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Abstract. 

The study investigates the use of machine learning in remote sensing to identify and map linear 
features such as urban features, roads, pipelines, and utilities in civil engineering. Remote 
sensing involves using sensors to gather data about the Earth's surface and atmosphere from a 
distance. Machine learning is a powerful tool that can be used to analyze and interpret this data 
to extract meaningful insights and make predictions. The availability of large amounts of data 
from remote sensing technologies has greatly increased in recent years. It has become 
increasingly more work to analyze and interpret this data manually. Machine learning solves 
this problem by automating the analysis and interpretation of remote sensing data.  

Using machine learning in remote sensing can provide numerous benefits, including increased 
efficiency and accuracy in data analysis. In this study's context, the primary dataset's accuracy, 
which only contained RGB values, was 83%. The accuracy was improved to 89.9% when an 
integrated dataset containing RGB, and elevation information was used. The study also 
compared pixel-based and object-based classification using a random forest algorithm and 
found that object-based classification led to slightly improved accuracy. Furthermore, the 
accuracy was improved from 89.9% to 92.08% when using a deep learning convolutional 
neural network (CNN), even for a tenfold larger area. The training time for the CNN algorithm 
model was 6x longer than the traditional machine learning model. However, implementing the 
trained model over large areas took only minutes rather than hours and enabled the extraction 
of single types of features without any redundant data. Similar results (91.11%) were obtained 
in a second example applied to a road corridor.  

The findings of this study can have practical applications, such as the analysis of structures & 
infrastructure safety and digital twins. Machine learning can analyze data from remote sensing 
over time to detect changes and trends, which can be useful for understanding environmental 
impacts and identifying potential conflicts. Additionally, the results of this study can inform 
the design and planning of urban corridors with data credibility in mind by helping to identify 
the potential hazard and possible solutions. 
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1 Chapter: Introduction and Background 

1.1 Introduction: 
Remote sensing involves using sensors to gather data about the Earth's surface and atmosphere 
from a distance. Machine learning is a powerful tool that can be used to analyze and interpret 
data to extract meaningful insights and make predictions.  

Using machine learning in remote sensing can provide numerous benefits, including increased 
efficiency and accuracy in data analysis, versatility in various applications, and the ability to 
scale up to handle large datasets easily. These advantages make machine learning a powerful 
tool for understanding and managing the environment and enabling more informed decision-
making about the conservation and management of natural and urban environments. 

Some examples of how machine learning is used in remote sensing include: 

• Land cover classification: Machine learning algorithms can be trained to recognize 
different types of land cover (e.g., forests, grasslands, urban areas) based on features 
extracted from remote sensing data. This can be used to map the distribution of different 
land cover types, monitor land use change, and assess the health of ecosystems. 

• Object detection and tracking: Machine learning algorithms can identify and track 
objects in remote sensing data, such as vehicles, ships, or aircraft. This can be useful 
for various applications, including transportation and logistics, defense, and 
environmental monitoring. 

• Image classification: Machine learning can classify images based on their content, such 
as distinguishing between different vegetation types, identifying the presence of water, 
or detecting changes over time. This can be useful for various applications, including 
agriculture, natural resource management, and disaster response. 

• Corridor mapping: The process of identifying and mapping the boundaries of corridors, 
defined as linear areas connecting two or larger areas, such as forests or wetlands. 
Machine learning can be used to automate this process by training algorithms to 
recognize the characteristics of corridors in remote sensing data. 
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1.2 Background: 
In civil engineering, corridor mapping is often used to identify and map linear features such as 
roads, pipelines, and utilities. Some common types of corridor mapping in civil engineering 
include: 

• Pipeline corridor mapping involves identifying and mapping the boundaries of 
pipelines and the surrounding rights-of-way. Pipeline corridor mapping can be used to 
understand the impacts of pipeline construction on the environment and to identify 
potential conflicts with other land uses or infrastructure. 
 

• Utility corridor mapping: This involves identifying and mapping the boundaries of 
utility corridors, which contain infrastructures such as power lines, water lines, and 
communication cables. Utility corridor mapping can be used to understand the impacts 
of utility construction on the environment and to identify potential conflicts with other 
land uses or infrastructure. 
 

• Road corridor mapping involves identifying and mapping the boundaries of roads and 
the surrounding rights-of-way. Road corridor mapping can be used to understand the 
impacts of road construction on the environment and to identify potential conflicts with 
other land uses or infrastructure. 
 

• Urban corridor mapping involves identifying and mapping corridors within urban 
environments that contain infrastructures such as roads, utilities, and other linear 
features. Urban corridors may also include green spaces, parks, and other areas 
providing wildlife habitat or connectivity. 

Urban corridors are typically characterized by high land use and development levels and can 
be a major focus of infrastructure planning and investment in urban areas. Urban corridors may 
be important for transportation, economic development, and the quality of life of urban 
residents. In civil engineering, the planning and design of urban corridors may involve a wide 
range of considerations, including traffic flow, pedestrian and bicycle access, environmental 
impacts, and land use patterns. Civil engineers may work with other professionals such as 
planners, architects, and environmental scientists to understand urban communities' needs and 
priorities and develop infrastructure and land use plans that are sustainable and equitable. 

Manual mapping of urban corridors is a time-consuming and tedious process. However, 
machine learning can help automate this process, making it more efficient and accurate. This 
study examined the challenges and opportunities of using machine learning for urban mapping 
corridors to understand how it can be applied effectively in this context. 

 
One of the challenges of using urban corridor mapping in remote sensing is the complexity of 
the data, as urban environments often contain a wide range of features with different 
characteristics and properties. For example, buildings may vary in size, shape, and height, and 
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roads may vary in width, surface type, and traffic volume. Also, the radiometric contents of 
different urban features can be similar, yet there represent different meanings on the ground. 
This study investigated two examples: an urban corridor and a road corridor. The urban corridor 
investigation aimed to recognize the complexity and dependency of different features in an 
urban environment. The results of the first investigation were then used to carry out the second 
study in a road environment with less complexity and more defined features. 

1.3 Research Objectives 
As stated above, corridor mapping deals with a larger area, which means an excess of 
information at hand with time; it is hard to handle the data into information. This is where 
machine learning can be useful, as it allows for the automated analysis and interpretation of 
data at scale. Machine learning algorithms can be trained to recognize patterns and trends in 
data that may not be apparent to the human eye and can help to extract meaningful insights and 
predictions from large datasets. 

Machine learning can significantly reduce the time and effort required to analyze and interpret 
corridor mapping, allowing for more efficient and accurate decision-making. Machine learning 
can also help to improve the accuracy and precision of corridor mapping, as algorithms can be 
trained to recognize a complex pattern in data that may not be visible to the human eye. The 
following are the research objectives that were studied in the study: 

1. Objective 1: To evaluate the effectiveness of current state-of-the-art machine learning 
approaches in corridor mapping using remote sensing data. 

2. Objective 2: To assess the impact of adding additional data bands on the classification 
of urban features in corridor mapping. 

3. Objective 3: To compare the performance of pixel-based and object-based 
classification methods in corridor mapping. 

4. Objective 4: Comparison of Machine learning (ML) vs. Deep learning (DL) in real-
life corridor mapping applications. 

5. Objective 5: To evaluate the accuracy and computational time of different ML and DL 
algorithms for corridor mapping. 
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1.4 Research Approach: 
The following is the approach implemented to get the desired outcome: 

1. Define the research question: The first step in any research study is clearly defining the 
research question or problem the study aims to address. In this case, the research 
question is:  
 
 
"What are the most effective approaches for using machine learning to 
recognize environment features in remote sensing data?" 

 

2. Collect and prepare the data: The next step is collecting and organizing the study's 
data. This involves acquiring remote sensing data, such as ortho mosaic and DEM data, 
and processing the data to extract features used as inputs to machine learning 
algorithms. 

3. Train and evaluate machine learning models: The next step is to train machine learning 
algorithms to recognize patterns and trends in the data. This involves using techniques 
such as supervised learning, in which algorithms are trained to classify data based on 
known labels, or unsupervised learning, in which algorithms are trained to identify 
patterns in data without prior labels. The performance of the algorithms can then be 
evaluated using metrics such as accuracy, precision, and recall. 

4. Analyze and interpret the results: The next step is to analyze and interpret the results 
once the machine learning models have been trained and evaluated. This involves using 
techniques such as feature importance to understand which features in the data are most 
important for predicting the outcome of interest and visualizing the results to 
understand patterns and trends in the data. 

5. Communicate the results: The final step is communicating the study results, which 
involves writing a research paper or a product or presenting the findings to a wider 
audience. It is important to communicate the research questions, methods, results, and 
implications of the study to share the findings with others and to contribute to the 
broader field of knowledge. 

1.5 Thesis Outline: 
The thesis outline provides an overview of the structure and content of the research study. It 
includes chapters on introduction, literature review, spatial domain, methodology, 
implementation, accuracy comparisons, and prospects for future research. 
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1.5.1 Chapter I. Introduction and Background 

The first chapter of the thesis serves as an introduction to the research and provides a brief 
overview of the background information. The chapter also outlines the research objectives and 
approach that will be taken in the subsequent chapters. Finally, the chapter provides an outline 
of the overall thesis structure. 

1.5.2 Chapter II. Literature Review 

The second chapter is a literature review that summarizes the existing research and studies 
conducted on using machines and deep learning in remote sensing. This chapter discusses the 
relevant theories, methodologies, and applications developed and applied to the field. 

1.5.3 Chapter III. Spatial Domain 

Chapter three focuses on the study area and provides a detailed description of the data used in 
the study. The chapter covers the different types of remote sensing data and the various sources 
from which the data is obtained. 

1.5.4 Chapter IV. Methodology 

Chapter four describes the methodology that will be used in the study. The chapter outlines the 
definitions of key terms, the system specifications, and the software platforms used. The 
chapter also provides a detailed explanation of the methodology employed in the research. 

1.5.5 Chapter V. Implementation 

Chapter five describes the methodology's implementation outlined in the previous chapter. The 
chapter covers unsupervised classification, supervised classification, pixel-based supervised 
classification, pixel-based classification on primary and integrated datasets, object-based image 
classification, real-life application, and implementation of DL using convolution neural 
networks(U-Net). 

1.5.6 Chapter VI. Accuracy Comparisons 

Chapter six focuses on the accuracy comparisons of the different methodologies used in the 
study. This chapter discusses the accuracy assessment tools used, the comparison of primary 
and integrated datasets, pixel-based vs. object-based image classification, and one feature 
extraction for corridor analysis. 

1.5.7 Chapter VII. Prospects 

The final chapter provides a conclusion to the thesis and discusses the prospects for future 
research. The chapter summarizes the study's key findings and offers suggestions for future 
research and machine and deep learning application in remote sensing.  
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2 Chapter: Literature Review 

In recent years, researchers have explored machine learning methods in various remote sensing 
applications, including land use classification, crop monitoring, and environmental monitoring. 
The combination of remote sensing and machine learning techniques has the potential to 
revolutionize our understanding of the earth's surface, providing insights into a wide range of 
scientific and societal challenges. This literature review will explore the field's current state 
and identify key areas for future research. 

Lu, Zheng, and Yuan (Lu et al., 2017) proposed an unsupervised representation learning 
method to investigate deconvolution networks for remote sensing scene classification. She 
achieved experimental results that outperformed most state-of-the-art techniques.  

In a study (Myint et al., 2011) using high-resolution Quick Bird image data, a comparison was 
made between per-pixel and object-based classifiers in identifying urban land cover classes in 
Phoenix, Arizona. The study found that the object-based classifier achieved significantly higher 
overall accuracy than the per-pixel maximum likelihood classifier.  

Belgiu and Drăguţ (Belgiu & Drăgu, 2016) reviewed the applications and future directions of 
the random forest (RF) classifier in Remote Sensing. They found that the RF classifier is 
popular in remote sensing due to its accuracy and ability to handle high data dimensionality 
and multicollinearity. Noi and Kappas (Thanh Noi & Kappas, 2017) compared the 
performances of Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector 
Machine (SVM) classifiers for land use/cover classification using Sentinel-2 image data. They 
found that all three classifiers showed high overall accuracy ranging from 90% to 95%. Swapan 
&Talukdar (Talukdar, 2020) reviewed six machine-learning algorithms for land-use/land-
cover (LULC) mapping using earth observations and found that the random forest (RF) 
algorithm had the highest accuracy level among the examined classifiers.  

Prakash, Manconi, and Loew (Prakash et al., 2020) compared the performance of deep learning 
models with traditional machine learning models for mapping landslides from Earth 
observation (EO) data. Lei Ma & Yu Liu (Ma et al., 2019) conducted a meta-analysis and 
review of over 200 publications on deep learning (DL) algorithms in remote-sensing image 
analysis, introducing the major DL concepts in remote Sensing and reviewing various remote-
sensing image analysis tasks. Xin & Zhang (X. Zhang et al., 2020) comprehensively reviewed 
land cover classification and object detection using high-resolution remote sensing imagery 
and found that deep learning models outperform traditional pixel-based methods, particularly 
for vegetation categories.  

U-Net models have proven effective and efficient for various tasks related to urban analysis 
from satellite and aerial imagery. Francini et al.(Francini et al. 2023) used a U-Net model to 
accurately classify and segment the built-up area and the vegetation cover in Matera (Italy) 
over a period of 20 years. They demonstrated how their method could support sustainable 
development by providing valuable information about urban and greening changes.  
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Kumar et al.(Chaudhary et al., 2022) enhanced the U-Net architecture by adding batch 
normalization, dropout, and residual connections to improve the performance and 
generalization of the model for road network segmentation. They achieved better results than 
several baseline models on two public datasets. 

In conclusion, the literature review highlights the increasing use of machine learning and deep 
learning algorithms for remote sensing image analysis. Random Forest and U-Net models have 
emerged as better options for analyzing aerial imagery through machine learning techniques. 
These models have demonstrated high accuracy and efficiency in various remote sensing 
applications, surpassing traditional machine learning models and pixel-based methods. 
Random Forest's ability to handle high-dimensional data and U-Net's effectiveness in urban 
analysis and road network segmentation have shown their potential to revolutionize the 
understanding of the Earth's surface and support sustainable development processes. 
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3 Chapter: Spatial Domain 

This chapter provides an overview of the two study areas selected for the research: the city of 
Turin and a road corridor from Napoli to Salerno in Italy. It also describes the two primary 
input rasters used for each case study: the orthomosaic and the Digital Elevation Model (DEM). 

3.1 Study Area: 
The research carried out two investigations to achieve its objectives: one focused on the urban 
environment and the other on a road corridor. For each analysis, an Italian study area was 
selected.  

• The first study area was the city of Turin, Italy's densely populated area of 22.9 km2 
with similar radiometric content.  

• The second case study was a road corridor from Napoli to Salerno, a length of 54.5 km, 
via the A3 motorway. 

For each case study, two rasters were used: an orthomosaic with 25 pixels resolution and a 
Digital Elevation Model (DEM) with 50 cm resolution. Both rasters were obtained from 
DIGISKY SRL. Using these rasters, created two types of datasets, which are described in the 
following sections. 

 

Figure 3.1 Case Study One Urban Corridor 

https://www.digisky.it/
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Figure 3.2 Case Study Two Road Corridor 
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3.2 Data Description: 
The two primary input rasters are ortho mosaic and DEM. The source of both rasters is the 
same, using photogrammetry techniques via an aerial platform.  

Orthomosaic and DEMs are two digital maps commonly used for understanding and mapping 
the Earth's surface. Orthomosaics, or orthorectified mosaics, are created by combining multiple 
aerial or satellite images(orthophotos) of the same area into a single, seamless orthophoto. 
These aerial photographs are corrected for distortion and can be used as base map layers in GIS 
and other mapping applications.  

• Digital Elevation Models (DEMs) are digital representations of terrain elevation data 
that can be obtained through several methods, including aerial LiDAR, satellite 
imagery, photogrammetry, terrestrial LiDAR, stereographic techniques, digitized 
contour lines, and field surveys. The DEM is created using photogrammetry, so both 
raster sources are identical. To obtain a Digital Elevation Model (DEM) from 
photogrammetry, one needs to acquire high-resolution photographs of the area one 
wants to create the DEM for and use photogrammetry software to process the pictures. 

• Orthophotos are typically larger in scale, higher in resolution, and more accurate than 
DEMs. However, DEMs are smaller in scale and may be lower in resolution due to the 
limitations of the sensors used to collect the data. Both maps are useful for different 
purposes and have different strengths and limitations. 

This study created two datasets for each case study using two rasters: an orthophoto raster with 
3 RGB bands and a DEM raster with a single band representing elevation. 

1. The first dataset, the Primary Dataset1, consists only of the ortho mosaic, with three 
band values per pixel representing a feature.  

2. The second dataset, Integrated Dataset 2, includes the ortho mosaic (3 bands) and the 
DEM as a fourth band. A single feature in this dataset is represented by four band 
values, including the elevation data. 

The performance of the datasets can be evaluated by comparing them in terms of accuracy and 
computational time in both study areas using different techniques. Moreover, the literature 
suggests that integrated datasets can be useful in environments where height information is 
crucial for defining features. 

Note: Due to limited computational capacity, the machine learning algorithm is only applied 
to 10% of the urban corridor studied in case 1, covering an area of 2 square kilometers. 
However, the results are expected to reflect the general area since the environment remains 
unchanged. For deep learning, the whole area is being processed. 
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Table 3.1 Dataset Description 

  

Type  Description 

Primary 
Dataset 

Consists only of an orthomosaic with three band values per pixel representing a 
feature. Orthomosaics are created by combining multiple aerial or satellite 
images of the same area into a single, seamless orthophoto. They are typically 
larger in scale, higher in resolution, and more accurate than DEMs. This dataset 
is useful for mapping and visualizing features on the Earth's surface. 

Integrated 
Dataset 

Includes the orthomosaic and the DEM as a fourth band, so a single feature in 
this dataset is represented by four band values, including the elevation data. 
Digital Elevation Models (DEMs) are digital representations of terrain elevation 
data that can be obtained through several methods, including photogrammetry. 
This dataset is useful in environments where height information is important for 
defining features. However, it may be lower in resolution due to the limitations 
of the sensors used to collect the data. 

Figure 3.3 Datasets Comparison 
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4 Chapter: Methodology 

The methodology chapter defines important terms and concepts related to artificial intelligence 
and machine learning. It also provides an overview of different types of machine learning 
algorithms commonly used in remote sensing applications. This information serves as the 
foundation for the research methodology employed in the study. 

4.1 Definitions: 
An artificial intelligence (AI) system is a process that can perform/pretends to perform tasks 
normally handled by humans, such as learning, problem-solving, and making decisions. 

The concept of machine learning can be described as a subset of artificial intelligence (AI) in 
which computers can learn from data without explicitly programming them. In machine 
learning, a model is trained on a dataset and makes predictions or decisions based on that 
training. As the model is exposed to more data, it can improve its performance and become 
more accurate in its predictions. 

There are several types of machine learning, including: 

• Supervised learning: The model is trained on labeled data, including input and correct 
output. The model makes predictions based on this training data. Examples of 
supervised learning tasks include regression and classification. 

• Unsupervised learning: In unsupervised learning, the machine has no structured data 
for training. The model recognizes the patterns in the provided data and comes up with 
classifications. Examples of unsupervised learning tasks include clustering and 
dimensionality reduction. 

• Semi-supervised learning: Semi-supervised learning involves a combination of labeled 
and unlabeled data. It is often used when unlabeled data is available, but labeling it is 
too time-consuming or expensive. 

• Reinforcement learning: In reinforcement learning, the model is trained to achieve a 
specific goal through trial and error. The model receives rewards for successful actions 
and punishments for unsuccessful ones, and it learns to make decisions based on these 
rewards and punishments. Reinforcement learning is used in applications such as self-
driving cars and game-playing. 
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Machine learning algorithms are mathematical equations used to perform a specific task. Many 
machine learning algorithms exist, including linear regression, logistic regression, decision 
trees, k-nearest neighbor support vector machines, and neural networks. These algorithms can 
be used for regression, classification, clustering, and dimensionality reduction tasks. The 
choice of algorithm depends on the task's nature and the data's characteristics. 

Many machine learning algorithms are commonly used in remote sensing applications. Some 
examples include: 

• Decision trees: Decision trees are often used in remote sensing for land cover 
classification and feature extraction tasks. They are easy to interpret and can handle 
high-dimensional data well. 

• Random forests: Random forests are an ensemble learning method that combines 
multiple decision trees to make a prediction. They are often used in remote sensing for 
land cover classification and land use mapping. Further will explain in the next 
chapters.  

• Support vector machines (SVMs): SVMs are powerful and versatile algorithms often 
used in remote sensing for image classification and feature extraction tasks. They work 
well with high-dimensional data and can handle non-linear relationships between 
features. 

• Neural networks are complex algorithms inspired by the brain's structure and function. 
They are often used in remote sensing for image classification and interpretation tasks. 
Convolution neural network is an example used in deep learning here in this study.  

Figure 4.1 Machine Learning Types 
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• K-means clustering: K-means clustering is an unsupervised learning algorithm often 
used in remote sensing for image segmentation and land cover classification tasks. It 
works by dividing the data into k clusters based on similarity. 
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For this study, Random forests are used. Random forests are a popular choice for many remote 
sensing applications. Following are the reasons why a random forest might be a better choice 
than a support vector machine (SVM) for remote sensing tasks: 

• Random forests are more robust to noise and outliers in the data. They can handle large 
amounts of noisy data, which is common in remote sensing applications. In contrast, 
SVMs can be sensitive to noise and outliers, impacting their performance. 

• Random forests are easier to train and tune than SVMs. They do not require careful 
selection of kernel functions or the setting of complex hyperparameters. This makes 
them a more practical choice for many remote sensing applications, where the data is 
often complicated, and there may not be sufficient resources to fine-tune a model. 

• Random forests can handle high-dimensional data more efficiently than SVMs. Remote 
sensing data often has many features, and SVMs can struggle to scale to high 
dimensions. On the other hand, random forests can handle high-dimensional data more 
efficiently, making them a better choice for remote sensing tasks. 

• Random forests can provide more interpretable results than SVMs. Because random 
forests comprise many decision trees, it is relatively easy to understand how the model 
makes predictions. This is not always the case with SVMs, which can be more difficult 
to interpret. 

4.1.1 Structured Data: 

The key to remote sensing is to divide your training dataset into training and validation sets, as 
in any machine learning task. The training set is used to train the model, while the validation 
set is used to evaluate the model's performance. 

• The training set is a subset of the dataset used to fit the model. It consists of input data 
and corresponding labels (also known as ground truth), and the model uses this data to 
learn the relationships between the input and the labels. 

• The validation set is a separate subset of the overall dataset used to evaluate the model's 
performance. It consists of input data and corresponding labels, but the model has never 
seen this data. The model's predictions on the validation set are compared to the ground 
truth labels to assess its accuracy and generalizability. 
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By using separate training and validation sets, it is possible to get a more accurate estimate of 
the model's performance on unseen data. This is important because it helps ensure the model 
stays within the training data and performs well on new, unseen data. There are a few key rules 
to follow when splitting your dataset into training and validation sets: 

• Use a diverse set of images: A diverse collection for training and validation helps the 
model generalize better to new, unseen data. This is especially important in remote 
sensing, where the images can vary significantly due to different types of sensors, 
resolutions, and environments. 

• Balance the classes: If there are multiple classes to classify, it is important to balance 
the number of examples in each category. For instance, if there are two classes, "forests" 
and "non-forests," aiming for roughly the same number of examples for each class helps 
the model classify each class equally well. 

• Use stratified sampling: If there is a large dataset to split into training and validation 
sets, stratified sampling ensures that the distribution of classes is consistent between the 
two sets. This helps prevent any biases that might be introduced if the data is randomly 
split. 

• Avoid overfitting: When creating the training and validation sets, avoid including 
similar images. This helps prevent overfitting when the model performs well on the 
training data but poorly on new, unseen data. 

• Consider the context: When working with remote sensing, it's important to consider the 
circumstances in which the images were taken. For example, ensuring that the data used 
to train and validate the model includes images taken at different times of the day in 
different seasons can help the model perform well with new data collected in similar 
situations. 

4.2 System Specifications: 
The system specification for training and running the models is as follows: 

• 16 GB of RAM  
• A 1050 or higher NVIDIA graphics card  
• A Core i7 8th generation CPU 
• Google Colab  

While the above system is considered a standard middle-tier system, it is important to note that 
the recommended specification for machine learning tasks is generally much higher to achieve 
optimal performance. Using a higher-end system can improve computational time and 
accuracy. The performance of different techniques and tools for this project will be compared.  
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4.3 Software Platforms: 
For visualization, Quantum GIS (QGIS), an open-source software, was primarily used, while 
Orfeo Toolbox was utilized for machine learning within the QGIS interface. However, limited 
support for deep learning in QGIS led to using TensorFlow and PyCharm to train deep learning 
models. Trained models were implemented using ArcGIS Pro, which supports pre-trained 
deep-learning models. 

GitHub libraries were also utilized for online access to deep learning models and related tools, 
providing a platform for hosting and sharing code repositories that facilitated collaboration and 
reproducibility. OpenCV was used for some of the GitHub libraries, giving access to pre-
trained models and tools essential for implementing and evaluating deep learning models for 
remote sensing applications. 

Google Colaboratory (Colab) was also used to access deep learning models and tools online. 
Colab is a free, cloud based Jupyter notebook environment that enables researchers to write 
and run Python code online, providing access to powerful hardware resources such as GPUs 
and TPUs essential for efficiently training deep learning models. Colab supports popular deep 
learning frameworks like TensorFlow and PyTorch and data visualization and analysis libraries 
like Matplotlib and Pandas. 

 

 

  

Figure 4.2 Sources & Platforms used for this research study. 
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4.4 Methodology Flowchart: 
This study aimed to classify and extract features from remote sensing data to better understand 
the study area's characteristics. To achieve this goal, unsupervised classification was initially 
performed on the primary and integrated datasets to determine the minimum number of classes 
required for subsequent supervised classification. 

Next, supervised classification was conducted on both datasets using pixel-based and object-
based methods to compare their performance. Furthermore, a deep learning model was utilized 
to extract a single feature from large, unstructured data. The deep learning model was applied 
to both datasets individually and in extended areas to thoroughly investigate the results and 
identify any patterns or trends in the data. 
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5 Chapter: Implementation 

This chapter will explore the implementation of machine learning techniques, specifically 
supervised and unsupervised classification, using the methodology discussed in the previous 
chapter. 

Note: Due to limited computational capacity, the machine learning algorithm is only applied 
to 10% of the urban corridor studied in case 1, covering an area of 2 square kilometers. 
However, the results are expected to reflect the overall size since the environment remains 
unchanged. 

5.1 Unsupervised classification:  
Unsupervised Classification is a machine learning method that can classify data or classes 
without using labeled training data. In urban environment detection, unsupervised 
Classification could identify different land cover types or land use within an urban area. 

5.1.1 K-means clustering: 

K-means clustering is a popular unsupervised machine learning method that can group data 
into a predetermined number of clusters. It is often used for data classification tasks, including 
in the context of urban environment detection. 

The k-means algorithm begins by randomly selecting k points to serve as the initial centers of 
clusters, also known as centroids. Each data point is then assigned to the group with the nearest 
centroid. Once every moment has been given to a collection, the centroids are recalculated as 
the average of all the points. This process continues until the centroids do not move or the 
assignments of points groups remain constant. 

One of the main advantages of the k-means algorithm is that it is relatively fast and efficient, 
especially for large datasets. However, it can be sensitive to the initial placement of the cluster 
centers and may only sometimes produce the optimal clusters. It is also limited to dividing the 
data into a predefined number of groups, which may only sometimes be the best representation 
of the data. Despite these limitations, k-means Classification is a widely used and effective 
method for unsupervised classification tasks. 

Unsupervised Classification can be useful for identifying data patterns and exploring the 
relationships between different features. However, it is important to note that unsupervised 
Classification does not require prior knowledge about the classes in the data, and the resulting 
classes may not correspond to meaningful categories. As a result, unsupervised clustering is 
often used as a preliminary step in a larger analysis rather than a standalone method. The 
following is a demonstration of how k-means work. (K-Means Clustering - Wikipedia, n.d.) 
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5.1.2 Implementation on Dataset 1 Primary: 

In this first implementation of unsupervised classification on a primary dataset consisting of 
only three bands in the RGB format, it was found that at least four classes were needed in the 
given urban environment for supervised classification. The process was performed without 
human intervention or structured data, and the processing time was relatively quick. The 
assessment was based solely on visual inspection. 

 

Figure 5.1 Unsupervised Classification Dataset 1 

However, due to the limited number of bands used as input (only 3), some pixels needed to be 
misclassified as either roads or buildings. There were also some false negatives in the 
vegetation class. In the next step, the analysis was repeated using an additional dataset to make 
a comparison. 

5.1.3 Implementation of Dataset 2 Integrated: 

This step analyzed the result of unsupervised classification on the integrated dataset. It was 
observed that the computational time for this dataset was longer than the primary dataset. In 
the previous analysis using the primary dataset, there was a problem with correctly identifying 
features with the same radiometric content but different representations. 
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Figure 5.2 Unsupervised Classification Dataset 2 

However, by visually inspecting the results of the unsupervised classification on the integrated 
dataset, it was clear that adding elevation information had significantly reduced the number of 
errors. This is because the elevation information distinguished between concrete 
pavement/roads and flat concrete roofs. As a result, the integrated dataset performed much 
better in the urban environment than the primary dataset. This comparison was also verified in 
supervised classification analysis.  
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5.2 Supervised Classification: 
Supervised Classification is a type of image classification where the user provides labeled 
training data to the model, which is used to learn to classify images into predefined classes. 
The training data consists of pairs of images and corresponding labels, which tell the model 
what class each image belongs to. Once the model has been trained, it can classify new, 
unlabeled images. 

There are two main types of image classification: pixel-based and object-based. 

• Pixel-based Classification involves classifying each pixel in an image based on its 
characteristics, such as intensity, color, or texture. This type of classification is often 
used when the objects of interest are well-defined and distant and when the image's 
resolution is high enough to allow for accurate pixel-level Classification. 

• Object-based classification, conversely, involves classifying groups of pixels that 
belong to the same object or feature. This type of Classification is often used when the 
things of interest are more complex or the image's resolution is not high enough for 
pixel-level Classification. In object-based Classification, the model is trained to 
recognize nine the shape, size, and other characteristics of the objects of interest rather 
than individual pixels. 

Pixel-based and object-based Classifications have their strengths and weaknesses, and which 
is most appropriate will depend on the specific task and the characteristics of the data. The 
following sections are the implementation of both types. 

5.2.1 Training and Validation Data: 

The first step of supervised classification involves creating the training and validation data. 
There are several ways to do this: 

• Collecting field data: Field data can be collected using various methods such as ground 
surveys, aerial surveys, or satellite data. This data can be used to create training data 
for remote sensing applications. 

• Using existing datasets: Many existing datasets can be used to create training data for 
remote sensing applications. For example, OpenStreetMap (OSM) is a popular dataset 
that contains geospatial data. 

• Using simulation tools: Simulation tools can create synthetic data for remote sensing 
applications. This can be useful for testing and development, allowing the creation of 
data representing various scenarios and conditions. 

• Crowdsourcing: Crowdsourcing can be used to create training data for remote sensing 
applications. For example, platforms like Amazon Mechanical Turk can label satellite 
images or other data. 

• Machine learning techniques: Unsupervised learning techniques can cluster data into 
different classes, which can be used as training data for a supervised learning algorithm 
in remote sensing applications. 
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Ground data and visual control techniques were utilized to create the training and validation 
data. Figure 5.3 illustrates that this process involved creating validation data using these 
methods. 

  

Training 

Figure 5.3 Labeling & Training of Data 

Validation 



37 
 

5.2.2 Random Forest Algorithm: 

Random forest is a machine learning algorithm that combines the output of multiple decision 
trees to reach a single result. It is based on the ensemble learning technique of bagging, which 
creates different training subsets from sample training data with replacement. The final output 
is based on majority voting for classification and average for regression(Random Forest 
Algorithms - Comprehensive Guide With Examples, n.d.). 

A random forest can handle continuous and categorical variables and perform well for 
classification and regression tasks. It has several advantages over decision trees, such as 
reducing overfitting, increasing accuracy, and providing feature importance(What Is Random 
Forest? | IBM, n.d.). 

 

Figure 5.4 RF tree diagram 

5.2.2.1 Original paper 

The original paper on random forest algorithm was published by Leo Breiman in 2001. 
(Randomforest2001, n.d.) 

• Random Forest 2001 

5.2.2.2 How does random forest work? 

The basic steps of the random forest algorithm are as follows: 

1. Given a training data set, create different bootstrap samples by randomly selecting 
observations with replacements. 

2. For each bootstrap sample, grow a decision tree by recursively splitting the nodes based 
on a subset of features randomly chosen at each node. 

3. Repeat steps 1 and 2 until a desired number of trees are grown in the forest. 

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
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4. For classification, predict the class label for a new observation by taking the majority 
vote of the class labels indicated by each tree in the forest. 

5. For regression, predict the numerical value for a new observation by taking the average 
of the numerical values expected by each tree in the forest.  

5.2.2.3 What are the important features of the random forest? 

Some of the important features of random forests are: 

• It can handle missing values and outliers in the data using the median or mean 
imputation and robust splitting criteria, respectively. 

• It can deal with unbalanced data sets using class weights or balanced bootstrap samples. 
• It can reduce the variance and improve the model's generalization by averaging the 

predictions of multiple trees trained on different subsets of data and features. 
• It can estimate the prediction error by using out-of-bag (OOB) samples, which are the 

observations not included in any bootstrap sample. 
• It can measure the importance of each feature by calculating the decrease in accuracy 

or impurity. 

5.2.2.4 How is a random forest different from a decision tree? 

A random forest is an extension of a decision tree that uses multiple trees instead of one to 
make predictions. Some of the differences between random forest and decision tree are: 

• Random forest introduces randomness in two ways: bootstrap samples instead of the 
whole data set and a subset of features instead of all features at each node. This reduces 
the correlation among the trees and increases the diversity of the forest. 

• Random forest reduces overfitting and improves accuracy by averaging the predictions 
of multiple trees trained on different subsets of data and features. Decision trees tend to 
overfit the training data and have a high variance when applied to new data. 

• The random forest provides feature importance by calculating the decrease in accuracy 
or impurity when a feature is randomly permuted. A decision tree does not have a direct 
way to measure feature importance.  

5.2.2.5 What are the important hyperparameters in the random forest? 

Some of the important hyperparameters in the random forest are: 

• Several trees: The number of trees growing in the forest. A larger number of trees can 
reduce variance, improve accuracy, and increase computation time and memory usage. 

• Maximum depth: The maximum depth of each tree. A deeper tree can capture more 
complex patterns in the data and increase overfitting and variance. 

• Minimum samples split: The minimum number of samples required to split an internal 
node. A larger value can prevent overfitting, reduce variance, and increase bias and 
underfitting. 
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• Minimum samples leaf: The minimum number of samples required at a leaf node. A 
larger value can smooth the prediction, reduce variance, and increase bias and 
underfitting.  

5.2.2.6 Why Random Forest is Better for Aerial and Satellite Imagery 

Random forest is a suitable aerial and satellite imagery algorithm for several reasons.  

• First, it can handle high-resolution and high-dimensional data common in remote 
sensing applications.  

• Second, it can deal with complex and heterogeneous landscapes with different types of 
trees, vegetation, and land cover. (T. Zhang et al., 2021) 

• Third, it can provide feature importance and explainable identification of trees by using 
techniques. 

• Fourth, it can be easily integrated with other machine learning methods, such as 
convolutional neural networks, to improve the accuracy and robustness of the 
classification. 

5.3 Pixel-Based Supervised classification:  
Pixel-based Classification is a method of image classification in remote sensing that involves 
assigning a class label to each pixel in an image based on its characteristics. Here are the steps 
involved in pixel-based Classification: 

• Preprocessing: Before the actual Classification can begin, the image must be 
preprocessed to correct for atmospheric and geometric distortions and enhance the 
features of interest. This may include correcting for radiometric distortion, removing 
clouds, and correcting for topographic relief. 

• Feature extraction: In this step, the relevant features of each pixel are extracted and 
transformed into a set of numerical values that can be used to classify the pixels. This 
may involve calculating texture measures, extracting spectral bands, or estimating 
indices such as the Normalized Difference Vegetation Index (NDVI). 

• Classification: Once the extracted features are, a classification algorithm is applied to 
the image to assign a class label to each pixel. Different classification algorithms can 
be used, including maximum likelihood, decision trees, and support vector machines. 

• Validation: After the Classification is complete, it is important to validate the results to 
ensure accuracy. This can be done using various methods, such as visual inspection of 
the classified image, comparison to reference data, or accuracy assessment using a 
confusion matrix. 

• Post-processing: After the Classification is complete and validated, the classified image 
may need to be post-processed to smooth out any classification errors and fill in any 
missing data. This may involve applying filters or interpolation techniques to the 
classified image. 
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5.3.1 Pixel-based Classification on Primary Dataset 1: 

The hypothesis that the integrated dataset would perform well as it did in unsupervised 
classification was first tested to compare the effectiveness of pixel-based and object-based 
classification methods. The pixel-based classification was applied to both the primary and 
integrated datasets to achieve this.  

The result of this classification on the primary dataset is shown in Figure 5.5, illustrating the 
output of the pixel-based classification method applied to the primary dataset. The pixel-based 
classification was chosen as the first method of analysis because it is a widely used and well-
established technique in remote sensing. By comparing the results of pixel-based classification 
on both datasets, insight into each method's potential advantages and disadvantages was hoped 
to be gained. 

Figure 5.5 Pixel-based classification on Dataset 1 

A few points to note about the pixel-based classification results on the primary dataset include 
the tendency to have more noise, as each pixel is classified individually without considering 
the relationships between adjacent pixels. However, overall, pixel-based classification 
accurately organizes features. In this case, lower accuracy was observed in the classification of 
flat roofs and roads due to their similar radiometric characteristics with only three band values 
RGB. Additionally, open areas were misclassified as flat roofs at the bottom of the image. 
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Integration of elevation information into the RGB bands can address these issues and improve 
classification accuracy. This will provide an additional dimension, namely height, which can 
be used to define and classify features more accurately. Including this additional information 
can overcome some of the limitations of pixel-based classification and improve the overall 
accuracy of the results. 

5.3.2 Pixel-based Classification on Integrated Dataset 2: 

In this section, the same pixel-based classification method was implemented on the integrated 
dataset 2, which includes RGB values for each pixel and an additional value representing the 
elevation of that pixel. With the additional elevation information, features could be 
distinguished based on their height, which helped to overcome the problem of misclassification 
observed in the previous classification of the primary dataset. For example, roads and roofs 
often misclassified due to their similar radiometric characteristics, could now be distinguished 
based on their different elevations. Figure 5.6 illustrates the result of this classification on the 
integrated dataset 2, where it can be seen that the inclusion of elevation information 
significantly improved the accuracy of the classification, particularly in distinguishing roads 
and roofs. 

 

  

Figure 5.6 Pixel based classification on Dataset 2 
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5.4 Object-Based Image Classification:  
Until this point, it has been determined that the integrated dataset performs well in an urban 
environment due to including elevation information. Based on this finding, object-based 
Classification was applied to the integrated dataset 2 to compare the results to those obtained 
using pixel-based Classification. 

Object-based image classification is a method that involves grouping pixels into objects or 
segments based on their characteristics and then assigning a class label to each object based on 
the features of the pixels within it. This differs from pixel-based Classification, which assigns 
class labels to each pixel individually. Object-based Classification can be more accurate 
because it considers the relationships between adjacent pixels and considers the spatial context 
of the image. 

The process of object-based Classification is like that of pixel-based Classification, with the 
added step of segmentation, which involves dividing the image into objects or segments based 
on predefined criteria such as the similarity of pixel values or the proximity of pixels to one 
another. By grouping pixels into objects, object-based Classification can better account for the 
spatial relationships between pixels and more accurately classify the image's features. 

5.4.1 Segmentation: 

In object-based image classification in remote sensing, segmentation divides an image into 
smaller segments or objects based on predefined criteria. The purpose of segmentation is to 
group pixels with similar characteristics into things, which can then be classified based on the 
features of the pixels within them. 

Several approaches to segmentation can be used in object-based image classification, including 
region-based, edge-based, and pixel-based methods. 

Region-based methods involve grouping pixels into objects based on the similarity of their 
pixel values or other characteristics, such as texture or shape. Edge-based methods include 
identifying and following the boundaries between different features in the image to create 
segments. Pixel-based methods involve grouping pixels based on their proximity to one 
another. 

Once the image has been segmented into objects, the next step in object-based image 
classification is to extract the relevant features of each object and apply a classification 
algorithm to assign a class label to each object. 

For this study, the algorithm known as a mean shift is used for segmentation. The mean shift 
algorithm is a method of clustering and segmentation that can be used in object-based image 
classification. It works by iteratively shifting the centroids of clusters to the mean location of 
the points within the cluster until the centroids converge on a stable location. The points are 
then reassigned to the cluster whose centroid they are closest to. This process is repeated until 
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the groups have connected and the points within them are homogeneous. Figure 5.7 shows the 
result of segmentation: 

Figure 5.7 Object Segmentation Result on Dataset 2 

  

SEGMENTED 
OBJECTS 
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5.4.2 Object-based Classification on integrated Dataset 2: 

Object-based image classification provides several advantages over pixel-based classification. 
One of the main advantages is its ability to consider the spatial context of the image, which 
allows it to better differentiate between features that may be difficult to distinguish based on 
pixel values alone. Additionally, object-based Classification is generally faster than pixel-
based Classification once the initial segmentation step has been completed, making it a more 
efficient method for large datasets. 

Object-based classification is particularly beneficial in urban environments, as it can accurately 
distinguish between complex and varied features. The object-based classification results on the 
integrated dataset 2 demonstrate this advantage, with less noise in the classified image and 
more well-defined features as objects. The improved accuracy in distinguishing between roads 
and roofs, for example, highlights the ability of object-based Classification to differentiate 
between features based on their shape and size. 

 

Figure 5.8 OBIA classification On Dataset 2 
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5.5 Real-life application and artificial neural network: 
In a research project focused on using machine learning to identify different features in an 
urban environment using satellite imagery, objective 4 was to develop and implement a 
workflow for machine learning in real-life corridor mapping applications. This involves 
identifying specific elements in a large area, such as white markings on roads. 

One challenge with this task is that traditional machine learning algorithms often require 
structured data with multiple categories to compare and classify objects accurately. However, 
in this case, the goal is to identify a single element (white road markings). Obtaining 
sufficiently large and diverse datasets for training a model to recognize this single class can be 
challenging. 

To overcome this challenge, deep learning techniques can be used. Convolutional neural 
networks (CNNs) are well-suited for image classification tasks and can be effective when 
working with a single class. These models have many hidden layers and can learn complex 
data patterns, improving the model's accuracy. Although training a deep learning model may 
require more time and computational resources, it can produce more accurate results than 
traditional machine learning approaches when working with a limited dataset. 

Once the deep learning model is trained, it can be applied to large areas with similar 
environments to identify white markings on roads in satellite imagery quickly. This can be a 
useful workflow for real-life corridor mapping applications where it is necessary to identify 
this specific feature in a large area accurately. In this case, a deep learning approach can be 
more effective than traditional machine learning methods. 

Deep learning models can also be more accurate than human error for certain tasks, particularly 
when working with large and complex datasets. However, it is important to note that they may 
only sometimes be the best choice for a given task and may require more time and 
computational resources to train. It is important to carefully evaluate the trade-offs between 
different approaches before deciding which one to use. The study used Convolutional neural 
networks (CNNs) with pixel classification to achieve objective 4.  

5.5.1 U-Net Algorithm: 

U-Net is a convolutional neural network that was developed for biomedical image 
segmentation at the Computer Science Department of the University of Freiburg(Weng & Zhu, 
2015). The network is based on a fully convolutional network(U-Net Explained | Papers With 
Code, n.d.. Its architecture was modified and extended to work with fewer training images and 
yield more precise segmentations. Segmentation of a 512 × 512 image takes less than a second 
on a modern GPU. 

5.5.1.1 Original Paper: 

The original paper for the U-Net model is titled U-Net: Convolutional Networks for Biomedical 
Image Segmentation by Olaf Ronneberger, Philipp Fischer, and Thomas Brox1. It was 
submitted on 18 May 2015 and accepted at MICCAI 2015. (Weng & Zhu, 2015)  
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5.5.1.2 How does U-Net work? 

The U-Net algorithm works as follows: 

• The network consists of a contracting path and an expansive path. 
• The contracting path is a standard convolutional network that applies repeated 3x3 

convolutions, each followed by a ReLU activation and a 2x2 max pooling operation for 
downsampling. 

• The number of feature channels is doubled at each downsampling step. 
• The expansive path involves upsampling the feature map and applying a 2x2 "up-

convolution" that halves the number of feature channels. 
• The upsampling is followed by concatenation with the corresponding cropped feature 

map from the contracting path, two 3x3 convolutions, and ReLU activations. 
• Cropping is necessary to compensate for the loss of border pixels in every convolution. 
• The final layer of the network uses a 1x1 convolution to map each 64-component 

feature vector to the desired number of classes. 
• The network only uses the right part of each convolution without any fully connected 

layers. 
• To predict pixels in the border region of the image, the missing context is extrapolated 

by mirroring the input image. 
• This tiling strategy allows the network to be applied to large images, avoiding 

limitations in resolution due to GPU memory. 

 

Figure 5.9 U-Net Architecture explains in the original paper (Weng & Zhu, 2015)  
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5.5.1.3 Pseudo-code for using u-net with ResNet34 as backbone: 
# Import necessary libraries 

import torch 

import torchvision 

import torch.nn.functional as F 

from torch import nn 

 

# Define ResNet34 as backbone 

backbone = torchvision.models.resnet34(pretrained=True) 

# Define model 

model = UNet(backbone='backbone', encoder_weights='imagenet') 

 

# Define U-Net architecture 

class UNet(nn.Module): 

    def __init__(self, in_channels=3, out_channels=1): 

        super(UNet, self).__init__() 

 

        # Define encoder (ResNet34) 

        self.encoder = nn.Sequential(*list(backbone.children())[:-2]) 

 

        # Define decoder 

        self.decoder = nn.ModuleList([ 

            nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2), 

            nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2), 

            nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2), 

            nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2), 

        ]) 

         

        # Define output layer 

        self.output = nn.Conv2d(32, out_channels, kernel_size=1) 

 

    def forward(self, x): 

        # Encoder 

        enc1 = self.encoder[0](x) 

        enc2 = self.encoder[1](F.relu(enc1)) 

        enc3 = self.encoder[2](F.relu(enc2)) 

        enc4 = self.encoder[3](F.relu(enc3)) 

 

        # Decoder 

        dec1 = self.decoder[0](enc4) 

        dec2 = self.decoder[1](F.relu(torch.cat([enc3, dec1], dim=1))) 

        dec3 = self.decoder[2](F.relu(torch.cat([enc2, dec2], dim=1))) 

        dec4 = self.decoder[3](F.relu(torch.cat([enc1, dec3], dim=1))) 

 

        # Output layer 

        output = self.output(dec4) 

 

        return output 

 

# Define loss function 

criterion = nn.BCEWithLogitsLoss() 

 

# Define optimizer 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

# Train model 

for epoch in range(num_epochs): 

    for images, labels in dataloader: 

        images = images.to(device) 
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        labels = labels.to(device) 

 

        # Forward pass 

        outputs = model(images) 

        loss = criterion(outputs, labels) 

 

        # Backward and optimize 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

 

        # Print loss 

        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")) 

…….. 

 

5.5.1.4 Why U-Net is Better for Aerial and Satellite Imagery 

U-Net is better for aerial and satellite imagery because it can handle images of different sizes 
and aspect ratios and learn from a few training images(U-Net for Semantic Segmentation on 
Unbalanced Aerial Imagery | by Amirhossein Heydarian | Towards Data Science, n.d.). U-Net 
can also cope with unbalanced classes and noisy labels using appropriate loss functions such 
as focal loss or mean intersection over union (mIoU). U-Net can segment aerial and satellite 
images into various classes: water, land, road, building, vegetation, and unlabeled. U-Net can 
also be modified and extended to suit different tasks and challenges in aerial and satellite image 
analysis. (Satellite Image Segmentation: A Workflow with U-Net | by Vooban | Vooban AI | 
Medium, n.d.) 

A backbone is a pre-trained network that provides the encoder part of the U-Net, while the 
decoder is usually custom-built. In this study, the resnet34 model is the backbone of U-Net 
Architecture in this research. 

Using ResNet as a backbone for U-Net can have several advantages: 

• ResNet is a powerful, deep network that has achieved state-of-the-art results on various 
image classification tasks. It can extract rich and high-level features from the input 
images to help the segmentation performance. 

• ResNet has residual connections that allow information to flow across layers without 
degradation. This can prevent the vanishing gradient problem and enable deeper 
networks to be trained effectively. 

• ResNet's bottleneck structure reduces the parameters and computations in each residual 
block. This can improve the efficiency and scalability of the network. 

• ResNet can be easily adapted to different input sizes and output classes by changing the 
number of layers and channels. This can make it suitable for various segmentation 
problems. (U-Nets with ResNet Encoders and Cross Connections | by Christopher 
Thomas BSc Hons. MIAP | Towards Data Science, n.d.)  
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5.6 Pixel-based Classification using Convolution neural networks: 
To perform pixel-level Classification using a CNN(U-Net), the input data is typically a multi-
band raster image, such as a satellite image. The output is a label for each pixel indicating its 
class. CNN is trained on a labeled dataset of ideas, where the class labels for each pixel are 
known. The model learns to recognize the characteristics of each class in the training data and 
uses that knowledge to classify new, unseen images. 

One advantage of using CNN for pixel-level Classification is that it can learn to recognize 
patterns at different scales and contexts. This is because CNN(U-Net) uses convolutional 
layers, which filter input data to extract features at different scales. This can be particularly 
useful in remote sensing applications, where the size and context of features can vary 
significantly across an image. This analysis presents two examples of using convolutional 
neural networks (CNNs) for corridor mapping: 

• The first study was conducted in an urban environment in Turin, Italy, and focused on 
comparing the performance of machine learning and deep learning techniques over a 
10x area with similar parameters. This study aimed to evaluate the effectiveness of 
using CNNs for identifying features in an urban environment using satellite imagery. 

• The second investigation was carried out in a road corridor to identify white markings 
on the entry and exit ramps of a 54.5 km motorway. This study examined a real-life 
application of using CNNs for corridor mapping and allowed for the analysis of 
temporal data to understand how the features changed over time. 

Overall, these studies demonstrated the potential of using CNN(U-Net) for corridor mapping 
in urban environments and highlighted the importance of considering the specific requirements 
of a problem when selecting an appropriate machine-learning approach. 

5.6.1 Urban Corridor:  

Previously, a study used machine learning techniques to classify a 2 km2 (10% of the original 
area) with multiple classes, which took several hours to complete. In contrast, using a 
convolutional neural network (CNN) and a larger dataset spanning 22.9 km2, it was possible to 
classify only one feature in a shorter amount of time (10 minutes) with a higher accuracy 
(92.08%). The dataset used in this case was the integrated dataset. 

However, it should be noted that the CNN model required a longer training time (6 hours) 
compared to the machine learning approach. Once the CNN model is trained, it can be used to 
classify similar areas, such as in Italy, with a high degree of accuracy. 

Overall, this example demonstrates the potential of using CNNs for efficient and accurate 
Classification of urban environments in remote sensing applications. While training may 
require more time and resources, the resulting model can be applied to large areas relatively 
quickly and achieve higher accuracy than traditional machine learning approaches.  
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Figure 5.10 U-Net DL Classification on Case Study 1 Urban Corridor 

 
  

Figure 5.11 DL Model Stabilization 
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5.6.2 Road Corridor: 

The results of using the trained U-Net model on entry and exit ramps are shown here, along 
with the ground truth and prediction. Below figure 5.12 shows that the white markings can be 
accurately identified without elevation data, indicating that the primary dataset was sufficient 
for this task. The accuracy obtained was 91.11%.  

The ability to classify only one feature with high accuracy using a U-Net opens a range of 
potential applications in real-life scenarios, such as identifying pavement cracks or marking 
roads as per objective 4 of the study. Keeping the basic parameters of the investigations 
consistent over time makes it possible to make more accurate comparisons and track changes 
in the features being studied. 

Overall, this example illustrates the effectiveness of using CNNs for identifying specific 
features in remote sensing applications and the potential for using these models to support a 
variety of real-life tasks. 

 

Figure 5.12 U-Net DL Classification on Case Study 2 Road Corridor 
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6 Chapter: Accuracy Comparisons 

So far, supervised and unsupervised classifications have been carried out using various 
methods and tools. A range of accuracy assessment tools specifically designed for machine 
learning will now be used to assess the impact of adding additional data bands and compare 
the performance of pixel-based and object-based classification methods. 

6.1 Accuracy Assessments tools:  
The specific tools that will be used will depend on the objectives of the study, which are as 
follows: 

• To assess the impact of adding additional data bands on the Classification of urban 
features in corridor mapping: To address this objective, the classification results on the 
primary dataset (Dataset 1) will be compared with those obtained using the integrated 
dataset (Dataset 2). 

• To compare the performance of pixel-based and object-based classification methods in 
corridor mapping: To address this objective, the results of image-based Classification 
(using either pixel-based or object-based methods) will be compared with those 
obtained using object-based Classification. 

• A visual inspection of the classified images has already been performed. Still, now more 
objective, quantitative tools will be used to verify the goals and assess the accuracy of 
the classification methods. Some common methods include: 

• Confusion matrix: A confusion matrix is a table that compares a classification model's 
predicted labels with the data's true labels. It can be used to evaluate the overall 
accuracy of the model and the specific types of errors it makes. 

• Overall accuracy: This is the proportion of the total number of pixels classified correctly 
by the model. It is a simple but useful metric that can provide a general sense of the 
model's performance. 

• Cohen's kappa coefficient: This statistic measures the agreement between the predicted 
labels of a classification model and the true labels of the data, considering the possibility 
of chance agreement. It can be used to assess the reliability of the model's predictions. 

Further elaboration on the concept of confusion matrix will be provided as it is the main 
assessment criterion in this study. 
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6.1.1 Confusion Matrix:  

In remote sensing using machine learning, a confusion matrix is a table that compares a 
classification model's predicted labels with the data's true labels. It is a useful tool for 
evaluating the performance of a classification model and can provide insight into the specific 
types of errors that the model is making. 

A confusion matrix is typically organized as follows: 

• The matrix rows represent the data's true labels, while the columns represent the 
predicted labels. 

• The matrix cells contain the counts or proportions of data points with a given true and 
predicted label. 

For example, consider a classification model to classify land cover types into forests, 
grasslands, and urban areas. A confusion matrix for this model might look like this: 

Table 6.1 Confusion Matrix Example 

In this example, the model correctly classified 50 data points as forests, 50 as grasslands, and 
50 as urban areas. It also made some errors, such as misclassifying 10 data points as grasslands 
when they were forests and 5 data points as urban when they were forests. 

By analyzing the confusion matrix, one can get a sense of the overall accuracy of the model, 
as well as the types of errors it makes. For example, the model may perform well but needs to 
distinguish forests from grasslands. This information can be used to improve the model or to 
choose a different classification method. 

 

 

 

 

  

 Predicted: Forest Predicted: Grassland Predicted: Urban 

True: Forest 50 10 5 

True: Grassland 15 50 10 

True: Urban 5 10 50 
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6.1.2 Cohen's kappa coefficient: 

Cohen's kappa coefficient (also known as the kappa index or simply kappa) is a statistic that 
measures the agreement between the predicted labels of a classification model and the true 
labels of the data, considering the possibility of chance agreement. It is a useful tool for 
assessing the reliability of the model's predictions. The kappa coefficient is calculated as 
follows: 

Kappa = (observed agreement - expected agreement) / (1 - expected agreement) 

Where: 

• The observed agreement is the proportion of predictions that match the true labels. 
• The expected agreement is the proportion of predictions that would be expected to 

match the true labels by chance based on the distribution of labels in the data. 

The kappa coefficient is a metric that ranges from -1 to 1 and measures the agreement between 
predicted and true labels. A kappa coefficient of 1 means that the predictions and true labels 
perfectly match, and a value of 0 indicates that the deal is no better than random chance. 
Negative values indicate that the agreement is worse than random chance. 

To interpret the kappa coefficient, it is often useful to compare it to a benchmark value, such 
as the agreement that would be expected between two independent raters. For example, a kappa 
value of 0.6 might be considered a good agreement if the agreement between two independent 
raters is 0.4 but poor if the expected agreement is 0.8. 

6.1.3 User and Producer Accuracy:  

User and producer accuracy measures a classification model's accuracy in remote sensing. They 
are used to evaluate the model's performance and identify potential sources of error. 

• User accuracy is the proportion of data points correctly classified by the model relative 
to the total number of data points. It measures the model's overall accuracy and is 
typically the most important metric when evaluating the performance of a classification 
model. 

• Producer accuracy is the proportion of data points belonging to a particular class 
correctly classified by the model relative to the total number of data points belonging 
to that class. It measures the model's accuracy for each class individually and can be 
useful for identifying any biases or patterns in the model's performance. 

For example, consider a classification model to classify land cover types into forests, 
grasslands, and urban areas. The user accuracy of the model might be 0.8, meaning that 80% 
of the data points were correctly classified overall. The producer accuracy for each class might 
be 0.9 for forests, 0.7 for grasslands, and 0.6 for urban areas, indicating that the model performs 
better for forests than for the other classes.  
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6.2 Objective 2: Comparison of primary and integrated Dataset 
The accuracy assessment results indicate that the integrated dataset (Dataset 2) improves 
classification performance compared to the primary dataset (Dataset 1). This can be seen in the 
confusion matrices for the two datasets, which show that the overall accuracy of the 
Classification increased from 0.83 to 0.89, and the kappa index, a statistical measure of 
agreement between the predicted and true labels, rose from 0.79 to 0.87. 

A closer examination of the confusion matrices reveals that including elevation data in the 
integrated dataset leads to particularly significant improvements in the classification of flat 
roofs and roads. For example, the user accuracy for the classification of flat roofs increased 
from 0.59 in Dataset 1 to 0.77 in Dataset 2, while the user accuracy for the classification of 
roads improved from 0.79 to 0.94. This suggests that the additional dimension of elevation data 
helps to better distinguish between these features in the urban environment. 

Table 6.2 Dataset 1 Confusion Matrix 

Primary DataSet:1 User Accuracy Producer Accuracy 
Buildings 0.869 0.904 
Flat Roof 0.598 0.7 
Roads 0.796 0.664 
Vegetation 0.948 0.945 
Open Land 0.964 0.982 
  Overall Accuracy 0.835 
  Kappa index 0.793 

 

Table 6.3 Dataset 2 Confusion Matrix 

Integrated DataSet:2 User Accuracy Producer Accuracy 

Buildings 0.926 0.868 

Flat Roof 0.773 0.793 

Roads 0.944 0.892 

Vegetation 0.949 0.967 

Open Land 0.899 0.978 

  Overall Accuracy 0.898 

  Kappa Index 0.873 
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Primary Dataset: 1 (83% Accuracy) Integrated Dataset:2 (89.9% Accuracy) 

  

The bar graph comparison shows that using the integrated dataset (Dataset 2) improves 
classification performance for flat roofs and roads compared to the primary dataset (Dataset 1). 
In particular, the integrated dataset significantly reduces the misclassification of flat roofs as 
roads and vice versa. 

These results support the conclusion that the integrated dataset performs well in corridor 
mapping and that object-based Classification is superior to pixel-based Classification. Based 
on these findings, Proceeding to the second part of the supervised Classification, object-based 
image classification. 
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6.3 Objective 3: Comparison of Pixel-based vs. Object-based image 
classification 

As part of the third objective, to compare the performance of pixel-based and object-based 
classification methods in the urban environment, the integrated dataset (Dataset 2) was used, 
established in the second objective as being well-suited for this purpose. The results of the 
comparison are shown in the tables below. 

Table 6.4 Pixel-Based Classification: Confusion Matrix 

Pixel Based User Accuracy Producer Accuracy 

Buildings 0.926 0.868 

Flat Roof 0.773 0.793 

Roads 0.944 0.892 

Vegetation 0.949 0.967 

Open Land 0.899 0.978 
 Overall, Acc. 0.898 
 Kappa Index 0.873 

 

Table 6.5 Object Based Classification: Confusion Matrix 

Object based User Accuracy Producer Accuracy 

Buildings 0.984 0.863 

Flat Roof 0.786 0.982 

Roads 0.936 0.927 

Vegetation 0.92 0.963 

Open Land 0.957 0.938 

  Overall, Acc. 0.924 

  Kappa index: 0.921 

Overall, the results indicate that object-based Classification leads to a slight improvement in 
accuracy compared to pixel-based Classification, increasing from 89.8% to 92.4%. While this 
increase is not necessarily statistically significant, it does suggest that object-based 
Classification is a robust and reliable method for classifying features in the urban environment. 

It is worth noting that object-based Classification requires an additional step, namely the 
segmentation of the image into objects or regions, and may also require more human 
intervention in the form of manual labeling or editing of the classified image. However, the 
benefits of object-based Classification, including the ability to consider the spatial context of 
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the image and to account for the relationships between adjacent pixels, may make it a 
worthwhile investment of time and effort in certain applications. 

6.4 Objective 4: Deep Learning Results on Corridor Mapping 
The fourth objective of this study was to evaluate the use of machine learning and deep learning 
algorithms for corridor mapping in real-life applications. One concern for traditional machine 
learning algorithms is their inability to accurately identify specific features or classes with high 
accuracy, often requiring significant human intervention and resulting in a large amount of 
redundant data. To address this issue, the study incorporated deep learning techniques in the 
later stages of the investigation. The key findings from this objective are as follows: 

• The accuracy of the machine learning algorithm (using random forest pixel-based 
classification) was improved from 89.9% to 92.08% when using an artificial neural 
network covering a 10x larger area of the same urban environment. 

• For a road corridor of length 54.5 km, the accuracy obtained for the white markings of 
one exit and entry ramp is 91.11 km. 

• Using a single class (representing a specific desired feature) allowed for extracting 
relevant information without redundant data. 

• While the training time for deep learning was 5 longer than for traditional machine 
learning, implementing the trained model over large areas took only minutes rather than 
hours. 

Table 6.6 Summary of results 

  

Corridor Accuracy (%) Area/length 

Urban Environment  92.08 22.9 km2 

Road Environment 91.11 54.4 km 
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6.5 Objective 5: Summary of results and comparison 
The table below summarizes and compares the overall objectives to reflect the results. 

Table 6.7 Summary of Results 

Objective 2: Comparison of primary and integrated Dataset 

 Primary Dataset Integrated Dataset 

Overall Accuracy 0.835 0.898 

 

Objective 3: Comparison of pixel-based vs. Object-based image classification 

 Pixel-based Object-based 

Overall Accuracy 0.898 0.924 

 

Objective 4: Comparison of Pixel-based Machine Learning vs. Deep Learning 

 Machine learning Deep learning 

Area(km2) 2.1 22 

Training Time(hrs) 1 5.5 

Classification time(hrs) 2 0.15 

Overall Accuracy 0.898 92.08 

These results demonstrate the effectiveness of using integrated datasets, object-based image 
classification, and deep learning for remote sensing applications.  



60 
 

7 Chapter: Prospects 

This study demonstrates that machine learning and deep learning techniques offer promising 
solutions for analyzing multilayer imagery in remote sensing. With further development, these 
methods have the potential to significantly enhance the accuracy and efficiency of image 
analysis, particularly in areas such as land use classification, environmental monitoring, and 
disaster management. 

7.1 Multispectral & Hyperspectral Imagery  
Deep learning is a powerful technique for extracting useful features and patterns from complex 
and high-dimensional data, such as multispectral and hyperspectral imagery (MSI and HSI). 
MSI and HSI are widely used in remote sensing, medical diagnosis, food inspection, and other 
fields, as they can capture the spectral signature of a target with high spatial and spectral 
resolution. However, MSI and HSI also pose challenges for traditional image processing and 
analysis methods, such as noise, redundancy, dimensionality, and variability.  

Deep learning classifiers can overcome these challenges by learning hierarchical 
representations of the data, which can enhance the models' discriminative ability and 
generalization performance. In recent years, various deep learning classifiers have been 
proposed for MSI and HSI classification, such as convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), generative adversarial networks (GANs), and neural graph 
networks (GNNs). These classifiers can exploit the spatial-spectral correlation of the data, 
leverage prior knowledge or auxiliary information, and handle imbalanced or scarce labeled 
data. A comprehensive review of deep learning classifiers for MSI and HSI can be found in 
(Paoletti et al., 2019). Some examples of state-of-the-art deep-learning-empowered 
computational spectral imaging methods are discussed (Huang et al., 2022). 

7.2 InSAR 
Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique that 
can measure surface deformation and topography by exploiting the phase difference between 
two or more Synthetic Aperture Radar (SAR) images. However, inSAR data processing is often 
affected by various sources of noise and errors, such as atmospheric effects, scattering 
mechanisms, acquisition geometry, and temporal decorrelation. Therefore, accurate inSAR 
phase filtering and coherence estimation are essential steps to improve the quality and 
reliability of the final results(Murdaca et al., 2022; X. Sun et al., 2020). 

In recent years, deep learning has emerged as a promising approach to address the challenges 
of inSAR data processing. Deep learning is a branch of machine learning that uses artificial 
neural networks to learn complex and nonlinear patterns from large amounts of data. Deep 
learning can offer several advantages over traditional methods, such as adaptability, scalability, 
automation, and generalization. Several studies have proposed deep learning frameworks for 
inSAR phase filtering and coherence estimation using different network architectures, loss 
functions, and training strategies.(Aguiar et al., 2022; X. Sun et al., 2020). 
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These frameworks can perform better than classical and non-deep learning-based methods in 
accuracy, efficiency, and robustness. Moreover, deep learning can also enable new applications 
of inSAR data, such as target classification, change detection, and anomaly detection. 

7.3 Temporal Analysis and Change Detection: 
Another potential application of the deep learning techniques and integrated data demonstrated 
in this research project is the identification of distress phenomena, such as road cracks, using 
satellite images. By taking periodic images of the same area, the growth and severity of 
damages could be compared over time using machine learning algorithms hence the change 
detection. This process is largely automatic, requires minimal human intervention, and can 
handle large amounts of data, making it well-suited to today's available data sets. Additionally, 
because deep learning results are constant if the parameters are the same, comparing different 
results is always accurate and reliable without the potential for human error. The information 
obtained through this process could then be used to develop a solution for end customers, such 
as a pavement maintenance plan, based on the identified distress phenomena and relevant 
pavement repair guidelines. 

However, future research still needs to address some limitations and open issues. For example, 
how to effectively exploit the temporal information of multitemporal images to capture the 
dynamic changes over time; how to design more robust and adaptive deep learning models that 
can handle different types of changes and different scenarios; how to improve the 
interpretability and explain the ability of deep learning models for change detection; and how 
to integrate deep learning with other techniques, such as object-based image analysis, transfer 
learning, and domain adaptation, to enhance the performance and generalization of change 
detection. These are some of the promising directions that can advance the field of deep 
learning and temporal analysis with change detection. 

• (Khelifi & Mignotte, 2020) 
• (Khoshboresh-Masouleh & Shah-Hosseini, 2021)  
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7.4 Natural Hazard Risk Management: 
Natural hazards are events of natural origin that can cause disruption and devastation to society, 
nature, and beyond. Examples of natural hazards include floods, earthquakes, landslides, 
wildfires, and volcanic eruptions. Managing natural hazards involves understanding their 
causes, impacts, and probabilities and developing strategies to reduce risks and enhance 
resilience. However, natural hazard risk management faces many challenges, such as data 
scarcity, uncertainty, complexity, and dynamicity. 

One of the emerging technologies that can potentially enhance natural hazard risk management 
is artificial intelligence (AI), which refers to the ability of machines to perform tasks that 
normally require human intelligence. AI can help process large amounts of data, extract useful 
information, learn from patterns, and make predictions and decisions. Among the various 
branches of AI, deep learning is a subfield that uses neural networks to learn from data 
hierarchically and nonlinearly. Deep learning has shown remarkable success in many domains, 
such as computer vision, natural language processing, speech recognition, and recommender 
systems. 

In recent years, deep learning has also been applied to various aspects of natural hazard risk 
management, such as data collection, hazard detection, impact assessment, and emergency 
response. For example, deep learning can help analyze satellite imagery to monitor natural 
hazards and their impacts (Kuglitsch et al., 2022; J. Sun et al., 2022) or use sensor networks to 
detect and forecast flash floods and avalanches (Kuglitsch et al., 2022; NHESS – Special Issue 
– Advances in Machine Learning for Natural Hazards Risk Assessment, n.d.) Deep learning 
can also help recognize natural hazard entities from text data, such as names of hazards, 
locations, dates, and damages. Furthermore, deep learning can help optimize evacuation routes, 
generate natural language summaries, or facilitate stakeholder communication and 
collaboration. 

However, deep learning also has some limitations and challenges that must be addressed before 
it can be widely adopted for natural hazard risk management. These challenges include data 
quality and availability, interpretability and explainability, ethical and social implications, and 
integration with other methods and models. Therefore, it is essential to foster interdisciplinary, 
multistakeholder, and international collaboration to develop standards and best practices that 
facilitate the implementation of deep learning for natural hazard risk management. By doing 
so, one can harness the potential of deep learning to improve the ability to manage natural 
hazards and reduce risks. 
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7.5 Smart irrigation management 
Smart irrigation management is a crucial aspect of sustainable agriculture, as it aims to optimize 
water use and crop yield while minimizing environmental impacts. One of the challenges of 
smart irrigation management is to accurately estimate the soil moisture and evapotranspiration 
(ET) of the field, which are influenced by various factors such as weather, soil type, crop type, 
and irrigation schedule. Traditional methods of measuring soil moisture and ET rely on 
physical sensors that are costly, labor-intensive, and prone to errors. Therefore, there is a need 
for alternative methods that can provide reliable and timely information for irrigation decision-
making. 

One promising method is deep learning, a branch of machine learning that can learn complex 
patterns and relationships from large amounts of data. Deep learning can be applied to model 
soil moisture and ET sensor readings based on weather data inputs, such as temperature, 
humidity, precipitation, and solar radiation. For example,(Abioye et al., 2022) reviewed the 
research trend and applicability of different machine learning techniques for precision 
irrigation management and discussed how digital farming solutions, such as mobile and web 
frameworks, can enable the deployment of developed machine learning models for use by 
farmers. 

(Goap et al., 2018) presented an open-source technology-based smart system to predict the 
irrigation requirements of a field using the sensing of ground parameters like soil moisture, soil 
temperature, and environmental conditions along with the weather forecast data from the 
Internet. 

Another example of using deep learning for smart irrigation management is using long short-
term memory (LSTM), a recurrent neural network that can capture temporal dependencies and 
learn from sequential data. LSTM can be used to model the sensor readings of soil moisture, 
and ET based on the historical data of the field and provide predictions for future irrigation 
needs. For instance, (Sami et al., 2022) developed an LSTM-based smart system that offers 
readings for irrigation based on the predictive analysis of temperature, soil moisture, and 
humidity. They also validated their approach using physical and neural sensor readings to avoid 
malfunctions. LSTM-based models can offer advantages such as high accuracy, low 
computational cost, and adaptability to changing conditions.  
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7.6 Open-Source Contribution: 
In addition to this practical application, the study's results could also be used to contribute to 
the broader field of mapping and GIS by developing an open-source platform, such as a plugin 
for QGIS, to support the use of deep learning techniques. This would not only make it easier 
for others to utilize the powerful capabilities of deep learning in their work, but it could also 
help advance the field by making these techniques more accessible and widely adopted. 
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cloud computing 

QGIS Plugin Interface 

 

 
Cloud Hosting 
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parameters 

Download with 
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Figure 7.1 On-going plugin development 
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In addition to these prospects, there are several other potential areas of future development for 
machine learning and deep learning in remote sensing, including: 

• Object detection and tracking: In remote sensing imagery, machine learning and deep 
learning techniques can detect and track specific objects, such as vehicles or buildings. 
This can be particularly useful for urban planning and traffic monitoring applications. 

• Cloud computing and parallel processing: As the volume and complexity of remote 
sensing data continue to grow, cloud computing and parallel processing may become 
increasingly important for efficiently analyzing such data. Machine learning and deep 
learning algorithms can be adapted to take advantage of these technologies, allowing 
for faster and more scalable analysis of remote sensing imagery. 

• Automated feature extraction: By applying machine learning and deep learning 
techniques to multilayer imagery, it may be possible to automatically extract features 
such as roads, buildings, and vegetation without manual annotation. This can 
significantly reduce the time and cost required for image analysis. 

• Transfer learning: Transfer learning is a technique that allows machine learning models 
to be trained on one dataset and then applied to another related dataset. In remote 
sensing, transfer learning could be used to adapt existing models to new environments, 
such as different geographic regions or different types of imagery. 

7.7 Conclusion: 
In this research project, using satellite imagery, machine learning was used to identify different 
features in an urban corridor. Objective 2 compared the primary dataset (Dataset 1) to the 
integrated dataset (Dataset 2), which included elevation data. The results showed that the 
integrated dataset improved classification performance and object-based Classification was 
superior to pixel-based Classification in an urban environment. Objective 4 focused on using 
deep learning, specifically convolutional neural networks, for corridor mapping in real-life 
applications. This method effectively identified specific features in large areas, such as white 
markings on roads, and required less human intervention than traditional machine learning 
methods. Overall, it was concluded that deep learning techniques and integrated data could be 
useful for real-life corridor mapping applications. 
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