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Abstract

In this Thesis, a grouping strategy for the simultaneous size, shape and topology

optimization of steel truss structures has been presented. The novelty of our study

relies in the definition of the objective function, not intended to a simple weight

minimization, but accounting also for constructability issues. More precisely, based

on practical and cost considerations, the optimum number of distinct cross-sections

used has been sought. We have also addressed the complexity of fabrication and

assembly phases, discouraging too much truss’s subdivisions. In addition, structural

buckling verification has been included in the OF, due to the fact that this kind of

instability is the most challenging for trusses.

The dissertation has started from the introduction of the basic concepts of structural

optimization techniques, their relevance in civil engineering and the most common

target functions tackled. In Chapter 2, we have reported the review of a great

number of papers, available in the Literature, concerning structural performance

optimizations. In Chapter 3, we have moved to the definition of constructability in

civil engineering problems, stressing the importance of early involvement of such con-

siderations in a project. Once the basic theoretical concepts have been explained, in

Chapter 4 the main case study has been illustrated, i.e. the one related to the simple

truss. At first, a brief introduction to this class of structures has been introduced,

highlighting the main features, problems and applications in civil engineering. Then

we have also mentioned the power of parametric design technique and the software

used to gain such models. Moving towards the core of our case study, an overview of

the design variables considered has been listed and described in details. Specifically,

CHS profiles, five truss types, heights and number of subdivisions of the truss have

been varied at each iteration of the optimization. The dynamic grouping strategy,

as well as the assembly of the model have been illustrated. Then, in the Subsection

4.6, the objective function formulation has been finally proposed, with the careful

calibration of all the parameters involved. The parametric modelling, the FEM

structural analysis and the optimization have been carried out with Rhinoceros

plug-ins, Grasshopper, Karamba3D and Octopus, respectively. In Chapter 5, the

performance of the proposed objective function has been examined in different con-

ditions, namely the simple size optimization, the combined size and shape ones and
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finally accounting also for the topology case. Results have been reported, where

the influence of each penalty function has been studied and analyzed with great

detail. Once tested the procedure at the truss level, we have moved to a larger

scale, studying the case of a single storey industrial building, in Chapter 6. The

applicability of our method has been demonstrated for the larger building in order

to understand how the theoretic analysis can suit a more practical problem. Once

again, the parametric design has been exploited, always in Rhinoceros environment.

Now, for a more realistic representation, both gravitational and lateral loadings have

been accounted. The additional design variables have been listed and the objective

function has been remodeled to fit the new problem. At the end, the numerical

results for the size, shape and topology optimization of the industrial building have

been reported. In Chapter 7, possible future developments for such analysis have

been highlighted to show how the outcomes of our study could stimulate further

innovations.
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Chapter 1

Introduction

Several disciplines, including engineering, science and economy, have been greatly

impacted by the advent of optimization techniques. In general terms, optimiza-

tion is a method aimed at changing an existing process in order to increase the

occurrence of favorable outcomes and it is done by finding the best values of the

elements, or variables, from the set of available alternatives. In the field of civil

engineering, structural optimization based on mathematical computing has gained

increasing interest as a way for efficient and sustainable designs, due to the devel-

opment of many computational tools. Optimization can support civil engineering

work in each step of a project life cycle, such as design, construction, operation and

maintenance [75]. Moreover, it involves many fields of application, such as trans-

portation, geotechnical as well as hydraulic environments, construction management

problems, together with structural ones. In the present Thesis, we are going to focus

specifically on this last topic. Structural optimization refers to an optimization that

seeks to determine the ideal configuration of structures, or structural elements, to

accomplish certain goals, under predetermined conditions. In particular, the most

common types of structure being analyzed are trusses and frames, along with shells

and bridges. Among others, structural performance is an important topic in the

civil optimization field, in fact many researchers have focused their attention at

enhancing specific structural skills, such as mechanical behavior, ductility capacity

as well as dynamic seismic capability, in order to adapt the structures to various

environments. In civil engineering, most of the optimization objectives are related

to a minimization of the total cost that, in turn, is related to a minimum weight

or volume design. This task is fundamental due to the growth of building material
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prices. However, many studies have investigated the cost function in more details,

with the purpose of considering not only the expense for the elements’ material, but

also accounting for construction, erection, maintenance and many other factors af-

fecting the overall cost of a structure. Another important topic involving structural

optimization is related to the environmental sphere. In fact, due to the enormous

quantity of CO2 emissions in the civil engineering sector and the growing focus on

environmental issues, sustainability has recently become one of the main goals of

structural optimization. The goal is to create structures that are not only efficient

in terms of material use and energy consumption but also have a minimal impact

on the environment throughout their entire life cycle. This may involve material

optimization, thus selecting materials that are renewable, recycled, or have a low

environmental impact during their production and disposal, but also energy opti-

mization or life cycle assessment. All these aspects can be explored and analyzed

one at a time or can be addressed together in the same optimization procedure.

Figure 1.1: Optimazion problems in Civil Engineering

An optimization problem starts with the definition of three main components,

namely the Objective Function (OF), the design variables and the constraints. The

former one, also called Merit Function, is the quantity that is going to be minimized

or maximized by changing the set of design variables. During the procedure, the

structure under study has to satisfy some constraints which in general are referred
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to stresses, displacements, natural frequencies or geometric requirements. They can

be in the form of inequalities or equalities, however generally the second ones are

converted into the other formulation by means of a tolerance value. For example,

h(X) = 0 can be transformed in |h(X)| ≤ ε, where ε is the small tolerance al-

lowed. In addition, constraints could be combined into the objective function as

penalty functions to convert the constrained problem to an unconstrained one. The

optimizations, based on the nature of the decision variables, can be classified into

discrete or continuous problems. The values of continuous design variables fluctu-

ate within a certain range, while discrete ones can assume only certain values in a

finite set of available candidates. When possible, discrete problems are treated as

continuous ones and only at the end round-off procedure is performed. The range

of design variables is called search space or design space, which could be further

divided into feasible and infeasible domains. Therefore, the constraints are limiting

the design space, with the so-called “constraint surface”. Nevertheless, not all of

them contribute to the surface definition, thus they will be divided into active and

inactive ones. The general formulation of the optimization can be written as follows

1.1:

Min or Max : f(X)

subjected to : gi(X) ≤ 0, i = 1, 2, 3...m

hj(X) = 0, j = 1, 2, 3...p

X ∈ S

(1.1)

Where X is the vector of the n design variable X={x1, x2, ...xn}; f(X) is the objec-

tive function and gi(X) and hj(X) are the m inequalities and p equality constrains,

respectively; and S is the search space of the optimization problem. Moreover, based

on the number of objective functions we want to achieve, we can have single-OF or

multi-OF problems. Obviously, in multi-objective optimizations all the considered

merit functions may not be optimized simultaneously, because they may conflict

with each other. In general, we refer to the concept, formulated by Vilfredo Pareto

in 1896, of Pareto front that represent the best trade-offs between different objec-

tives. It is a curve that is made by the set of non-dominated solutions, which means

that no solution on the curve is better than another in all objectives. So the im-

portant property characterizing any point on such curve is not to be dominated by

any other. In fact, the points on the Pareto front are optimal in the sense that they
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cannot be improved in one objective without sacrificing the performance in another

goal. Thus, the Pareto front is a powerful tool in multi-objective optimizations, as

it allows designers to make informed decisions about the best trade-offs between dif-

ferent objectives. By exploring the Pareto front, designers can identify the optimal

solution that meets their design requirements and preferences, and understand the

impact and importance of the different objectives. The non-dominated solutions

forming the Pareto front can be visualized, for example, using scatter plots. To help

decision maker in finding the best solution, we can identify the so-called Utopia

point, defined as the ideal point that minimizes all the OFs and it can be found by

considering its distance from the front. For example, if we want to minimize two

functions, f1 and f2, we can see graphically the Pareto front and Utopia point in

the following image 1.2:

Figure 1.2: Representation of the Pareto optimal front and Utopia point

In the field of structural optimization, three main approaches can be followed to

obtain the optimal layout of the considered building:

1. Size optimization is aimed to find the optimal cross-section of the structural

elements, which in general applications are taken from a discrete list of available

cross-sections. Typically, this involves finding the smallest possible size that

can still meet the required performance specifications, while minimizing weight

and material usage.
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2. Shape optimization, also called configuration optimization, treats the nodal

coordinates of the structure as design variables. By doing so, the distribution of

the solicitation is changing accordingly, therefore the optimal structural shape

would minimize stress concentrations.

3. Topology optimization involves the best spatial arrangement of the struc-

tural elements and determining the optimal material distribution within a struc-

ture. Thus, it focuses on how nodes or joints are connected and supported,

deleting unnecessary structural members or material portions.

These three procedures can be also coupled together, generating mixed optimization

approaches with combined variables and purposes.

Figure 1.3: General scheme of the different optimization approaches





Chapter 2

Paper Review on Structural

Performance Optimizations

2.1 Algorithms historical excursus

Nowadays, structural optimization problems are solved with the so-called Meta-

heuristic algorithms, however they started to appear only from the 1975. The ex-

istence of optimization methods can be traced back to the days of Newton, La-

grange and Cauchy. In particular, the development of differential calculus methods

of optimization was provided by the studies of Newton and Leibniz, and the fun-

damentals to the calculus of variations were laid by Bernoulli, Euler, Lagrange and

Weistrass. Joseph-Louis Lagrange was also the inventor of the method of optimiza-

tion for constrained problems, which involve the inclusion of unknown multipliers.

Augustine-Louis Cauchy, instead, investigated the solution procedure by direct sub-

stitution and made the first application of the steepest descent method to solve

unconstrained optimization problems. From the occurrence of the computers, faster

implementations of optimization problems were possible, stimulating the interest of

many researchers in the developing of improved methods. The classical approaches,

now collected in the Operational Research field, can be distinguished into math-

ematical programming techniques, stochastic methods and statistical approaches.

They are also referred as gradient-based or mathematical methods. However, as

the optimizers became more and more ambitious, the limitations of these methods

resulted to be too constrictive for practical applications. In fact, although these

gradient-based algorithms had good performance in some applications, the conver-
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gence to the global optimum was difficult to be ensured and the algorithms could be

trapped in one local optimum if the initial design and the search direction were not

well defined. Moreover, they were quite difficult to be implemented and resulted to

be inefficient to handle optimization problems of large structures. To overcome these

limitations, heuristic methods were introduced at first, but then they were upgraded

to metaheuristic algorithms. Metaheuristics uses strategies to guide the process that

are inspired by evolutionary principles, physics phenomena, swarm rules, as well as

natural and man-made processes.

2.1.1 Metaheuristic Algorithms

The most famous metaheuristic algorithm is for sure the Genetic Algorithm, formu-

lated by J. Holland in 1975 at the University of Michigan, developed and improved

further by his student David E. Goldberg. Like the name implies, GA takes inspira-

tion from the genetic field, recalling the survival-of-the-fittest principle of nature. In

genetics, the characteristics of an individual are transmitted to the offspring through

the chromosomes, which contain a series of information called alleles. The Genotype

is the set of such alleles, thus the set of information collected in the chromosomes.

The Phenotype, instead, is the observable physical characteristics traduced from the

genotype. Based on the Darwin’s theory of evolution and natural selection, only the

best individuals will evolve in the next generations. Thus, GA tries to mimic this

procedure, starting from the initialization phase and then moving towards fitness

evaluation, selection, crossover and mutation operators, looped until a convergence

criterion is met.

Figure 2.1: Flowchart of the standard genetic algorithm [3]
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In the first phase, a population of N individuals is randomly generated, where each

individual is coded by strings of binary variables that corresponds to the chromo-

somes; each bit represents an allele. In particular, the dimension N of the population

should be taken at least two or four times the value of the number n of design vari-

ables. Then the fitness evaluation is performed on the first population, meaning

that the objective function value for each individual is calculated. So, the fitness

evaluation measures how well the individual meets the stated objective. Then the

selection operator is the phase in which individuals are chosen, based on their fitness

value, to generate the members of the next population. There are different selection

schemes like “Roulette Wheel Selection”, where the probability of being selected is

proportional to the fitness value of the individual, “Tournament Selection”, where

a predefined number of individuals (tournament set) are drawn randomly and only

the one with the highest fitness out of the tournament set is selected, and many

others which are available in the Literature.

Figure 2.2: Roulette wheel selection

Figure 2.3: Tournament selection [14]

Then from the selected parents the actual reproduction and generation of the off-

spring is carried out by means of crossover and mutation operators. They are just

giving the recombination rules of the information given by the parents to the off-

spring, preserving integrity, avoiding loss of information and ensuring a little bit of

diversity. As for the selection operator, also crossover and mutation can be per-

formed following different techniques.
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Figure 2.4: Three examples of crossover
operator [104]

Figure 2.5: Mutation operator example
[28]

For example Adeli, Hojjat, and Nai-Tsang Cheng. in [1] have tested different

crossover schemes for the weight-minimization of large steel truss structures, namely

single-point and double-points crossovers, as well as both 20% and 50%-uniform

crossovers. In this research, they have demonstrated not only the efficacy of genetic

algorithm in such applications, but also that the best outcomes have been provided

by using the 20%-uniform crossover.

Another stimulating application of GA algorithm has been proposed by Cheng, J.

in [19]. In this article a steel truss arch bridge has been optimized to achieve the

minimum weight, considering the members’ cross-sections as both continuous and

discrete variables. In particular, the proposed algorithm has integrated the concepts

of GA for the optimization and the finite element method (FEM) to compute the

value of implicit constraint functions. It has shown that, with respect to traditional

design, the optimum configuration found by means of the proposed method can be

more than 40% lighter, but that this improvement is limited when using discrete

variables instead of continuous ones.

In Literature, there are also GA-based optimizations of multi-objective problems,

like the work done by Dhingra, Anoop K., and B. H. Lee. in [26]. Here the optimiza-

tion of truss structures has been carried out considering single and multi-objective

functions, namely maximization of fundamental frequency of vibration, weight min-

imization and minimization of the deflection of free nodes. In particular, when

dealing with multi-OF, the problem has been solved by combining the fitness in-

dices associated with the three objective functions according to the game theoretic

bargaining model. The design variables have been chosen as the cross-sectional ar-
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eas of the truss’s members, to which lower and upper bounds have been applied

together with stresses and Euler buckling constraints. The analysis is particularly

appealing because the performance of GA algorithm has been compared with both

gradient-based SLP and branch-and-bound algorithms, to show the remarkable ad-

vancement.

Another interesting example of GA application on multi-OF optimizations has been

illustrated by Coello, C. A., and Alan D. Christiansen. in [22]. In this study,

min-max optimum technique transformed the multi-objective optimization prob-

lem, aimed at the weight, stress and displacement minimizations of truss structures,

into several single objective optimizations, easier and faster to be solved.

It is worth mentioning also other powerful metaheuristic algorithms, such as Sim-

ulating Annealing, Particle Swarm Optimization, Teaching-Learning-Based, Eagle

Strategy, Cuckoo Search, Moth-flame as well as Improved Firework algorithms.

For instance, the Simulated Annealing strategy, introduced by Kirkpatrick et al. in

1983, has been compared with the linearized branch-and-bound method by Balling,

Richard J. in [13]. As the name suggests, the algorithm is simulating the annealing

procedure. It recalls the ability of a metal that in its cooling phase, after heating,

can break out of local minima stages, i.e. glass states, and eventually converge upon

the global minimum stage, i.e. pure crystal. In the paper, the applicability of such

procedure has been tested on three-dimensional steel frames in a size optimization,

aimed at the minimum weight design. From the outputs, the annealing strategy

analysis, although slower than the linearized branch-and-bound method, resulted to

be more robust.

Kaveh, A., Abbasgholiha, H., in [56] have performed a steel frame optimization

using the Big Bang-Big Crunch (BB-BC) algorithm. The minimum weight design

has been obtained from the size optimization, while satisfying both serviceability

and strength requirements. As regards the BB-BC optimization algorithm, it con-

sists of two steps: a Big Bang, where candidate solutions are randomly distributed

over the search space, and a Big Crunch, where a contraction operation estimates

a weighted average of the randomly distributed candidate solutions. This method

is reconducted and relies on the theories of the evolution of the universe, according

to which in the Big Bang phase energy dissipation produces disorder, whereas in

the Big Crunch phase, randomly distributed particles are drawn into an order. The

BB–BC optimization method similarly generates random points in the Big Bang

phase and shrinks these points to a single representative point via a center of mass
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in the Big Crunch phase. After several sequential Big Bang and Big Crunch phases,

the distribution of randomness within the search space becomes smaller and the

algorithm converges to a solution. In the specific paper here reported, four frame

structures have been optimized using the BB-BC algorithm, making a comparison

between procedures following different codes.

Gandomi, A.H., Talatahari, S., Yang, X.-S., Deb, S., in [34] proposed a novel tech-

nique, known as Cuckoo Search (CS), to identify the truss structure designs with the

lowest weight. The initial motivation of developing the CS algorithm was the intent

to combine the advantages of existing algorithms such as Particle Swarm Optimiza-

tion (PSO) and Differential Evolution (DE) but with the reminding of the cuckoos’

breeding behavior. Cuckoo search metaheuristic algorithm was developed in 2009

by Xin-She Yang and Suash Deb and it is based on the idealized rule according

to which each cuckoo lays one egg at a time, dumps it in a randomly chosen nest

and then the best nests, with high quality of eggs (solutions), will carry over to the

next generations. The best solution is carried over to the next iteration, which is

essentially elitism. The outperformance of CS over PSO and GA has been demon-

strated by several examples of different structure types, such as 25-bar transient

truss structure, 56-bar dome truss structure, 64-bar planar truss structure, 200-bar

planar truss structure and finally a 942-bar tower truss structure.

In the swarm-inspired algorithm environment, the Particle Swarm Optimization

(PSO) is one of the best known. Subsequently, some variants have been generated,

like the Quantum Particle Swarm Optimization (QPSO) algorithm. However, as

highlighted by Gholizadeh, S., Moghadas, R. in [40], such method has displayed

some drawbacks related to not balanced global and local searching abilities and

inefficient capacity for tackling large-scale or complex problems. Thus in the re-

ported research, improved solution has been implemented and tested on the mini-

mum weight optimization of steel frame structures. The Improved Quantum Particle

Swarm Optimization (IQPSO) algorithm has exhibited a good balance between ex-

ploration and exploitation. Moreover, from the numerical results on a three-bay,

six-story and a four-bay, twelve-story steel frames, it has shown that IQPSO is able

to provide lighter systems than QPSO ones, with a faster analysis.

Later on, Kaveh, A., Ilchi Ghazaan, M. in [60] have carried out a comparison be-

tween the Colliding Bodies Optimization (CBO) and the Enhanced Colliding Bodies

Optimization (ECBO), applied to both trusses and frames. The objective of the dis-

crete size optimization was to minimize the weight of the structure while satisfying
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some constraints on strength, displacement and cross-sections limits. Regarding

CBO, it is a metaheuristic algorithm, introduced by Kaveh and Mahdavi, in which

several colliding bodies (CB) collide with each other, exploring the search space. Af-

ter, the colliding bodies are sorted in increasing order, according to their objective

function values, and two equal groups are created: stationary group and moving

group. Moving objects collide to stationary objects to improve their positions and

push stationary objects towards better positions. Instead, in ECBO, a memory

that saves several historically best CBs is utilized to improve the performance of

the CBO and reduce the computational cost. Furthermore, ECBO changes some

components of CBs randomly to prevent premature convergence. Four benchmark

structural examples have been considered, namely 25-bar space truss, 72-bar space

truss, 3-bay 15-story frame and 3-bay 24-story frame. Results have indicated that

the convergence speed of CBO was better than ECBO for truss problems, due to their

simplicity; however, the reliability of search and solution accuracy of the ECBO was

superior. In frame examples, the ECBO had remarkably better performance than

CBO and other methods in terms of accuracy, reliability, and speed of convergence.

Overall, the comparison of the results with some other well-known meta-heuristics

has shown the suitability and efficiency of the proposed algorithms.

An interesting combination of metaheuristic algorithms, namely Eagle Strategy (ES)

algorithm with Differential Evolution (DE), has been developed by Talatahari, S.,

Gandomi, A.H., Yang, X.-S., Deb, S., in [108]. Those two algorithms have been

combined to obtain a new one, denoted as the ES–DE. Its performance has been

tested, for weight minimizations, on several frame structures and it has been proven

that the new strategy allowed to reach a good balance between global diversification

and local intensification. In fact, optimization results have illustrated the superi-

ority of ES–DE over standard DE. Furthermore, the proposed algorithm was very

competitive with other state-of-art metaheuristic optimization methods, almost al-

ways finding the best designs at the lowest computational cost.

Another example of nature-inspired metaheuristic algorithm is the Grey Wolf Algo-

rithm (GWA), explored by Gholizadeh, S., Fattahi, F., in [37]. It has been applied,

once again, to derive the minimum weight design of frame structures, under earth-

quake loadings. In particular, in this study the GWA has been compared with GA

and Harmony Search Algorithm (HSA). GWA is a metaheuristic algorithm proposed

by Mirjalili et. al., based on the leadership hierarchy and hunting mechanism of grey

wolves in nature. Two numerical examples, including a 6-story 1-bay planar steel
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frame and a 12- story 3-bay planar steel frame have been illustrated to demonstrate

the efficiency of the GWA.

Also the Moth-Flame Optimization (MFO) algorithm is nature-inspired, recall-

ing the navigation technique of moths. An enhanced version has been tested by

Gholizadeh, Saeed, Hamed Davoudi, and Fayegh Fattahi in [36]. In fact, since MFO

meta-heuristic algorithm has shown some difficulties in solving discrete optimization

problems of steel frame structures with large design space, an Enhanced Moth-Flame

Optimization (EMFO) algorithm has been proposed to tackle this class of problems.

In the new formulation, a new term in the position updating equation has been em-

ployed, which contains information about the best position attained so far during

the procedure. In such equation, a scaling factor, determined by performing a sen-

sitivity analysis, has been introduced too. Furthermore, a mutation operator has

been added to the algorithm to decrease the probability of trapping into local op-

timal designs. The power of the proposed EMFO algorithm has been illustrated

by presenting three benchmark size optimization problems of steel frame structures,

subjected to gravity loads and wind action. The results obtained by EMFO in all

examples have been compared with the optimum designs found by MFO and other

algorithms, such as GA, Ant Colony Optimization (ACO), Harmony Search (HS),

Improved Ant Colony Optimization (IACO), Evolution Strategy (ES), Teaching-

learning Based Optimization (TLBO) and Modified Particle Swarm Optimization

(MPSO). The numerical results have demonstrated that the proposed EMFO meta-

heuristic algorithm not only converged to better optimal solutions, compared to the

mentioned meta-heuristic algorithms, but it also required fewer structural analyses.

Consequently, it can be stated that the proposed EMFO meta-heuristic can address

the discrete optimization problem of steel moment resisting frame and steel braced

frame structures with large number of design variables.

Even though EMFO has proven its efficacy against many algorithms, also TLBO

has shown good results in a number of researches. It was developed by R.V. Rao et

al. in 2011 and exploits and simulates the environment of a classroom, in particular

the teaching-learning procedures between teacher and students, to optimize a given

objective function. The teacher is considered as a person having the highest infor-

mation and will imparts his/her knowledge to the students in the class. Then the

learners will interact with each others to further modify and improve their gained

knowledge. So, TLBO method starts from the initial class population creation and

then it follows two phases: teaching and learning. Artar, Musa in [7] have solved
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the minimum weight optimization problem of different braced (non-swaying) planar

problems, applying such algorithm. Several benchmark tests taken from literature

were adopted, as the 162-member X-braced planar steel frame and a 304-member

K-braced planar steel frame. The results showed the robustness and applicability

of TLBO method for structural problems, in comparison with GA, HS, ACO and

Tabu Search (TS) algorithm.

Instead Camp, C.V., Farshchin, M., in [16] illustrated a modified version of the

algorithm applied to fixed geometry space truss structures. With regards to the

algorithm utilized in the current study, the modified TLBO algorithm used a fitness-

based weighted mean in the teaching phase and a refined student updating process.

Three common benchmark truss design problems have been presented, such as a

25-bar transmission tower, a 10-bar cantilever truss, and a 72-bar multi-story truss.

The improved performance of the modified TLBO can be attributed to the use of

a fitness-weighted mean during the Teacher Phase that assigned more influence on

qualified individuals in the population.

Gholizadeh, Saeed, and Arman Milany in [39] have proposed a new version of the

Firework Algorithm (FWA), called Improved Firework Algorithm (IFWA), to deal

with discrete structural optimization problems of steel trusses and frames. The opti-

mization problem has been formulated in terms of minimization of the weight of the

steel structures, in which the cross-sectional areas of the members were chosen as dis-

crete design variables. The constraints applied on truss structures involved stresses

and nodal displacement limitations, while stresses and both lateral and inter-story

drifts constraints were considered in the analysis of frame structures. As the name

suggests, FWA has been developed based on the phenomena of a firework explosion,

where the fireworks, i.e. the search agents, are randomly generated in the design

space during the first phase. Their fitness values are evaluated, as well as the num-

ber of sparks and the explosion amplitude, for each firework. In the second phase,

different types of sparks are generated in the surrounding local area of each firework

in the design space. In the last phase, a new population of fireworks is selected

among the original ones and the generated sparks. The algorithm terminates when

one of the stopping conditions is met. In particular, the explosion amplitude plays

an important role, because a larger value is associated with a bad firework. The

main drawback of the original FWA was that there was no direct interaction among

the solutions found during the optimization process. Moreover, the slow convergence

speed was another disadvantage. To deal with these problems, a new equation has
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been proposed for explosion sparks generation, in which information about previous

fireworks is included. Numeric examples have been illustrated to show the validity

of the proposed method, not only by comparing the results of the proposed IFWA

with the original FWA, but also with the results attained by a variety of well-known

metaheuristic algorithms in the literature, such as Improved Mine Blast Algorithm

(IMBA), DE, Adaptive Elitist Differential Evolution (AEDE) and others.

The Adaptive Dimensional Search (ADS) algorithm, proposed by Hasançebi and

Kazemzadeh Azad for discrete sizing optimization of truss structures in [46], has

been reformulated to tackle discrete sizing optimization problems of real-size steel

frames by the same authors in [47]. Five examples, taken from the literature, have

been analyzed using ADS algorithm to prove its reliability and efficiency in optimum

design of steel frames.

2.2 Size Optimization

In the present section we have collected all the considered papers regarding size

optimization problems, focused on structural performances. In particular, they are

mainly concerned about frame applications and, due to the great attention that

they have raised among researchers, it has been proposed a division in main topics

rather than a simple chronological ordered list. By means of the following chart

2.6, it is possible to appreciate the amount of studies dealing with each of the 5

presented themes, i.e. non-linear behavior of structures, optimization under seismic

loadings, connection flexibility considerations of frames, soil-structure interaction

investigation, large roof structures and multi-bays, multi-storeys frames.

Figure 2.6: Collected papers on size optimization
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2.2.1 Non-linear behaviour of structures

Many researches on frames or truss structures have been primarily concentrated on

their linear-elastic behavior, entirely neglecting their resistance capacity to loads

outside the elastic domain. However, there have been also some authors that have

investigated exactly this aspect. Non-linearities in terms of both geometry and ma-

terials has been explored for example in the study [102] provided by Saka, M. P.,

and M. S. Hayalioglu in 1991. Specifically, in this paper, the minimum weight design

of a non-linear elastic-plastic frame with displacement limitations has been investi-

gated. These limits were kept big enough in order to allow the frame to undergo

large deformations. In any case, structural checks have been performed at every

cycle of the optimization in order to guarantee the overall stability of the frame.

The design variables were chosen as the cross-sections of the frame’s members and

a lower bound to their sizes was applied. As said, the problem accounted for both

geometric and material non-linearities of the structure, whose response was obtained

by employing a Newton-Raphson-type iteration technique. Small load increments

were imposed, allowing the members to reach yielding, so that plastic hinges could

be developed accordingly. The iterations stopped when a prescribed load factor

was reached. Numerical examples of portal frames, pitch roof frames and both

multi-storey and multi-bays frames were reported to show how the algorithm works.

Moreover, a comparison with linear elastic frames was carried out for the same ex-

amples. The study has demonstrated how consideration of geometric and material

non-linearities in the optimum design, not only led to a more realistic approach, but

also to lighter frames. The reduction in the overall weight varied between 20 and

30% when compared with the optimum designs obtained simply considering linear

elastic behaviour. However, most of the computational time has been consumed for

the frame’s non-linear response prediction.

In another similar paper [50], the same authors of the previously described research

have extended the design of geometrically non-linear elastic-plastic steel frames in-

cluding tapered members, illustrated in figure 2.7.

Figure 2.7: Tapered member [50]
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Here, each member introduced two variables into the design problem: the first was

the cross-sectional area at one end of the beam and the other was the ratio of areas

at both ends. In this way, a well-defined reduction function from one edge of the

beam to the other was introduced. In particular, the variation of the cross-section

has been considered linear for simplicity. The weight minimization was still the

target function and the large deformation analysis was carried out as before. In or-

der to demonstrate the applicability of the algorithm presented, three elastic-plastic

steel structures with tapered members have been considered. As in the previous

research, also here a comparison between the proposed elastic-plastic analysis with

the traditional linear elastic one, of the same structures, has been performed. In

agreement with the previous results, also in this analysis a greater saving in the mass

of structures was possible if geometric and material non-linearities were considered

in the formulation of the optimum design problems.

Later on, the authors Se-Hyu Choi, Seung-Eock Kim with [20] proposed a non-

linear inelastic analysis for an optimal design of steel frame. A direct search method

was employed to reach minimum weight design, that was the Objective Function

of the problem. Constraint functions were related to load-carrying capacities and

displacements. At first, a non-linear inelastic analysis was performed to check the

load-carrying capacity of the structure; then if some columns or beams were not

verified, a member with the largest unit value, calculated by Load resistance factor

design (LRFD) interaction equations, was replaced one by one with an adjacent

larger member selected in the database. The same procedure was done to check

displacements and if they were not satisfied, a member with the largest displace-

ment ratio was replaced with a bigger member. The database enclosed wide flange

sections (W-sections) listed in the AISC-LRFD (American Institute of Steel Con-

struction - Load Resistance Factor Design) specification. This routine was repeated

until the serviceability and loading conditions were satisfied. Ductility requirements

were also accounted in the optimization process, in fact adequate rotation capacity

was required for members to develop their full plastic moment capacity. The design

examples consisted in a planar portal frame and two-story frame, both subjected

to dead, live and wind load. The member sizes of the optimal design using the

proposed analysis and the convention LRFD were compared. Results showed that

the weights can be reduced by 8.0% and 3.7% for the planar portal frame and for

the space two-story frame respectively, if compared with those of the conventional

design using LRFD specifications. Non-linear inelastic analysis has been demon-
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strated to be very efficient with respect to previous researches, when only elastic

analyses were conducted, assuming a length factor(K) always equal to 1.

Finally, in 2019, an interesting study was provided by Habibi, A., Saffari, H., Izad-

panah, M. in [42]. Here it has been developed an unique optimization technique

aimed at obtaining a lateral load pattern leading to the smallest possible dispar-

ity between the floor displacements of pushover and Non-linear Dynamic Analyses

(NDA). The primary goal of this study was to propose an efficient load pattern

that best aligned with NDA. To reduce the discrepancy between NDA and pushover

results, a reverse engineering strategy has been employed. The lateral floor dis-

placements of the NDA were first calculated and used as a benchmark to achieve

the desired outcome. Second, the lateral load pattern that produced the least differ-

ence between the lateral floor displacements of the NDA and those of the pushover

analysis was identified. The lateral forces of floors were taken into account as design

variables while the expression of the OF was simply the ratio between the difference

of floor lateral displacements resulting from non-linear time history and pushover

analysis, normalized with respect to the floor lateral displacement from the non-

linear time history analysis. From the physical and structural dynamic point of view,

each optimization problem needed at least two constraints. In this study, based on

engineering experience and also on the recommendations of seismic instructions, the

base shear of buildings was assumed as a percentage of the total weight (ten percent

of total weight in general); another adopted constraint in this study was to adopt

the positive values for lateral forces along the height of buildings. 5-story, 2-bay,

10-story, 3-bay and 15-story, 3-bay special moment resisting steel frames has been

analysed to validate the applicability of the recommended method, in comparison

to current load patterns, such as uniform, linear, and parabolic.

2.2.2 Optimization under seismic loading

An important topic faced in structural optimization analyses is the design of steel

structures subjected to seismic loadings. It was investigated since the ages when

only gradient-based optimization techniques were available. For example, Feng, T-

T., J. S. Arora, and E. J. Haug Jr. in [32] presented a simple weight minimization

of elastic structures, subjected to dynamic loads, where the elements’ cross-sections

were taken as design variables. The adopted constraints were applied to the dynamic

response, i.e. displacements and stresses, at critical points of the structure. In ad-
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dition, upper and lower bounds on natural frequencies were imposed, as well as a

design parameters boundary. A state space steepest descend method was employed

for the optimization, while the structural response was obtained from a finite ele-

ment model. In parallel, modal analysis techniques were used to solve the dynamic

problem. Tubular cantilever beams and planar truss-frames have been studied by

means of the proposed procedure.

A similar study has been carried out by Cheng, Franklin Y., and D. S. Juang.

in [18], in which the same design variables, constraints and objective function have

been defined. In the proposed research, the analysis was focused on two-dimensional

steel frameworks, with and without bracing members, subjected to both static and

seismic forces. In addition, a cost objective function of the same structures has been

compared to the classical weight minimization. Regarding the cost minimization

target function, the parameters considered included the cost of structural members,

painting, connections (steel plates and welding), together with the damage expense,

limited to the repair of non-structural elements. The results have shown that the

optimum solution of the minimum weight design was close to that of the minimum

cost case; the latter, however, demanded a gradual change of the column stiffnesses.

A step forward in the application of weight minimizations of both braced and un-

braced steel frames was proposed by Memari, A. M., and M. Madhkhan in [76].

A comparative study of different types of braced, unbraced, regular and irregular

frames, subjected to combined gravity loads and seismic lateral forces, has been

carried out by the authors, as shown in 2.8.

Figure 2.8: Frame structures analyzed [76]
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The main scope of the study was to expose the applicability of the proposed design

approach and to provide a comprehensive investigation deriving from the compar-

isons between several structural configurations. The members’ cross-sectional areas

were chosen as design variables, treated as continuous variables. Only at the end of

the optimization, the available sections, taken from the German database and with

the closest properties of the chosen design variables, were assigned to the optimum

frame members. Of course, the obtained structure was then checked to assure the

satisfaction of all the constraints. In particular, the design had to satisfy combined

bending and axial stresses, shear stress, compression buckling and tension slender-

ness criteria, according to the AISC of 1983. Moreover, the maximum allowable

relative story displacement was checked, as well as the upper and lower bounds

applied to the design variable values. The feasible directions method has been em-

ployed as nonlinear constrained minimization algorithm. The structural analysis

has been carried out with the finite element approach, while both equivalent static

force and response spectrum analysis methods were considered.

A new formulation for discrete and/or continuous variable optimal structural design

was implemented by Palizzolo, L., Benfratello, S., Tabbuso, P. in [87]. The best de-

sign for elastic plastic frames, under both static and dynamic loads, was achieved by

developing a minimum volume optimization. In the static condition, the structure

had to remain in the elastic field while subjected to fixed loads, instead for seismic

excitations, the elastic shakedown limit in seismic serviceability could not be vio-

lated by the plastic frame. Elements buckling was planned to be prevented for both

combinations. A practical example, referred to a 4-storeys frame has been solved

by considering the design variables at first as discrete and then as continuous. In

particular, the thickness of the box-shaped cross-sections was allowed to vary within

a specified range. As expected, the structural volume related to the discrete variable

design was higher than the continuous variable one.

In the context of structural optimizations under seismic loading conditions, many

studies have focused their attention on the uniform distribution of properties through-

out the considered building.

A first exploration of such topic was carried out by Kapoor, M. P., and J. V. N.

Rao. [54], in which the best stiffness distribution of a multi-storey frame was sought.

The objective function of the optimization was tackled as the minimum structural

weight, formulated by means of a nonlinear programming technique. In the proba-

bilistic procedure presented, the multi-storey frame has been idealized as a multi-
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degree “shear beam” subjected to earthquake ground motion treated as a random

process. The “shear beam” idealization consisted in replacing the multi-storey frame

with a system of masses, shear springs and dashpots, while white noise has been

chosen to represent the ground acceleration. This probabilistic formulation of the

problem was compared with the deterministic one, which used the response spectra

approach, ignoring the randomness of the ground motion. The design variables were

chosen as the moments of inertia of the columns of different storeys, expressed as a

function of the areas, section dimensions and modulus of all the available I-sections

listed in the Indian Standard Institution (ISI) specifications. Actually, the rows

of the standard section list represented effectively the set of the Design Variable:

once the index of each competence raw of the adopted standard section list was

selected by the optimizer, all the geometrical and mechanical properties related to

that section were obtained simultaneously. The constraints considered regarded the

upper bounds of the probability that the stress in the columns at each storey level,

due to earthquake acceleration, exceeds the yield stress. In addition, lower and up-

per bounds were applied on the maximum and minimum moments of inertia of the

I-sections. From the comparison between the probabilistic and deterministic formu-

lations of the optimum design of multi-storey frames, it has been demonstrated that

the first one provided more realistic results.

Later on, Moghaddam, H., Hajirasouliha, I., Doostan, A. in [79], proposed a strategy

for enhancing the dynamic response of concentrically braced steel frames, subjected

to seismic excitation, based on the concept of uniform distribution of deformation.

As demonstrated in previous studies, during strong earthquakes the deformation de-

mand in structures does not vary uniformly, but there are some stiffer elements that

do not fully exploit their seismic capacity. Therefore, the goal of the proposed itera-

tive optimization technique was to gradually shift inefficient material from strong to

weak areas of a structure, by changing its structural features. Thus, the Objective

function of the problem can be related to the maximum uniformity of structural

properties. Design guidelines such as FEMA 365 (Federal Emergency Management

Agency - Prestandard and commentary for the seismic rehabilitation of buildings)

and SEAOC Vision 200 ( Structural Engineers Association of California - Perfor-

mance based seismic engineering for buildings) have identified the inter-story drift as

an efficient indicator of damage to nonstructural elements. The proposed practical

examples, reported in 2.9, were related to steel concentric braced frames with 5, 10

and 15 stories and members frames were sized to support gravity and lateral load.
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Figure 2.9: Concentrically braced steel frames analyzed in [79]

The cross-sections have been considered as design variables in the optimization. At

first, columns and beams were sized to meet the code drift requirements and then

the sections of the brace members were defined in order to reach the uniform defor-

mation state. From the analysis, it has been demonstrated that generally there is

a unique optimum distribution of structural properties, independent of the seismic

load pattern used for the initial design.

The effects of strength distribution pattern on seismic response of tall buildings

has been examined again by Moghaddam, H., and I. Hajirasouliha in [78], which

proposed an optimization procedure aimed at finding more rational criteria for de-

termining design earthquake forces. In this case, the idea of shifting the inefficient

material from strong to weak areas of structure has been applied to shear buildings.

In more details, in the shear building models, each floor is assumed to be a lumped

mass that is connected by perfect elastic–plastic shear springs. The total mass of

the structure is distributed uniformly over its height as can be seen in figure 2.10.

Figure 2.10: Typical 10-story shear building model [78]



2.2. SIZE OPTIMIZATION 34

Moreover, to evaluate the weight of the seismic resistant system for MDOF struc-

tures, it has been assumed that the weight of the lateral-load-resisting system at

each story is proportional to the story shear strength. Then the loading pattern

corresponding to the minimum required structural weight would be regarded as the

optimum loading pattern. To accomplish this, the total weight of the seismic resis-

tant system has been calculated for shear building models with various fundamental

period, ranging from 1 to 3 s, and different target ductility demands, from 1 (elas-

tic) to 8. In all MDOF models, lateral stiffness was assumed as proportional to

shear strength at each story, obtained in accordance with the selected design lat-

eral load pattern. As noted before, it has been highlighted also in this paper that

there is a unique relation between the distribution pattern of lateral seismic forces

and the distribution of strength (as the strength at each floor was obtained from

the corresponding story shear force). Hence, for shear buildings, it was possible

to determine the optimum pattern for distribution of seismic lateral loads instead

of strength. Fifteen selected strong ground motion records have been considered

and modal analysis has been performed at each iteration to retrieve the building

seismic response. The authors also suggest a more adequate load pattern, obtained

as a function of the fundamental period of the structure and the target ductility,

which has been proved to outperform with respect to conventional loading patterns

suggested by most seismic codes.

The uniform deformation theory was also exploited by Mohammadi, R.K., Sharghi

A.H., in [81], combined with another important concept when designing in seismic

condition, i.e. the Performance-Based Design (PBD) approach. In PBD frame-

works, a performance objective is defined as a given level of performance for a spe-

cific hazard level. More in details, a performance level is representative of the level

of expected loss, while the hazard level of the seismic intensity. In general, three

performance levels are considered, such as immediate occupancy (IO), life safety

(LS) and collapse prevention (CP) which correspond respectively to a 20%, 10%

and 2% probability of exceedance in 50 years period. Specifically, in the considered

paper, the authors focused the attention on the optimization of 3, 5 and 10 storeys

eccentrically braced steel frames (EBF), subjected to 12 earthquake ground motions.

Once again, the weight minimization has been defined as OF, which in this case had

to satisfy the Life Safety (LS) performance level according to ASCE 41-06 (Seismic

Rehabilitation of Existing Building - American Society of Civil Engineers). Max-

imum displacements, maximum rotation of plastic hinges and maximum capacity
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of force-controlled elements were considered as optimization constraints. Regarding

the design variables of the problem, they were mainly dependent on the properties

of the link beams that basically govern the seismic behavior of EBF. Web shear area

of the link beams was considered as the major design variable; based on the concept

of Uniform Deformation Theory (UDT) the cross-sectional area of the web had to

be increased in zone where more shear deformation was required and reduced in the

link-beams that had too high deformation capacity. Once link beams properties had

been properly modified, the other frames members were sized based on maximum

axial force and bending moment. The optimization process was stopped when the

Coefficient of Variation (COV) of the link beams has reached a value small enough

as the structure tends to a uniform deformation state. To demonstrate the potential

of the proposed method, it has been compared with EBF optimization according

to conventional load patterns, showing that in this way such structures suffer less

damage.

An enhanced adaptive optimization algorithm based on the idea of Uniform Damage

Distribution (UDD) was coupled with the Performance-Based optimization frame-

work by Moghaddam, H., Hajirasouliha, I., Hosseini Gelekolai, S.M., in [80]. The

research was intended to assess the seismic design of steel moment resistant frames

(MRFs), subjected to dynamic earthquake excitations. In the minimum-weight op-

timization, the design variables were always the members’ cross-sections, while con-

straints were applied to maximum plastic rotations, to monitor the deformation of

the frame, and strength-based demand to capacity ratios, to check the acting forces.

The efficiency of the proposed optimization has been demonstrated considering 3,

5, 7, 10 and 15-storey steel MRFs and a set of five strong earthquake records from

the Pacific Earthquake Engineering Research Center (PEER) database. It has been

shown that the optimal design frames required up to 38% less structural weight than

their code-based design (ASCEE) counterparts for the same performance level.

The optimization process for seismic design of steel frames for multiple performance

and multiple hazard levels under various performance objectives was described in

great details by Qimao Liu and Juha Paavola in [69]. The reported diagram in figure

2.11 explains very well how the targeted damage states under the different hazard

level express the performance objectives of the structure. Then, the intersections

of the structural capacity diagram (achieved by structural analysis) and demand

diagram (obtained by response spectra related to hazard levels) is the performance

points we wanted. Comparing the performance points with the performance targets,
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we can evaluate the performance of the structures under the different hazard levels.

Figure 2.11: Performance-based seismic design concepts [69]

Three particular performance objectives, which may be stated in terms of specific

damage versus a set of seismic hazard levels, are expressions of acceptable perfor-

mance of the structure. In particular, the authors have defined three performance

objectives: basic objective, enhanced objective 1 and enhanced objective 2. For

example, enhanced objective 1 correspond to serviceability performance levels in an

occasional hazard levels, or Life safety, and a rare hazard levels. Specifically, the re-

ported graph 2.12 illustrates well the seismic environment in which the performance

objectives were evaluated.

Figure 2.12: Performance objectives in [69]
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The authors of the paper have been focused in finding the inelastic drifts of the

performance points, that was compared with the limits of inelastic drifts of the

structure, also called performance targets. In fact, it is common knowledge, that

any seismic design of frame buildings must include inter-story drift control as a key

component, which is one of the most important part in seismic design regulations.

Moreover, residual inter-story drift is a factor in the structure’s damage. Practically

speaking, the performance points are where the elastic/inelastic response spectrum

diagram (also known as the demand diagram) and the structural capacity diagram

cross. In the optimization process depicted, a three-story steel frame has been opti-

mized in order to reach a minimum weight design. The considered design variables

were the different geometric characteristic of I-shape section, i.e. flange width and

thickness and web depth and thickness, of all the beams and columns of the different

storeys. As expected, different optimum designs have been obtained in function of

different hazard levels. For example, thee mass of the optimum design for Enhanced

Objective 1 (2858 kg) is greater than that of the optimum design for Basic Objective

(2593 kg).

Also Gholizadeh, S., and A. Milani. in [38], have exploited the concept of Performance-

Based optimization seismic design (PBOSD), with specific focus on a comparison

of different metaheuristic algorithms, such as Particle Swarm Optimization (PSO),

Dolphin Echolocation Optimization (DEO), Enhanced Colliding Bodies Optimiza-

tion (ECBO) and a slightly modified ECBO called ECBO-II. Considering the above-

mentioned performance objectives, in order to assess the structural performance in

terms of strength and deformation capacity, globally as well as at the element level,

a set of 8 nonlinear time-history analyses were conducted for each hazard level. The

constraints applied during the PBOSD procedure regarded the serviceability and

ultimate state limit checks. Thus, structural members were checked in terms of

strength and displacements. Weight was minimized during the optimization, while

the members’ cross-sections, chosen as design variables, were taken from the AISC

list of W-shaped sections. The applicability of the method has been examined on

two steel frames, in which rigid connections and fixed supports were assumed. Re-

sults have revealed that for both examples the drift constraint at IO level dominates

the optimal solutions.

The PBOSD approach has been also applied by Mansouri, S.F., Maheri, M.R., in

[73]. The minimum weight design of steel frames has been implemented using the

Constraint Control Method (CCM), in which the design variables have been chosen
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as the W-shaped cross-sections of the structural members. Two set of constrain were

defined, in which the first one, based on AISC-LRFD specifications, included the

stress constraints for members undergoing axial force and bending moments due to

gravity loads; instead the second set of constraints was related to the lateral seismic

loading in the form of relative lateral story displacements (relative drift) at different

performance levels. With the CCM approach, the most conservative member sec-

tions were first chosen and by progressively shrinking their size, while managing the

problem limitations, the solutions approached toward an ideal design. Three two-

dimensional (2D) benchmark steel sway frames were analyzed with the suggested

method, including a three-storey four-bay frame and a nine-storey five-bay frame.

The CCM drastically reduced the number of structural analyses required to reach

a solution, compared to the more commonly used metaheuristic optimization meth-

ods, while producing comparable optimum solutions. For this reason, CCM has

been found to be particularly suitable as an optimizer for solving solution-extensive

problems, such as performance-based optimum design of structures. Moreover, as

shown in the previous article, the drift constraint has been prevailing over the force-

based stress constraints, strongly determining the final design of the structure.

In the field of steel concrete composite moment-resistant frame, Kaveh A., Mahdipour

Moghanni, R., Javadi, S.M., in [64] have developed a Chaotic Optimization Algo-

rithm (COA) based on Chebyshev chaotic map, following a performance-based de-

sign. Chaotic map was employed to prevent trapping in local optima and to improve

the exploration and exploitation of the algorithm. PBD in combination with COA

was illustrated by means of weight minimization of both 8-story and 20-story steel

concrete composite moment resisting frames. Regarding the design variables of the

optimization problem, I-shape beams and concrete-filled steel tube (CFT) columns

were adopted, chosen from a list of available cross-sections. Strength and drift

constrain were agreed to design the optimized structure. To achieve the minimum

weight, three main steps were followed. In the first step, the five best designs for

each frame were obtained based on the results of the pushover analysis, performed

twenty times for each performance level. Once fragility curves were plotted for each

selected frame, their best optimal design was chosen, based on the corresponding

damage margin ratio (DMR) of each damage level. DMR has been used to select

the best five design, determined from the outcomes of the pushover analyses. DMR

has been defined as the ratio of intensity measure’s value (IM) in accordance with

50% probability of collapse to the intensity of the maximum considered earthquake.
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In particular, higher values of DMR in a specific damage level indicate more safety

conditions. While in the 8-storey frame analysis, DMR values resulted to be almost

equal for each damage level, for the 20-storey case a larger scattering of the DMR

values has been obtained. Thus, it should be concluded that 20-story’s seismic be-

havior was sensitive to the selected sections and minimum weight was not a good

parameter to choose the best optimal design, due to its variable seismic behavior

according to DMR values.

A slightly different research has been conducted by Lv, Y., Li, Z.-X., Xu, L.-H.,

Ding, Y. with [70], in which a different goal of the structural optimization was pro-

posed. In fact, instead of tackling the traditional weight minimization, it faced the

maximization of the structural global performance under severe earthquakes. An

Equivalent Seismic Performance Optimization (ESPO) has been employed to min-

imize the difference between the seismic capacities of structural members. In the

optimization process, the importance coefficient (IC) and damage index (DI) were

defined and correctly balanced in order to identify how different structural elements

responded to earthquake ground motion. DI can be defined as the weighted aver-

age of the local damage indices or the change of modal parameters of the damaged

structures. IC coefficient indicates the elements that may not be damaged during

earthquake excitation. Numerical analysis results, on 9-story steel frame, have indi-

cated that structural members with higher importance coefficient (IC) may not be

damaged during earthquake, however, the ones with low IC may fail. More in de-

tails, an objective function (OF) was set to minimize the seismic performance index

(SPI) for every structural member, evaluated from the two previously introduced,

IC and DI. The maximum inter-story drift was adopted as the performance criteria

for global structure. Optimization of the structure was conducted by changing the

section area of steel columns as continuous design variables. From the analysis, it

has been shown that IC values were different for columns at the same position be-

longing to the same story. Moreover, corner columns had the largest IC values and a

state of damage with higher tendency to trigger the global damage. By means of the

DI value outcomes, it was proven that the damage was largely concentrated at the

first story. Therefore, the IC and DI values was intended to provide a guidance in

the design of such structures, in order to understand which column needed a stiffer

cross-section.

The optimization problems involving structures under seismic loadings were also

conducted in the field of multi-objective problems. As briefly mentioned in the In-
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troduction Chapter, multi-objectives optimization procedures are quite challenging

if compared to single-objective problems. The main issue is that they work with

competing goals, meaning that the design accounting for one target may lead to a

decrease in the performance of the other objectives. As a result, rather than a single

solution, the so-called Ideal Point, or Utopia Point, that maximizes or minimizes all

objective functions simultaneously, there is a set of incomparable optimal solutions,

each of which is superior to the others in a particular objective. Decision-makers

can choose from a variety of options in this collection of non-dominated or Pareto

optimal solutions, in order to best meet the needs of a given project. In the field of

multi-objectives optimization of frames subjected to seismic loads, the main target

functions addressed can be summarized in the following ones. The weight minimiza-

tion is still one of the most common goals, mainly used as a parameter to reduce the

overall cost of the structure under study. Then other objective functions are defined,

such as minimization of inter-story drift, maximization of energy dissipation capac-

ity or minimization of structural damage. Ductility and energy dissipation capacity

are addressed as key performance parameters for the seismic damage of frames when

some structural parts exceed their elastic limits during strong earthquakes.

An example of multi-objective optimization has been performed by Kaveh, A., Sho-

jaei, I., Gholipour, Y., Rahami, H., in [65]. The objectives out here included min-

imizing inter-story drift, under applied ground movements, minimizing structural

damage, evaluated by a damage index, and minimizing total construction cost,

measured by means of sections weight. The structure modeled in the non-linear

analysis was an Eccentric Braced Frame (EBF) with 4 spans and 5 storeys. During

the GA-based optimization, both strength and slenderness constraints were applied,

together with limitations on the maximum relative displacements for each story,

governed by the period of the structure. The cross-sections of beams, columns and

braces were chosen as design variables, taken from a discrete list of available sec-

tions. While for the first objective function they have been simply varied to meet

the minimum weight of the structure, for the other two objectives a balance needed

to be found on the strength of the material. In fact, high yield strengths could

not ensure decreasing damages, especially the non-structural damage. Essentially,

when subjected to high strength, the structure will experience high accelerations

even during mild excitations that cause great non-structural damages. Specifically,

damage index has been defined as the ratio between the maximum deformation of

the member under loading and the maximum deformation capacity under one-way
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loading plus a parameter, related to the dissipated energy during loading, and mul-

tiplied by a constant value. The possible values of such index range between 0, when

there is no expectation of damage, up to 1, when there is a potential for collapse.

Moreover, neural network has been trained and employed for estimating the relation

between the input and output variables. Input variables included the standard sec-

tions while outputs included drift, dissipated energy, and plastic deformation under

ground motions. Results have revealed, as expected, that an increase in volume,

led to a decrease in the inter-story drift but also to a damage index larger than a

given threshold. Thus, high computation time were required to find a good balance

between the three OF, even though neural networks helped in the decrease of the

number of calculations.

In the same year, Choi, S.W., Kim, Y., Lee, J., Hong, K., Park, H.S., in [21] focused

their analysis on another important topic for seismic design of frames. In fact, ac-

cording to the capacity design theory, there is a sort of hierarchical design which

states that we should have concentration of plastic hinges in the beams before than

in columns. Thus, the multi-objective seismic design of special moment resisting

frames (SMRF), based on non-linear static analysis, has been proposed and applied

to find optimal column-to-beam strength ratios, required for ensuring the so-called

beam–hinge mechanism. Consequently, the scope of the work was to minimize not

only the structural weight but also the column-to-beam strength ratio. Constraints

were imposed to control member strengths, inter-story drift ratio, prevention of

formation of plastic hinge at columns connected at joints, and cross-sectional ar-

eas of vertically continuous columns. The cross-sections of beams and columns were

chosen as design variables, taken from a discrete list of W-shaped sections. In partic-

ular, the multi-objective optimization employed the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II), based on multiple Pareto-optimal solutions. Predictably,

the results on both three-story and nine-story steel moment frames presented de-

creasing optimal strength ratios for increased structural weights. In more details,

the maximum strength ratios among the joints in SMRF has been faced at the exter-

nal joints, rather than at the internal ones. Based on the investigation, it has been

suggested that for a more cost-effective design, the strength ratios may be estab-

lished while taking into account the positions (internal and exterior) of the joints.

Different objective functions were faced by Xu, L.-H., Xiao, S.-J., Wu, Y.-W., Li,

Z.-X., in their article [114], in which the minimization of structural damage and

an improvement of energy dissipation capacity were taken as main goals in the
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design of steel frames. Depending on the optimization strategy requested, both

continuous and discontinuous design variables were taken into account, regarding

cross-section properties of the members. The structural damage of the structure

has been evaluated considering a damage index of the structure for every single

member as function of its maximum curvature, yield curvature and ultimate curva-

ture. In the performance-based optimization process used, the incremental dynamic

analysis was first conducted on the original structure in order to identify the most

unfavorable failure mode, using the failure probability function. The most adverse

earthquake, corresponding to the most unfavorable failure mode, was selected as the

seismic excitation for the multi-objective optimization. Then based on the values

of inter-story drifts, material and sections were properly selected. Taking a 20-

story steel frame structure as an example, seismic failure modes has been identified

and optimized using this method. Results have indicated that, if compared to the

original frame, the global damage of the optimized structure under the considered

earthquake excitation was reduced, while its hysteretic energy dissipation capacity

was improved. Furthermore, the inter story drift ratio distribution of the optimized

structure resulted to be more uniform, leading to a significant improvement of the

structural seismic performance.

Another performance-based seismic design has been proposed by Karimi, F., Ho-

seini Vaez, S.R., in [55]. In the study, the goals were the weight minimization

and a uniform distribution of inter-story drift across the structure. In particular,

the second objective was pursued to avoid the occurrence of soft-story mechanics

during seismic excitation. In the optimization, the cross-sections were representa-

tive of the discrete design variables and the applied constraints involved inter-story

drift, beam and column rotations, as well as weak beam-strong column mechanism

checks, as specified in FEMA 356 (Recommended Seismic Design Criteria for New

Steel Moment-Frame Buildings) provisions. The optimization has been carried out

considering not only the performance-based design (PBD) method at the Collapse

Prevention performance level, but at first accounting for the load and resistance

factor design (LRFD) method. In the first step, LRFD method has been exploited

to evaluate the structural adequacy of the structure, i.e. controlling demand-to-

capacity ratio of beams under dominant load combinations, including factored grav-

ity, service and seismic loads. Once obtained acceptable results, the second step

involved the application to the structure of a non-linear pushover analysis with a

parabolic load distribution. In this step, structural adequacy has been checked for
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four target roof displacements, corresponding to four performance levels. This stage

involved the verification in terms of rotation of members and inter-story drifts, as

specified in FEMA requirements. In conclusion, by means of two examples, it has

been proved that an optimization based only on selective and limited rehabilitation

criteria, ignoring the resistance-based provisions, may produce lighter designs, but

the results will not necessarily be reliable in terms of resistance.

The same objective functions were also considered by Kaveh, A., Farhadmanesh,

M., in [57]. In this study, however, they are applied on a different structure typol-

ogy, namely steel plate shear wall (SPW) systems. A SPW, characterized by an

high energy dissipation, is a lateral load resisting system that contains an infill plate

attached to the surrounding beams and columns. Basically, it acts like a cantilever

wall in the total height of the building. When subjected to high seismic loads, it

shows an high initial stiffness and behave in a very ductile manner, absorbing high

amounts of energy. The minimization of weight has been accounted by selecting the

least-weight cross-sections of the structural member, along with the web plate thick-

ness in the frame panels. For what regards the second objective function, concerning

the inter-story drift minimization, it has been formulated in terms of its standard

deviation. Stiffness, strength and displacement constraints were checked among the

iterations. In particular, many well-known metaheuristic algorithms, such as Parti-

cle Swarm Optimization (PSO), Enhanced Colliding Bodies Optimization (ECBO),

and Colliding Bodies Optimization (CBO), has been implemented. To demonstrate

the efficiency of the SPW a comparison with a similar moment frame was done,

taking into account both low and high seismicity regions. The optimization results

have shown that the optimized structure is 25% heavier than the optimum SPW.

Another interesting research has been illustrated by Ghasemof, A., Mirtaheri, M.,

Karami Mohammadi, R., in [35]. The previously explained concept of Uniform

Damage Distribution (UDD) has been here used to introduce a new algorithm to

multi-objective design of steel moment frames. This algorithm is based on the uni-

form damage (also known as uniform deformation) theory and starting from that,

the so-called multi-objective uniform damage optimization (MUDO) method is pre-

sented. Structural weight and maximum inter-story drift ratio (IDR) has been

treated as two conflicting objectives, representing economy and safety measures.

The design variables handled to reach the minimum values of the weight and IDR

were chosen from a discrete list of cross-sections, given by the AISC manual. Two

analyses at different levels were implemented: the linear static one to check the de-
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sign constraints, while nonlinear static analysis (pushover analysis) to determine the

non-linear structural response, such as the maximum IDR. The considered design

constraints were including geometric, strength, strong column-weak beam and drift

restrictions. Those constraints were related to constructability problems, meaning

that the column section of the upper story should not be larger than the column

section of the lower story. Moreover, the flexural behavior of beams and columns at

the joints level was controlled, in order to avoid strong columns and weak beams ef-

fects. To demonstrate the efficiency and robustness of the proposed algorithm, 3-, 6-

and 9-story steel moment frames have been compared with those of two well-known

multi-objective optimization metaheuristic algorithms, NSGA-II and MOPSO.

In the multi-objective seismic design framework, it is worth mentioning other two

studies that in different ways addressed the importance of the connections’ role

in frames under seismic loads. The first one was illustrated by Mojtabaei, S.M.,

Hajirasouliha, I., Ye, J. in [82] analysed thin-walled cold-formed steel (CFS) com-

ponents and connections used in portal frames. This study has made an effort to

enhance the seismic parameters of CFS bolted moment connections, including their

capacity for energy dissipation and ductility. Due to that, the objective functions

of the current problem were intended to maximize the seismic resistance in terms

of ductility and energy dissipation. The ductility for the connection was simply

defined as the ratio of target and yield rotations, while plastic and bearing deforma-

tions, concerning the bolted moment connections, were used to provide the energy

dissipation of the moment resisting frame. The cross-sections, the position of the

intermediate stiffeners, and the angles of the inclined lips were identified as design

factors. A population-based stochastic optimization technique, based on Particle

Swarm Optimization (PSO), was used to find the global optimized design solutions.

The second peculiar study has been formulated by Moradi, S., Alam, M.S., in [83].

It explored post-tensioned steel beam-column connections in frame structures, able

to significantly reduce long-term seismic damages and the related post-earthquake

maintenance costs. The considered objective functions involved the reduction of the

size of the beam sections and subsequently enhancing the structural response prop-

erties of the PT connections. The goal was to increase the PT connection’s initial

stiffness, load capacity and final drift. In particular, it was desired to produce a duc-

tile behavior for a PT steel beam-column connection. This aim was incorporated in

the optimization problem by maximizing the ultimate drift.Additionally, PT connec-

tions were planned to have increased load capacities, thus the second optimization
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goal was to increase the maximum load capacity responsiveness. To further mini-

mize lateral displacements under lateral stresses, connections in framed structures

needed improved initial stiffness. Therefore, the third goal was to maximize the ini-

tial stiffness response. Finally, the cost minimization has been accounted, in terms

of amount of material. To pursue these objectives, beam depth, beam flange thick-

ness and beam flange width were taken as design variables. Constrains were defined

in terms of upper and lower bound of different quantities, such as span length, PT

force, beam depth, beam flange thickness and beam flange width.

2.2.3 Connection flexibility of frames

Many authors over the years have investigated the optimization of steel frames by

accounting for connections flexibility effects. In fact, most of the time, in the analysis

and design of steel frames, beam-to-column connections are generally assumed to be

either fully rigid or perfectly pinned. In the former case, bending moment, as well as

shear and axial forces are transmitted from one element to another and no relative

rotation of the connection is allowed; in the latter case, only shear and axial forces

can be transmitted between the joined elements, thus moment of connection is al-

ways zero and there is no existing restraint for the rotation. Since experiments have

revealed that the real behavior of the frame’s joints is in between these extremes,

many researchers suggested that they should be modelled as semi-rigid ones. In

order to do so, rotational springs are attached to the ends of the elements, allowing

comparison of different connections rigidity through the variation of their stiffness.

In particular, the spring has zero volume but allows moment transfer. If the spring

stiffness is infinite, a fixed connection is achieved with full moment transfer. If the

spring stiffness is zero, a pinned connection is realized with no moment transfer. As

final case, the semi rigid connection is characterized by some rotational stiffness and

thus some moment is transferred. The integration of semi-rigid connections effect

into size optimization analyses, mainly aimed at weight minimizations, has led to

different results.

For example, one of the earliest studies here examined was illustrated by Machaly,

E. S. B. in [71]. They demonstrated the advantages of using semi-rigid connections

modelling in several weight-optimizations. Gables, portal frames and multi-bays

three-storey frames have been optimized, using a nonlinear programming technique.

During the process, I-shaped cross-sections were assumed for the columns and gird-
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ers and their geometrical properties were chosen as design variables, such as the

breath of flange and height of web. Both strength requirements, in terms of stresses,

as well as stiffness requirements, in terms of nodal displacements, have been ap-

plied in the optimization. Side constraints, regarding physical limitations of the

cross-sections and buckling considerations, have been applied too. In the reported

examples, the structures have been subjected to dead and live loads. By means of

the presented analysis, the authors have proven that the use of semi-rigid connection

is able to provide a weight saving from 10% to almost 30%, depending on the struc-

ture considered. In particular, such material reduction can be mainly addressed to

girders rather than columns. Another conclusion pointed out by the study, is that

deflection was not the most stringent factor.

Figure 2.13: Semi-rigid member [23]

In agreement with such results, A. Csébfalvi in [23], presented a study focused on dis-

crete minimal weight design of steel planar frames with semi-rigid beam-to-column

connections through the use of a Genetic Algorithm (GA). In the optimization the

design variables were chosen as the member sections. The optimization followed the

recommendation of Eurocode 3 (EC3) to properly control size, displacements and

stress constrains. During the procedure, the connection spring’s characteristics had

been allowed to vary within a defined range of spring rotational stiffness. Then,

semi-rigid joints were adjusted in order to account for both displacements and in-

ternal forces distribution. By means of two examples, a simple-bay frame and a

two-bay frame, it has been shown how semi-rigid connections modelling improve the

design, if compared to the case of rigid or pinned connected frames. However, it’s

important to underline that the optimal solution highly depended on the loading

condition and geometry of the structure.

Also K.A. Korkmaz and M. El-Gafy in [67], have proven that neglecting the effects of
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beam-to-column connection flexibility in the design would lead to unrealistic predic-

tions of the stiffness and strength of steel structures and to heavier designs. More

in details, in the proposed analysis, the target function of the optimization was

the weight minimization of structures with geometric non-linear behaviour. The

non-linear response had been determined by performing a pushover analysis. The

constraints were applied on the stresses and displacements, while the design vari-

ables were representative of the members’ cross-sections, taken from a list of avail-

able sections. Optimal design examples of 3,10 and 20-story rigid and semi rigid

connected frames had been reported, pointing out that the designs with rigid con-

nections usually involved over-stressed members and a less level of accuracy in the

drift predictions. Moreover, with semi-rigid designs, weights were lower if compared

to those of the rigid ones, as reported in the following figure 2.14.

Figure 2.14: Weights comparison of rigid and semi-rigid connected 3-, 10- and 20-
story steel structures [67]

Slightly different outcomes has been found by A.Elvin and J. Strydom in their pa-

per [29]. For the purpose of optimizing tall buildings with semi-rigid connections,

Elvin and Strydom (2018) created the virtual work optimization method (VWOW).

VWOM is an automated method that has the objective to minimizes the weight of

the structure while remaining consistent with building code standards for a partic-

ular geometry, deflection criteria, and load scenarios. Cross-sections were chosen as

the design variables of the optimization, pre-arranged to satisfy strength and deflec-

tion criteria. In particular, deflection constrains were checked at critical nodes. An
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important passage was the determination of how any modification was affecting each

critical zone. A section adjustment was considered efficient if it caused a significant

decrease in deflection at all critical points for only a tiny mass increase. Moreover,

when choosing members to reduce deflections, the most effective adjustments were

decided using the virtual work principle. More in details, some steps have been

proposed and followed by the authors during the proposed optimization problem.

First, a connection stiffness was assigned in the process. Second, candidates were

chosen based on their strength. Third, the member that reduced deflections with

the least amount of mass increase was identified. To illustrate the method, four case

studies of tall building had been presented using the VWOM. Results have shown

that buildings with connection stiffnesses that were semi-rigid had either the same

weight or heavier than the same structures with rigid connections, with a maximum

of 6% of mass increase. This means that in heavier cases, the connection flexibility

was compensated by stiffer and hence heavier members. Furthermore, the authors

underlined that the cost of semi-rigidconnections is lower than in the case of rigid

connections, despite the optimal mass for structures with semi-rigid connections

being the same or heavier. Thus, can be concluded that the construction with an

optimal price and mass are not always equivalent.

A well detailed analysis concerning the connection flexibility topic has been illus-

trated by A.V. Oskouei, S.S. Fard and O. Aksogan, in [86]. A genetic algorithm has

been employed for the minimum weight optimization, in which the variation of the

degree of rigidity of the structure has been carried out by changing the cross-sections

of beams and columns. The applied constraints and restraints regarded limits of nor-

mal and combined stresses, target displacements and the number and locations of

plastic hinges. To demonstrate the main differences of using rigid or semi-rigid con-

nections, nine frames were analyzed. Dead and live loads were considered and for

the seismic action the Iranian code was used. Depending on the number of stories,

from three to nine, the analyzed frames were divided into three groups. For each

frame, both linear static analysis and non-linear static analysis were performed,

considering both rigid and semi-rigid connections. In the first group, three-story

frames with one bay, two bays and three bays respectively have been investigated.

From the results it can be concluded that in frames with semi-rigid connections, the

period increased up to 20% and an increment in weight was experienced too, higher

for the non-linear analyses. Moreover, the stiffness distribution of the connections

resulted to be not uniform in the whole structure, decreasing while moving from
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the top to the first story. This demonstrated that lower stories are more important

to provide resistance to the entire structure. However, it is important to underline

that those results depended mainly on the period of the structures and on the de-

sign spectrum provided. The next six-story frames analyzed, always characterized

by one bay, two bays and three bays, showed that an increase in height leads to an

increase in the differences between linear and nonlinear analyses. Even though for

the first group of analyses the authors found a weight increase for semi-rigid con-

nections design with respect to the rigid connection case, for both the second and

third groups of frames, the weight obtained with semi-rigid connections has been

demonstrated to be lower with respect to rigidly connected structures. In particular,

the weight of the nine-story frame in the linear analysis case with rigid connections

had the maximum value, while the nonlinear analysis with semi-rigid connections

had the minimum one. Thus summarizing, in the case of low-rise frames with low

periods, where the structure was placed in the constant acceleration section of the

design spectrum, the weight increased for a lower stiffness of the connections. On

the contrary, the medium- to high-rise frames with long periods, lying in the lower

portion of the reflection spectrum (constant velocity part of design spectrum), expe-

rienced a weight reduction by lowering the stiffness of the connections. For medium

to high structures, it may be argued that employing semi-rigid connections with a

nonlinear analytic approach will reduce the structure’s weight and cost. However,

for short structures with rigid connections, the nonlinear analytical method resulted

in a more economically sound design. In any case, the non-linear approach has been

proven to be more accurate than the linear one and it led to a significant reduction

in the amount of resources consumed.

In contrast to the results exhibited so far, other researchers found out that semi-

rigid connections affect the best frame structure design with weight increases.A

simplified procedure for the analysis and optimum design of frames with rigid or

flexible connections has been illustrated by Y.A. Al-Salloum and T. H. Almusallam

in [2]. A volume minimization of frames was carried out by selecting the optimal

design variables, chosen as the moment of inertia of the structural members. Stress

and displacement constraints were applied to the members of the frame, neglecting

buckling verifications. In addition, minimum and maximum values to the design

variables were imposed. The elements of the frame were assumed to behave linearly,

while the beam-to-column connections with non-linear behaviour. Once again con-

nection flexibility has been modelled as rotational springs attached to the beams.
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Two numerical examples have been reported to demonstrate that connection flexi-

bility considerations would lead to heavier designs. Moreover, a further verification

has been carried out to check whether or not the best solution obtained considering

flexible connections was still feasible if the connections was taken as rigid, and vice

versa. It has been demonstrated, for all the examples reported, that unfeasible so-

lutions would be obtained.

A comparison between fully restrained and semi-rigid connected steel frames has

been reported also by Doğan, Erkan, Soner Şeker, M. Polat Saka and Celalettin

Kozanoğlu in [27]. In particular, this study presented a Hunting Search method-

based optimum design algorithm for unbraced steel frames. The non-linear problem,

aimed at the weight minimization, has been formulated as a size optimization, hence

the W (wide-flange shape) sections of members were treated as design variables,

chosen from a discrete steel section list given in LRFD-AISC (Load and Resistance

Factor Design, American Institute of Steel Construction). Due to the continuum

nature of the hunting search algorithm, the actual design variable considered was

the ascending sequence index of the discrete sections list. The design constraints

have been implemented following the specifications of AISC code, so displacement

limitations, inter-storey drift restrictions of multi-storey frames, as well as strength

requirements for beam-columns were considered. Additional constraints, namely ge-

ometric ones, were applied too in order to satisfy practical requirements. As design

examples, the authors reported three unbraced semi-rigid steel frames, with a com-

parison with the case of fully restrained structures. According to the observations,

since a great amount of horizontal displacement exists in the flexible connections,

displacement constraints became dominant in the design, thus stronger sections has

been selected. As a result, the weight of the whole structure was greater than the

one designed with fully restrained connections. In addition, to demonstrate the

efficiency of hunting search algorithm, the same examples were also solved with par-

ticle swarm optimizer, which has proven to be robust and efficient in the solution of

structural optimization problems, but the former performed better.

Another interesting research has been illustrated by Artar, Musa, and Ayse T.

Daloglu, with a further interest in the integration of concrete slabs effect on the

behaviour of steel beams in the optimum design of space frames. In [9] the authors

introduced the topic of concrete slab effects. Here explained the possible advantages

of such considerations, if compared with simple plain steel ones, such as greater

stiffness, greater bending strength, less lateral displacements and less mid-span de-
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flection. The optimization process presented employed a Genetic Algorithm (GA)

for minimum weight in which suitable standard sections from a specified list, taken

from American Institute of Steel Construction (AISC), had to be selected. The

stress constraints obeying AISC-LRFD (American Institute of Steel Construction

- Load and Resistance Factor Design), lateral displacement constraints, with spe-

cific regard to the top and inter-storey drifts, as well as the mid-span deflection

constraints for the beams were considered. In addition, the geometric constraints

concerning the column-to-column depths and beam-to-column joint sizes were taken

into account. Three different numerical examples, taken from the literature, has

been solved considering floor beams only made of plain steel and then as composite

(steel and concrete) ones. All the outcomes obtained in the study resulted to be in

agreement with the ones proved by other authors. Thus, it can be stated that inte-

gration of the concrete slabs contribution on the behaviour of steel beams ended up

with lighter designs. Then in [8] the same authors incorporated the just explained

findings in the optimum design of steel frames with both semi-rigid beam-to-column

and column bases connections. Thus, the novelty of such paper is not only in the

inclusion of the previous discovery in the connections flexibility analysis, but also in

the fact that semi-rigid connections were applied to both beam-to-column joints and

column bases. The optimization procedure has been carried out as in the previous

study, only adding column-to-column and beam-to-column geometric constraints.

Three different plane frames with semi-rigid beam-to-column and column-to-base

plate connections were carried out, at first considering only plain steel beams in the

finite element analyses. The same optimization procedures were then repeated for

the case of frames with composite beams. From the results, it can be noticed that a

decrease in the rotational spring stiffness of frames increased the values of the effec-

tive length factor K and so the buckling lengths of columns, leading to the selection

of larger cross-section profiles for columns. Thus, fully rigid connections promoted

lighter designs. Moreover, in the optimum designs of frames with composite beams,

consideration of concrete slab effects in finite element analyses significantly reduced

the effective length factor of columns and maximum top storey displacements. In

fact, in all three frames studied, optimum weight is decreased by about 5-8% when

the effect of concrete slab on behaviour of beams is considered.
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2.2.4 Soil-Structure Interaction

Another factor, influencing size optimizations of steel frames, that has raised inter-

est of some researchers is related to the soil-structure interaction effects. Daloglu,

Ayse, et al. in [24], have investigated such topic using metaheuristic algorithms.

Three-parameter foundation model has been adopted to incorporate the effect of

soil foundation on the behaviour of the frames in the optimum design process. The

moduli of subgrade reaction and soil shear parameter have been calculated in terms

of vertical deformation profile within subsoil. A computer program was coded in

MATLAB (2009) for the optimization processes and connected to SAP2000 (2008)

to perform the dedicated analysis of the frames. Both Genetic Algorithm (GA) and

Harmony Search (HS) algorithm were used for the minimum weight optimization

process. The steel space frames in the study have been subjected to the strength

constraints of LRFD-AISC (Load and Resistance Factor Design, American Institute

of Steel Construction) specifications, geometric restrictions, as well as maximum lat-

eral displacement limitations exhibited at the top and at the inter-story drifts. Three

different space frames taken from literature, for comparison purposes, has been pre-

sented: a two story, 21-member irregular space frame, a 4-storey, 84-member space

frame and a 20-storey space frame system. The appropriate cross-sections, chosen

as design variables, were selected from a predefined list of W-shaped sections. Re-

sults have shown that consideration of soil effects increased steel design weight of

the frames.

Later on, also Fathizadeh, S.F., Vosoughi, A.R., Banan, M.R. in [31], have explored

further this kind on analysis. In this paper, they have described a Performance-

based design (PBD) optimization of two-dimensional moment-resisting steel frames

(MRSF) that accounted for the effects of the soil-structure interaction(SSI). In par-

ticular, an engineering cluster-based genetic algorithm (ECGA) has been employed

to run the optimization problem. The minimum weight of structural elements of the

frame has been tackled as the objective function and cross-sectional elements pro-

files has been established as its design variables, taken from the W-shaped American

profiles. The optimized structures needed to satisfy different constraints. Geomet-

ric limitations were applied to the column sections, meaning that the bottom cross

section was assumed to be larger or at least equal to the one on top. In the connec-

tion between beam and column, weak beam–strong column constraint was assumed,

regulating the amount of plastic moment in the node. In addition, strength and
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drift constraints were imposed, together with checks on displacements and rotation

of the foundations, to control its uplift and settlement. Practical applications of the

proposed methods to investigate Soil Structure Interaction (SSI) effects on the PBD

Optimizations regarded six and nine-storey MRSF1D, in which different soil types

were treated, from very stiff to very loose soil. The influence of different soil ty-

pologies on the ideal design of MRSF were investigated, along with their impact on

the development of plastic hinges, vertical displacement of foundations, structural

period and damping. Results shave shown that with decreasing stiffness of the soil

under the MRSF, stronger cross-sections should be selected, which increased the

total optimum weight of the frame. Weight of the frame on a type IV soil (loose

soil) has been increased of 12.94% in comparison to a frame with fixed foundation.

As final example of soil-structure interaction research, we report the multi-objective

study carried out by Dehghani, S., A. R. Vosoughi, and Mo R. Banan in [25]. A

cluster-based non-dominated sorting genetic algorithm (NSGA II) has been intro-

duced to study the effects of the rehabilitation objectives on multi-objective design

optimization of two-dimensional steel X-braced frames, considering soil-structure in-

teraction. The target functions taken into considerations were weight minimization

and maximum storey drift minimization. The cross sections of grouped elements of

the frames were considered as the discontinuous design variables of the optimiza-

tion. Geometric constraints have been applied on the cross-sections of columns, as

in the precedent paper, such that the bottom columns should be thicker or at least

equal to the upper ones. Resistance constraints, in terms of stresses and moments,

have been applied under gravity loads, while under serviceability loads, they have

been expressed in terms of displacements. Then also resistance constraints for the

nonlinear static analysis have been taken into account, according to which shear

and axial force limitations had to be verified. Moreover, during the optimization

process, rotations and displacements of columns, beams and braces had to be under

certain limits. As in the previous study, rotations and displacements of the founda-

tion were checked at three performance levels, such as immediate occupancy (IO),

life safety (LS) and collapse prevention (CP). On the other hand, to study the ef-

fects of soil- interaction, the substructure method has been employed, according to

the procedure of FEMA356 (Federal Emergency Management Agency- Prestandard

and commentary for the seismic rehabilitation of buildings) and ATC40 (Applied

technology council -Seismic evaluation and retrofit of concrete buildings). The ef-

ficiency and accuracy of the proposed method has been demonstrated by way of
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different examples of frame structures. An important conclusion from this research,

in agreement with the previous studies, is that by softening the soil under the frame,

minimum weight of the frame has been increased.

2.2.5 Large roof structures and multi-bays, multi-storey frames

In this last section we have collected all the articles concerning the application of size

optimization on large spans structures and large multi-storeys, multi-bays frames,

not mentioned until now.

An interesting research has been proposed by Scholz, H., and G. Faller in [103]. It has

been described the computerization of the interaction method, developed by Scholz,

applied on a storey-by-storey basis, from top to base, of large multi-storey frames.

The goal of the optimization was to obtain a value of the storey failure load factor

within a specified range. In the procedure, at first a simplified method has been used

to obtain trial member sizes for the whole structure. Then the structure has been

analysed using the programmed interaction method. This analysis was carried out

in order to obtain the elastic-plastic failure load of each storey, whose members later

have been adjusted if the failure load was not within its acceptable threshold limits.

In the examples reported to demonstrate the validity of the proposed method, the

frame’s members was chosen among the American standard sections and the loads

applied on the structure were simply the gravity ones, multiplied by given design

load factors. Results have shown a good agreement between the proposed method

and the rigorous elastic-plastic second-order analysis. It has been argued that the

technique can greatly reduce analysis time as well as simplify the optimization of

members in the design of such frames.

Later on, multi-bay and multi-storey steel frames have been optimized, in a three-

steps numerical procedure, by Thevendran, V., NC Das Gupta, and G. H. Tan. in

[111]. Volume minimization has been developed in the optimization, where I-shaped

sections have been chosen as design variables, taken from a list of available steel sec-

tions. The peculiarity of such analysis was that at the beginning the design variables

were considered continuous and then, from the obtained results, the members’ cross

sections were selected from the database. In fact, in the first stage, both columns and

beams have been treated as continuous variables, in the second stage only columns

have been approximated with the available sections and finally, in the third stage,

also beams sections have been converted into the real ones. The frame was finally
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re-analysed to check whether any design criteria have been violated. In particular,

the frame structure, subjected to dead, live and wind loads, have been designed

considering beams’ maximum deflection and both shear and moment capacities re-

quirements, as well as stresses and buckling verifications for columns. Moreover, the

horizontal deflection of the structure has been checked, along with geometric con-

straints referred to limiting bounds of the cross-sectional areas and to the variation

of columns sizes with levels. The simplicity of the procedure has been shown in a

number of examples of such structures.

For industrial, commercial, and leisure buildings, single-story frame structures, also

known as large span portal-frames, are frequently employed. Such buildings require

the design of a structural system that can cover wide regions without requiring

intermediary columns. Moreover, since steel offers a cost-effective alternative, the

majority of these buildings are made of it. Pitched roof steel frames belongs to that

category of single-story frame and its design has been the subject of M.P. Saka’s

studies since 2003, with the paper [101].

Figure 2.15: Typical pitched roof steel frame with haunched rafters [101]

Although the design of pitched roof steel frames has been compared to simple one-

story buildings, it nevertheless had to take into account a number of difficult issues.

Design variables, considered to proceed with the optimization, were rafters and

columns sections, chosen from the standard universal beam sections set, and depth

and length of the haunches. Regarding the design variables, it is important to un-

derline that it is standard practice to use the same universal beam section for both

rafters and use other cross section for stanchions, when designing steel portal frames.
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Additionally, for economicreasons, the haunches were made from the same section

as the rafters. The minimum weight design of the frame was taken as the Objective

Function of the problem and different constraints were considered. First, due to ser-

viceability requirements, the horizontal displacement of a column due to unfactored

imposed and wind loads was limited to height of the column/300. Similarly, the

constraints have restricted the deflection of a beam to its span/360 if it have been

carried plaster or other brittle finish. In addition, local capacity check for beam and

column with semi-compact or slender cross-section needed to be properly verified

against bending and compression(buckling). A genetic algorithm was exploited to

find the optimum design and an exterior penalty function was considered during the

iterations. To illustrate the procedure, a practical example was reported regarding a

frame with 20 meters span and 5 meters in height. Results have revealed that while

the displacement and strength constraints didn’t approach their upper bounds in

the final design, the lateral torsional buckling have reached the allowable value. This

had an impact on the ideal depth and length of the haunch among the iterations.

In 2014, McKinstray, R., Lim, J.B.P., Tanyimboh, T.T., Phan, D.T., Sha, W. in

[74], focused their attention on the design of large span portal frames with fabricated

beams. Fabricated beams were used, in contrast with the most common hot-rolled

steel sections for column and rafter members, for weight reduction purposes. In

particular, the advantage of employing fabricated steel beams, over the hot-rolled

steel section, relies mainly on the maximum span achievable. In fact, using the lat-

ter ones, spans can reach only 50 m, while 100m can be achieved by employing the

former ones. Fabricated beams were built-up through the welding of steel plates.

The dimensions of steel plates were the considered design variables of the optimiza-

tion. With more details, discrete design variables were adopted for the thickness

of the steel plate used to for the web and flange, while continuous design variable

for breadth and depth of the section. The overall design optimization goal was to

find the portal frame with the least amount material for the main members, while

satisfying the design specifications. Columns, rafters and haunches were considered

as primary members of the structure and their weight was used to define the ob-

jective function. Both ultimate and serviceability limit states were included in the

optimization, adopting deflection limits, recommended by the Steel Construction

Institute (SCI), and accounting also for the buckling stability of the sections. To

optimize the size of the plates used for the columns, rafters, and haunches, a genetic

algorithm (GA) was used. For practical purposes, three different frames have been
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considered with different spans (40 to 60 meters) and different heights (10 to 12 me-

ters). In order to make a comparison, each of the previously introduced frames were

designed and analyzed with both universal beams (UB) and fabricated beams. Four

types of UB have been examined, each of which with a different number of design

variables, concerning column, rafter and haunch sections, as well as haunch length.

Instead, for the fabricated beams cases, the design variables were chosen between

height, breadth and thickness of column, haunch, web, flange and rafter. Moreover,

in this case they could vary according to geometric constraints. Interesting consid-

erations can be drawn from the results, beginning with an achievable weight saving

of 15% in frame weight for large span frames (> 40 m). Instead, fabricated beams

will be ill-advised for small frames where savings were minimum.

In the design of large span portal-frames, the large span and elements slenderness

make them very sensitive to applied loads, especially wind loading. Regarding this

last aspect an interesting approach is given by Fu J.Y., Wu, J.R. Dong, C.C. Xu,

A. Pi Y.-L. in [33]. In this research, long span portal frames with inclined roofs

were designed when subjected to dynamic loads, particularly wind loading. The

evaluation of the wind loading on inclined roof was more complex than ordinary

rectangular buildings. To overcome these limitations, the load imposed by the wind

was evaluated as an Equivalent Wind static Loading (EWSL) by means of Gust

Loading Factor (GLF), Load Response Correlation (LRC) and Proper Orthogonal

Decomposition (POD) method. Basically, those methods allowed to transform the

dynamic loading induced by the wind into a linear static pressure. The objective

function was the minimization of the structural weight of all the elements in the por-

tal steel frame, while the design variables were the tapered sections. Sizes needed

to be determined for several components of the tapered section, including the web’s

thickness and height as well as the flanges’ width and thickness. Constraints of the

optimization problem were based on the drift induced by wind pressure, with par-

ticular attention to displacements at the top of columns and vertical displacement

at the mid-span of the rafters. In the examples reported, the main focus was on

the effects of different combinations of EWSL, on the stiffness of elastic rotational

restraints at supports and on the stiffness of semi-rigid connections between rafters

and columns. It has been demonstrated that the optimized weight was generally

reduced with an increase of the stiffness of both column support and the semi-rigid

raft-column connection. The GLF technique yielded the highest optimal weight for

ESWLs.
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The same type of structure has been analysed also by Kaveh, Ali, Mohammad Za-

man Kabir, and Mahdi Bohlool in [62]. In particular, a comparison of different

metaheuristic algorithms has been proposed for two different multi-span pitched

roof frames with tapered members. Moreover, in the analysis, the apex height of

the structures has been investigated, in order to find the best design with minimum

weight. The I-shape of the cross-sections of beams and columns was assumed, and

specifically, the height and the thickness of the web together with the tapered length

ratio have been chosen as design variables in the optimization. Their values was al-

lowed to vary between feasible discrete ranges, as reported in the paper.

Figure 2.16: Variables of the 2-span frame [62]

Figure 2.17: Variables of the 3-span frame [62]

The structures under study have been subjected to the load combinations specified

in the ASCE7 code (Minimum Design Loads and Associated Criteria for Build-

ings and Other Structures), in which dead, earthquake, wind, snow and roof live

loads were considered. The constraints were applied on the strength of structural

members, subjected to compression axial forces and bending. Moreover, displace-

ment limits were imposed, depending on the loading cases, and construction criteria

were applied to horizontal and vertical elements of the structure. The optimization

algorithms used in the analysis were the following ones: Teaching-Learning Based

Optimization, Colliding Bodies Optimization, Enhanced Colliding Bodies Optimiza-

tion, Vibrating Particles System and Harmony Search. MATLAB software has been
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used for the algorithm implementation, while SAP200 for the modelling, structural

analysis and design of the structures. From the optimization of the two-spans roof

frame, the performance of all algorithms resulted to be appropriate, while for the

three-spans roof frame, ECBO algorithm has been demonstrated to be the best one.

In both examples, the diagram representing the optimized weight as a function of

the roof angle has shown that the best weight can be achieved by employing the

minimum angle.

Another comparison between metaheuristic algorithms have been depicted by Kaveh,

A., Biabani Hamedani, K., Milad Hosseini, S., Bakhshpoori, T., in [61] for multi-

storeys and multi-bays structures. Seven population-based meta-heuristic algo-

rithms have been used to optimize the size of two-dimensional steel frame struc-

tures. The optimization was aimed at minimizing the weight of rigid-jointed steel

frame structures while satisfying some requirements on stress and displacements,

according to AISC and Load resistance Factor (LRFD). Minimum weight design

has been obtained by selecting appropriate cross-section from a catalogue contain-

ing 267 W-shaped section. The well-known penalty approach has been used to

handle the constraints of the optimization problem. Specifically, the parameters

considered in the penalty were related to the total amount of the constraint that

was violated and two constant parameters that had to be properly set in order to

achieve a good balance between the intensification and diversification of the algo-

rithm. Three benchmark frame structures have been analyzed, which have a number

of story varying from 10 to 24 and 1 or 3 number of bays. Optimized frames have

been examined considering Artificial Bee Colony (ABC), Big-Bang Crunch (BBC),

Cyclical Parthenogenesis Algorithm (CPA), Cuckoo Search (CS), Thermal Exchange

Optimization (TEO), Teaching-Learning-Based Optimization (TLBO), and Water

Evaporation Optimization (WEO) metaheuristics techniques. The results of the op-

timization showed that WEO, CS, and TEO algorithms performed better in terms of

the best weight, average weight, and standard deviation on average weight, accord-

ing to a close examination of the optimization results. In addition, TEO, TLBO,

and WEO have exhibited faster convergence rates than other examined algorithms,

as shown by convergence curves.
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2.3 Topology optimization

Topology optimization is a relatively new but rapidly growing area of study, with

interesting theoretical implications in many areas of engineering, mathematics, me-

chanics, multi-physics, and computer science [96]. It has also significant practi-

cal applications in the manufacturing sector, particularly in the automotive and

aerospace fields, and it is likely to play a significant role in micro-and nanotech-

nologies. Focusing on the structural design field, topology optimization has been

referred to as "an intellectual sparring partner" at the preliminary conceptual de-

sign stage (Bendse and Sigmund, 2003). The talented Australian inventor Michell,

who developed optimality criteria for the least-weight truss arrangement, wrote the

first article on topology optimization more than a century ago (1904). In structural

optimization problems, topology optimization can be defined as a design tool which

determines the location of the material in a design domain, based on the loads and

boundary conditions for a specific objective, i.e. target deflection, compliance, min-

imum weight design etc. Following this approach, the finite element method (FEM)

is applied by splitting a design domain into several small pieces, known as finite

elements. Each piece contribute to the creation of the overall structure by having a

density that is either solid (black) or empty(white), similar to a pixel in a picture.

As shown in the following figure starting from an initial structure with full density

material subjected to a concentrated force and specific boundary condition, after

the optimization unnecessary material will be removed, as shown in figure 2.18.

Figure 2.18: Initial design with no voids and final optimized topology design [107]

Topology optimization is generally employed in the conceptual design phase of a

high-rise building, in which the main focus is related to the overall stiffness/drift

requirements under lateral loads. Therefore, many of the decisions made during

this process are related to defining the lateral system that allow to reach an optimal

structural design to satisfy certain conditions. The balance between engineering and

architecture is another issue that frequently affects the topology optimization indus-
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try today. Traditionally, an architect’s focus is more on the aesthetics, or "form," of

a structure, whereas an engineer’s target concerns stability and efficiency, or "func-

tion", of the structure [15]. To overcome those conflicting goals, for example, we

can think to add some architectural constraints during the optimization process, as

reported in figure 2.19.

Figure 2.19: Optimized building topology considering both engineering and archi-
tectural aspects [15]

Mark J.Jakiela, ColinChapman, JamesDuda, Adenike Adewuya, KazuhiroSaitou,

in [53] presented the Genetic Algorithm(GA) for structural topology optimization,

through the use of example and reviews. By applying this algorithm, the design

domain has been discretized into small rectangular elements, as said before, repre-

sentative of the presence of material or void by means of a specific code number

(respectively number 1 and 0). In this way, the topology has been defined, so the

next step was its structural verification through a finite element analysis. Then the

fitness of each chromosome, thus of each topology, was computed as a function of the

stiffness value, determined as the inverse of the displacement. In fact, the Objective

Function was aimed at the minimization of the structure’s compliance, by finding

the optimal configuration of material and voids within the design, while stress and

displacement constraints were applied. An example related to a cantilever plate

subjected to vertical load has been provided and discussed.

A classical approach to topology optimization was provided also by Pan Jin; Wang

De-yu in 2006, with [88] in which truss structures with 12, 20 and 72 bars were
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analyzed using Adaptative Genetic Algorithm(AGA). The objective function of the

optimization problem was a minimization of the truss structural weight, when sub-

jected to frequency domain excitations. Minimum weight was achieved by removing

extra bars and nodes, classified as removable and non-removable.

Figure 2.20: Initial truss topology design and final design optimized truss topology
after removing extra bars and nodes [88]

The analyzed truss structure was subjected to three kinds of constraints: fundamen-

tal frequency, displacement responses and acceleration responses in the frequency

domain. Maximum amplitude of displacements and frequency acceleration response

had to be lower with respect to an upper bound limit. Those types of constraints

have been evaluated from the structural vibration equation, based on finite element

method, in which mass, damping and stiffness matrix of the structure needed to be

known. Moreover, to obtain the accurate natural frequencies and dynamic responses,

it was necessary to renumber every bar and node in the structure and rebuilt the

stiffness and mass matrices when some bars or nodes were removed. Running the

optimization problem, it is important to underline that AGA could only be applied

to maximum unconstrained optimization problems. However, structural topology

optimization problems often need considerations of some restrictions and request

the objective function to be minimized. Therefore, some handling had to be done

to transform the original optimization problems into a form suitable for the genetic

algorithm to solve. To overcome this issue, the proposed methodology applied the

penalty function method. Such method punished the individuals that violate the

optimization constraints, by introducing a penalty into the fitness function. The

examples reported in the paper have shown the efficiency of AGA procedure for

ground structures, providing a lightest feasible optimized design compared with the

original one.

Another important topic addressed in topology optimization techniques deals with
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the design of conventional moment-resisting steel frames. This type of structure as

is well-known, exhibits a good behavior under gravity-induced forces. However, the

structure is likely to be ineffective in self-resisting lateral forces promoted by wind

and/or earthquake actions. The use of a hybrid system that integrates cross braces

to the moment-resisting frames is widely accepted for its cost-efficient and safe per-

formance. Due to that, founding an optimal bracings position is one of the most

treated issues in this field. From the studies in 1988 of Bendsøe and Kikuch, topology

optimization has been pursued for the design of brace configurations. Cross brac-

ings designs, especially when the braces are added afterward as part of a retrofitting

scheme, traditionally use a simple trial-and-error procedure, with the overall goal of

minimizing the distance between the floor’s mass and stiffness centers and ensuring

that the lateral resisting system has a workable load path. A more systematic ap-

proach is to set up and solve an optimization problem that automatically computes

optimal brace layout and sizes while satisfying the safety of the targeted structural

performance.

In the research [99] proposed by D. Safari; Mahmoud R. Maheri a straightforward

Genetic Algorithm was used to perform topology optimization of steel braces in 2D

steel frames. In this paper, the optimal position of X-braces was explored, with

the objective to reduce the weight of steel used in the 2D frame-brace system. The

constraints related to the problem included: total drift of the frame, column uplift

force, number of braced panel and architectural limitations. Focusing on the latter,

it involved limits on the allowable bracing, restricted to some bays only. For ex-

ample, in the case of the three-bays structure, bracing was first allowed in the two

right hand bays and then only in the outer bays. Different examples related to 2D

frames, having different numbers of storeys and bays, have shown the efficiency of

the proposed algorithm. In fact, over 5% reduction in weight and 8% reduction in

drift were achieved by GA topology optimization when compared with conventional

frames, in which brace location was admissible horizontal along the same bay or in

vertical along the same storey.

Always in the topology optimization environment, since in recent years seismic re-

habilitation for existing buildings has been an increasingly important issue, studies

on brace systems have been emphasized due to their applicability and effectiveness

as reinforcing structure techniques.

An interesting research, targeting seismic assessment of steel frames using braces,

was provided by Shengfang Qiao, Xiaolei Han,Kemin Zhou, Jing Ji [94]. This study
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has been focused on the seismic analysis of steel frame structures with brace configu-

ration, using topology optimization based on truss-like material model. Zhou and Li

in 2005 have introduced such method for continuum topology optimizations, which

has been further investigated by Zhou and Chen in 2014, by considering natural fre-

quency constraints. In the present paper, the truss-like model has been applied by

considering stress constraints and both earthquake and wind loads. Initial truss-like

members were used to fill the design domain for topology optimization, based on

the original steel frame structure. The final layout of the least-weight structure was

obtained by applying a fully-stress criterion and by considering as design variables,

in the finite element analysis, both the density and orientation of the truss-like mem-

bers. The optimized structure obtained by Zhou and Chang in 2014, referred to a

10-storey 2D frame, has been repeated in order to see how the brace configuration

could be improved in order not to have braces in the middle of columns but instead

in the middle of beams. Thus, the new arrangement was created with diagonal

braces or inverted "V" braces. Then engineering requirements about the building

function have been considered, further enhancing the optimal brace configuration.

To reinforce the advantage of the proposed optimized structure, a comparison with

two common optimized brace configurations under different earthquakes intensity

was done. Common brace configurations were characterized by “V” brace and single

bar brace that were placed vertically along the same bays, a practical example is

reported below 2.21.

Figure 2.21: Possible braces configuration [94]

Running the analysis for different earthquake intensities, the authors stated that

the inverted ‘V’ brace was more acceptable than the single-bar brace when span was

twice the storey height. Moreover, in the comparison, two important quantities in

seismic design were analyzed: story-drift and first period of the structure. Results

have shown that the first period of the optimized structure was reduced by 51.4%

with respect the original frame without brace, while around 45% was the reduction
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of common brace configuration with respect the original one. Regarding the drift,

an average reduction of 56.69 among the 10 storeys was obtained, in comparison of

50% average reduction of common braces.

An alternative lateral resisting solution to the common brace system are the Steel

plate shear walls (SPSW) described in the paper [12] of Mohammad Hadi Bagher-

inejadand Abbas Haghollahi. In recent decades, the efficacy of steel plate shear

walls (SPSW) as lateral resistance solutions has been proved, even in comparison

with brace systems or RC shear walls. In fact, they are characterized by large en-

ergy dissipation capability, a stable hysteric behavior along with considerably light

and thin configurations, which ensure rapidity in the erection and suitability for

seismic retrofitting. In this paper, topology optimization has been exploited to find

a new configuration for the perforated steel plate shear wall (PSPSW) based on

the maximization of reaction forces as the objective function. Reaction forces were

evaluated at fixed nodes when the plate was subjected to a lateral monotonically

increased load. The optimization was performed considering an infilled plate using

a nonlinear analysis, so geometry and material were taken in account to model the

plate under study. As result, the final area of the optimized plate was equal to 50%

of the infilled plate. In this optimization analysis, topology optimization could be

divided into two parts: the first one was focused on the skeletal or truss structures

that had a discontinuous nature, while in the second continuous environment has

been considered, with a high volumetric ratio. In fact, in the first discontinuous

phase, the volume of the consumed material was very low in relation to the total

volume of the structure (problems with a low volumetric ratio), in contrast with the

second phase conditions. Moreover, the sensitivity-based method which is a general

algorithm that could be used for structural and non-structural problems with large

scale. In the sensitivity analysis, the density (design variables) of all elements has

been reduced to the predicted volume fraction. In the next step, the FE analysis

was done and based on the objective function, the effective elements were recognized

using sensitivity analysis. The effective elements had to be retained while the others

eliminated. Actually, no element was eliminated, but its density has been decreased

to a minimum value set to 0.001, because otherwise in each iteration, the mesh had

to be renewed with a very time- consuming procedure. On the other hand, the

density of the element could not be equal to zero because it would have caused a

singularity in the problem-solving. Finally, another application of topology opti-

mization can be related to optimal location of the connections inside the structure.
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This topic was treated by the authors Baghdadi, Abtin and Heristchian, Mahmoud

and Kloft, Harald in [11]. The connection placement strategy, also known as the

connections-placements approach(CAP), was the subject of this article, which fo-

cuses on improving the position of connections in prefabricated buildings. Elements

forces and connections properties were evaluated in order to define the optimum

type and location of the connections. The methods needs to follow different steps,

first of all the results of a structural analysis of the building need to be done and the

forces and connections properties should be known. Next a mechanical coefficients

was assigned to each connections, after testing the connections under axial, shear

and bending forces. Weighted-Indicator-Function was then introduced and it calcu-

lates the amount of forces(M,N,T) and the performance of the each connections of

the buildings. The minimum amount of WIF indicates the optimal position of the

connection under different load combinations. Once defined the optimal locations,

also the type of connection based on a set of avalaible and minimum value of WIF,

was properly defined.

2.3.1 Size and Topology Optimization

In this section all the studies that combined size and topology techniques for struc-

tural optimizations have been collected.

A first example was reported by Saka, M. P. with the article [100] in which pre-

sented an algorithm for the optimum design of steel frames, studied with both fixed

or pinned supports, as well as with and without bracing systems. At first a simple

size optimization has been accounted, in which the topic of more or less flexible

supports was explored. Then, considering a specific condition, bracing configura-

tions have been analysed in order to find the optimal arrangement. The objective

function to be minimized was the weight of the structure, while at first the cross-

sectional areas of members have been treated as design variables. In the process, the

optimum value of the design parameter was chosen as the one related to the most se-

vere between displacements constraints, combined stress constraints and minimum

size constraints. The examples reported for simple portal frames, subjected to a

distributed vertical load and an horizontal force, have shown that, with specific re-

gard to pin supports static scheme, displacement limitations were dominant, while

fixed-supported frames were governed by the combined stress constraints. More-

over, in the second case the final design was lighter. Then, when the effect of
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bracing has been investigated in pin-ended portal frames, the resulting weight was

further reduced. Also pitched roof frame examples have been reported, where the

structure subjected to distributed vertical loads have been studied with different

support conditions, fixed and pinned ones, with and without bracing and, lastly,

with the application of an horizontal force too. In the simple vertical load config-

uration, fixed supports showed lighter weights, but the best design was found with

pinned supports and a bracing bar between the eaves. The same conclusions cannot

be made with the second load configuration, where the best design was obtained

with fixed supports and without bracing. In any case, the dominant constraint was

the one regarding the combined stresses. Finally, also multi-storey and multi-bays

frames have been analysed, which led to the conclusion that rigidly jointed frames

yielded lighter design if they were only subjected to vertical loads. However, in

the presence of lateral loads too, frames with simple beam-column connections and

bracing produced better designs.

As we have seen in the chapter of size optimization under seismic loadings, address-

ing the topic of uniform distribution of certain structural properties, an application

of such study has been conducted for a simultaneous size and topology procedures

by Hajirasouliha I., Pilakoutas, K., Moghaddam, H. [44]. They proposed an effi-

cient method to design nonlinear truss-like structures, subjected to seismic load, in

which the objective was to obtain a minimum weight truss by shifting material from

strong parts to weak parts, until a uniform distribution of deformation demands was

reached. In fact, during strong earthquakes, some structural elements’ deformation

requirements do not fully utilize the allowable level of seismic capacity; therefore,

if the strength of these underused elements was reduced, a status of uniform de-

formation could be reached, maximizing the dissipation of seismic energy and fully

utilizing the material capacity. Assuming that the cost of a member is proportional

to its material weight, the least-cost design was interpreted as the least-weight design

of the structure. Moreover, indirect considerations about the joints cost have been

accounted by the fact that as the algorithm decreased the number of elements, the

number of joints was minimized too, thus their overall expense. The minimum cost

was achieved by considering as design variables the cross-section areas, specifically

their material density and length, while constraints on element buckling and target

ductility of each structural member had to be satisfied. The algorithm started from a

ground structure with all possible connection members between nodes. Then nodes

that was carrying external loads or that was needed to support the truss structure
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have been maintained in the design, while the ones used just for load sharing have

been excluded. In the next step, based on the design load applied, the maximum

ductility of each structural member has been computed and iterations proceeded

until the maximum ductility demand of all truss elements reached the target duc-

tility. Basically, if the calculated ductility demands were close enough to the target

value, the optimization stopped, otherwise inefficient material was reduced. The

assumption that the uniform deformation demand led to the full exploitation of

material capacity has been previously demonstrated by other studies, such as Haji-

rasouliha I, Moghaddam H. [43] and Moghaddam H, Hajirasouliha I. [77]. Based on

the results of the presented study, the concept of uniform deformation can be used

efficiently for topology optimization of nonlinear truss structures subjected to grav-

ity loads and seismic excitations. It has been demonstrated that there is a unique

optimum distribution of structural properties, which is independent of the initial

cross-sectional area of the ground structure. Moreover, this method was dependent

on the variation of target ductility demand, meaning that a fixed arrangement of

truss members cannot be appropriate for different performance levels.

Figure 2.22: Optimum optimized design in fuction of different ductility demands
[44]

Additionally, it has shown that using conventional optimization methods based on

elastic behavior and equivalent static loads could lead to heavier design, up to an

increase of 60% compared to the non-linear dynamic model. It was concluded that

non-linear dynamic behavior of truss structures should be considered in the optimum

topology design of trusses subjected to seismic excitations. One year later, an appli-

cation of size and topology optimization has been conducted to model braced frames

in lateral design of high-rise buildings, developed by Lauren L. Stromberg, Alessan-

dro Beghini, William F. Baker, Glaucio H. Paulino in [106]. Braced frames have

been used in several noteworthy buildings like the John Hancock Center (Chicago,

IL), Broadgate Tower (London, UK) and Bank of China Tower (Hong Kong), a

picture of the building is reported in figure 2.23.

The design of such systems is traditionally based on diagonal braces arranged to 45°
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Figure 2.23: Existing buildings featuring remarkable braced frame systems: (a) John
Hancock Center in Chicago, IL, (b) Broadgate Tower in London, UK, and (c) Bank
of China Tower in Hong Kong . [106]

to 60° angle. In this research, size and topology optimization have been combined

to derive the optimal bracing layout of 2D high-rise frames. The energy method

in conjunction with the principle of virtual work has been employed in the size

optimization. During the process the cross-sectional area of the elements has been

changed until the optimal configuration of beams and columns was found, while only

gravitational loads were applied. Constraints on maximum allowable material that

can be used and maximum stress in structural elements had to be properly checked

among the iterations. The structural system was modeled using beam elements and

quadrilateral elements(Q4); Q4 represent the region enclosed by two columns and

two beams. Beam elements, used for beam and columns, consists of six degrees of

freedom (two translation and rotational at each node). While four-node bilinear

quadrilateral elements have eight degrees of freedom (two translations per node).

To effectively connect the finite elements, the interaction between the rotational

and translational degrees of freedom must be considered. Two types of design were

explained, where in the first one, beam consisted of simply connecting the beam

ends to the extreme corners of the quadrilateral mesh. Thus, the end rotation of the

beam had no influence on the quadrilateral finite elements because the rotational

degree of freedom was decoupled and all the interior nodes along the length of the

beam were free to move independently of the quadrilateral node translations. In

the second design case, beams were discretized into beam elements with nodes co-

incident with the nodes of the quadrilateral mesh. Consequently, the translational
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degrees of freedom of both beam and quadrilateral elements were shared throughout

the beam’s length. Thus, the quadrilateral elements have been constrained to move

jointly with the beam elements when the frame deformed.

Figure 2.24: Beam free to move
Figure 2.25: Beam and quadrilateral
nodes move together

An interesting observation that can be derived from the design example is that min-

imum compliance led to constant stresses, which was the condition of optimality.

As stated in the section 2.3, retrofitting and rehabilitation of existing building is

employed following topology optimization approach in order to find optimal brace

locations. Moreover in some studies also the cross section of the braces are con-

sidered as a design variable, alongside with brace positions, in order to reduce the

amount of volume.

In the paper [109] Tangaramvong and F. Tin-Loi in 2015, presented a mathematical

programming–based approach for optimal retrofitting of steel structures with braces,

subjected to some system performance criteria. The aim was to ensure the safety of

the post-retrofitted structures under applied forces and limited displacement condi-

tions. In the present study, three distinct optimization cases have been addressed,

in which the inclusion of non-linear elastoplastic constitutive behavior of materials,

considered as traditional complementary constraint, made the optimization prob-

lem nonconvex and non-smooth. For all three cases, the objective function was the

minimum volume design of braces, while for the last analysis, also the minimization

of the number of braces has been accounted. Displacement constraints were applied

in all the analyses, whose value has been restricted within a limiting range. The

authors started the optimization problem by considering a simple ground structure
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concept, in which all possible braces were first generated between direct neighboring

predefined nodes within a rehabilitation domain. Once the simple ground structure

was known, brace members during the optimization procedure was then retained

(non zero brace areas) or eliminated (zero braces area). For all design cases, the

structural performance of the repaired structures has been ensured and validated

through comparisons with the corresponding exact elastoplastic responses. Specifi-

cally, the outcomes of the study have shown that the first practical example provided

the least volume, which however resulted to be unpractical because a large number

of sections were excessively small. Improvements in the design were obtained for the

intermediate analysis, at the cost of larger computational time. Finally, the authors

have considered the case with a limitation on the number of braces with the most

realistic cost-effective design strategy because it have been incorporated not only

the material-related costs but also brace fabrication and erection expenses.

Finally, another contribution to retrofitting of existing frame structure was car-

ried out by Devices Apostolakis with his paper [5]. The goal of this paper is to

present an evolutionary computational framework that integrates hierarchical mul-

tiscale mega bracing architecture for the seismic design of both regular and irregular

three-dimensional multistory structures. Particularly, two steel three-dimensional

buildings with moment resisting frame an 8-story irregular and a 14-story regu-

lar one is taken into consideration and retrofitted with friction dampers. Friction

dampers are added to the structure to improve its seismic performance; in reality,

by adding more damping, it absorb some of the seismic energy that is induced in

the building. The evaluation criteria used in this paper are based on story drifts

and absolute accelerations at each floor. It is possible to build an objective function

using relative or predetermined performance target level. In the former, the objec-

tive function can be expressed in terms of the ratio of the story drift and absolute

acceleration between the un-retrofitted structure and the structure retrofitted with

damping devices. In the latter, the objective function can be expressed in terms of

the ratio of the previous criteria between the retrofitted structures and prescribed

performance target levels. By selecting the latter approach, the objective function

of the structure is expressed as the ratio between the maximum and allowable floor

displacement plus the same ratio but in terms of floor accelerations. Moreover, in

the expression of the OF also a penalty is added, that takes in account the number

of X-braces used. The value of the OF is then found for different earthquake and the

overall objective function value assigned to the structure is the minimum obtained.
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Design variable of the evolutionary framework are the parameters that characterize

the frictions dampers: multiscale configuration, or rather “V, inverted “V”, “X” and

diagonal braces, section area and slip force. For the design applications presented

in this paper, the 25 ground motions with 5% probability of exceedance in 50 years

were used as the seismic environment. Three design scenarios were considered for

practical applications, the difference was the brace configuration that were allowed

to be used, varying from all possible choices to a limitation on X-brace configuration.

Figure 2.26: Optimal megabrace topologies for the 8-story irregular structure

The ideal design for the 8-story irregular building has the maximum interstory

lateral stiffness and slip force values at the bottom levels and gradually decreasing

values as you climb the stories. For the 14-story structure, the best designs for all

scenarios, however, preferred a layered architecture with vacant stories first, followed

by stories with fitted dampening devices.

Duoc T. Phan, James B. P:, Lim Tiku T. Tanymboh, Wei Sha, in [91] explored

the performance of combined size and topology optimization for a slightly different

type of application. The case study presented is related to low-rise commercial,

light industrial, and agricultural buildings made of cold-formed steel portal frames,

previously introduced in 2.2.5. This type of construction has been proven to be a

competitive alternative to traditional hot-rolled steel portal frames for structures

with moderate spans, up to 20 m. Cold-formed sections are lighter than hot-rolled

ones, making it possible for semi-skilled workers to bolt and erect the structural

members on site without the use of a crane. As a result, the erection costs were

significantly lowered if compared to those of hot-rolled steel portal frames, highlight-

ing the importance of this research. Therefore, the authors proposed a combination

of size and topology optimizations applied to cold-formed steel portal frame build-

ings through the use of areal-coded Genetic Algorithm (RC-GA). In place of earlier
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GAs, which were known for their slow convergence and lengthy computation times,

RC-GA has been employed. A niching technique, that effectively increases the dis-

similarity of the solutions in each generation, has been described in an effort to

enhance the performance of the traditional GA. The objective of the overall design

optimization, including the building topology and section sizes of members, was to

determine the portal frame building having the minimum cost, whilst satisfying the

design requirements. The design variables were related to some geometric charac-

teristics of the frame, like the span length, height of eaves and the inclination of the

pitch, as well as the members cross-sections, which were chosen from a list contain-

ing 40 channel-sections. It’s important to highlight that the decision variables were

both discrete and continuous. A case of a frame with a span of 20 meters and col-

umn height of 4 meters has been analyzed in order to demonstrate the efficiency of

the proposed method. The algorithm’s computational effectiveness and robustness

have also been proven and the computational time has been cut in half compared

to standard GA.

Another study related to the validation of the application of metaheuristic algorithm

for size and topology optimization has been carried out by A.Kaveh, Mahdavi V.R. in

[63]. In this paper, steel truss structures have been optimized using a meta-heuristic

algorithm called Colliding Bodies Optimization (CBO). In the layout (simultaneous

size and topology) optimization problem, two objectives have been taken into ac-

count: the best topology or shape for a ground structure and the best cross-sections

of that topology. Therefore, the problem began with the ground structure, which

was made up of all potential nodes and members. Then, the cross-sectional areas

and node layout have been determined to gain the minimum cost. In particular, the

cost of the entire structure has been calculated as the sum of the members expense,

related to their masses, and of the nodes, evaluated by means of a constant mass

value if the node was present. Design variables taken into account to obtain the

outcomes included the cross-sectional areas (regarded as a continuous variable) and

both the node and member positions. The constraints applied were related to the

upper and lower bound of stresses, buckling, displacements and natural frequen-

cies requirements of the structure. The finite element model had to be revised and

adjusted when members and nodes were eliminated, which was an important part

of topology optimization that needs to be highlighted. This change resulted in a

significant amount of useless computing work. Wang and Sun (Wang and Sun 1995)

developed a technique in which the members suggested to be removed by the opti-
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mization, thus elements with zero cross-sectional value, had to be associated instead

with a very small value. The employment of such technique was able to overcome the

problem of having elements with null area, that require the re-computation of the

stiffness matrix. In this way the computing effort has been reduced while maintain-

ing the finite element model’s integrity. Moreover, when a tiny cross-sectional area

was chosen, the corresponding stress and local stability constraints were ignored. To

compare the effectiveness of the CBO algorithm with other techniques, four numeri-

cal examples of various truss designs with increasing numbers of nodes and elements

have been taken into consideration. In all the examples tested the cost of the op-

timized structure was minimum when using the proposed methodology. Moreover,

while the majority of meta-heuristic algorithms had some parameters that needed to

be carefully adjusted for various types of problems, CBO, being independent from

settings, was easy to be implemented.

In another research, conducted by Kaveh, Ali Neda and Farhoudi [58], topology and

size optimizations have been exploited to find an economical solution for concentri-

cally structural steel frames. Differential Evolution Algorithm (DE) and Dolphin

Echolocation Optimization (DEO) have been applied for structural optimization, to

find the best results in terms of minimum weight. Both placement of the bracings

and size members have been considered as design variables, while the considered con-

strain were related to drift, deflection, compaction and strength of the structure.In

particular, the structure taken into account was a steel braced frame with dual

building system, in which an essentially complete frame provided support for gravity

loads, while resistance to lateral loads was provided by a specially detailedmoment-

resisting frameand shear walls or braced frames. Three examples of 3 types of frames

with different storey heights,have been illustrated to demonstrate that both DE and

DEO have good performance in discrete structural topology optimization. Also,

DEO leads to better results with less standard deviation in comparison to Genetic

Algorithm (GA) and other metaheuristic algorithms.

The same authors in [59], introduced another metaheuristic algorithm, called Dol-

phin Monitoring (DM) for layout optimization of structures. Actually, the dolphin

monitoring ability to control the convergence of the Dolphin Echolocation Opti-

mization (DEO) algorithm has been demonstrated an it has also been applied to

other metaheuristic algorithms, such as GA, PSO, BB-BC, CBO and their modified

variants. More in details, DM do not change the nature of the algorithms, but it

is used only to set the convergence in a predefined number of loops. Specifically in
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this paper, the OF was the minimum weight of dual systems, characterized by the

best placement of bracings and the best cross sections of the elements of both the

moment frames and the X-bracings. The placement of bracings and size of members

have been considered simultaneously as optimization variables. The members had to

satisfy constraints on the design storey drift, deflection, compaction (limiting width

over thickness for compression memebrs), strength, stability coefficients and slen-

derness ratio limits. The structures taken into account were subjected to both dead

load, as well as live loads and earthquake excitations. To evaluate the effectiveness

of the suggested strategy, three numerical examples with 3-, 5-, and 10-story braced

frames have been provided. The findings of applying DM to numerical examples of

GA, ACO, PSO, BB-BC, and CBO demonstrated that DM enhances the minimum,

maximum, mean, and standard deviation of the results of all these algorithms. Com-

paring the results of all the aforementioned algorithms to their modified versions,

DM also produced better results in terms of minimum weight.

In the same year also Gholizadeh, S., Poorhoseini, H., performed a layout optimiza-

tion, illustrated in [41]. Their interest was focused on the process of developing new

structures or upgrading existing ones to fulfill specified performance objectives for

likely future earthquakes, by applying the seismic performance-based design. Thus,

the present paper exploited such method on steel braced frames subjected to earth-

quake loading. In the SPBD methodology, a nonlinear analysis tool was typically

used to determine the seismic demands of structures at predetermined performance

levels. According to FEMA-273 (1997), IO, LS, and CP performance levels have

been considered in this study. Design variable of the optimization problem included

the cross sections of all the structural members: beams, columns and X-bracing, as

well as the optimal position of the latter ones. SPBLO process has been applied

to five-bay steel braced frames with different number of storeys, with the aim of

minimizing structural weight. To ensure that all potential solutions was workable,

various design restrictions were examined, among which serviceability and ultimate

limit state constraints were considered. In details, geometric and strength assess-

ments were included in the serviceability restrictions. Geometric checks had to be

completed in beam-column and column-column framing joints to meet practical re-

quirements. Moreover, a hierarchy of the constrain has been considered, in fact if

the serviceability restrictions were not met the design was discarded. Otherwise,

a nonlinear pushover analysis was carried out to assess the seismic response of the

structure at the desired performance levels. Then, the design criteria and capac-
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ity demand levels have been presented in terms of displacements. The constraints

of the optimization problem are handled by the exterior penalty function method

(EPFM). An enhanced dolphin echolocation meta-heuristic method was suggested

to carry out the optimization task. Additionally, as previously mentioned, nonlin-

ear pushover analysis was carried out to analyze the structural responses at the

performance levels, which can greatly increase the computing complexity of the lay-

out optimization problem. The adoption of an effective optimization technique is

required in order to search the vast design space of the SPBLO problem due to

this important issue. An enhanced version of the Dolphin Echolocation (DE) Meta-

heuristic was suggested in the current study to address this problem. By merging

Chaos Theory (CT) and conventional DE, a novel meta-heuristic algorithm dubbed

Improved Dolphin echolocation (IDE) is developed. Three examples including 6, 9

and 12 story SBFs were solved in the framework of SPBLO formulation. The nu-

merical results of the SPBLO example revealed that in the framework of SPBSO the

optimal solutions attained by IDE were respectively 3.61, 3.20, and 3.32% lighter

than those of obtained by DE. The trend of the analysis performed with the two

algorithm is shown in the following figure 2.29.

Figure 2.27: Comparison of convergence hystory between DE and IDE in the frame-
work of 12-story SBF [106]

So the results state that the computational performance of IDE was better than

that of the DE in terms of optimal structural weight and convergence rate.

Going back to concentrically structural steel frames, an important aspect is related

to the fact that braced steel structure’s integrity may be compromised by the occur-

rence of some extremely serious events. This risk had driven researchers to create
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novel techniques for evaluating structural collapse, among which Jeriniaina Sitarka

Tantely, Zhange He in [110] investigated such topic. The introduction of incremen-

tal dynamic analysis (IDA), which allows for the creation of a collapse probability

curve for the examined structure, was suggested as a technique to understand seis-

mic events. Although the experts agree that the IDA is effective and reliable, they

also believe that it is a long process. By using a few series of time history anal-

yses(THA) to approximate the fragility curve, they were able to overcome these

limits. It significantly reduced the calculation time for the collapse assessment and

provided a reliable approximation of the fragility curve. The use of the fragility

curve was extended by proposing a collapse margin ratio (CMR), which become the

primary parameter associated with the evaluation of structural safety. The scope

of this work was to propose a design optimization of steel structures, using con-

centric braces, based on collapse safety assessment. Brace locations and sections

were the variables of this investigation, while the objective was the maximization

of the CMR of the structure. The higher the CMR value, the safer the structure.

Constraints were the candidates’ non-null vectors, meaning that each level of steel

frame structure must had at least one brace. The idea of designable matrix was

presented in relation to the best placement for bracing in the structure and derived

from the reality that, in actual projects, engineers are not always free to choose

where to put the braces because of architectural constraints or owner preferences.

So undesignable bay refers to the bay where bracing cannot be installed. An initial

matrix describing the building’s elevation was created in order to quickly count the

number of designable and undesignable bays in a given structure. Sizing brace op-

timization of seismic steel frame structure aimed to reduce the total steel weight of

the braces, which acted as a rough indicator of bracing construction cost. During

the procedure, the optimal shape brace section at each story has been evaluated

and then the optimal discrete brace section related to that story was identified. The

authors advised utilizing a single section of brace for each story since employing

several sections might imply the occurrence of weak braces, which would result in

unequal lateral force dissipation at that story. Another reason was that premature

damage of the structure’s frame could be caused by the achievement of the strength

limit by the weak brace before the other ones. The algorithm used a database

of steel brace sections, selected from commercially available hot-rolled, wide-flange

standard steel sections.The authors investigated four steel frame structures, in which

the main difference was both the presence of undesignable bays on different sides
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of the structure and the number of storeys. From the interpretation of the results,

the proposed methodology has been proved to be capable of a quick and practical

estimation of the collapse margin of several structures in a short time, compared to

the prior methods in this field.

Also the study of Aydin Hassanzadeh, Saeed Gholizadeh, illustrated in [49] focused

on the collapse-performance-aided optimization of steel concentrically braced frame

(SCBF) structures. The interest of the authors had its roots in the evidence that

the placement of braces directly affects the seismic performance of SCBF structures,

therefore finding an appropriate configuration had become increasingly important.

In this analysis, both size and topology optimization have been performed in the

framework of the performance-based design (PBD) methodology, using the collapse-

margin-ratio (CMR) algorithm. In particular, CMR algorithm has been chosen for

its ability to make an appropriate balance between exploration and exploitation.

The proposed optimization was aimed at minimizing the structural weight, starting

from a fully braced frame and gradually removing unnecessary bracing members.

During the procedure, the design variables were representative of the discrete cross-

sectional areas of columns, beams and braces, along with the placement of the

brace members as topology variables. Moreover, due to practical requirements, the

symmetry in the structure was used to group the design variables. The applied

constraints regarded practical geometric specifications about column-to-column and

beam-to-column framing joints, strength requirements in terms of the elements’

demand-capacity ratios (DCR), according to LRFD-AISC code (Load and resis-

tance factor design - American Institute of steel design), and PBD constraints as

well. Actually, PBD constraints was not tested until the geometry and strength

requirements were met in order to decrease the computational time. However, if

PBD constraints were verified, a pushover analysis was performed at each perfor-

mance level to assess the structural responses, i.e. the maximum inter-story drift

and the maximum deformation of columns and braces, which had to be less than

their permitted values. After the application of the PBD method, in order to eval-

uate the collapse potential of the structure, an incremental dynamic analysis (IDA)

was carried out according to FEMA-P695 (Federal Emergency Management Agency

– Quantification of building seismic performance factors). Consequently, the SCBFs

was compared in terms of structural weight and seismic collapse capacity until the

best optimal design was found. Three different frames have been analysed with the

proposed methodology, which provided optimized structural solutions with simul-
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taneously improved structural weight and collapse performance. The designs with

the best bracing topologies were, respectively, 11.59%, 18.68%, and 16.0% lighter

than the best SCBFs with fully braced frame in all examples of 5-, 10-, and 15-story

SCBFs. Moreover, the best optimized frame was the one with the largest safety

factor, that do not necessarily implied heavier weight. Stefanos Sotiropolous, Nick

D. Lagaros in [105] tried to identify the structural system’s ideal layout and, more

specifically, to determine the best lateral brace system configuration in tall buildings

subjected to dynamic seismic loadings. Both topology and size optimization have

been exploited to reach a minimum value of the objective function (OF), that was

tackled as the compliance of the structure. The minimization of the compliance of

the structure means the maximization of the building stiffness and it was carried out

by varying both the cross-section areas of the structural elements and the building

topology. Standardized cross-sectional frame elements have been considered and

specifically the European HEA, IPE and CHS sections were used with the aid of re-

gression analysis, while a number of possible brace configurations defined the design

domain. Cross-sections were taken from a list, in which minimum and maximum

values have been defined to avoid the singularity of the stiffness matrix. During the

iterations, the final material volume used was restrained to a limiting value, while

stress and strain constraints have been applied to the different frame elements. Two

cases of dynamic loading have been examined: harmonic loading and earthquake

ground motion excitation. The examples were focused on the optimization of tall

structures, like High-rise building and Mega-braced frames.

Figure 2.28: (a) Initial Ground Structure of High Rise Building System, optimized
structural systems for maximizing the (b) 1st, (c) 2nd, (d) 3rd, (e) 4th, (f) 5th
frequency [105]

Morever, they can be divided into three groups, in which the first one addressed

the maximization of a specific eigen frequency while the structure was subjected to

free vibration; in the second one, time history analysis has been employed and both
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concentrated harmonic load and ground motion seismic excitation were considered,

leading to different formulations of the minimized OF, i.e. dynamic compliance

for half-cycle sinusoidal concentrated load and roof deflection (using the sum root

of sum squares), respectively; finally, in the third group the response spectrum of

EC8 has been implemented for simulating the seismic load. Due to the different

nature of the three cases tested, a great variety of observations can be made. More

specifically, results from the first case showed how giving more freedom to the initial

ground structure, the optimization leads to larger and thus better OF. Then, in

the first case of the second group of analyses, it has been observed that when the

driving frequency was close to an eigenfrequency, more braces were developed to

prevent resonance, while for high driving frequency, the structure had braces only

in its upper half. Regarding the minimization of SRSS in which a real earthquake is

applied, it has been noticed that the optimized structural system was derived from

denser ground structures, more types of braces were produced and so the moment

resisting steel frame had smaller tip deflections. In conclusion, relative to the final

depicted case, it has been noted that an important role has been played by the

number of modes considered. In fact, by the comparison of two different moment

resisting frames, the optimized structure had the best structural response if the first

three eigenmodes were used for the evaluation of the sum of the compliance.

2.4 Shape Optimization

Shape optimization attempts to integrate geometric modelling, structural analysis

and optimization into one complete automated computer-aided design [52]. During

the entire shape design optimization process, the design domain keeps on changing

through design variables updating and subsequent internal and/or external bound-

ary variations. The design variables that characterize a shape optimization are

the nodal coordinates of the structure under study, while constraints on geometry

and structural responses such as stress, displacements and natural frequencies are

generally considered. Throughout a shape optimization process, a change in the

coordinates of the elements will lead inevitably to a change in the state of stress.

Due to that, a Finite Element Analysis and a mesh refinement is always required at

each iteration of the optimization process. Moreover, it is worth mentioning that in

most of the studies the shape optimization is generally coupled with size or topology

techniques, seldom implemented alone.
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Figure 2.29: Finite element mesh representation for initial design (a) and final design
(b) of the optimized hole [52]

2.4.1 Size and Shape Optimization

An early coupled optimization of size and shape techniques has been reported by

Haque, M.I. in [45]. The design of skeletal geometry of plane rigid frames has been

tacked as the paper’s aim, by using the modified version of complex method of box.

The main advantages of this method are that it does not require time-consuming

computations for the gradients of the objective function and the non-linear con-

straints. The design variables considered in order to obtain a minimum weight of

the optimized skeletal structure are simultaneously the cross-section of the structural

members and 2D coordinates (x,y) for the position of the joint. Both explicit and

implicit constraints have been introduced; the former one defined limiting bounds

for the design variable, while the latter imposed restrictions on the behavior of the

structure under external loads, following AISC specification. As explained by the

authors, to reduce the computational cost is highly desirable to decompose the de-

sign space into several subspaces, with each subspace having its own optimization

strategy. Following such approach, the entire design space has been decomposed

into two subspaces: the geometric design space and the member one. The variables

of the first one consisted of unknown joint coordinates, while the ones of the mem-

ber design space have been defined essentially as the cross-sectional dimensions of

the members. Two practical examples have been provided, with variable number of

joints free to move. The first one consisted of a plane symmetrical frame with six

members and seven joints, among which only 3 were free to move. A plane sym-

metrical frame has been considered also for the second example, but in this case it

had seven joints and six members, with just one joint free to move. In this last case

a constraint on the roof inclination has been added, which had to remain fixed at
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1:12 slope. Results of the analysis showed that the major improvements in design

occurred during the first 10 reflections. The final optimal weight was 4.70 kips,

compared with 6.08 kips for the initial input geometry for the first example; while

for the second one a final optimum weight of 4.05 kips in contrast with the minimum

weight in the initial complex of 5.39 kips. In conclusion, this method has been shown

to be very efficient and it’s important to underline, again, that the convergence was

rapid and no calculations of the gradient of the OF needed to be done.

Later on, Kazemzadeh Azad, S., Bybordiani, M., Kazemzadeh Azad, S., Jawad,

F.K.J.,in [10] proposed an application of size and shape optimization on steel truss

structures subjected to dynamic excitations. Using the big bang-big crunch al-

gorithm, already mentioned in the metaheuristic algorithm section of the present

Chapter, the minimum-weight design has been pursued for 22-members cantilever

truss, optimized under sinusoidal excitations, as well as for 44-members truss, de-

signed under rectangular periodic excitations, and a 37-members truss, subjected

to step forces with different finite rise time values. The different excitations consid-

ered have been chosen to observe the effect of such parameter on the final designs.

Moreover, the same structures have been also subjected to a static load in order

to make a comparison with the dynamic ones. In size optimization, cross-sectional

areas of members have been considered as discrete design variables, selected from a

database of 37 hollow core sections. Regarding the geometry or shape optimization,

nodal coordinates have been treated as decision variables. The design constraints

accounted during the optimization included strength, displacement, and buckling

requirements according to AISC-LRFD. Results have shown that by increasing the

exciting period of the sinusoidal loading as well as the finite rise time of the non-

periodic step force, a minimum weight design was obtained, as shown in figure 2.30.

In addition, the achieved lightest design was similar to the one obtained under static

loading.

However, different considerations needed to be taken into account for rectangular

periodic excitation, for which the reported results detached from the ideal design in

the static loading situation even at higher exciting period values.

In 2019, Kaveh, A., Vaez, S.R.H., Hosseini, P., Bakhtiyari, M., in [61] propoesed

a design procedure for curved steel roof frames, taken as a part of circular arches,

optimized by an Enhanced Vibrating Particles System (EVPS) Algorithm. A com-

bination of size and shape optimization have been employed to find respectively the

minimum weight design and the slope angle of the curved roof frames. The cross-
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Figure 2.30: Optimal geometries of 37-member truss bridge under: (a, b, c) non-
periodic step force with finite rise time (t,); (d) static loading [10]

sections for the web tapered members have been treated as discrete design variables,

while the inclination of the slope angle of the curved roof frames has been consid-

ered continuous in a defined range (3 to 70 degrees). In particular, straight short

elements with tapered members have been used to model the curved roof, where the

roof slope angle (θ) has been defined as the slope of the tangent line on the circular

arc of the roof with respect to the horizontal line. The coordinates of the points

located on the circular arc were allowed to vary to find the best configuration also

in accordance with the total amount of loads applied on the frame. In this study,

regulations of ASCE have been used for applying the dead, live, snow, wind and

seismic loads. The projection of gravity has been applied to the live and snow loads.

In particular, the roof slope angle determined the amount of load placed on the

frame, which in turn changed during the iterations. The applied constraints were

related to maximum vertical and horizontal displacements for serviceability condi-

tion, in conjunction with strength and buckling constraints. The optimum results

have shown that 65% of roof slope angle values for the steel curved roof frames

were between 9 to 22 degrees in total runs. Therefore, this range can be used as an

optimal range to design such structures. Moreover, among the selected design con-

straints, the horizontal displacement of the steel frame supporting the pitched roof

hasreached earlierits allowable capacity with respect the other design constraints.

As a result, it can be concluded that it is one of the most significant limitations and

a determining element in the best design of pitched roof steel frames.

Another stimulating study has been carried out by Phan D.T., Mojtabaei S.M.,
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Hajirasouliha I., Ye J., Lim J.B.P., in [92]. In this research, the optimization of

cold-formed steel (CFS) structures has been addressed, giving a deeper look to the

design of thin-walled CFS sections which are generally affected by various buckling

modes. Cold-formed steel sections are employed in constructions because of their

great benefits, including a relatively high strength-to-weight ratio, better produc-

tion flexibility and simplicity in handling, shipping, and installation. Two levels of

optimization were faced by the authors, i.e. an element, or section level and then

a structure, or frame level, with the objective of minimizing the weight of the CFS

portal frame. At the element level, a set of optimized CFS lipped-channel beam

sections, with different coil widths and plate thicknesses, has been chosen for the

structural members, characterized by various lengths and subjected to different load

(UDL) levels. Subsequently, at the frame level, the best cross-sections (with min-

imum amount of material) have been selected from the optimized sections, which

had to satisfy the design constraints related to the internal forces calculated at each

iteration. In more details, the structural elements of CFS portal frames have been

designed in accordance with EC3, considering ultimate limit state (ULS) and ser-

viceability limit state (SLS) conditions. The frame optimization has been carried

out also considering practical ranges for the roof pitch, frame spacing and knee

brace configuration (i.e. knee depth and knee angle) to obtain the best design so-

lution. Thus, at the structural level, discrete and continuous design variables have

been simultaneously used. In particular, it has been assumed that roof pitch could

vary between 6° to 30° and frame spacing has been set in the range of 2 m to 20

m. Such variability implies that also a shape optimization has been implemented.

The results have demonstrated that optimizing the cross-sectional geometry of sim-

ply supported CFS beams subjected to uniformly distributed vertical or transverse

load can substantially improve their flexural capacity, as compared with standard

sections. In fact, CFS section reached an higher ultimate flexural capacity (up to

84%) compared to the standard lipped channel section, with the same plate width

and thickness. In addition, analyzing the results of structural optimization, also a

more cost-effective solution has been achieved, reaching a 20% reduction of struc-

tural material. Furthermore, the flexibility of CFS cross-sectional shapes, obtained

by varying the relative dimensions of channel sections, provided an excellent oppor-

tunity to enhance the load-carrying capacity of available standard sections. This

improvement of capacity at the element level, led subsequently to an improvement

of the capacity also of the CFS frame system, especially for medium to long-span
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CFS portal frame buildings.

2.4.2 Size, Shape and Topology Optimization

In the context of simultaneous size, shape and topology optimization was provided

by Lagaros et Al in 2008 [68]. In this paper the authors have been applied a com-

bined size, shape and topology optimization in order to reach an optimum design of

perforated I-section beams. Web openings in beams are suggested and the major ad-

vantages are: reduce the material volume without changing the strength properties

of the structures, alleviate stresses in beam columns joints and finally also archi-

tectural limitations sometimes impose the necessity of web opening in the building.

The considered design variables for size, shape and topology were respectively cross

sections, coordinates of the open boundary and number of the web openings. The

Objective function of the problem was the weight minimization, however the opti-

mal design was obtained considering some design criteria like shear, bending and

Vierendeel bending resistance as well provision for local buckling and web buckling.

Regarding the design constraints, were mainly focused on the size of the openings.

In fact, it need to be highlighted that any increase in size of the web openings will

results in a lower global shear and the global moment resistances of the perforated

sections. Due to that some geometric restrictions were implemented to control the

size of the openings., in fact all web opening should be located along the center

line of the web, maximum diameter of the openings cannot exceed 0.75 times the

total height of the beam and the distance between the edges of adjacent openings

should not be less than the total height of the beam. Evolutionary Algorithms

(EA) has been employed in order to run the optimization problem, practical exam-

ple is related a frame with different web opening diameters. Results have shown

the efficiency of the considered structural system, in fact up to 20% in weight sav-

ings was achieved compared to the case with no openings. Another stimulating

research has been proposed by Hasançebi, O., Doǧan, E., in [48], where several truss

bridges have been analyzed. In particular, a comparison based on design weight

efficiency of single span steel truss bridge topologies, subjected to gravity load, has

been employed. Through a combination of size, shape and topology optimization,

nine distinct topological forms of truss bridges (namely, Pratt, Parker, Baltimore,

Petit, K-Truss, Warren, Subdivided Warren, Quadrangular Warren and Whipple)

have been designed for minimum weight.
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Figure 2.31: The topological forms used to configure long span bridge: a) Parker,
b) Petit, c) Pratt, d) Baltimore, e) Whipple, f) K-truss, g) Subdivided Warren, h)
Quadrangular Warren, i) Warren

It should be stressed that truss bridges are widely used, especially in the last years,

due to their advantages from both a structural and constructional point of views.

Moreover, they allow to reach very large spans, using less amount of material. Specif-

ically in this analysis, the bridges were first configured according to these topological

forms and the resulting structures have been then optimized considering strength,

stability and displacements provisions of ASD-AISC. In the optimum design process,

both size (discrete) and shape (continuous) design variables have been employed. In

this context, size variables have been used to choose appropriate dimensions for the

bridge members, whereas the optimal height and/or shape of the bridge’s upper

chord have been explored with shape variables. In particular, the number of shape

variables used in a model was dependent on the bridge topological form. For ex-

ample, a single shape variable was used to define the height in bridge models with

Pratt, Baltimore, Warren, Subdivided Warren, Quadrangular Warren, Whipple and

K-truss forms, since they have a straight upper chord. Moreover, four different span

lengths, namely 100, 200, 400 and 600 ft have been considered as separate case

studies and for each of these span lengths nine bridges have been generated. In con-
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clusion, it has been found that the topological form selected to create the structural

system of a bridge significantly affects the weight of the bridge’s final design. For

span lengths of 100, 200, 400, and 600, respectively, the design weight disparities

between the best (lightest) and worst (heaviest) models was 15%, 30%, 43%, and

55%. Consequently, the selection of economical topological form became more pro-

nounced when span length of the bridge increased. The bridge’s ideal forms, created

using Petit and Parker trusses, lowered the height of the structure moving from the

middle of the span to the ends, reducing the amount of material used in the design.

The findings also suggest that, in order to maximize the weight efficiency of the

final bridge, some bridge designs, such as Whipple and Pratt, should be avoided

for all span lengths. Warren and Quadrangular Warren should also be avoided for

relatively large span lengths. Baltimore, Subdivided Warren and K-truss topology

led to similar design weights.

Finally, the work done by Ohsaki, M., Iwatsuki, O., Watanabe, H. in [85] gives a

clear demonstration of the complexity and at the same time of the power of such

procedures. In this research a reverse rocking response was exploited to investigate

the behavior of a steel frame structure with a foundation modeled as a flexible base,

with the objective to reduce the roof displacements. Due to the foundation’s flexi-

bility, the frame had areverserocking when the base beam was rotating against the

frame’s drift to minimize the displacement of the roof. The foundation beam, on the

other hand, if above a stiff base, would been rotating slightly in the same direction as

the frame. Topology, size and shape optimization have been carried out to find the

best configuration of the base structure, modeled as a truss structure and the OF of

the entire optimization was aimed at the reduction of the roof displacement. Run-

ning the analysis, unnecessary members have been removed, starting from the highly

connected ground structure. Nodal locations have been also considered as variables

to comply with shape optimization, while elements with square tube sections have

been used as size discrete design variables. Constraints were mainly related to the

maximum allowable displacements of the flexible base’s elements, as well as to upper

and lower boundary of the node coordinates. A practical example of a frame, char-

acterized by 10 meter of span and with a base made of rigidly-jointed frame with

square tube sections, has been analyzed. The outputs have shown that the displace-

ment as well as acceleration of the roof of a frame under seismic ground motion can

be effectively reduced using a flexible base structure, which exploits rocking of the

base in the opposite direction to the drift of the upper frame. Such reverse rocking
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response is dominated by the 2nd mode rather than the 1st mode. Moreover, in

the examples reported, the mean maximum roof displacement, computed using the

SRSS method, was successfully minimized compared with the stiff model.
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Table 2 Review of the application of optimization strategies to steel structures

Ref. Year
Static

Dynamic
Size Shape Topology

Single/Multi

Objective
ID-OF Design criteria Design variables

[32] 1977 D ✓□ □ □ S (1)-Weight

Stresses

Displacement

Natural frequency

Geometric bounds

Cross-sections

[45] 1985 S ✓□ ✓□ □ S (1)-Weight
Geometric bounds

AISC

Cross-sections

Node’s

coordinates

[103] 1986 S ✓□ □ □ S
(1)-Failure load

factor

Failure load

factor range
Cross-sections

[71] 1986 S ✓□ □ □ S (1)-Weight

Stresses

Displacements

Buckling

Geometric bounds

Cross-section’s

parameters
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[72] 1986 S ✓□ □ □ S (1)-Weight

Stresses

Displacements

Buckling

Geometric bounds

Cross-section’s

parameters

[54] 1987 D ✓□ □ □ S (1)- Weight

Probability

of failure

Moment of inertia

Columns’ moment

of inertia

[18] 1989 S/D ✓□ □ □ S
(1)- Weight

(2)-Cost

Stresses

Displacement

Natural frequency

Cross-sections

[100] 1991 S ✓□ □ ✓□ S (1)-Weight
Stress

Displacement

Cross-sections

Brace locations

[102] 1991 S ✓□ □ □ S (1)-Weight
Displacement

Geometric bounds
Cross-sections

[13] 1991 S ✓□ □ □ S (1)-Weight
Stress

Displacements
Cross-sections

[30] 1992 S ✓□ □ □ S (1)-Weight

Stresses

Buckling

Slenderness

Geometric bound

Moment

of inertia
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[50] 1992 S ✓□ □ □ S (1)-Weight
Displacement

Geometric bounds

Cross-section

at one end

of the beam

and area ratio

at its ends

[111] 1992 S ✓□ □ □ S (1)-Weight

Stresses

Displacements

Buckling

Geometric bounds

Cross-sections

[1] 1993 S ✓□ □ □ S (1)-Weight

Stresses

Displacements

Geometric bounds

Cross-sections

[26] 1994 S/D ✓□ □ □ S/M
(1)-Weight

(1)-Displacement

(1)-Frequency

Stresses

Buckling

Geometric bounds

Cross-sections

[2] 1995 S ✓□ □ □ S (1)-Volume

Stresses

Displacements

Geometric bounds

Moment

of inertia
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[76] 1999 S/D ✓□ □ □ S (1)-Weight

Stresses

Displacement

Buckling

Slenderness

Geometric bounds

Cross-sections

[22] 2000 S ✓□ □ □ M
(1)-Weight

(1)-Stress

(1)-Displacement

Stresses

Displacements
Cross-sections

[53] 2000 S □ □ ✓□ S (1)-Compliance
Stresses

Displacement

Material

distribution

[20] 2002 S ✓□ □ □ S (1)-Weight AISC-LRFD Cross-sections

[101] 2003 S ✓□ □ □ S (1)-Weight
BS 5950

Buckling

Cross-section’s

parameters

[79] 2005 S/D ✓□ □ □ S
(1)-Uniform

deformation

UBC

FEMA365

SEAC2000

Cross-sections

[88] 2006 D □ □ ✓□ S (1)-Weight

Frequency

Displacement

Acceleration

Bars arrangement
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[99] 2006 S □ □ ✓□ S (1)-Weight

Stresses

Displacement

Architectural

limitations

Max number of

braced panels

Brace

locations

[112] 2006 S/D ✓□ □ □ S
(1)Uniform

deformation

UBC

FEMA365

SEAC2000

Cross-sections

[23] 2007 S ✓□ □ □ S (1)-Weight
Stress

Displacements

Cross-sections

Connection

flexibility

[68] 2008 S ✓□ ✓□ ✓□ S (1)-Weight
Stress

Geometric

Cross-sections

Coordinates

of web

openings

Number

of web

openings
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[78] 2010 S/D ✓□ □ □ S
(1)-Uniform

deformation

UBC

FEMA 365

SEAC2000

Cross-sections

[19] 2010 S ✓□ □ □ S (1)-Weight
Strenght

Deflection
Cross-sections

[48] 2011 S ✓□ ✓□ ✓□ S (1)-Weight ASD-AISC Cross-sections

[56] 2011 S ✓□ □ □ S (1)-Weight
Strenght

Deflection
Cross-sections

[44] 2011 S □ □ ✓□ S (1)-Weight
Strenght

Deflection

Bars

arrangement

[91] 2012 S ✓□ □ ✓□ S (1)-Weight
Stresses

Displacements

Cross section

Building

topology

[106] 2012 S ✓□ □ ✓□ S (1)-Compliance
Material used

Stresses

Cross-sections

Material

distribution

[86] 2012 S/D ✓□ □ □ S (1)-Weight

Stresses

Displacement

Plastic hinges

Cross-sections

Connections

flexibility
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[21] 2013 S/D ✓□ □ □ M
(1)-Weight

(2)-Column-beam

strengthratio

Strength

Inter-story

drift ratio

Plastic hinges

Geometric bounds

Cross-sections

[34] 2013 S ✓□ □ □ S (1)-Weight

Stresses

Deflections

Buckling

Geometric bounds

Cross-sections

[65] 2013 S/D ✓□ □ □ M

(1)-Weight

(2)-Inter-story

drift

(3)-Structural

damage

Strength

Slenderness

Displacement

Geometric bounds

Cross-sections

[16] 2014 S ✓□ □ □ S (1)-Weight

Strength

Displacement

Geometric bounds

Cross-sections

[40] 2014 S/D ✓□ □ □ S (1)-Weight

Stresses

Inter-story drift

FEMA356

Cross-sections
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[81] 2014 S/D ✓□ □ □ S (1)-Weight

ASCE 41-06

Displacement

Plastic hinges

Cross-sections

[85] 2014 S/D ✓□ ✓□ ✓□ S
(1)-Roof

displacements

Bounds on

nodal coordinates

Base displacement

Cross-sections

Node’s

coordinates

Members

arrangements

[69] 2015 S ✓□ □ □ D (1)-Weight
Stresses

Geometric bounds

Cross-section

parameters

[74] 2015 S ✓□ □ □ S (1)-Weight
Stresses

Displacements
Cross-section

[60] 2015 S ✓□ □ □ S (1)-Weight
Strenght

Displacements
Cross-sections

[109] 2015 S ✓□ □ ✓□ S
(1)-Weight

(2)-Min number

of braces

Stresses

Displacements
Cross-sections

[108] 2015 S ✓□ □ □ S (1)-Weight AISC Cross-sections
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[37] 2015 S ✓□ □ □ D (1)-Weight
Strength

Displacements
Cross-sections

[9] 2015 S ✓□ □ □ S (1)- Weight
AISC-ASD

Geometric bounds

Cross-sections

Connections

rigidity

[8] 2015 S ✓□ □ □ S (1)- Weight
AISC-ASD

Geometric bounds

Cross-sections

Connections

rigidity

Beams material

[87] 2015 S ✓□ □ □ S/D (1)- Weight

Serviceability

for static and

seismic load

Cross-sections

[70] 2015 S ✓□ □ □ D (1)- SPI
FEMA 356

FEMA-350
Cross-sections

[58] 2015 S ✓□ □ ✓□ D (1)- Weight
FEMA 356

FEMA-350

Cross-sections

Brace locations
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[63] 2015 S ✓□ □ ✓□ S/D (1)- Weight

Stresses

Displacements

Buckling

Natural

frequencies

Nodes and

members

arrangement

[7] 2016 S ✓□ □ □ S (1)- Weight
AISC-ASD

Displacements
Cross-sections

[94] 2016 S □ □ ✓□ D (1)- Weight
Stresses

Displacements

Material

distribution

[24] 2016 S ✓□ □ □ D (1)- Weight LRFD-AISC Cross-section

[41] 2016 S ✓□ □ ✓□ D (1)- Weight
Geometric

Strength

Cross-section

Brace locations

[38] 2016 D ✓□ □ □ S (1)-Weight

Strength

Displacements

Performance

objective

Cross-sections

Performance

objectives

[59] 2016 D ✓□ □ ✓□ S (1)-Weight

Strength

Displacements

Stability

Buckling

Cross-sections

Brace

locations
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[36] 2017 S ✓□ □ □ S (1)-Weight

Stresses

Displacements

Geometric bounds

Fabrication limits

Cross-sections

[83] 2017 M ✓□ □ □ D

(1)-Weight

(2)-Ultimate

drift

(3)-Stiffness

response

Stresses

Geometric bounds
Cross-sections

[10] 2018 S ✓□ ✓□ □ S/D (1)-Weight AISC-LRFD

Cross-sections

Nodal

Coordinates

[12] 2018 S □ □ ✓□ S/D (1)-Reaction forces Stresses
Material

distribution

[114] 2018 M ✓□ □ □ D

(1)-Structural

damage

(2)-Energy

Dissipation

Stresses

Displacements
Cross-section

[67] 2018 S ✓□ □ □ S/D (1)-Weight
Stresses

Displacements
Cross-section



2.4.
SH

A
P

E
O

P
T

IM
IZA

T
IO

N
100

[39] 2018 S ✓□ □ □ S (1)-Weight
Stresses

Displacements
Cross-sections

[27] 2018 S ✓□ □ □ S (1)-Weight

Strength

Displacements

Geometric bounds

Cross-sections

[47] 2019 S/D ✓□ □ □ S (1)-Weight

Stress

Displacements

Slenderness

Geometric bounds

Cross-sections

[62] 2019 S ✓□ □ □ S (1)-Weight
Stress

Displacements
Cross-sections

[57] 2019 M ✓□ □ □ D

(1)-Weight

(2)-Std deviation

inter story

drift

Stress

Displacements
Cross-sections

[55] 2019 M ✓□ □ □ D

(1)-Weight

(2)-Uniform distr.

inter story

drift

FEMA Cross-sections

[33] 2019 S ✓□ □ □ S (1)-Weight Displacements Cross-sections
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[73] 2019 S ✓□ □ □ D (1)-Weight AISC-LRFD Cross-sections

[25] 2019 M ✓□ □ □ D
(1)-Weight

(2)-Inter story

drift

Stresses

Displacements

Geometric Bounds

Cross-sections

[42] 2019 S ✓□ □ □ D (1)-Displacements

Base shear

Lateral

forces

Lateral

forces

[49] 2019 S ✓□ □ ✓□ D (1)-Weight
AISC-LRFD

PBD

Cross-sections

Brace

locations

[110] 2019 S ✓□ □ ✓□ S/D (1)-CMR
Designable

matrix

Cross-sections

Brace

locations

[92] 2020 S ✓□ ✓□ □ S (1)-Weight EC3

Cross-sections

Coordinates

of structural

elements

[61] 2020 S ✓□ ✓□ □ S (1)-Weight ASCE

Cross-sections

Elements

coordinates
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[5] 2020 S ✓□ □ ✓□ D (1)-Displacements
Brace

configuration

Cross-sections

Brace locations

Slip force

[29] 2021 S ✓□ □ □ S (1)-Weight
Strenght

Deflection
Cross-sections

[11] 2021 M □ □ ✓□ S (1)-WIF Constructability
Element

forces

[35] 2021 M ✓□ □ □ S/D
(1)-Weight

(2)-IDR

Strenght

Geoetric bubds

Constructability

Cross-Section

[80] 2021 S ✓□ □ □ D (1)-Weight

Strenght

Deformation

Plastic

rotations

Cross-Section

[82] 2021 M ✓□ □ □ D
(1)-Ductility

(2)-Energy

dissipation

Geometric bounds Cross-Section

[64] 2021 S ✓□ □ □ D (1)-Weight
Strenght

Displacements
Cross-Section
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[31] 2021 S ✓□ □ □ D (1)-Weight
AISC-FEMA 365

Constructability
Cross-Section

[105] 2022 S ✓□ □ ✓□ D (1)-Compliance

Stress

Strain

Max. material

volume

Cross-Section

Brace locations





Chapter 3

Constructability in structural

optimization

In order to introduce properly this Chapter we should start by the definition of

the term "constructability", which generally speaking is a crucial consideration in

civil engineering that can greatly impact the success of a construction project. The

Constructability Task Force of the Construction Industry Institute (CII), based at

The University of Texas, in 1986, has defined constructability as "the optimum

use of construction knowledge and experience in planning, design, procurement and

field operations to achieve overall project objectives". In United Kingdom the term

"buildability" has been used to define "the extent to which the design of the build-

ing facilitates ease of construction, subject to overall requirements for the completed

building". Constructability has been identified also as "the capability of being con-

structed" by ASCE 1991, however in the present Thesis we are mainly addressing

the meaning of "integration of construction knowledge, resources, technology and ex-

perience into the engineering and design of a project”, as stated in [4] by Anderson

et al. Therefore, the key aspect one should have in mind is that information and

experience gained throughout the construction phase must be accounted for and

shared in the design in order to improve project objectives. Aimed at accomplish

this task, several considerations can be made, ranging from general management

organization recommendations to more particular techniques.

O’Connor, James T and Rusch, Stephen E and Schulz, Martin J in [84] started from

CII definition and explored seven concepts for improving constructability, stressing

the importance of construction-driven schedules, simplified designs, standardization,
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preassebly work scoped in advance, easy accessibility, adverse weather facilitation

and a careful review of specifications by owner, designer, and constructor personnel.

Pulaski, Michael H and Horman, Michael Jin in [93], proposed a model to orga-

nize constructability information for design, according to timing and levels of detail,

with the intent to link constructability rules to different stages of building design

in a step-by-step format. They concluded that “the key to accessing constructabil-

ity is introducing the right information at the right time and in the right level of

detail”. Furthermore, also encouragement to innovations, learned lesson from past

projects, availability of resources, as well as waste management may all enhance

constructability, as highlighted in [66].

Constructability considerations provide several important advantages, many of which

are sometimes challenging to understand and evaluate. Russell, Jeffrey S and Swig-

gum, Kevin E and Shapiro in [98] distinguished such benefits between qualitative

and quantitative ones, as reported in 3.1, proposing a way for their estimation. The

Figure 3.1: Framework for determining constructability benefits [98]

quantitative advantages are the ones that directly reduce cost and schedule dura-

tion; their effect can be measured by determining the impact of the change from

that of standard practice. The utilization of fewer materials, fewer workers (i.e.,

reduced labor effort-hours) and fewer fixed pieces of equipment during construction

can all help to quantify cost abatement. Also the reduced schedule, in comparison

with standard practice, can be translated into cost savings. Instead, substantial
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qualitative advantages include the prevention of issues through improved collabo-

ration, cooperation, and respect among participants. They also involved more site

accessibility and safety, less rework, decreased maintenance costs, intensified focus

on common goal, increased construction flexibility, etc. Since it is crucial that any

construction project is carried out by the planned completion date, to reduce is-

sues like scheduling conflicts, delays and disagreements that may arise, Arditi et al.

in [6] conducted a questionnaire survey of design companies about the adoption of

constructability. The benefits, reported in 3.2, are in terms of creating better client

and constructors relationship, being involved in fewer lawsuits, a better reputation,

professional satisfaction and efficient design. In particular, they have been ranked

from 0 to 3, with 0 being the least influential and 3 the most relevant.

Figure 3.2: Benefits of constructability highlighted by the survey in [6]

Another important aspect, emphasized in [97] is the fact that constructability is

a design philosophy that originates from the conceptual design stage, continues

through design, and links project planning with design and construction. Therefore,

constructability issues have to be identified and analysized at the design phase, not

at the end once construction phase starts. Integrating such considerations at the

beginning will improve the overall project, the efficiency of construction, as it allows

for a more streamlined and cost-effective process. As stated in [66], making use of

construction knowledge from the earliest stages of a project, where the ability to in-

fluence cost is at greatest, makes sense from both practical and financial viewpoints.

Paulson in 1976 [90] described the interrelationships between engineering design,

construction and operation costs for a facility, showing how the level of control on

those costs decreases as the project evolves. In the reported figure 3.3, the idea of
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the author is exemplified. In the lower portion, the life of a project, as a function

of time, is distinguished into three phases, namely (1) Engineering and design, (2)

Procurement and construction, (3) Utilization or operation; in the upper portion,

instead, two curves are plotted, always as a function of project time, where the

ascending one tracks the cumulative project expenditures, while the descending one

shows the decreasing level of influence. In the early phases of design, when the ex-

penditures are relatively small, the project team has the most opportunity to impact

the overall cost of the facility. In fact, the decisions and commitments made during

this period have an enormously greater impact on future costs; later on, when the

cumulative cost of the project increases, the level of influence on such expense will

go towards zero. Thus, the initial design phase is crucial and cooperation, together

with a high level of details, is required to incorporate basic constructability aspects.

Figure 3.3: Level of influence on project costs by Paulson in [90]

Therefore, constructability in structural optimization can be interpreted as the pro-

cess of incorporating construction expertise and knowledge into the design and op-

timization phase. The difficulty of such process is that there are many factors

involved. Many of these influencing factors regard the management procedure, thus

a good collaboration between all the team members, as well as the importance of
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having professional and qualified personnel, early involvement of contractor in de-

sign and so on. However, in the present Thesis we are more interest in looking at

the constructability factors that can be integrated in the structural design choices,

and more specifically in the optimization set-up. There are construction techniques

that are just intended to simplify the overall production of necessary pieces for the

given structure, to reduce the number of elements as well as connections typologies,

to standardize sections, to encourage the employment of less diversity, to facilitate

the assembly, but also the erection phase and so on. Always from the survey of

Arditi et al. in [6], as reported in 3.4, eight factors impacting constructability has

been listed and ranked, such as project complexity, design practices, project delivery,

project size, project type, client type, project location, and design standards. In the

same article, the authors also addressed the factors constraining constructability,

as reported in 3.5. Faulty, ambiguous, or defective working drawings, incomplete

specifications, and adversarial relationships were found to be the three major factors

that cause constructability problems.

Figure 3.4: Factors affecting con-
structability [6]

Figure 3.5: Constraints on con-
structability [6]

Among them, non-standardization of design, which would have a detrimental im-

pact, also plays a significant role. In general, using standardized components and

systems can help improve constructability by reducing the need for custom fabri-

cation and assembly. The idea of standardization has been defined, by Pasquire et

al. in [89], as "the extensive use of components, methods or processes with regu-

larity, repetition and a successful history" . In [113], Wong et al., also explained

how standardization can be translated as the repetition of grids, sizes of components
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and connection details, stressing the benefits in terms of faster construction, reduced

number of mould changes and enhanced productivity. In [66] it has been emphasized

the fact that it can be applied to various scenarios from building systems, materials

types, construction details and so on, depending also on the economic analysis scale.

In fact, the reduction in variety can lead to many benefits such as discounts on more

pieces of same material, simplified procedures and so on. Summarizing, standardiza-

tion is a term that can include different meanings, from the employment of standard

elements in the design of a structure, avoiding particular and unique shapes or sec-

tions, but also the repetition of members, connections, as well as procedures in the

overall project. Furthermore, from a more general point of view, standardization

is also paired with modularization and pre-assemble techniques. By looking at the

design of a simple truss structure, the structural choices that can be made with a

standardization-driven orientation regard the employment of the least amount of

different cross-sections, but also the reduction in variation of the connections. In

any case, we should always remember the verification of structural and geometric

requirements. In Chapter 2 we have seen many examples of side constraints, mainly

concerning the joints between beams and columns in frame structures.

An interesting research has been conducted by Abbigayle Horn in [51], where con-

structability has been defined as the standardization of primary structural elements

to balance multi-objective design goals. In particular, the author has introduced

non-subjective, quantifiable metrics to measure standardization of structural com-

ponents. The study focused on two-dimensional steel truss façade structures, sub-

jected to lateral loading with a pinned base, whose scheme is reported in 3.6. Shape

optimization has been pursued by allowing node translations in the horizontal and

vertical directions, while topology optimization has been completed via Boolean op-

erators that turned diagonal elements on or off. Moreover the number of vertical

bays was also a variable in the study, exploring the possibility of having five or six

vertical bays. Then, in the structural verification phase, member sizing has been

determined based on the minimum area required to satisfy both stress and buckling

criteria. The metrics that has been considered to quantify structural performance,

which was later compared with constructability performance metrics, regarded the

lateral deflection of the façade system at the top of the structure, strain energy

and structural weight. The new introduced constructability metrics, formulated to

measure design characteristics from a constructability perspective, were:
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Figure 3.6: Two-dimensional steel truss façade structure analyzed in [51]

1. Standardized Member Length (SL), by means of which, once calculated the av-

erage member length for each design iteration, each member has been penalized

based on its difference from the mean;

2. Truck requirements (TR), accounting for length and weight restrictions that

would lead to the acquisition of special permits for the shipping phase;

3. Field Connections, both bolted and welded, have been minimized to reduce the

number of man hours expended on site for laborers and crane operators;

4. Node Member Connectivity (NMC), aimed at minimizing the number of mem-

bers framing into a single node;

5. Node Angle Connectivity (NAC), which imposed that each member framing
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into the node must have a minimum separation;

6. Cross Section Variation (CSV), aimed at reducing the number of section used.

Regarding the first metric, it has been proposed a practical application of standard-

izing member length, in which members are grouped into sets of standard lengths in

order to improve effectively fabrication and erection procedures. Then, TR involved

the application, at first, of length restrictions to the elements needed, leading to

the cut of oversized members, and then of weight constraints, in order to count the

number of trucks filled and eventually to obtain the minimum one. In this way, en-

hancing standard shipping, the timing of transportation could be better coordinated

with on-site work, yielding construction cost savings and reducing site logistics as-

sociated with trucking and oversized load permitting. Depending on the number of

splices required to satisfy shipping constraints and the total number of members in

the structure, field connections have been evaluated, with the intent of reducing their

number. Both NMC and NAC have been used to maximize the accessibility of the

laborers to the cast node pads and minimize the number of infeasible connections.

The final goal was to improve the speed of construction by reducing connection

time in the fabrication and erection phases. Particularly interesting is the the last

metric developed, which discouraged high variation in member sizing, which would

lead to more complex fabrication and erection processes, especially in the case of

non-standard shapes. In an attempt to obtain the least amount of different cross

sectional areas, the author has assigned a value to each cross-section to determine

the number of unique cross-sections. This has been obtained by multiplying the

required diameter, in inches, by ten and adding the member thickness in decimal

inches. The final minimized metric was determined based on the percentage of all

members that have unique cross sections, so the ratio between the number of unique

cross sections divided by the total number of elements. From the output of the

analysis, it has been found that the general trends observed implied that there are

significant tradeoffs between constructability and structural performance. However,

the impact of standardization on weight has to be carefully analysized. In fact, as

the number of cross sections in a given structure was decreased, the overall weight

of the structure increased, as expected, but this increase is relatively minor in com-

parison to the significant improvement in constructability. In the reported figure

3.7 it has been shown the case in which the number of different cross-sections in a

structure were reduced by a factor of 10, while the structural weight increased by a
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factor of 2. This implies that remarkable labor and cost savings can be achieved by

consolidating cross-sections, while the increase in the cost of material is marginal in

comparison.

Figure 3.7: Impact of standardization on structural weight [51]

From the experience of the previous studies we can understand how constructabil-

ity considerations integrated in the design phase will behave as competitive goals

with respect to the typical weight minimization one. We can think for example at

the complexity topic affecting truss structures, which involves the reduction of the

number of nodes and thus leading to longer members. In turn, these elements would

have bigger sections to satisfy structural requirements, perhaps implying heavier

designs. The same implication would follows the standardization technique, which

encourages less diversity in the sections used. However, repetition of members sizes

at the cost of some added member weight, can simplifies detailing, fabrication and

erection costs. Thus, by means of a simpler and standardized design, we can abate

the overall cost, which is generally the most appealing target objective.





Chapter 4

Case study 1 - Truss level

After having discussed the basic structural optimization methodologies and con-

structability difficulties, in the current Chapter we are going to describe the case

study on which we have concentrated our investigation. Specifically, we have per-

formed the simultaneous size, shape and topology optimization of steel truss struc-

tures, not intended to the most common weight minimization, but developing a

new objective function integrated with constructability criteria. At first, we have

introduced the truss structure characteristics and employments in civil engineering,

as well as how they can be modelled following a parametric design; then we have

clarified the design variables considered in the optimization, along with the grouping

strategy developed to improve the schematization of the problem. Subsequently the

model set-up, the definition of the Objective Function has been discussed, starting

from the original hypothesis considered to the final formulation. Finally, from the

results comparison of the proposed method and the more common weight minimiza-

tion, we have highlighted the influence of the additional constructability criteria in

the definition of the best individuals. In particular, in this Chapter we have depicted

the analysis at the truss level, with the intent to enlarge the point of view, in the

following Chapter, towards the scale of a single storey industrial building.

4.1 Truss structures

Trusses are made by a configuration of beams, mainly in triangles, that allow to

create strong but at the same time lightweight structures. A truss is defined stable

if the number of members is just sufficient to prevent distortion of its shape when
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loaded externally. Specifically, this condition is verified if the equation m = 2j − 3

is satisfied, where j is the number of joints and m is the number of members. When

the number of members is less than 2j− 3, it would be a deficient or unstable truss.

Instead, when the number of members is more than 2j − 3, the unstable truss is

called redundant.

Figure 4.1: Stable and unstable truss configurations: (a) Isostatic (b) Unstable with
m < 2j − 3 (c) Unstable redundant with m > 2j − 3

In a stable truss, the nodes between members are considered as pinned connections,

while the external supports are whether hinges or rollers. Moreover, they are able

to withstand external loads by developing almost exclusively axial forces, with neg-

ligible bending moment and shear force. This is due to the fact that the loads are

assumed to be applied only at the nodes, which are supposed to be ideal internal

hinges. True pins with free rotation are quite rare in practice. This is mostly due to

the comparatively high cost of manufacturing such joints. The joints of a steel truss

are nearly always bolted or welded. As a result, bending moments will be transferred

to some extent through joints and therefore within the structure. The shape of the

joints, on the other hand, is generally such that their capacity to transfer moment

is fairly limited. As a result, our assumption frequently leads model behavior to di-

verge only little from the real one. With reference to the members developing only

axial loads, we can use two main approaches to solve a truss structure, which means

to calculate the internal forces along each member. Before going into details of such

methods, we would like to give a preliminary indication of a truss scheme. If we use

the analogy with the Timoshenko beam, the distribution of internal solicitations is

intuitive prior to any computation. As for the case of an inflected beam, the upper

chord will absorb the compression forces, while the lower chord the tension ones.

The magnitude of such internal actions is following simple beam’s bending moment
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diagram, with maximum value in the middle towards zero value at the supports.

Vertical and diagonal elements, instead, will absorb the shear actions and they can

be in tension and compression alternatively. As before, also their internal force will

follow the shear force diagram of a simple supported beam, with higher values at

the supports and almost null values in the middle.

Max bending moment
zone

Max shear zone Max shear zone

Max chords solicitation
zone

Max verticals and
diagonals solicitations

Max verticals and
diagonals solicitations

Figure 4.2: Timoshenko beam analogy to have an indication of truss’s solicitation
distribution

The two rigorous approaches to solve truss structures are the Method of joints and

the Method of sections. The former one exploits the equilibrium at each node to

retrieve the axial forces along the beam elements. Moreover, the truss is isostatic

externally, thus if we know the acting forces, we can calculate the external reactions

and then the distribution of the internal forces. An example is reported below, in

figure 4.3 to clarify the procedure. Instead, if we are not interested in knowing

the axial force in each member but only in specific ones, we can proceed with the

Method of sections, also called Ritter’s Method. A truss made of triangles is charac-

terized by the property of being cut by an ideal section, which divides the structure

in two by passing from only 3 members not joining at the same node. So, we can

imagine to divide the truss into two free bodies by passing an imaginary cutting

plane through the structure. The cutting plane must, of course, pass through the
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bar whose force is to be determined. At each point where a bar is cut, the internal

force in the bar is applied to the face of the cut as an external load. Although there

is no restriction on the number of bars that can be cut, we often use sections that

cut three bars since three equations of static equilibrium are available to analyze a

free body. For example, if the force in a diagonal bar of a truss with parallel chords

is to be computed, we cut a free body by passing a vertical section through the diag-

onal bar to be analyzed. An equilibrium equation based on summing forces in the y

direction will permit us to determine the vertical component of force in the diagonal

bar. Instead, if three bars are cut, the force in a particular bar can be determined

by extending the forces in the other two bars along their line of action until they

intersect. By summing moments about the axis through the point of intersection,

we can write an equation involving the third force or one of its components. The

previous example is shown also with the resolution obtained by Ritter’s Method.

Figure 4.3: Methods for truss resolutions - example

From this theoretical introduction to truss structures, now we are going to describe

their most common usage in real life applications. In general, truss structures are

made of steel or timber, however here we are focusing the attention only on the for-

mer ones. In particular, steel is a durable and corrosion-resistant material, making

it perfect for usage in outdoor and industrial applications. One of the advantages

of steel truss structures is their ability to span long distances without the need

for intermediate supports. In fact, they are commonly used in the construction of

large buildings such as warehouses, factories and exhibition halls, as well as in the

construction of bridges, airports, and other infrastructure projects. They are also
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used in the construction of roofs, where their strength and rigidity make them ideal

for supporting heavy loads and spanning long distances. Trusses are also relatively

lightweight compared to other structural systems, which can reduce the overall cost

of construction. Moreover, there are many different types of steel truss structures,

each one designed to meet specific engineering and architectural requirements. These

include Pratt trusses, Warren trusses, Howe trusses, and many others. The type of

truss used depends on factors such as the span of the structure, the load-bearing

capacity required, besides the aesthetic preferences of the designer. Moreover, the

upper chord can be parallel to the lower chord or it can be inclined. For example,

in case of roof trusses in areas where snow fall is common, an inclination between

10° to 60° is recommended to drain part of the snow falling from the roof surface.

Figure 4.4: Different truss schemes
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4.2 Parametric Design

The models of the structures studied in the present Thesis have been made follow-

ing a parametric design approach. The advantage of this technique is that it is very

useful for optimization and form finding, because makes it possible to get differ-

ent versions of a model by varying just input parameters. Parametricism relies on

programs, algorithms and computers to manipulate equations for design purposes.

The term ‘Parametricism’, coined in 2008 by Patrik Schumacher, implies that all

elements of architecture are becoming parametrically malleable and thus adaptive

to each other and to the context. Basically, the relationships between different de-

sign elements are established mathematically, and changes made to one of them will

automatically affect the others that are connected to it. This allows designers to

quickly and easily explore different design options, managing several spatial elements

together, and obtaining countless shapes and configurations. Parametric design has

become increasingly popular in architecture, industrial design and engineering. It

offers numerous advantages over traditional design approaches, including increased

efficiency, precision and flexibility. With this approach designers can swiftly create

complex and intricate geometries that would be difficult or impossible to achieve

using traditional methods. One of the earliest examples of parametric design was

the upside down model of churches by Antonio Gaudi. Basically, he created com-

plex vaulted ceilings and arches by suspended weighted strings. By adjusting the

position of the weights or the length of the strings, he could change the shape of

the catenary arches and, accordingly, the entire model. Later on, the italian Luigi

Moretti was the first architect to use the phrase “parametric architecture” in 1939;

then, Frei Otto captured the experimental nature of parametric modeling by his

“form-finding” activities derived from soap films and paths. In recent decades, para-

metric modeling has found its way into projects through software packages’ scripting

interfaces. Examples of such softwares are Grasshopper developed by Robert Mc-

Neel&Associates, Bentley Systems’ Generative Components, and Revit Autodesk’s

Dynamo. Zaha Hadid Architects is one of the most widely known architecture firm

that brings large-scale parametrically designed buildings to life. The Galaxy SOHO

Mall in Beijing, China, is an office, retail, and entertainment complex with almost

no visible corners or sharp edges. French architect Jean Nouvel has designed many

buildings using parametric design, one of the most notable being the Louvre Abu

Dabi. Another example of parametric architecture is Santiago Calatrava’s other-
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worldly design for the World Trade Center Transportation Hub (also known as the

Oculus) in New York City. Another name worth mentioning in this framework

is the talented italian architect and designer Arturo Tedeschi, also known for its

writings about Grasshopper modelling. His works spectrum covers different fields

of application, from the traditional architecture, to the industrial design environ-

ment (furniture, automotive, installations, products, footwear), where all projects

are characterized by extravagant and fashinating shapes.

Figure 4.5: Galaxy SOHO Mall in Bei-
jing by Zaha Hadid

Figure 4.6: World Trade Center Trans-
portation Hub by Santiago Calatrava

Figure 4.7: Louvre Abu Dhabi by Jean Nouvel
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Figure 4.8: Arturo Tedeschi works: HorizON lamp, Ilabo Shoes, Sistema Fessura,
The Cloudbridge, from the upper left to bottom right side.

4.2.1 Softwares used

The software used in this Thesis to exploit the parametric design principles is

Rhinoceros 3D, which includes Grasshopper 3D with Karamba 3D and Octopus

plug-ins.

Figure 4.9: Softwares used

• Rhinoceros 3D

It is a 3D modelling tool, commonly used by architects and designers in the

early design phase. The software have been developed by McNeel&Associates

in 2008. It has been categorized in the CADs software, but it allows to repre-

sent very complex form and structures, making it more powerful with respect

to AutoCAD software, for example. Rhino uses non-uniform rational b-spline

(NURBS), which are mathematical representations of a 3D geometry. NURBS

allow to accurately reproduce very complex geometries, from a simple 2D curve

to the most challenging 3D shape. Rhino works in parallel with Grasshopper,

in fact it allow us to visualize what we are designing in the Grasshopper envi-

ronment.
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• Grasshopper 3D

Grasshopper3D is a visual modelling program, which is able to construct an

iterative and interactive design process by modelling objects parametrically.

The utility and efficiency of the program is enhanced by the plug-ins contained

inside. Specifically, in this Thesis, Karamba3D and Octopus are the main ones

used. Focusing on our cases study, this software was very useful to run size,

shape and topology optimizations. In fact, by changing the value of the slider

component connected to the specific design variable, the software allows to re-

create immediately and in a continuously way, several geometries by changing

for example cross-sections, number of subdivisions, coordinates of the points,

typology of the truss etc.

• Karamba3D

Karamba 3D is a parametric structural analysis tool which is fully embed-

ded into the visual programming environment Grasshopper. It can perform

detailed Structural Finite Element Analysis (FEA) for spatial trusses, frames

and shell structures. Specifically, in the present Thesis, this Rhino plug-in was

used for the structural verification of truss structure in this Chapter and in

the following one also for the industrial building. Although it could be less

robust than commercial softwares, due to its fast interactivity with Grasshop-

per, it results more suitable than other FE programs, highly reducing the total

amount of computational time. Data are instantly sent from the parametric

model created in Grasshopper to Karamba solutor, which subsequently passes

the analysis’s outputs to the optimizator. In particular, the elements created

as simple geometry in Grasshopper are then converted into FEM components

and assembled, by indicating the assigned cross-sections, material, joints, sup-

ports and loads applied. By means of the "Utilization of elements" component,

the structural verification towards buckling requirements can be implemented,

according to EN 1993-1-1 included in Eurocode 3 (Design of steel structures -

General rules and rules for buildings).

• Octopus

In our Thesis we have not used the more common optimizator Galapagos, but

instead we have employed Octopus, developed by Robert Vierlinger and his

team, at the University of Applied Arts Vienna. It is a Grasshopper plug-

in that enables the solving of a wide range of Multi Objective Optimization
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(MOO) issues. In order to find Pareto-optimal solutions, Octopus offers two

global metaheuristics methods:

⇒ SPEA2, which stands for “Strength Pareto Evolutionary Algorithm 2”

⇒ Hype Reduction, i.e. "Hypervolume Reduction Algorithm"

Different parameters related to how the algorithm will search for the optimal

solutions needs to be set:

Figure 4.10: Octopus interface

– Elitism gives the percentage of new solutions that are bred out the Elite

instead of the entire pool; if high, more local optimization is performed.

– Mut. Probability is the probability of each parameter /gene to become

mutated with the ‘Mutation Rate’. A low Mutation Rate means little

changes to the parameters’ values, a high rate means big changes.

– Crossover Rate is the probability of two subsequently generated solutions

to exchange parameter values.

– Population Size is the number of solutions per generation. The Elite size is

set accordingly, so a total of 2 x Population Size number of solutions are in

each generations’ pool. This size should be set according to the complexity
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of the problem, since a lot of solutions at the same time can maintain a lot

of different alternatives.

– Max. Generations is set to zero by default, meaning there is no end to the

search. Otherwise Octopus will stop after this number of generations.

– Record Interval is the interval of generations in which a history record is

stored.

– Save Interval gives the interval of generations after which the Grasshopper

file is saved to prevent data loss when Rhino crashes during search for

whatever reason.

Some of those parameters were already mentioned in the Chapter 2 like: Mutu-

ation Probability, Cross-over rate and Elitism. More in details, it is important

to appropriately define the population size and maximum number of genera-

tions. Both of them are based on the complexity of the problem, in particular a

lot of solutions at the same time can maintain several alternatives leading to a

more refined optimal solution. In order to start the optimization the algorithm

needs to be connected to the different design variables previously defined and

to the Objective Function that needs to be minimized.

Figure 4.11: Octopus component connected to all the design variables and to the
OF

Therefore, the geometry of our structure has been parametrically modelled in Grasshop-

per. Then, it has been traduced in the FEM elements using the Karamba3D compo-

nents, assigning the cross-sections, loads and supports. Finally, the design variables

and the objective function have been connected to the Octopus optimizator.
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4.3 Problem overview

As stated before, our intent is to perform a simultaneous size, shape and topology

optimization of a steel truss structure. Considering a total span length of 20 me-

ters, we have modelled in a parametric way the truss by creating a first half of the

geometry and then exploiting the symmetry with respect to the vertical axis in the

middle.

Figure 4.12: Schematic representation of the truss

The shape optimization variables have been identified as the number of subdivisions

of half the chords (n), along with the heights of the edges (H1) and middle point

(H2) of the upper chord. Always considering half geometry, the range in which n

can be varied is in between 3 and 10. The upper bound has been set considering

a minimum distance between consecutive nodes of 1 meter, while the lower bound

accounting for the grouping strategy, explained in the next paragraph 4.4. From a

pre-dimensioning of the structure, we have set a range for the height at the edges H1

in between a value of L/15 and L/10, while the central height H2 ranges between

the current value of H1 and a maximum of L/8.

Anyways, these variables are not independent one from each other because of geo-

metrical considerations. In fact, the inclination of diagonal members is suggested to

be in between 30° and 60° degrees. Therefore, we have imposed the relationship of

H1 and H2 as a function of n, combining two conditions:

• Pre-dimensioning rules
L
15 <H1 < L

10

H1 <H2 < L
8

• Diagonals inclination in between 30° and 60°

D · tan30° <Hi <D · tan60°, with D equal to the distance between consecutive

nodes, computed as L/2
n
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Depending whether the first of second condition is more stringent than the other,

we would obtain a domain for H1 and H2 ranging from minimum and maximum

values, according to the following relationships:

Domain of H1 Domain of H2

H1,min=max( L
15 ,D · tan30°) H2,min = max(H1,D · tan30°)

H1,max=min( L
10 ,D · tan60°) H2,max=min(L8 ,D · tan60°)

Table 4.1: Domains definition for H1 and H2 as Hi,min <Hi <Hi,max

Figure 4.13: Scheme for relationship between n and H1,H2, where α should be at
least 30°and β maximum value is 60°

Regarding the topology optimization, we have created in Grasshopper five differ-

ent truss types, namely Vierendeel, Brown, Pratt, Howe and Warren ones. Here

below, we have explained their main characteristics and real-life applications:

• VIERENDEEL TRUSS

This layout of structure was named after the Belgian engineer Arthur Vieren-

deel, who developed the design in 1896. It is characterized by the absence of

diagonal members, without any triangular mesh inside. For this reason, to avoid

the instability of the structure, the nodes have to be designed not as pinned

connections but fixed ones, in order to guarantee any relative rotation of the

members. This is its primary characteristic that sets the Vierendeel apart from

other truss layouts. Thus, its cross-sections would be thicker if compared to

other typologies with the same span, resulting in heavier designs. Anyhow, it
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is widely employed in civil engineering structures, resulting in a more aestheti-

cally pleasing harmonic configuration. For example, it is preferred in presence

of windows or open doors, because the exterior envelope remains unobstructed.

Figure 4.14: Vierendeel truss scheme and application example: AMERON Hotel
Speicherstadt footbridge

• PRATT TRUSS

Pratt truss, first proposed by Thomas Pratt and his son Caleb in 1844, nowa-

days is one of the most used, allowing long spans to be achieved, ranging from

20 to 100 meters. Also called N-shape, it is made up of vertical and diago-

nal members that form the ’N’ pattern until the central point, where they are

inverted. This type of truss is most appropriate for horizontal spans, where

the force is predominantly in the vertical direction. Under gravity loads, the

vertical members result to be in compression while the diagonals in tension.

In this way, a more cost-effective design might be encouraged by giving the

diagonal components smaller cross-sections. Besides, since they are in tension,

they won’t be affected by buckling problems.

Figure 4.15: Pratt truss scheme and application example (industrial building from
"LA META costruzioni Vincenzo Cavallo")
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• HOWE TRUSS

The Howe truss was proposed by William Howe in 1840, four years before the

Pratt one. Their configuration is similar, actually specular, because of the

orientation of the diagonals. Therefore, under gravitational loads, they are

in compression, so buckling verification becomes an issue. Thus, Howe truss is

better employed when uplift actions are predominant, which may be the case of

open buildings such as aircraft hangers, so that the diagonals can be in tension.

Figure 4.16: Howe truss scheme and application example: Queen Elizabeth II Metro
Bridge

• BROWN TRUSS

The Brown truss has X-shaped diagonals. It is characterized by the fact that

one leg of each X is always in tension. More in details, the double diagonals

configuration is an hyperstatic truss scheme. This kind of truss is generally

employed when we may have an inversion in sign of the actions, like in the case

of wind loads or seismic excitations. Of course, this configuration will result in

heavier designs even though the single diagonals can have smaller sections.

Figure 4.17: Brown truss scheme and application example: Hungerford railway
bridge
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• WARREN TRUSS

It is named after the British engineer James Warren, who patented it in 1848,

together with Willoughby Theobald Monzani. Its original scheme had a con-

figuration in which the truss members formed a series of equilateral triangles.

However, in our analysis, due to the fact that we have an inclined upper chord,

the triangles are not equilateral. In fact, there are different version of the War-

ren truss type, with or without vertical elements, as well as with alternate ver-

ticals, with parallel chords or inclined upper chord, with equilateral or isoscele

triangles. Looking at the scheme chosen for our investigation, reported in fig-

ure 4.18 we can clearly observe that the upper chord is always in compression,

while the lower chord in tension. Then, the diagonals have to be distinguished

into the descending ones, which are in tension, and ascending ones, which on

the contrary are in compression; then once the middle is reached their solicita-

tions are switched. Instead, the additional vertical elements present alternate

stresses, in fact, the even ones are in compression, while the odd ones are not

stressed. The function of the even vertical elements is to help the distribution of

compression actions when long spans are reached. This type of truss is largely

employed in civil engineering application thanks to its versatility. In particular,

it is often used for steel railway bridges, thus the loads (dead and traffic load)

are applied on the deck which distributes the load to the bottom chord.

Figure 4.18: Warren truss scheme and application example: BNSF Railroad over
Verdigris River

In particular, to switch from one configuration to the other in our optimization, we

have created a slider ranging from 0 to 4, in which each number represent a truss

type. For example, 0 stands for the Vierendeel one, thus if the topology design

variable for the current individual is at 0 value, the configuration analyzed is the

Vierendeel one.



4.4. GROUPING STRATEGY 131

Figure 4.19: Topology optimization design variable

Finally, the size optimization has been carried out by varying the cross-sections of

the truss’s members. Specifically, we have assigned CHS (circular hollow sections)

profiles. In Karamba3D there is a pre-defined catalogue, which has been limited to

the first 100 values in order to reduce the computational effort of the optimizer. This

reduction has been computed by following the Eurocode 3 specification, in which

the general formulation regarding the stability of truss’s members can be written

as: NRd = A·fy
γm

. Actually it should be distinguished for tension or compression

members, as well as for the different classes of cross-sections, but this was just a

preliminary, rough and simplified evaluation.

4.4 Grouping strategy

We have just introduced the size design variables, however we have also developed

a grouping strategy that involves a further schematization of the problem. The

idea was suggested by Gabriele Rosi during our internship at Maffeis Engineering

S.p.A. In fact, in real-life structures is not convenient to have different sections for

all the members, moreover the real assembly and erection make it possible to install

portions of the truss all together. Thus, it follows that a division in macro-areas

can be suitable from a practical point of view. Furthermore, we have seen this

technique applied to frame structures also during the paper review in Chapter 2, as

for example in [36],[25] and [47]. To manage the application of grouping to our truss

case, we should always remember about the symmetry with respect to the vertical

axis in the middle. First of all, we have distinguished five components of the truss,

namely:
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1. Lower Chord

2. Upper Chord + External Vertical Structs

3. Internal Vertical Structs

4. Upward-Downward Diagonals

5. Downward-Upward Diagonals

Figure 4.20: Truss’s components division

Each component has been in turn divided into three main regions, where in each one

the solicitation can be assumed similar. Thus, the grouping strategy consisted into

the creation of 3 groups for each component, to which a cross-section is assigned.

In more details, if we look at the lower chord’s solicitation distribution, it can be

highlighted that there are three main points at which the stresses difference is more

evident.

Figure 4.21: Lower chord’s solicitation distribution

Exploiting this observation, we have assigned three different cross-sections, one for

each group. In fact, if we think to assign a single cross-section to the entire lower

chord, it would require the largest one to sustain the highest stresses at the mid-

dle, increasing the overall weight of the structure. On the contrary, if we allow the
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optimizer to choose a different cross-section for each member, the overall structure

would result with the lowest weight possible, but with the highest complexity for its

construction. In fact, having a high number of different cross-sections is increasing

the complexity of fabrication, assembly and erection phases, as well as the overall

cost, thus it should not be encouraged. To make a first move towards a balance be-

tween the minimization of the cost and the number of different cross-sections used,

we have developed the grouping strategy.

Figure 4.22: Relationship between N°groups and corresponding weight [kN]

Furthermore, the grouping technique has been carried out in a dynamic way. Specif-

ically, the optimizer can manage the group division by changing the point at which

we have the passage from one group to the other. To explain the developed approach,

we can consider for the sake of simplicity only the lower chord. In particular, let’s

focus on the case of a truss with a number of subdivisions of the first half equal

to 6. If we wanted, for example, to divide the lower chord into 2 groups we would

have to identify n1, which is the index of the node at which the lower chord will be

divided. Then, in order to actually divide it into 2 groups, not having one of them

with zero members, n1 should be a number from 1 to n− 1 = 5. From the reported

figure 4.23 we have graphically illustrated the meaning of n1.

Then, moving towards our case, if we wnat to divide the lower chord into 3 groups,

we should identify two indexes, n1 and n2. In this case n1 would be a value in
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Figure 4.23: Graphical representation of the meaning of n1 variable

between 1 and n− 2 = 4, while n2 in between n1 + 1 and n− 1 = 5.

Figure 4.24: Graphical representation of the dynamic grouping strategy with 3
groups

Looking at the figure 4.24, we can see that n2 is establishing the ending node of the

first group, while n1 the ending node of the second group.

Following this scheme, we could continue considering all the possible numbers of

groups until N°groups = N°subdivisions n. However, because of the considerations

previously made regarding the actual solicitation distributions and the reduction of

the computation effort required for the optimization procedure, we have chosen to

subdivide each component into three groups.
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4.5 Model assembly

Until now we have defined all the most important parameters that are going to

govern the analysis. In this subsection, instead, we want to illustrate the procedure

followed to assemble the model and how the analysis will be performed. A schematic

representation is reported in figure 4.25.

Figure 4.25: Basic procedure flow

Starting from the half geometry creation in the xz plane with the five truss com-

ponents, by mirroring it with respect to the yz plane, we have completed the truss

configuration. At this point, the single line elements, implemented in Grasshopper,

have been transformed into beam members by means of Karamba3D components.

Therefore, proper cross-sections have to be assigned to them. As said before, the

reduced catalogue of CHS profiles has been used, assigning the specific steel S355

material properties. Each component of the truss has been divided by means of the

grouping strategy, which is now introduced in the definition of the cross-sections

assignment. An example of such procedure has been reported in figure 4.26, to de-

scribe how Karamba3D environment works.

Figure 4.26: ’Line-to-beam’ component: example for the Lower Chord elements.
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Moreover, loads and supports have to be introduced in the model assembly. Re-

garding the supports, we have assigned an hinge and a roller to the external nodes

of the truss, to make it isostatic externally.

Figure 4.27: Supports set-up in Karamba3D

Then, we have applied to the structure only gravitational loadings, considering the

Ultimate Limit State (ULS) combination, according to Eurocode. Unfortunately,

in Karamba3D we are not allowed to switch from one combination to the other,

therefore we have only used the following one:

γG1 ·G1 + γG2 ·G2 + γP · P + γQ1 ·Qk1 + γQ2 · ψ02 ·Qk2 + ... (4.1)

Where G1, G2 and Qki are respectively the Permanent structural loads, Permanent

non-structural loads and Variable loads. Instead γ is a coefficient of amplification

that is defined based on the type of the loads. In our case study the following loads

have been considered, with their corresponding coefficient of amplification.

Type of Load Load Value Coefficient γ
G1 Own weigth KN 1.3
G2 1.471KN

m2 1.5
Q1 0.5KN

m2 1.5

Table 4.2: Vertical loads applied to truss structure

While G1 is automatically applied by Karamba 3D for all the members, G2 and Q1

required the identification of the specific beams on which they will act. In order to

apply them to the upper chord of the truss structure, an area of influence should be

considered; in our case study an inter-axis of 5 meters is assumed. By multiplying
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the Load Value (G2 and Q1), times the inter-axis we will obtain a distributed linear

loads in KN
m .

Once the model is assembled, the solutor will perform the structural analyses for

each configuration and from the output we can implement the Objective Function.

In particular, its formulation will be discussed in the next section 4.6, however here

we want to summarize the basic flow of our analysis. It must be highlighted the

fact that Octopus optimizer works by setting the population size and the number

of generations, thus once the optimization has reached the last individual of the

last generation it will stop. During each generation, the individuals are created by

changing the design variables and imposing the structural verifications according to

the Eurocode 3, until the best configuration is obtained. In figure 4.28, a schematic

flow chart of our procedure is reported. Specifically, It stands for iteration number,

while at STEP 0 the input assumptions regard the fixed 20 m length of the truss, the

number of groups equal to 3 and the setting of total number of iterations Itmax and

population size. The resume of the design variables considered in the optimization

is reported in the next subsection, in table 4.3.

Figure 4.28: Flow chart
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4.6 Objective function formulation

As stated before, we are going to perform an optimization not simply aimed at

the weight minimization, but we are accounting for both structural verifications

and constructability issues. To properly formulate our problem, we should define

the three main ingredients of the optimization, namely the objective function, the

design variables and the constraints applied.

The formulation of our optimization can be expressed as:

min F (x) = ρ

NX
i=1

(Ai · li) · ϕ1(nun) · ϕ2(Na) · ϕ3(n) (4.2)

subjected to
NEd

NRd
≤ 1 (4.3)

xi,min < xi < xi,max (4.4)

Where:

N is the total number of elements in the truss and x is the vector of design variables.

In the previous sections we have introduced all the xi involved in the optimization,

which are summarized in the table 4.3 below. The four macro-categories of the

design variables, i.e. Topology, Layout or Shape definition, Grouping division and

Cross-sections assignation, have been distinguished by making use of different colors.

Moreover, in the table are reported the lower and upper bound of each xi, specifically

in the last column. Their graphical representation has been reported in figure 4.29,

where the Brown truss type has been chosen for clearness purposes.

Figure 4.29: Schematic representation of all the design variables
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Design
variable

Description Domain

x1

Topology: (0) Vierendeel,
(1) Brown, (2) Pratt,
(3) Howe, (4) Warren

0÷ 4

x2 = n
Number of subdivisions

of half geometry
3÷ 10

x3 = H1
Heights of upper

chord’s edges
H1,min = max( L

15 , D · tan30)
H1,max = min( L

10 , D · tan60)

x4 = H2
Heights of upper
chord’s midpoint

H2,min = max(H1, D · tan30)
H2,max = min(L8 , D · tan60)

x5 = n1
Index at which the
third group ends

1÷ n− 2

x6 = n2
Index at which the
second group ends

n1 + 1÷ n− 1

x7
x8
x9

3 sections for the lower
chord elements

0÷ 100 CHS profiles’
index from catalogue

x10
x11
x12

3 sections for the upper
chord + external vertical structs

0÷ 100 CHS profiles’
index from catalogue

x13
x14
x15

3 sections for the vertical
internal structs

0÷ 100 CHS profiles’
index from catalogue

x16
x17
x18

3 sections for the upward-
downward diagonals

0÷ 100 CHS profiles’
index from catalogue

x19
x20
x21

3 sections for the downward-
upward diagonals

0÷ 100 CHS profiles’
index from catalogue

Table 4.3: Design variables where the colors of the cells represent the different
categories: blue - Topology; red - Layout definition; green - Grouping division;
yellow - Cross-sections assignation.

In equation 4.2, the penalties are respectively:

ϕ1 = (1 +K1 · nun) (4.5)

ϕ2 = (1 + ∆)− e−β·(Na− ln∆
β

) (4.6)
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ϕ3 = (1 + γ)− e−α·(n− lnγ
α

) (4.7)

All the parameters related to the penalty functions have been calibrated by means of

the analysis reported in the next subsections; their resulting values are summarized

in table 4.4.

Parameter Value
K1 10
∆ 2.70
β 0.1
γ 1.157
α 0.1

Table 4.4: Penalties parameters

With the first penalty 4.5, a constraint referred to element buckling verification is

implemented, which is proportional to the number of elements in the unfeasible re-

gion, nun, and amplified by a coefficient K1. Instead, ϕ2 and ϕ3, respectively 4.6

and 4.7, are introducing constructability criteria that, once more, encourage the

optimization towards heavier designs. In particular, ϕ2 is limiting the number of

distinct cross-sections used to construct the entire truss (Na). On the other hand,

ϕ3 tries to reduce the design complexity by lowering the number of subdivisions of

the truss, thus the overall number of pieces to be assembled. Both ϕ2 and ϕ3 have

an exponential form, as we can see in the graphical representations below, 4.30.

Figure 4.30: ϕ2 and ϕ3, respectively 4.6 and 4.7
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In the following subsections, we are going to illustrate in details the three penalties.

It should be highlighted the fact that, in the process of developing the Objective

Function, we started by considering at first a simple size minimization, thus allowing

the optimizer to vary only from x7 to x21 design variables of table 4.3. Then, we

integrated also the shape design variables, i.e x2, x3 and x4, as well as the ones

regarding the grouping strategy, which are x5 and x6. Once, all the penalties have

been tested for the simultaneous size and shape optimization, finally, we included

also the topology optimization, thus x1 of 4.3. The reason behind this kind of step

analysis is related to the actual influence of the different design variables into the

distinct penalty functions. For example, penalty Φ1 about the structural verifica-

tion is highly dependent on the size variables, while shape and topology ones are

indirectly affecting such requirement. In an analogous way, topology variation is not

the main factor that impact the definition of the constructability-based penalties.

Figure 4.31: Penalties procedure development

4.6.1 Penalty ϕ1 = (1 +K1 · nun)

One of the main issues with truss structures is buckling instability at the element

level. Unfortunately, the standard Karamba3D solutor does not account for such

verification, therefore we have included the penalty function ϕ1. Specifically, there is

a component called "Utilization" that give us the information about the compression

buckling requirement satisfaction. In general terms, we can say that the slenderness

of members subjected to compression is one of the main aspect to be investigated.

Analysing the buckling phenomenon for a simply supported beam, subjected to a

pure axial stress, we can state that until the applied load is below a certain treshold,

the response of the beam can be reconducted to the form: σ = P
A = E · ε = E·∆L

L ,
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where ∆L is the shortening due to the applied load P. However, above a given

threshold load, the response of the beam would be affected by a lost of equilibrium,

falling to an unstable state. In particular, the stress at which this would happen is

called critical load, or Euler’s critical load, from Leonardo Eulero (1707-1783) who

solved this problem. Its value corresponds to:

Pcr = π2 · E · J
L2

where

• L=beam length

• J=beam inertia moment

To generalize the equation for different situations, the Euler’s load can be written as:

Pcr = π2 · E·J
l20

, where l0 represent the effective length of the beam against buckling.

In particular, l0 depends on the supporting conditions at the beam’s edges and the

main schemes are reported in figure 4.32.

Figure 4.32: Values of buckling effective length for different supporting conditions

Then, to understand in practical terms the influence of the element’s slenderness,

we can consider the case of two beams of the same material and same section, but

with different lengths. An example, taken from [17], is reported in figure 4.33, where

the two beams have a square section of 2cm x 2cm, but the first one on the right

has a length of 4 cm, while the other one of 40 cm.
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Figure 4.33: Examples of beam’s slenderness, taken from [17]

The Euler’s critical load for the two cases will be:

Pcr1 =
π2 · E · J
4cm2

Pcr2 =
π2 · E · J
40cm2

thus in the second case the threshold is 100 times lower, in fact Pcr2 = Pcr1

100 . If

we consider a compressive strength limit in between Pcr1 and Pcr2, this means that

while in the first case the collapse would be caused by a compression failure, in the

second case the collapse would be due to the lost of stability, before the compres-

sive strength limit is reached. Therefore, the slenderness is generally accounted for

buckling stability verification and it is defined as:

λ =
l0
ρ

where ρ =

q
J
A [cm] is the cross-section radius of gyration. Of course, the slender-

ness depends on the axis we are considering for the J evaluation, thus we would have

values referring to x and y axes. According to the Eurocode 3 (section 6.3 - Buck-

ling resistance of members), the verification regarding buckling problem suggest to

employ a reductive coefficient χ, which accounts for the Euler’s critical load. In

particular, χ determines how much of the compressive stress capacity of a bar can

be used before it is assumed to buckle. Given fyd the design compressive strength

of steel, it should be satisfied that the acting axial force NEd is lower or equal than

the resistant strength without loss of stability Nb,Rd. The condition can be written
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as:

NEd ≤ Nb,Rd

where

Nb,Rd = χ ·
A · fyd
γM

with γM partial factor of safety for instability resistance, A the beam’s section which

can be calculated in different ways depending on the sections’ class. Instead, the

value of χ is calculated as a function of the beam’s slenderness and an imperfection

factor α. It should be mentioned the fact that an analogous method is followed

for the combination of flexural and axial loads, where the compression force along

each beam derives from both the actions. In conclusion, from a theoretical point of

view, we can state that buckling phenomenon must account for both the elements’

slenderness and supporting conditions. In our specific case, all the elements have

fixed supports at their ends, but their length is different depending on the cases.

Generally, the diagonal members have higher lengths, however in our case with

inclined top chord, also the upper chord elements can have significant extent. Of

course, we should always remember that buckling is only affecting elements under

compression, thus in the case of a Pratt truss, for example, the diagonals are in

tension, so buckling is not an issue for them.

Practically speaking, in our analysis we have computed the number of elements

with the ratio between the acting stress and buckling strength higher than one. The

mathematical formulation can be written as:

nun =

NX
i=1

ni

where N is the total number of elements in the truss, ni is a generic member in

which Si

Ri
> 1, Si is the acting force along the element and Ri is the resisting force

calculated considering the effective buckling length of the beam. This structural

constraint has been introduced directly in the formulation of the OF, exploiting the

penalty technique. More in details, the number of unfeasible beams, nun, has been

multiplied by a coefficient K1 in order to amplify this penalization in the evaluation

of the OF. The final formulation of ϕ1 has been already expressed in 4.5, from which

we can observe that if no unfeasible beams are found, ϕ1=1, thus no penalization is

applied. Whereas, in presence of unfeasible beams it is proportional to their amount.
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In particular, the coefficient K1 has been calibrated by performing different analyses

by changing its value. If no other penalties are considered, we can see how OF is

affected by ϕ1 as a function of nun and K1.

OF K1 nun

W · (1 + 1) = 2 ·W 1 1
W · (1 + 10 · 1) = 11 ·W 10 1
W · (1 + 100 · 1) = 101 ·W 100 1

Table 4.5: OF values as a function of K1, for nun=1

OF K1 nun

W · (1 + 5) = 6 ·W 1 5
W · (1 + 10 · 5) = 51 ·W 10 5
W · (1 + 100 · 5) = 501 ·W 100 5

Table 4.6: OF values as a function of K1, for nun=5

To set K1 we have focused the analysis on a Brown truss size optimization with

n = 6. In order to simplify the procedure, we have considered the case with only one

group, which lowered the computational effort regarding the assignment of different

cross-sections to the distinct components. From the results we have concluded that,

because there is no evident scattering between the values, it is worthless to adopt a

too large value of K1.

Figure 4.34: Best OF as a function of
K1 in the case of OF = Weight · ϕ1

Figure 4.35: Unfeasibility proportion as
a function of K1 in the case of OF =

Weight · ϕ1

In all the cases, the value of the best individual is 4.73125 kN, while the unfeasibility

proportion trend is almost the same. In conclusion, the coefficient K1 adopted in

the following analyses has been set with a value equal to 10.
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4.6.2 Penalty ϕ2 = (1 + ∆)− e−β·(Na− ln∆
β )

As briefly mentioned before, by means of the second penalty function we are going to

introduce the first constructabiliy criteria in the objective function formulation. It

is aimed at reducing the number of different sections (Na) used, in order to simplify

the construction of such truss on site, recalling the concepts discussed in the pre-

vious chapter 3. It should be noticed that with the grouping strategy, explained in

4.4, we have constrained the problem by defining the maximum number of different

cross-sections that can be assigned, i.e. Na,max = Ngroups ·Ncomponents. In fact, with

reference to the case in which each element of the truss has its own cross-section,

the grouping technique is already reducing the variability of Na.

For example, dealing with the size optimization of a Brown truss, we know that

we would have 5 different components, namely Lower Chord, Upper Chord + Ex-

ternal Vertical Structs, Internal Vertical Structs, Upward-Downward Diagonals,

Downward-Upward Diagonals. Then, by looking at the distribution of the solici-

tation for gravitational loadings, we have seen that a reasonable number of groups,

which can properly define areas within the structure with similar axial force, is 3.

Therefore, we can consider the following fixed parameters:

• Truss lenght = 20 meters

• N°subdivision = 6 x 2 = 12

• N° groups = 3

• N° of possible sections = N°components x N°groups = 5 x 3 = 15

In this specific case, if no grouping and no symmetry were accounted, we would have

Na = 12 ·4+13 = 61. However, from geometric considerations, we have a symmetric

truss thus Na = 31; moreover, exploiting the grouping, Na is further reduced to 15.

Once set the variability domain of Na, now with ϕ2 we are imposing a complexity to

the algorithm. In practice, we are penalizing the OF adding the condition of finding

the lowest weight with the least number of different sections. In fact, as already

emphasized in 4.4, the higher Na value, the lower the weight.

In the definition of the penalty ϕ2 we started from a linear formulation, but the

results of the preliminary analyses didn’t show a clear trend. Therefore, we moved

to the exponential form, which has been employed in several researches, like the
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ones of Reitman and Hall in [95] and Mu Zhu in [115]. By looking at its equation

4.6, we should highlight the role played by the two variables ∆ and β:

• ∆ is governing the asymptote at which, for a high number of sections used, we

are no longer increasing the penalization;

• β is controlling how we reach that asymptote, if faster or in a more gradual

way.

In figure 4.36 we can see how, for a fixed β, the value of ∆ regulates the asymptote;

thus for a given value of NA, if ∆ increases, the associated penalty would be higher.

On the contrary, in figure 4.37, we can see how fixing ∆, the way in which the

asymptote is reached depends on β; specifically, for lower β a more gradual trend is

followed.

Figure 4.36: Relationship between ∆ and the curve’s asymptote

Figure 4.37: Curves with same asymptote, regulated by ∆, but different β
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In order to define the equation that is able to match the issues of our case study,

we started from the assessment of a proper β value, thus a proper trend. Then, ∆

would be univocally determined once, fixing the chosen β, the passage through a

specific point would be imposed, identifying a suitable penalty level.

Figure 4.38: Flow chart for determining Φ2: STEP2 figure on the right and STEP
4 figure on the bottom.

Therefore, for the setting of β, we need to assume a fixed point in the curve. Pre-

cisely:

Fixed Variable Resulting
Point in the curve,
i.e. penalty level

Φ2(7) = 1.5

β, i.e. curve’s trend:
0.1; 0.2; 0.3; 0.5

∆, i.e. asymptote height:
0.992; 0.663; 0.569; 0.515

Table 4.7: β setting procedure

The graph in figure 4.39 shows the defined curves.
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Figure 4.39: Trend of functions for different values of β

As explained before, by increasing the value of β, we will reach the asymptote

in a faster way (red curve) and, imposed the passage for a fixed point, the value

of ∆ decreases. Thus, once the curve reaches a value close enough to that of the

asymptote, any further increase in the number of sections won’t affect the penalty.

By means of table 4.8, let’s compare in details the two extreme cases, with β = 0.5

(red curve) and β = 0.1 (green curve), having imposed the passage in ϕ2(7) = 1.5.

NA ϕ2(Na)β=0.5
Percentage
variation

ϕ2(Na)β=0.1
Percentage
variation

2 1.33 - 1.18 -
3 1.4 5.26% 1.26 6.77%
4 1.45 3.57% 1.33 5.55%
5 1.47 1.37% 1.39 4.51%
6 1.49 1.36% 1.45 4.31%
7 1.5 0.67% 1.5 3.44%
8 1.51 0.66% 1.55 3.33%
9 1.51 0% 1.59 2.58%
10 1.51 0% 1.63 2.51%

Table 4.8: Values of ϕ2 with β = 0.5 and β = 0.1

The first thing that we can appreciate is that the variability of the penalty, for the

same values of Na, is enhanced for the case of β = 0.1 with respect to the other. For



4.6. OBJECTIVE FUNCTION FORMULATION 150

example, for Na = 7 and Na = 10, in the case of β = 0.5, the OF would consider

an increase in weight of about 50% for both the numbers of sections, while in the

case of β = 0.1 it would be amplified by 50% and 63%, respectively. Another im-

portant difference when we fix the passage for a specific Na and we vary the value

of β, is that the corresponding ∆ will change too. In particular, by increasing β, ∆

decreases, reducing the distance from the origin of the point at which the variability

in the results is minimized. With reference to the example previously described,

Octopus optimzer has been employed to obtain the best truss configurations for the

different Φ2(β), reported in table 4.9.

β ∆ Na Weight[KN ]

0.1 0.99 7 4.38
0.2 0.66 9 4.28
0.3 0.56 12 4.20
0.5 0.52 12 4.20

Table 4.9: Results considering different β values and a fixed penalty of ϕ2(7) = 1.5

The same analysis has been carried out imposing the passage in another point,

ϕ2(5) = 1.7, and testing the same β values. The results obtained are summarized

in table 4.10.

β ∆ Na Weight[KN ]

0.1 1.779 5 4.836
0.2 1.1079 6 4.528
0.3 0.9010 8 4.305
0.5 0.7626 12 4.195

Table 4.10: Results considering different β values and a fixed penalty of ϕ2(5) = 1.7

We can appreciate the correlation between the number of sections used and the asso-

ciated weight of the optimized structure in the two cases, by means of the following

graphs 4.40 and 4.41.

Analyzing the data in the tables 4.9 and 4.10, as well as the graphs 4.40 and 4.41,

we can conclude that, as expected, the higher β, the higher the number of sec-

tions used, because the algorithm cannot distinguish enough the alteration in the

penalty; in turn, the weight would be lower if compared to the case of less Na used.
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Figure 4.40: Weight of the optimized
structure as a function of the Na as-
signed, depending on the different β

used, having imposed ϕ2(7) = 1.5

Figure 4.41: Weight of the optimized
structure as a function of the Na as-
signed, depending on the different β

used, having imposed ϕ2(5) = 1.7

However, our intent is not only in the weight reduction, but in the enhancement of

such minimization accounting also for the issues related to high number of different

cross-sectional areas used in the same structure. To do so we need to use a lower

value of β.

Summarizing, we should have in mind two basic concepts when we have to deal with

the definition of β. Fixing the passage at a specific point, lower β values implies:

1)the asympotote is at a higher y-axis value, because ∆ is higher, and 2)to reach

it, the curve has a more gradual trend, thus the scattering of the penalty values is

enhanced.

From the previous considerations we have decided to work with a β = 0.1. Then

the curve will be identified if a specific point would be imposed, thus specific x-

coordinate, Na, and y-coordinate, ϕ2. To study the influence of this penalty in the

evaluation of the best individual, we have analyzed different levels of penalization.

They could be achieved in a dual way: or, fixing a y-coordinate, we vary Na, or,

vice-versa, fixing the x-coordinate, the ϕ2 value is changed. Focusing on the first

procedure, we have defined three level of penalties:

Fixed
β = 0.1

and Φ2 = 1.7

Level Na imposed
LOW 7

MEDIUM 5
HIGH 3

Table 4.11: Different level of penalty for fixed β
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Figure 4.42: Trend of ϕ2, with β = 0.1, fixing the same penalty(1.7) at different Na

To better comprehend the influence of the degree of penalization imposed in the

three cases, let’s consider how the OF would be affected if, for example, we use

Na = 8 different sections. The green curve will imply a penalization of such choice

of about 25.25% more than the blue curve and almost 40% more than the red one.

Precisely, we would obtain the values reported in table 4.12.

Penalty Na ϕ2(Na) Percentage variation

f(3) = 1.7 8 2.48 -
f(5) = 1.7 8 1.98 25.25%
f(7) = 1.7 8 1.77 11.86%

Table 4.12: Obtained penalties at the same Na = 8

Now we can analyze the results of the optimizations, for the specific low, medium

and high penalties, looking at the outcomes reported in the table 4.13.
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Penalty ∆ Na Weight[KN ]

f(3) = 1.7 2.701 4 5.15
f(5) = 1.7 1.779 5 4.83
f(7) = 1.7 1.3905 6 4.51

Table 4.13: Results for HIGH, MEDIUM and LOW penalty

As expected, the higher the penalization, the lower will be the number of sections

used for the optimized configuration. It’s important to underline that if Na of the

best individual reduces, the weight will increase, following a trend like the one in the

graph 6.6. Due to the fact that our final objective is to get a truss structure with

both minimum weight and number of cross sections, a balance should be found.

Figure 4.43: Trend of Na and Weight found by the optimizer for different levels of
penalty, fixed β = 0.1

To play with the degree of penalization, instead of varying the Na at which we im-

pose the passage of the curve, we can act by fixing it and increase the ordinate of the

point, thus the corresponding ϕ2 value. Therefore, we decided to keep Na = 3 be-

cause from the previous analyses it gave the best outcomes. Then, we have studied

the responses considering:

Na = 3 ⇒

(
ϕ2 = 1.5

ϕ2 = 1.7

In the graph 4.44 we can see the specific curves:
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Figure 4.44: Trend of curves for the two different penalty values with Na = 3

The application of these two penalties will result in the truss’s configurations re-

ported in tables 4.14, 4.15 and 4.16.

Penalty ∆ Na Weight[KN ]

f(3) = 1.5 1,92 6 4.835
f(3) = 1.7 2.7 4 5.150

Table 4.14: Results for HIGH penalty

Penalty ∆ Na Weight[KN ]

f(5) = 1.5 1,27 6 4.510
f(5) = 1.7 1.77 5 4.836

Table 4.15: Results for MEDIUM penalty

Penalty ∆ Na Weight[KN ]

f(7) = 1.5 0,929 7 4.380
f(7) = 1.7 1.39 6 4.510

Table 4.16: Results for LOW penalty
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In conclusion, we have seen how this penalty function works and how it can be set

for specific needs. Until now, we have illustrated how this penalty function works

in the size optimization framework. In fact, it is directly influencing the size design

variables, i.e. the cross-sections. However, in the chapter 5, we are going to explain

how ϕ2 will perform in combination with ϕ3 and with the additional shape and

topology design variables.

4.6.3 Penalty ϕ3 = (1 + γ)− e−α·(n− lnγ
α )

While with the second penalty we have encouraged a simplified design by lowering

the number of sections used, pursuing a standardization of the elements, this ob-

jective has been tackled in a different way by means of the third penalty. Here,

the complexity has been reduced by accounting for the number of subdivisions of

the truss. In fact, increasing n values lead to higher number of elements, as well as

more and more connections to be made to link the truss’s components. Also in this

case we have adopted an exponential formulation, as reported in 4.7, increasing the

penalization of the objective function for higher n values. As in ϕ2, here γ and α

have the same influence in the curve’s setting as δ and β, respectively. Therefore,

in their identification we have exploited the results of the previous penalty, so a

value of α = 0.1 has been chosen. In this way the trend of the curve has been fixed.

Then γ has been obtained, as it was for ∆, by fixing a specific point in the curve.

In order to have a good response from the optimizer to such penalization, we have

imposed the passage in ϕ3(3) = 1.3. In particular, the values of the resulting ϕ3 are

summarized in the following table 4.17.

NA ϕ3(n)β=0.1

3 1.3
4 1.38
5 1.46
6 1.52
7 1.58
8 1.64
9 1.69
10 1.73

Table 4.17: Values of ϕ3 with β = 0.1

However, in the problem’s setting we should account also for another factor re-
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lated to n. In fact, too low n values imply structural problems, because the dis-

tance between consecutive nodes increases, thus buckling instability can be favoured.

Therefore, we have introduced also a limiting domain where the algorithm can search

for the optimal solution. In particular, for our case study of a 20 meters span truss,

we have limited n in between 3 and 10. The lower bound has been defined account-

ing for the structural performance just explained, as well as the grouping strategy.

Whereas, the upper bound has been set considering a minimum element length of 1

meter. Now, the algorithm has been encouraged to reduce the complexity, finding

a balance with the penalty phi1 about buckling stability requirements.

Figure 4.45: Resulting Φ3 with a zoom in of the curve in the domain of n

It should be stressed the nature of this third penalty, which is directly affecting the

shape design variables of the problem. Therefore, we have tested ϕ3 without con-

sidering ϕ2, in order to see how the best individual would be chosen. In the chapter

5.8, we are going to show the results in the case of:

• OF = W · ϕ1 · ϕ3 for size and shape optimization

• OF = W · ϕ1 · ϕ2 · ϕ3 for size and shape optimization

• OF = W · ϕ1 · ϕ2 · ϕ3 for size, shape and topology optimization



Chapter 5

Results - Truss level

5.1 Size optimization

We started our investigation from a simple size optimization, therefore only the

design variables from x7 to x21 of table 4.3 (yellow section) have been considered.

In this instance, due to the fact that we are not varying the shape and topology

design variables, we have fixed the following parameters:

• Brown truss type x1 = 1

• Number of subdivisions of half the geometry x2 = n = 6

• External height of the upper chord x3 = H1 = 1.33m, which is equal to L/15

• Middle height of the upper chord x4 = H2 = 2.5m, which is equal to L/8

• Indexes of the grouping division x5 = n1 = 2 and x6 = n2 = 2

The following subsections are going to illustrate the results for the cases in which we

have introduced step by step the penalty functions. We started by analyzing how

the first penalty works and then we tested also the second one. The third penalty

has not been considered in the size optimization environment because it is related

to the variation of the coordinates of the nodes. Furthermore, we have performed

a preliminary simple weight minimization, for comparison purposes. However, the

optimized structure resulted to be characterized by the same cross-section (CHS

21.3x2) for all the members. By looking at the maximum compressive load, of

about 280 kN, we can conclude that it won’t be sustained by the buckling resistance

provided by the section assigned. Therefore, the first penalty function is essential
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for the structural stability of the truss, so the comparison of the different cases will

be done referring to the case of Φ1 only.

5.1.1 Size - Case A: Φ1

The Objective Function in this case is simply:

min F (x) = ρ

NX
i=1

(Ai · li) · ϕ1(nun)

The resulting optimized structure is reported in figure 5.1.

Figure 5.1: Size - Case A: Configuration of the optimized truss

In particular, in the table 5.1 are summarized the cross-sections used in the specific

truss, while in table 5.2 its main characteristics.

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2 76.1x2.5 42.4x3

Upper Chord +
Ext. Vert. Structs

101.6x4 114.3x3 114.3x2.5

Int. Vert. Structs 42.4x2 33.7x2 21.3x2
Upward-Downward

Diagonals
21.3x2 60.3x2 88.9x2

Downward-Upward
Diagonals

42.4x2 21.3x2 21.3x3

Table 5.1: Size - Case A: Cross-sections of the optimized truss

Best OF Weight [kN] Na

4.162 4.162 12

Table 5.2: Size - Case A: Main features of the optimized truss
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Then we have reported the charts about the best individual found at each itera-

tion, as well as its weight, number of sections used and the unfeasibility proportion

throughout the optimization.

Figure 5.2: Size - Case A: Best individ-
ual - Iteration

Figure 5.3: Size - Case A: Weight of best
individual at each iteration

Figure 5.4: Size - Case A: Na of best
individual at each iteration

Figure 5.5: Size - Case A: Unfeasibility
proportion

As we can see, the value of the best OF and its corresponding weight are the same,

meaning that no unfeasible individual has been chosen. This demonstrate the valid-

ity of the coefficient K1 chosen. We have decided to illustrate also how the number

of section used are employed when the second penalty is not present, to show in

the next case how it will influence the objective function. We should highlight the

meaning of the unfeasibility proportion chart, which gives an estimation of the %

of unfeasible individuals created at each generation. It depends on the internal set-

up of the algorithm inside Octopus package, regarding the selection, crossover and

mutation operators.
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5.1.2 Size - Case B: Φ1+Φ2

The Objective Function in this case is

minF (x) = ρ

NX
i=1

(Ai · li) · ϕ1(nun) · ϕ2(Na)

The resulting best individual found by Octopus is the following one:

Figure 5.6: Size - Case B: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2 101.6x2 101.6x2

Upper Chord +
Ext. Vert. Structs

139.7x3 139.7x3 139.7x3

Int. Vert. Structs 42.4x2.5 42.4x2.5 21.3x2
Upward-Downward

Diagonals
21.3x2 101.6x2 101.6x2

Downward-Upward
Diagonals

41.4x2.5 21.3x2 21.3x2

Table 5.3: Size - Case B: Cross-sections of the optimized truss

Best OF Weight [kN] Na

9.747624 5.156383 4

Table 5.4: Size - Case B: Main features of the optimized truss

It can be immediately observed how the optimized configuration is different from

the previous case. A single cross-section has been assigned for each chord, while the

external upward-downward diagonals present the same section of the lower chord.

For the internal vertical structs elements and the remaining diagonals, other two

smaller cross-sections are used. The total weight in this optimization is 5.16 kN,
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obviously higher with respect to the former of about 4.162 kN. This gained amount

of weight is counterbalanced by a huge loss in variability of cross-sections used, from

12 to only 4. The charts about the best individual at each generation, as well as

its corresponding weight and Na are reported below, together with the unfeasibility

proportion.

Figure 5.7: Size - Case B: Best individ-
ual - Iteration

Figure 5.8: Size - Case B: Weight of best
individual at each iteration

Figure 5.9: Size - Case B: Na of best
individual at each iteration

Figure 5.10: Size - Case B: Unfeasibility
proportion

As in the previous case, the unfeasibility proportion chart 5.10 shows how the al-

gorithm is always guaranteeing a % of feasible individuals at each iteration while

trying to refining the optimization.
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5.2 Size and shape optimization

In this section we are going to consider both the size design variables, i.e. from x7

to x21 of table 4.3 (yellow section), as well as the shape ones, namely x2, x3 (red

section) and x4, and the ones related to the grouping division, i.e. x5 and x6 (green

section). The only fixed parameter is the type of truss, that once again is the Brown

one. Starting from the OF with only Φ1, we are going to see how the introduction

of the other two penalties is affecting the final result. Moreover, we are going to

highlight the differences with the previous simple size optimization cases.

5.2.1 Size & Shape - Case A: Φ1

We have considered the same objective function 5.1.1. The resulting best individual

found by Octopus is the following one:

Figure 5.11: Size & Shape - Case A: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 60.3x5 48.3x3 33.7x2

Upper Chord +
Ext. Vert. Structs

139.7x3 101.6x2.5 76.1x2

Int. Vert. Structs 26.9x2 21.3x2 21.3x2
Upward-Downward

Diagonals
60.3x2.5 76.1x2 88.9x2

Downward-Upward
Diagonals

21.3x2 21.3x2 21.3x2

Table 5.5: Size & Shape - Case A: Cross-sections of the optimized truss

Best OF Weight [kN] Na n H1 H2 n1 n2 n3
4.3992 4.3392 10 7 1.33 1.59 1 1 5

Table 5.6: Size & Shape - Case A: Main features of the optimized truss
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Figure 5.12: Size & Shape - Case A: Best
individual - Iteration

Figure 5.13: Size & Shape - Case A:
Weight of best individual at each iter-
ation

Figure 5.14: Size & Shape - Case A: Na

of best individual at each iteration
Figure 5.15: Size & Shape - Case A: n
of best individual at each iteration

Figure 5.16: Size & Shape - Case A: Un-
feasibility proportion
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From the charts 5.12 and 5.13, we can see that even if the number of design variables

is rised the coefficient K1 set at 10 is still working properly. Regarding the grouping

division, we can see that the indexes n1 and n2 are fixing the two external elements

to be in single groups, while the central part is unified. The optimal number of

subdivisions is set at 7, while the number of sections used is 10. In the following

analyses we are going to see how the complexity will be minimized, in favour of

slight increases in weights.

5.2.2 Size & Shape - Case B: Φ1+Φ2

We have considered the same objective function of 5.1.2. The resulting best indi-

vidual found by Octopus is the following one:

Figure 5.17: Size & Shape - Case B: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 88.9x3 88.9x3 21.3x2

Upper Chord +
Ext. Vert. Structs

139.7x3 139.7x3 88.9x3

Int. Vert. Structs 33.7x2 21.3x2 21.3x2
Upward-Downward

Diagonals
60.3x2 88.9x3 88.9x3

Downward-Upward
Diagonals

33.7x2 21.3x2 60.3x2

Table 5.7: Size & Shape - Case B: Cross-sections of the optimized truss

Best OF Weight [kN] Na n H1 H2 n1 n2 n3
10.08232 4.8887 5 7 1.33 1.72 1 1 5

Table 5.8: Size & Shape - Case B: Main features of the optimized truss
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Figure 5.18: Size & Shape - Case B: Best
individual - Iteration

Figure 5.19: Size & Shape - Case B:
Weight of best individual at each iter-
ation

Figure 5.20: Size & Shape - Case B: Na

of best individual at each iteration
Figure 5.21: Size & Shape - Case B: n
of best individual at each iteration

Figure 5.22: Size & Shape - Case B: Un-
feasibility proportion
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Comparison with the size and shape optimization case, where only Φ1 were consid-

ered: lowered variability in number of sections used, from 10 to 5; same n, n1 and

n2; weight increase of about 13%.

Comparison with the analogous case in the size environment: weight reduction of

about 5%; slight increase in Na, from 4 to 5; 7 subdivisions instead of the fixed 6 of

before; same H1, while H2 passes from 2.5m to 1.72m.

5.2.3 Size & Shape - Case C: Φ1+Φ3

The Objective Function in this case is:

minF (x) = ρ

NX
i=1

(Ai · li) · ϕ1(nun) · ϕ3(n)

The resulting best individual found by Octopus is the following one:

Figure 5.23: Size & Shape - Case C: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2.5 60.3x3 33.7x2.5

Upper Chord +
Ext. Vert. Structs

139.7x3 114.3x3 101.6x2

Int. Vert. Structs 33.7x2 21.3x2 21.3x2
Upward-Downward

Diagonals
76.1x2 76.1x2 101.6x2

Downward-Upward
Diagonals

21.3x2 26.9x2 21.3x2.5

Table 5.9: Size & Shape - Case C: Cross-sections of the optimized truss
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Best OF Weight [kN] Na n H1 H2 n1 n2 n3
6.148 4.224 11 5 1.33 1.81 1 1 3

Table 5.10: Size & Shape - Case C: Main features of the optimized truss

We can recognize the effectiveness of this third penalty, highlighting the abatement

of n down to 5. In particular, looking at the following chart 5.27 we can see that

this value has been found just at the beginning, while in the remaining iterations

the other design variables have been varied. The resulting weight is far less than

case B, of about 16%. However, in terms of overall complexity, case B was slightly

better.

Figure 5.24: Size & Shape - Case C: Best
individual - Iteration

Figure 5.25: Size & Shape - Case C:
Weight of best individual at each iter-
ation

Figure 5.26: Size & Shape - Case C: Na

of best individual at each iteration
Figure 5.27: Size & Shape - Case C: n
of best individual at each iteration
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Figure 5.28: Size & Shape - Case C: Un-
feasibility proportion

5.2.4 Size & Shape - Case D: Φ1+Φ2+Φ3

Finally, the Objective Function in this case is the one with all the penalty functions:

ρ

NX
i=1

(Ai · li) · ϕ1(nun) · ϕ2(Na) · ϕ3(n)

The resulting best individual found by Octopus is the following one:

Figure 5.29: Size & Shape - Case D: Configuration of the optimized truss

Its corresponding cross-sections are reported in table 5.11, where only 5 different

values are assigned. In table 5.12, the main characteristics of the optimized config-

uration are summarized. A good balance in terms of complexity and weight mini-

mization has been found. In fact, in this last case where the three penalty functions

work simultaneously, we can see how the optimized feasible truss is characterized

by a low complexity both in terms of Na and n. Moreover, the resulting weight is

one of the best gained so far. It is 2.5% lower than the case A, where only Φ1 were

accounted, 14% lower than case B, where Φ1 and Φ2 were combined, and less than
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2% higher than case C, where the first and third penalties appeared in the OF.

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2 76.1x2 42.4x2

Upper Chord +
Ext. Vert. Structs

139.7x3 139.7x2 101.6x2

Int. Vert. Structs 42.4x2 21.3x2 21.3x2
Upward-Downward

Diagonals
76.1x2 76.1x2 101.6x2

Downward-Upward
Diagonals

21.3x2 21.3x2 21.3x2

Table 5.11: Size & Shape - Case D: Cross-sections of the optimized truss

Best OF Weight [kN] Na n H1 H2 n1 n2 n3
12.8858 4.2934 5 5 1.39 2.28 1 1 3

Table 5.12: Size & Shape - Case D: Main features of the optimized truss

Here below we have reported the usual chart related to the main parameters varied

among the iterations. As in case C, the optimal number of subdivisions has been

found in the early stages of the optimization. Instead, the number of different cross-

sections used has a more gradual trend. The unfeasibility proportion chart is always

showing how Octopus is always creating a high number of unfeasible individuals at

each iteration, in order to refine the analysis, while maintaining a sufficient number

of feasible ones.

Figure 5.30: Size & Shape - Case D: Best
individual - Iteration

Figure 5.31: Size & Shape - Case D:
Weight of best individual at each iter-
ation
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Figure 5.32: Size & Shape - Case D: Na

of best individual at each iteration
Figure 5.33: Size & Shape - Case D: n
of best individual at each iteration

Figure 5.34: Size & Shape - Case D: Un-
feasibility proportion

5.3 Size, shape and topology optimization

In this last section, we have directly performed the optimization comprehensive of

all the design variables, now including x1. The novelty with respect to the previous

case relies, in fact, in the topology slider that can choose between five different truss

configurations.

5.3.1 Size, Shape & Topology: Φ1(nun)+Φ2(Na)+Φ3(n)

The Objective Function is the same of the previous case, i.e

ρ

NX
i=1

(Ai · li) · ϕ1 · ϕ2 · ϕ3
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The resulting best individual found by Octopus is the following one:

Figure 5.35: Size, Shape & Topology: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2 60.3x2 21.3x2

Upper Chord +
Ext. Vert. Structs

168.3x3 139.7x3 139.7x3

Int. Vert. Structs 60.3x2 101.6x2 101.6x2
Downward-Upward

Diagonals
21.3x2 60.3x2 101.6x2

Table 5.13: Size, Shape & Topology: Cross-sections of the optimized truss

Best OF Weight [kN] Na n H1 H2 n1 n2 n3
12.4295 4.3627 5 4 1.7 2.38 1 1 2

Table 5.14: Size, Shape & Topology: Main features of the optimized truss

Figure 5.36: Size, Shape & Topology:
Best individual - Iteration

Figure 5.37: Size, Shape & Topology:
Weight of best individual at each iter-
ation
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Figure 5.38: Size, Shape & Topology:
Na of best individual at each iteration

Figure 5.39: Size, Shape & Topology: n
of best individual at each iteration

Figure 5.40: Size, Shape & Topology:
Topology of best individual at each it-
eration

Figure 5.41: Size, Shape & Topology:
Unfeasibility proportion

From table 5.13 we can see the CHS cross-sections assigned to each element. Also

in this case a balance between complexity and weight of the truss structure has

been found, as can be observed from table 5.14. However, the most important con-

sideration that can be drawn from the results refers to the topology selected by

the optimizer, which is Pratt one. As a matter of fact, it should be expected due

to the fact that we have considered only gravitational loadings. In Pratt trusses,

as explained in Chapter 4, the diagonal members, which are the longest ones, are

in tension and not in compression, thus they won’t require additional by buckling

instability verifications.
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5.4 Discussion and final considerations

In the cases in which the Objective Function included all the penalties, i.e. ϕ1, ϕ2

and ϕ3, we have tested the robustness of the algorithhm by performing the same

analysis twenty times. Specifically, it was done for ’Size & Shape - Case D’, de-

scribed in Section 5.2.4, which deals with a size and shape optimization, as well as

for ’Size, Shape & Topology’ discussed in Section 5.3.1.

Results for ’Size & Shape - Case D: Φ1+Φ2+Φ3’

In the table 5.15 the results of all the optimization performed are summarized. In

particular, they have been sorted from the smallest to the largest in terms of best

objective function.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3

12.885 4.293 5 5 1.39 2.28 1 1 3
13.259 4.820 4 5 1.54 1.8 1 1 3
13.290 4.831 4 5 1.54 2.25 1 1 3
13.512 5.175 4 4 1.47 1.65 1 1 2
13.817 4.603 5 5 1,44 1,8 1 1 3
13.869 4.621 5 5 1.45 1.82 1 1 3
13.976 5.352 4 4 1.45 1.59 1 1 2
14.035 4.471 5 6 1.67 2.43 1 1 4
14.043 4.881 4 6 1.33 1.61 1 1 4
14.176 4.927 4 6 1.38 2.07 1 1 4
14.247 4.747 5 5 1.76 1.78 1 1 3
14.353 5.037 5 4 1.36 2.01 1 1 2
14.364 5.041 5 4 1.47 1.58 1 1 2
14.401 4.798 5 5 1.33 2.07 1 1 3
14.595 5.123 5 4 1.34 2.21 1 1 2
14.782 5.188 5 4 1.33 1.77 1 1 2
15.085 4.922 6 4 1.45 2.5 1 1 2
15.121 5.307 5 4 1.59 1.63 1 1 2
15.372 5.016 6 4 1.44 2.5 1 1 2
15.549 5.457 5 4 1.33 1.55 1 1 2

Table 5.15: Results of the best individual of each optimization for ’Size & Shape -
Case D: Φ1+Φ2+Φ3’

In addition, in table 5.16, we have reported the Best, Worst and Mean values, as well

as the Standard Deviation of the OF. More in details, the best value corresponds to
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the minimum OF, while the worst value to the maximum OF.

Best Worst Mean Standard Deviation
12.885 15.549 14.236 0.713

Table 5.16: Best, Worst, Mean and Standard deviation related to the OF values of
’Size & Shape - Case D: Φ1+Φ2+Φ3’

Results for ’Size, Shape & Topology: Φ1+Φ2+Φ3’

In table 5.17 the results of every optimization have been summarized and sorted

from the smallest to the largest in terms of Best OF; while in table 5.18, Best (min),

Worst (max), Mean and Standard Deviation have been reported.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Topology
12.429 4.362 5 4 1.7 2.38 1 1 2 PRATT
12.435 4.143 5 5 1.53 1.96 1 1 3 PRATT
12.598 4.379 4 6 1.33 1.79 1 1 4 PRATT
12.604 4.424 5 4 1.97 2.39 1 1 2 PRATT
12.728 4.467 5 4 1.33 1.92 1 1 2 PRATT
12.776 4.644 4 5 1.55 1.85 1 1 3 HOWE
12.853 4.282 5 5 1.38 2.17 1 1 3 PRATT
12.876 4.202 6 4 1.57 2.24 1 1 2 PRATT
12.881 4.683 4 5 1.59 1.85 1 1 3 HOWE
13.069 4.587 5 4 1.33 1.86 1 1 2 PRATT
13.081 4.358 5 5 1.42 1.94 1 1 3 PRATT
13.144 4.613 5 4 1.34 2.06 1 1 2 WARREN
13.173 4.623 5 4 1.38 1.95 1 1 2 PRATT
13.182 4.392 5 5 1.37 1.85 1 1 3 PRATT
13.317 4.125 6 5 1.56 2.05 2 1 3 PRATT
13.389 4.699 5 4 1.46 1.68 1 1 2 PRATT
13.480 4.731 5 4 1.76 2.48 1 1 2 PRATT
13.777 4.590 5 5 1.33 1.84 1 1 3 HOWE
14.565 4.512 6 5 1.35 2.15 1 1 3 HOWE

Table 5.17: Results of the best individual of each optimization for ’Size, Shape &
Topology: Φ1+Φ2+Φ3’

Best Worst Mean Standard Deviation
12.429 14.565 13.072 0.509

Table 5.18: Best, Worst, Mean and Standard deviation related to the OF values of
’Size, Shape & Topology: Φ1+Φ2+Φ3’
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Analyzing the results of both cases there is a slight variability among the optimized

individuals. In order to obtain more refined results, the same analysis should be

performed at least 50 times.

Results of best individual for each case

Summarizing the results obtained for all the cases tested, we can refer to table 5.19.

Best OF W[kN] Na n H1 H2 n1 n2 n3
Size - case A:

Φ1
4.162 4.162 12 6 1.33 2.5 2 2 2

Size - case B:
Φ1+Φ2

9.748 5.156 4 6 1.33 2.5 2 2 2

Size & Shape - Case A:
Φ1

4.399 4.399 10 7 1.33 1.59 1 1 5

Size & Shape - Case B:
Φ1+Φ2

10.082 4.889 5 7 1.33 1.72 1 1 5

Size & Shape - Case C:
Φ1+Φ3

6.148 4.224 11 5 1.33 1.81 1 1 3

Size & Shape - Case D:
Φ1+Φ2+Φ3

12.886 4.293 5 5 1.39 2.28 1 1 3

Size, Shape &
Topology: Φ1+Φ2+Φ3

12.429 4.363 5 4 1.7 2.38 1 1 2

Table 5.19: Results of the cases tested; in red the parameters fixed in the size
analyses.

Due to the fact that the objective function are not comparable with one another,

with the exception of the last two rows, we can analyze the resulting weights. The

minimum value is obtained in the optimization denoted as ’Size - Case A: Φ1’. It is

interesting the fact that it is associated with the highest number of different cross-

sections used. On the contrary, the heavier design has been found for the analysis

denoted as ’Size - Case B: Φ1+Φ2’, where the second penalty function has been

integrated. Once again, we should underline the fact that it is the case in which the

lowest number of sections used has been employed. Therefore, we can observe that

the complexity in terms of Na is the one that influence the most the weight of the

optimized structure. On the other hand, we can also state that the third penalty

function, thus the complexity in terms of number of subdivision, is working fine

when combined with the first two. In fact, from ’Size & Shape - Case C: Φ1+Φ3’
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and ’Size & Shape - Case D: Φ1+Φ2+Φ3’, n is stable at 5.

Another important observation is that, for the specific analysis considered with

gravitational loads only, the optimized configuration is always characterized by

n1 = n2 = 1. This means that the outer elements of each component have dif-

ferent sections, while the internal part is unifed with the same cross-section.

For future development in this field, it would be interesting to employ a different

grouping division, thus using two different indexes, for each component. For sure

this would increase the computational effort because the design variables associated

to the indexes are going to pass from 2 to Noofcomponent · 2. However, it could be

useful to discriminate among the different components and to refine the analysis, in

order to see how the solicitation distribution would be optimized.



Chapter 6

Case study 2 - Industrial

building level

The analysis illustrated so far was limited to the level of the truss element, however

our scope is to fit such theoretical procedure to a large scale structure. Due to

the great employment of truss structures in industrial buildings, we have decided

to explore this type of construction. Thus, in the present Chapter we are going to

parametrically model and optimize the building under study, following the scheme

of the previous case study. We are going to stress the main differences and analogies

with the analysis at the truss level and how our objective function can work in a

larger and more challenging environment.

6.1 Parametric modelling

Also in this instance we have exploited the power of parametric design to create

the geometry of our structure using Grasshopper. In fact, the design is composed

by a repetition of specific modules at a distance s, which stands for spacing, that

will be an indirect variable of the problem. Specifically, our aim is to optimize the

number of modules, which can be seen as the ratio of half the length and the spacing.

Looking at the schematic representation of the overall geometry in figure 6.1, we can

see that the modules consist of the truss system with the two columns at the outer

sides. In particular, the truss system is the same of the previous case study, while

the height of the columns has been set equal to 5 meters. Actually the external

vertical structs of the truss are now removed and replaced by the column which rise
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up to the upper chord nodes.

Figure 6.1: Industrial building general scheme with modules

Therefore, fixing the entire extent of the structure, which has been set equal to 60

meter, these modules can be denser or more widely spaced. Going into the details

of the geometric modelling, we have started from the definition of the origin point

in the middle of the structure, in order to take advantage of the symmetry with

respect to the xz plane. Actually, we have the symmetry also with respect to the

yz plane, however it cannot be exploited due to the presence of lateral load too.

Hence, the geometry has been created in the first half, considering half portion of

the entire horizontal development of 60 meters on the y-axis. Then, it has been

mirrored with respect to xz plane. For this reason, the design variable related to

the number of modules Nm is referred to half geometry. Let’s now focus on the

actual model creation in Grasshopper. First of all, we should distinguish the main

components of the industrial building:

• Truss system, distinguished in the five components seen in 4.4, i.e. Lower

Chord, Upper Chord, Internal Vertical Structs, Upward-Downward Diagonals,

Downward-Upward Diagonals;

• Columns;

• Purlins or Secondary beams;

• Roof bracings;

• Vertical bracings type 1, which are the upper ones;

• Vertical bracings type 2, the lower ones.
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Figure 6.2: Industrial building’s components

In the reported figure 6.2, we can easily recognize them thanks to the different

colors used. Another important feature of the overall geometry is the presence of

the symmetric scheme of the roof bracing systems, which are present at the edges

of the structure and in the middle, regardless the spacing used. Hence, we have

started the geometry by creating the first module, located at a distance of s/2 in

y-direction from the origin. Then, to have a symmetric configuration of the roof

bracings, we have imposed that in its half there will be at least two more modules.

In this way we have fixed the lower bound of Nm equal to 3, that in turn leads to a

spacing value of 12 meters, according to the equations 6.1, 6.2 and 6.3. It has been

found considering the following geometric relationships, represented graphically in

figure 6.3.

Figure 6.3: Geometrical relationships for Nm domain definition

L

2
− s

2
= (Nm − 1) · s (6.1)
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which leads to

Nm =
L+s
2

s
(6.2)

and

s =
L
2

Nm − 1
2

(6.3)

Instead, the upper limit of Nm has been set by imposing a minimum spacing of 4

meters, thus obtaining Nm,max = 8. In the reported figure 6.4, we can see how these

extreme Nm values influence the overall configuration.

Figure 6.4: Nm limiting configurations

The vertical bracings, both type 1 and 2, are covering the entire length in the y-

direction. The roof bracing, instead, as said, are distributed symmetrically along

the plan of the structure. However, it should be mentioned that, looking at their

distribution with respect to the upper chord nodes, they will cover a span length of

one quarter of the entire truss of 20 meters, no matter the value of n. It has been

done to avoid the integration of the industrial building complexity, so their number

will be fixed during the optimization. Then, for what regard the secondary beams,

they are created by connecting the nodes of the upper chord from one module to

the other. In this way the geometric modelling has been created.
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6.1.1 Elements cross-section

Now, we have to transform it into actual beam elements, as we have done for the

truss, using Karamba3D. Precisely, the grouping and cross-sections assignment of the

truss system has been performed exactly as before. Instead, the other components

have been simply assigned with specific cross-section profiles, namely:

• Columns → HEA section, which stands for European wide flange beam sec-

tion;

• Purlins → IPE section, i.e. European I-section beam with parallel flanges;

• Bracings → ROPE sections

Figure 6.5: Industrial building’s elements sections

6.1.2 Loads

In this section the loads applied to the large span building are evaluated and properly

described. As said in chapter 4.5, Karamba 3D can consider only one combination of

loads, therefore, also in this case, the Ultimate Limit State (ULS) analysis has been

considered. In contrast to the case study at the truss level, where only gravity loads

were applied to the structure, here both gravitational and horizontal loads were

taken into consideration. Therefore, the following combination have been employed:

γG1 ·G1 + γG2 ·G2 + γP ·P + γQ1 ·Qk1 + γQ2 ·ψ02 ·Qk2 + γQ3 ·ψ03 ·Qk3 + ... (6.4)

• Gravity loads

Regarding the gravitational loadings, the following ones have been evaluated:
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1. Permanent Structural, or Dead, Load (G1)

The Dead Load is simply the self-weight of all the components of the struc-

ture. In Karamba3D it is computed automatically, so we have simply ap-

plied the coefficient of the load combination considered.

2. Permanent Non-Structural Load (G2)

The Permanent Non-Structural Load, i.e. G2, is referred to the corrugated

sheet, which is the material used to cover the roof of the building. In

particular, it is useful to distribute loads on bottom purlins.

Figure 6.6: Corrugated sheet

The standard load considered for the corrugated sheet is 0.05kN/m2, which

has to be multiplied by the length of influence. The evaluation of the area

of influence will be depicted at the end on this section.

3. Maintenance Load (qk)

In order to define the value of qk we should refer to the indications provided

by the Eurocode. In particular, the roof of our building, where the loads is

going to be applied, belongs to the category H. Specifically, this category

is referred to the covers accessible only for maintenance, which match with

our case study. The value recommend by the Eurocode is qk = 0.4KN
m2 , how-

ever, the Code specifies that it can be changed, according to the National

Annex. Due to the fact that we are assuming the location of our building

in Turin (Italy), the National Code we need to refer to is "Norme tecniche

per le costruzioni" (NTC2018). Looking at the chapter 3.1 "Opere civili

e industriali" and specifically the sub-section 3.1.4 "Sovraccarichi" from

table 3.1.II in figure 6.7, the correct value is qk = 0.5KN
m2 .
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Figure 6.7: Table 3.1.II of NTC2018 to define the load qk

4. Snow Load (qs)

Based on the building’s position, the snow load is assessed and, as it was

previously said, Turin’s location has been taken into account. The general

formulation for the snow pressure, according to the Eurocode, is:

qs = qsk · µi · CE · CT (6.5)

Where:

– qsk is the characteristic value of the snow load on the ground. In order to

determine its value, we should refer to the national annex NTC2018. It

depends on climate conditions and local exposure of the zone considered

and it is correlated with the altitude. It can be computed according to

the equation qsk = 1.39 · (1 + ( as

728)
2), where as is the elevation above

sea level. Specifically, Turin is at 239 meters above the sea level, thus

we obtain a value of qsk = 1.539KN
m2 .

– µi is a shape coefficient related to the inclination of the roof. It varies

according to the reported table 6.1:
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Shape coefficient 0◦ ≤ α ≤ 30◦ 30◦ ≤ α ≤ 60◦ α ≥ 60◦

µ1 0.8 0.8 · (60−α)
30 0.0

Table 6.1: Values of shape coefficient µi based on the inclination of the roof

In our building the inclination of the roof is lower than 30◦, therefore

µi = 0.8.

– CE is the exposure coefficient and it is always related to the zone where

the building is located. For our case, a value equal to 1 is assigned, due

to the fact that there is not a significant removal of snow on building

produced by the wind.

– CT is the thermal coefficient and it is usually assumed equal to 1.

The final value of the snow load is: qs = 1.23KN
m2

Before going into the details of the other class of actions considered, i.e. the

lateral ones, we would like to explain how the above mentioned vertical actions

have been applied. With the exception of the Dead Load G1, that is automati-

cally considered by the software, for the other ones, the area of influence of such

loads has to be identified. G2, qk, as well as qs are applied on the purlins and

their area of influence is a function of their relative distance. In the following

figure 6.8, a schematic representation is reported.

Figure 6.8: Lenght of influence for internal and external purlins

As we can see, there is a difference between the length of influence for internal

and external purlins, which are both function of the distance between the upper

chord’s node. Specifically, the values considered in our analysis are function of

the design variable n. Finally, the unitary length loads to be applied on the
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purlins are computed as the just explained pressure values, multiplied by the

length of influence, resulting in kN/m.

• Lateral loads

1. Wind Load (p)

Wind is the movement of air masses characterised by a velocity field that

fluctuates randomly in time and space. It exerts aerodynamic actions on

whole structures or on individual structural components. Wind load act

as a lateral pressure on the external surface of the large span building. As

said for the other loads, Eurocode suggests to refer to the National Annex

to determine wind pressure.

Referring to the chapter 3.3 of NTC2018, the pressure exerted by the wind

is:

p = qb · ce · cp · cd (6.6)

Where:

– qb is the reference kinethic pressure evaluated as:

qb =
1

2
· ρ · v2b (6.7)

Specifically, ρ is the air density equal to 1.25 kg
m3 , while vb is the wind

velocity and it depends on the location of the building. NTC2018 in

the section 3.3.1 provides the table illustrated in figure 6.9 with the

values of vb:

Figure 6.9: Table 3.3.I of NTC2018 to define the vb, a0 and ka

Turin is in zone 1 so the final value of qb is 0.391KN
m2 according to
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equation 6.7.

– Ce is the exposure coefficient, which has the following expression:

ce(z) = k2r · ct · ln(
z

z0
) · [7 + ct · ln(

z

z0
)] for z ≥ zmin (6.8)

ce(z) = ce(zmin) for z < zmin (6.9)

In particular kr is the class of roughness and we need to refer to table

3.3.III of NTC2018 reported in figure 6.10.

Figure 6.10: Table 3.3.III of NTC2018 to define the class of roughness

Due to the fact that our structure is an industrial building, a class of

roughness ’B’ is assigned.

The next step concerns the definition of the exposure category, refer-

ring to the table shown in figure 6.11 provided by the National code.

Figure 6.11: Table 3.3.III of NTC2018 to define the exposure coefficient

For our case study the exposure coefficient is IV.

Finally, from table 3.3.II of NTC2018 6.12, based on the site exposure
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coefficient (IV) previosuly evaluated, all the terms contained in equa-

tion 6.8 can be determined.

Figure 6.12: Table 3.3.II of NTC2018 to define kr, z0 and zmin

The final value of ce is 1.55 .

– cp is the shape coefficient, which is related to the inclination of the

roof α. The image below 6.13 illustrates how the coefficient should be

considered in the evaluation of the wind pressure acting on the different

structural elements, according to the Code.

Figure 6.13: Values of shape coefficient cp

– cd is the dynamic coefficient, which is generally set equal to 1 in build-

ings with an height lower than 80 meters.

Once vb, ct, cp and ce have been properly defined, the final wind pressure acting on

the large span building is given. The following table 6.2 contains the values of the

wind pressures p, evaluated according to the equation 6.6:
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cp p[KN
m2 ]

Upwind
wall

0.8 0.48

Downwind
wall

-0.4 -0.24

Upwind
roof pitch

-0.4 -0.24

Downwind
roof pitch

-0.4 -0.24

Table 6.2: Wind pressure p values for the different cpe

It’s important to clarify that we have taken into account only the external pres-

sure caused by the wind. This is due to the assumption that the building has no

openings and it can be considered as an airtight construction, ’costruzione stagna’,

according to NTC2018. Nevertheless, if we would like to consider any openings, it

would be necessary to consider the coefficient cpi referred to an internal pressure.

Specifically, the value of cpi will vary based on the area covered by the openings; for

example if less than 1\3 of the total area, a value of cpi = ±0.2 should be considered.

As illustrated in figure 6.13, the internal pressure is represented by the red arrows

and is going to act in the opposite way with respect the external one.

Regarding the application of the wind load, as already discussed for the vertical

actions, a correct area of influence should be properly defined. Particularly, wind

pressure has been applied only to purlins, normal to their development considering

the same scheme shown in figure 6.8, while for columns, along x-direction, as illus-

trated in the following figure 6.14:

Figure 6.14: Lenght of influence for internal and external columns
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Once all the loads, both vertical and horizontal, are properly evaluated, the next

step is to assign the coefficients of the load combination to each of them.

Unfortunately there is only one load combination that can be defined in Karamba

3D, therefore we have considered the heaviest one. In particular, we have chosen as

dominant variable load the Maintenance Load qk in order to be able to maximize

the bending moment. In turn, the Snow load and the Wind action have been ac-

counted as secondary variable loads with the proper ψ0j coefficient. Referring to the

ULS equation 6.4 and tables 2.5.I, 2.6.I of NTC2018 in figure 6.15 provided by the

national annex NTC2018, the following coefficients have been applied, as reported

in table 6.3:

Figure 6.15: Table 2.6.I and 2.5.I of NTC2018 to define the load’s coefficient

Load Type Load Name Load Value [KN
m2 ] γ ψ

Dead Load G1 Structure weigth 1.3 -
Perm. Non-struct. Load G2 0.05 1.5 -

Maintanance Load qk 0.5 1.5 -
Snow Load qs 1.23 1.5 0.5
Wind Load p Depends on cp 1.5 0.6

Table 6.3: Summary of loads applied to the building and their relative value and
coefficient

6.1.3 Supports

Both internal and external constraints have been utilized for the large span con-

struction. Specifically, the base points of the columns were fixed to the ground,

preventing any translational and rotational motions. Regarding the internal ones,

Karamba 3D automatically applies rigid links between all the structural elements.
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6.2 Objective Function Formulation

The optimization carried out for the industrial building application takes its origin

from the formulation of the simple truss, which has been slightly modified to better

fit this case study. First of all, we should start by the definition of the design

variables involved. In fact, with respect to the previous ones, reported in table 4.3,

six additional design variables have been introduced. Specifically, the cross-sections

of the structural members added, i.e. columns, purlins and bracings, distinguished

into 1 roof bracing and 2 types of vertical ones, have been integrated with the former

size variables of the truss. Moreover, a shape design variable related to the spatial

configuration of the structure has been added, namely the number of modules of one

half (Nm). The final number of design variable considered is 27 and the additional

ones are summarized in table 6.4.

Design
variable

Description Domain

x22
Numbers of modules

in one half
3÷ 8

x23
Column HEA
cross-section

0÷ 23 profiles’ index
from catalogue

x24
Purlin IPE

cross-section
0÷ 17 profiles’ index

from catalogue

x25
Roof bracing ROPE PV

cross-section
0÷ 24 profiles’ index

from catalogue

x26
Vertical bracing type 1
ROPE PV cross-section

0÷ 24 profiles’ index
from catalogue

x27
Vertical bracing type 1
ROPE PV cross-section

0÷ 24 profiles’ index
from catalogue

Table 6.4: Design variables where the colors of the cells represent the different
categories: purple - Global layout definition; orange - Additional size design variables

Once clarified all the parameters involved in the optimization, it can be easier to

understand the aim of this analysis. In fact, the simultaneous size, shape and

topology optimization of the truss, composing the modules of the industrial building,

will be carried out, in parallel with the size and shape optimization at the larger

scale. The cross-sections of the additional elements are going to be minimized, still

satisfying the structural verification, while the spacing between the modules is going

to be adjusted at each iteration. To be more clear, the shape optimization at the
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industrial building level is going to be performed only varying the number of modules

present.

Focusing on the Objective Function formulation, it is the same as the one used for

the analysis on the truss structure, explained in section 4.6 with the equation 4.2:

min F (x) = ρ

NX
i=1

(Ai · li) · ϕ1(nun) · ϕ2(Na) · ϕ3(n)

While the first penalty related to buckling instability verification is now enlarged to

all the elements, the other two penalties regarding the design simplification are not

working in the general framework. In fact, the constructability criteria embedded

in ϕ2 and ϕ3 are going to act only on the truss components and, in particular, to

the number of sections used (Na) and to the number of subdivisions of the chords

(n), respectively. In this way the complexity is going to be studied only at the truss

level, making it possible to analyse the validity of the previous considerations. As

a result, we can effectively appreciate the discoveries of the truss level optimization

of Chapter 4, in a more challenging scenario. In particular, this is the reason why

we have fixed the number of roof bracings regardless n, in order to avoid a higher

complexity.
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6.3 Results - Industrial building level

In this section the results of the industrial building optimizations have been sum-

marized. The analysis has been performed 15 times in order to obtain more refined

results and to test how the algorithm works in this second case study. In the fol-

lowing table 6.5, the results are sorted from the smallest to the largest in terms of

best objective function.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
775,427 330,228 3 4 2 2,17 1 1 1 7 HOWE
790,020 336,442 3 4 2 2 1 1 1 7 HOWE
885,230 339,024 4 4 2 2 2 1 1 7 HOWE
888,228 340,172 4 4 1,99 2,07 1 1 1 7 HOWE
894,320 342,505 4 4 1,99 2,01 1 1 1 7 HOWE
932,095 396,947 3 4 1,94 2,01 2 1 1 6 WARREN
937,174 399,110 3 4 2 2,43 1 1 1 6 HOWE
964,094 369,228 4 4 1,54 1,64 1 1 1 7 HOWE
967,429 370,505 4 4 1,67 1,67 2 1 1 6 HOWE
974,337 341,988 5 4 2 2,1 2 1 1 7 HOWE
983,096 376,505 4 4 1,97 1,99 1 1 1 8 PRATT
1014,911 356,229 5 4 1,68 1,87 1 2 1 8 HOWE
1023,262 391,888 4 4 2 2,31 1 2 1 7 WARREN
1036,499 396,957 4 4 2 2 1 2 1 7 PRATT
1042,326 399,189 4 4 1,96 2,16 1 1 1 6 PRATT

Table 6.5: Results of the best individual of each optimization for the Industrial
building

Analyzing the results, several considerations can be drawn. First of all, focusing

on the last column ’Topology’, the variability in the optimal solution can be high-

lighted. In fact, the Howe truss is the most chosen one, however sometimes the

optimizer prefers also Pratt and Warren. Due to that, we have distinguished the re-

sults for the different typology, i.e. Howe 6.6, Warren 6.8 and Pratt 6.10. We should

recall the fact that, because of the limit to only one load combination imposed by

Karamba3D, we have been able to apply the wind action only from left to right.

Therefore, this has influenced the final configuration of the truss systems.

Here below the results of the optimizations with Howe truss as optimal solution are

reported in table 6.6.
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Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
775,427 330,228 3 4 2 2,17 1 1 2 7 HOWE
790,02 336,442 3 4 2 2 1 1 2 7 HOWE
885,23 339,024 4 4 2 2 2 1 1 7 HOWE
888,228 340,172 4 4 1,99 2,07 1 1 2 7 HOWE
894,32 342,505 4 4 1,99 2,01 1 1 2 7 HOWE
937,174 399,11 3 4 2 2,43 1 1 2 6 HOWE
964,094 369,228 4 4 1,54 1,64 1 1 2 7 HOWE
967,429 370,505 4 4 1,67 1,67 2 1 1 6 HOWE
974,337 341,988 5 4 2 2,1 2 1 1 7 HOWE
1014,911 356,229 5 4 1,68 1,87 1 2 1 8 HOWE

Table 6.6: Results of the best individual for Industrial building with Howe truss

In the table below 6.7 also the Best, Worst and Mean values, as well Standard De-

vation of the OF are reported. Specifically, the best value is related to the minimum

OF value, while the worst to the maximum one.

Best Worst Mean Standard Deviation
775.427 1014.911 909.117 78.83

Table 6.7: Best, Worst, Mean and Standard deviation related to the OF values of
the optimized Industrial building with Howe truss

Focusing on the best optimized individuals with Howe truss and referring to table

6.6, there is still some variability in the results and this is mainly due to the high

number of design variables that the optimizer have to manage.

More in detail starting from the OF values the minimum one is obtained reducing

the complexity at truss level, as expected. In fact lowering the values of Na and

n the best individual is found. However, regarding Na, looking at all the results,

there isn’t a clear trend, in fact it varies from 3 to 5. On the contrary, the number

of subdivisions n is stable at 4. About weight values of the optimized individuals, a

narrow range of results can be observed, in fact it fluctuates between 330KN and

356KN . With respect to the case study 1, in which the weight increased when Na

and n decreased, here the total weight of the structure cannot be directly related

to the complexity of truss structure. As a matter of fact, now there are many other

structural elements that contribute to the weight final value.

Moving to the column of the table referred to the values of Nm, the number of

modules, and keeping in mind that it ranges between 3 and 8, we can state that the
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optimizer mainly prefers to work with more modules, from 6 to 8. This choice is

justified by the fact that if the spacing is widened, resulting in a lower Nm value,

heavier section are necessary. Furthermore, the algorithm is not directly guided in

the selection of Nm.

Regarding the geometric layout, i.e. H1 and H2 values, there is almost a clear

trend. Specifically, fixing n = 4, the allowable ranges for the two parameter are

1.44 < H1 < 2 and H1 < H2 < 2.5. Looking at the results, we can see that the

values assigned to the optimized structures vary in these limits: 1.54 < H1 < 2 and

1.64 < H2 < 2.43.

A final consideration can be made about the values assigned to the index ni in the

definition of the grouping. Index n2 is almost fixed at 1, with the exception of the

last best individual that is also the worst in our set. Instead, n1 and n3 vary be-

tween 1 and 2. Perhaps if we could perform a higher number of analysis it would

be possible to establish a more stable trend.

Here below the tables summarizing the results of the remaining typologies, i.e. War-

ren and Pratt ones, have been reported.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
932,095 396,947 3 4 1,94 2,01 2 1 1 6 WARREN
1023,262 391,888 4 4 2 2,31 1 2 1 7 WARREN

Table 6.8: Results of the best individual for Industrial building with Warren truss

Best Worst Mean Standard Deviation
932,095 1023,262 932,095 63,008

Table 6.9: Best, Worst, Mean and Standard deviation related to the OF values of
Industrial building with Warren truss

The Warren truss has been chosen only twice out of the 15 optimizations, therefore

we cannot make an analysis as detailed as the one referred to the Howe truss. How-

ever, looking at tables 6.8 and 6.9, first of all, we can say that the best objective

function value is much higher than the best of the Howe configuration. It is inter-

esting the fact that also in this case n is always stable at 4, proving that the penalty

Φ3 is guiding effectively the algorithm. All the other parameters are different in the

two individuals, but recall a little bit the values of the Howe case.
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Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
983,096 376,505 4 4 1,97 1,99 1 1 2 8 PRATT
1036,499 396,957 4 4 2 2 1 2 1 7 PRATT
1042,326 399,189 4 4 1,96 2,16 1 1 2 6 PRATT

Table 6.10: Results of the best individual for Industrial building with Pratt truss

Best Worst Mean Standard Deviation
983,096 1042,326 1020,640 32,644

Table 6.11: Best, Worst, Mean and Standard deviation related to the OF values of
Industrial building with Pratt truss

Looking at the Pratt optimized trusses, we have now three individuals out of the

total 15 ones. The best OF is in between the two previously analyzed cases, however

the difference with the Howe case is significant. In this case, both Na and n are

fixed at the same value in all the three optimized structures, while a variability in

all the other parameter is visible.

Once all the outcomes have been introduced and examined, let’s now focus on the

best individual among the 15 analysis summarized in table 6.5.

The resulting best industrial building is characterized by truss systems belonging to

the Howe category and the overall configuration is the following one:

Figure 6.16: Configuration of the optimized Industrial building
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Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm

775.427 330.228065 3 4 2 2.17 1 1 2 7

Table 6.12: Best Individual of the optimized Industrial Building

The figure below 6.17 is showing the optimized truss and the groups subdivision of

the different components:

Figure 6.17: Configuration of the Howe truss in the optimized Industrial building

In the tables 6.13 and 6.14 the cross-sections assigned to all the structural members

are reported:

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 88.9x2.5 88.9x2.5 88.9x2.5
Upper Chord 219.1x6 88.9x2.5 21.3x2

Int. Vert. Structs 21.3x2 88.9x2.5 21.3x2
Upward-Downward

Diagonals
88.9x2.5 88.9x2.5 88.9x2.5

Table 6.13: Cross-sections of the optimized truss in the Industrial building

Structural
Elements

Cross Section
Type

Columns HEA 100
Purlins IPE 120

Roof Bracings Rope PV 300
Vertical Bracings 1 Rope PV 40
Vertical Bracings 2 Rope PV 360

Table 6.14: Cross-sections of the structural elements in the Industrial building

Now the charts about the main parameters of the best individual at each iteration

have been reported.
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Figure 6.18: Best individual at each it-
eration

Figure 6.19: Weight of best individual
at each iteration

Figure 6.20: Na of best individual at
each iteration

Figure 6.21: n of best individual at each
iteration

Figure 6.22: Topology of best individual
at each iteration

Figure 6.23: Unfeasability proportion
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Figure 6.24: Nm of best individual at
each iteration

From chart of 6.20 and 6.21 we can appreciate how the penalty ϕ2 and ϕ3 are

still working in the correct manner. Specifically, the complexity related to Na has

been further reduced, in fact the final value of different cross-section used is 3. We

can highlight the fact that with ϕ2 we are guiding the algorithm to refine the anal-

ysis and choose lower Na values, as visible in 6.20. Instead, for the topology 6.22 as

well as for Nm 6.24, with our objective function we have not leading the optimiza-

tion toward a specific condition. In fact, the optimizer after few iterations begins

to stagnate in the same solution. This is due to the fact that is free to choose any

solution because no penalty is influencing the optimal final value.

Let’s see in details the structural features of the optimized structure. In particular,

in figure 6.25 it has been reported the axial force diagram of the all structure. It is

clearly visible that the Axial Stress is pronounced for the trusses components and

for columns. In particular, in the Howe truss, Lower Chord and Vertical elements

work in tension, while the beams of the Upper Chord and Diagonal are compressed,

as well as the columns of the industrial building. Instead, in figure 6.26 it is clearly

visible the bending moment diagrams affecting the purlin elements.

In addition, in 6.27 the displacements of the different structural elements has been

reported. We should highlight the fact that the analysis has been performed consid-

ering Ultimate Limit States, therefore no restriction on the vertical displacements

has been imposed. In particular, the highest displacement affecting the central part

of the structure is lower of 8 cm.
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Figure 6.25: Axial force diagram. In orange the compressed elements, in blue the
tension one

Figure 6.26: Bending moment diagram. In orange the negative values, in green the
positive one

Figure 6.27: Displacements and related legend of the Industrial building





Chapter 7

Discussions and final

considerations

In this Thesis we have seen the applicability of the proposed objective function for

simpler and more challenging truss structures. It has been stresses the importance of

constructability considerations together with a weight minimization, aimed at find-

ing a simplified and standardized design. Ranging from a simple size optimization

to a simultaneous size, shape and topology one, we have studied the single penalty

functions introduced, how they work and how they can be calibrated according to

the specific needs. Starting from the truss level analysis, we originally expected to

obtain higher weights for lower design complexity, in fact a balance between these

aspects has been found for the optimized structures. Moreover, for what regard the

case in which the topology slider has been considered as design variable too, the

Pratt configuration has been chosen. This was, once again, expected because, for

gravitational loads only, in this type of truss the longer diagonal elements work in

tension, thus avoiding further verifications for compressive states. On the contrary,

in the Howe truss, for example, the diagonals are in compression thus it should be

avoided. The most challenging task was to understand the calibration of the pa-

rameters employed in each single penalty. Specific trends have been identified and

recommendations on possible changes have been provided.

Then, in the passage from the truss level to the one of the industrial building, the

most important modifications have been highlighted. In particular, the additional

design variables were mainly related to the cross-sections employed for the new struc-

tural elements and the one linked to the spacing of the different modules. For this
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second case study, the objective function has been applied with a simple alteration

regarding the buckling structural verification, which is now testing all the elements.

Constructability considerations, instead, have not been enlarged to the global level,

but remain at the truss one. This is evident, for example, in the variability of Nm

in the optimized structures, visible in table 5.8. In fact, the algorithm is not en-

couraged towards a reduction of Nm, which in turn could lead to a decrease in the

overall number of pieces, connections and so on. Therefore, a possible enhancement

of the reported study could be the generalization of the complexity, including the

number of modules as a parameter in the OF, analogous to n in the third penalty.

In a similar way to n, in fact, low Nm values imply heavier sections, thus from an

economical point of view it is not straightforward if it would be advantageous or not.

Furthermore, it would be extremely interesting the outcomes of this double simpli-

fication of the design, in order to be able to understand if the optimization would

promote a more complex truss system with low Nm, thus lower number of modules,

trusses and thus pieces, or vice versa. In other words, it would be more important

the truss complexity or the global one? Moreover, a further global parameter of the

complexity can be identified in the variation of the roof bracings as a function of

the truss chord’s nodes. In fact, as stated before, their configuration has been fixed,

but the inclusion of their pattern variability in the objective function could enhance

the dual design streamlining.

Another significant finding from the analyses is that the algorithm is not sufficiently

guided in the topology identification. In fact, in our optimization, Octopus is free to

assign any possible type of configuration, without a specific encouragement towards

a specific one. Most of the time, it is able to retrieve the one that reduces the

number of pieces, that in turn abate the OF value, however there could be a more

stable trend. Therefore, we could consider introducing a gradual exploration in the

algorithm. Specifically, it should be improved at the beginning in order to find the

best one, and then reduced to lessen the computational effort.

Another future investigation could be the optimization of the cross-sections profiles,

thus obtaining the best one for each specific component. In fact, we know that for

the truss elements it could be convenient to employ I-shaped or H-shaped profiles, as

well as UPN or L-shaped ones. In any case, the optimization of the profiles should

be aimed at finding feasible connections between the components.

Furthermore, we suggest to expand the analysis considering other load combinations.

The limit imposed by Karamba3D of a single load combination can be overcomed
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in different ways. In Grasshopper environment there are plug-ins that allow to solve

the structural analysis using external solutors, like SAP2000. In this way, multiple

load combinations can be taken into account. The main drawback in such procedure

would be the increase of the computational time, however it would result in a more

comprehensive analysis.
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