible to the original input data

[21]. In Deep Anomaly Detection AEs are used to learn only the most significant

features of a training set that will serve as the reference of normality [22]. For

example, Chen et al. in [23] proposed an AE-based model that is capable of

realizing real-time anomaly detection on multivariate series data. Que et al. in [24]

propose a two-stage approach based on a fine-tuned AE and a stacked LSTM which

uses the AE-learned features to predict aircraft time series and to detect anomalies.

Audibert et al in [25] proposed a method formulated as an AE architecture that

is trained in an adversarial fashion with the aim of making the model capable of

identifying normal input data while also performing a good reconstruction.

2.1.4 Transformers

Transformers have shown great power in sequential data, even though these archi-

tectures have a very short history in the time-series domain. Recent research has

demonstrated that Transformers can be highly advantageous in time-series analysis.

This is due to the self-attention mechanism incorporated in their architecture,

which enables them to identify significant long-term temporal relationships, thereby

increasing the reliability of their findings. Chen et al. in [26] propose a novel frame-

work for Multivariate Time Series Anomaly Detection which is capable of learning

a graph structure while modeling temporal dependency using a transformer-based

architecture. Xu et al. in [27] overcome the limitation of Transformers in anomaly

detection by renovating the self-attention mechanism, based on a mechanism that

they named association discrepancy.
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2.2 Anomaly detection surveys and benchmarks

The variety of proposed models about this topic leads to a prolific literature of

surveys that report and categorize every time the state-of-the-art methods for

anomaly detection and also give some research directions for improving the research

capabilities.

During the last decade, a lot of surveys have been published, each one focusing

on different aspects of this complicated field of research. Unfortunately, a small

number of these surveys present an experimental approach, most of them can be

categorized as literature reviews, which of course give an important contribution

to understanding the Deep Anomaly Detection subject from different perspectives

of analysis, moreover, an even smaller number of them are completely focused

on Deep Learning techniques, and compare Deep Neural Networks models with

old-approach statistical models.

In 2016, Wu et al. [1] proposed a complete overview of Anomaly detection

for time series, in particular categorizing methods based on the technique used to

calculate the anomaly score, finding 5 categories: Anomaly Detection Based on

Statistical, Anomaly Detection Based on Clustering, Anomaly Detection Based on

Deviation, Anomaly detection based on distance [6, 28] and Anomaly Detection

based on Density [6, 29]. With their work authors focused on understanding how

the Anomaly Score was implemented in each method and how different strategies

of calculation can lead to different findings but also different issues.

In 2019 Chalapathy et al. present a comprehensive review of state-of-the-art

research in Deep Anomaly Detection techniques. In their work authors tried to

understand and describe correlations between the application domain and the

performances of the methods reviewed. They also expressed concerns regarding the
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data pipeline and the computational resources that are necessary for each method.

[5] .

One of the most complete surveys about Deep Anomaly Detection is the one by

Choi et al., [6] published only one year ago in 2021, demonstrating how this field

of research is in active and fast development. In this survey authors comparatively,

analyze state-of-the-art deep-anomaly-detection models for time series with several

benchmark datasets, but they use an unclear hybrid approach to build their

comparison. Their setup starts from the selection of benchmark datasets and after

they proceed with the comparison of different methods, directly reporting original

results if available for the selected time series collections in conjunction with the

dataset, or re-implementing the methods if the dataset was not considered by the

model authors.

In 2022 Han et al. made the most extensive and structured experimental

review on Anomaly Detection [30]. Their comprehensive experimentation uncovers

important insights into the function of supervision and anomaly types and opens

new avenues for algorithm design and selection study. The authors concentrate on

three crucial comparison angles: the presence of supervision, the types of anomalies,

and the robustness of the algorithm to noise and data manipulation. Anyway, this

article is not focused in particular on time series data. In collecting methods to

test authors did not concentrate their attention on Deep Neural Networks only,

but considered also classical statistical models. Moreover, the majority of the

unsupervised methods explored are old considering the big development of this

field in the last 5-10 years, and even the two recent unsupervised models reported

have not a Deep Learning architecture.
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2.2.1 Present work contribution

This study was issued to meet specific needs, that would like to overcome the

limitations of previously published reviews. Consider for example, that we want

to build a vehicle health monitoring system as part of a predictive maintenance

project. The starting point for such an implementation could be to build a system

for anomaly detection, in fact, anomalies in the data collected on a vehicle could

be indicative of impending failures on that vehicle. In such a situation, the main

requirement is to be able to figure out which of the state-of-the-art available

methods performs best with the data available.

Indeed, our contribution to this research topic can be resumed as follows:

• we provide a first step for a new approach in cross-field experimental compari-

son of the state-of-the-art models, which focuses on how the time modeling

expressed by the dataset is captured by models.

• we propose a new comparison strategy that starts by categorizing tested

methods based on the architecture on which they are built.

• we built and released a simple and effective framework that can be used

to implement and compare different methods and chose the best for the

application domain and data available.

• finally we propose a novel score, named Discrimination Score, that can be

used to compare different methods based on the Anomaly Score of normal

and anomalous points.

The research project described in this dissertation began by choosing the methods

to be evaluated, which were initially grouped based on the type of neural network

architecture used. This was done because previous research has demonstrated how

16



Related Works

the diverse abilities of each neural network in capturing temporal dependencies can

impact the model’s effectiveness [6]. Once the architectures to be analyzed were

chosen, the state-of-the-art methods were selected based on the criteria shown in

Chapter (3), then as described in the same chapter, six datasets were chosen to be

used as benchmarks to evaluate proposed models.

Chapter (4) shows how the obtained implementation has been built to be ex-

tended and used with different datasets and also different Deep Anomaly Detection

models so that we can see it as an interface utility to manage the performance

comparison of different Deep Anomaly Detection models. Then, we report and

comment on the results obtained in our experimentations and explain the reasoning

behind the proposed novel metric Discrimination Score. Finally, Chapter (5

draws conclusions and proposes future direction to extend this work.
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Chapter 3

Methods

In this experimental survey, we decided to compare the state-of-the-art methods for

each architecture that was previously reported. In this chapter, we will see details

of each selected method and details of each data set used in the experimental

evaluation.

3.1 Research criteria

As already mentioned the evolution and advance of research in Deep Anomaly

Detection led to a huge quantity of proposed models. We tried to select architectures

that seem to be best performing and mainly most promising. To make a good

selection in this panorama we first need to define rigorously the problem we want to

address. Our research is about Deep Anomaly Detection, which has been developed

in various fields and working areas. We want to explore different methods and

evaluate them in a cross-field fashion, such that we could assess two derivable at

the end of this work:
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• Answer the question: Is it possible to identify a general best-performing model

for Deep Anomaly detection in today’s landscape?

• obtain public available systematic pipeline which can be used to evaluate

different Deep Anomaly Detection Models

With this objective in mind, we fixed some criteria on which we based the model

selection:

• Multivariate Time Series capability or extensibility: the major contri-

bution of deep learning to the problem of anomaly detection is the capability

to learn cross-correlations between different features of the series. For this

reason, we selected methods that were built to work on Multivariate Time

Series or methods for which it was possible to add Multivariate Time Series

support without changing the basic structure built by the authors.

• recently published: Deep learning in general is in continuous evolution. We

considered of limited utility to work on methods that were published before

2019, and for the same reason, as said in the previous chapter (2) we identified

4 main architecture trends, in Deep Anomaly Detection and Deep Learning

in general, during the last three years which are CNNs, GANs, Transformers,

and AEs.

• state-of-the-art in its class of models: In the 4 mentioned classes of

architectures we chose methods that to the best of our knowledge are the best

performing but also methods that looked most promising in terms of intuitions

and novelties.

• unsupervised method: as described in Chapter (1) we can categorize
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Anomaly detection models in the three major types of supervised, semi-

supervised and unsupervised methods. Since we want to work on Deep Learning

Algorithms and one of the greatest advantages of Deep Neural Networks is

that they can be used even with limited knowledge about data, and since the

difficulty of labeling data is one of the major issues in Anomaly Detection, we

decide to test only unsupervised methods which allow us to overcome these

limitations. We will also consider semi-supervised methods like GANs, but

using them in an unsupervised fashion based on findings of previous works

[16, 19, 20] in which emerged that the rarity of anomalies in data makes

semi-supervised methods being used in an unsupervised way with promising

results.

We decided to explore Deep Learning models built for Anomaly Detection

tasks on Time Series data, but it should be noted also that works such [30]

count some statistical unsupervised methods in the best performing models for

Anomaly Detection. We also need to keep in mind that, even though this is an

experimental survey, our main objective was not the study of the implementation

of each method, moreover we have to notice that research and implementation of a

novel Deep Learning model requires a huge effort in term of work, for this reason, we

preferred among others methods that were published with PyTorch implementation

or methods with a well-explained implementation such that obtaining a PyTorch

implementation capable of replicating published results was not too much difficult.

Based on the presented criteria we decided to experimentally evaluate the

following published methods: DeepAnt by Munir et al. [12] based on CNN,

TanoGAN by [20] Bashar et al. which make use of GANs, USAD the AE based

model proposed by Audibert et al. [25] and Anomaly Transformer by Xu et al.

built with Transformer Networks [27]. Since this work is an experimental evaluation
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of the methods reported above, we focused on replicating the published results

while modifying them as little as possible. All the methods presented in this work

were built, or have been re-implemented, using the PyTorch framework, also the

data pre-processing strategy, network architectures, and hyper-parameters values

have been kept as much as possible equal to the published ones.

The next section contains a detailed description of selected methods, while a

quick summary is reported in Table (3.1).

Model Name MTS Pytorch Un/Semi-supervised
DeepAnt yes re-implemented semi-supervised
TanoGAN yes original unsupervised
USAD yes re-implemented unsupervised
Anomaly Transformer yes original semi-supervised

Table 3.1: Summary of experimented methods, for each, is reported if the method
has or not Multivariate Time Series capability, is originally implemented in PyTorch
or re-implemented by the author and if it is semi-supervised or unsupervised in its
publication

3.2 Selected Methods

3.2.1 DeepAnT

DeepAnT is a Deep Anomaly Detection method based on Convolutional Neural

Networks. The architecture uses two CNN modules, the first is named time series

predictor and predicts the next time window based on the input time window;

the second is named anomaly detector which is responsible to tag the time series

window as normal or anomaly. DeepAnT is an unsupervised method, it does not

need labels at training time, therefore this method is very simple to extend to a

real-life scenario.
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The time-series predictor architecture: DeepAnT uses a traditional form

of CNNs. The time-series predictor’s architecture is composed of two convolutional

layers each one followed by a max-pooling layer. The input data, which is a

time-series window (w), can be represented as a vector to the network. Both the

convolutional layers are made of 32 kernels followed by a ReLU activation function.

After two pairs of convolutional and max-pooling layers, there is a fully connected

layer that outputs the predicted time-series window.

During the training procedure, CNN’s parameters (weights and biases) are

optimized with the Stochastic Gradient Descent (SGD) paradigm. The loss function

to be minimized in this architecture is the Mean Absolute Error (MAE) reported in

Equation (3.1). This function is employed as a measure of the discrepancy between

the actual time-series window to be predicted (yi) and the predicted one (ŷi).

MAE = 1
n

nØ
j=1

yi − ŷi (3.1)

The functioning of DeepAnT architecture is reported in Figure (3.1).

Since in this phase we are building a time-series predictor, in order to leverage

CNN for this task and considering that this method works in an Un-Supervised

way, the input data must be set in a compatible form. Therefore each element xt+1

at the time stamp t + 1 is used as a label for the element xt at the time stamp t.

The number of time stamps required to be predicted is referred to as the prediction

window (pw).

Our preliminary studies on this method pointed out that the best pw is equal

to the size of the time-series window (sw) so that for each time-series window (w)

the above-described predictor will learn to predict a time-series of sw length. As

shown in Figure (3.1) considering the window w as input data, the predictor will

learn how to make the forecasted window w+1 as similar as possible to w′
+1. So,
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Figure 3.1: DeepAnT architecture: data is passed to the CNN that outputs a
prediction for the next time-series window, which then is compared with the real
next time-series window.

w′
+1 will be used as the label for the window w.

The anomaly detector: Once the network outputs the predicted window w+1,

that output is passed to the anomaly detector module. This module is in charge of

computing the Euclidean Distance in Equation (3.2) between the predicted window

w+1 and the actual window w′
+1

(a, b) =
ñ

(a − b)2 (3.2)

Anomaly evaluation: The computed distance is used as Anomaly Score.

Therefore a large anomaly score indicates a significant anomaly in the input data.

Here a threshold needs to be set and according to the architecture’s authors, this

threshold needs to be chosen depending on different aspects of the time series in

analysis, such as the domain of application, the length of the window, the number

of variables, and so on.
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The problem of setting a specific time-series-related threshold is present in all

the considered architecture in this work and mostly in all the best-performing

state-of-the-art models.

3.2.2 TanoGAN

TanoGAN is a GAN-based model proposed for Deep Anomaly Detection. The

model is composed of a Discriminator D and a Generator G, To handle the time

dependency of time-series data, the authors decided to build G and D as LSTM

networks. In particular, they propose a shallow Discriminator made of a single-layer

LSTM with 100 hidden units and a medium-depth Generator of 3 stacked LSTM

layers with 32, 64, and 128 hidden units. The pipeline of this method can be

divided into two sub-processes reported in Figure (3.2) and described below.

First sub-process: learning data distribution: In the first sub-process

Generator G is trained to produce fake data as realistically as possible, and following

the adversarial paradigm Discriminator D is trained to distinguish between real

and fake data. During this process, the input to the Generator is a noise vector z

randomly selected from the latent space Z. Original training data is then divided

into sequences that we call windows w of length sw. The generator generates fake

windows in the same form as real ones. Both real sequences and fake sequences

are fed to the Discriminator which learns to distinguish between them, while the

Generator learns how to produce more realistic data. G(z) can be defined as the

function learned by the Generator to map input noise vectors z ∈ Z to the real

time-series space x ∈ X, while D(x) is the function that models the Discriminator

and outputs the probability of the input x to be real. As stated by the authors, after

enough training iterations G and D will not improve anymore; this means that G is

capable of generating realistic data and D is able to effectively distinguish between
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fake and real data. In this phase G and D attempt to optimize a competitive loss,

hence we can see them as two agents that are playing a min-max game as described

in Equations (3.3), where Ex is the expected value of x and Ez is the expected

value of z.

min
G

max
D

{Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]} (3.3)

(a) Adversarial training

(b) Mapping real-data to the latent space

Figure 3.2: TAnoGAN Architecture: Time Series Anomaly Detection with Genera-
tive Adversarial Networks [20]
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Second sub-process: mapping real data to latent space: At this stage, the

generator knows the mapping G : Z → X, i.e. from the latent space representation

to the real data space. The aim of the second sub-process is to map real time-series

sequences x ∈ X to the learned latent space z ∈ Z, but GANs are not designed

to have the inverse mapping G−1 : X → Z such that G−1(x) ∈ (Z). So the model

proceeds to find z ∈ Z which is used as input for the generator G returns as output

a sequence x̂ = G(z) that is as similar as possible to the real time-series sequence

x. In particular, this process starts with a randomly sampled z1 ∈ Z and feeding

it to the generator G to get a fake sequence x̂ = G(z), here a loss function L is

defined to provide gradient for optimizing parameters of z1 to get e new position

z2 ∈ Z in this way the position of z ∈ Z is optimized in an iterative way through

back-propagation. The loss function L is defined as the combination of two parts a

residual loss LR and a discrimination loss LD.

Residual loss LR is a measure of the dissimilarity between the real sequence x

and the generated fake sequence x̂ = G(z)

LR(z) =
Ø

|x − G(z)|. (3.4)

Discrimination loss LD is defined through an intermediate feature representa-

tion of the Discriminator. Being f(·) that intermediate feature representation, LD

is defined as

LD(z) =
Ø

|f(x) − f(G(z))|. (3.5)

Defined its two components, the loss function can be obtained as in Equation

(3.6), where the LR is in charge of enforcing the similarity between the real window

and the generated ones, and the LD makes the generated sequence G(z) lie in the

manifold of X

L(z, γ) = (1 − γ) · LR(z) + γ · LD(z). (3.6)
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It is important to notice that even though G and D are used to optimize parameters

of z, their parameters are not updated during this process, i.e. only parameters of

z are updated during back-propagation.

Anomaly evaluation: As during the training the Generator learns how to

generate realistic-looking sequences based on the general data distribution, we can

directly derive an anomaly score A(x) for an input sequence x from previously

defined loss L

A(x) = (1 − λ) · R(x) + λ · D(x), (3.7)

where the residual score R(x) and the discrimination score D(x) are defined by

the residual loss LR(z) and the discrimination loss LD(z), respectively, at the final

updating iteration of the mapping procedure to the latent space.

3.2.3 USAD

USAD is a Deep Anomaly Detection method based on an Encoder-Decoder archi-

tecture within an adversarial training framework. It is proposed with the aim of

taking all the advantages of Auto-Encoders (AE) and adversarial training while

mitigating the limitations of both. This twofold nature of the model allows training

a better AE in the adversarial training process while also allowing to overcome

problems of mode collapse and non-convergence that can occur in GANs.

USAD is made of 3 components: an Encoder network E and two decoder

networks D1 and D2. Figure (3.3) shows the relationship between the three

components, which form an architecture with two AEs, AE1, and AE2, sharing the

same encoder network

AE1(w) = D1(E(w)), AE2(w) = D2(E(w)). (3.8)

The training procedure can be divided into two phases, firstly both the AEs are
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Figure 3.3: USAD architecture illustrating the information flow at training (left)
and detection stage (right). [25]

trained to reconstruct the input window w, then are also trained in an adversarial

way such that AE1 acts as a generator and AE2 acts as a discriminator.

Phase 1: Autoencoder training: The goal in this stage is to teach each AE to

replicate the input. The encoder compresses input data w to the latent space Z and

then each decoder recovers it. The difference between the reconstructed samples

and the original data, the so-called Reconstruction Error, is the minimization

objective of this first part of training. The loss of each AE is formalized as

LAE1 = ||w − AE1(w)||

LAE2 = ||w − AE2(w)||.
(3.9)

Phase 2: Adversarial training: This is the novelty and most interesting

phase of the proposed approach. In this part, exploiting the adversarial framework,

AE1 is considered as generator, and AE2 is considered as discriminator. The

training process works as follows: input data w is fed to AE1, i.e. the Encoder E

compresses data into the latent space Z, the compressed data is then reconstructed

by the decoder D1; the obtained output ŵAE1 is again compressed by the encoder

E, and then reconstructed by the decoder D2. This time the objectives of the

two AEs are different. AE1 learns how to produce an output that when processed

by AE2 gives a result that is as similar as possible to the original data w, in

28



Methods

other terms the objective of AE1 is to minimize the difference between w and the

reconstructed output of AE2, while the objective of AE2 is to maximize the error

when the input data is from AE1 and is not original data. In this context as a

training objective, we have a GAN-like dual-player min-max game

min
AE1

max
AE2

||w − AE2(AE1(w))||. (3.10)

Formerly the two losses to be minimized during the entire training procedure

can be expressed as the combination of Equations 3.8 and 3.10 in an evolutionary

scheme where the contribution of each part evolves over time

LAE1 = 1
n

||w − AE1(w)||2 +
A

1 − 1
n

B
||w − AE2(AE1(w))||2

LAE2 = 1
n

||w − AE2(w)||2 −
A

1 − 1
n

B
||w − AE2(AE1(w))||2,

(3.11)

where n denotes a training epoch.

Anomaly evaluation: As other methods also USAD provides an Anomaly

score (A) computed based on the previously defined loss function of which the two

components are parameterized by α and β that are used to control the trade-off

between false positives and true positives

A(w) = α||w||2 + β||w − AE2(AE1(w))||2. (3.12)

3.2.4 Transformer Anomaly

Transformer networks are among the most innovative architecture of the last years

which achieved great success in various areas such as Natural Language Processing

(NLP), object detection, and also time-series. This type of network has been able

to reach surprising results thanks to its power in the unified modeling of global

representation and long-range relations.
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The usage of Transformers in anomaly detection comes from two basic intu-

itions about its functioning. Authors of Anomaly Transformers noticed that the

temporal association distribution of each time point, which can be obtained from

the self-attention map, can offer a more detailed representation of the temporal

context by highlighting dynamic patterns like the period or trend of a time series.

This association distribution is referred to as the series-association. Moreover,

the authors noticed that it is harder for anomalies to build strong associations

with the whole series. So, the association distribution of anomaly time points

shall concentrate on adjacent time regions. In other words, due to continuity

and rarity, anomalies should be concentrated in limited and small adjacent time

intervals; authors refer to such an adjacent-concentration inductive bias as the

prior-association; while normal time points can provide informative associations

with the entire time series. These two observations led to a completely new anomaly

criterion for each time point defined as the distance between its prior-association

and its series-association, named Association discrepancy. From a technical point of

view, to embody the prior-association and the series-association authors introduce

the so-called Anomaly-Attention block.

Transformer Anomaly architecture: In anomaly transformer the vanilla

architecture of Transformers has been renovated with the objective of overcoming

original limitations found when using these networks in anomaly detection. The pro-

posed architecture is characterized by alternately stacking the Anomaly-Attention

blocks and feed-forward layers. Such a stacking strategy enables one to learn

underlying associations from deep multi-level features. Since the single-branch

mechanism of the vanilla Transformer architecture is not capable of modeling

the prior-association and the series-association simultaneously, authors propose a

two-branch structure for Anomaly-Attention block as reported in Figure (3.4). For
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the prior-association they use a learnable Gaussian kernel to find the prior with

respect to the relative temporal distance, together with a learnable parameter σ

for that Gaussian kernel which makes the prior-association adapt to the various

time-series patterns. Meanwhile, the series-association is thought to learn the

association from the raw series finding the most effective associations.

Figure 3.4: "Anomaly Transformer architecture. Anomaly-Attention (left) models
the prior-association and series-association simultaneously. In addition to the
reconstruction loss, our model is also optimized by the min-max strategy with a
specially-designed stop-gradient mechanism (gray arrows) to constrain the prior-
and series- associations for more distinguishable association discrepancy." [27]

This two-branch structure maintains the temporal dependencies of each time

point which is really informative, and also reflects the adjacent-concentration

prior and the learned real association respectively such that their discrepancy

(Association discrepancy) can be used to distinguish between normal and

anomaly points.

• Association Discrepancy: The association discrepancy is formalized as

the symmetric KL divergence between prior and series associations found by

31



Methods

the model. The association discrepancy is averaged from multiple layers to

obtain a more informative measure as

AssDis(P , S; X ) =
C

1
L

LØ
l=1

1
KL(P l

i,:||S l
i,:) + KL(S l

i,:||P l
i,:)
2D

i=1,...,N

, (3.13)

where KL(·||·) is the KL-divergence computed between two discrete distribu-

tions corresponding to every row of P l and S l. AssDis(P , S; X ) ∈ RN×1 is

the point-wise association discrepancy of X with respect to prior-association P

and series-association S from multiple layers. The i-th element of results cor-

responds to the i-th time point of X . From previous observations, anomalies

will present smaller AssDis(P , S; X ) than normal time points, which makes

Association Discrepancy inherently distinguishable.

• Min-Max strategy: Choosing a maximizing strategy during training

optimization would end up in an extremely reduced scale of the parameter

σ making the prior-association useless. For this reason, authors propose a

min-max strategy. In practice, the minimize phase consists of making the

prior-association P l approximate the learned series association S l, so that

the prior-association will adapt to various patterns of the time series. In

the maximization phase the series association is optimized to enlarge the

association discrepancy, forcing the series-association to pay more attention

to non-adjacent regions. So, considering also the reconstruction loss, the loss

functions of these two phases are:

Lmin_phase = L(X̂ , P , Sdetach, −λ, X )

Lmax_phase = L(X̂ , P , Sdetach, λ, X )
(3.14)

where λ > 0 and ∗detach are used to stop the gradient backpropagation of the

association. In anomaly points will be much harder for P to approximate
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Sdetach in the minimize phases, and gain stronger constraint to the series-

association in the maximize phase than in normal points, and this makes the

Association Discrepancy well normal-abnormal distinguishable.

Anomaly evaluation: To evaluate anomalies authors propose an anomaly score

based on both Association discrepancy and reconstruction error. In fact, to have a

better reconstruction, anomalies will usually decrease the association discrepancy

which will anyway derive a high anomaly score. So, an high value of the Anomaly

score (A) defined in Equation (3.15) means a high probability of the point being

an anomaly

A = Softmax
1

− AssDis(P , S; X )
2

⊙
è
||Xi,: − X̂i,:||22

é
i=1,...,N

. (3.15)

3.3 Datasets

The methods deeply described above have been trained and tested on multiple

publicly available data sets. By doing so we can explore the behavior of each

method with data coming from different domains. In the next paragraphs, we

issue an introduction to each of the employed datasets, reporting a brief analysis of

the anomalies distribution and some general information about the collected data.

Moreover, Table (3.2) reports a summary of the dimensions of the datasets and

the number of anomalies in each one.

3.3.1 Numenta Anomaly Detection Benchmark Dataset

The Numenta Anomaly-Detection Benchmark [31] data set (in the following NAB

data set) is a collection of more than 50 different real-world and artificial uni-

variate time series data sets that contain different types of anomalies. This data
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Dataset #features #records anomaly ratio
NAB TEMP 1 22.6K 11.10%
NAB AD 1 1.6K 11.08%
NAB TRAFFIC 1 2.3K 11.16%
MSL 55 130K 6.24%
SMD 38 1.4M 4.16%
SWAT 51 1M 6.13%

Table 3.2: Summary of the composition of the datasets used in this work and the
number of anomalies in each one of them.

set has been built to provide extensive support for Anomaly Detection Algorithm

evaluation. As claimed by the authors the data set contains types of anomalies

that are representative of all the most encountered types of anomalies in real-world

applications. NAB dataset provides a significant contribution to the anomaly

detection landscape, in fact, all datasets in the collection are labeled by hand

following a meticulous and documented procedure, as we already discussed in the

introduction about the difficulties and costs of realizing such a work. For these

reasons the NAB data set has become one of the benchmark data sets for the

evaluation of Anomaly Detection algorithms.

Our work is aimed at anomaly detection on multivariate time series. But, all

the methods reported in this research have also been tested by the authors on

this Dataset. From the different publications it is not easy to trace the specific

time series used by the respective authors, in fact, in most cases the publications,

both of the individual methods and of other surveys, report an average of the

results obtained on the NAB collection. Since we thought it appropriate to use

this collection of datasets as a starting point for the evaluation of the different

algorithms, we decided to use 3 of the datasets proposed by the NAB, selecting

those on which it was possible to obtain results compatible with the averages

published by the authors of each algorithm. We then narrowed our choice to only
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those datasets reporting anomalies with known causes, and from these we selected:

• Machine temperature measurements: Temperature sensor data of an internal

component of a large, industrial machine.

• Real-time traffic occupancy: Real-time traffic data from the Twin Cities Metro

area in Minnesota, collected by the Minnesota Department of Transportation.

• Advertisement exchange (CPC): Online advertisement clicking rates, where

the metrics are cost-per-click (CPC)

Figure (3.5) reports the KDE plot and the Rug plot for the three NAB Datasets

employed. KDE plot allows us to study the probability distribution of data

estimating the probability density function in a non-parametric way. The Rug plot

shows where anomaly and normal points are located with respect to the density

function. We can see that for the NAB_TEMP dataset, the great majority of

the anomalies are located on the tail of the density probability function, in this

case, the Anomaly Detection task can be assessed only by looking at this function,

having a high probability of anomaly when a record has value in the tail. For the

other two datasets, the separation between anomalous and normal points is not so

evident. However, we can conclude that also in univariate time series the Anomaly

Detection task may be non-trivial and Deep Learning can help us to obtain better

results.
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(a) NAB AD

(b) NAB TEMP

(c) NAB TRAFFIC

Figure 3.5: Density plots for the NAB datasets employed in this work. On the
x-axis is reported the rug plot which shows the distribution of anomaly and normal
points

The NAB Dataset is publicly available and free to download on the web. [32]
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3.3.2 Server Machine Dataset

In 2019, the creators of the anomaly detection technique "OmniAnomaly" released a

dataset known as Server Machine Dataset (SMD). Even though this work does not

focus on the OmniAnomaly approach, we chose to use SMD in our experimentation

due to its popularity among many other surveys that explore the same subject

matter. Furthermore, SMD is one of the largest publicly available datasets in

this field. As stated by the original authors, SMD contains data gathered from

27 servers of a large Internet Service Provider, with 38 variables measured every

minute for 5 weeks. Data has been then manually labeled by domain experts. The

dataset’s anomalous records make up around 4.16% of its total observations. [33]

Figure 3.6: Violin plot of top-5 features correlated with the class "Anomaly/Normal"
of the SMD dataset.

To study the anomalies distribution of the SMD dataset we can use the Violin

plot in Figure (3.6) about the top-5 correlated features to the class "Anomaly/Nor-

mal" in the dataset. Thanks to this plot we can see that there are no big differences

between the distributions of normal points and anomalous points so, the Anomaly

Detection task is for sure non-trivial, and Deep Learning methods can help us
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find underlying correlations and patterns which can describe the abnormality or

normality of records.

3.3.3 Mars Science Laboratory Dataset

MSL is a public dataset released by NASA and contains data gathered by the

Curiosity rover in the Mars Science Laboratory mission, a robotic space mission

conducted by NASA to explore the surface and climate of Mars. MSL includes

information gathered by the mission’s various instruments, including the Mars

Hand Lens Imager (MAHLI), the Chemistry and Camera (ChemCam) instrument,

the Sample Analysis at Mars (SAM) suite, the Radiation Assessment Detector

(RAD), and the Rover Environmental Monitoring Station (REMS).

Data contains measurements recorded during the mission from 55 different

devices. MSL has been employed by different authors to train and test new

Anomaly detection techniques, due to the fact that it is publicly available and

labeled by NASA experts. [34]

Also in this case we can inspect the top-5 correlated features with the target

class ("Anomaly/normal") trying to understand how anomalies are distributed in

the dataset. Figure (3.7a)reports the Box plot of the top-1 correlated feature which

is a continuous feature, and Figures (3.7b, 3.7c, 3.7d, 3.7e) report bar plots of

the other considered features. In this case, the box plot shows that all outliers of

this feature correspond to anomalies, but we can see that there is a non-negligible

number of anomalies placed in the interquartile range. With bar plots, we can see

that the distribution of anomalies in those features follows the general dataset’s

anomalies distribution. Again, the problem of Anomaly Detection is non-trivial

and we can benefit from the application of Deep Learning techniques.

38



Methods

(a)

(b) (c)

(d) (e)

Figure 3.7: Box plot and bar plots for the MSL dataset of the top-5 correlated
features with the target feature.
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3.3.4 Secure Water Treatment Dataset

The Secure Water Treatment dataset (SWaT) is a publicly available dataset, it was

collected from a fully operational scaled-down water treatment plan. The main

purpose of the dataset is to support experimentally validated research in the design

of secure Cyber-Physical Systems.

The dataset includes data collected for 11 days from several sensors and actuators

in the plant. During the 11 days, the plant was functioning non-stop 24 hours/day.

During the first 7 days the system was run without any kind of attack, in the last

4 days several attacks with duration varying from seconds to one hour have been

done on the system in a structured way. Since attacks were done in a controlled

way and with the specific purpose of collecting logs and data, the labeling of normal

and anomaly records was straightforward and 100% reliable.

The dataset is made of about 1M measurements of 51 attributes. It is published

and publicly available on the Singapore University of Technology and Design

website [35].

Also for this Multivariate dataset, we can inspect the distribution of anomalies

in the top-5 correlated features with the target feature, which for SWAT dataset,

are all categorical features. Figure (3.8 shows bar plots of the selected features.

In this case, we have an interesting behavior in feature MV304 where the value 2

has a distribution of anomalies that do not match with the general distribution of

the dataset, in fact, there is a majority of anomalies for records in which the value

of this variable is 2. Meanwhile, for other features, we can not spot any blatant

deviation from the general dataset trend.
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(a) (b)

(c) (d)

(e)

Figure 3.8: Bar plots for the SWAT dataset of the top-5 correlated features with
the target feature.
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Experimental results

In this chapter, we will explain the implementation of the experiments along with

the structure of the code used to run them. Then we will introduce the design

choices made to be able to replicate tested methods and the choices made in setting

the different hyper-parameters required. A specific section will discuss the metrics

used to evaluate the various algorithms. Finally, the last section will show the

results obtained from the different methods studied when tested on the datasets

selected as benchmarks.

4.1 Experiments implementation

The goal of this research was to be able to evaluate in the most general way possible

the different approaches to Time Series Deep Anomaly Detection published so far.

Thus, the main output of this work is an evaluation tool, which can also be adapted

to other methods, and which is responsible for acting as an interface between the

different proposed benchmark datasets and the algorithms to be tested. The work

done to achieve the research objective can thus be divided into 2 main parts.
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1. A first implementation of methods and exploration of hyperpa-

rameters: at this stage, the code of all proposed methods was collected or

re-implemented. Then, starting from the values given by the authors of each

method, the optimal hyperparameters were explored to replicate the results

published in the respective articles. At this stage it became clear, confirming

the information reported in the various publications, that the length of the

windows used for time series analysis (hereafter SEQ_LEN) is a hyperparame-

ter that heavily influences the final performance of the algorithms. At the end

of this phase, optimal values of other hyperparameters such as learning rate,

size of internal layers, the maximum number of epochs for training, etc. were

then explored and identified, leaving SEQ_LEN as a parameter to investigate

in the second phase.

2. Running the various experiments: at this stage, the code for the massive

execution of the various experiments was prepared. Each of the 4 methods

was then initialized with the previously obtained hyperparameters, trained,

and tested for each of the 6 proposed datasets with 3 different SEQ_LEN

values, namely [30, 50, 100]. The choice of these 3 values is due to the need

of having a well-defined and limited set on which was possible to test all

the datasets and methods. The process of choosing the values started by

collecting values proposed by the method’s authors for datasets on which they

also worked and after that reducing values to an acceptable number trying to

replicate published performances per each method. As we will see later, the

SEQ_LEN parameter is a fundamental one for the performance of models

on different datasets, since it indicates the length of the windows to be fed

to algorithms and can have a big impact on the way each dataset expresses
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its intrinsic time dependency to the model. Obtained the general setting for

the experimentation, the program was run several times, by setting a different

seed value each time in order to ensure the reproducibility of the results, this is

the actual comparison part of the process. In this last phase also emerged the

problem of finding an appropriate threshold, described in the next paragraph.

4.1.1 The threshold problem

A common problem for all the methods studied is the identification of an appropriate

threshold for the classification of anomalies based on the anomaly scores produced by

the algorithms. In fact, each algorithm proposes a novel method for calculating the

anomaly score, and thus it was not possible to directly compare the obtained scores,

let alone establish an unambiguous threshold for all of them. The classification

phase of all algorithms stipulates that, when an appropriate threshold is defined,

for values less than that threshold the data are classified as non-anomaly, while for

values higher than the threshold the corresponding data are classified as anomalies.

Therefore, it was decided to scale the obtained anomaly scores in the range [0,1] and

then explore threshold values between [0.3 and 0.9] in order to subsequently study

the evolution of the evaluation metrics based on the variation of this threshold.

Studying values of threshold lower or higher than the interval chosen would be

pointless. After this scaling, we expect to have the Anomaly Score equal to 1 for

records that are seen as certain anomalies by models, and equal to 0 for points that

are seen as certain normal by models, so that, we can interpret the scaled Anomaly

Score as a probability of anomaly that the model assigns to each record. It should

therefore be specified that in a practical application of one of these methods, it

would be necessary to carry out such a study concerning the threshold at the

validation stage. In this work, we decided to assess the threshold identification at
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test time to be able to study how the scoring of each algorithm changes based on

this parameter.

4.2 Comparison Metrics

Traditional classification models are evaluated with metrics that compare the

predicted class from the classifier with the actual class of the samples. Since in this

study, we are talking about Anomaly Detection, our main task is to classify data

points as anomalies or normal, so we can safely use traditional metrics to evaluate

the performance of tested models. To build a proper evaluation strategy most of

the time it is useful to construct a confusion matrix where the (j, k)-th element

counts the number of times that the actual class is j whereas the predicted class is

k.

In the binary case (such as our case, since we are classifying Anomaly/Non-

Anomaly) the confusion matrix becomes really simple to build and interpret. If

the two classes to be predicted are True (Anomaly) and False (Non-anomaly) the

confusion matrix is the one depicted in Table 4.1.

Actual class
Positive Negative

Predicted class Positive TP FP
Negative FN TN

Table 4.1: Binary classification confusion matrix

The following terminology is often used when referring to the counts tabulated

in a confusion matrix:

• True positive (TP): the number of positive examples correctly predicted by

the classification model.
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• False negative (FN): the number of positive examples wrongly predicted as

negative by the classification model.

• False positive (FP): the number of negative examples wrongly predicted as

positive by the classification model.

• True negative (TN): the number of negative examples correctly predicted

by the classification model.

Accuracy, Precision, and Recall

Starting from the confusion matrix we can define different metrics for the evaluation

of our model.

• Accuracy: is the performance measure generally associated with classification

algorithms. It is the ratio of correct predictions over the total number of data

points classified

Accuracy = TP + TN

TP + FP + TN + FN
, (4.1)

• Precision (also called positive predictive value): Indicates how many of a

j-object (in binary classification, commonly True class is considered) predic-

tions are correct. It is defined as the ratio of correct positive predictions and

overall positive predictions

Precision, p = TP

TP + FP
, (4.2)

• Recall (also called sensitivity): Indicates how many of the j-object (in binary

classification, commonly True class is considered) samples are correctly classi-

fied. It is defined as the fraction of j-object predictions over the total number

of j-object samples

Recall, r = TP

TP + FN
, (4.3)
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At first look Accuracy could seem to be a good metric for comparing the

performance of tested methods. Actually, it is a measure that treats every class as

equally important, and we are in a highly imbalanced situation, in fact as shown in

Table (3.2) we have a very small number of anomalies compared to the total size of

the datasets. In this kind of situation using accuracy may lead to an overestimation

of the models’ performance since having a high number of normal points makes the

models to be really good classifiers for the negative class, but with poor scoring

on the positive class. The problem is that in situations like this, the rare class

(Anomaly samples) is considered more interesting than the majority class, so we

need metrics that are class-specific and can allow us to understand how good

models are in finding anomalies. Precision and Recall are such a kind of metric

and are widely employed in applications similar to ours, in which the successful

detection of the rare class is more significant than the detection of the other.

So, now the challenge is to find the model that is the best in maximizing

both Precision and Recall. Hence, the two metrics are usually summarized in a

new metric that is F1-score. In practice F1-score represents the harmonic mean

between precision and recall, so, an high value ensures that both are reasonably

high:

F1-score = 2
1
r

+ 1
p

= 2rp

r + p
. (4.4)

In choosing the metric to use for the comparison, based on the reasoning made

above, to the best of our knowledge, we are perfectly in line with other surveys in

the literature. Actually, in the field of anomaly detection, a further step is needed.

We need to keep in mind two facts on which our experimentation and the totality

of literature are based:

• windowed data: we are arranging data in windows of dimension equal to
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SEQ_LEN , which as we will see later is an important parameter. Researchers

that studied this topic used to consider windows that contain anomalies as

anomalies themselves.

• consecutive anomalies: when working on real-world data, researchers start

with the assumption that in a real-world working environment, if the anomaly

detection system finds an anomaly, that anomaly should be assessed and

removed, to make the system restart to work in a proper way. This is

translated in considering consecutive anomalies as one anomaly, so classifying

a point as anomalous in a consecutive window of anomalies, makes all the

consecutive points be classified also as anomalies.

The metrics obtained with measures based on those two concepts in literature are

defined as Point-Adjusted (PA) metrics. Since our study did not focus on which is

the best metric for comparing Deep Anomaly Detection methods, but our objective

was to find a good general strategy of comparison of the state-of-the-art models we

thought it right to use the Point-Adjusted scores as was done in all publications

on which this work is based, that means that we will study PA-Precision, PA-

Recall, and PA-F1-Score. For the sake of simplicity from now on, we will omit

the specification "Point-Adjusted" and we will refer to these scores respectively as

Precision, Recall, and F1-Score.

4.3 Results

4.3.1 The influence of SEQ_LEN parameter

During the preparation of our experiments, we left the parameter SEQ_LEN

for a deeper a-posteriori analysis, and it is the point on which we will start the
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exploration of obtained results. The appendix A contains figures that show how

F1-Score that is obtained by each method varies with respect to SEQ_LEN and

threshold parameters. Since we run a large number of experiments obtaining

complex graphical representations of results, we can use Figure (4.1) and Figure

(4.2) to resume the findings described in detail in the figures in the appendix.

Figure (4.1) reports the maximum obtained F1 score of each method with the three

values of SEQ_LEN considered and aggregated by datasets. Figure (4.2) shows

the same aggregating results by methods.

Figure 4.1: F1-Score obtained by each method when tested on different datasets
with different SEQ_LEN values. The star indicates the SEQ_LEN value which
gave the best performance for each method with the same dataset.

In Figure (4.1) most of the datasets behave better always with the same

SEQ_LEN value, disregarding of the method tested. While the same is not

valied for methods, which perform better with different SEQ_LEN values when

applied to different datasets.
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Figure 4.2: F1-Score obtained by each method when tested on different datasets
with different SEQ_LEN values. The star indicates the SEQ_LEN value which
gave the best performance for each dataset when used in different methods.

Table (4.2) reports the best values of SEQ_LEN found in our experimentation

for each of the datasets tested. We could clearly find a unique value for most of the

dataset. SWAT , SMD, and NAB_AD scored best with the same SEQ_LEN =

30. For dataset MSL 3 out of 4 methods perform best with SEQ_LEN = 30

and 1 method (DeepAnT ) performs best with SEQ_LEN = 50, but we can see

that the difference between the best score and other value is really small so that,

also taking a kind of majority-vote approach, we can safely use SEQ_LEN = 30

for all methods in future comparisons of results about this dataset. The same

reasoning is valid for the NAB_TEMP dataset. The NAB_TRAFFIC dataset

shows to have a more balanced situation, even though we can notice that there is a

high discrepancy of results for method DeepAnT and this makes us think that in

the case we would define a sub-optimal value for this dataset, SEQ_LEN = 30
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would be the one since having other values would penalize too much the DeepAnT

method.

DATASET SEQ_LEN # optimal # sub-optimal
MSL 30 3 1

NAB_AD 100 4 -
NAB_TEMP 30 3 1

NAB_TRAFFIC 30 2 2
SMD 30 4 -

SWAT 30 4 -

Table 4.2: Optimal values of SEQ_LEN parameter found for each dataset.

We interpret these observations as saying that the SEQ_LEN parameter,

seems to be strictly related to the dataset on which Deep Anomaly Detection is

performed, thus it needs to be explored and studied in a proper way. This is the first

contribution of this work as we have been able to understand that this parameter is

dependent on the dataset. Although it is not possible to generalize this dependence,

based on results obtained and graphs shown we support the concept that the choice

of this parameter has to be done based on dataset characteristics which can be,

for example, the anomaly ratio in data or the distance between anomalies. So,

instead of tuning the SEQ_LEN parameter in a sort-of random-blind way, we

can a-priori define a restricted set of values looking at the nature of the data we

are working on.

4.3.2 Performance vs threshold

After finding the optimal value of the SEQ_LEN parameter, we can proceed

with a deeper performance analysis made on results obtained with the settings

described above. Figures below show F1-score, Precision, and Recall for all the

methods tested with each dataset considered, and the specific SEQ_LEN found
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previously. As it would seem obvious at this point of the dissertation, performance

metrics evolve with respect to the value of the threshold. In fact, for an ideal

and perfectly working model, all anomaly data points would get a high anomaly

score, while all the normal data points would get a low anomaly score following a

mechanism reported by the example in Figure (4.3). Of course, in real models, the

separation between normal data scores and anomaly data scores can be smaller

and the model may also be wrong in classifying some records. The importance

of the threshold resides in this situation. In enough-good working models, we

suppose that higher anomaly scores are most likely associated with an anomaly

and vice versa. Playing around with the threshold value can allow us to reduce the

number of false negatives, while also mitigating the presence of false positives in

order to obtain a good classification score. In such a situation the threshold value

Figure 4.3: Anomaly score example: data which score is below the threshold is
marked as normal, data which score is above the threshold is marked as anomaly

can be seen as a sort of severity of the model, such that with a high value of the

threshold we are saying to the model to consider as anomaly only points for which

it is extremely secure that they are anomalies resulting in having a high Precision

score, but our model is not perfect and this kind of setting will produce also a high

number of false negatives resulting in a drop of the Recall score.
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Figure 4.4: F1-Score, Recall, and Precision for dataset MSL. The color of the
lines indicates the different models tested.

Figure (4.4) reports scores for dataset MSL. We can not spot singular trends

with all methods performing roughly as we would expect with an exact decreasing

trend for Recall, a less-clear increasing trend for Precision but an overall expected

F1-Score trend that decreases as the threshold increases demanding the model for

a higher severity.

Figure 4.5: F1-Score, Recall, and Precision for dataset SMD. The color of the
lines indicates the different models tested.

Figure (4.5) shows scores for the dataset SMD. Trends for this dataset are

perfectly fitting our expectations, with decreasing Recall, increasing Precision, and

really stable yet decreasing trend for F1-Score over the increase of the threshold
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value. This let us think that for this dataset the influence of the threshold parameter

is not as strong as others.

Figure 4.6: F1-Score, Recall, and Precision for dataset SWAT . The color of the
lines indicates the different models tested.

Figure (4.6) shows scores for the dataset SWAT . Also in this case, trends are

perfectly in line with our expectations, with decreasing Recall, increasing Precision,

and really stable yet decreasing trend for F1-Score over the increase of the threshold

value. The two noticeable facts are the big drop in performances with a very high

value of the threshold, and the much lower (even if more stable) performance of

TAnoGAN compared with other models. For the drop with a high value of the

threshold, we expect to have some isolated high peaks of the Anomaly-Scores which

actually are false positive instances that lower performance.

54



Experimental results

(a) NAB-AD

(b) NAB-TRAFFIC

(c) NAB-TEMP

Figure 4.7: F1-Score, Recall, and Precision for NAB datasets. The color of the
lines indicates the different models tested.

Figure (4.7) shows scores for the three datasets of the NAB collection. Here

we have a more confusing situation, that might be difficult to study. The unusual

curves are due to the limited dimension of these datasets. In fact, having fewer data
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points with also fewer anomalies and smaller windows of consecutive anomalies

make the model reach good Recall scores with small values of the threshold with

huge drops over the increasing of the parameter.

We have analyzed the results obtained in our experimentation following the pre-

viously described classification metrics. We could not identify a best-overall method,

but we could understand how the threshold can be important in determining the

performance of Deep Anomaly Detection models. This is the second contribution

of our work, we comparatively analyzed the importance of the Anomaly Score

threshold of Deep Anomaly Detection models, overcoming previous surveys which

focused only on the best-obtained score of the methods without a proper discussion

on the importance of this parameter.

4.3.3 A new comparison metric: Discrimination Score

The threshold mechanism explained above can be better verified in Figure (4.8)

which reports the anomaly score produced for all methods tested on the SWAT

dataset. In the figure, the plotted line shows the anomaly score obtained, while

green dots indicate anomaly points marked as an anomaly from the model

(True Positives), and red dots indicate anomaly points marked as normal from

the model (False Negatives), as we can see each model presents a different curve

and its score can vary based on the threshold value chosen. This variability of

performance makes it difficult to build a fair comparison of methods even when

considering a single dataset, but looking at the graphs in Figure (4.8) we can make

some reasonings that may help in finding a good path for the comparison. We can

now analyze the anomaly score plots trying to find evidence of what we said before

and also trying to establish a fair comparison method for the models.
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Figure 4.8: SWAT anomaly score
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In the figure, we can see that the dataset has a wide window of consecutive

anomalies. All methods have been able to detect that window, but the TAnoGAN

model did not assign to that window Anomaly Scores as high as other models,

and this produce the drop in performance with a high value of threshold that

we described in the previous paragraph. Also, we can see that anomaly score

oscillations in DeepAnT and TAnoGAN are much wider than in Transformer and

USAD. So, we can say, also supported by scores in Figure (4.6), that TAnoGAN

and USAD are more stable with respect to the threshold than the other two

methods. The amplitude of oscillations and the threshold affect the detection of

anomalies and the scoring of each method. For example with the same threshold

th = 0.5 TAnoGAN gets more true positives than other methods, but also more

false positives, while models with fewer oscillations miss some anomalies, but also

are able to avoid a lot of false positives.

With the analysis of the Anomaly Score obtained with this experimentation, we

could understand that it is not possible to detach the performance of the model from

the threshold problem, but we can take a new path by trying to study how much

each model is able to distinguish between anomalies and normal points without

using the well-know classification metrics. So, we define a more general metric of

comparison starting from the definition of the Anomaly Score. The Anomaly Score

in this work ranges between 0 and 1. It is assigned to records in such a way that

higher and lower scores correspond to anomalies and normal data, respectively.

Considering an ideal perfectly working model, it would assign an Anomaly Score of

1 to all anomalies and an Anomaly Score of 0 to all normal points.

We can now consider the mean score assigned from the model to points known

to be anomalies and the mean score assigned to points known to be normal, that

for the ideal perfect model would be µAnomaly = 1 and µNormal = 0, at this point
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we can define a new score which we name Discrimination Score (DS) as in

Equation (4.5) so that, our ideal model would get DS = 1

DS = µAnomaly − µNormal. (4.5)

For a real model, we can formalize the behavior of this score following observa-

tions below:

• The score is can take values between −1 and 1: −1 ≤ DS ≤ 1

• A DS score less than 0 indicates that the model is not working at all since the

mean score of normal points would be greater than the mean score of anomaly

points.

• An high DS score indicates that the model is very good at identifying both

anomalies and normal points.

• A low DS score indicates that the model has not enough discrimination power,

and assigns either a too-low score to anomalies or a too-high score to normal

points.

With this score, the object of comparison of different models with the same

dataset becomes to find the model which provides the higher Discrimination Score.

We can now compare the findings obtained with our Discrimination Score with the

obtained results of each method. Figure (4.10) reports per each dataset the best

F1-Score obtained by all methods, while Figure (4.9) shows per each dataset the

Discrimination Scores obtained by all methods, in this figure the star indicates the

method that obtained the best F1-Score with the corresponding dataset. When the

star is empty it means that the best discrimination score did not match with the

best F1-Score, the filled star indicates that the best Discrimination Score matched

the best F1-Score.
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We can see in this figure how the Discrimination Score reflects the behavior of

the Anomaly Score for the SWAT dataset. We have that Transformer, DeepAnT,

and USAD which have a more net separation between anomalous points and normal

points in Figure (4.8), have also higher DS score compared with TAnoGAN method

which has more oscillations and not such a net separation.

Figure 4.9: Discrimination Scores per each dataset of methods tested in this work.
A star indicates that the DS score is the best obtained for a specific method, when
there is a correspondence between the best DS score and the best F1-Score the star
is filled, and the star is empty otherwise.

We can see that in 5 out of 6 datasets, there is a correspondence between the

best DS score and the best F1-Score. We have one dataset for which there is no

such matching, actually, this is normal and can happen. In fact, a method that

has the best DS score may anyway be overcome by other methods with a proper

adjustment of the threshold. We can conclude with the last important contribution

of this work, saying that the DS score can be an effective way to compare the

discrimination power of different methods on the same dataset. Even though the
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DS score helps us in comparing the discrimination power of different methods

untying the reasoning from the threshold problem, it alone is not sufficient to define

which method is the best, and also observations made before need to be taken into

account.

Figure 4.10: Best F1-Score per each dataset obtained by tested methods.
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Chapter 5

Conclusions and future

works

We started this work with an extensive explanation of what is Anomaly Detection.

We reported the most challenging issues in this field of research and also reported the

most extensive and regarded surveys. Based on the misses of those surveys and also

based on directions and hints found in the literature we built an experimental survey

with a different structure than the previous ones. We focused on understanding how

different Neural Networks architectures are able to catch underlying correlations and

time dependency expressed by different datasets. To limit our work to the newest

and most innovative models we defined specific research criteria that allowed us to

select 4 Deep Anomaly Detection methods to test. We then selected 6 datasets

between the most used in literature for time series Anomaly Detection tasks.

During the analysis of the Deep Anomaly Detection methods we also highlighted

the problem of the threshold which we show to have a big influence on models’

performance. In Chapter (4) at first, we analyzed the results obtained in the
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extensive experimentation finding that the dimension of the time window passed to

the models has a big impact on the performance of each model. In that section, we

could find out that the time window’s dimension parameter is strictly related to

the dataset, having most of the dataset reach the best performance always with the

same SEQ_LEN value. Then, we explored how the results varied when choosing

different values of the threshold for the Anomaly Score classification. We conclude

that the threshold is one of the most important parameters in this kind of model and

a proper study needs to be assessed when implementing a Deep Anomaly Detection

method in order to avoid overfitting and overestimation of models’ performance.

Then, the extensive study proposed for the threshold parameter enabled us to

do some reasoning which led to the definition of a new comparison metric that

we named Discrimination Score. The aim of this metric is to provide an idea

of how much discrimination power is held by the method when employed with a

specific dataset. Reported results showed that the Discrimination Score results

agree with the classical F1-Score results and we concluded that thanks to the fact

that Discrimination Scores is untied from the threshold parameter, we can use it

to have a fair idea of what is the capability of each model to distinguish between

Normal and Anomalous points.

To sum up the conclusions and findings of this work we can say that the Anomaly

Detection problem remains an open problem and an active field of development in

the Deep Learning panorama. It is not possible to establish if one model is better

than others, but deeper analysis and considerations are always needed. Indeed, we

proposed a first step towards a new way of setting up the comparison of different

methods. Moreover, we expressed concerns about topics that were not addressed by

other surveys and finally we proposed a new score that can be used in conjunction

with other classical comparison metrics to understand which algorithm is the best
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for a given dataset.

Of course, this was only a first step with a new implant of comparison and can

be extended and improved under different aspects. Possible forthcoming research

may focus for example on enlarging the class of architectures considered, or could

focus on studying the newest non-Deep models following the directions pointed out

by this research. We think that different new paths may be opened from our work

which may deserve to be explored.
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Details of results obtained

The Figure (A.1) reports for each dataset (rows), the F1-score obtained by each

method (colored plots) with each value of SEQ_LEN tested (columns), and Figure

(A.2) reports for each method (rows), the F1-score obtained with each dataset

(colored plots) and each value of SEQ_LEN tested (columns). Comparing these

two figures it is possible to notice an interesting behavior. In fact, while plots in

Figure (A.2) are very confused and do not allow us to spot any significant pattern,

in Figure (A.1) we can see that for some datasets, best performances of each method

are always achieved with the same value of the parameter SEQ_LEN .
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Figure A.1: SEQ_LEN_DS
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Figure A.2: SEQ_LEN_METHOD
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