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1. Abstract and State of the Art 
The aim of the proposed methodology is to define a relation between the process 
parameters and the fatigue life of Ti6Al4V components, produced via Selective 
Laser Melting technologies. The method presented in this thesis adopts Machine 
Learning techniques and their several types of Neural Networks, as an attempt to 
reduce the cost of further fatigue testing, as well as to predict the life of 
components, in relation to the process parameters, thermal treatments and surface 
treatments. As it is well known, fatigue testing is rather expensive and time 
consuming. The implementation of machine learning and the extrapolation of 
fatigue data on the fatigue properties of titanium specimens is what helps in 
finding a correlation between the several process parameters, the thermal and 
surface treatments performed postproduction and the fatigue life. The idea is to 
get a sort of “program” that, after having inserted all the aforementioned 

parameters, outputs a fatigue curve that can be used to have an idea on the life of 
a components subjected to a determined stress amplitude level, without any time 
and money expenditure. 
 
When it comes to the literature, this type of work is relatively new. Antriksh 
Sharma [1], from the Arizona State University, made a thesis at the end of July 
2020, in which he had developed a data driven approach to predict the static and 
fatigue properties of additively manufactured Ti-6Al-4V. He analysed several 
additive manufacturing technologies, like S.L.M., E.B.M. and D.M.L.S. to create 
two interconnected neural networks. The first one, from the process parameters 
only (no surface treatments have been considered) is capable of finding the tensile 
properties and from those ones the second neural network predicts the two 
coefficients of the fatigue curve. Liu and Chen [2] wrote an article by the end of 
January 2021, in which they have used another training approach with 
probabilistic guided learning, via a smaller database and a Probabilistic Physics 
Informed Neural Network (PPINN). Lastly, Hornas [3] published his work at the 
end of December 2022, (in the same period on which the following work was 
under development) in which he fatigue tested a couple of dozens of specimens 
and he established a database through the fatigue life and the stress amplitude of 
those samples and in parallel he characterized, via micro CT scans, the overall 
population of defects in terms of size, location and shape. However, the first two 
approaches have sets with missing process parameters. The work described in the 
next pages, has a fully populated training database with a higher numerosity, 
while having a more direct and straight forward training approach. Several other 
peculiarities will be discussed in the following chapters. 
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2. What is Selective Laser Melting (S.L.M.) 
When it comes to manufacturing mechanical parts, throughout the years, it has 
been shown that traditional manufacturing methods work nicely when we have to 
produce shapes that are axisymmetric and semiregular. The most complex shapes 
that we can think of are turbine blades or compressor impellers. Those ones can 
be reproduced without any significant difficulty by the most advanced C.N.C. 
machines. However, we must remember that they are made of steel, that, even if 
it has a composition that makes the alloy hard, it is still easier to be manufactured 
with respect to titanium alloys. 
 

 

Figure 1, Traditional manufacturing via Computerized Numerical Control (C.N.C.) 

2.1 The challenge of manufacturing Titanium Alloys 
Titanium alloys are much harder to shape with traditional methods. In fact, the 
characteristic that makes titanium difficult to design and machine is, at the same 
time, one of its best characteristics. Titanium is not capable of conducting heat 
efficiently. This property is fantastic for parts that have to work at high 
temperatures, like the previously mentioned turbine blades. But this, at the same 
time, means that the cutting tool will absorb nearly all the heat that is generated 
during manufacturing, causing it to be degraded sooner. Not only, but titanium is 
also tough, and a high shear force is needed to create a chip. As if that wasn’t 
enough, Titanium, even though it’s not so strong at room temperature, is one of 
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the strongest metals when heated up to the point of glowing red, because it doesn’t 

lose much strength when heated up with a thousand degrees. These reasons make 
machining titanium tedious and more expensive. 
When producing typical shapes someone may argue that using additive 
manufacturing is an exaggerated choice, but if we consider that titanium alloys 
are often employed for biomedical applications, whose parts and implants are of 
complicated and often personalized shapes, this technology is an obvious choice. 
In this work it has been chosen to analyze, among the various technologies 
available (electron beam melting E.B.M., laser power bed fusion L.P.B.F., direct 
energy deposition D.E.D. and selective laser melting S.L.M.) Selective Laser 
Melting, as it is one of the most popular and used methods. 
 

 

Figure 2, Manufacturing the same part via Selective Laser Melting (S.L.M.) 

2.2 The advantages of Additive Manufacturing 
With respect to the traditional subtractive manufacturing techniques, in which 
material is subtracted from a casted block, additive manufacturing is based, as the 
word itself explains, on adding material layer by layer. Each layer is connected 
via thermal bonding to the next and the previous one, up until the desired shape 
is reached. Additive manufacturing employs computer aided design technologies 
(C.A.D.) that are used by the S.L.M. machine to selectively melt and bond the 
powder. Still, thermal and finishing processes are used, to improve the 
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mechanical properties of the component as well as to achieve the correct sizes 
and tolerances. In fact, the tensile properties of S.L.M. as built parts (as built 
means as produced out of the S.L.M. machine, without any thermal or finishing 
process) are comparable to traditionally produced parts. While, in turn, the fatigue 
properties are worse with respect to conventionally produced components. This 
justifies the employment of thermal and surface treatments. The most used 
thermal treatments on titanium alloys are annealing and hot isostatic pressing 
(H.I.P.). When it comes to surface treatments, we have a wide selection: surface 
machining, sand blasting, shot peening, surface mechanical attrition treatment 
(S.M.A.T.), laser shot peening and polishing. Something else to be considered, is 
the fact that the machine that is printing the component layer by layer, can operate 
without having a human to perform intermediate operations. To be conservative, 
it's just needed a supervisor. In addition, when it comes to the complexity of the 
shape to be manufactured, this does not affect the cost of the production as it 
would happen in traditional manufacturing techniques. In fact, additive 
manufacturing is highly flexible and customizable.  
 

 

Figure 3, Finished S.L.M. Parts 

2.3 The Selective Laser Melting process (S.L.M.) 
The selective laser melting process can be thought of as a sort of evolution of the 
selective laser sintering process. It is capable of delivering complex shapes with 
properties that are comparable to the ones of the traditionally manufactured 
components, when it comes to tensile properties. However, as it was anticipated 
before, we need to perform additional thermal and surface treatments if we want 
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to obtain a fatigue behavior that is comparable to the one of traditionally produced 
parts. 
In the chamber of an S.L.M. machine we have a bed of metal powders that are 
ready to be hit by a laser. The Powder Size [μm] is usually described by a 
gaussian distribution that is provided by the manufacturer, but it is also common 
to find just the Powder Size Maximum [μm] and the Powder Size Minimum 
[μm], or directly its mean value. This laser then hits the powders, melting them 
and solidifying gradually the first layer, as it is dictated by the C.A.D. file of the 
part to be manufactured. Once the first layer is completed, a blade passes over 
another container that is stocking the powder that is going to be processed in the 
next steps. But before doing this, the piston that is beneath the stocking pool is 
raised by the same distance that the piston below the building chamber will travel 
downward. This distance is called Layer Thickness and it’s usually measured in 
μm. The blade then recoats a layer of powder, that is as thick as the parameter 
layer thickness itself. The laser passes again, completing another layer and the 
process is repeated several times, until the part is completed. 
 

 

Figure 4, S.L.M. process machine layout 

This occurs in a chamber that has a protected atmosphere with inert gases, to 
avoid any type of unwanted chemical bond. Moreover, the manufacturer has the 
freedom to decide in which direction the part can be built. In the following work, 
3 main configurations that identify the Building Orientation have been observed: 
horizontal [0°], vertical [90°] and inclined [45°].   
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Moving to the laser, since it has to cover an area that is wider than its Laser Spot 
Size [μm], a Scanning Strategy is needed. As Figure 5 shows, we can choose 
between several strategies: Monodirectional parallel, Bidirectional parallel, 
Contouring, Island Strategy… and in addition, each layer can have its own 

scanning strategy. The possibilities are practically endless, allowing the 
manufacturer to ensure optimal bonding between the subsequent layers.  
 

 

Figure 5, Scanning Strategies 

But, even though we can be creative with the strategy, it is useless to do so if we 
don’t have enough space between one pass and the other. Therefore, another 

important parameter that has to be carefully chosen is the Hatch Distance [μm], 
that is the distance between one laser pass and the next one. Too much hatch 
distance means that we can have unmelted powder between two subsequent 
passages. Too little means having long time to produce the part as well as having 
multiple remelting of the same section of the layer, which can be optimal in 
several cases, but also detrimental in other; it all depends on how all the process 
parameters are set together. 
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Figure 6, S.L.M. process manufacturing detail 

When hitting the powders, the S.L.M. machine has also the option to choose the 
Laser Power [W] and the Laser Scan Speed [mm/s]. The first one dictates how 
much power the laser is delivering to the powders, while the latter one will 
determine how quickly the laser will pass to create the layer of material. If the 
speed is too high and the power is too small, we may not have enough time to 
melt the powder. Vice versa we can have so much power and time to melt the 
powder, that the multiple layers that were previously formed can be remelted 
again and again, ruining the quality of the finished part. To ensure that the part 
has an optimal bonding with the building platform, it is a good practice to heat it 
up. Usually, the Plate Temperature is set to 200 °C for Ti6-Al4-V titanium 
alloys. 
Another important parameter to keep in mind is the Energy density [J/mm3]. It 
greatly affects the properties of the part and it’s defined by the equation below: 
 

𝐸 =
𝑃

𝑣 ∙ ℎ ∙ 𝑡
 

 

In the previous equation P is the laser power [W], v is the scan speed [mm/s], h 
is the hatch distance [mm] and t is the layer thickness [mm]. The Energy density 
allows us to understand the energy that is involved in the volume in which the 
laser is operating and it’s also strictly related to the porosity of the finished part. 
Similarly, to the hatch distance, the Point Distance [μm] is a key indicator that 
explains how each spot (since the laser hits the surface intermittently at a high 
frequency while moving) in which the laser, is operating is distant between the 
previous spot. Again, if it is too high, we could have unmelted regions between 
two subsequent spots; while if it is too small, multiple remelting of the same 
section of the spot can occur, degrading the quality of the product. 
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Figure 7, S.L.M. laser operation detail 

When manufacturing Exposure Time [μs] must also be monitored accordingly, 
because it has a significant impact on the surface energy, which increases if the 
exposure time itself is increased. By varying the previously mentioned process 
parameters, different mechanical properties can be obtained, therefore optimal 
combinations of those, have to be carefully chosen to ensure the best properties 
possible. Another aspect that has to be considered is linked to the density of the 
produced part, in relation to the density of its traditionally produced counterpart. 
In fact, even if we are aiming to get a 100% density, we might end up getting 
values around the 98% of the density of its bulk traditional part. This occurs 
because some gas is locked in the material during fusion, or because the powder 
particles didn’t have an optimal position while melting. This can cause one of the 
most feared defects of S.L.M.: the Lack of Fusion (L.O.F., Figure 8). This kind 
of defect is one of the main causes of the poor fatigue life of as built parts. 
 

 

Figure 8, Defects types and their correlation to the Scan Speed 

For example, if we have a scan speed that is too high, the powder doesn’t have 

enough time to be completely melted, leaving the microscopical sphere (grain of 
powder) partially unmelted. At the same time, if the scan speed is too low, we 
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can have keyhole induced porosities. This phenomenon is great evidence on how 
crucial the parameter tuning is. 
To solve these kinds of problems, coming from the porosities and defects, the Hot 
Isostatic Pressing thermal treatment (H.I.P.) can be employed. In fact, the Hot 
Isostatic Pressing is a process that has been already used frequently in 
traditionally manufactured titanium castings, able to reduce the internal porosities 
and therefore capable of increasing the fatigue life in a remarkable manner. When 
it comes to HIPing, high pressures (1000 to 2000 bar) and high temperatures (800 
to 1050 °C) are simultaneously employed for a couple of hours (2 to 3 hours), in 
a specific chamber filled with inert gas, to the part itself. 
 

 

Figure 9, Defects population before and after the H.I.P. treatment 

In addition, as fabricated parts do not have a nice surface finish and, as it is well 
known, bad surface quality results in poor fatigue life. To enhance the surface 
quality, we can use one or more of the several surface treatments available like 
laser shot peening, shot peening, polishing, surface mechanical attrition 
treatment (S.M.A.T.), surface machining and sand blasting. Since we are 
working at high temperatures with the powders and since their internal 
temperature varies from low values to high values quickly, the final part can 
undergo distortions and residual stresses. The gradual solidification of each layer 
creates high thermal stresses that are responsible of ruining both the mechanical 
properties and the shape of the component. To solve the residual stress problem, 
we can employ the Annealing thermal treatment, which involves reheating the 
component in a furnace at a temperature (500 to 950 °C) significantly below the 
melting point (1660 °C) for enough time (30 minutes to 4 hours). 
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Figure 10, the H.I.P. (left) and Annealing (right) thermal treatments 
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3. Building the Database 
When it comes to applying machine learning techniques, a database to store 
information to train the neural network is needed. Generally speaking, there are 
few rules to be followed in order to have a neural network that is as precise as 
possible: collecting as much data as possible, having as many features as possible 
(the features are the columns that are needed to predict the data that we are 
interested in) and, at the same time, ensuring that the data is coming from a 
trustful source. In this case, the interest was to predict the titanium alloy Ti6-Al4-
V fatigue curves starting from the process parameters of the selective laser 
melting process. The data was collected from articles coming from the Elsevier 
Science Direct article search engine Scopus, in which the researchers conducted 
studies on the fatigue behavior of specimens that were manufactured by S.L.M.. 
Nearly 100 articles have been read carefully, but of those only the one reporting 
the process parameters, the information on the thermal and surface treatments and 
the fatigue curves, have been chosen to extrapolate data from. Since not always, 
the information on the fatigue life was reported numerically, the software 
Engauge Digitizer was used to manually extract the points from the SN diagram. 
While extracting the points to then make predictions about the fatigue life, further 
numerical data concerning the defect characterization of broken specimen, was 
carefully searched, still making sure to be able to connect those numbers to the 
process parameter. This part will be explained in another section.  
 

3.1 Fatigue testing  
When it comes to fatigue, the typical SN diagram is made in this way (Figure 
11): 
 

 

Figure 11, The typical Stress - Life fatigue diagram 
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On the X axis we have the number of cycles to failure Nf [Cycles], while on the 
Y axis we have the stress amplitude σa [MPa]. Fatigue testing is characterized by 
specimens that are tested in special machines with usually sinusoidal loads.  
 

 

Figure 12, Fatigue loading at R = -1 (left) and at R > 0 (right) 

We can have the typical rotating bending configuration testing (Figure 12 and 
13, left), in which the specimen is mounted in a machine that creates a bending 
moment inside the material while it is rotating, thus allowing it to be cyclically 
loaded, or the uniaxial loading testing (Figure 12 and 13, right), where the 
specimen is mounted in a tensile testing machine, that elongates the part up to a 
maximum value, to return then to a smaller force of tensile loading.  
 
 

 

Figure 13, Rotating bending (left) and tensile (right) fatigue testing apparatus 
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The specimens undergo several cycles at a level of stress amplitude σa, until the 
failure is reached. When this happens the number of cycles to failure for the 
specimen is registered as Nf, thus creating one of the red points in the SN diagram.  
One of the most important parameters to keep in mind while performing fatigue 
testing is the stress ratio R. 

𝑅 =
𝜎𝑚𝑖𝑛
𝜎𝑚𝑎𝑥

 

 
This latter one basically explains how the sinusoidal of the stress-time diagram is 
displaced with respect to the X axis on Figure 12. Given σmax as the maximum of 
the sinusoidal stress-time diagram and σmin as the minimum, the stress amplitude 
σa is calculated as: 

𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

 

While, on the other hand the mean stress value σm is obtained in this way: 
 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 

 

Referring to Figure 12, it is evident that the mean stress allows us to understand 
how the sinusoidal is placed with respect to the X axis. In fact, for the rotating 
bending case (R = - 1), since σmax = - σmin, the mean value σm is null, while the 
alternate stress value σa = | σmax | = | σmin |. For the uniaxial tensile loading the 
situation differs, and it depends on how the testing parameters have been set up. 
For sure R ≠ - 1, and both σmax and σmin are positive, meaning that the entire curve 
is above the X axis and that σm is positive. Then the value of R, which is typically 
0.1 or 0.2, depends on how distant σmax and σmin are between each other. 
The traditional fatigue testing is performed under the rotating bending condition. 
However, several researchers have used the uniaxial tensile loading. Therefore, 
to grant continuity between the two methods, the Smith-Watson-Topper 
correction (S.W.T.)  was used to bring the fatigue points that have been tested in 
the uniaxial tensile loading (R ≠ -1) to the rotating bending condition (R = -1). 
Once several specimens have been tested at several levels of stress amplitude, the 
fatigue curve can be produced. Usually, the curve is a simple line or a bi-linear 
model, that can be used to have an idea of how long a component can survive if 
it is loaded at a stress amplitude level. The aim of this work is to predict those 
fatigue curves from the process parameters of the specimen. 
 
3.2 The shape of the database 
The database is constructed to be fed inside the Python programming 
environment and to be read, as a CSV file, by the Python library named “pandas”. 
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Therefore, it will have as many rows as the number of fatigue points that have 
been digitized from the articles, and as many columns as the features that are used 
to predict the fatigue life. In machine learning literature, the variables that are 
used to predict what we are interested in are called features, while the variables 
to be predicted are named labels. It is of extreme importance to make sure that 
we do not have blank spots in the database, otherwise the machine learning 
algorithm won't work. In this case, while extracting data from the articles, it has 
been found that not all the articles are continuous between each other, in the sense 
that some of them are reporting some process parameters, while others are 
missing some of them. In order to fulfill the previous statement, all the articles 
that were not reporting the fundamental process parameters (orientation, scan 
speed, power, hatch distance and layer thickness), were discarded. Unluckily, 
from all those articles, just a few had information regarding the powder size, spot 
size, scanning strategy, plate temperature, point distance and exposure time. 
These latter ones were not used to predict the life.  
Then, inside the articles, information concerning the surface and thermal 
treatment was found in several testing sets. In this case, when one of these 
treatments was performed, a boolean value was used to note if the treatment was 
implemented (number 1) or not (number 0). For the thermal treatments, as it was 
anticipated before, annealing and HIP were noted, as well as the annealing 
temperature (if the annealing was not done, the annealing temperature was 
reported as 20 °C). While for the surface treatments, again a boolean strategy was 
chosen to denote whether the treatment has been performed or not. Those 
treatments are machining, sandblasting (S.B.), shot peening (S.P.), laser shot 
peening (L.S.P.), surface mechanical attrition treatment (S.M.A.T.), electric 
discharge machining (E.D.M.) and surface polishing. 
Then, when digitizing the points on the fatigue diagram, the stress amplitude σa 
and the life Nf of the specimen was carefully noted. In this case the stress 
amplitude σa was used as a feature to predict the label fatigue life Nf. This was 
done to replicate what happens in fatigue testing: usually in the machine is set the 
stress amplitude level σa that the specimen will undergo and, as a result, we get 
the number of cycles Nf. The opposite strategy could have been used anyways 
and it is assumable that the results shouldn't have varied that much. Another 
important note is the fact that it has been decided to discard runouts, because they 
need to be treated in a specific manner that is outside the scope of this work. 
To keep the workflow organized, the lines that were belonging to the same article 
have been labeled by an additional column called Article. While below the 
column Name, it was reported the name of the subset to which the dataset was 
belonging, concerning the same article. For example, there are articles that tested 
as built specimens, annealed specimens and HIPed specimens; in this case below 
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the column “article”, the same name was reported, but below the column “name”, 
three names have been used to distinguish between those three treatments. 
Lastly below the column Code, a number ranging from 0 to the number of subsets 
(76 in total, so 75) has been used. This has been useful to work smoothly inside 
the programming environment. To work with the pandas library, it is of uttermost 
importance to have the name of the column (without spaces) reported. 
The following figure illustrates how the database is built: 
 
 A B C D E F G H I J K L M N O P Q R S T 
1                     
2                     
…                     
i                     

…                     
N                     

 

Where: 
 

A Article Subset Name K H.I.P. Boolean 
B Article Name L Machined Boolean 
C Subset Global Code M Sand Blasted Boolean 
D Build Orientation [°] N E.D.M. Boolean 
E Laser Power [W] O L.S.P. Boolean 
F Laser Scan Speed [mm/s] P S.P. Boolean 
G Hatch Distance [mm] Q S.M.A.T. Boolean 
H Layer Thickness [μm] R Surface Polishing Boolean 
I Annealed Boolean S Stress Amplitude (at R= -1) [MPa] 
J Annealing Temperature [°C] T Fatigue Life Nf [Cycles] 

Table 1, The shape of the training database 

Of course, the columns in yellow noted by the letters A, B and C, are not useful 
to train the neural network, therefore, before the training phase, they have to be 
removed. Their usage is limited only to recognize the subset and to give it a title 
and a code while working in python. 
Usually in machine learning techniques it is useful to start predicting the label 
with a few features and then using more of them to improve the precision of the 
predictions. In the first attempts, only the process parameters (D, E, F, G and H 
in green) and the stress amplitude (S), have been used. While going forward, more 
and more treatments were considered. It's also useful to produce the so-called 
feature crosses, in which two or more features are combined by multiplication or 
division. In a later part of the work, it was observed that producing a feature cross 
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between the laser power and the laser scan speed improved significantly the 
quality of the predictions. This idea originated from the relation that lies between 
those two parameters. In fact, as it was stated in Section 2.3, it is needed an 
optimal combination of the two. In addition, by studying the correlation matrix 
of the training database, it was observed that using the feature cross Speed/Power 
was giving a correlation coefficient (with respect to Nf), that was higher than the 
correlation coefficients of the speed and the power alone, thus improving the 
predictions. 
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4. How a neural network works 
Since performing fatigue testing is rather lengthy and expensive and, at the same 
time, the production of the specimens, with all the thermal and surface treatments 
is surely not cheap, machine learning is undoubtedly a viable choice. 
 
4.1 The black Box Model 
We can think of a machine learning problem as a neural network (N.N.) that, at 
the beginning, is comparable to a black box model. We have the inputs, that are 
the features (xi), that are used to predict the outputs, the so-called labels (yi).  

 

 
Figure 14, The black box model 

But, before using this model to predict what we are interested in, it is needed to 
first train the model in a manner that produces satisfactory results. To do this we 
have to feed the code with the training database, that is the one that has been 
explained in Section 3. In this way the neural network is learning how to correlate 
the inputs to the outputs to produce a prediction.  
But why is it called neural network? If we think of a machine learning problem 
as a black box, we cannot answer this question; but, on the other hand, if we 
understand that inside this box there is an intricate series of connections, we can 
easily understand why it is called in such way. 
 
4.2 The Structure of the neural network 
In fact, a neural network can be thought of way to process data in a manner that 
is inspired to the human brain, that’s why it is also called artificial intelligence. 
Inside this so-called black box, we have several nodes that are interconnected 
between each other. Since this kind of structure, resembles the way the human 
brain is built, those nodes are called neurons and therefore, the reason why this is 
called neural network it's trivial.  
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A point that comes to our advantage, is that we are able to specify how those 
neurons are linked between each other and how many of them are present. 
 

 

Figure 15, The structure of a simple neural network 

We can input how many hidden layers we have and how many neurons per layer 
are present. 
The input layer takes the signal that is then moved to the next hidden layer, while 
this one takes it to the next hidden layer and so on up until the output layer, from 
which we are getting the final result. 
But what is really going on inside the hidden layers? Those ones are also known 
as dense layers because they are having way more nodes than the input and the 
output layers. As it was stated before those nodes are called neurons and they are 
units that work together by taking the signal from the input and producing a 
weight (w) and the bias (b) that are combined with the input features (x) to 
produce a sum (g) that is calculated in such way: 
 

𝑔𝑖 = 𝑤𝑖 ∙ 𝑥𝑖 + 𝑏𝑖  

4.3 Typical machine learning parameters 
Then this sum g is fed through a particular function that has to be specified per 
each layer called activation function (fa), which is then sent to the next layers up 
until the output one: 

𝑦𝑖 = 𝑓𝑎,𝑖(𝑔𝑖) 

Another important parameter to be chosen, while performing machine learning 
tasks, is the number of epochs. The process that has been stated before is repeated 
as many times as the number of epochs. Therefore, it follows that, as this process 
repeats, we have that all the weights and the biases are adjusted at each epoch in 
order to increase the quality of the prediction. The metric that is used to evaluate 
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how the prediction is precise, is usually called the loss function. Generally, it is 
used the loss function that minimizes the mean squared error (M.S.E.). So, for 
each epoch we have that after that the adjustment of the weights and biases is 
completed, the mean squared error is calculated, and then the weights and biases 
are adjusted again accordingly, to make sure that in the next epoch the M.S.E. is 
reduced. If the epochs are few, we aren't able to properly train the model, as the 
loss could to be too high. In general, a high number of epochs is preferred, but if 
we exaggerate, we can get an extreme overfitting behaviour, which doesn’t allow 
the neural network to get its overall trend.  
Another important parameter to choose carefully is the learning rate. It tells the 
neural network how much to modify the biases and weights in response to the 
previously calculated loss. It is important to choose this parameter correctly 
because the loss of the model can even increase, which is of course not desirable. 
In fact, as the number of epochs increases, during the training, we want the loss 
to decrease. If, for example, the learning rate is too small, to achieve a significant 
decrease of the loss we have to increase the number of epochs significantly. On 
the other hand, if the learning rate is too big, the loss could result in an unstable 
behaviour or even worse it could increase. 

 
Figure 16, Loss behaviour as a function of the number of epochs depending on the learning rate 

One last parameter to be kept in mind is the batch size, that is the number of rows 
of the database that are passed through to the whole structure of the network at 
one time. It can range from 1 to the full database. Generally, it is observed that, 
if the batch size is as big as the whole database, the prediction is not precise 
enough, but at the same time having it too small can still cause indecent 
predictions. To proceed correctly we must first set the batch size to a large 
number, even the whole database. Then, a gradual reduction has to be performed 
until we see that the loss doesn't decrease anymore. Then the batch size that 
produces the smallest loss, is the one to be chosen. Even though the tuning of this 
parameter is tedious, this one is one of the least important. It must be reminded 
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that we can play with the number of epochs, the learning rate and the batch size 
as much as we want, but the quality of the data inside the database is the one that 
majorly determines whether a neural network model is good or not. 
 
4.4 The activation functions 
Before it was anticipated that the activation function can be chosen arbitrarily for 
each layer. This activation function modifies the manner in which the neural 
network processes the data. There are several types of activation function: Linear, 
Sigmoid, Rectified Linear Unit (ReLU) and Hyperbolic Tangent (tanh): 
 
1) Linear Function 
The output of the activation function f, is just given by the sum gi itself: 
 

𝑓(𝑔𝑖) = 𝑔𝑖 
 

 
Figure 17, Linear activation function 

2) Logistic Function (Sigmoid) 
The logistic function outputs the following shape, which reminds of the 
hyperbolic tangent function even though, unlike the tanh function, the image of 
this function is bounded between 0 and 1: 
 

𝑓(𝑔𝑖) =
1

1 + 𝑒−𝑔𝑖
 

 
 

 
Figure 18, Sigmoid activation function 
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3) Rectified Linear Unit Function (ReLU) 
This kind of activation function is one of the most popular. It is equal to the sum 
function gi when gi it’s greater than zero, and it’s zero if gi is lower or equal to 
zero.  

𝑓(𝑔𝑖) = max(0, 𝑔𝑖) 
 

 
Figure 19, Rectified Linear Unit (ReLU) activation function 

4) hyperbolic Tangent Function 
Along with the ReLU, it’s one of the most popular activation functions. It is like 
the sigmoid function but scaled by 2 and shifted down by 1, therefore lying 
between -1 and +1: 

𝑓(𝑔𝑖) = tanh(𝑔𝑖) 
 

 
Figure 20, The hyperbolic tangent (Tanh) activation function 

Now that a more precise insight on how neural networks work has been given, it 
is a good practice to be more specific about the real workflow that is behind a 
neural network epoch. 
 
The input layer takes the information from the training database transferring it to 
the first layer of the neural network (dense hidden layer). The input layer has as 
many nodes as the number of features used to predict the labels. Then it is 
assigned a random weight wi to each input feature xi (this represents the part of 
the equation wi · xi) thanks to the connections that are present between each input 
node and each neuron of the first layer. Next the bias bi is added (gi = wi xi + bi) 
building the sum function gi. The sum function gi is fed to the chosen activation 
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function fa, for the first hidden layer. fa tells the network which input node is used 
to extract the feature. This is repeated as many times as the number of hidden 
layers, in which each one of them has its own activation function, up until the 
output layer is reached. The output layer must have as many nodes as the labels 
that we want to predict. This latter one has also its own activation function. 
Generally, the output layer has a linear activation function, because the other ones 
would act as a filter by distorting the final information. Then the output is 
delivered and the weights are adjusted to minimize the error for the next training 
epoch. This happens because the model compares the predicted output labels, 
with the original labels of the database; in this way we are able to determine the 
accuracy. This process is repeated as many times as the number of epochs, 
making sure to minimize the loss based off the chosen loss function. In general, 
the loss function is chosen between the predetermined ones that are available 
inside the Python library “Tensor Flow”.  
However, as it will be shown later in this work, we can also create our own 
customized loss function. This will give rise to the Physics Informed Neural 
Networks (P.I.N.N.), that in our case is one of the best solutions that we can adopt 
to “inject”, inside the network, the physical and phenomenological behaviour that 
is involved in fatigue problems. However, as a beginning, we can consider one of 
the simplest cases of neural network: the Feed-Forward Neural Network 
(F.F.N.N.). 
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5. The Feed-Forward Neural Network (F.F.N.N.) 
When it comes to the types of neural networks, there are several kinds of them. 
However, in this work, only two types will be considered: the Feed-Forward 
Neural Network (F.F.N.N.) and the Physics Informed Neural Network 
(P.I.N.N.). In this chapter the first one will be analyzed. The F.F.N.N. is the 
simplest model of neural network, in which data can travel only in the forward 
direction, so from the input layer to the output layer. While doing so, there is no 
information traveling backwards, as it would happen in other types of networks. 
 
5.1 Preliminary tuning 
As a starting point, we need to determine a useful structure of the neural network 
and, at the same time, have an initial tuning of the machine learning parameters, 
that is optimal for the required work. 
The code is built as follows: 

1. The database is retrieved, but it is built in a simplified manner, with respect 
to the one shown in Table 1. In fact, we are only considering as features 
the orientation, scan speed, power, hatch distance, layer thickness and the 
stress amplitude. As labels we are considering the number of cycles to 
failure, but it has been performed the logarithm with base 10 (log10(Nf)). 

2. Then, in order to grant an optimal training, the database needs to be 
normalized, such that the values range from small negative values to small 
positive values (from -3 to +3 circa). To accomplish this, it was computed 
the so-called Z-score of each column on the whole database, that is simply 
given by the following formula: 

 

𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 − 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑀𝑒𝑎𝑛

𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

The mean and the standard deviation of the database are computed column-
wise, meaning that we have a mean and a standard deviation for each 
feature and for the label. 

3. The structure of the neural network is defined. In this case, the input layer 
has 6 nodes. Then a line of code has to be written for each hidden layer, in 
which it is needed to specify the activation function and the number of 
neurons. It is important to experiment with the structure of the neural 
network in order to get an optimal decrease of the loss. The output layer 
has, of course, just one node because we need to predict one label. 

4. The three machine learning parameters epochs, learning rate and batch 
size, are defined. In order to find an optimal combination, it is needed to 
experiment several times. 
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5. The model is trained from the data coming by the normalized database. 
Here the loss function is specified which, for the feedforward neural 
network, is the mean squared error metric (M.S.E.). 

6. The loss calculated at each epoch is plotted against the number of epochs. 
This is done to understand how the neural network is reacting. The diagram 
that is obtained is the one similar to Figure 16 at section 4.3. 

After extensive experimenting with the machine learning parameters and the 
neural network structure, an optimal combination of number of neurons was 
found (Table 2) and it was validated by the following graph (Figure 21). 
 

 

              Figure 21, M.S.E. as a function of the number of epochs 

The training could have been stopped earlier, for example after 1000 epochs. 
However, to make sure that the chosen combination was the right one, the training 
was carried out up to 100 000 epochs. Indeed, it can be seen that the learning rate 
was chosen correctly, because we have a steep decrease at the first 500 epochs 
and an overall steady phase after those ones. The plot resembles the one labeled 
as “good learning rate” in Figure 16 and this is a sign that what we have obtained 
is a good starting point. For starters, the number of epochs is not to be chosen as 
a fixed value but as a range. A precise value will later be chosen in the validation, 
by plotting the predicted fatigue curve on top of experimental points, that are 
sharing the same process parameters. 
The loss vs. epoch graph is just plotted once as a beginning verification of the 
chosen parameter. In the next sections it will not be considered anymore. 
 
5.2 Preliminary validation 
Finally, once the neural network prediction has been produced after the training 
of the model, we can extract a part of the prediction, to see if the model is correctly 
predicting the points on the fatigue diagram. To this end, a random sub data set 

Input layer 6 Nodes 
Hidden Layer 1 100, ReLU 
Hidden Layer 2 75, ReLU 
Hidden Layer 3 50, ReLU 
Output Layer 1, Linear 
  
Batch Size 500 
Learning Rate 0.001 
Epochs min 500 
Epoch max 10 000 

Table 2, preliminary Hyper-parameters 
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has been selected with a dozen points. On top of this one a fatigue curve, produced 
by the neural network, is plotted. To accomplish this, the data set “Gong2015 
SLM-MP 4” has been randomly selected (Figure 22 and Table 3).  
 
 

 

                   Figure 22, Gong2015 SLM -MP 4 dataset 

Then, another database, that is needed to evaluate the neural network predicted 
Nf, is built having as columns, the same process parameters of this dataset and the 
stress amplitude that is ranging from the maximum to the minimum stress 
amplitudes of the set (402 MPa to 101 MPa) with steps of 1 MPa (Table 4). 
 

 Orientation  
[°] 

Scan Speed 
[mm/s] 

Laser Power 
[W] 

Hatch 
[mm] 

Layer 
Thickness  

[μm] 

Stress 
Amplitude 

[MPa] 

1 90 120 1260 0.1 30 402 
2 90 120 1260 0.1 30 401 
… 90 120 1260 0.1 30 … 
302 90 120 1260 0.1 30 101 

Table 4, Neural network preliminary evaluation dataset 

Of course, the number of cycles is not present because it’s what we are interested 
in evaluating. After having built this evaluation database, since the neural 
network is stored in a normalized state, to grant continuity between the two 
databases, we need to normalize also this latter one. This time we still have to use 
the mean and the standard deviation of the full database and not the one of the 
smaller evaluation database. 
 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝐷𝐵𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝐷𝐵 − 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑀𝑒𝑎𝑛

𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 σa [MPa] Nf [log10(Cycles)] 
1 402 4.04 
2 335 4.29 
3 268 4.65 
4 168 4.95 
5 201 5.02 
6 201 5.10 
7 168 5.45 
8 101 5.52 
9 101 5.71 
10 134 6.54 
11 134 6.56 

Table 3, Gong2015 SLM-MP 4 
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Finally we can predict the number of cycles to failure of the neural network via 
the function tensorflow.predict, that outputs Nf in a normalized form (Nf,NN,norm).  
To bring it back to its standard form, we have to apply the inverse formula, but 
this time using only the mean and the standard deviation that have been calculated 
with respect to the column of the number of cycles Nf. 
 

𝑁𝑓,𝑁𝑁 = 𝑁𝑓,𝑁𝑁,𝑛𝑜𝑟𝑚 ∙ 𝑁𝑓,𝑠𝑡𝑑.𝑑𝑒𝑣. +𝑁𝑓,𝑚𝑒𝑎𝑛 
 
Finally, is it possible to plot (Figure 23) the vector of predicted number of cycles 
vs. the vector of stress amplitude of the database illustrated in Table 3. 
 

 

Figure 23, Gong2015 SLM-MP 4 Preliminary result 

As a first result, it can be stated that we are going in the right direction even 
though there are a lot of things to be improved. The following picture has been 
obtained with a low number of epochs. It is important to investigate what happens 
to the fatigue curve if we modify the number of epochs. 
 
5.3 Modifying the number of epochs 
As it was anticipated before, if we use a low number of epochs, a median behavior 
is obtained. While, if we exaggerate, we get more accurate predictions, but the 
neural network overfits the data present in the database, which is not an optimal 
behavior, especially if we consider the typical shape of the fatigue curves. For 
instance, to understand which number of epochs is optimal, the training has been 
run several times with an increasing number of epochs each time. The test was 
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carried at 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 5000, 10 000 
and 20 000 epochs. Special attention was brought to the range near 500, as it was 
deduced that optimal results can be obtained in those regions. Figure 24 illustrates 
this concept, passing from 200, 900, 5000 and 20 000 epochs:  

 

Figure 24, Increasing the number of epochs results in an overfitting behaviour 

The behavior at 200 epochs is much more preferrable as it resembles more the 
one typical of fatigue curves, even though there is still a lot to improve. At 20 000 
epochs, the curve hits all the points precisely, but an overfitting behavior must be 
avoided. On the shape of fatigue curves, generally it is favorable to have curves 
that are strictly decreasing with a concavity facing upwards. Even better if they 
are bi-linear. This behavior is needed to represent the phenomenological behavior 
of fatigue problems. Figure 25 shows a typical fatigue curve. 
 

 

Figure 25, Typical Bi-Linear behaviour of fatigue curves 

5.4 Removing the validation set from the training database 
Usually in machine learning problems, it’s a good practice to remove the dataset 

that we want to validate from the training database. This is generally done to 
ensure that the method is solid and stable and to understand the right direction to 
take. Unluckily, after having performed this operation, the quality of the 
predictions drastically decreased as shown in Figure 26. 
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Figure 26, Preliminary fatigue curve after removing the dataset from the training database 

The aspects to be improved are still significant: 
 

• The curve is not strictly decreasing. 
• The prediction is nearly completely wrong. 
• The curve is not smooth, but it’s made of broken lines. 
• The behaviour is not the one typical of fatigue problems. 

 

 

At least the prediction falls in the range of the experimental data, meaning that 
we are starting from a decent point. To solve the previously listed issues, we can 
start enriching the database with the information on the thermal and surface 
treatments, as well as tweaking the process parameters, since it is observed that 
the quality of the predictions is mostly determined by the content of the database 
and on how the database is built, rather than the neural network structure or the 
machine learning parameters themselves. In fact, the structure and the set of 
machine learning parameters shown in Table 3, were confirmed to be working, 
even though the database was enriched gradually. 
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6. The Physics Informed Neural Network (P.I.N.N.) 
To make sure to have the best possible prediction, it is a good practice to remove 
the validation set from the training database, to see if the points to be predicted 
are still fit by a nicely shaped curve. In the last section the prediction was not 
good, because there are several things to be solved. In this section, three 
validation sets will be used instead of just one. This has been done to make sure 
that what has been obtained in the region of the data set “Gong2015 SLM-MP 4” 

is not an exception but something that is a characteristic of the whole database. 
For all the three cases, the removal of the validation set from the database before 
training has been performed to grant continuity of the method.  
 
6.1 The correlation matrix 
But before proceeding with any kind of important modification to the code, it is 
usually a good practice to study the correlation between the features towards that 
label Nf. In fact, with this strategy, we can see which feature has a high predictive 
power and which one has a low one, such that we can perform modifications that 
will improve the quality of the predictions. To this end the correlation matrix of 
the whole database is performed in Python via the command .corr(). As it can be 
seen in Figure 27, the matrix gives a coefficient that relates each column of the 
database to all the other columns (even to the same column, which corresponds 
to a coefficient of 100 %). 
 

 

Figure 27, Correlation matrix of the training database 

The column that we are interested in analyzing is the one relative to the label Nf. 
Indeed, we can see that the feature laser power, laser scan speed and layer 
thickness have a low predictive power with respect to the other ones. For sure 
something can be done to improve the quality of the predictions. In fact, as it was 
explained in Section 2, it has been observed that laser power and laser scan speed 
have a strong correlation between each other. Therefore, if the speed is too high 
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and the power is too small, we don’t have enough time to melt the powder. Vice 
versa if we have too much power and time to melt the powder, the multiple layers 
that were previously formed can be remelted again and again, ruining the quality 
of the finished part. These observations, along with the results produced by the 
correlation matrix, are a great suggestion to produce a feature cross. A feature 
cross is simply a combination of two or more columns of the database, that is 
performed via multiplications or divisions. In our case there are not many 
combinations to be tried, because we have just two columns to combine. So, we 
can produce the correlation matrix of all the possible combinations that can be 
made between these two columns and see which one of them gives the highest 
predictive coefficient with respect to the label Nf. We just have 3 possibilities: 
 

1. Laser Power / Laser Scan Speed 
2. Laser Power · Laser Scan Speed 
3. Laser Scan Speed / Laser Power 

 
6.1.1 Laser Power / Laser Scan Speed 
As Figure 28 shows, we can see that, if we are performing the element wise 
division of the laser power feature by the laser scan speed feature, we are getting 
a correlation coefficient with respect to Nf that is not that much higher with 
respect to the features considered alone. In fact, before we had that for the power 
the coefficient was 9.51% and for the scan speed it was 6.77%. While now, not 
only do we have one column less to predict the label, but the coefficient of the 
feature cross is almost identical to the highest of the two. For sure 9.62% is not a 
significant improvement and it's not worth removing a column for such a small 
change. To make the feature cross worth, its correlation coefficient has to increase 
significantly, otherwise we'd better keep everything as it was before. 
 

 

Figure 28, Correlation matrix with Power/Speed feature cross 
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6.1.2 Laser Power · Laser Scan Speed 
Going forward with the second attempt, we can see that this one produces a 
coefficient that is drastically worse than the first one. For sure, such a low number 
(1.19%) must be avoided, because it doesn't make the effort worth (Figure 29). 
 

 

Figure 29, Correlation matrix with Power * Speed feature cross 

6.1.3 Laser Scan Speed / Laser Power 
Last but not least, we still have the reciprocal of the first attempt to be tried. 
Printing the correlation matrix, we can finally see that the effort has been paid, 
because the correlation coefficient is significantly higher (13.54%) than the one 
of that feature columns separated. 
 

 

Figure 30, Correlation matrix with Speed/Power feature cross 

From now on the training database will be considered with this modification. 
Table 5 resumes the study that has been just shown: 
 

Feature Correlation coefficient 
Power and Speed alone 9.51% and 6.77% 

Power / Speed feature cross 9.62% 
Power · Speed feature cross 1.19% 
Speed / Power feature cross 13.54% 

Table 5, Feature cross attempts and their correlation coefficients 
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6.2 Enriching the database of the P.I.N.N.  
As it was stated at the beginning, usually in machine learning problems, it's good 
practice to tune the network with a simplified version of the full database. But 
once a preliminary tuning is performed, it's time to improve the predictive power 
by including the full database. This procedure has been carried through gradually, 
without including all the database at once. This was done to see if the inclusion 
of more features could have degraded the quality of the prediction. At the end it 
didn't. The shape of the database is identical to the one of Section 3, the only 
difference being the addition of the feature cross Speed / Power (Table 6). 
 

 A B C D E F G I J K L M N O P Q R S T 
1                    
2                    
…                    
i                    

…                    
N                    

 
A Article Subset Name   
B Article Name L Machined Boolean 
C Subset Global Code M Sand Blasted Boolean 
D Build Orientation [°] N E.D.M. Boolean 
E Scan Speed / Power [mm/s·W] O L.S.P. Boolean 
F Hatch Distance [mm] P S.P. Boolean 
G Layer Thickness [μm] Q S.M.A.T. Boolean 
I Annealed Boolean R Surface Polishing Boolean 
J Annealing Temperature [°C] S Stress Amplitude (at R= -1) [MPa] 
K H.I.P. Boolean T Fatigue Life Nf [Cycles] 

Table 6, Updated training database with feature cross 

An important concept to keep in mind is the fact that, since the training database 
needs to be normalized, as it was done in Section 5, it's important to perform these 
additional operations to avoid problems during the training: 
 

1. Store in a separate database all the boolean columns (Annealing, H.I.P., 
Machined, Sand Blasted, E.D.M., Laser Shot Peened, Shot Peened, 
S.M.A.T. and Polished) 

2. Remove them from the training database  
3. Normalize the Training database, with the same procedure of Section 5.1 
4. Re-insert all the boolean values 
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If this is not done, since the boolean values contain zeros and ones, the chances 
of getting a Not-a-Number (NaN), are very high and the training database is not 
usable in its normalized state. The same holds for the database that is used to 
evaluate the neural network prediction (same procedure as in Section 5.2, but with 
this caveat to be done). 
If we straight toss a rough prediction with the enriched database and the feature 
cross that has been performed before, we can see from Figure 31, that the quality 
of the prediction of the data set “Gong2015 SLM-MP 4” (with removal of this set 
from the training set), has significantly improved with respect to before (refer to 
Figure 26 on Section 5.4). 
 

 

Figure 31, Fatigue curve after enriching the database 

However, even though the quality is much better, we still have several problems 
to solve. In fact, the curve is not strictly decreasing and has still a broken line 
shape. Indeed, it is not still resembling the classical shape of fatigue curves. 
Recalling the list of things that needs to be improved from Section 5.4: 
 

1. The curve is not strictly decreasing. (Not solved) 
2. The prediction is nearly completely wrong. (Solved) 
3. The curve is not smooth, but it’s made of broken lines. (Not solved) 
4. The behaviour is not the one typical of fatigue problems. (Not Solved) 
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6.3 Implementing the custom loss function 
To solve the problem of the broken line fatigue curves, we can simply straight 
implement, as activation function of all the layer of the neural network, the 
hyperbolic tangent. This latter one is generally responsible for smooth behaviors. 
All the neural network parameters, the number of nodes and layers are kept the 
same. By simply changing the text from “ReLU” to “tanh”, we can easily achieve 
this change. Indeed, from Figure 32, we can see that we do not have broken lines 
anymore, as the curves are smooth. 
 

 

Figure 32, Fatigue curve after using the Tanh activation function 

With this change, point 3 of the previous list has been solved. We still need to 
manage to achieve a strictly decreasing behavior, as we cannot afford to have this 
back-and-forth behavior. Fatigue curves must be strictly decreasing, since, 
through the years, it was observed that if we want a component to survive more 
(high number of cycles) we must decrease the stress amplitude to which the piece 
is subjected; vice versa if we want the mechanical part to withstand a higher stress 
amplitude, the piece will last less (low number of cycles). To this end we can 
inject the physics of the problem by considering the 1st derivative. In fact, if we 
are able to impose that the first derivative must be always negative, the previous 
problem is solved. This quest introduces us to the Physics Informed Neural 
Network (P.I.N.N.). As the name suggests we are informing the neural network, 
by telling it the physics that lies behind the problem that we want to predict. As 
it was stated before, if we can put a strictly decreasing behavior inside the 
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training, we are automatically taking into account the physics of fatigue problems. 
To achieve this, a custom loss function must be used instead of the loss metric 
“mean squared error loss function”, because this one considers only the precision 
of the model, but not the way the model achieves this precision. In poor words, 
this loss function is not able to dictate the shape of the fatigue curve. While 
compiling the neural network via the command “.compile”, the loss function to 
be specified is named “customLoss”. This allows us to create our own customized 
loss function that allows to develop the behavior that we are interested in. 
 
6.3.1 How the curves are computed 
To compute the curves a simple, yet effective strategy is used. A set of so-called 
sampling points is created. Their role is to sample the multidimensional space in 
which the dataset, that has to be evaluated, is located before the training. In fact, 
the number of cycles to failure Nf, it's a function of all the 15 features (process 
parameters, thermal treatments, surface treatments and stress amplitude). The 
aspect that must be taken into account, is that all the process parameters and the 
treatments of the set that has to be evaluated, are constant in this multidimensional 
space, while the only thing that varies is the stress amplitude.  
For example, evaluating the set “Gong2015 SLM-MP 4” (again with its removal 
from the training database to ensure the strength of the method), that has the 
following features (Table 7), the minimum and the maximum stress amplitude 
are searched and a vector of 1000 points is created between these two boundaries. 
 

 D E F G I J K L M N O P Q R S 
1 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 402 
2 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 401.7 
… 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 … 
i 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 315.3 

… 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 … 
1000 90 10.5 0.1 30 0 20 0 1 1 0 0 0 0 1 101 

 
D Build Orientation [°] L Machined Boolean 
E Scan Speed / Power [mm/s·W] M Sand Blasted Boolean 
F Hatch Distance [mm] N E.D.M. Boolean 
G Layer Thickness [μm] O L.S.P. Boolean 
I Annealed Boolean P S.P. Boolean 
J Annealing Temperature [°C] Q S.M.A.T. Boolean 
K H.I.P. Boolean R Surface Polishing Boolean 
  S Stress Amplitude (at R= -1) [MPa] 

Table 7, Updated Neural network evaluation database 
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Of course, this procedure has to be done with the normalized database, so the 
example values reported in the table above are normalized with the usual 
procedure. Once this temporary database is created, it has to be converted into a 
tensor flow variable since it is going to be fed inside the custom loss function. 
Basically, the idea that lies behind this procedure is to create a plane in a 16-
dimensional space, with 14 dimensions that are constant (all features except the 
stress amplitude that is the only one varying from the maximum stress to the 
minimum of the considered data set). This plane is the usual S-N fatigue diagram. 
Then, once this virtual plane is created, we compute the derivative of the number 
of cycles with respect to the stress amplitude (dNf / dσa) and we penalize positive 
derivatives such that the negative derivatives, that corresponds to a decreasing 
behavior, are favored. 
To accomplish this, the gradient is computed in the “TensorFlow” virtual space, 
and a custom penalization function f is inserted as a reference for the custom 
loss function. This function is responsible for making the code understand that 
we want to reduce positive derivatives while favoring negative derivatives. 
 

𝒇 =
−
𝒅𝑵𝒇
𝒅𝝈𝒂

+ |
𝒅𝑵𝒇
𝒅𝝈𝒂

|

𝟐
; 𝒈 =

𝒅𝑵𝒇

𝒅𝝈𝒂
 

 

 

Figure 33, The custom penalization function 

If, for example, we have that the derivative (red) has a determined behavior (in 
this case, for the sake of clarity, it has been chosen a sinusoidal behavior, just to 
explain, but it could have any kind of irregular shape), by performing the green  
custom penalization function f, we are zeroing the positive derivatives, while we 
are giving a positive weight to the negative derivatives. This means that the 
custom loss function, that will be explained in a while, will not consider positive 
derivatives while computing the MSE at each epoch. In few words only the 
negative derivatives will contribute to the precision of the neural network, 
because the positive derivatives are ignored and not taken into account. A little 
note to avoid confusion; the custom loss function is different with respect to the 
custom penalization function f. In fact, the penalization function f is used by the 
custom loss function to train the neural network, such that it respects the physic 
of the problem. 
 
 



 
 

44 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

6.3.2 How the custom loss function works 
The custom loss function can be recalled by the standardized name “customLoss” 

and it takes as input the standardized names y  pred and y  true. Those two are 
used to compute the mean squared error MSE, so they are just responsible of the 
precision of the neural network. In fact, y  true represents the correct value that 
is inside the training database, while y  pred is representing the prediction that is 
created at each epoch from the neural network. 
The MSE is calculated through its usual standard formula: 
 

𝑀𝑆𝐸 =
∑ (𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1

𝑁
 

 
At the end, this MSE term, that is responsible of the overall precision of the neural 
network, is combined with the penalization function f. But before doing so, they 
are casted to a tensor flow variable via the command tf.cast; this allows them to 
be read as tensors inside the Python library TensorFlow, that is the one 
responsible of performing machine learning operations. The final loss that will be 
used by the neural network to evaluate the curves has another standardized name 
called totalLoss and it's simply given by the following formula [4]: 
 

𝑡𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 = 𝑎 ∙ 𝒇 + 𝑏 ∙ 𝑴𝑺𝑬 
 
We can see that there are two coefficients a and b that are near f and MSE. 
Basically, their role it's to favor one of the two terms and to give them a weight. 
We have that the a term is going to favor more the precision that is relative to the 
derivative, making sure that it's a negative one. While the b term is the one 
responsible to give a weight to the overall precision of the network. 
It is good practice to keep the sum of the two coefficients equal to 1, so a + b =1. 
At this point a question may naturally arise: How do we choose these 
coefficients? Do we go by trial and error, inputting random values or is there any 
trend? 
 

Initially it was tried to input a and b manually without applying any significant 
rule. Several unfulfilling curves have been obtained (Figure 34, left), leading to 
think that the whole procedure of the physics informed neural network was not a 
good strategy. But at the end there were sets of coefficients that produced 
excellent results (Figure 35, right). It has to be kept in mind that the number of 
epochs from now on will always be around 500, since it has been observed that 
this produces the best kinds of shape with the typical behavior of fatigue curves. 
A strategy to choose the values of a and b is surely needed to understand how 
these two coefficients influence the shape of the fatigue curve. 
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Figure 34, Change of behaviour with respect to the coefficients a and b 

6.3.3 Tuning the r parameter  
After playing a little bit with a and b with the dataset “Gong2015 SLM-MP 4”, 

it was decided to extend the evaluation to two other randomly chosen datasets: 
“DuQian2020, set 1” and “Alegre2022, As Built” (for each one of the three 
datasets, the training database had those points removed, to grant that the method 
is sufficiently solid). At the same time, it was chosen to adopt a strategy that had 
a quantifiable method. Since, changing each time manually these two coefficients 
was time consuming, it was decided to introduce a new parameter that is a 
combination of a and b: the r parameter. This latter one it’s simply the ratio of a 
and b. Afterwards, a and b were re-written as a function of r with trivial 
mathematical operations: 
 

𝑟 =
𝑎

𝑏
; 𝑎 + 𝑏 = 1; 𝑎 =

𝑟

𝑟 + 1
; 𝑏 =

1

𝑟 + 1
 

 
In this way, we can just change one value and the two coefficients will change 
automatically consequently. Again, to exclude any kind of randomness, it was 
decided to create a vector of values of r, that are ranging from the order of 
magnitude of 10-12 to 1012. More precisely it is going from 1·10-12 to 1·1012, 
alternating the coefficient in front of 10x with 1 and 5 (Table 8). 
 

r 1·10-12 5·10-12 1·10-11 5·10-11 … 1·1011 5·1011 1·1012 5·1012 

Table 8, All the possible values of the r parameter 

This allows us to have a decently sized spectrum to investigate how the behavior 
of the fatigue curve changes with respect to r. In any case we do not have to worry 
about a and b because, as it was stated before, they are automatically determined 
by the previously imposed constraint (a + b = 1). 
The idea is to launch a training session for each of the three randomly chosen 
subsets for each value of the r parameter, to see which value of r is the one 
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producing the best results. However, in the first attempts, it was observed that 
with the same r parameter and the same settings, the obtained curves were a bit 
mismatched. In order to compensate for this behavior, the training for each 
dataset at each r, was repeated five times leading to get 5 curves and by 
performing the mean of these five curves, a better prediction was obtained. The 
hyperparameters and the structure of the neural network was the usual one and it 
was kept constant for each single launch (epochs = 500, learning rate = 0.001, 
batch size = 500, layer 1 = 100 neurons with tanh, layer 2 = 75 neurons with tanh 
and layer 3 = 50 neurons with tanh). 
In addition, to have both a qualitative and quantitative description of the fatigue 
curves, the root mean square error (R.M.S.E.) was manually calculated between 
the fatigue curve (the one averaged on the 5 predicted curves) and the 
experimental points in the X direction, when the values of the stress amplitude 
were equal, thanks to a couple of nested while loops. 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑁𝑓,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖

 −𝑁𝑓,𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑖
 )2𝑁

𝑖=1

𝑁
 

 
So, for each r and for each dataset, we have a root mean square error that is 
representative of the dataset and of the selected r parameter. This allows us to 
have a quantitative description of how good the prediction is. While, in order to 
have a qualitative idea of the curve, it is just needed to observe the plot of the 
average curve on top of the experimental points. Combining these two strategies 
will allow us to have the best possible choice of the r parameter, since it's not 
possible to have a customized value of the r parameter for each single data set, as 
it cannot be changed each time. 
Just to have an idea on how many times the code has been automatically launched 
thanks to several nested while loops: we know that for each of the 3 data sets the 
training was launched 25 times (that's the length of the r parameter vector) and 
for each value of the r parameter the training occurred 5 times, to create a five 
curves average; that's a total of 125 trainings per dataset. To then compare the 
values of the root mean squared error, a mono-logarithmic plot was produced, 
having on the X axis the values of the r parameter, while on the Y axis the value 
of the root mean square error (Figure 35).  
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Figure 35, R.M.S.E.(Nf) as a function of r for the 3 analysed datasets 

Having performed the mean on five curves was a good strategy to reduce the 
randomness that is present in each training. In fact, we can see that the curves in 
this plot are not so much fragmented. We can finally investigate them to look for 
a minimum value of the RMSE to have the best prediction.  
 

 

Figure 36, Sweet spots for the 3 datasets 

If we look at the minimum value for each data set, we see that for each curve we 
have values that are not the same. Each dataset was expected to have the 
minimum in the same range, but disappointingly enough, this didn't occur. 
However, as it was stated before, this is just representing a quantitative numerical 
approach. We can still rely on the qualitative investigation, made possible by 
looking at the fatigue curves. The following figure (Figure 37) shows the fatigue 
curves that are relative to the r values highlighted in Figure 36 (the black curve 
is the one averaged from the 5 purple ones). 
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Figure 37, Fatigue curves corresponding to their sweet spots 

Indeed, we can see that for the sets “Gong2015 SLM-MP 4” and “DuQian2020, 
set 1”, as it can be verified by the legend present in the picture, the prediction is 
not bad and acceptable. While for the subset “Alegre2022, As Built” the fatigue 
curve cannot be called in such way: the lines are vertical leading to a completely 
useless prediction. The occurrence of this phenomenon is due to the fact that we 
didn't explicitly use, in an independent manner, the qualitative evaluation that is 
carried out by looking at the fatigue curves. In fact, for how helpful the numerical 
evaluation is, it can happen that the root mean square error calculated for each r 
is not representative of the goodness of the prediction. This happens because there 
are curves that are not strictly decreasing, or that are just vertical, that are giving 
us the best results in terms of RMSE, with respect to curves that are strictly 
decreasing. That's why it was useful to combine both the qualitative evaluation, 
by observing the fatigue curves, and the quantitative one, given by the RMSE 
value. Finally, if we look for a fixed value of r for all the three curves, since it 
was observed that for values of r that are between 10-3 and 10-8, we get excellent 
predictions for all the 3 sets, we can choose r = 10-4 as a good candidate (Figure 
38). 



 
 

49 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

 

Figure 38, Final sweet spot choice 

This choice was simply made thanks to both the qualitative and quantitative 
evaluation, by looking at the figures in the previously highlighted range (from 10-

3 to 10-8). Because with the RMSE we got a rough idea of the useful range, and 
by looking at the pictures we can validate this idea and make a final choice. 
Figure 39 confirms what was told before: 
 

  

 

Figure 39, Fatigue curves corresponding the final choice of the r parameter 
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After this long study, it can be finally concluded that choosing r = 10-4, leads to 
satisfactory results. In fact, for the sets “Gong2015 SLM-MP 4” and 

“DuQian2020, set 1”, as it can be verified in the pictures, the curve is nicely 
shaped. For the subset “Alegre2022, As Built”, we could have gotten better 
results, but even though the curve is miss centered, at least we got the final part 
of the diagram, and we are from the conservative side in the top part. It must be 
remembered though, that all the three subsets have been removed from the 
training, meaning that that curves are in the worst-case scenario. If the datasets 
were present inside the training database, their shape would have been much 
better. Indeed, we can proceed by evaluating what has just been told, as well as 
each single subset of the training database; this time using the training database 
in its entirety. 
 
6.4 Global evaluation 
Table 9 has been reported for clarity, to see how many subsets we have to 
validate. In total we have 76 of them.  
 

Code Article Sub-Set Name Code Article Sub-Set Name 
0 DuQian2020 [5] 1 38 Gunther2018 [14] Batch 1-3 

1 DuQian2020 [5] 2 39 Gunther2018 [14] Batch 2 

2 DuQian2020 [5] 3 40 Gunther2018 [14] Batch 3 

3 DuQian2020 [5] 4 41 Eric2016 [15] As Built 

4 DuQian2020 [5] 5 42 Eric2016 [15] Polished 

5 DuQian2020 [5] 6 43 Eric2016 [15] Shot Peened 

6 DuQian2020 [5] 7 44 Gong2015 [16] SLM-OP 1 

7 DuQian2020 [5] 8 45 Gong2015 [16] SLM-MP 2 

8 DuQian2020 [5] 9 46 Gong2015 [16] SLM-MP 3 

9 DuQian2020 [5] 10 47 Gong2015 [16] SLM-MP 4 

10 Gunther2017 [6] SLM-1a 48 Gong2015 [16] SLM-MP 5 

11 Gunther2017 [6] SLM-1b 49 Alegre2022 [17] As Built 

12 Gunther2017 [6] SLM-2 50 Alegre2022 [17] HIP 

13 Hu2020 [7] noName 51 Macallister2022 [18] AF test 

14 Li2016 [8] Edwards & Ramulu As Built 52 Mertova2018 [19] AH 

15 Li2016 [8] Edwards & Ramulu 
Machined and Polished 53 Mertova2018 [19] MH 

16 Li2016 [8] Xu et al. Annealed 54 Mertova2018 [19] M 

17 Li2016 [8] Xu et al. AB 0° 55 Tehrani2021 [20] AB Coarse East 

18 Li2016 [8] Xu et al. AB 90° 56 Tehrani2021 [20] AB Fine East 

19 Li2016 [8] Hooerweder et al. 57 Tehrani2021 [20] M Coarse East 

20 Li2016 [8] Kasperovich & Hausmann 
Machined and Polished 58 Tehrani2021 [20] M Coarse West 

21 Li2016 [8] Kasperovich & Hausmann 
AB 59 Tehrani2021 [20] M Fine East 

22 Sanaei2020 [9] AM250 Annealed 60 Tehrani2021 [20] M Fine West 

23 Sanaei2020 [9] AM250 AB 61 Yan2019 [21] AF 
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24 Sanaei2020 [9] AM250 Annealed and 
Machined 62 Yan2019 [21] HIP 

25 Sanaei2020 [9] M290 90° Annealed 63 Yan2019 [21] SMAT 

26 Sanaei2020 [9] M290 45° Annealed 64 Kumar2020 [22] 3090-AF 

27 Sanaei2020 [9] M290 90° AB 65 Kumar2020 [22] 3090-HT 

28 Sanaei2020 [9] M290 45° AB 66 Kumar2020 [22] 3090-SP 

29 Zhao2016 [10] SLM-V7 67 Kumar2020 [22] 3067-AF 

30 Zhao2016 [10] H-SLM-V7 68 Kumar2020 [22] 3067-HT 

31 Fousova2018 [11] SLM 69 Kumar2020 [22] 3067-SP 

32 Jiang2021 [12] HT 70 Kumar2020 [22] 6090-AF 

33 Jiang2021 [12] LSP2 71 Kumar2020 [22] 6090-HT 

34 Sun2021 [13] Ultrasonic 72 Kumar2020 [22] 6090-SP 

35 Sun2021 [13] Rotating bending 73 Kumar2020 [22] 6067-AF 

36 Gunther2018 [14] Batch 1-1 74 Kumar2020 [22] 6067-HT 

37 Gunther2018 [14] Batch 1-2 75 Kumar2020 [22] 6067-SP 

Table 9, List of all the datasets 

It follows that several nested while loops are needed in order to not get lost inside 
the evaluation. The procedure is identical to the one carried to find the r parameter 
value, but this time it's fixed to r = 10-4. We basically are having 76 repetitions of 
the training and for each subset we perform the training five times to get a 5 
curves average. Also, the subset evaluation database (like the one of Section 6.3.1, 
Table 7) is automatically created inside the code. It may be thought that it's 
useless to repeat the training so many times, because in theory just 5 repetitions 
would be needed. But it's useful to remind that inside the custom loss function, 
the multidimensional space is scanned with a fixed set of features that belong to 
datasets that are different to evaluate. With that being said, it's trivial to see why 
we repeated the training so many times: each subset has its set of features and of 
process parameters. It is useful to confirm the expected results that we listed 
before: the curves of the three subsets “Gong2015 SLM-MP 4”, “DuQian2020, 
set 1” and “Alegre2022, As Built” must improve with respect to the previous 
ones, when we removed them from the training database for the validation. The 
plot is simply produced like in Figure 39, alongside a sort of “map” that shows 
in the complete SN diagram, where the points of the subset are located. At the 
same time a R.M.S.E., with respect to Nf, is computed to be used for later 
comparing this P.I.N.N. method with other ones.  
Indeed, from Figure 40, we can see how the expectations can be fulfilled, leading 
to curves that are the best we have obtained so far. This means that working in a 
condition that is worse with respect to the one of the final evaluation, was a good 
strategy. However, we are not done yet. In fact, we can already see, from this 
preliminary insight, that the curve of the subset “Alegre2022, As Built” is strictly 
decreasing, but the concavity is not facing upward. 
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Figure 40, Fatigue curves after the tuning of the r parameter without removal from the database 

This suggests that it’s a useful idea to let the network understand that the second 
derivative must always be positive and not negative, leading, then, to an 
improvement of the physics informed neural network. This will be done in a later 
section. Running the full code, we can obtain a picture for each data set that can 
allow us to understand whether what we implemented is good or not and, since 
for each dataset the R.M.S.E. was computed (Figure 41), we can also store 
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separately those values to use them to compare other structures of neural network 
later on.  
 

 

Figure 41, R.M.S.E.(Nf) evaluated for all the datasets 

In fact, comparing different datasets with the same type of neural network it's not 
useful (like in the previously shown Figure 41: this was done just to see which 
subset has the lowest and highest R.M.S.E.), because each one of them is 
unrelated from the other. But comparing the same dataset R.M.S.E. with each 
neural network structure can be useful. It has to be reminded that, along the 
quantitative prediction of the R.M.S.E., it's good practice to have also a 
qualitative observation of the shape of the curves. Of course, showing all the 
pictures would be time-consuming. However, it can be stated that more than 80% 
of the curves have promising shapes and a good quality of the predictions (Figure 
42). 
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Figure 42, Datasets evaluated with the tuned Physics Informed Neural Network 

Even though we have obtained a substantial improvement of the shape of the 
fatigue curves and of the quality of the prediction, there are still a couple of 
aspects to be improved: 
 

1. There are curves that have a concavity facing downwards: we need to force 
the second derivative to be positive. 

2. The shape of the curves is not always linear, like the one that is typical of 
fatigue. Even though the prediction is precise, we have several curves that 
are curvilinear. It would be preferable to obtain diagrams like the one 
shown in Figure 11, section 3.1. 

  



 
 

56 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

7. Bilinear and concavity behavior with the P.I.N.N. 
As it was stated in the previous paragraph, even though the curves have a 
satisfactory behavior and the predictions are almost always right, a bi-linear curve 
with the concavity facing upwards is preferrable. To achieve this kind of 
behavior, we can tune accordingly, again, the structure of the neural network and, 
at the same time, we can implement changes to the custom loss function. It is 
important to remind that the objective is to get a curve that resembles the 
following one (Figure 43): 
 

 
Figure 43, Typical fatigue curve 

7.1 changing the structure of the P.I.N.N. 
Recalling how the rectified linear unit activation function and the linear 
activation function are, it is easy to deduce that combining these ones, can give 
us the shape that we were looking for.  
 

 
Figure 44, Activation functions used for the 3rd type of Neural Network 

After extensively experimenting with several combinations, it was obtained that 
the best results were achieved with the structure depicted in Table 10. The 
machine learning parameters were kept equal to the previous attempts (500 
Epochs, learning rate of 0.001 and batch size of 500). 
 



 
 

57 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

 
Layer N° nodes/neurons Activation function 
Input 15 - 

Hidden 1 500 ReLU 
Hidden 2 500 Linear 
Output 1 Linear 

Table 10, 3rd Neural Network structure 

If we start a preliminary evaluations on the three usual sets (“Gong2015 SLM-
MP 4”,  “DuQian2020, set 1” and “Alegre2022, As Built”) we can see that the 
shape of the curve it's more fragmented, meaning that we have successfully 
reduced the curvilinear behavior, while still having a strictly decreasing trend, 
thanks to the implementations that were done before in the physics informed 
neural network algorithm with the custom loss function. 
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Figure 45, Evaluation of the 3 usual datasets with the 3rd Neural Network before implementing the 2nd derivative 

Unfortunately, as it can be seen already from set “Alegre2022, As Built”, we have 
that the concavity is still facing downward. In fact, if we investigate other 
pictures, like for example “DuQian2020, set 7” (Figure 46), we can see that we 
need something more accurate to solve this problem. Because, with respect to the 
previous curvilinear attempt, the situation is even worse. 

 

 

 
Figure 46, Fatigue curves with the concavity facing upwards with the 2nd and 3rd Neural Network type 
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7.2 Considering the 2nd derivative in the custom loss function 
To make sure that we have a concavity always facing upwards, it's necessary to 
introduce a new strategy inside the custom loss function. This strategy is very 
similar to the one that has already been discussed in Section 6.3, but, at the same 
time, we have also to make sure that now, a strictly decreasing behavior can be 
achieved. To obtain this, we must have a custom penalization function f that 
takes into account both the first derivative and the second one. In a similar fashion 
to what has been already implemented in the previous section, we still have a 
number of sampling points, that are used to calculate the first derivative in the SN 
plane, with all the other features (process parameters and treatments) kept 
constant, except the stress amplitude, which varies in the range of the article 
subset that we are interested in evaluating. Formally speaking, we are computing 
a gradient in a space with 16 dimensions, but 14 of them are constant, so it's like 
being inside a plane, in which the stress amplitude σa is used to drive the 
prediction of the number of cycles Nf. It's important to remember that all the 
variables involved are TensorFlow variables, more precisely, they are tensors, 
because this is what is used inside the TensorFlow library to make computations.  
Once we have obtained the first derivative dNf/dσa, we can make the second one, 
by differentiating the first one with respect to the stress amplitude. d2Nf/dσa

2 is 
computed in the same exact way as the first derivative: the space is sampled with 
the sampling points with all the features kept constant, except the stress 
amplitude, which is used to differentiate the freshly computed first derivative. 
Once we have both the first and second derivative, we can create a newly updated 
custom penalization function f, that allows the neural network to give the curves 
the desired shape. This latter one is based off the one that has been implemented 
inside Section 6.3. The function is the following one: 
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Figure 47, customized penalization function to take into account the 1st and 2nd derivative 

The discussion of the green curve is the same as the previous chapter: since we 
want to penalize positive derivatives, we give a positive weight to the negative 
derivatives, while we give a null weight to the positive derivatives. For the blue 
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curve we have similarly fashioned reasoning but reversed. If we assume that the 
second derivative (orange) has the depicted trend (in this case depicted as a 
sinusoidal for the sake of simplicity, but, again, it can have any kind of shape), 
since we want to penalize negative derivatives, we are giving a positive weight 
to the positive second derivative (which corresponds to a concavity facing 
upwards, that is the desired behavior) while we are giving a null contribution to 
the negative derivative. This is represented by the expression and the curve in 
blue. The green (representing the behavior of the first derivative) and the blue 
(referred to the second derivative) expressions are combined through a sum. Then 
the function f is fed inside the custom loss function in the same exact way that 
has been done before. The expression that dictates the behavior of the second 
derivative has a weight marked by the letter C. This last one can be tuned 
accordingly with a procedure that is very similar to the one adopted for the r 
parameter. A vector of C ranging from 10-12 to 10+12 has been created, and 10 
subsets were evaluated per each value of C. The 10 curves of each value of C 
were carefully analyzed and at the end of this qualitative evaluation, the value of 
105 was chosen. This value worked well because it allowed to reduce the 
concavity facing downward. 
In fact, after implementing those changes, that take into account the behavior of 
the second derivative inside the custom loss function, we can see that we have a 
significant improvement on the behavior of the concavity. If we take as example 
the set “DuQian2020, set 7” We can see that there has been a correct penalization 
of the negative second derivative. 
 

 

Figure 48, Improvement of the concavity behaviour for the set DuQian2020, 7 

  

The same upgrade can be observed for the afore mentioned set, “Alegre2022, as 
built”: 
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Figure 49, Improvement of the concavity behaviour for the set Alegre2022, As Built 

However, after producing a curve for all the subsets of the database, it was 
observed that there is still a small number of sets that has the concavity facing 
downwards. Here below are reported a couple of them. 
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Figure 50, Curves, that after penalizing negative 2nd derivatives, still have the concavity facing downwards 

Those pictures suggest that is necessary to investigate another method to get 
better predictions and to mitigate the wrong behaviors once and for all. Because 
even though their predictions are improved, we are not always getting curves that 
are typical of fatigue testing. 
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8. F.F.N.N. with concatenated layers 
Another attempt that was tried is a more straightforward and simpler one. It was 
observed that, in order to complete the training and evaluation of the previous 
types of neural networks (the five-curve averaged one and the ReLU- Linear one), 
it was required an extensive amount of time. The training requires even more time 
when we are evaluating the physics informed neural network with a custom loss 
function, with respect to a simple feedforward neural network. So, it was thought 
to use the ”Mean Squared Error” loss function, that is already integrated inside 
the machine learning environment, leading to have a simple feedforward neural 
network as the one that was used in Section 5. But this time, along with the power-
speed feature cross and an enriched database, it was decided to use a new structure 
for the neural network. Having kept the machine learning parameters as the usual 
ones (500 epochs, learning rate = 0.001 and batch size = 500), the structure this 
time is composed by one single layer that is the result of the concatenation of a 
ReLU and linear layer, both made of 1000 neurons. 
To implement this, we needed to sequentially create the input layer, the linear and 
ReLU layer, that are not placed in series but in parallel, both taking as input the 
input layer, and, after performing their concatenation via the command 
“.layers.Concatenate“, the concatenated layer is sent to the usual single node 

linearly activated output layer. This concatenation allowed faster training times. 
Figure 51 resumes what has been just explained: 

 
Figure 51, Logical scheme for the concatenated feed forward neural network 

Then it's possible to evaluate all the single articles as it has been done in all the 
previous sections. The root mean squared error is also computed for each article 
in the same exact way as the previous methods. The idea is to compare the 
R.M.S.E. of all the methods. It is first useful to see what happens to the usual 
three datasets that we have been evaluating preliminarily in all the sections: 
“Gong2015 SLM-MP 4”, “DuQian2020, set 1” and “Alegre2022, As Built”. 
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Indeed, we can see that this strategy allows us to get good results without having 
the complication of the physics informed neural network. 
 

 

 

 

Figure 52, Three usual datasets evaluated with the 4th neural network type: Concatenated F.F.N.N. 

In fact, we can see that we get curves that are nearly identical to the typical shape 
of fatigue problems. They are almost strictly decreasing with a seemingly almost 
linear behavior. However, if we investigate the same article subsets that have 
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been shown in Section 6 and 7 with their figures, we can see the drawbacks of 
this method: we still have the concavity facing downwards in some datasets and 
in just a few, we have small sections that are not strictly decreasing. 
 
 

  
  

  
  

  
 
 
 
 

 



 
 

66 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

 

               

Figure 53, Datasets evaluated with the 4th type of neural network: concatenated F.F.N.N. 

Although it has been surprisingly pleasureful to see that such a small change in 
the structure of the neural network with just a simple F.F.N.N. allowed to get 
results that are similarly good to the ones of the complicated P.I.N.N., we are not 
still in the condition of obtaining bilinear curves. We could have used just a single 
linear hidden layer to easily get a single line in the fatigue diagram, but it is 
preferable to have a bi-linear fit. 
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9. Pure Bi-Linear Behavior 
Up until now we have been using these four types of strategies in order to get the 
desired predictions: 

1. Feed Forward Neural Network with 3 ReLU layers 
2. Physics Informed Neural Network with positive 1st derivative penalization 

and 3 tanh layers 
3. Physics Informed Neural Network with positive 1st derivative penalization, 

negative 2nd derivative penalization and ReLU-Linear Layers 
4. Feed Forward Neural Network with ReLU-Linear concatenated layer 

At the end it was observed a progressive improvement, as Figure 54 shows on 
the set “Gong2015 SLM-MP 4”, but the pure bi-linear behavior was never 
actually achieved. 
 

  

            
Figure 54, History of the 4 neural network types seen up to now 

We need a completely new approach and method to achieve a pure bi-linear 
behavior. The database must be rethought in terms of dimensions and machine 
learning features and labels. To this end it is important to remind how a simple 
bilinear function is built. 
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9.1 The Bi-Linear Function 
A bilinear function is simply made of two lines that are intersecting in a point 
(Point *). These latter ones have a slope (m1 and m2), that is basically showing 
us how the line is inclined, and a bias (q1 and q2), that tells us where the lines are 
intersecting the Y axis. For our case, since we are in a SN plane (σa and S are 
interchangeable and the same holds for Nf and N), the graphical situation is 
explained by Figure 55. 

 
Figure 55, Mathematical layout for the Bi-Linear approach 

The equations of the problem are the following ones: 
 

{
𝑺 = 𝒎𝟏 ∙ 𝑵 + 𝒒𝟏
𝑺 = 𝒎𝟏 ∙ 𝑵 + 𝒒𝟐

 
 

However, the bilinear function is piecewise defined, meaning that we have to tell 
it when we are considering the first equation or the second one. To obtain this, 
it's necessary to find the intersection point *. If we simply replace S with S* and 
N with N* we obtain the following linear system: 
 

 
By performing trivial mathematical calculations, we can obtain the expression for 
the coordinates of the point*: 
 

 

{
𝑺∗ = 𝒎𝟏 ∙ 𝑵∗ + 𝒒𝟏 
𝑺∗ = 𝒎𝟐 ∙ 𝑵∗ + 𝒒𝟐 

 

𝑵∗ =
𝒒𝟐 − 𝒒𝟏
𝒎𝟏 −𝒎𝟐

; 𝑺∗ = 𝒎𝟏 ∙ 𝑵∗ + 𝒒𝟏 
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With the point * found, we can finally tell Python when to consider one 
expression or the other: 

{
𝑺 = 𝒎𝟏 ∙ 𝑵 + 𝒒𝟏𝑖𝑓𝑵 ≤ 𝑵∗
𝑺 = 𝒎𝟏 ∙ 𝑵 + 𝒒𝟐𝑖𝑓𝑵 > 𝑵∗

 
 

Since we have been interpreting this machine learning problem and the fatigue 
graphs in the opposite way, so using S as an independent variable and N as a 
dependent one, still plotting, however, in the correct way, we can also find the 
expressions of N as a function of S. Because when plotting the lines, we are first 
looking for the stress amplitude S range depending on the selected article, and 
only then we are determining N. By inverting the expressions, it holds that: 
 

{
 

 𝑵 =  
𝑺 − 𝒒𝟏
𝒎𝟏

𝒊𝒇𝑺 ≥ 𝑺∗

𝑵 =  
𝑺 − 𝒒𝟐
𝒎𝟐

𝒊𝒇𝑺 < 𝑺∗

 

 

9.2 How the Bi-Linear database is built 
The idea that lies behind this section is to build a database that is nearly identical 
to the one that has been used up until now. The only difference being that, before 
we were predicting the number of cycles directly, now the idea is to predict the 4 
bilinear parameters m1, m2, q1 and q2. So, we have 15 features (process 
parameters, thermal and surface treatments) and 4 labels (the 4 bilinear 
parameters). Table 11 illustrates what has just been told:  
 

 A B C D E F G H I J K L M N O P Q R S T U V 
1                       
2                       

…                       
i                       

…                       
76                       

 
A Article Subset Name L Machined Boolean 
B Article Name M Sand Blasted Boolean 
C Subset Global Code N E.D.M. Boolean 
D Build Orientation [°] O L.S.P. Boolean 
E Power [W] P S.P. Boolean 
F Scan Speed [mm/s] Q S.M.A.T. Boolean 
G Hatch Distance [mm] R Surface Polishing Boolean 
H Layer Thickness [μm] S Parameter m1 
I Annealed Boolean T Parameter m2 
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J Annealing Temperature [°C] U Parameter q1 
K H.I.P. Boolean V Parameter q2 

Table 11, Training database for the Bi-Linear approach 

This time the feature cross was not used, as it was referred only to the previous 
types of problem, and this one is a completely different one in terms of machine 
learning. In this case, instead of having several hundred rows, we are just having 
one row per each article sub-data-set. In total we have just 76 rows. This is also 
beneficial for the machine learning algorithm, as this low numerosity lightens the 
calculations. The only task that we are left with is populating the columns that are 
referred to the 4 bilinear parameters.  
 
9.2.1 Finding the 4 bilinear parameters 
In order to find the 4 bilinear parameters, a specific code with several nested while 
loops, has been built. Its task is to choose two points: one in the top left region of 
the graph (Point A with coordinates (NA; SA)) and the other one in the bottom 
right part (Point B with coordinates (NB; SB)). These two points are chosen 
specifically for each data set, with respect to how these regions are populated. 
Then for each of these two points, a set of straight lines passing from one point, 
is produced by using the following trivial equations: 
 

{
(𝑆 − 𝑆𝐴) = 𝑚1(𝑁 − 𝑁𝐴)

(𝑆 − 𝑆𝐵) = 𝑚2(𝑁 − 𝑁𝐵)
 

 

The only thing that is left to be chosen are the slope coefficients m1 and m2. To 
make a clever selection, for each dataset a range of m1 and m2 was imposed. For 
m1 the lowest possible value starts with a high negative number and ends at m* 
(which is still negative), while m2 ranges from m* to a very low negative number. 
m* is the slope coefficient of the line passing from point A to point B (having a 
negative sign with a relatively low absolute value), while the other two values are 
chosen accordingly and tuned to the considered set of points. As an example, we 
might have for a data set that the vectors of m1 and m2 are ranging in the depicted 
manner: 

𝑚1 = [−1000,−999,… ,𝑚
∗] 

𝑚2 = [𝑚
∗, … , −0.002,−0.001] 

 

The step inside the vector is imposed manually considering that single data set, 
so the one that is reported for this example is not representative of all the cases. 
By imposing the negative coefficients m1 and m2 in this manner, we are also 
injecting the physics of the problem having always slopes that are negative and 
the concavity that is facing upwards. Figure 56 shows conceptually what has been 
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explained. But how do we choose which is the best m1 and m2? Of all the possible 
combinations that are available, which one is the best in terms of fitting? 
 

 
Figure 56, Logical layout to find the best combination of the 4 Bi-Linear parameters 

Of all the possible combinations of m1 and m2, it is chosen the one that produces 
the lowest root mean square error with respect to the number of cycles Nf. So, 
the code that calculates the R.M.S.E. can be employed also for this purpose. The 
vectors of m1 and m2 are scanned creating all the possible combinations for the 
chosen ranges. Then, for each combination, the expression of the bilinear function 
is produced, considering that, once the points A and B are decided and the 
combination of m1 and m2 analyzed is determined, q1 and q2 are automatically 
found through the following equations: 
 

{
𝒒𝟏 = 𝑺𝑨 −𝒎𝟏𝑵𝑨
𝒒𝟐 = 𝑺𝑩 −𝒎𝟐𝑵𝑩

 
 

With m1 and m2 found, we can compute point * and get the expression of the 
bilinear function, from which we are going to calculate the distances to the 
experimental points to get the R.M.S.E.. Then the root mean square error value 
is stored into a matrix that has the same dimensions of the vectors of m1 and m2. 
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If, for example, the vector of m1 has 200 items and vector m2 has 150 elements, 
there will be 200·150 = 30 000 iterations and 30 000 R.M.S.E., as the matrix will 
have size 200 x 150 and 30 000 elements. By performing the minimum of this 
matrix, we can finally find the most suitable value for the analyzed article sub-
data-set. It's imperative that the starting value of the m1 vector and the ending 
value of vector m2, are chosen accordingly, to avoid creating lines that are 
completely out of the range of the experimental points of the considered data set. 
To this end, the bilinear function that derives from the chosen value of m1 and 
m2, is plotted to verify that the result is the desired one. 
This process is repeated for all the 76 sub-data-set, allowing us to finally fully 
populate the training database for this new method. 
 
9.3 Tuning the bi-linear network machine learning parameters 
Since the training database has a new structure with respect to the one that has 
been used in the previous attempts, it's a good practice to repeat the tuning of the 
neural network parameters. After testing several configurations, it was found that 
the following structure of neural network was working best: 
 

Input Layer 15 Nodes 
Layer 1 100 Neurons (tanh) 
Layer 2 75 Neurons (tanh) 
Layer 3 50 Neurons (tanh) 
Output Layer 4 Nodes (Linear) 
  
Learning Rate 0.001 
Epochs 1000 – 10 000 
Batch Size 40 

Table 12, Structure and Hyper-parameters of the Bi-Linear F.F.N.N. 

In this case, unlike in the previous attempts, the activation function does not affect 
the shape of the final curve, as the bi-linear behavior is forced with the four 
coefficients. Since the size of the database is much smaller with respect to the 
previous attempts, the training proceeds much faster, therefore we can also 
increase the number of epochs to have a more accurate prediction. In fact, since 
the bilinear behavior is forced with the four coefficients, increasing the number 
of epochs will not create an overfitting behavior as it happened in Figure 24. In 
addition, we are not using any custom loss function, so the type of neural network 
is a simple F.F.N.N., allowing us to train the model with lighter calculations. As 
if it wasn't enough, another important advantage of this type of model is that the 
training can be just performed once for all the datasets and the articles are 
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evaluated later with a while loop. One last concept to remember is that it's 
absolutely necessary to put 4 nodes in the output layer, because with this neural 
network we are predicting 4 labels and not one, as in the previous case. Because 
of this, the neural network outputs four normalized results that have to be de-
normalized separately. In fact, as it was explained in Section 5, before feeding the 
network with the training database, it has to be normalized. For this matter, also 
the four labels are normalized before the training with their mean values and 
standard deviations. The neural network produces as output a 1x4 vector, after 
that we feed the command model.predict with the correct sets of process 
parameters pertaining to the subset that we are evaluating.  

 
 0 1 2 3 

N.N. normalized prediction m1, NN, norm m2, NN, norm q1, NN, norm q2, NN, norm 
 

{

𝑚1,𝑁𝑁 = 𝑚1,𝑁𝑁,𝑛𝑜𝑟𝑚 ∙ 𝑚1,𝑆𝑡𝑑.𝐷𝑒𝑣. +𝑚1,𝑚𝑒𝑎𝑛

𝑚2,𝑁𝑁 = 𝑚2,𝑁𝑁,𝑛𝑜𝑟𝑚 ∙ 𝑚2,𝑆𝑡𝑑.𝐷𝑒𝑣. +𝑚2,𝑚𝑒𝑎𝑛

𝑞1,𝑁𝑁 = 𝑞1,𝑁𝑁,𝑛𝑜𝑟𝑚 ∙ 𝑞1,𝑆𝑡𝑑.𝐷𝑒𝑣. + 𝑞1,𝑚𝑒𝑎𝑛
𝑞2,𝑁𝑁 = 𝑞2,𝑁𝑁,𝑛𝑜𝑟𝑚 ∙ 𝑞2,𝑆𝑡𝑑.𝐷𝑒𝑣. + 𝑞2,𝑚𝑒𝑎𝑛

 

 
Once the four coefficients are denormalized, we can implement the usual bilinear 
expression and the plot of the curve by calculating also the root mean square error.  
 

9.4 Results  
If we proceed with the evaluation of all the datasets, we can finally affirm that 
the objective, that has been pursued in the previous sections, has been finally 
achieved: 
 

1. The curves are bi-linear, 
2. A strictly decreasing behavior is observed, 
3. The concavity is always facing upwards, 
4. The quality of the prediction is good. 

 
Here below are reported the three usual data sets that have been analyzed up to 
now: “Gong2015 SLM-MP 4”, “DuQian2020 set 1” and “Alegre2022, As Built”. 

In green we have the bi-linear fit, while in orange the predicted curve. 
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Figure 57, Usual three datasets evaluated with the 5th method: Bi-Linear F.F.N.N. 

It can be clearly seen that the curves are excellent in terms of prediction, and they 
respect the traditional shape of fatigue problems. Other figures can be analyzed 
to confirm the previous statements. 
 



 
 

75 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

 
  

  
 
  

  
 
  

  
 
 
 
 
 

 



 
 

76 
 
DIMEAS – Politecnico di Torino                                                    Alessio Centola (289202) 

Master’s Degree in Mechanical Engineering – Final Thesis – Progettazione Meccanica 

 
 

  
  

  
  

             

Figure 58, Datasets evaluated with the 5th type of Neural network: Bi-Linear F.F.N.N. 

It can be confidently concluded that this method produces satisfactory results. It 
is now time to compare all the five attempts developed up to now. 
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10. Final comparison 
Five types of neural networks have been developed: 

1. FFNN, 3 layers ReLU (Section 5) 
2. PINN, 3 layers tanh, 5 curves average, f’ loss (Section 6) 
3. PINN, 2 sequential layers ReLU-Linear, f’ and f’’ loss (Section 7) 
4. FFNN, 1 concatenated layer ReLU-Linear (Section 8) 
5. FFNN, Bi-Linear 4 parameters (Section 9) 

 

It is a good idea to compare them and to draw conclusions. We can first start with 

the comparison of the root mean square error of the five methods, that, even 

though it's not fully representative of the shape of the fatigue curve, it can still 

give us a good starting point for the final evaluation. 
 

 
Figure 59, R.M.S.E.(Nf) for all the datasets for the 5 types of neural networks 

As it can be observed, we have that the results are continuous between each other, 
and the discrepancies are not highly pronounced. This indicates that the methods 
are producing trustful results in terms of overall precision. It could be thought 
that the four parameters bi-linear neural network is not performing quite well as 
it was hoped, but, again, as it was stated in the previous sections, this numerical 
methodology of evaluation is not always the best option. It must be kept in mind, 
however, that the method developed in Section 5, has been enriched with the full 
database, therefore the quality of the prediction has improved significantly 
compared to before. By analyzing the usual three datasets we can get an idea of 
the situation. We can see how overall we have good predictions with all the five 
methods. The 3rd and 5th method grant that the concavity is always facing upward. 
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Figure 60, Comparison of the 5 methods for the 3 usual datasets 
 

To get a deeper insight into the results, it’s a good idea to visually inspect the 
other curves. The set of curves analyzed is the same reported in the previous 
sections (Figure 61).  
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Figure 61, Datasets evaluated with all the 5 methods at the same time for comparison 

 

As it can be seen, generally speaking, the 5th method gives curves that are better 
in terms of shape, concavity and strictly decreasing behavior; however, there are 
cases in which the overall prediction is better given by the other 4 methods. 
Moreover, it is important to understand what happens when we are inspecting 
sections of the SN plane that are out of the region of the database. 
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11. Stressing the Neural Networks  
The five methodologies analyzed up to now present an overall precise behavior 
and the curves have an acceptable shape for almost all the subsets. Even in the 
extrema of the database we have a good quality of the predictions. It would be an 
interesting idea to see what happens if we stress the neural network by removing 
a decent number of points from the extrema of the database. Visually on the 
stress-life diagram we have this situation (Figure 62): 

 

Figure 62, All the fatigue points in the S - N diagram 

In total we have nearly 800 points that are spanning from stress amplitude levels 
of 50 MPa to 1000 MPa, while for the life we have a good variety of points that 
are ranging from Low Cycle Fatigue regions (L.C.F.) to Very High Cycle Fatigue 
life portions (V.H.C.F.). It has been decided to trim the extrema of the previous 
figure by removing points pertaining to the same datasets, from the training 
database. These datasets are belonging to extrema regions: for example, low life 
and low stress amplitude (bottom left), high life and low stress amplitude (bottom 
right), low life and high stress amplitude (top left) and, for how rare its occurrence 
is, high life and high stress amplitude regions (top right). 15 datasets in total have 
been neglected from the training, to later be evaluated in these more severe 
conditions. This highlights the solidity of the neural network. In fact, we can 
expect not so satisfactory curves evaluating the datasets that have been removed 
from the extrema, while it will be interesting to see what happens in the inner 
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portions with this smaller training database. If the points inside the inner region 
of the database produce approvable predictions, we can conclude that the neural 
network has been built on solid foundations. The training database passed from a 
total of 768 points to a lower amount of 620 points. Table 13 highlights the 
removed datasets and their region of belonging. 
 
Code Dataset Name Region Fatigue Properties 

1 DuQian2020, set 2 
Right Bottom High Life 

Low Stress 7 DuQian2020, set 8 

14 Li2016, Edwards & Ramulu As Built 

Left Bottom Low Life 
Low Stress 15 Li2016, Edwards & Ramulu Machined and Polished 

19 Li2016 Hooerweder et al. 

22 Sanaei2020, AM250 Annealed 

Left Top Low Life 
High Stress 

23 Sanaei2020, AM250 AB 

24 Sanaei2020, AM250 Annealed and Machined 

25 Sanaei2020, M290 90° Annealed 

26 Sanaei2020, M290 45° Annealed 

27 Sanaei2020, M290 90° AB 

28 Sanaei2020, M290 45° AB 

12 Gunther2017, SLM-2 

Right Top High Life 
High Stress 34 Sun2021, Ultrasonic 

35 Sun2021, Rotating Bending 

Table 13, Strategy used to stress the Neural Networks 

To have a visual representation of the situation after the removal of the points we 
have Figure 63, that shows all the points of the original database, with the 
removed points highlighted in red. 
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Figure 63, Training database with the points to be removed highlighted in red 

Therefore, the final database is significantly narrowed by this removal and its 
final look is the one shown in the figure below (Figure 64). 
 

 

Figure 64, Trimmed training database used to stress the neural network 
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11.1 Inspecting the Removed portions 
It's important to study the parts of the SN plot, from which we have removed the 
points, to see how strong their predictions are. Reporting all the 15 datasets listed 
in Table 13, with all the methods compared, we can get an idea on how the 5 
neural network types are having difficulties in getting decent predictions. 
 

Right Bottom 
 

         

Figure 65, Right bottom region stressed network analysis 

For the right bottom section, we are having that all the 5 types of neural networks 
are getting right the portion of the experimental points. However, we can see that 
the overall precision is not extremely good. It has to be noted that the 5th method 
(bilinear prediction) is performing worse with respect to the others. 
 

Left Bottom 
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Figure 66, Left bottom region stressed network analysis 

For the left bottom region, we have terrible curves. This happens because in those 
regions the database is poorly populated, therefore the neural network is not able 
to grasp any significant path to get a correct prediction. 
 

Left Top 
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Figure 67, Left top region stressed network analysis 

If we switch to the left top part, we have the most controversial outcome of the 4 
areas. In fact, for three of the figures we have almost precise predictions, while 
for another couple of them we are getting right just the portion of the experimental 
points, but we are missing the right slope, or we are having a significant offset of 
the curve with respect to the points. For another couple of curves, the prediction 
is completely out of range. Again, it's worth noting that the bilinear method is 
having more difficulties with respect to the other 4 techniques. 
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Right Top 
 

  

 

Figure 68, Right top region stressed network analysis 

Again, as it happened in the left the bottom part, here we are having disastrous 
outcomes. The reason has again to be searched in the physics of fatigue problems. 
The majority of the points are found in a sort of linear region that is decreasing 
from the top left region to the bottom right region. Therefore, it's more likely to 
find points in those parts, while the occurrence of failures in the bottom left or 
top right region is seldom. This explains why in those two regions the predictions 
are bad: because the database in those areas is not richly populated. 
 
11.2 Analyzing the Inner Portions 
Since reporting the missing 61 curves is not practical, first the three usual 
preliminary datasets “Gong2015 SLM-MP 4”, “DuQian2020, set 1” and “Alegre 
2022, As Built” will be shown and then the remaining other curves, that have 
been shown multiple times in the previous sections, will be inspected. 
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Figure 69, Usual three datasets analysed in the stressed condition 
 

At first glance it can be confidently stated that the predictions of this neural 
network stress test are very similar to the ones obtained in Section 10. To confirm 
this statement, it's an excellent idea to look at the other curves. 
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Figure 70, Datasets in the inner region evaluated in the stressed conditions 
 

Indeed, the previous statement is true: as it was observed for the three usual 
datasets, the quality of the prediction is almost identical to the one of Section 10.  
The fact that we are getting good predictions in the inner region, is a sign that the 
method that has been implemented in the neural network is coherent and solid.  
 
In conclusion, the curves of the inner portions are not influenced by the outer 
regions, while, if we are inspecting sections of the SN plane that are out of the 
region of the database, the 4-parameters bi-linear method has difficulties in 
outputting a decent curve, while the other 4 methods, can still guess a portion of 
the region. 
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12. External Validation 
Since in the previous sections, the fatigue neural network has been demonstrated 
to be working nicely, delivering correct predictions, it is definitely a good idea to 
make sure that the network can deliver viable predictions in the case it is used as 
a “program” to output the fatigue curves for specimens produced with a 
determined set of process parameter. Since the specimens are not yet produced 
and tested, and since the aim of this work is to avoid the production and the testing 
of specimens, we cannot insert other experimental points inside the training 
database. We could potentially ask the network to output curves for a set of 
process parameters, to see in which area of the SN diagram the curve belongs, but 
we wouldn't have any way to prove if the prediction is correct. To this end, to 
emulate this situation, and to prove that the network is capable of delivering 
correct predictions, an external article has been searched to create a validation 
dataset. After extensive research, the article “Xu2020” [23] has been found. It has 
three sets with 20 fatigue points circa, belonging to specimens produced with the 
same sets of process parameters, but with respectively a varying building 
orientation (90°, 45° and 0°). Table 14 resumes the values of the process 
parameters and thermal and surface treatments, besides the coordinates of each 
point (Table 15). 
 

Features Set 1 Set 2 Set 3 
Building Orientation [°] 90 45 0 

Laser Power [W] 450 450 450 
Hatch distance [mm] 0.15 0.15 0.15 
Scan speed [mm/s] 1200 1200 1200 

Layer Thickness [μm] 50 50 50 
Annealed? Yes Yes Yes 

Annealing Temperature [°C] 850 850 850 
Hot Isostatic Pressing? No No No 

Machined? Yes Yes Yes 
Sand Blasted? No No No 

E.D.M.? No No No 
Laser Shot Peening? No No No 

Shot Peening? No No No 
S.M.A.T.? No No No 
Polished? Yes Yes Yes 

Table 14, Features for the external validation article 
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 Set 1  Set 2  Set 3 
 σa [MPa] Log10(Nf)  σa [MPa] Log10(Nf)  σa [MPa] Log10(Nf) 
1 843 4.42656  750 4.173186  802 4.397801 
2 758 4.565942  674 4.537618  850 4.649637 
3 590 4.765162  675 4.710227  590 4.860895 
4 547 4.86163  590 4.943445  548 4.906922 
5 589 4.866618  590 5.021603  758 4.913687 
6 547 4.891666  506 5.124765  674 4.923358 
7 674 4.98209  590 5.153205  506 5.165304 
8 463 5.053731  548 5.15791  548 5.166963 
9 505 5.055875  440 5.215373  590 5.446522 

10 506 5.10394  548 5.233453  674 5.450172 
11 506 5.138208  506 5.242094  589 5.502004 
12 463 5.160589  505 5.266537  464 5.598156 
13 590 5.201315  421 5.444872  506 5.60608 
14 564 5.238071  421 5.520732  548 5.72125 
15 463 5.725593  440 5.661197  464 6.885022 
16 548 7.015779  404 5.843432  674 7.125188 
17 565 7.464668  404 5.903535  590 7.202379 
18 421 7.500826  337 7.991536  548 7.31029 
19 380 7.990516  378 7.994625  464 7.629522 
20 338 7.993304  397 7.996643  506 7.660619 
21       589 7.662956 
22       506 7.863424 

Table 15, Experimental points for the 3 datasets of the article Xu2020 

 
Herebelow are reported the three datasets besides the global map, to identify their 
region of belonging. A good number of points, are located in poorly populated 
regions. This means that if we get decent predictions, the methods developed until 
now are consistent; because it's more difficult to get good results in scarce 
regions. 
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Figure 71, The 3 datasets of the article Xu2020 
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The curves have been evaluated with the usual five methods. The first set 
produces decent results for the first 4 methods, as the middle and low sections are 
covered. The upper part has a low-quality prediction. This is due to the fact that 
the 3 points that have a high stress amplitude belong to a region that has not been 
trained yet. Therefore, such behavior is expected. The 5th method, although is the 
most conservative one, is not capable of covering the points. 
The second set is the one that has the best predictions of all. The reason has to be 
searched again in the fact that those points pertain to regions that have been 
already explored during the training. The best shapes are achieved by the 4th and 
5th method. The other three are able to land the curve on the points, but the shape 
is not so convincing. 
For the third set, we are having that the bilinear method delivers the best 
prediction, followed immediately by the second method. The first method is also 
producing a nicely shaped curve, though it's too much on the far left. The 4th one 
provides a suitable shape, but doesn't give a correct enough prediction, as the 
points are not guessed. 
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Figure 72, The 3 datasets of the article Xu2020 evaluated 
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Even if the predictions are not perfect, we can state that the previous figures are 
a sign of consistency when it comes to evaluating the goodness of the neural 
network with external data. Moreover, the fact that those points belong to poorly 
populated regions is a further sign of the solidity of the network, as it can perform 
well enough even in these scarcely populated conditions. When evaluating a 
fatigue curve with a set of process parameters with these methods, we can be 
confident enough that we can produce a viable prediction. 
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13. Process Parameter Variation Evaluation 
Having asserted that the neural network is trustful, we can now proceed with one 
of the last evaluations. We can detect what is the overall trend of the neural 
network, considering that each process parameter varies while keeping the others 
constant. This gives us an additional reason to trust what has been developed up 
to now. In fact, we can believe in the correctness of the method if we see that, by 
varying one of the process parameters, the fatigue curve changes accordingly and 
reasonably with respect to the physics of the selective laser melting problem. To 
proceed with this evaluation, a feedforward neural network with only one linear 
layer with 1000 neurons, has been chosen. The following strategy allows us to 
have a simple, yet effective, representation of the results, as the resulting shape is 
a simple line that will not intertwine with the other lines that are going to be 
plotted around. The line will be evaluated in the entire stress-life diagram. The X 
axis ranges from 101 to 1010 cycles, while the Y axis spans stress amplitudes from 
0 MPa to 1000 MPa. With this it’s possible to have a complete global vision. It 
has been chosen to vary the building orientation, hatch distance, layer thickness 
and the speed/power cross parameter. Therefore, we are having four separate 
evaluations and while we are varying one of the process parameters, the other 
ones are kept constant to a precise value that is the same for each of the four 
evaluations. To be even more precise by laying down curves that are located in 
the mid region of the fatigue diagram, it has been chosen to have all the process 
parameters and the booleans of the thermal treatments and surface treatments set 
to the most recurrent or mean value considering the whole database, if the feature 
allows to do so. Since, again, the neural network is outputting as predicted label, 
the fatigue life Nf, we are using a vector of stress amplitude values that is varying 
from 50 MPa to 1000 MPa with steps of 25 MPa. For the building orientation 
parameter, we have that it can just have three values: 0°, 45° or 90°; therefore, it's 
useless to perform a mean value, as 80° is never used to manufacture S.L.M. parts. 
In this case the most frequent value of 90° has been chosen. For the speed/power 
cross parameter, since it derives from the combination of two numbers it can have 
continuous values from its minimum to its maximum, hence it's a viable choice 
performing its mean, that is 4.8 mm/s·W. The hatch distance ranges from more 
or less 0.05 mm to 0.25 mm. Again, as before, we can have continuous values 
from the minimum to the maximum, so the mean value of 0.12 mm has been 
adopted. The same discussion holds for the layer thickness: the minimum is 30 
μm while the maximum is 60 μm; the mean value performed on the whole 
database is 40 μm. Concerning the boolean values, since it doesn't make sense to 
perform a mean value between 0 and 1, also considering its logical nature, the 
most recurrent value has been considered. This results in a zero for all the 
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booleans except the annealing, machining and polishing treatments, that are the 
most frequent ones. Since the annealing process has been included for the 
aforementioned reason, the annealing temperature must not be set to 20 °C. So, 
the mean value of all the annealing temperatures, excluding 20 °C, has been 
performed resulting in 735 °C. Table 16 clarifies what has been just explained. 
 

 D E F G I J K L M N O P Q R S 
1 90 4.8 0.12 40 1 735 0 1 0 0 0 0 0 1 50 
2 90 4.8 0.12 40 1 735 0 1 0 0 0 0 0 1 75 
…                
i 90 4.8 0.12 40 1 735 0 1 0 0 0 0 0 1 … 

…                
N 90 4.8 0.12 40 1 735 0 1 0 0 0 0 0 1 1000 

 
D Build Orientation [°] L Machined Boolean 
E Scan Speed / Power [mm/s·W] M Sand Blasted Boolean 
F Hatch Distance [mm] N E.D.M. Boolean 
G Layer Thickness [μm] O L.S.P. Boolean 
I Annealed Boolean P S.P. Boolean 
J Annealing Temperature [°C] Q S.M.A.T. Boolean 
K H.I.P. Boolean R Surface Polishing Boolean 
  S Stress Amplitude [MPa] 

Table 16, Process Parameter variation evaluation database 

Once the evaluation database is built, we can repeat it as many times as it is 
needed to cover each process parameter variation. If we choose, for example, to 
vary the building orientation, the database is repeated three times, but for the first 
set, 0° will be the value under the build orientation column, for the second we 
will have 45° and for the third 90°, while keeping all the other parameters set to 
the decided values, displayed in the previous table. This process is repeated 
several times up until all the process parameters have been covered, with its 
chosen variation range. 
 
13.1 Building Orientation 
Having anticipated that the building orientation varies from values equal to 0°, 
45° and 90°, it's trivial to choose to let this parameter vary with these three values. 
If we run the training and we evaluate it with these three values and we combine 
the obtained figures on the whole database, we obtain Figure 73. As it can be 
easily seen, the 90° configuration outputs the best curve, followed immediately 
after by 45° and 0°. This is a sign that specimens built vertically are performing 
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better with respect to horizontally built ones. As it was anticipated before we can 
see that the curves belong to the mid region, indicating that having chosen the 
mean sets of process parameters leads to the plot being located in the center. 
 

 

Figure 73, Varying the Building Orientation 

13.2 Hatch Distance 
This parameter varies from values of 0.05 mm to 0.25 mm and for this reason five 
values have been chosen: 0.05 mm, 0.10 mm, 0.15 mm, 0.20 mm and 0.25 mm. 
The building orientation is reset to 90°. Indeed, as we can see from Figure 74, 
low value of hatch distance gives better fatigue performances as opposed to high 
values. The lines are having their biases decreasing in an ordered manner from 
the 0.05 mm line to the 0.25 mm one. Recalling the role of the hatch distance 
(Section 2), the reason of this trend can be attributed to the fact that low value of 
hatch distance, allow the laser to better melt the powders, as we have a higher 
number of passes that are also closely packed, also giving the chance of having a 
partial remelt of the previous pass to grant a better bonding between the two 
subsequent passages. On the other hand, high values will lead to the contrary, 
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since the distance between each passage is too high to permit an optimal melting 
of the powders and a decent bonding with the previous passages. 
 

 

Figure 74, Varying the hatch distance 

13.3 Layer Thickness 
The layer thickness ranges from 30 μm to 60 μm. To be even more precise, we 
also have values of this parameter equal to 40 μm, 45 μm and 50 μm, but the most 
frequent ones are 30 μm, 45 μm and 60 μm, therefore those latter ones have been 
chosen. After resetting the hatch distance to the mean value of 0.12 mm, we can 
run the evaluation. In this case we cannot appreciate a significant difference 
between the three curves. The reason lies behind the fact that, as it was shown in 
Section 6, this parameter doesn't have a very high correlation to the fatigue life Nf 
(the coefficient was the lowest one with a value of 8%). To appreciate the 
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diversities, we have to perform 
a slight zoom of the same curve 
in the center region that ranges 
from 200 MPa to 600 MPa and 
from 105 to 107 cycles. We can 
see that 30 μm leads to the 
worst prediction while 60 μm 
gives us the best. Physically 
speaking the reason can be 
found in the fact that if we have 
small values of thickness, the 
laser disturbs the previously 
solidified layer while operating 
to create the next one, partially 
melting it, therefore not giving the new layer a solid surface to grasp on. On the 
other hand, if the layer is thick enough the contrary holds. Again, this difference 
is very subtle, therefore we must not worry too much about these variations. 
 

 
Figure 75, Varying the Layer Thickness 
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13.4 Speed/Power 
Inside the database the cross-parameter speed/power ranges from values close to 
0 mm/Ws to the maximum of 12.5 mm/Ws. Therefore, it has been chosen to have 
five values to investigate: 2.5, 5, 7.5, 10 and 12.5 mm/Ws. Indeed, if we reset the 
previous parameter to their mean values and we start producing the curves, we 
can see the following trend depicted in Figure 76. 
 

 
Figure 76, Varying the Speed/Power cross-parameter 

We can see that low values of speed/power produce better fatigue performances 
with respect to high values of this parameter. The physical reason for this trend 
is simple. Recalling the laser power, we have that sufficiently high values should 
allow a good melting of the powders, while low values don’t deliver enough 
energy to permit the bonding of the powders. On the other end, when it comes to 
the laser scan speed, if the laser is traveling too quickly, the material doesn't have 
sufficient time to create the solidified structure; conversely if the speed is 
moderate the powders can have sufficient time to bind with each other. Therefore, 
it's trivial to understand that if we have moderate speeds and relatively high 
powers (low speed/power, e.g. 2.5 mm/Ws) the quality of the finished part could 
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likely be better with respect to parts manufactured with high speeds and low 
powers (high speed/power, e.g. 12.5 mm/Ws). In fact, in the previously shown 
figure, we can see that low values of this parameter produce a better fatigue 
response with respect to high values. 
 
13.5 Conclusions 
After having understood which value of each process parameter leads to the best 
curve, we can understand which is the best combination that gives us the highest 
fatigue curve, therefore we can create a plot in which we evaluate the best curve 
by combining the best process parameters that we have found in the previous 
studies, again with the linear simplified neural network structure. The set of 
features fed to the neural network to evaluate it, is the same as before, but the 
following process parameters have been chosen. 
 

Speed/Power 2.5 mm/Ws Layer Thickness 60 μm 
Building Orientation 90° Hatch Distance 0.05 mm 

 
 

 
Figure 77, Best combination of process parameters 

We can appreciate how this creates a curve that is greatly in the right part of the 
stress life diagram (Figure 77). However, we can proceed with further 
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investigations, as the Hot Isostatic Pressing thermal treatment hasn't been 
considered yet. In fact, we can also add the H.I.P. thermal treatment as it is known 
to improve fatigue properties. We can also compare the results produced before 
with the best combinations of process parameters and the annealing with and 
without the H.I.P. treatment to see if the aforementioned benefit occurs. We can 
also consider the synergic effect of both the annealing and HIPing (Figure 78). 
In this case the only surface treatments that have been used are the surface 
machining and polishing, while the annealing temperature has been set to the 
mean value of 735 °C, if the treatment is performed, while it is set to 20 °C if not. 
 

 

Figure 78, Best combination of process parameters with thermal treatments comparison 

As we can expect, the HIP treatment gives a bigger contribution to the 
enhancement of the fatigue life with respect to the annealing treatment itself. 
Moreover, if we perform both treatments, first annealing and then HIPing, there 
is a slight improvement with respect to the HIP only. 
With these evaluations, it is very easy to understand the power of neural networks. 
They can be basically used as a “program” in which we obtain a fatigue curve, 
after asking ourselves “what fatigue curve can I obtain with this combination of 
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process parameters and thermal and surface treatments?”. We simply input the 
desired set of features and we get the output curve without any significant 
expenditure of time and money, as we would normally do with traditional fatigue 
testing. 
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14. Defects Characterization Neural Network 
While searching for the SN diagram fatigue experimental points in the articles, 
several information concerning the defect size and their distribution was found. 
It was decided to build another neural network, that is able to predict the defect 
size and their distribution depending on the process parameters. Unluckily, on the 
several articles, the information concerning the defect characterization was not 
continuous, as each researcher decided to use their own methodology to report 
the data. Therefore, a unique method to describe the defected distribution was 
needed. To unify the methodology, it was decided to use only post fracture 
surface scans, as many articles reported the CT scan of the piece before the fatigue 
testing, while we are interested on the defect characterization after the fracture on 
the fracture surface itself. To report the defects distribution, the Gumbel plot was 
used (Figure 79). 

 
Figure 79, Gumbel Plot example 

To produce a Gumbel plot, first a fracture surface needs to be investigated to 
characterize all the defects in terms of their size. Generally, the defect is 
approximated with a circumference, from which the equivalent diameter is 
evaluated. From this latter equivalent diameter, the parameter √𝑨𝑹𝑬𝑨 [𝝁𝒎] is 
calculated with trivial formulas. Then the defects are ordered ascending from the 
smallest to the biggest in terms of √𝑨𝑹𝑬𝑨. Once this is performed, the cumulative 
probability can be easily found by the following formula: 
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𝑷𝒊 =
𝒊

𝑵 + 𝟏
 

 

Where Pi is the cumulate probability of the i-th defect, and N is the total number 
of defects. Subsequently, the so-called reduced parameter Y is computed as 
follows to be the ordinate of the Gumbel plot: 
 

𝒀𝒊 = −𝐥𝐧(− 𝐥𝐧(𝑷𝒊)) 
 

If the procedure is carried out correctly, we will find that the Gumbel plot has its 
points that are always increasing. Lastly a linear fit can be produced to find the 
slope m and the bias q. To better understand the procedure, we can report as an 
example the article “Alegre2022”. 
 

 √𝑨𝑹𝑬𝑨[𝝁𝒎] √𝑨𝑹𝑬𝑨[𝝁𝒎] Pi Yi 
1 91.2 32.9 0.1 -0.834032445 
2 32.9 69.3 0.2 -0.475884995 
3 81.1 72.6 0.3 -0.185626759 
4 77.3 76.9 0.4 0.087421572 
5 79.6 77.3 0.5 0.366512921 
6 69.3 79.6 0.6 0.671726992 
7 72.6 81.1 0.7 1.030930433 
8 76.9 86.5 0.8 1.499939987 
9 86.5 91.2 0.9 2.250367327 

Table 17, Example procedure to obtain a Gumbel plot 
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The procedure has been repeated 10 times in total, one for each data set. This 
time, instead of having 76 datasets, we're having less of them. Then for each data 
set the process parameters have been associated. In this case we are also having 
the powder size minimum and powder size maximum as all the datasets that were 
analyzed reported these two process parameters. Once again, the feature cross 
was not produced as this is an entirely diverse neural network with respect to the 
fatigue one. Table 18 reports the training database in its entirety. 
 

 Orientation 
[°] 

Power 
[W] 

Hatch 
[mm] 

Speed 
[mm/s] 

Layer thickness 
[μm] 

Powder size 
min [μm] 

Powder size 
max [μm] m q 

0 90 175 0.12 710 30 20 63 0.0171 -2.7227 

1 90 280 0.14 1200 30 38 38 0.0628 -3.5253 

2 0 175 0.12 775 30 20 63 0.11885 -1.7436 

3 45 175 0.12 775 30 20 63 0.046554 -1.2541 

4 90 175 0.12 775 30 20 63 0.064336 -1.5958 

5 90 400 0.12 150 60 28 54 0.0468 -2.9813 

6 90 170 0.1 1200 30 23 46 0.1973 -1.5272 

7 90 280 0.14 1200 30 15 53 0.1008 -3.5901 

8 90 280 0.14 1200 30 15 45 0.049 -2.0425 

9 90 300 0.14 1400 30 38 38 0.1016 -4.5457 
 

 Name Article Reference 
0 noName Gunther2017 [6] 
1 noName Hu2020 [7] 
2 0 Morel2019 [24] 
3 45 Morel2019 [24] 
4 90 Morel2019 [24] 
5 As Built Alegre2022 [17] 
6 AF test Macallister2022 [18] 
7 Coarse  Tehrani2021 [20] 
8 Fine Tehrani2021 [20] 
9 noName HuWu2020 [25] 

Table 18, Defects Neural Network training database 

In several cases, the Gumbel plot was already produced in the article. 
Nonetheless, to check the continuity between the method used by the researchers 
of the article and the aforementioned method, all the points of the Gumbel plot 
were digitized and extracted, and the procedure was performed anyways. For 
nearly all the articles, the results coincided, while for another couple this didn't 
happen. For example, the article “Morel2019”, had the values of the bias q 
positive, which is not something that is typical in Gumbel plots. Once the training 
database is built, the simple feedforward neural network can be tuned 
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accordingly with the same procedures that have been explained in the previous 
sections. 
 
14.1 Neural network tuning and Results 
After normalizing and scrambling the training database, the machine learning 
parameters and the neural network structure can be defined. The principles used 
in the four-parameter bilinear neural network are valid also here: since the shape 
of the final graph will be forced to be linear, we can use hyperbolic tangent layers 
to have a more efficient training, still being sure that we will not obtain curvilinear 
shapes. After numerous tests the machine learning parameters are the following: 
500 epochs, learning rate = 0.001 and batch size half the size of the database, 
hence 5. The network has three tanh layers of 100, 75 and 50 neurons, with a 
linearly activated output layer with two nodes, as we need to predict two labels. 
Of course, since we have seven process parameters, the input layer has seven 
nodes. For this type of neural network, no thermal or surface treatment was 
considered, as there was not enough data to grant continuity in the database. Once 
the neural network has been trained, we can de-normalize the results of slope and 
bias after having fed the command “.predict” with the pertaining article, in the 
same exact way that has been presented in Section 9. Lastly a relative error 
concerning the slope m and the bias q, has been calculated for each dataset to be 
reported in the final figures with the real and predicted values of m and q.  
 

𝜀𝑟𝑒𝑙,𝑚 = |
𝑚𝑟𝑒𝑎𝑙 −𝑚𝑁.𝑁.

𝑚𝑟𝑒𝑎𝑙
| ∙ 100 

 

𝜀𝑟𝑒𝑙,𝑞 = |
𝑞𝑟𝑒𝑎𝑙 − 𝑞𝑁.𝑁.

𝑞𝑟𝑒𝑎𝑙
| ∙ 100 

 
We can finally report all the 10 figures to check the quality of the predictions. 
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Figure 80, Evaluation of all the Gumbel plots 

Indeed, as we can appreciate both graphically and numerically, the predictions 
are excellent. The red curves of the neural network prediction almost perfectly 
superimpose to the bilinear fits and the values of the relative errors are very small, 
as the real m and q are almost identical to the ones predicted by the neural 
network. 
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