
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Zero-shot product retrieval with
contrastive learning

Author: Lorenzo CRAVERO

Advisor: Giuseppe RIZZO
Co-Advisor: Lorenzo BONGIOVANNI

April, 2023

Abstract

While developing a platform that compares product prices and characteristics
across various Italian e-commerce websites, the need to retrieve similar products
across the different and ever changing websites arose. In this thesis, we approach
the challenge by setting up a task of retrieval of similar products given a starting
product, where each product is defined solely by its textual attributes. Particular
focus is put on the zero-shot scenario, where the model performance is evaluated
on both products and websites that have not been seen during training. Our goal
is to produce a model that can generalize well and be easily implemented in a
real-world use case.

This thesis leverages two language models that were pre-trained on extensive
general corpora (BERT and MPNet), and demonstrates the benefits of applying
a supervised contrastive learning objective during the fine-tuning stage for the
purpose of retrieving new and unseen products in a zero-shot fashion. In addition, a
more in-depth analysis reveals that this approach has the ability to enrich product
embeddings by improving both their alignment and distribution uniformity. Finally,
these product embeddings can be retrieved quickly using KNN, ANN or more
optimized embedding search algorithms such as FAISS.

Overall, this thesis aims to present a valid approach to the challenge of product
retrieval in a zero-shot context. It also provides valuable insights that may be
relevant to real-world data integration scenarios.

Acknowledgements

A heartfelt thank you to Professor Giuseppe Rizzo for his punctual and precise
advice, which has conveyed value with commendable efficiency. I also express my
sincere gratitude to Lorenzo Bongiovanni for the valuable time he devoted to guiding
me, for making me feel immediately at ease and, ultimately, for the numerous
coffees he kindly offered, which played an indispensable role in maintaining my
productivity. You both have my profound gratitude.

I want to thank the entire team at Trust In Food. Thanks to my experience
with you, I realized that there is a whole world around me that I was missing.

Thanks to the team at Clevi because, literally, none of this would have been
possible without you.

A special thanks to Gabbo, Jaco, and Gabri. The Via Maltesi. To the diamond
we never reached.

A huge thank you to the Caimans of Borgo San Dalmazzo. Thanks to Andrea,
Gabri, Jaco, Luca, Mario, Nico, Ogge, Pette, Recchi, Sam, Samma, Simi, Simo and
the rare female specimen of Caiman, Vicky. Because you are good people and I am
happy that a significant and indelible part of me is due to you.

My deepest thanks goes to my brother and my parents. For that memory of a
distant summer and for the strength you give me in the present.

Lastly I want to dedicate this milestone to Riea, glimpse of beauty.

ii

Table of Contents

List of Tables vi

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives of the thesis . 2
1.3 Overview of the proposed approach 5

2 Background 7
2.1 Product retrieval . 7
2.2 Product matching . 8
2.3 Contrastive learning . 10
2.4 Zero-shot scenario . 12

3 Data 13

4 Methodology and implementation 17
4.1 Product retrieval zero-shot setup 20
4.2 Product matching zero-shot setup 23
4.3 Fine-tuning BERT and MPNet through supervised contrastive learning 27

5 Results and evaluation 29
5.1 Alignment and Uniformity analysis 29
5.2 Product retrieval zero-shot . 30

5.2.1 Baseline . 30
5.2.2 Zero-Shot finetuning . 30

5.3 Product matching zero-shot . 34
5.3.1 Baseline . 34
5.3.2 Zero-Shot finetuning . 34
5.3.3 Same dataset finetuning . 36

iv

5.4 A couple more experiments . 37

6 Discussion and conclusion 41

A Deep learning in natural language processing 43
A.1 Transformer Architectures . 48

A.1.1 BERT . 49
A.1.2 XLNet . 51
A.1.3 RoBERTa . 52
A.1.4 MPNet . 53

Bibliography 55

v

List of Tables

3.1 Data analysis summarization. The % of products with no positive
(i.e. that never appear in a matching pair) will be relevant later on.
An high percentage could cause some issues since the contrastive
learning approach (as presented in Section 2.3) rely on bringing
the positive products embeddings closer together and push away
negative ones. 14

3.2 Samples from the datasets. Beside the dataset name is reported the
average lenght of the Text attribute. 16

5.1 Results of Alignment and Uniformity loss before and after having
fine-tuned the model with supervised contrastive learning. These
are loss values, so the less they are the "better". Results in bold
corresponds to the best results for the particular metric in the row. 30

5.2 Results for product retrieval with pre-trained models without fine-
tuning. R / P / F1 stands for Recall, Precision and F1. Results in
bold corresponds to the best results for the particular metric in the
row. 31

5.3 Results for zero-shot product retrieval task when finetuning is per-
formed on WDC and the evaluation on Magellan. Results in bold
corresponds to the best results for the particular metric in the row. 32

5.4 Results for zero-shot product retrieval task when finetuning is per-
formed on Abt - Buy, Amazon - Google and/or Walmart - Amazon
and the evaluation on WDC. 33

5.5 Results for product matching with pre-trained models without fine-
tuning. 34

5.6 Results of F1 score for product matching task. The models have been
finetuned on the Abt-Buy, Amazon-Google and Walmart-Amazon
datasets and then evaluated on WDC. 35

5.7 Results of F1 score for product matching task. The models have been
finetuned on wdc small and wdc xlarge and evaluated on different
datasets. 35

vi

5.8 Results for the non zero-shot scenario. BERT Pairs refers to the
method of feeding the model during finetuning with pairs of product
entities. BERT Cosine and MPNet cosine refers to the model beeing
finetuned with contrastive learning. 36

5.9 A table showing how the size of the finetuning dataset influence
uniformity and alignment. The F1 score on the product matching
task is also reported for comparison. Small, medium, large and
xlarge refers to the subsets of WDC dataset. The best results for the
zero-shot scenario (i.e. target dataset "magellan"), both in terms of
F1 score and uniformity, are obtained after finetuning on the small
subset. 37

vii

List of Figures

1.1 The flow of the platform. All markets available for the user address
are plotted (1thscreenshot). The user chooses the one he prefers and
it is presented with all the products of the market, from which he can
compile its cart (2thscreenshot). When it is satisfied with its cart it
proceeds to the comparison page, where three kinds of alternative
carts are presented for each available supermarket (3thscreenshot).
Before proceeding to the checkout with one of the proposed carts
he can still refine them by replacing some of the products with
suggested alternatives (4thscreenshot). 2

1.2 How the similarity among products is computed. 3

1.3 Product matching (on the left) adapted to the product retrieval
(on the right) task. In a retrieval task we want to rank relevant
items first. In our setup products entities that refer to the same
real world product with respect to the input product are considered
relevant items. It’s important to note that, in this figure, product D
is relevant to product A for transitive property. 5

2.1 The supervised contrastive loss. Points belonging to the same class
of the anchor product (i.e. matching products in our use case) are
pulled together while negatives are pushed apart. 12

4.1 From left to right progressively more uniform representations. A
lower uniformity loss translates to evenly distributed embeddings on
S1. Credits to [2]. 18

4.2 The encoding of a product entity. The textual representation of a
product is first tokenized, then each token is processed by the NLP
Encoder and, finally, computing element-wise arithmetic mean of
the token embeddings we get the product embedding of 768 elements. 19

viii

4.3 Product retrieval schematized. "Product A" is the input product.
It is encoded, then we compute the cosine similarity with each
embedded product in the corpus. The sorted list of products is the
output. 20

4.4 Shift data from product matching setup (on the left) to product
retrieval setup (on the right). In the example product A and product
B will be put in the same cluster since they have label = 1. But even
product D will be put in that same cluster. Since it matches (label
= 1) with product A it matches with product B too for transitive
property. Product C will be put to a different cluster, since it does
not match with product B and, therefore, does not match with all
the others. 23

4.5 Zero-shot setup. Starting from a pre-trained NLP model, we first
fine-tune it on one of the datasets in the center column. Then,
depending on the dataset it has been fine-tuned on, we test on one of
the datasets on the left column. As Baseline, we test the pre-trained
NLP model directly without fine-tuning. 24

4.6 BERT fine-tuned on the product matching downstream task. First
the two products are tokenized, then the tokens are processed by
BERT model. Lastly, the embedding of the CLS token is used as
input for a linear classifier, which output the probability of a match. 25

4.7 Using cosine similarity in the product matching task. 26
4.8 Fine-tuning a model (MPNet in this case) using a supervised con-

trastive loss. Positives are identified by two products with the same
cluster_id. 28

5.1 Qualitative analysis of product retrieval performances on Abt-Buy
before and after finetuning on a different dataset. The darker his-
tograms represent products labeled as matching the the input product. 38

5.2 Qualitative analysis of product retrieval performances on Amazon-
Google before and after finetuning on a different dataset. The darker
histograms represent products labeled as matching the the input
product. 39

5.3 Qualitative analysis of product retrieval performances on Walmart-
Amazon before and after finetuning on a different dataset. The
darker histograms represent products labeled as matching the the
input product. 39

5.4 Qualitative analysis of product retrieval performances on WDC before
and after finetuning on a different dataset. The darker histograms
represent products labeled as matching the the input product. . . . 40

ix

A.1 Vanilla RNN. 44
A.2 LSTM. 44
A.3 Machine translation with encoder (left) and decoder (right) consising

of two RNNs. The context vector c is a fixed-sized vector that
bottleneck the input sequence if it is too long. 46

A.4 From sequence to sequence with RNNs to sequence to sequence
with RNNs and Attention. To better get an intuition of the role of
attention weights, look at y1: "estamos". We expect the attention
weights linked to x1: "we" and x2: "are" (so respectively a11 and a12)
to be higher than the ones linked to x3 and x4. 47

A.5 From attention to self attention. 48
A.6 The Transformer. 49
A.7 Overall pre-training and fine-tuning procedures for BERT. Credits

to [4] . 50
A.8 The auto-regressive language modeling (left) is NOT able to model

bidirectional context. The bidirectional one (right) predicts tokens
that are independent of each other and the token [mask] is not used
during finetuning . 51

x

Chapter 1

Introduction

1.1 Motivation
The work in this thesis was motiveted by our effort to develop a recommendation-
like app for supermarkets products. Data integration is the process of combining
data from multiple sources into a unified, coherent view. This process has become
increasingly relevant in recent times as most supermarkets have transitioned from
the traditional "brick and mortar" business model to a more sophisticated "click
and mortar" model, which incorporates both online and offline operations. This
shift is primarily driven by the fact that over 50% of shoppers now use the Web
to research, compare and purchase products [1]. For businesses, data integration
enables consolidation and standardization of data from multiple sources, providing
a comprehensive view of the enterprise that can inform strategic decision-making,
enhance operational efficiency, and reveal new growth opportunities. On the other
hand, consumers benefit from data integration by gaining access to more extensive
and accurate information about products, services, and market trends, which can
enable them to make better-informed purchasing decisions. Often, consumers are
faced with the challenge of comparing product prices and features across multiple
websites. To address this issue, together with a team of colleagues, we came up
with the idea of developing a platform to compare product prices between different
italian supermarket e-commerce. To expand the concept a little further, we allow
the user to compare the same cart between different online supermarkets obtaining
three different outputs: the most similar cart to the one they composed, the cart
that maximizes the saving and, lastly, the cart that is shipped more rapidly. In
practical terms, the user enters the delivery address, assembles the cart on their
preferred supermarket’s page, selects which products cannot be replaced, proceeds
to checkout, and then lands on a page where they can see the following:

• Prices proposed by other supermarkets for the same cart.

1

Introduction

• The minimum cost obtainable for that same cart by replacing all present
products with similar, less expensive products (such as white-label products).

• The cart with the same products but faster home delivery.

A mockup of the platform is presented in Figure 1.1. We believe that this
solution could help users save time and money.

The research thesis is inspired and motivated by the described platform but
independent from it.

Figure 1.1: The flow of the platform. All markets available for the user address
are plotted (1thscreenshot). The user chooses the one he prefers and it is pre-
sented with all the products of the market, from which he can compile its cart
(2thscreenshot). When it is satisfied with its cart it proceeds to the comparison
page, where three kinds of alternative carts are presented for each available su-
permarket (3thscreenshot). Before proceeding to the checkout with one of the
proposed carts he can still refine them by replacing some of the products with
suggested alternatives (4thscreenshot).

1.2 Objectives of the thesis
In order to establish the functionality of the platform outlined in the previous
section, a crucial issue must be addressed: how to retrieve similar products across

2

Introduction

the diverse and constantly evolving range of websites. This is the core challenge
this thesis aims to tackle.

The solution must not only be accurate, but also capable of scaling to accommo-
date an extensive inventory of product entries and potentially hundreds or thousands
of concurrent users requests. Given that each product entity is accompanied by
textual attributes such as its description, brand, categories, sales denomination,
and so forth, a particularly promising approach is to leverage a pre-trained NLP
model to encode these attributes, thereby generating a corresponding embedding
for each product. If the reader is not familiar with the concept of "leveraging a
pre-trained NLP model", refer to Appendix A. Subsequently, the similarity between
two products is determined based on the proximity of their corresponding vectors
in the vector space. Specifically, products represented by vectors that are close
together in the vector space are considered similar, while products represented by
vectors that are distant from each other are considered semantically different. An
overview can be seen in Figure 1.2.

Figure 1.2: How the similarity among products is computed.

However, in order to be practically applicable, a further consideration must be
taken into account. Labeling a dataset is a time-consuming and arduous process,

3

Introduction

and the number of potential products is vast. Even if a substantial proportion
of products were labeled, the introduction of new markets to the platform or the
addition of new products to existing markets would inevitably result in the model
confronting new and previously unseen product entities. To address this challenge,
we have conducted all our experiments in a zero-shot fashion. Consequently, the
models are evaluated using products different from those on which they were trained
(zero-shot will be further explained in Section 2.4).

Our objective is to evaluate the performance of pre-trained NLP models in
product retrieval and to assess their potential applicability to real-world scenarios.
To achieve this goal, we first investigate the results obtained without any fine-
tuning step. We then examine how a fine-tuning step can enhance the process and
which technique is most effective. Among the techniques we explore, contrastive
learning appears to be the most promising, particularly given its significant impact
in generating semantically rich embeddings [2, 3]. We believe (and aim to confirm
with this thesis) that such embeddings can be especially advantageous in a zero-shot
setup (for further information on contrastive learning, refer to Section 2.3).

To address the research questions we have raised, we begin by defining the
task. Unfortunately, in the literature, we have found little material that specifically
pertains to the "e-commerce products" domain. Since the more general task of
retrieving the most similar entities to a given input entity is referred to as entity
retrieval, we have opted to designate the task of our interest as product retrieval.
There are differences not only in the domain but also at the application level.
Entity retrieval is typically employed for tasks such as document retrieval, entity
disambiguation, or named entity recognition, all of which are usually referred to as
entity linking tasks that are quite not our goal.

The limited coverage of the literature extends not only to the domain and the
application but also to the relatively small number of experiments conducted in
the zero-shot context. All of these considerations present challenges in terms of
identifying valid datasets and finding benchmarks that can serve as a basis for
comparison.

We have chosen to "adapt" the more extensively researched task of product
matching (which boasts a wider array of benchmarks and datasets) to our area of
interest. Product matching involves identifying which products refer to the same
real-world product. In other words, two products match if they represent the same
real product but from different sources. This represents the first contribution of
this thesis: we derive the concept of a "relevant" product with respect to the one
given as input from the notion of matching products and, in doing so, we propose
the first publicly available zero-shot product retrieval benchmark. For a better
understanding, refer to Figure 1.3. The specifics of how we transform publicly
available datasets for the product matching task to treat them in a product retrieval
context are discussed in Chapter 4.

4

Introduction

As stated previously, to emulate a zero-shot scenario, the training dataset must
be distinct from the one employed for evaluation. In this manner, the assessment
is conducted on previously unseen products during training. Another noteworthy
contribution of this thesis is the assessment of publicly available datasets for the
task of product matching in a zero-shot manner. In addition, we replicate previous
findings from the literature to facilitate comparison, thereby presenting a concise
survey on the subject.

Figure 1.3: Product matching (on the left) adapted to the product retrieval (on
the right) task. In a retrieval task we want to rank relevant items first. In our
setup products entities that refer to the same real world product with respect to
the input product are considered relevant items. It’s important to note that, in
this figure, product D is relevant to product A for transitive property.

1.3 Overview of the proposed approach
We aim to compare two pre-trained language models, namely BERT [4], trained as
auto-encoder on the Masked Language Model task, and MPNet [5], trained with an
autoregressive paradigm on the Masked and Permuted Language Model task. BERT
has been pre-trained on BookCorpus, a dataset consisting of 11 038 upublished
books and English Wikipedia (excluding lists, tables and headers), while MPNet is

5

Introduction

pre-trained on the same amount of data of BERT and has been further fine-tuned
on over one billion sentence pairs from a semantic textual similarity dataset. For
contextual information regarding these models, please refer to Appendix A. This
is done in order to evaluate how a model that adopts an autoregressive learning
paradigm and it is already fine-tuned on STS task behaves compared to starting
from model that is trained as autoencoder on general Masked Language model.

Subsequently, our focus shifts towards the fine-tuning stage. We begin by
evaluating the pre-trained models without fine-tuning, which serves as our baseline
for assessing the outcomes obtained after zero-shot fine-tuning. We explore solutions
proposed in literature for the product matching task, and apply the same fine-tuning
processes for the product retrieval task. Additionally, we conduct experiments using
contrastive learning as our fine-tuning setup, specifically supervised contrastive
learning [6]. We present the results for both zero-shot product retrieval with
contrastive learning and zero-shot product matching with contrastive learning in
Chapter 5.

6

Chapter 2

Background

2.1 Product retrieval

As outlined in the introduction, the exploration of product retrieval in the literature
is limited. A more covered and similar concept is product search, however, a
fundamental difference is that our investigation is concerned with the semantic
similarity between products, independent of user shopping needs, while product
search involves two distinct stages: the initial retrieval phase, followed by a
re-ranking step that identifies the optimal products to present to the customer.
Generally the re-ranking phase is the one more covered, while we are most interested
in the retrieval phase. In [7], the authors’ focus is on the search queries made by
users, with their model trained on the Walmart search query log. They incorporate
various product features, such as popularity, add-to-cart rate, click-through rate,
and order rate, among others. Nonetheless, their approach is similar to ours,
as they propose a neural retrieval model that utilizes neural transformation to
acquire vector representations of products and queries separately. They then use
a straightforward aggregation function to merge two vectors to predict the final
score.

Another paper in which they focus on the retrieval phase is [8]. They highlight
the significance of utilizing relevance functions based on semantic matches rather
than relying on exact matches such as TF-IDF. The latter is frequently employed
but is insufficient to achieve search result rankings that are suitable for user
presentation. E-commerce sites often overlay a range of handcrafted filters (using
structured data fields) and hard-coded rules for specific queries atop the legacy
relevance function score.

Neither of the previously mentioned approaches on product retrieval utilized
public datasets.

Although we were unable to locate other literature specific to the task of product

7

Background

retrieval, we found literature that referred to more general tasks. The current
literature on information retrieval primarily focuses on web search, resulting in
the specific task being referred to as document retrieval. Other topics include
entity disambiguation or named entity recognition. Entity retrieval is occasionally
used interchangeably with entity linking. In [9], the authors demonstrate that
performing entity linking is feasible by training a dual encoder (two-tower) model
that encodes mentions and entities in the same dense vector space. Candidate
entities are retrieved by conducting an approximate nearest neighbor search. The
authors trained the model on Wikinews. In [10], the authors propose a different
approach that is based on a model that retrieves entities by generating their unique
names from left to right, token-by-token, in an autoregressive manner.

2.2 Product matching
In the domain of retail, advertisements and listings often provide incomplete
information about products, such as the absence of a universal product code (UPC)
[11] or global trade item number (GTIN) [12]. This inadequacy is explored in
greater detail in [13], which identifies six challenges associated with the efficient
organization and management of e-commerce metadata. Among these challenges
is the insufficient use of unique product identifiers, which are vital for enabling
efficient product data integration. These codes and numbers aid in identifying
products, making them more easily discoverable for consumers, and enhancing
the consumer experience for retailers by providing relevant advertising, complete
product listings, and better product recommendations. In conclusion, clear product
identification from diverse sources benefits consumers, advertisers, and product
aggregators.

Identifying products can be challenging due to incomplete, dirty, and unstruc-
tured data. Such issues can hamper the extraction of information from product
listings, rendering it difficult for consumers to locate what they are seeking. Re-
tailers may also organize products into non-interoperable taxonomies, making it
challenging to extract information from the meta-structure of the product data.
Furthermore, there are concerns about scalability as the size of datasets expands,
and managing the inconsistencies that can arise from retailers categorizing products
differently.

Product matching is a rapidly developing field, with numerous new publications
since 2018 [14, 15, 16, 17, 18, 19, 20, 21]. This trend can be attributed to several
factors, including greater access to data and the development of strategies and
tools to handle big data. DeepER [21] and DeepMatcher [20] were the first to
demonstrate that deep learning models can effectively handle entity matching,
which is like product matching but extended to other entity’s domains. They

8

Background

utilize recurrent neural networks [22], integrated with attention modules [23, 24], to
encode pairs of entities in multi-dimensional vectors and create a binary classifier
based on the similarity of these embeddings to generate a matching decision.

Although these architectures are tailored for the task and perform well, they
are outperformed by more recent Transformer-based models, particularly in "dirty"
datasets (where the entities from a pair are structured records with the same
schema, but some attribute values may be "injected" under the wrong attribute
or may be missing) or "textual" datasets (where all attributes correspond to raw
text entries). The release of BERT [4] sparked a revolution in the NLU field, as
pre-trained language models became increasingly important in numerous tasks
(as discussed in Appendix A), including entity matching (and product matching
accordingly). Researchers have demonstrated that with a simple fine-tuning step,
the BERT architecture outperforms previous state-of-the-art models [14, 15].

In [15] they experimented with 3 optimization techniques:

• Leveraging domain knowledge: it consists in pre-processing the input
sequences to allow domain knowledge to be injected into Ditto. Two main
methods are proposed. The first one called span typing that helps the model
recognize a certain type of span surrounding it with a specific token. For
example, a phone number "(866)246-6453" may be replaced with "(866)246-
[LAST]643[/LAST]". The second method is span normalization with which
two different but equivalent spans are rewritten into the same string. For
example both "5 %" and "5.00%" can be rewritten as "5.0%".

• Summarizing long entries: Usually in transformer-based pre-training there
is a limit on the sequence lenght of the input. Often sequences that don’t fit
into the limit are simply truncated. Here they tried to summarize them using
a TF-IDF-based summarization algorithm. This tecnique can be beneficial in
textual datasets with long text descriptions for each entity. For the purposes of
the thesis, where the focus is on products entities that usually are characterized
by short descriptions, this technique can be overlooked.

• Augmenting training data: this technique has proved itself beneficial in the
image vision field. In the language one it is a little bit more controversial. The
issue is that an augmentation almost always preserve the image labels, while
a sequence can easily be distorted so much that the label become incorrect.
In the paper different operators are tried like span_del, span_shuffle, attr_del
and entry_swap. Moreover, a sophisticated interpolating strategy is introduced
in order to reduce the "distortion" effect of the augmentation. A last thing that
must be said is that the dropout noise during training inherent to Transformer
encoders can be regarded as soft data augmentation in the embedding space,

9

Background

since two embeddings of the same product offer will likely never look exactly
the same during training (as analyzed in [3]).

These techniques improve results on some specific dataset. However, particularly
in the ones that will be treated in the thesis belonging to the products domain (see
Chapter 3), there is not really an appreciable improvement.

The first paper mentioned [14] doesn’t use serialization techniques. For textual
datasets (composed of a single long description), it directly tokenize it as it is,
while for entites "fragmented" in attributes it simply concatenate all of their values
together, for instance name + brand + description + price. Ditto [15] uses a more
sophisticated approach using special tokens to help the model recognize different
attributes. For examples the key/value pairs:

• title: instant immers spanish dlux 2

• modelno: NULL

• price: 36.11

are concatenated together in the string "[COL] title [VAL] instant immers
spanish dlux 2 [COL] manf./modelno [VAL] NULL [COL] price [VAL] 36.11 ". It
is not clear if this last method brings a noticeable improvement, however, [25]
suggests that data encoding does not have on average a real impact on the results.

An interesting approach to the task is given by [16]. Unfortunately it is tested
on a proprietary dataset so it is difficult to reproduce. They interpret product
matching as a similarity learning task allowing them to cast the problem as a
zero-shot learning problem in order to obtain semantically rich embeddings. To do
so they exploited the triplet loss [26], introducing a notion of similarity between
pairs of products:

L(p, p+, p−) = max(0, m + d(E(p), E(p+)) − d(E(p), E(p−)))

Where p is a product, p+ a matching product (positive), p− a non-matching
product (negative), E a transformer-based encoder (accordingly, E(p) is the embed-
ding of a product p) and d is a distance measure (the cosine distance in this case).
Lastly m is the margin and it’s treated as hyper-parameter.

2.3 Contrastive learning
In our work, we have opted to adopt a Contrastive Learning approach. Specifically,
we have decided to employ the loss function introduced in [6], called SupCon
loss. As explained in the paper, there has been a recent resurgence of interest

10

Background

in contrastive learning, which has resulted in significant advancements in self-
supervised representation learning. The underlying concept of these works is to
bring an anchor and a "positive" sample closer together in the embedding space
while simultaneously pushing the anchor away from multiple "negative" samples.
As labels are not available, a positive pair generally consists of data augmentations
of the sample, while negative pairs are formed by the anchor and randomly selected
samples from the minibatch. The authors propose a supervised learning loss that
builds upon the contrastive self-supervised literature by utilizing label information.
Normalized embeddings from the same class are brought closer together than those
from different classes. In our use case, two products belong to the same class if
they refer to the same real product entity. These positives are drawn from samples
of the same class as the anchor, as opposed to being data augmentations of the
anchor, as is done in self-supervised learning. This is particularly beneficial in NLP
tasks, since unlike image vision where an augmentation nearly always preserves
the image labels, a sequence can easily become distorted to the point where the
label becomes incorrect. In [3], self-supervised contrastive learning is employed
on sentence embeddings, and it is discovered that dropout acts as minimal data
augmentation and is more effective on its own than other text augmentations like
span deletion, span shuffle, attribute deletion, and entry swap.

Since we have the information of matching and not matching products, in this
thesis we adopt the supervised contrastive loss, that is expressed as

Lsup
out =

Ø
i∈I

Lsup
out,i =

Ø
i∈I

−1
|P (i)|

Ø
p∈P (i)

log
exp(zi · zpτ)q

a∈A(i) exp(zi · zaτ) (2.1)

Where we have a batch of N products, i ∈ I ≡ {1...N} is the i-th product in
the batch, referred to as the anchor and A(i) ≡ I/ {i} is the set of all products
except i. P (i) ≡ {p ∈ A(i) : åyp = åyi} is the set of indices of all positives in the
batch distinct from i, and |P (i)| is its cardinality. τ ∈ R+ is a scalar temperature
parameter. zp refers to positive product embeddings with respect to the anchor,
while za refers to all embeddings except the embedding of i. It can be seen as a
generalization of both the Triplet and N-pair losses [26, 27], since the former uses
only one positive and one negative sample per anchor, while the latter uses one
positive and many negatives. The SupCon loss in Equation (2.1) brings positives
closer together, while negatives are pushed apart, as represented in Figure 2.1.

Extending the self-supervised batch contrastive approach to the fully-supervised
setting allows us to effectively leverage label information. Clusters of points
belonging to the same class are pulled together in embedding space.

11

Background

Figure 2.1: The supervised contrastive loss. Points belonging to the same class
of the anchor product (i.e. matching products in our use case) are pulled together
while negatives are pushed apart.

2.4 Zero-shot scenario
Zero-Shot Learning (ZSL), in its original definition, aims to identify unfamiliar
categories by drawing upon their semantic correlations with known categories.
These semantic connections may manifest within human-annotated attributes,
lexical embeddings, textual portrayals, and so on. In practice, ZSL is performed
by firstly learning an embedding space where semantic vectors and visual features
are interacted. Then, within the learned embedding space, the best match among
semantic vectors of unseen classes is selected for the visual features of any given
sample of the unseen classes.

In the context of these thesis, we adapt the concept of Zero-Shot Learning to
zero-shot product retrieval task, where each product is assigned to a cluster, and
our objective is to recover products that belong to the same cluster.

12

Chapter 3

Data

We were unable to locate publicly accessible datasets that were explicitly tailored
to the product retrieval task. Consequently, we rely on the datasets designed for
product matching. In Chapter 4, we will elaborate on the processing techniques
we employ to adapt these datasets to our focused task. These public-available
datasets are valuable to researchers, as they lower the entry barrier for evaluating
novel methodologies and linkage strategies. Moreover, the use of public data
guarantees result reproducibility, particularly for projects with open-source code.
The consistent use of identical public datasets across various researchers also
facilitates comparisons between different approaches. In our study, the analysis
of the product matching task, and the replication of the outcomes achieved in
the state-of-the-art approaches, served as the foundation for our work. It is also
the reason why we conducted an analysis of the product matching task. We first
examined the zero-shot scenario in the product matching task and then proceeded
to the zero-shot scenario in the product retrieval task.

The first structured benchmark for the product matching task was introduced
by [20]. They provided three of the four datasets that we utilize, in addition to the
metrics for the task, which we will deepen in Chapter 4. All subsequent literature
on this task follows their benchmark. As the datasets were created for the product
matching task, they comprise pairs of product entities, along with a label. This
label designates a value of 1 for matching products and 0 for non-matching ones.
Each product entity is defined by its textual attributes.

The data can be classified into three distinct categories:

• Structured: the attributes adhere to the same schema and possess clean
text-based values of restricted length.

• Textual: all attributes correspond to raw text entries.

• Dirty: similar to structured data, except the values of the attributes may be

13

Data

injected under the wrong attribute, and a varying portion of them may be
null.

Four publicly available datasets have been used in our study.

• Abt - Buy / Amazon - Google: These datasets were initially published in
the repository of the Database Group of the University of Leipzig [28].

• Amazon - Walmart: Made available by the University of Wisconsin-
Madison’s Magellan Data Repository [29].

• WDC LSCP: The WDC product data corpus [17] consists of 26 million
product offers originating from 79 thousands websites. The offers are grouped
into 16 million clusters of offers referring to the same product using identifiers,
such as GTINs [12] or MPNs. The gold standard consists of 4400 pairs of
offers that were manually verified as matches or non-matches. Each category
has a fixed number of positive and negative pairs. The negative examples are
created by selecting pairs that have high textual similarity but different IDs.
From this huge corpus, different subsets of the WDC product data corpus are
provided (small, medium, large, xLarge).

A summary of certain characteristics revealed by an exploratory data analysis
is available in Table 3.1.

Dataset Domain type Train Size PosNeg ratio distinct products % with no positives

Abt - Buy eCommerce Products textual 5 743 8.3 1929 36.4%
Google - Amazon software / electronics structured 6 874 8.8 1590 54.6%
Walmart - Amazon software / electronics dirty 6 144 9.7 5126 78.2%
WDC small eCommerce Products dirty 9 038 2.9 8880 47.8%
WDC medium eCommerce Products dirty 25 567 3.6 12 349 30.6%
WDC large eCommerce Products dirty 103 411 4.5 13 719 7.1%
WDC xLarge eCommerce Products dirty 214 736 6.1 13 930 3.67%

Table 3.1: Data analysis summarization. The % of products with no positive (i.e.
that never appear in a matching pair) will be relevant later on. An high percentage
could cause some issues since the contrastive learning approach (as presented in
Section 2.3) rely on bringing the positive products embeddings closer together and
push away negative ones.

The positive negative ratio is a meaure of how much the dataset is imbalanced.
WDC, for which products are extracted from numerous sources, tends to be less
imbalanced.

In [16], it has been mentioned that an appropriate batching strategy is essential
for selecting non-trivial pairs, failing which the loss would be zero and the model
would learn nothing. However, with these public datasets, such a strategy is

14

Data

not required, as the negatives are already selected from pairs with high textual
similarity (hard-negatives).

The attributes that are present in the Abt-Buy, Google-Amazon, and Walmart-
Amazon datasets are as follows:

• Name: a brief text snippet describing the product.

• Description: a longer written description of the product.

• Brand/manufacturer: the name of the company responsible for creating
the product.

• Modelno: an alpha-numeric sequence usually used to identify a product from
other products created by the same manufacturer.

• Price: the cost of the product. This is the only numeric attribute that arises
in any of the datasets.

Regarding the WDC dataset, it lacks the attribute modelno and includes two
additional attributes:

• SpecTableContent: key/value-pairs (as one string) from the product specifi-
cation tables that may exist on the offer pages.

• Category: one of 25 product categories the product was assigned to.

Each dataset is split into the training, validation and test sets using the ratio of
3:1:1.

The techniques utilized to concatenate the textual attributes together are treated
with more details in the Chapter 4. However, an initial analysis is necessary to
determine the maximum length of a single text blob containing all the attributes.
This is due to transformers’ maximum sequence length constraint in terms of token
count, which varies depending on the architecture. For instance, BERT has a
max sequence length of 512, while MPNet has 384. In cases where the dataset’s
sentences tend to exceed these limits, a truncation strategy, as implemented in [15],
must be defined. It is worth noting that the limit is quite generous, and the only
dataset (categorized as textual) that may raise concerns is Abt-Buy. Fortunately,
no sentence in the dataset exceeds the limit.

To gain a better understanding of the dataset, Table 3.2 reports random samples
of concatenated textual attributes values from the left and right products in the
pair, labeled as "Text left" and "Text right," respectively.

15

Data

Text left Text right Label

Abt-Buy Avg text length: 57

sony white 8 ’ portable dvd player dvpfx820w sony dvp-
fx820 white 8 ’ portable dvd player dvpfx820w swivel
flip screen with dual sensor for remote control control
buttons on screen bezel 12 bit video dac with 108 mhz
processing removable , rechargeable battery car adapter
included white finish

sony dvp-nc800h / s dvd player dvp-nc800hs dvd + rw ,
dvd-rw , dvd + r , dvd-r , cd-rw dvd video , cd-da , jpeg
, mp3 , svcd , video cd playback 5 disc (s) progressive
scan silver 128.69

0

delonghi oil filters fk8 delonghi oil filters fk8 made for
use with d895ux 3 pack 18.0

delonghi 6-pc . replacement filters for deep fryer 1

Amazon-Google Avg text length: 16

emc retrospect 7.5 professional for windows upgrade
dantz

microsoft office and windows training professional 29.99 0

microspot macdraft professional (mac) microspot ltd.
349.99

microspot interiors (ints3 .6 sb) 95.95 0

printmaster 17 gold by encore software encore software
30.66

encore software 10478 encore printmaster v. 17.0 gold
complete product creativity application 1 user (s) com-
plete product standard pc 17.97

1

Walmart-Amazon Avg text length: 31

da-lite da-plex deluxe rear projection screen - 78 x 139
hdtv format da-lite 7452.99 electronics - general 27573

da-plex base rear projection screen - 40 1 4 x 53 3 4 video
format projection screens da-lite 1525.99

0

lg 42 class lcd 1080p 60hz hdtv 42lk450 electronics : flat
panel tv 579.0 lg 42lk450

lg 42lk450 42-inch 1080p 60 hz lcd hdtv lg tvs 42lk450 1

case logic trend compact camera case mp3 accessories
case logic 214336 15.19

case logic qpb-201 eva molded compact camera case
magenta qpb-201magenta 9.66 cases bags case logic

0

WDC Avg text length: 36

"Apple - 12.9- Inch iPad Pro with Wi-Fi 32 GB
Silver"@en-US

"Apple 12.9-inch iPad Pro Wi-Fi - tablet 32 GB 12.9"" "
Apple 12.9" ML0G2LL/A Tablets CDW.com

1

"Used Canon Rebel T3i Body D - Good"@en " Used
DSLRs | Unique Photo "@en

"Canon EOS 6D(N) Digital Camera (Body Only)"@en
Only) - Fumfie.com"@en

0

"Cartier" "CartierCartier Pasha C Steel Black Unisex
Watch W31079M7"

"Cartier" "CartierCartier Tank Series Unisex Watch
W2603556"

0

Table 3.2: Samples from the datasets. Beside the dataset name is reported the
average lenght of the Text attribute.

16

Chapter 4

Methodology and
implementation

In this Chapter, we aim to investigate the performance of pre-trained language
models, specifically MPNet and BERT, on the task of product retrieval in a zero-
shot scenario. To accomplish this, we begin with the data presented in Chapter
3, which was originally designed for the product matching task (presented in 2.2).
The first step is to process the data to fit the product retrieval task (presented in
2.1). To reproduce a zero-shot scenario (2.4), we experiment various combination
fine-tuning on a dataset and testing on a different one (the combinations are listed
in Figure 4.5).

Building upon the findings in [30], we note that BERT induces a non-smooth,
anisotropic semantic space of sentences that negatively affects its performance on
semantic similarity. “Anisotropic” means that the word embeddings occupy a narrow
cone in the vector space. Although various methods have been proposed to alleviate
this issue (see [30, 31]), our focus is primarily on investigating the contrastive setup.
As stated in [2], the contrastive loss optimizes both the alignment (closeness) of
features from positive pairs and the uniformity of the induced distribution of features
on the hyper-sphere. This has been shown to have positive effects on downstream
tasks in the image vision domain, and similar benefits for semantic similarity in
the natural language domain have been demonstrated in [3]. Furthermore, [3]
demonstrates a correlation between low alignment and uniformity loss and higher
average STS (Semantic Textual Similarity [32, 33, 34, 35, 36]) performance. As
stated and demonstrated by the paper: "the contrastive learning objective flattens
the singular value distribution of the sentence embedding space, hence improving
uniformity."

As introduced in [2], the alignment loss is defined as the expected distance

17

Methodology and implementation

between positive pairs:

Lalign(f) = E
(x,y)∼ppos

||f(x) − f(y)||2 (4.1)

The uniformity loss is instead defined as the logarithm of the average pairwise
Gaussian potential:

Luniform(f ; t) = log E
(x,y)∼pdata

e−2||f(x)−f(y)||2 (4.2)

where e−2||f(x)−f(y)||2 is the Gaussian potential kernel (a.k.a. Radial Basis Kernel)
and t is a fixed parameter. Figure 4.1 helps to visualize the concept of uniformity.

Since our objective in both the product retrieval and product matching tasks is
to enhance similarity between positives and reduce it for negatives, we measure
alignment and uniformity loss in conjunction with other metrics (to be introduced
shortly).

Figure 4.1: From left to right progressively more uniform representations. A
lower uniformity loss translates to evenly distributed embeddings on S1. Credits
to [2].

To obtain the embeddings, we begin by concatenating the textual attributes
of each product. The attributes vary depending on the dataset (see Chapter 3
for reference). Several approaches are possible, including some that are more
straightforward as done in [14], where no serialization techniques are used. For

18

Methodology and implementation

textual datasets composed of a single long description, it is directly tokenized as is,
while for entities "fragmented" into attributes, all attributes are simply concatenated
together. In [15] they use a more sophisticated approach using special tokens to
help the model recognize different attributes as described in Section 3.

Once the attributes are concatenated, the resulting string is tokenized and
then fed to the NLP model (BERT or MPNet in our case). The model outputs a
fixed-size vector for each token. Various techniques exist to compress the granular
token-level representations into a single fixed-length representation that is supposed
to reflect the meaning of the entire sequence. In [37] mean pooling is suggested
as the best approach, which aggregates token-level embeddings by taking their
element-wise arithmetic mean. Figure 4.2 provides an overview of the entire process.

Figure 4.2: The encoding of a product entity. The textual representation of a
product is first tokenized, then each token is processed by the NLP Encoder and,
finally, computing element-wise arithmetic mean of the token embeddings we get
the product embedding of 768 elements.

19

Methodology and implementation

4.1 Product retrieval zero-shot setup
The concept behind our use-case is straightforward. We aim to develop a system
capable of retrieving the most similar products from a given corpus. If the corpus
contains products that refer to the same real-world item as the input product,
these entities should rank highly. A product is defined as the representation of its
textual characteristics, as discussed in the previous section. Refer to Figure 4.3 for
a visual overview of the process.

Figure 4.3: Product retrieval schematized. "Product A" is the input product. It
is encoded, then we compute the cosine similarity with each embedded product in
the corpus. The sorted list of products is the output.

We are interestered in 3 metrics:

• Normalized Discounted Cumulative Gain (nDCG): This commonly
used evaluation metric measures the relevance of entities returned by retrieval
systems. nDCG returns high scores when highly relevant entities appear
earlier in the results. In our context, each product embedding represents an
entity. Our query is an input product from which we want to retrieve the most

20

Methodology and implementation

similar one. Therefore, a relevant entity is a matching product, i.e. a product
belonging to the same cluster as the input one. Discounted Cumulative Gain
(DCG) is defined as

DCGn =
nØ

i=1

reli
log2(i + 1)

where n is the number of products in the corpus and reli is the graded relevance
of the result at position i. reli is 1 for a matching product and 0 for a non-
matching product. The term at the denominator penalize relevant products
that appear lower in the search.
To avoid a product scoring higher than another only because there are more
relevant products in the corpus for its specific cluster, a normalization term is
added, resulting in

nDCGn = DCGn

IDCGn

IDCGn is the ideal discounted cumulative gain, obtained sorting all the
relevant products in the corpus producing the max possible DCG for that
product.

• Recall@K, Precision@K and F1@K: This set of metrics investigates if
the system is able not only to retrieve but also recognize relevant items. We
use the concept of a recommended item as a product embedding for which
the cosine similarity with the input product is above a certain threshold.
We try different thresholds (from 0.6 to 0.9) and keep only the best results.
The definition of a relevant item remains the same as presented for nDCG.
We define Recall@K as the proportion of relevant items found in the top-k
recommendations:

Recall@K = # of recommended items @K that are relevant

of relevant items in the corpus

Precision@K is the proportion of recommended items in the top-k set that are
relevant:

Precision@K = # of recommended items @K that are relevant

of recommended items @K

Lastly, we compute F1@K as the harmonic mean of Recall@K and Preci-
sion@K :

F1@K = 2 ∗ Precision@K ∗ Recall@K

Precision@K + Recall@K

We tested with k = 1, 3, 5, 10.

21

Methodology and implementation

As shown in Chapter 3, the data is presented in pairs of products, each pair
accompanied by a label that denotes whether two products refer to the same
real-world entity (i.e. they are matching) or not (i.e. they are not matching).

To facilitate the product retrieval task, we need to convert this format into a
multi-label setup, where each class corresponds to a unique real-world product. To
achieve this, we draw inspiration from the formatting of data in WDC LSPC. Even if
it is designed for the product matching task, each pair in this dataset is accompanied
by a "cluster_id" field that identifies a cluster of matching products. Therefore,
we create similar clusters for the Abt-Buy, Google-Amazon, and Walmart-Amazon
datasets by iterating over all product pairs and encoding each distinct product in
an embedding. To ensure that each product is uniquely identified across different
sources, we concatenate the name of the source from which it originates to its
ID (e.g., a product with id : 15 in Abt is transformed in id : 15_abt). We then
iterate through each pair, inserting two products with a label of 1 into the same
cluster, provided that neither of them has already been added to a cluster. If one
of the products has already been added to a cluster, then they are inserted into
the already existing cluster. Conversely, if the pair has a label of 0, the products
are added to two different clusters. The cluster ID that we obtain is later used as
the label. Each product is encoded (as described at the beginning of this chapter)
and saved. For an overview the processing, refer to Figure 4.4.

In a real-world use-case, these embeddings could be efficiently saved and retrieved
using a vector database. Vector databases are designed to efficiently store and
retrieve large collections of high-dimensional vectors, such as sentence embeddings,
image features, or audio signals. To do this, they typically use indexing techniques
that partition the vector space into smaller subspaces, which can be searched more
efficiently than the entire space. One popular indexing technique used in vector
databases is k-nearest neighbors (KNN) search, which involves dividing the space
into a set of non-overlapping regions, or cells, and then searching for the k closest
neighbors to a query vector within these cells. Another commonly used technique
in vector databases is approximate nearest neighbor (ANN) search, which uses
algorithms such as locality-sensitive hashing (LSH) and hierarchical navigable small
world (HNSW) to speed up the search process. These algorithms work by mapping
the high-dimensional vectors to a lower-dimensional space, where distances are
more easily computed, and then searching for nearest neighbors within this lower-
dimensional space. Libraries such as FAISS, NMSLIB (Non-Metric Space Library),
and SPTAG (Space Partition Tree And Graph) provide efficient implementations
of these algorithms.

We execute the experiments in a zero-shot setup and try different combinations,
as depicted in Figure 4.5. We use the BERT and MPNET models without fine-
tuning as a baseline and compare the results with those obtained after a fine-tuning
iteration.

22

Methodology and implementation

Figure 4.4: Shift data from product matching setup (on the left) to product
retrieval setup (on the right). In the example product A and product B will be put
in the same cluster since they have label = 1. But even product D will be put in
that same cluster. Since it matches (label = 1) with product A it matches with
product B too for transitive property. Product C will be put to a different cluster,
since it does not match with product B and, therefore, does not match with all the
others.

We are also interested in how the amount of data influences the zero-shot
outcome. Therefore, for the WDC LSCP dataset, we fine-tune on both the small
subset and the xlarge subset. To conduct a similar experiment on the Magellan
datasets (i.e. Abt-Buy, Google-Amazon, Walmart-Amazon), we fine-tune on each
dataset individually and on the union of all datasets.

4.2 Product matching zero-shot setup
To the best of our knowledge, we are the first to evaluate the publicly available
datasets discussed in Chapter 3 for a product retrieval task. However, to ensure
comparability with existing literature, in this session, we are going to assess our
approach on the product matching task. As the datasets are tailored for this
purpose, no pre-processing is required. Our primary metric of interest is the F1
score, and we adhere to the benchmark initially introduced in [20].

To start, we replicated the results for the current state-of-the-art methods

23

Methodology and implementation

Figure 4.5: Zero-shot setup. Starting from a pre-trained NLP model, we first
fine-tune it on one of the datasets in the center column. Then, depending on the
dataset it has been fine-tuned on, we test on one of the datasets on the left column.
As Baseline, we test the pre-trained NLP model directly without fine-tuning.

presented in [15, 14, 18] using BERT model. As depicted in Figure 4.6, two product
descriptions are concatenated and tokenized, incorporating two special tokens: the
classification token [CLS] and the [SEP] token (used by the network to distinguish
between the two entities). The [SEP] token is employed during the "next sentence
classification" task used to pretrain BERT. The resulting tokenized sentence is then
input into the architecture, and the output from the initial position is taken (which
corresponds to the embedding of the [CLS] token). This vector of size hidden_size
(768 in BERT, but it varies according to the architecture) is subsequently utilized
as input for a classifier, usually a simple linear classifier with a single binary label
(0 when there is no match and 1 otherwise).

From now on we’ll refer to this methodology as the pairwise methodology.
As the number of potential matches increases quadratically with the number of

products, direct record-to-record comparison becomes eventually unfeasible. Various
blocking techniques have been suggested in the literature [15] to reduce the number
of potential matches. Our approach focus on developing a model that generates
semantic embeddings for each product separately that can be pre-computed, which

24

Methodology and implementation

Figure 4.6: BERT fine-tuned on the product matching downstream task. First
the two products are tokenized, then the tokens are processed by BERT model.
Lastly, the embedding of the CLS token is used as input for a linear classifier,
which output the probability of a match.

can then be retrieved quickly through techniques such as FAISS (Facebook AI
Similarity Search) that we presented before. To execute the task by relying solely
on the distance between embeddings, we first pre-train the models using contrastive
learning (see the next section for details). Then, during the validation phase,
two products are considered a match if the distance between their embeddings is
above a certain threshold. This threshold is considered a hyperparameter to be
optimized. Figure 4.7 provides an overview of our approach. There are several
metrics commonly used to measure similarity between two embeddings, including
cosine similarity, Euclidean distance, Manhattan distance, and Jaccard similarity.
I’ll describe each of these in more detail below, along with the formulas used to
compute them:

• Cosine similarity: This measures the cosine of the angle between two vectors
in a high-dimensional space, and is widely used in natural language processing

25

Methodology and implementation

Figure 4.7: Using cosine similarity in the product matching task.

applications. The formula for cosine similarity is

cos_sim(x, y) = x · y

||x||||y||

• Euclidean distance: This measures the straight-line distance between two
points in a high-dimensional space, and is often used in computer vision
applications. The formula for Euclidean distance is:

euclidean_dist(x, y) =
öõõô nØ

i=1
(xi − yi)2

• Manhattan distance: This measures the distance between two points in a
high-dimensional space by summing the absolute differences between their
coordinates. The formula for Manhattan distance is:

manhattan_dist(x, y) =
nØ

i=1
|xi − yi|

26

Methodology and implementation

• Jaccard similarity: This measures the similarity between two sets of features,
and is often used in text mining and information retrieval applications. The
formula for Jaccard similarity is:

jaccard_sim(x, y) = x ∩ y

x ∪ y

x ∩ y is the size of the intersection of the two sets, and x ∪ y is the size of the
union of the two sets.

As it is generally the most widespread, we use cosine similarity.
Despite the task being previously addressed, insufficient attention has been

given to the zero-shot scenario, despite its significance in real-world applications.
Therefore, we conduct experiments under the configurations depicted in Figure 4.5.

4.3 Fine-tuning BERT and MPNet through su-
pervised contrastive learning

Leveraging the supervised contrastive loss function (refer to Section 2.3), we fine-
tune BERT and MPNet models on our publicly accessible data. During the training
phase, we extract batches of products from the dataset and employ the cluster
ID as a label. This enables us to bring positive products closer together while
pushing negative products apart, with the distance between them being computed
as the dot product between embeddings. Refer to Figure 4.8 for an overview of the
training process.

Subsequently, we validate the models depending on the downstream task at hand.
Refer to Section 4.1 for product retrieval and Section 4.2 for product matching.
Our experimentation involves varying the learning rate, weight decay, and warmup
ratio. we have determined after exploring the hyper-parameter space that the most
optimal configuration is to maintain a learning rate of 2e-5, a weight decay of 0.01,
and a warmup ratio of 0.05.

For simplification purpose, from now on in the thesis we’ll call the union of the
datasets Abt-Buy, Google-Amazon and Walmart-Amazon the Magellan dataset.

27

Methodology and implementation

Figure 4.8: Fine-tuning a model (MPNet in this case) using a supervised con-
trastive loss. Positives are identified by two products with the same cluster_id.

28

Chapter 5

Results and evaluation

In this Chapter, we present our findings from an initial examination of the alignment
and uniformity properties. Subsequently, we delve into the outcomes for our targeted
tasks.

5.1 Alignment and Uniformity analysis
In the opening of the previous chapter (Chapter 4), we introduced the notions
of alignment and uniformity. Alignment calculates expected distance between
embeddings of products within the same cluster, while uniformity measures how
well the embeddings are uniformly distributed. Table 5.1 illustrates the modification
of alignment and uniformity loss due to fine-tuning using contrastive learning. The
findings for both BERT and MPNet architectures are outlined. Since we are dealing
with loss values, the less they are the better.

As anticipated, since MPNet has been pre-trained on sentence pairs, the resulting
embeddings are more uniformly dispersed in the vector space (lower uniformity
loss) across all datasets, with the exception of Abt-Buy. Conversely, the alignment
loss remains mostly the same, even slightly better for BERT.

Post fine-tuning, the uniformity loss declines for both architectures, while
alignment remains nearly the same. Upon comparing the outcomes for one dataset
after fine-tuning on the same dataset versus fine-tuning in a zero-shot scenario (e.g.
the results on WDC after fine-tuning on Magellan), the losses for both alignment
and uniformity are higher in the zero-shot scenario, as expected, but not by a
significant margin. However, the most crucial drop in loss is between the setup
where we use the model without any fine-tuning and the one where we fine-tune
with another dataset.

It is noteworthy that following finetuning on WDC_XLarge, the uniformity is
notably inferior in comparison to the finetuning on WDC_small, which contains

29

Results and evaluation

only a fraction of the samples. Observing the value in the non-zero-shot scenario
(i.e. target: WDC, finetuning: WDC_XLarge), the alignment loss is almost zero.
While this might prove advantageous in certain contexts, it may also imply a form
of degeneracy in the embeddings that occupy a restricted cone in the vector space,
resulting in reduced generalization.

Table 5.1: Results of Alignment and Uniformity loss before and after having
fine-tuned the model with supervised contrastive learning. These are loss values,
so the less they are the "better". Results in bold corresponds to the best results for
the particular metric in the row.

Target dataset Loss BEFORE FT FT on wdc_small FT on wdc_xlarge FT on magellan

BERT MPNet BERT MPNet MPNet BERT MPNet

abt_buy Alignment 0.3 0.3 0.33 0.47 0.37

NOT zero-shot

Uniformity -0.79 -0.76 -2.43 -3.1 -2.7

google_amazon Alignment 0.25 0.43 0.41 0.42 0.36
Uniformity -1.15 -2.6 -2.38 -3.1 -2.35

walmart_amazon Alignment 0.17 0.37 0.24 0.33 0.23
Uniformity -0.9 -2.7 -2.49 -3.1 -2.46

magellan Alignment 0.24 0.42 0.33 0.41 0.32 0.32 -0.26
Uniformity -0.96 -2.8 -2.3 -3.2 -2.5 -3.3 -3.8

wdc Alignment -0.27 0.48 0.21 0.37 0.09 0.55 0.49
Uniformity -1.05 -2.85 -2.93 -3.73 -3.62 -3.3 -3.5

5.2 Product retrieval zero-shot
We report the resuls for the product retrieval task divided in two subsections:
Baseline 5.2.1 and Zero-Shot finetuning 5.2.2.

5.2.1 Baseline
The results for the baseline, where models are used out-of-the box with no fine-
tuning whatsoever, are reported in Table 5.2. These results serve as a crucial
baseline for the zero-shot results. It is worth noting that MPNet outperforms
BERT in terms of results on such baseline. This is consistent with the considerations
made for the alignment and uniformity loss; however, BERT manages to achieve
results that are not so far off.

5.2.2 Zero-Shot finetuning
The results in this section are obtained after having fine-tuned the models using
contrastive learning as discussed in the previous Chapter 4. Results are reported

30

Results and evaluation

Table 5.2: Results for product retrieval with pre-trained models without finetuning.
R / P / F1 stands for Recall, Precision and F1. Results in bold corresponds to the
best results for the particular metric in the row.

Target dataset Metric No finetuning

BERT MPNet

abt_buy

NDCG 0.28 0.67
R / P / F1 @1 0,04 / 0,05 / 0,05 0,29 / 0,30 / 0,29
R / P / F1 @3 0,09 / 0,03 / 0,05 0,51 / 0,28 / 0,34
R / P / F1 @5 0,12 / 0,03 / 0,05 0,59 / 0,26 / 0,33

R / P / F1 @10 0,15 / 0,02 / 0,03 0,73 / 0,26 / 0,32

google_amazon

NDCG 0.68 0.78
R / P / F1 @1 0,41 / 0,42 / 0,41 0,46 / 0,47 / 0,46
R / P / F1 @3 0,59 / 0,23 / 0,32 0,61 / 0,38 / 0,44
R / P / F1 @5 0,66 / 0,18 / 0,26 0,68 / 0,36 / 0,43

R / P / F1 @10 0,75 / 0,14 / 0,20 0,75 / 0,35 / 0,41

walmart_amazon

NDCG 0.75 0.88
R / P / F1 @1 0,48 / 0,49 / 0,48 0,66 / 0,67 / 0,66
R / P / F1 @3 0,68 / 0,23 / 0,34 0,82 / 0,51 / 0,60
R / P / F1 @5 0,76 / 0,15 / 0,26 0,88 / 0,50 / 0,57

R / P / F1 @10 0,84 / 0,09 / 0,15 0,93 / 0,47 / 0,54

magellan

NDCG 0.56 0.75
R / P / F1 @1 0,31 / 0,31 / 0,31 0.46 / 0.47 / 0.46
R / P / F1 @3 0,45 / 0,16 / 0,23 0.64 / 0.37 / 0.44
R / P / F1 @5 0,51 / 0,11 / 0,18 0.71 / 0.35 / 0.43

R / P / F1 @10 0,59 / 0,06 / 0,11 0.80 / 0.34 / 0.41

wdc

NDCG 0.43 0.6
R / P / F1 @1 0,17 / 0,38 / 0,22 0.22 / 0.5 / 0.30
R / P / F1 @3 0,26 / 0,22 / 0,22 0.4 / 0.33 / 0.34
R / P / F1 @5 0,31 / 0,16 / 0,19 0.47 / 0.25 / 0.31

R / P / F1 @10 0,37 / 0,10 / 0,15 0.6 / 0.18 / 0.25

31

Results and evaluation

Table 5.3: Results for zero-shot product retrieval task when finetuning is performed
on WDC and the evaluation on Magellan. Results in bold corresponds to the best
results for the particular metric in the row.

Target dataset Metric Finetuned on wdc_small Finetuned on wdc_xlarge

BERT MPNet MPNet

abt_buy

NDCG 0.84 0.86 0.86
R / P / F1 @1 0,51 / 0,51 / 0,51 0.53 / 0.54 / 0.54 0,61 / 0,61 / 0,61
R / P / F1 @3 0,60 / 0,50 / 0,52 0.70 / 0.48 / 0.54 0,74 / 0,44 / 0,52
R / P / F1 @5 0,61 / 0,49 / 0,52 0.74 / 0.47 / 0.53 0,78 / 0,41 / 0,48

R / P / F1 @10 0,63 / 0,49 / 0,52 0.77 / 0.47 / 0.53 0,82 / 0,39 / 0,46

google_amazon

NDCG 0.77 0.88 0.72
R / P / F1 @1 0,47 / 0,48 / 0,47 0,60 / 0,60 / 0,60 0,44 / 0,45 / 0,45
R / P / F1 @3 0,65 / 0,37 / 0,45 0,76 / 0,48 / 0,55 0,62 / 0,28 / 0,37
R / P / F1 @5 0,68 / 0,34 / 0,42 0,83 / 0,45 / 0,53 0,68 / 0,23 / 0,32

R / P / F1 @10 0,71 / 0,33 / 0,40 0,87 / 0,43 / 0,50 0,74 / 0,20 / 0,27

walmart_amazon

NDCG 0.93 0.96 0.91
R / P / F1 @1 0,79 / 0,80 / 0,79 0,81 / 0,81 / 0,81 0,73 / 0,74 / 0,73
R / P / F1 @3 0,88 / 0,69 / 0,74 0,91 / 0,71 / 0,76 0,82 / 0,56 / 0,63
R / P / F1 @5 0,88 / 0,67 / 0,72 0,91 / 0,70 / 0,75 0,82 / 0,53 / 0,60

R / P / F1 @10 0,89 / 0,67 / 0,72 0,91 / 0,70 / 0,74 0,84 / 0,52 / 0,58

magellan

NDCG 0.83 0.89 0.81
R / P / F1 @1 0.59 / 0.59 / 0.59 0.62 / 0.62 / 0.62 0,54 / 0,55 / 0,55
R / P / F1 @3 0.71 / 0.50 / 0.55 0.76 / 0.54 / 0.60 0,66 / 0,41 / 0,47
R / P / F1 @5 0.73 / 0.48 / 0.54 0.79 / 0.52 / 0.58 0,68 / 0,38 / 0,44

R / P / F1 @10 0.75 / 0.47 / 0.53 0.81 / 0.51 / 0.57 0,71 / 0,37 / 0,42

wdc

NDCG 0.89 0.91 0.99
R / P / F1 @1 0,39 / 0,83 / 0,50 0,40 / 0,85 / 0,51 0,46 / 0,97 / 0,59
R / P / F1 @3 0,74 / 0,73 / 0,71 0,77 / 0,73 / 0,72 0,91 / 0,88 / 0,87
R / P / F1 @5 0,81 / 0,67 / 0,70 0,85 / 0,66 / 0,71 0,98 / 0,80 / 0,85

R / P / F1 @10 0,86 / 0,64 / 0,69 0,9 / 0,62 / 0,69 0,99 / 0,76 / 0,83

32

Results and evaluation

in Table 5.4 and 5.3. In general, all the methods considerably improves the score
compared to raw pre-trained models (seen in Table 5.2).

It is interesting to see that, in the zero-shot setup, finetuning on WDC XLarge
performs very poorly, while it gives excellent results in the scenario where the
evaluation is executed on the test subset of the same dataset used for training. As
underlined before (see Table 5.1) the high alignment and relatively low uniformity
is a detrimental combination in the zero-shot setup.

Generally, the methods that perform the best with one metric, like NDCG,
tends to perform the best also on the others.

Table 5.4: Results for zero-shot product retrieval task when finetuning is performed
on Abt - Buy, Amazon - Google and/or Walmart - Amazon and the evaluation on
WDC.

Target dataset Metric Finetuned on abt_buy

BERT MPNet

wdc

NDCG 0.72 0.8
R / P / F1 @1 0,31 / 0,68 / 0,40 0.35 / 0.75 / 0.45
R / P / F1 @3 0,55 / 0,51 / 0,50 0.63 / 0.60 / 0.58
R / P / F1 @5 0,62 / 0,43 / 0,47 0.70 / 0.52 / 0.56

R / P / F1 @10 0,68 / 0,36 / 0,42 0.76 / 0.46 / 0.51

Target dataset Metric Finetuned on google_amazon

BERT MPNet

wdc

NDCG 0.59 0.7
R / P / F1 @1 0,22 / 0,52 / 0,30 0.27 / 0.61 / 0.35
R / P / F1 @3 0,40 / 0,35 / 0,35 0.50 / 0.44 / 0.44
R / P / F1 @5 0,48 / 0,27 / 0,32 0.60 / 0.36 / 0.42

R / P / F1 @10 0,58 / 0,20 / 0,27 0.71 / 0.28 / 0.37

Target dataset Metric Finetuned on walmart_amazon

BERT MPNet

wdc

NDCG 0.72 0.79
R / P / F1 @1 0,29 / 0,66 / 0,38 0.33 / 0.73 / 0.43
R / P / F1 @3 0,51 / 0,53 / 0,49 0.60 / 0.59 / 0.56
R / P / F1 @5 0,55 / 0,47 / 0,47 0.67 / 0.52 / 0.54

R / P / F1 @10 0,60 / 0,44 / 0,45 0.71 / 0.47 / 0.51

Target dataset Metric Finetuned on magellan

BERT MPNet

wdc

NDCG 0.75 0.81
R / P / F1 @1 0,32 / 0,71 / 0,42 0,35 / 0,77 / 0,46
R / P / F1 @3 0,59 / 0,53 / 0,52 0,65 / 0,60 / 0,60
R / P / F1 @5 0,67 / 0,43 / 0, 50 0,73 / 0,50 / 0,56

R / P / F1 @10 0,74 / 0,35 / 0,43 0,80 / 0,42 / 0,50

33

Results and evaluation

5.3 Product matching zero-shot
Following the same schema of the previous section, we report the results for the
product matching task divided in subsections (three instead of two this time):
Baseline 5.3.1, Zero-Shot finetuning 5.3.2 and Same dataset finetuning 5.3.3.

5.3.1 Baseline
Results for the baseline, where no fine-tuning is performed, are shown in Table
5.5. It is worth noting that MPNet outperforms BERT in terms of results on such
baseline, as it was the case in the product retrieval task.

Table 5.5: Results for product matching with pre-trained models without finetun-
ing.

Target dataset No finetuning

BERT Cosine MPNet Cosine

abt_buy 0.19 0.34
google_amazon 0.31 0.4
walmart_amazon 0.19 0.2
magellan 0.21 0.28
wdc 0.41 0.52

5.3.2 Zero-Shot finetuning
Tables 5.6 and 5.7 report the outcomes for the product matching task in the
zero-shot setup. This time we also take into consideration BERT Pairs, which
refers to the method of feeding the model during finetuning with pairs of product
entities. For product retrieval it was not taken into consideration, since the time
complexity of the retrieval operation would make it unfeasible to process all the
samples pairwise. Although, on average, MPNet performs slightly better, we can
see that there is no significant difference in terms of F1 score between the evaluated
methods. However, it is important to remind that by utilizing contrastive learning,
we can efficiently identify matching products by calculating the distance between
two separately computed embeddings.

In general, all the methods considerably improves the score compared to the
baseline (seen in Table 5.5).

All the considerations done for the previous task regarding the dataset size can
be re-proposed. Finetuning on WDC XLarge generalizes poorly, as it shifts from
excellent results when evaluating on WDC to worst results in the zero-shot setup.

34

Results and evaluation

Table 5.6: Results of F1 score for product matching task. The models have been
finetuned on the Abt-Buy, Amazon-Google and Walmart-Amazon datasets and
then evaluated on WDC.

Finetuned on magellan

BERT Pairs BERT Cosine MPNet Cosine
0.68 0.66 0.7

Finetuned on abt_buy

BERT Pairs BERT Cosine MPNet Cosine
0.68 0.65 0.69

Finetued on google_amazon

BERT Pairs BERT Cosine MPNet Cosine
0.61 0.49 0.58

Finetuned on walmart_amazon

BERT Pairs BERT Cosine MPNet Cosine
0.61 0.63 0.7

Table 5.7: Results of F1 score for product matching task. The models have been
finetuned on wdc small and wdc xlarge and evaluated on different datasets.

Target dataset Finetuned on wdc_small Finetuned on wdc_xlarge

BERT Pairs BERT Cosine MPNet Cosine BERT Pairs MPNet Cosine

abt_buy 0.64 0.62 0.64 0.66 0.51
google_amazon 0.42 0.43 0.51 0.38 0.37
walmart_amazon 0.51 0.51 0.49 0.51 0.41
magellan 0.5 0.45 0.5 0.49 0.37

35

Results and evaluation

5.3.3 Same dataset finetuning

Although we are interested in the zero-shot scenario, results for a more conventional
approach are also included in order to evaluate the effectiveness of fine-tuning with
contrastive learning with regard to the methodology proposed in the literature
for the datasets used. Therefore, the outcomes for the non-zero-shot scenario are
presented in Table 5.8. We observe that the pairwise method tends to yield slightly
superior outcomes. Nevertheless, for the Abt-Buy and the WDC datasets, the score
is the same, which could be attributed to the percentage of product entities for
which a positive is not present in the dataset’s corpus. For Google-Amazon and
Walmart-Amazon, where contrastive learning performs the poorest, this percentage
is respectively 54% and 78%. While for Abt-Buy (38%) and wdc small (42.8%), it is
relatively lower. This consideration is based on the fact that supervised contrastive
learning exploits positive pairs to "align" matching products, therefore, it could
be highly penalized by the absence of positive instances (see Section 2.3). This
consideration seems confirmed by the fact that for wdc xlarge, where only 7% of
products have no positive, contrastive learning in this scenario works very well.

Table 5.8: Results for the non zero-shot scenario. BERT Pairs refers to the
method of feeding the model during finetuning with pairs of product entities. BERT
Cosine and MPNet cosine refers to the model beeing finetuned with contrastive
learning.

Finetuned on abt_buy -> evaluated on abt_buy

BERT Pairs BERT Cosine MPNet Cosine
0.84 0.8 0.85

Finetuned on google_amazon -> evaluated on google_amazon

BERT Pairs BERT Cosine MPNet Cosine
0.81 0.71 0.73
Finetuned on walmart_amazon -> evaluated on walmart_amazon

BERT Pairs BERT Cosine MPNet Cosine
0.82 0.73 0.77

Finetuned on wdc_small -> evaluated on wdc

BERT Pairs BERT Cosine MPNet Cosine
0.85 0.84 0.84

Finetuned on wdc_xlarge -> evaluated on wdc

BERT Pairs MPNet Cosine
0.93 0.97

36

Results and evaluation

5.4 A couple more experiments
Since the experiments up until now showed a clear correlation between the score
and a low uniformity loss in both tasks, Table 5.9 shows how the dimension of
the finetuning dataset affect the uniformity and alignment of the embeddings.
Contrary to what you would expect, a bigger dataset, while considerably improves
performances in the standard scenario, it is detrimental in the zero-shot scenario: the
medium subset of the WDC dataset already brings degeneration of the embeddings
degrading uniformity.

Given the clear correlation between score and a low uniformity loss observed
in our experiments thus far, Table 5.9 illustrates the impact of the size of the
finetuning dataset on the uniformity and alignment of the embeddings. Surprisingly,
a larger dataset, while enhancing performance in the standard scenario, actually
harms performance in the zero-shot scenario: even the medium subset of the WDC
dataset leads to degenerated embeddings that compromise uniformity.

Table 5.9: A table showing how the size of the finetuning dataset influence
uniformity and alignment. The F1 score on the product matching task is also
reported for comparison. Small, medium, large and xlarge refers to the subsets
of WDC dataset. The best results for the zero-shot scenario (i.e. target dataset
"magellan"), both in terms of F1 score and uniformity, are obtained after finetuning
on the small subset.

Target dataset Metric MPNet

NO FT FT on small FT on medium FT on large FT on xlarge

magellan
F1 0.21 0.5 0.49 0.74 0.37

Align Loss 0.42 0.41 0.33 0.27 0.32
Unif Loss -2.8 -3.2 -2.88 -2.4 -2.5

wdc
F1 0.41 0.84 0.93 0.96 0.97

Align Loss 0.48 0.37 0.17 0.1 0.09
Unif Loss -2.85 -3.73 -3.71 -3.6 -3.62

Lastly, for a qualitative analysis of the product retrieval task, the Graphs 5.1,
5.2, 5.3, 5.4 showcase the results from one last experiment that we conducted. The
retrieval outcome for a randomly sampled product from the corpus is displayed for
each dataset and both architectures. This is done to further elucidate the structure
of the task and how the fine-tuning with supervised contrastive learning affects the
similarity between embeddings. Given an input product embedding, the histograms
display the sorted similarity score of the top 10 similar product embeddings. The
darker histograms represent products labeled as matching with the input product.

We can see that BERT’s embeddings are clustered closely together in the vector
space before fine-tuning, while MPNet is already able to differentiate between them.
After fine-tuning, this gap narrows, and the qualitative analysis suggests that they

37

Results and evaluation

are more evenly distributed.

Figure 5.1: Qualitative analysis of product retrieval performances on Abt-Buy
before and after finetuning on a different dataset. The darker histograms represent
products labeled as matching the the input product.

38

Results and evaluation

Figure 5.2: Qualitative analysis of product retrieval performances on Amazon-
Google before and after finetuning on a different dataset. The darker histograms
represent products labeled as matching the the input product.

Figure 5.3: Qualitative analysis of product retrieval performances on Walmart-
Amazon before and after finetuning on a different dataset. The darker histograms
represent products labeled as matching the the input product.

39

Results and evaluation

Figure 5.4: Qualitative analysis of product retrieval performances on WDC
before and after finetuning on a different dataset. The darker histograms represent
products labeled as matching the the input product.

40

Chapter 6

Discussion and conclusion

We believe that there are various valuable insights regarding the product retrieval
task that can be obtained from our studies.

It is particularly critical, to perform well on the zero-shot setup, to achieve
a low uniformity loss. On the other hand, a low alignment loss may indicate
"degenerate" embeddings, which can lead to an anisotropic semantic space [30], an
issue we previously discussed in the thesis. In the results, this correlation is evident,
especially when examining how poorly the models perform after fine-tuning on
larger datasets.

In order to obtain better uniformly distributed embeddings, as discussed in
[3], the contrastive loss is a valuable instrument. However, as evaluated in [18],
the unsupervised contrastive loss behaves poorly on pairs of matching products.
This is because unsupervised contrastive learning is based on pulling augmented
versions of the same products closer and pushing away all the others. Since the
datasets are built on pairs of matching products, this has the opposite effect of
what we are looking for. Each product in a matching pair is pulled closer to its
augmented version but is pushed away from the other product in the matching pair.
Therefore, to train the model and maintain stable alignment while achieving better
uniformity, it is crucial to adopt the supervised contrastive loss [6], which exploits
label information to avoid matching products being pushed away. The embeddings
obtained in this way can generalize quite well, as suggested by the significant
improvements in the zero-shot setup compared to the embeddings obtained through
pre-trained models without fine-tuning. In [3], it was demonstrated that better
uniformity of the embeddings translates to better performance in average STS
(semantic textual similarity) benchmarks. This could imply that fine-tuning using
supervised contrastive loss with matching and non-matching product pairs (as
proposed in the thesis) can enable the model to compute more realistic similarity
scores between all products. This still needs to be evaluated on a production
dataset, which is what we are planning to do with the startup team. Obtaining

41

Discussion and conclusion

data for the fine-tuning step is not difficult because, in Europe, a vast portion of
products is tagged with an EAN (European Article Number), which is a GTIN
(Global Trade Item Number) [12], similar and compatible with the American UPC
(Universal Product Code) [11]. The EAN allows determining if products from
different sources match and can be used to quickly build a dataset to train the
model with supervised contrastive learning. The difficult part is evaluating the
performance on the more general similarity score computation task.

Another interesting insight concerns the number of samples for fine-tuning.
While in a non-zero-shot scenario, the more the samples, the better the results, in
a zero-shot scenario, it is crucial to find the sweet spot that allows uniformity not
to start dropping.

Lastly, starting from a model that adopts an autoregressive learning paradigm
and it is already fine-tuned on STS task, MPNet in our case, seems to yield better
results compared to starting from model that is trained as autoencoder on general
Masked Language model, i.e. BERT.

42

Appendix A

Deep learning in natural
language processing

In this section, we present a comprehensive overview of the technologies and
techniques utilized in the domain of natural language processing. This is done
not only to provide the reader with background information, but also to justify
our decision to employ transformer-based architectures in our experiments. Prior
knowledge of neural networks is required, and there are a plethora of online resources
available. For a brief yet informative introduction, the author recommends the
"Neural Networks" series on the YouTube channel "3Blue1Brown".

Historically, natural language processing (NLP) has been dominated by archi-
tectures utilizing recurrent neural networks (RNNs) [22] as their core, as RNNs are
particularly well-suited for processing sequences of inputs. As depicted in Figure
A.1, each input token is processed by the RNN together with a hidden state that
contains information from past tokens.

Despite the RNN architecture being well-suited for sequential text data, several
issues were identified. The first issue is that learning long-range dependencies
with RNNs is difficult. If the input sequence is particularly long, during the
backpropagation phase, the high number of matrix multiplications disrupts the
uninterrupted flow of the gradient, resulting in issues such as exploding or vanishing
gradients [38, 39]. In order to address the issue of vanishing gradients, a change in
the architecture was necessary. Long short-term memory (LSTM) was introduced
to address this problem [40]. LSTMs overcome the problem of vanishing gradients
by ignoring useless data or information in the network, thanks to the introduction
of gates that allow the gradient to flow during backpropagation. See Figure A.2.
Other solutions to learning long-range dependencies, such as gated recurrent units
(GRUs), also became popular [41].

These architectures exhibit a considerable degree of flexibility, their usage and

43

Deep learning in natural language processing

Figure A.1: Vanilla RNN.

Figure A.2: LSTM.

implementation being task-specific. In this regard, tasks can be grouped into five
primary categories: one to one, one to many, many to one, and many to many, as

44

Deep learning in natural language processing

illustrated in the following figure.

An example of a many to one task is text classification, while machine translation
exemplifies the many to many category. To elucidate how these architectures are
utilized and to introduce the so-called bottleneck issue, we provide an example of a
machine translation task. The prevailing methods for this application, such as the
seq2seq [42] and encoder/decoder architectures [43], employ two RNNs: one for
encoding and one for decoding. As depicted in Figure A.3, the encoder produces a
hidden state for each input token of the input sequence, according to the following
equation:

ht = fw(xt, ht−1)
The final hidden state is then used to predict the decoder’s initial state, s0, and the
context vector, c. Subsequently, a starting token of the output sequence, together
with the context vector and the initial state, is utilized to predict the next decoder
state, s1, which is then employed to predict the following token of the output
sequence, according to this equation

st = gU(yt−1, st−1, c)

Unfortunately, a problem arises due to the fact that the context vector, c, is a
fixed-sized vector that must encapsulate the information of all encoding steps.
What if the number of steps is exceedingly high? This is where the bottleneck
problem is encountered, with the context vector constituting the bottleneck.

To circumvent this problem, the concept of Attention was introduced, as elab-
orated in references [23, 24]. The main idea is to use a new context vector at
each step of the decoder. As illustrated in Figure A.4, for each decoder state, an
alignment score is computed according to the following equation:

et,i = fatt(st−1.hi)

45

Deep learning in natural language processing

Figure A.3: Machine translation with encoder (left) and decoder (right) consising
of two RNNs. The context vector c is a fixed-sized vector that bottleneck the input
sequence if it is too long.

Here, fatt refers to a multi-layer perceptron. The score is then normalized to
obtain attention weights (0 < at,i < 1 and q

i at,i = 1). The context vector for each
step is obtained as follows:

ct =
Ø

i

at,ihi

Lastly, the context vector is used in the decoder as before, according to this
equation:

st = gU(yt−1, st−1, ct)

However, in contrast to the previous approach, in each timestep of the decoder, the
context vector differs. This serves two purposes: first, the input sequence is not
bottlenecked through a single vector, and second, at each timestep of the decoder,
the context vector "looks at" different parts of the input sequence.

One final issue with RNNs is that they are difficult to parallelize because the
hidden states must be computed sequentially.

In order to present a solution to this problem, a new concept needs to be
introduced. Figure A.5 illustrates the transition from the attention mechanism to
the self-attention mechanism. The key concept here is that the input vector and
query vector are no longer separate entities, as the former is obtained simply by

46

Deep learning in natural language processing

Figure A.4: From sequence to sequence with RNNs to sequence to sequence with
RNNs and Attention. To better get an intuition of the role of attention weights,
look at y1: "estamos". We expect the attention weights linked to x1: "we" and x2:
"are" (so respectively a11 and a12) to be higher than the ones linked to x3 and x4.

multiplying the input vector with a query matrix. We will refrain from delving into
the intricacies of Attention, as it is a highly sophisticated, yet elegant, solution
that has been extensively documented online.

The self-attention mechanism has been utilized as a fundamental block by [44]
in the creation of the Transformer, which revolutionized the NLP landscape. The
paper’s title, "Attention is all you need," succinctly encapsulates this architecture’s
essence. In Figure A.6, we observe how self-attention serves as the sole interaction
between vectors. It is also important to note the residual connection [45] present
around each sub-layer, as it permits positional encoding to remain unaltered as it
ascends to higher layers, thereby augmenting the model’s performance. With the
Transformer, we now have a highly scalable and parallelizable structure that is not
constrained by bottlenecks.

Nevertheless, there remains one last step necessary to truly revolutionize the NLP
world. BERT [4] brings the pre-training and transfer learning concepts, which are
commonplace in the image vision domain, to the NLP field. Essentially composed of
stacked Transformer layers, the BERT architecture provides contextual embeddings
through self-attention layers during a pre-training phase on a massive corpus of
text from the internet. As a result, the embedding of a word is dependent on the

47

Deep learning in natural language processing

Figure A.5: From attention to self attention.

surrounding words’ context. A subsequent, smaller fine-tuning phase adapts the
model to a specific NLP downstream task. This concept will be further elucidated
in the following section.

While transformers have been a significant breakthrough in NLP during 2018
and 2019, their high data requirements, computational power, and model size have
generated controversy. To address this, researchers have created more efficient trans-
former models like DistilBERT [46], which can be utilized in resource-constrained
environments, such as mobile devices or non-GPU servers during inference. This
makes transformer-based models applicable to scenarios where resources are limited,
in addition to those involving large model sizes, such as Megatron-LM [47]. In the
following section, we will delve more deeply into the state-of-the-art models that
use the Transformer architecture.

A.1 Transformer Architectures
In this section, the four main approaches that have built upon the transformer
architecture and achieved state-of-the-art results on NLP benchmarks: BERT [4],
XLNet [48], RoBERTa [49], and MPNet [5] will be examined. Each of these models
has its own unique characteristics and techniques that have led to its success.
The architecture, pre-training techniques, and performance of each model will be
discussed in more detail.

48

Deep learning in natural language processing

Figure A.6: The Transformer.

A.1.1 BERT
BERT [4] is an universal language model, pre-trained on large amounts of text data
with the intention of fine-tuning it on downstream tasks (e.g. entity matching) in
a supervised manner with relatively little data. The abbreviation BERT stands for
Bidirectional Encoder Representations from Transformers, with the emphasis on
bidirectional.

It is in its core a transformer language model as designed by [44], but contrary
to other language models (e.g. OpenAI’s GPT [50]) it is jointly conditioning on
both the left and right context of the query token during pre-training. This is
somehow counter intuitive, as the most common training task of language models
is to simply predict the next token (word). Let us consider the following fraction
of a sentence [..] problems turning into banking crisis as [..] (example taken from
[14]. Let us further assume that we want to predict the query token into by its left
context, which is all the input to the left of the query token. With this training
task one can by definition only use the left or the right context. By using both
contexts together, the task would become trivial since you already know the next
token.

To be able to condition on both the left and right context, BERT had to change
the training task. Instead of predicting the next word, it tries to predict masked
tokens by using both the left and right context. By predicting masked tokens,
the BERT model is classified as an auto encoder. It learns to reconstruct the

49

Deep learning in natural language processing

original data by restoring corrupted input, i.e. the masked tokens. In a second
training task, BERT performs Next Sentence Prediction (NSP). Here, the model
receives two sentences as input, and has to predict if the first sentence is followed
by the second one. This pre-training is necessary for all tasks which are based on
the relationship between sentences. Typical examples of these tasks are Question
Answering, Natural Language Inference or Entity Matching. It is important to
understand that both training tasks are unsupervised tasks and do not require
labels, but only large amounts of text data. Labeled data are only required for
task-specific fine-tuning. The overall pre-training and fine-tuning procedures are
shown in Figure A.7.

Figure A.7: Overall pre-training and fine-tuning procedures for BERT. Credits
to [4]

The ablation studies of the BERT paper demonstrate that using both the left
and right context is the most important contribution of the paper. As a second
contribution the BERT-team shows, that massive unsupervised pre-training on
large data (BooksCorpus and Wikipedia) improves performance on a large number
of tasks without the need for task-specific architectures. The BERT architecture
further demonstrates to be very flexible as it allows simple fine-tuning on a range
of downstream tasks such as Question/Answering, Named Entity Recognition or
Classification.

50

Deep learning in natural language processing

A.1.2 XLNet
BERT’s bidirectional representation is achieved through a training task where the
model is tasked with predicting missing tokens (designated with [MASK]) in a
sentence, rather than predicting the next word. The XLNet paper [48] proposed an
alternative architecture to address some of the limitations of the approach used by
BERT. According to XLNet there are two major downsides of the BERT approach:

• predicting [MASK] tokens during pre-training is not representative of the
downstream tasks, resulting in a discrepancy between pre-training and fine-
tuning

• BERT assumes independence between the different [MASK] tokens, which
may not be true in practice

To overcome these flaws, XLNet returns to the more traditional architecture of
an autoregressive (AR) language model. AR models do not introduce any artificial
symbols and simply learn to predict the next token in a sequence. However, unlike
BERT’s autoencoder approach, an AR model can only use forward context, not
backward context (as can be seen in Figure A.8). To overcome this limitation,
XLNet introduces a new generalized autoregressive pre-training method that allows
the model to capture bidirectional context while still maintaining the advantages
of an AR model. The new method is based on permutation-based training, where
the model is trained to predict tokens in a sequence based on their permuted order,
rather than their original order. This allows the model to learn the dependencies
between all tokens, not just those that come before or after a given token, thus
capturing bidirectional context.

A.8

Figure A.8: The auto-regressive language modeling (left) is NOT able to model
bidirectional context. The bidirectional one (right) predicts tokens that are inde-
pendent of each other and the token [mask] is not used during finetuning

51

Deep learning in natural language processing

Assume that we have the same sentence from Figure A.8 New York is a city.
Further assume that we have already received the tokens New and York. Next,
we want to predict the token is given the same input sequence but with different
factorization orders:

• New York is a city

• a York New is city

• city a is New York

In addition to its core contribution of permutation-based language modeling,
XLNet also includes the ability to learn dependencies beyond a fixed length without
disrupting temporal coherence is achieved through a segment-level recurrence
mechanism and a novel positional encoding scheme. This allows the model to better
handle longer sequences than the original transformer model. This improvement
was originally included in the Transformer-XL paper [51].

According to the XLNet paper, it outperforms BERT on 20 tasks and achieves
state-of-the-art results on 18 tasks including question answering, natural language
inference, sentiment analysis, and document ranking.

A.1.3 RoBERTa
RoBERTa [49] is a paper released at the end of July 2019 that focuses on new
insights on BERT rather than proposing a new transformer approach. The authors
of RoBERTa claim that BERT, without any major changes, can match or exceed
every published model after it by using the right hyperparameters and enough
training data. To achieve this, the authors of RoBERTa identify that BERT was
significantly undertrained and propose the following modifications for maximal
performance:

• more training data: The original BERT was trained on the BookCorpus
and English Wikipedia, covering around 16 GB of text. RoBERTa uses five
English-language corpora with a total size of over 160 GB of text

• longer training: RoBERTa evaluates three training durations with 100K, 300K,
and 500K steps. They show that maximal training duration, together with
the additional data, results in the best performance

• larger batch size: While the original mini-batch size of BERT is 256, RoBERTa
further evaluates batch sizes of 2,000 and 8,000 samples per mini-batch. The
experiments on several downstream tasks indicate that a batch size of 2,000 is
the best choice, given that the learning rate is increased appropriately

52

Deep learning in natural language processing

• removing the next sentence prediction (NSP) objective: In contrast to [4],
the authors of RoBERTa show that by removing the NSP loss, they achieve
slightly better downstream task performance. They also show though that it
is crucial to use the full attention span (the model input size, max. 512 tokens)
during pre-training in order for BERT to learn long-range dependencies

• changing the masking pattern of training data dynamically: While BERT uses
a relatively static masking procedure applied during preprocessing, RoBERTa
suggests dynamically masking of each sample during training before feeding it
to the model.

With all these modifications, RoBERTa’s performance is evaluated on the GLUE,
SQuAD, and RACE benchmarks. RoBERTa achieves state-of-the-art results on all
three challenges, with slightly better results than XLNet (its closest competitor)
on most challenges and clearly better than the original BERT.

A.1.4 MPNet
As shown in section A.1.2, since BERT neglects dependency among predicted
tokens XLNet introduces permuted language modeling (PLM) for pre-training to
address this problem. However, PLM has its own limitation: Each token can only
see its preceding tokens in a permuted sequence but does not know the position
information of the full sentence (e.g., the position information of future tokens in the
permuted sentence) during the autoregressive pre-training, which brings discrepancy
between pre-training and fine-tuning. MPNet [5] is a pre-training method that
inherits the advantages of BERT and XLNet and avoids their limitations. MPNet
leverages the dependency among predicted tokens through permuted language
modeling (vs. MLM in BERT), and takes auxiliary position information as input
to make the model see a full sentence and thus reducing the position discrepancy
(vs. PLM in XLNet).

MPNet main contributions are:

• It takes the dependency among the predicted tokens into consideration through
permuted language modeling and thus avoids the issue of BERT.

• It takes position information of all tokens as input to make the model see
the position information of all the tokens and thus alleviates the position
discrepancy of XLNet.

MPNet is pre-trained on a large-scale text corpora (over 160GB data) following
the practice in [49, 48], and fine-tuned on a variety of down-streaming benchmark
tasks, including GLUE, SQuAD, RACE and IMDB. Experimental results show
that MPNet outperforms MLM and PLM by a large margin. Moreover, MPNet

53

Deep learning in natural language processing

outperforms previous well-known models BERT, XLNet and RoBERTa on GLUE
dev sets under the same model setting, indicating the great potential of MPNet for
language understanding.

54

Bibliography

[1] Aaron Smith and Monica Anderson. «Online shopping and purchasing prefer-
ences». In: Erişim adresi: https://www. pewresearch. org/internet/2016/12/19/online-
shopping-and-purchasing-preferences (2016) (cit. on p. 1).

[2] Tongzhou Wang and Phillip Isola. «Understanding contrastive representation
learning through alignment and uniformity on the hypersphere». In: Interna-
tional Conference on Machine Learning. PMLR. 2020, pp. 9929–9939 (cit. on
pp. 4, 17, 18).

[3] Tianyu Gao, Xingcheng Yao, and Danqi Chen. «Simcse: Simple contrastive
learning of sentence embeddings». In: arXiv preprint arXiv:2104.08821 (2021)
(cit. on pp. 4, 10, 11, 17, 41).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «Bert:
Pre-training of deep bidirectional transformers for language understanding».
In: arXiv preprint arXiv:1810.04805 (2018) (cit. on pp. 5, 9, 47–50, 53).

[5] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. «Mpnet:
Masked and permuted pre-training for language understanding». In: Advances
in Neural Information Processing Systems 33 (2020), pp. 16857–16867 (cit. on
pp. 5, 48, 53).

[6] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. «Supervised
contrastive learning». In: Advances in neural information processing systems
33 (2020), pp. 18661–18673 (cit. on pp. 6, 10, 41).

[7] Alessandro Magnani, Feng Liu, Min Xie, and Somnath Banerjee. «Neural
product retrieval at walmart. com». In: Companion Proceedings of The 2019
World Wide Web Conference. 2019, pp. 367–372 (cit. on p. 7).

[8] Eliot P Brenner, Jun Zhao, Aliasgar Kutiyanawala, and Z Yan. «End-to-end
neural ranking for ecommerce product search». In: Proceedings of SIGIR
eCom 18 (2018) (cit. on p. 7).

55

BIBLIOGRAPHY

[9] Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason
Baldridge, Eugene Ie, and Diego Garcia-Olano. «Learning dense representa-
tions for entity retrieval». In: arXiv preprint arXiv:1909.10506 (2019) (cit. on
p. 8).

[10] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. «Au-
toregressive entity retrieval». In: arXiv preprint arXiv:2010.00904 (2020)
(cit. on p. 8).

[11] David Savir and George J. Laurer. «The characteristics and decodability of
the Universal Product Code symbol». In: IBM Systems Journal 14.1 (1975),
pp. 16–34 (cit. on pp. 8, 42).

[12] David L Brock. «Integrating the Electronic Product Code (EPC) and the
Global Trade Item Number (GTIN)». In: White Paper available at www.
autoidcenter. org/pdfs/MIT-WUTOID-WH-004. pdf 25 (2001), pp. 2–25 (cit.
on pp. 8, 14, 42).

[13] Jelena Jovanovic and Ebrahim Bagheri. «Electronic commerce meets the
semantic web». In: It Professional 18.4 (2016), pp. 56–65 (cit. on p. 8).

[14] Ursin Brunner and Kurt Stockinger. «Entity matching with transformer
architectures-a step forward in data integration». In: 23rd International
Conference on Extending Database Technology, Copenhagen, 30 March-2
April 2020. OpenProceedings. 2020 (cit. on pp. 8–10, 18, 24, 49).

[15] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
«Deep entity matching with pre-trained language models». In: arXiv preprint
arXiv:2004.00584 (2020) (cit. on pp. 8–10, 15, 19, 24).

[16] Janusz Tracz, Piotr Iwo Wójcik, Kalina Jasinska-Kobus, Riccardo Belluzzo,
Robert Mroczkowski, and Ireneusz Gawlik. «BERT-based similarity learning
for product matching». In: Proceedings of Workshop on Natural Language
Processing in E-Commerce. 2020, pp. 66–75 (cit. on pp. 8, 10, 14).

[17] Ralph Peeters, Anna Primpeli, Benedikt Wichtlhuber, and Christian Bizer.
«Using schema. org annotations for training and maintaining product match-
ers». In: Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics. 2020, pp. 195–204 (cit. on pp. 8, 14).

[18] Ralph Peeters and Christian Bizer. «Supervised Contrastive Learning for
Product Matching». In: arXiv preprint arXiv:2202.02098 (2022) (cit. on pp. 8,
24, 41).

[19] Juan Li, Zhicheng Dou, Yutao Zhu, Xiaochen Zuo, and Ji-Rong Wen. «Deep
cross-platform product matching in e-commerce». In: Information Retrieval
Journal 23.2 (2020), pp. 136–158 (cit. on p. 8).

56

BIBLIOGRAPHY

[20] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghaven-
dra. «Deep learning for entity matching: A design space exploration». In:
Proceedings of the 2018 International Conference on Management of Data.
2018, pp. 19–34 (cit. on pp. 8, 13, 23).

[21] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. «Distributed representations of tuples for entity
resolution». In: Proceedings of the VLDB Endowment 11.11 (2018), pp. 1454–
1467 (cit. on p. 8).

[22] Jeffrey L Elman. «Finding structure in time». In: Cognitive science 14.2
(1990), pp. 179–211 (cit. on pp. 9, 43).

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on pp. 9, 45).

[24] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. «Effective
approaches to attention-based neural machine translation». In: arXiv preprint
arXiv:1508.04025 (2015) (cit. on pp. 9, 45).

[25] Matteo Paganelli, Francesco Del Buono, Andrea Baraldi, Francesco Guerra,
et al. «Analyzing how BERT performs entity matching». In: Proceedings of
the VLDB Endowment 15.8 (2022), pp. 1726–1738 (cit. on p. 10).

[26] Elad Hoffer and Nir Ailon. «Deep metric learning using triplet network».
In: Similarity-Based Pattern Recognition: Third International Workshop,
SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings
3. Springer. 2015, pp. 84–92 (cit. on pp. 10, 11).

[27] Kihyuk Sohn. «Improved deep metric learning with multi-class n-pair loss
objective». In: Advances in neural information processing systems 29 (2016)
(cit. on p. 11).

[28] Hanna Köpcke, Andreas Thor, and Erhard Rahm. «Evaluation of entity
resolution approaches on real-world match problems». In: Proceedings of the
VLDB Endowment 3.1-2 (2010), pp. 484–493 (cit. on p. 14).

[29] Pradap Venkatramanan Konda. Magellan: Toward building entity matching
management systems. The University of Wisconsin-Madison, 2018 (cit. on
p. 14).

[30] Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li.
«On the sentence embeddings from pre-trained language models». In: arXiv
preprint arXiv:2011.05864 (2020) (cit. on pp. 17, 41).

57

BIBLIOGRAPHY

[31] Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. «Whitening sentence
representations for better semantics and faster retrieval». In: arXiv preprint
arXiv:2103.15316 (2021) (cit. on p. 17).

[32] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. «Semeval-
2012 task 6: A pilot on semantic textual similarity». In: * SEM 2012: The
First Joint Conference on Lexical and Computational Semantics–Volume
1: Proceedings of the main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on Semantic Evaluation
(SemEval 2012). 2012, pp. 385–393 (cit. on p. 17).

[33] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei
Guo. «* SEM 2013 shared task: Semantic textual similarity». In: Second
joint conference on lexical and computational semantics (* SEM), volume
1: proceedings of the Main conference and the shared task: semantic textual
similarity. 2013, pp. 32–43 (cit. on p. 17).

[34] Eneko Agirre et al. «Semeval-2015 task 2: Semantic textual similarity, english,
spanish and pilot on interpretability». In: Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015). 2015, pp. 252–263 (cit. on
p. 17).

[35] Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez Agirre,
Rada Mihalcea, German Rigau Claramunt, and Janyce Wiebe. «Semeval-2016
task 1: Semantic textual similarity, monolingual and cross-lingual evaluation».
In: SemEval-2016. 10th International Workshop on Semantic Evaluation;
2016 Jun 16-17; San Diego, CA. Stroudsburg (PA): ACL; 2016. p. 497-511.
ACL (Association for Computational Linguistics). 2016 (cit. on p. 17).

[36] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia.
«Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-
lingual focused evaluation». In: arXiv preprint arXiv:1708.00055 (2017) (cit.
on p. 17).

[37] Nils Reimers and Iryna Gurevych. «Sentence-bert: Sentence embeddings using
siamese bert-networks». In: arXiv preprint arXiv:1908.10084 (2019) (cit. on
p. 19).

[38] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. «Learning long-term
dependencies with gradient descent is difficult». In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166 (cit. on p. 43).

[39] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. «On the difficulty of
training recurrent neural networks». In: International conference on machine
learning. Pmlr. 2013, pp. 1310–1318 (cit. on p. 43).

[40] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 43).

58

BIBLIOGRAPHY

[41] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. «On the properties of neural machine translation: Encoder-decoder
approaches». In: arXiv preprint arXiv:1409.1259 (2014) (cit. on p. 43).

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. «Sequence to sequence learning
with neural networks». In: Advances in neural information processing systems
27 (2014) (cit. on p. 45).

[43] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation».
In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 45).

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems 30 (2017) (cit.
on pp. 47, 49).

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 47).

[46] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. «Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter». In:
arXiv preprint arXiv:1910.01108 (2019) (cit. on p. 48).

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. «Megatron-lm: Training multi-billion parame-
ter language models using model parallelism». In: arXiv preprint arXiv:1909.08053
(2019) (cit. on p. 48).

[48] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhut-
dinov, and Quoc V Le. «Xlnet: Generalized autoregressive pretraining for
language understanding». In: Advances in neural information processing
systems 32 (2019) (cit. on pp. 48, 51, 53).

[49] Yinhan Liu et al. «Roberta: A robustly optimized bert pretraining approach».
In: arXiv preprint arXiv:1907.11692 (2019) (cit. on pp. 48, 52, 53).

[50] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
«Improving language understanding by generative pre-training». In: (2018)
(cit. on p. 49).

[51] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and
Ruslan Salakhutdinov. «Transformer-xl: Attentive language models beyond a
fixed-length context». In: arXiv preprint arXiv:1901.02860 (2019) (cit. on
p. 52).

59

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives of the thesis
	Overview of the proposed approach

	Background
	Product retrieval
	Product matching
	Contrastive learning
	Zero-shot scenario

	Data
	Methodology and implementation
	Product retrieval zero-shot setup
	Product matching zero-shot setup
	Fine-tuning BERT and MPNet through supervised contrastive learning

	Results and evaluation
	Alignment and Uniformity analysis
	Product retrieval zero-shot
	Baseline
	Zero-Shot finetuning

	Product matching zero-shot
	Baseline
	Zero-Shot finetuning
	Same dataset finetuning

	A couple more experiments

	Discussion and conclusion
	Deep learning in natural language processing
	Transformer Architectures
	BERT
	XLNet
	RoBERTa
	MPNet

	Bibliography

