
POLITECNICO DI TORINO
Master’s Degree in Automotive Engineering

Master’s Degree Thesis

Low-Cost Open-Source Data Acquisition
for High-Speed Cylinder Pressure

Measurement with Arduino

Supervisors

Prof. Ezio SPESSA

Prof. Dan DELVESCOVO

Candidate

Eduart CELISLAMI

April 2023

Abstract

In-cylinder pressure measurement is an important tool in internal combustion
(IC) engine research and development for combustion analysis, cycle performance
analysis, and knock analysis in spark-ignition engines. In a typical laboratory
setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder
is installed on the engine crankshaft, and a piezoelectric pressure transducer is
installed in the engine cylinder. The charge signal produced by the transducer due
to changes in cylinder pressure during the engine cycle is converted to voltage by a
charge amplifier, and this analog voltage is read by a high-speed data acquisition
(DAQ) system at each encoder trigger pulse. The high speed of engine operation
and the need to collect hundreds of engine cycles for appropriate cycle-averaging
requires significant processor speed and memory, making typical data acquisition
systems very expensive. The objective of this work was to develop an affordable,
open-source DAQ system capable of measuring in-cylinder pressure in an ICE with
Arduino. Such a system could then be applied to any engine where there is space
to install an encoder on the crankshaft, and could be particularly valuable for
Formula SAE teams, hobbyists, and engine builders. To this end, an absolute
crankshaft encoder was installed on an Armfield CM11- MKII engine test stand,
providing an absolute reference (Z) pulse once per revolution, and an incremental
(B) pulse every 0.5o CA, enabling synchronisation of pressure measurements with
the engine rotation. In-cylinder pressure was measured by a Kistler piezoelectric
sparkplug pressure transducer installed in the first cylinder. The transducer signal
was then amplified by a Kistler charge amplifier, and the output sent to the analog
input of an Arduino DUE microcontroller, while the encoder Z and B pulse signals
were connected to digital input pins. Analog to Digital (ADC) readings from the
Arduino are then streamed to an external SD card, enabling storage of hundreds
of engine cycles worth of data. Finally, we demonstrate the range of operation,
capabilities, and limitations of the Arduino DAQ system.

Ai miei genitori, a mia sorella, alla mia famiglia,
grazie ai quali sono la persona che sono.

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Test-bench characteristics . 1
1.2 Data acquisition systems . 3
1.3 Arduino and Accesories . 4

1.3.1 Arduino platform . 4
1.3.2 Arduino DUE and accessories 5

1.4 Measurement chain . 6

2 Requirements 8
2.1 Mechanical Connection . 8
2.2 DAQ System Requirements . 8

2.2.1 Sampling Rate . 9
2.2.2 Storage . 9

2.3 Pressure Transducer and Charge amplifier 9

3 Design 12
3.1 Mechanical Design . 12

3.1.1 Crankshaft Coupling . 12
3.1.2 Encoder support . 13
3.1.3 Arduino Container . 15

3.2 Electrical Design . 16
3.2.1 Charge amplifier and Voltage Divider 16
3.2.2 Encoder . 17
3.2.3 Arduino Cable Connections 18

iv

4 Calibration 20
4.1 Pressure Transducer . 20

4.1.1 Testing . 21
4.1.2 Results . 23

4.2 Fuel Injector . 24
4.2.1 Testing . 25
4.2.2 Results . 26

5 Arduino DUE 28
5.1 Arduino IDE . 28
5.2 DAQ code . 29

5.2.1 Main Code . 29
5.2.2 Queue.h Code . 35

5.3 Code explanation . 37
5.3.1 Arduino base commands . 37
5.3.2 External interrupts . 40
5.3.3 Analog input . 41
5.3.4 SD Card implementation . 42
5.3.5 Queue implementation . 45
5.3.6 Data output . 46

6 MATLAB Code 47
6.1 Data Opening . 47

6.1.1 Pressure Readings . 48
6.2 Pressure Pegging . 48
6.3 Pressure Filtering . 49
6.4 Diagrams . 50

6.4.1 Pressure signals . 50
6.4.2 P-V diagram . 50
6.4.3 Indicated Cycle . 51

7 DAQ Validation 52
7.1 Engine speed evaluation . 52
7.2 Engine Load Evaluation . 58
7.3 Consecutive Cycle . 62
7.4 Data Filtering . 66
7.5 P-V diagram . 68

7.5.1 Indicated Cycle . 71

v

8 Future development 73
8.1 Alternative pressure measurement systems 73
8.2 Encoder . 74
8.3 Other improvements . 74

9 Conclusions 75

Bibliography 77

vi

List of Tables

1.1 Armfield Test-bench characteristics 2
6table.caption.8
4.1 Calibration Pressures . 22
4.2 Calibration Results . 23
4.3 Volume injected for 10 000 pulses 26
4.4 Injector minimum opening time . 26

7.1 Engine speed test conditions . 52
7.2 Engine load test at 2000RPM . 58
7.3 Engine load test at 2000RPM . 62

vii

List of Figures

1.1 Armfield CM11- MK II . 2
1.2 MC USB-1808X DAQ . 3
1.3 Arduino DUE . 5
1.4 Measurement chain . 6

2.1 Charge amplifier Settings . 10
2.2 Charge amplifier Structure . 11

3.1 Rear view Encoder . 13
3.2 Engine Pulley . 14
3.3 Side view Encoder . 14
3.4 DAQ enclosure . 15
3.5 Voltage divider . 16
3.6 Wave-forms of the Encoder . 17

4.1 Dead Weight Test . 21
4.2 Pressure Transducer Calibration curve 23
4.3 Fuel Calibration Front view . 24
4.4 Fuel Calibration back view . 25
4.5 Calibration curve . 27

5.1 Queue Schematics . 45

7.1 930 RPM Throttle valve 0% . 53
7.2 1500 RPM Throttle valve 8% . 54
7.3 2000 RPM Throttle valve 9% . 55
7.4 3000 RPM Throttle valve 11% . 56
7.5 4000 RPM Throttle valve 13% . 57
7.6 2000 RPM Throttle position 9% . 58
7.7 2000 RPM Throttle position 15% 59
7.8 2000 RPM Throttle position 25% 60
7.9 2000 RPM Throttle position 50% 61

viii

7.10 2800 RPM 1000 cycles . 63
7.11 3500 RPM 1000 cycles . 64
7.12 4000 RPM 1000 cycles . 65
7.13 1500 RPM Filtered trace . 66
7.14 3000 RPM Filtered trace . 67
7.15 4000 RPM Filtered trace . 67
7.16 PV diagram . 68
7.17 930 RPM PV diagram . 69
7.18 2000 RPM PV diagram throttle opening at 50% 70
7.19 930 RPM PV diagram . 71
7.20 2000 RPM Indicated Cycle throttle opening at 50% 72

ix

Acronyms

ICE
Internal Combustion Engine

CA
Crank Angle

CR
Compression Ratio

ECU
Engine Control Unit

MAP
Inlet Manifold Pressure

DAQ
Data Acquisition

DAC
Digital to Analog Converter

SPI
Serial Peripheral Interface

SRAM
Static Random Access Memory

TDC
Top Dead Center

xi

ISR
Interrupt Service Routine

ADC
Analog To Digital Converter

FIFO
First In First Out

IBDC
Inlet Bottom Dead Center

IVO
Intake Valve Opening

EVC
Èxhaust Valve Closing

IVC
Intake Valve Closing

IGN
Ignition

EVO
Exhaust Valve Opening

PE
Piezo Electric

PCB
Printable Circuit Board

xii

Chapter 1

Introduction

The objective of this thesis is to devise a cost-effective solution for the high-
speed acquisition of in-cylinder pressure data employing the Arduino DUE. This
undertaking is the result of a collaborative effort between the Polytechnic of Turin,
Oakland University (MI), and Stellantis.

The primary aim of this project is to establish a Data Acquisition system (DAQ)
capable of continuously measuring pressure levels inside the cylinders of an Internal
Combustion Engine (ICE) for a few hundred cycles, storing them for later analysis
of combustion variability. The present work endeavors to develop an open-source,
budget-friendly DAQ system that can measure in-cylinder pressure in an ICE
utilizing the Arduino. The proposed system is designed to be installed in any
engine with adequate space to accommodate an encoder on the crankshaft and
would be of particular interest to Formula SAE teams, hobbyists, and engine
builders. In Chapter 2 the requirements for the Data Acquisition System are set,
in Chapter 3 the mechanical and electrical connections necessary to realize the
pressure measurements are described, in Chapter 4 the calibration methodology
for the pressure transducer and the fuel injectors are explained, in Chapter 5 the
Arduino DUE Code is written to allow easy distribution, in Chapter 6 the main
functions used in the Matlab code are explained, in Chapter 7 the results of the
tests are presented, in Chapter 8 the Future studies are explained and finally in
Chapter 9 the conclusions are discussed.

1.1 Test-bench characteristics
The Test-bench engine used for this study is the CM11-MK II Gasoline Engine
manufactured by Armfield Limited. It is a self-contained integrated, multi-cylinder
engine, dynamometer and instrumentation system. The dynamometer consists
of a brake mounted on the rear side of the engine via a flexible coupling, this

1

Introduction

arrangement allows for small misalignments between the two shafts and isolates
the brake from the vibration of the engine [1].

Figure 1.1: Armfield CM11- MK II

Source: Oakland University(MI), Energy Lab

Table 1.1: Armfield Test-bench characteristics

Manufacturer Volkswagen
Capacity 1198 cm3

No of Cylinders 3
Bore 76.50 mm
Stroke 86.90 mm
CR 10.3:1
Max Power 40kW @ 4700 rpm
Brake Eddy current dynamometer
Max Brake power 55kW

Source: Instruction Manual CM11-MK II

In Table 1.1 the engine characteristics are shown, it is important to know that
this is a Naturally Aspirated engine with a pressure range that goes from below
atmospheric pressure up to 100 bar. The Test-bench is controlled remotely with
the Armfield Software which allows to run the ICE in different conditions changing
engine speed, engine throttle, and brake load. Engine torque is measured directly,
using a strain-gauge type load cell which is connected to the brake by a load arm.

2

Introduction

In this configuration, a Kistler Pressure Transducer is installed in the spark-plug,
on the first cylinder which allows to collect the in-cylinder pressure. The system
as it is allows to collect the pressure readings in function of time but not in CA
degrees. This Test-bench is provided with an Emerald K3 ECU which allows to
modify via software the Ignition Map, and the Injection Map. It is also possible to
read the Injection timing and Manifold Absolute Pressure (MAP) which is used to
allow a more uniform reading of the pressure measurements.

This test-bench enables the safe operation of an internal combustion engine
within an enclosed setting. The exhaust pipe is directly connected to the building’s
exterior, minimizing the risk of indoor air pollution. The system incorporates safety
switches that, when triggered, promptly shut down the test-bench. Furthermore,
in the event of a disconnection with the remote connectivity, while the engine is
running, the test-bench is set to stop the engine automatically.

To operate effectively within a closed environment, the system employs two
cooling loops. The primary engine coolant is circulated by an internal pump to
a heat exchanger, while secondary cooling is provided by clean water flow. To
safeguard the engine’s lifespan, the remote software is designed to prevent engine
start-up if the water flow is not detected.

1.2 Data acquisition systems

Figure 1.2: MC USB-1808X DAQ

Source: MC Measurement Computing

To collect in-cylinder pressure measurements, it is possible to work with a ready-
to-use DAQ System. Several Data Acquisition Systems are available at a wide
range of prices according to how many inputs, outputs, and sampling rates. The
cheapest solution which would work for our test conditions is the MC USB-1808X
shown in Figure 1.2 [2], it simultaneous-sampling DAQ device with a sampling rate
of up to 200k/S per channel. It is possible to connect up to 8 Analog inputs but in
our application, we need to collect pressure data only from one pressure transducer.
This means that the other 7 Analog Inputs are not being used, increasing the cost

3

https://www.mccdaq.com/data-acquisition-and-control/simultaneous-daq/USB-1808-Series.aspx

Introduction

of the device. This DAQ costs 989 USD1 which increases the expenses in order
to be able to collect pressure measurements at a high rate but the less expensive
solutions are not capable of getting the pressure measurements for engine speeds
up to 4000 RPM. Of course, these considerations can be done for activities that are
closer to Formula SAE teams, hobbyists, and engine builders rather than research
labs. Having said these considerations, it is possible to move on to present the
Arduino DUE.

1.3 Arduino and Accesories
The aim of this research is to realize a low-cost DAQ using an Arduino DUE.

1.3.1 Arduino platform
Arduino is an open-source electronics platform based on easy-to-use hardware and
software. Arduino boards are able to read inputs and turn them into output. To do
so you use the Arduino programming language (based on Wiring), and the Arduino
Software (IDE), based on Processing. Over the years Arduino has been the brain
of thousands of projects, from everyday objects to complex scientific instruments.

Arduino also simplifies the process of working with microcontrollers, and interests
other systems:

• Inexpensive Arduino boards are relatively inexpensive compared to other
microcontroller platforms.

• Cross-platform The Arduino Software (IDE) runs on Windows, Macintosh
OSX, and Linux operating systems. Most microcontroller systems are limited
to Windows.

• Simple, clear programming environment The Arduino Software (IDE)
is easy-to-use for beginners, yet flexible enough for advanced users to take
advantage of as well.

• Open source and extensible software The Arduino software is published
as open source tools, available for extension by experienced programmers.
The language can be expanded through C++ libraries, and people wanting to
understand the technical details can make the leap from Arduino to the AVR
C programming language on which it’s based. Similarly, you can add AVR-C
code directly into your Arduino programs if you want to.

1Price as displaced in MC Measurement on 24/03/2023

4

https://www.mccdaq.com/data-acquisition-and-control/simultaneous-daq/USB-1808-Series.aspx

Introduction

• Open source and extensible hardware The plans of the Arduino boards are
published under a Creative Commons license, so experienced circuit designers
can make their own version of the module, extending it and improving it.
Even relatively inexperienced users can build the breadboard version of the
module in order to understand how it works and save money.[3]

After this overview, a description of the used Arduino is done.

1.3.2 Arduino DUE and accessories
The Arduino DUE is a microcontroller board based on the Amtel SAM3X8E
ARM Cortex-M3 CPU, it uses a 32bit ARM core microcontroller, it has 54 digital
input/output pins, 12 analog inputs each of which can provide 12 bits of resolution,
84MHz clock, and USB OTG capable connection, 2 DAC, an SPI.

Figure 1.3: Arduino DUE

Source: © 2023 Arduino

The Arduino DUE board runs at 3.3V and anything above this voltage in the
I/O pin could damage the board. It has 96KB of SRAM which can be used either
to store data or as a buffer. This board can be powered via USB or with an external
power supply, the power source is selected automatically. It is also capable to
deliver power via the 3.3V pin. It is possible to connect the Arduino DUE to the
Native USB port which is connected to the SAM3X, it allows for serial (CDC)
communication over USB. This provides a serial connection to the Serial Monitor
or other applications on the computer [4]. In order to realize the DAQ we need
some more components for the Arduino board which are written in Table 1.2.

The Adafruit Data Logger Shield is compatible with Arduino DUE, it allows
for an installation of an SD card interface with FAT16 or FAT32 formatted cards,
increasing the data storage capabilities of the Arduino Board. The SD Card has an
8 GB capacity, which allows storage of several pressure measurements. The Screw
Terminal is used in order to connect securely the different wires coming out from
the pressure transducer and the encoder, finally the container is chosen to make
the system compact and easy to handle.

5

https://store.arduino.cc/products/arduino-due

Introduction

Table 1.2: Arduino DUE components and Cost2

Component Cost [USD]
Arduino DUE 50
Adafruit Data Logger Shield 14
SD Card 10
SD Card Extender 10
Screw terminal 20
Container 20
Total Cost 124

This configuration allows powering the Encoder with 3.3V, using the quadrature
signal output of the encoder to synchronize the pressure readings in function of the
CA and to read the analog voltage coming from the pressure transducer.

1.4 Measurement chain

Figure 1.4: Measurement chain

The measurement chain is illustrated in Figure 1.4. To obtain in-cylinder
pressure measurements, a Kistler 6118BFD35 piezoelectric transducer is installed

6

Introduction

in the first cylinder of the Internal Combustion Engine (ICE). The pressure change
inside the cylinder generates a charge in the piezoelectric pressure transducer. The
Kistler 5004 Dual Mode Amplifier converts this charge into a voltage signal that
ranges from 0 to 10V. This output voltage is then passed through a voltage divider
to reduce the usable range from 0-10V to 0-3.3V before being fed to the Arduino.

An Encoder is required to obtain the pressure readings in relation to the engine
rotation. It needs to be connected directly to the engine crankshaft to avoid errors
caused by belt sliding if connected through a belt. Once both devices are installed,
their output signals are connected to the Arduino DUE. The code developed later
is programmed in the Arduino DUE to collect data when needed.

The collected data is then stored on the SD Card, which is installed in the
Adafruit Data Logger Shield placed on top of the Arduino DUE.

7

Chapter 2

Requirements

After defining the required components, the performance test of the DAQ can be
set based on those requirements.

2.1 Mechanical Connection
In order to properly install the encoder onto the engine crankshaft, a reliable and
secure connection between the engine block and the encoder support is essential.
Mounting the encoder onto the body structure of the test-bench is not feasible due
to vibrations, and it is likely that running the engine in this manner would result
in damage to the coupling system between the encoder shaft and the crankshaft of
the engine. Therefore, it is necessary to install an encoder support directly onto
the engine block, with multiple connection points to ensure stability.

Additionally, modifications to the engine pulley are required in order to establish
a connection system between the encoder coupler and the engine shaft. Specifically,
the center diameter must be enlarged and the bolt must be changed to accommodate
the designed engine coupler.

To ensure stable mounting points for the encoder, an aluminum plate has been
selected and water-cut to allow for easy installation onto the engine shaft. This
mounting system is designed to allow the installation of different encoders onto the
same engine.

2.2 DAQ System Requirements
In order to be able to collect the measurements that were mentioned before, some
considerations have to be made on the DAQ requirements.

8

Requirements

2.2.1 Sampling Rate
Regarding the sampling rate, the Data Acquisition System that has been designed
must be capable of collecting pressure measurements starting from the idle speed
and continuing up to the maximum engine speed at which the engine is intended to
operate. The selection of an appropriate encoder for pressure synchronization will
have an impact on the sampling rate. For instance, if a 0.5o degree of resolution
encoder is utilized, it will generate 720 pulses for every complete rotation of the
crankshaft. Conversely, if an encoder with a pulse rate of 0.1o is employed, the
total number of pulses will be 3600.

Depending on the type of encoder employed, it is possible to determine the
appropriate sampling rate required for the maximum available engine speed. In
this particular case, the maximum engine speed is 4000 RPM. In order to ensure
that no encoder increments are lost, it is necessary to have a sampling rate on the
DAQ that is at least twice the sampling rate of the engine speed multiplied by the
number of encoder steps per revolution as shown in 2.1.

Sampling Rate = 2
 [RPM]

60 [sec]
[min]

 No of pulses (2.1)

2.2.2 Storage
In order to utilize the collected measurements effectively, it is important that
consecutive cycles of data are acquired while the engine is operating at the various
speeds. Ideally, the system should have the capacity to store a minimum of 100
continuous cycles, which corresponds to 200 engine revolutions. However, it would
be preferable to store longer runs of up to 1000 cycles per experiment without
any loss of data. As the data is being stored on an SD card, it is necessary to
extract the card from the Arduino shield to transfer them to a computer. Hence,
to minimize time losses and enhance data collection efficiency, it is desirable to
store multiple experiments on a single SD card.

2.3 Pressure Transducer and Charge amplifier
On the Test-bench the Kistler 6118BFD35 Piezoelectric Pressure Transducer is
installed in the first cylinder spark-plug.

Piezoelectric pressure sensors are connected to an electronic circuit which con-
verts the charge generated by the sensor into a proportional voltage. Hence the
sensitivity is given as pico-coulombs per unit of pressure (pC/bar). Pressure ap-
plied to a PE sensor produces a negative going charge signal (hence the negative
sensitivity of PE sensors), which then is converted into a positive voltage signal by

9

Requirements

the external charge amplifier. PE pressure sensors are connected to an external
charge amplifier. This converts the charge into a voltage signal.

• Measurement of extremely low or very high temperatures (no electronics in
the sensor)

• Adjustable measuring ranges with only one pressure sensor (measuring range
adjustable in the charge amplifier)

To measure the output of the pressure transducer, the use of a charge amplifier is
necessary. For this purpose, the Kistler 5004 Dual Mode Amplifier is selected as the
appropriate charge amplifier for the experiment. Figure 2.1 shows the setup with
the Kistler 5004 Dual Mode Amplifier already configured for the data acquisition
system.

Figure 2.1: Charge amplifier Settings

Source: Oakland University(MI), Energy Lab

The amplifier converts the charge signal of the sensor into a proportional voltage
signal and thus makes the measurement available for further processing [5]. The
aforementioned charge amplifier provides the flexibility to adjust the sensitivity
of the pressure transducer in use and optimize the output scale. This feature is
particularly useful as it aids in reducing the noise in the output voltage, which is
an analog signal.

In Figure 2.2 the process which converts the charge to voltage is shown, this is
what the parameters are related to:

10

Requirements

Figure 2.2: Charge amplifier Structure

Source:Kistler Catalogue

• The range capacitor Cr is used to set the measurement range of the charge
amplifier. This is done by switching between different range capacitors. It is
possible to measure across several decades with a high signal-to-noise ratio.
Hence, for example, it is possible to use the same pressure sensor to measure
pressures of a few hundred bar and a few µbar, simply by switching over the
measurement range.

• The time constant resistor Rt defines the low-frequency performance of the
charge amplifier. In particular, the time constant determines the cut-off
frequency for the high-pass characteristic of the charge amplifier. Switching
between different time-constant resistors makes it possible to change the
high-pass characteristic.

• The Reset/Measure switch is used to control the start of measurement or to
set the zero point.

The output voltage range of the pressure transducer goes from 0 to 10V, which
means that our DAQ needs to be able to read these voltages.

11

https://www.kistler.com/US/en/

Chapter 3

Design

This chapter delineates the methodology utilized to establish the system, commenc-
ing with the Mechanical Design and concluding with the Electrical Design.

3.1 Mechanical Design
This paragraph discusses the mechanical linkage between the encoder and the
engine crankshaft, and the installation of the encoder support to the engine body.

3.1.1 Crankshaft Coupling
The installation process for the encoder involves several steps, beginning with
the removal of the engine pulley. This action enables the centering hole to be
enlarged, facilitating the precise alignment of the crankshaft support with the
engine crankshaft. By achieving concentricity between the crankshaft, the pulley,
and the crankshaft support, the encoder can operate with optimal accuracy.

To accommodate the increased longitudinal length of the crankshaft supports, a
longer bolt must be employed to secure the pulley. Finally, the cover is installed
using the coupling system, ensuring that the encoder remains securely fastened
to the engine and can perform its intended function effectively. The coupling
system is a three-piece Ruland controlflex coupling. It is a lightweight, low-inertia
coupling that allows speeds of up to 25,000 RPM. Controlflex couplings have a
balanced design for reduced vibrations at high speeds, can accommodate all forms of
misalignment, and are an excellent fit for encoder applications [6]. Furthermore, the
plastic coupler reduces the impact of vibrations that emanate from the crankshaft
and could affect the encoder’s accuracy. The ultimate component is presented in
Figure 3.2, where an increase in the axial length required to accommodate the
screw fastening the pulley to the crankshaft can be observed. Mounting the encoder

12

Design

on the opposite side is not a viable option due to the presence of the dynamometer
that applies the load.

Figure 3.1: Rear view Encoder

Source: Oakland University(MI), Energy Lab

3.1.2 Encoder support
In order to properly install the encoder, it is imperative to establish a robust and
unyielding connection between the encoder support plate and the engine block.
This is achieved by utilizing several fastening points that prevent any movement
of the encoder during engine operation. As illustrated in Figure 3.1, the plate is
affixed to the engine block by four points. The plate has been fabricated with a
water-jet cutter available at the Oakland University Machine Shop.

Figure 3.2 showcases the encoder’s linkage to the engine crankshaft, wherein a
plastic coupler is installed on the encoder shaft. This coupling permits a degree of
flexibility between the two shafts, negating the necessity for perfect alignment.

Figure 3.3 provides a clear illustration of the coupling mechanism between the
encoder and the engine crankshaft. The encoder shaft features a plastic coupler
that allows for a certain degree of flexibility, thus obviating the need for precise
alignment between the two shafts. This design decision has the added benefit of
dampening vibrations that might otherwise affect the encoder’s readings.

An additional precautionary measure that can be observed in Figure 3.3 is the
implementation of jam nuts. This locking system serves to ensure that the encoder

13

Design

Figure 3.2: Engine Pulley

Source: Oakland University(MI), Energy Lab

support plate remains securely in position and does not become dislodged during
engine operation.

Figure 3.3: Side view Encoder

Source: Oakland University(MI), Energy Lab

14

Design

Once the Encoder setup is settled, it is possible to move on and start working
with the DAQ enclosure.

3.1.3 Arduino Container
To achieve a straightforward set-up and removal of the DAQ system from the ICE,
all the necessary components are enclosed in a casing, as depicted in Figure 3.4.

Figure 3.4: DAQ enclosure

Source: Oakland University(MI), Energy Lab

A comprehensive list of these components is outlined below:

- Arduino DUE

- Adafruit Data Logger Shield

- Screw terminal Shield

- SD card extender and support

- Voltage Divider

- BNC connector for the pressure transducer

- 6-Pin connector for the encoder

This configuration facilitates the connection of the DAQ, and it simplifies the
process of data collection from the SD card as it is accessible from outside the case.

15

Design

3.2 Electrical Design
This section provides an explanation of the electrical wiring connections, allowing
for a better understanding of the general connections from the encoder and the
charge amplifier to the Arduino.

3.2.1 Charge amplifier and Voltage Divider
As previously stated in Section 2.3, the pressure transducer’s output is within a
range of 0 to 10V. To enable voltage readings with the Arduino DUE, it is necessary
to decrease the output voltage of the charge amplifier to a range of 0 to 3.3V. This
can be achieved through the implementation of a resistive voltage divider.

Figure 3.5: Voltage divider

Source: Wikipedia

Regarding the implementation of the voltage divider in our application, Figure
3.5 displays its configuration where the output voltage of the charge amplifier is
used as the input voltage Vin, while the output voltage Vout is connected and applied
to the Arduino DUE. For the resistance aspect, the voltage divider is constructed
using a pair of resistors, R1 and R2, which are arranged in series, and with R2
connected to the ground. This arrangement results in the input voltage being
divided between the two resistors, producing a voltage output that is proportional
to the ratio of the two resistor values.

R1 = 33kΩ + 33kΩ (3.1)

R2 = 33kΩ (3.2)

16

https://en.wikipedia.org/wiki/Voltage_divider

Design

Vout = R2Vin

R1 + R2
= Vin

3 (3.3)

Being R1 twice R2 the final, the final Vout corresponds to 1
3 of voltage coming from

the Charge Amplifier.

3.2.2 Encoder

The Encoder used in this research is a BEI Sensata XH25D-SS-720-ABZC-4469-
LED. It is an Incremental Encoder that has 2 channels in quadrature, 1/2 cycle
index gated with negative B channel[7]. The output waveforms are shown in Figure
3.6: The square waves employed for research purposes include the incremental

Figure 3.6: Wave-forms of the Encoder

Source:Sensata Datasheet

B Pulse and the absolute Z Pulse. To gather pressure measurements, only the
rising aspect of the signal is utilized. As a result, for every engine rotation, 720
steps will be recorded for the B pulse, which occurs once every 0.5o CA, while
the Z pulse occurs once every 360o CA. The utilization of an Absolute encoder
facilitates system configuration to determine the position of the TDC each time
the engine is started. As evident from Figure 3.4, the necessary cables to establish
the Encoder’s functionality are the 3.3V cable, the Ground cable, B Pulse, and Z
Pulse. Furthermore, to minimize the noise in the Encoder output signal, the case
ground of the Encoder has also been connected to the Arduino Ground.

17

https://www.sensata.com/sites/default/files/media/documents/2018-05-17/ourproducts_h25_incremental_optical_datasheet.pdf

Design

3.2.3 Arduino Cable Connections
In this last paragraph, an explanation of the connection between the Arduino DUE,
the Adafruit Data Logger Shield, and the Screw terminal Shield are discussed. The
Adafruit Data Logger needs to be mounted on top of the DUE with some Shield
Stacking Headers, this allows to ensure a strong connection between the Arduino
and the SD Shield. These Headers need to be soldered on the Shield PCB otherwise
the mechanical connection would not be strong enough to make the system work
properly. The last connection that needs to be soldered between the Arduino DUE
and the SD Card Shield is the 6 Pin header which needs to be fixed because it is
used by the Arduino board to communicate through the SPI protocol with the
SD card installed in the Adafruit Data Logger Shield. Once the SD Card shield
has been installed it is possible to install the Screw terminal which slides directly
into the previously installed Shield Stacking Headers. The Screw Terminal’s main
function is to connect easily the various inputs and outputs to the Arduino keeping
them tight enough to be sure that they do not get loose. The electrical connections
are shown in Figure 3.4 and explained below.

• Pin A0 - Voltage divider Output Red: This connects the positive side
of the Voltage divider to the Arduino DUE board. It is 1/3 of the Voltage
reading which is possible to get if the reading would occur from the Charge
amplifier Output.

• Pin GND - Voltage Divider Output Black: This closes the Charge
amplifier circuit and allows the Pressure voltage to be read from the Arduino
DUE.

• Pin GND - Encoder Ground Black: The black cable is necessary for
powering the Encoder, as it completes the power circuit.

• Pin GND - Encoder Ground Green: The green cable is connected to
diminish the amount of noise on the Encoder outputs, which subsequently
enhances the quality of the square-wave signals in the B Pulse and Z Pulse
connections.

• 3.3V - Encoder Vin: The Arduino DUE has the capacity to supply power
up to 800 mA to any connected device. This feature allows for the encoder
to be powered directly by the Arduino, which in turn reduces the number of
components required to obtain pressure measurements.

• Pin 2 - Encoder B Pulse Blue: This cable transmits the B Pulse square-
wave signal, which occurs at a frequency of every 0.5 degrees of crankshaft
angle (CA). The signal is utilized to gather pressure measurements each time
it rises from 0 to 3.3 volts, which is detected directly by the Arduino DUE.

18

Design

• Pin13 - Encoder Z Pulse Grey: This cable transmits the Z Pulse square-
wave signal which occurs once during each full revolution of the crankshaft.
This signal serves as an absolute reference point, as it consistently rises in the
same position between the Encoder and the Encoder shaft.

Once all these electrical connections have been realized, the SD Card extender
can be installed in the enclosure to facilitate the SD removal. This makes it possible
to collect the data whenever it is necessary, without having to remove the Arduino
from the Box where it is fixed.

The last connection that needs to be installed is the micro-USB cable. Arduino
DUE has two different micro-USB ports, the Native USB port, and the Programming
Port. In this configuration, the Native USB port is used because it allows to realize
a faster connection between the Arduino and the computer to which it is connected.
This connection is created through the USB protocol which connects directly to
the Micocontroller.

19

Chapter 4

Calibration

This chapter outlines the methodology employed to calibrate two distinct compo-
nents utilized in this study. Firstly, the Kistler 6118BFD35 Piezoelectric Transducer
was calibrated to ensure precise pressure measurements, which were subsequently
utilized in post-processing to calculate various parameters associated with combus-
tion. Additionally, the original fuel injectors were calibrated to determine the fuel
injector flow rate and the mass of fuel injected as a function of engine speed and
injector duty cycle.

4.1 Pressure Transducer

As previously mentioned, the Kistler 6118BFD35 Piezoelectric Pressure Transducer
is utilized in the test bench. This sensor operates based on the piezoelectric effect
observed in piezoelectric materials like quartz, which generate positive or negative
electrical charges when subjected to a mechanical load on the outer surfaces. This
charge is produced due to the displacement of positive and negative crystal lattice
elements relative to one another, resulting in an electric dipole. The mechanical
load on the crystal generates an electrical charge that is directly proportional to the
applied pressure[5]. The primary objective of this calibration process is to identify
the proportional factor between the voltage measured at a specific pressure. The
pressure transducer is typically positioned on the spark plug, which is the most
prevalent location for in-cylinder pressure transducers. This is due to the fact that
it is readily accessible and can be easily replaced if required. The primary reason
for installing the pressure transducer on the spark plug is that there is no need to
bore into the top of the cylinder head.

20

Calibration

Figure 4.1: Dead Weight Test

Source: Oakland University(MI), Energy Lab

4.1.1 Testing

The Ashcroft Type 1305D Dual Range Deadweight tester(shown in figure 4.1) are
precision built primary pressure standards, used for testing, setting, calibrating
or repairing pressure measuring devices within the test points 15 psi (100kPa) to
10,000 psi (70,000kPa). The deadweight tester consists of a two stage hydraulic
pump containing a manifold which is pressurized during operation. Integral to the
pump is a shuttle valve that allows the operator to regulate the speed of pressure
increase. One connection to the manifold includes a cylinder and a free-floating
precision machined piston with a plate for holding calibrated weights. A second
connection to the manifold accommodates a gauge or other pressure measuring
device to be calibrated or checked. Incorporated into the manifold is a hand
operated displacement valve that allows small adjustments in fluid volume to be
made without further operation of the pump handle or release valve. The tester is
dual range having two interchangeable piston and cylinder assemblies. One is a
low pressure piston having an effective area five times larger than that of the high
pressure piston. The low pressure piston is used for making measurements below

21

Calibration

2,000 psi (14,000 kPa). The high pressure piston, with an area 1/5 that of the
low pressure piston, is used to measure pressure through 10,000 psi (70,000 kPa).
The weight masses are pre-measured and identified with the pressure values they
produce when operated with the interchangeable piston and cylinder assemblies.
Pressure calibration points produced by the deadweight tester are accurate to
within ± 0.1% of the reading certified traceable to the N.I.S.T. The tester provides
consistent, repeatable accuracy, maintaining its pressure for an appreciable length
of time regardless of temperature changes, slight leaks in the pressure system,
or changes in volume of the pressurized system due to movement of a Bourdon
tube or other device. The theory behind a deadweight tester can be expressed
as simply as force acting upon a known area. Pressure produced by the pump is
distributed by the manifold, to the base of a precision machined piston and to a
device being calibrated or checked. Pre-selected weights loaded onto the piston
platform are acted upon by gravity and develop a force that is to be equally opposed
by the fluid pressure from the pump. When equilibrium is achieved, the pressure
value is known, it being a direct result of the sum of the forces from the weights,
piston platform and the piston divided by the effective area of the piston and
cylinder assembly [8]. This procedure allows to calibrate the pressure transducer
in function of the weights(which apply a corresponding pressure on the piston). To
do so, it is important to note down the initial voltage at which no fluid has been
pumped into the system, this is needed because a pressure transducer changes its
output in function of the variation in pressure, which means that if the pressure
stays constant, the voltage output of the charge amplifier starts going down. This
calibration is done with the Charge Amplifier with these settings:

• Scale=10 bar/v;

• Range=10-100;

• Sensitivity=10.1 pC/bar;

The charge amplifier output is then sent to the Voltage divider, and the output of
the voltage divider is fed to the Arduino DUE in the Analog Input Port that was
mentioned in Section 3.2.3. Once these considerations were made, it is necessary
to choose the calibration pressures discs which are in psi:

Table 4.1: Calibration Pressures

psi 50 150 350 450 725 950 1150 1450
bar 3.45 10.34 24.13 31.03 49.99 65.50 79.29 99.97

22

Calibration

4.1.2 Results

The results of the deadweight test are presented below:

Table 4.2: Calibration Results

∆V 0.090 0.303 0.706 0.902 1.465 1.926 2.325 2.932
bar 3.45 10.34 24.13 31.03 49.99 65.50 79.29 99.97

Figure 4.2: Pressure Transducer Calibration curve

As it is possible to notice from the results, the relation between the Pressure
applied to the Kistler 601A pressure transducer and the output voltage of the
charge amplifier is linear with a coefficient:

C = 33.9953bar

V
(4.1)

This allows saying that the calculated coefficient is constant throughout the interval
of interest, which helps to have reliable pressure measurements from the voltages
which will be collected with this DAQ.

23

Calibration

4.2 Fuel Injector
The Armfield CM11- MKII is equipped of a Common rail system for Gasoline
Port Fuel injection, it has three injectors, each one of them connected directly to
the intake manifold. With the gasoline port fuel injection, the air-fuel mixture
is generated outside of the combustion chamber in the intake manifold. The fuel
injector sprays the fuel before the inlet valve. During the intake stroke, the mixture
flows through the open inlet valve into the combustion chamber. The fuel injectors
have been selected such that the fuel demand of the engine is always covered, even
at full load and high rotational speed. To conduct the calibration the injectors are
electronically controlled, they are mounted in a standard automotive fuel rail. The
microcontroller allows to select one of the four fuel injectors which are installed
in the common rail, but in this calibration, just three of them are being used.
The Period(time between the start of injection pulses), the Pulse Width(injector
opening time), and the number of pulses. All these three parameters can be
set. The working fluid is stored in a plastic, marine-style fuel tank with a quick
disconnect fuel line.

Figure 4.3: Fuel Calibration Front view

Source Oakland University(MI), Energy Lab

The fluid is pumped, with an aftermarket automotive fuel pump, to the fuel rail
and through a regulator back to the fuel tank. The regulator allows adjustment of
the fluid pressure to match that typically found in automotive systems (typically

24

Calibration

45-60 psi)[9].
In Figure 4.3 it is possible to see the microcontroller which controls the logic

that allows to take the test, the number pad which allows to set the previously
discussed parameters, the pressure gauge which makes it possible to check if the
pressure range utilized to ensure that the pressure range aligns with the specified
value of 4 bar for the Armfield CM 11-MKII.

Figure 4.4: Fuel Calibration back view

Source Oakland University(MI), Energy Lab

In Figure 4.4 the back of the fuel calibration testbench is shown, here it is
possible to observe the three fuel injectors which need to be calibrated, the common
rail at which they are connected, and the graduate cylinder used to collect the
volume of fuel which is injected inside the graduate cylinder and then measured in
terms of volume.

4.2.1 Testing
The testing process entails selecting an injection period that corresponds to the
engine speed and determining the total number of pulses required to obtain a
sufficiently large volume for subsequent calculations. The injection period and the
number of pulses remain fixed during all measurements, while the Injector Opening
Time is the variable parameter that changes with each calibration run. The test
conditions are the following:

• N oofpulses = 10000

• Injector Opening timings: 1.7ms, 5.53ms, 9.35ms, 13.18ms, 17ms.

25

Calibration

4.2.2 Results
These are the results of the calibration of the fuel injectors:

Table 4.3: Volume injected for 10 000 pulses

Injector 1 Injector 2 Injector 3
Injector Opening Time[ms] V1[ml] V2[ml] V3[ml]

1.7 65 66 66
5.53 170 172 175
9.35 275 280 280
13.18 385 387 389

17 492 495 492

Table 4.3 presents the total volume of fuel injected over 10,000 pulses, which
can be used to determine the amount of fuel injected per individual pulse. It is
important to note that the injector opening time must exceed a certain minimum
threshold in order for fuel to be injected, regardless of whether the opening signal
has been sent. This required injector opening time varies among the three injectors:

Table 4.4: Injector minimum opening time

Injector no Required time[ms]
1 0.85
2 0.980
3 0.910

The plot denoting the calibration curve can be observed in Figure 4.5. It
is noteworthy that the trend depicted in the curve is linear, implying that the
amount of fuel injected is directly proportional to the injector opening time. The
vertical red line signifies the minimum opening time of the injector that allows
fuel collection. In order to determine the fuel flow, the available injection time
needs to be computed, which is contingent upon the engine speed. The duty cycle
allows to calculate the amount of time in which the fuel injector is active over the
total available time. The process for calculating the injection available time can be
derived through a series of steps.

K = 2.794 · 10−3 ml

ms

m = 1.7818 · 10−3ml

26

Calibration

Figure 4.5: Calibration curve

tavailable = 2
RPM

60 (4.2)

tinjection = tavailable(injduty%) (4.3)

V̇ = N ocylinder
K · 1000(tinjection − trequired) + m

tavailable

(4.4)

with:

• K Fuel flow proportional coefficient

• tavailable Injector opening time

• tinjection Injection time

• injduty Injector duty cycle

• V̇ fuel flow rate

• trequired Injector required opening time

Using the density of gasoline it is then possible to calculate the gasoline mass
injected per single injection.

27

Chapter 5

Arduino DUE

An explanation of how data is collected using the Arduino DUE is provided in this
chapter. A step-by-step description of the code is made in order to allow a deep
understanding of the various functions used to design this data acquisition system.

5.1 Arduino IDE
The Arduino IDE 2.0 is a versatile editor with many features. You can install
libraries directly, sync your sketches with Arduino Cloud, debug your sketches and
much more. In this section, some of the core features are listed, along with a link
to a more detailed article. The Arduino IDE software allows you to:

• Verify / Upload - compile and upload your code to your Arduino Board.

• Select Board & Port - detected Arduino boards automatically show up
here, along with the port number.

• Sketchbook - here you will find all of your sketches locally stored on your
computer. Additionally, you can sync with the Arduino Cloud, and also obtain
your sketches from the online environment.

• Boards Manager - browse through Arduino & third party packages that
can be installed. For example, using a MKR WiFi 1010 board requires the
Arduino SAMD Boards package installed.

• Library Manager - browse through thousands of Arduino libraries, made by
Arduino & its community.

• Debugger - test and debug programs in real-time.

• Search - search for keywords in your code.

28

Arduino DUE

• Open Serial Monitor - opens the Serial Monitor tool, as a new tab in the
console.

The sketchbook is where your code files are stored. Arduino sketches are saved
as .ino files and must be stored in a folder of the exact name. For example, a
sketch named my_sketch.ino must be stored in a folder named my_sketch. With
the library manager, you can browse and install thousands of libraries. Libraries
are extensions of the Arduino API. The Serial Monitor is a tool that allows the
communication with the Arduino Board if it’s connected through USB connection.
It allows sending commands to the Board and receiving communications when the
tasks are completed. The Arduino IDE 2.0 is an open-source project that is free
for anyone to download [10].

5.2 DAQ code
In this section, the code of the Data Acquisition system is written in its completeness
in order to facilitate the understanding of it. In this way, it is possible to configure
a new Arduino DUE and use it to acquire in-cylinder pressure measurements freely.

5.2.1 Main Code

1 # include "SdFat.h"
2 # include "sdios.h"
3 # include "Queue.h"
4 // ncycle is the total number of cycles that we want to

record
5 #define ncycle 100
6 // Number of analog readings we want to use to make the

average
7 #define nreadings 1
8
9 // cyclduration is the number of samples that we will

collect for 2 revolutions of the crankshaft
10 #define cyclduration 1440
11 #define maxlength 28800 // 36000 should be 72 000 Byte

of stored data
12 #define nlimit ((ncycle + 1) * cyclduration)
13
14 // Pin where we have the reading of the Voltage from the

pressure transducer

29

Arduino DUE

15 #define Voltage_pin A0
16 #define interruptPinZ 13
17 #define interruptPinB 2
18
19
20 const uint8_t SD_CS_PIN = 10;
21 // Enable Fast SPI
22 #define SPI_CLOCK SD_SCK_MHZ (40)
23 #define SD_CONFIG SdSpiConfig (SD_CS_PIN , DEDICATED_SPI ,

SPI_CLOCK)
24
25 // This initializes the object file in which we are going

to save the data
26 SdFat SD;
27 SdFile dataFile ;
28
29 char filename [] = "LOG00.bin";
30
31 // Encoder variables
32 bool flag = LOW;
33 uint16_t CountRevs = 0;
34 int n = 0; // Counter of the total iterations

that are being stored
35 uint16_t begin = 0; // This is used not to reinitialize

the SD card every time we need to collect data
36 uint16_t ToSD [1];
37
38 Queue <uint16_t > Voltage_readings = Queue <uint16_t >(

maxlength);
39 const int spispeed = 84000000;
40 uint16_t Atotal = 0;
41 char input = 0; // This is needed to start the

acquisition of the data
42
43
44 void setup () {
45 SPI. setClockDivider (spispeed);
46 // analogReadResolution (12);
47
48 if (begin == 0) {
49 SerialUSB.begin (115200) ;

30

Arduino DUE

50
51
52 while (! SerialUSB) {
53 ; // wait for serial port to connect . Needed for

native USB port only
54 }
55 pinMode (10, OUTPUT); // needed to be sure that the

chip select pin is in output mode
56 // pinMode (7, OUTPUT); // This is used for test

purpose only
57 // digitalWrite (7, HIGH);
58 // digitalWrite (7,LOW);
59
60 if (!SD.begin(SD_CONFIG)) {
61 SerialUSB. println ("Card failed , or not present ");
62 SerialUSB. println ("Insert SD card and Restart the

Arduino ");
63 while (1) {
64 ;
65 }
66 // don ’t do anything more:
67 } else {
68
69 SerialUSB. println ("SD card initialized .");
70 SerialUSB. println (" ");
71 }
72 // Setup of the registers for the Direct Access

memory readings https :// youtu.be/ XUUI0SCR_cU
73 ADC ->ADC_MR |= 0x80; // these lines set free

running mode on adc 7 (pin A0)
74 ADC ->ADC_CR = 0x02;
75 ADC -> ADC_CHER = 0x80;
76 begin ++;
77 }
78
79 // file creation
80 if (input != ’y’) {
81 SerialUSB. println ("Press y to start collecting data:

");
82 while (SerialUSB. available () == 0) {}
83 input = SerialUSB.read ();

31

Arduino DUE

84 SerialUSB. println (input);
85
86 if (input == ’y’) {
87 for (uint8_t i = 1; i < 100; i++) {
88
89 filename [3] = i / 10 + ’0’;
90 filename [4] = i % 10 + ’0’;
91 if (!SD.exists(filename)) {
92 // Creates a file if it doesn ’t exist with that

name
93 dataFile .open(filename , O_WRITE | O_APPEND |

O_CREAT);
94 break;
95 }
96 if (i == 99) {
97 SerialUSB. println ("Remove files from SD Card")

;
98 while (1) {};
99 }

100 }
101 // This condition checks if the file has been

created
102 if (! dataFile) {
103 SerialUSB. println ("Couldn ’t create file");
104 }
105
106 SerialUSB.print(" Logging to: ");
107 SerialUSB. println (filename);
108 dataFile . truncate ();
109 Voltage_readings .clear ();
110 CountRevs = 0;
111 n = 0;
112
113 attachInterrupt (digitalPinToInterrupt (

interruptPinZ), readZ , RISING);
114 attachInterrupt (digitalPinToInterrupt (

interruptPinB), readB , RISING);
115 } else {
116 // This is needed in order to get back to the setup

if i’m not inserting the right letter
117 begin = 0;

32

Arduino DUE

118 input = 0;
119 setup ();
120 }
121 }
122 }
123
124 void loop () {
125
126 while (flag == HIGH) {
127
128
129 while (Voltage_readings .count () > 0) {
130 ToSD [0] = Voltage_readings .pop ();
131 dataFile .write(ToSD , sizeof(ToSD));
132 }
133 if (Voltage_readings .count () > maxlength) {
134 SerialUSB.print("The Queue is full");
135 setup ();
136 }
137
138
139
140 if (n == nlimit) {
141 while (Voltage_readings .count () > 0) {
142 // Queue data
143 ToSD [0] = Voltage_readings .pop ();
144 dataFile .write(ToSD , sizeof(ToSD));
145 }
146 dataFile .close ();
147 SerialUSB.print(ncycle);
148 SerialUSB. println (" Cycle saved");
149 SerialUSB. println ("SDcard file Closed");
150 SerialUSB.print("Last Revolution was:");
151 SerialUSB. println (CountRevs - 2); // -2

initialization of the vector
152 SerialUSB.print("Last Step was:");
153 SerialUSB. println (n - 1);
154 SerialUSB. println (" ");
155 // Removes all the voltage readings left in the

Queue
156 Voltage_readings .clear ();

33

Arduino DUE

157
158 flag = LOW;
159 input = 0;
160 delay (2000);
161 rstc_start_software_reset (RSTC); // resets the

board
162 }
163 }
164 }
165
166
167 void readZ () {
168 flag = HIGH;
169 CountRevs ++; // Increases the value of CountRevs every

time the Zpulse happens
170 }
171
172 void readB () {
173
174 if (flag == HIGH) {
175 // Average of nreadings pressure readings in order to

get a more accurate value
176 for (int j = 0; j < nreadings ; j++) {
177 while ((ADC -> ADC_ISR & 0x80) != 0x80)
178 ;
179 Atotal = Atotal + ADC -> ADC_CDR [7];
180 }
181 // https :// github.com/ sdesalas /Arduino -Queue.h#queueh

.push(at);
182 // Queue insertion of the voltage value
183 Voltage_readings .push(Atotal);
184 Atotal = 0;
185 if (n == nlimit) {
186 //In order to finish storing the acquired data ,

once the total number of measurements has been
reached , the interrupts need to be stopped .

187 detachInterrupt (digitalPinToInterrupt (
interruptPinB));

188 detachInterrupt (digitalPinToInterrupt (
interruptPinZ));

189 }

34

Arduino DUE

190 n++;
191 }
192 }

5.2.2 Queue.h Code
This Queue.h1 is a library that can be found online but it is not possible to download
it from the Arduino library manager.

1 #ifndef ARDUINO_QUEUE_H
2 #define ARDUINO_QUEUE_H
3
4 # include <Arduino .h>
5
6 template <class T>
7 class Queue {
8 private :
9 int _front , _back , _count;

10 T *_data;
11 int _maxitems ;
12 public:
13 Queue(int maxitems = 256) {
14 _front = 0;
15 _back = 0;
16 _count = 0;
17 _maxitems = maxitems ;
18 _data = new T[maxitems + 1];
19 }
20 ~Queue () {
21 delete [] _data;
22 }
23 inline int count ();
24 inline int front ();
25 inline int back ();
26 void push(const T &item);
27 T peek ();

1This code is open source. Can be downloaded from the Internet and implemented in your
code. The library is not available yet. Source:https://github.com/sdesalas/Arduino-Queue.h

35

https://github.com/sdesalas/Arduino-Queue.h

Arduino DUE

28 T pop ();
29 void clear ();
30 };
31
32 template <class T>
33 inline int Queue <T >:: count ()
34 {
35 return _count;
36 }
37
38 template <class T>
39 inline int Queue <T >:: front ()
40 {
41 return _front;
42 }
43
44 template <class T>
45 inline int Queue <T >:: back ()
46 {
47 return _back;
48 }
49
50 template <class T>
51 void Queue <T >:: push(const T &item)
52 {
53 if(_count < _maxitems) { // Drops out when full
54 _data[_back ++]= item;
55 ++ _count;
56 // Check wrap around
57 if (_back > _maxitems)
58 _back -= (_maxitems + 1);
59 }
60 }
61
62 template <class T>
63 T Queue <T >:: pop () {
64 if(_count <= 0) return T(); // Returns empty
65 else {
66 T result = _data[_front];
67 _front ++;
68 --_count;

36

Arduino DUE

69 // Check wrap around
70 if (_front > _maxitems)
71 _front -= (_maxitems + 1);
72 return result;
73 }
74 }
75
76 template <class T>
77 T Queue <T >:: peek () {
78 if(_count <= 0) return T(); // Returns empty
79 else return _data[_front];
80 }
81
82 template <class T>
83 void Queue <T >:: clear ()
84 {
85 _front = _back;
86 _count = 0;
87 }
88
89 #endif

5.3 Code explanation
In this section, the different functions used to develop this Data Acquisition System
are described in detail.

5.3.1 Arduino base commands
The code for Arduino is typically organized into three primary sections. The first
section is known as the initialization stage, where constants and variables are
defined. When variables are defined in this section, they become global variables
that can be accessed from any other part of the code.

The second section of the code comprises:

1 setup (){
2 // setup code is written here
3
4 }

37

Arduino DUE

The setup() function is called when a sketch starts. The setup() function will only
run once, after each powerup or reset of the Arduino board[11]. It can be used for
actions that need to be taken just once, it is possible to recall the setup() function
from the code allowing it to run again. The third part of the code is the:

1 loop (){
2 // This part of the code runs continuously
3
4 }

The loop() function does precisely what its name suggests, and loops consecutively,
allowing your program to change and respond. Use it to actively control the
Arduino board[12]. Outside of the loop() function it is possible to have other
functions which can improve the Arduino’s Capabilities. Once the sketch layout
has been explained, the syntax used to develop this Data Acquisition System is
described. Starting from the beginning of the code the libraries which are needed
for the DAQ are declared with the function:

1 # include " library_name "

This line is used to include outside libraries in your sketch. This gives the program-
mer access to a large group of standard C libraries (groups of pre-made functions),
and also libraries written especially for Arduino[13]. Three different Libraries need
to be included for this application, SdFat.h and sdios.h are related to the SD
Card library which allows to work with FAT16/FAT32 and exFAT SD card, the
third library which is Queueu.h includes a circular queue for Arduino embedded
projects. After including the different libraries, the constant parameters are defined
using this syntax:

1 #define parameter_name parameter_value

It is a useful C++ component that allows the programmer to give a name to
a constant value before the program is compiled. Defined constants in Arduino
don’t take up any program memory space on the chip. The compiler will replace
references to these constants with the defined value at compile time.

This can have some unwanted side effects though if for example, a constant name
that had been defined is included in some other constant or variable name. In that
case the text would be replaced by the # defined number (or text) [14]. Defining
constants allows to optimize the code where values do not change throughout

38

Arduino DUE

the running code. To be able to use the variables they need to be declared, the
assignation is done with a declaration:

1 type_var name_var = value_var ;

The main types of variables used in this code are uint16_t, int, char, and bool,
respectively:

• uint16_t defines an unsigned positive integer number [0;(216) − 1][15]

• int stores a signed 32-bit (4-byte) value.[−231; (231) − 1] [16]

• char is used to store single characters[17]

• bool holds one of two values, true or false[18]

The second part of the code is now explained and a description of the setup()
function is written.

1 SPI. setClockDivider (spispeed);

The system clock can be divided by values from 1 to 255. The default value is 21,
which sets the clock to 4 MHz like other Arduino boards.[19] It is possible to find
the Serial function, which is used for communication between the Arduino board
and a computer or other devices.

1 SerialUSB.begin(baudrate);
2 SerialUSB. println ("text to print");
3 while (SerialUSB. available () == 0);
4 input = SerialUSB.read ();

Line 1 sets the data rate in bits per second (baud) for serial data transmission to a
Serial Monitor[20]. Line 2 Prints data to the serial port as human-readable ASCII
text followed by a carriage return character (ASCII 13) and a newline character
(ASCII 10)[21]. Line 3 instructs the Arduino to wait until a SerialUSB connection
is established between the Arduino and the computer. Finally, on Line 4, incoming
serial data is read and assigned to a variable.

1 rstc_start_software_reset (RSTC); // resets the board

39

Arduino DUE

This line has the same functionality as the Reset button on the board but it
allows to do it via software. Pressing it has the same effect as disconnecting and
reconnecting the power supply, it will start executing any instructions in the sketch
from the beginning. Powering down the board clears RAM memory, so values that
were previously assigned to variables are not kept [22].

After this small explanation about the main functions which can be used to
write code for Arduino, a more specific explanation is done with respect to the
functions and libraries that are used for this application.

5.3.2 External interrupts
It is important to connect the Encoder outputs to the pins which are capable of the
interrupt function. On the Arduino DUE it is possible to set the external interrupts
in all the digital pins. Interrupts are useful for making things happen automatically
in microcontroller programs and can help solve timing problems. Good tasks for
using an interrupt may include reading a rotary encoder, or monitoring user input.
If you wanted to ensure that a program always caught the pulses from a rotary
encoder, so that it never misses a pulse. ISRs are special kinds of functions that
have some unique limitations most other functions do not have. An ISR cannot
have any parameters, and it shouldn’t return anything. If your sketch uses multiple
ISRs, only one can run at a time, other interrupts will be executed after the current
one finishes. Typically global variables are used to pass data between an ISR and
the main program[23]. The external interrupt functions needs to be activated for
each output of the encoder. The command for calling the external interrupt is:

1 attachInterrupt (digitalPinToInterrupt (pin), ISR ,
mode);

Once this function is called the external interrupts are working. In the function
definition it is needed to set the different parameters:

• Pin depends on the number where the output pulses are connected.

• The B pulse is connected to pin no 2 on the Arduino Due, while the Z pulse is
connected to pin no 13. ISR is the name of the function which runs when the
two different square wave outputs occurs.

• Mode can have different triggers which activate the code written in the function
connected to the interrupt. In this case the RISING of the signal in order
to have a trigger every time the Encoder output state goes from low to High
state.

40

Arduino DUE

The utilization of the external interrupts allows the loop code to run continuously
while waiting for the next interrupt. In this way the software is always running,
and once the the Z Pulse occurs, an increment on the revolution counter is done.
While the Z Pulse occurs once every cycle, the B Pulse occurs once every 0.5o CA,
when this happens the analog output of the pressure transducer is collected from
the ADC and is stored in an Arduino variable. In the next paragraph the Analog to
digital conversion is explained. To be sure that the data collection stops when the
total number of measurement points is obtained it is necessary to use the function:

1 detachInterrupt (digitalPinToInterrupt (pin));

This function detaches the external interrupts which means that even if there is a
square wave signal going to the Arduino digital pins, no operation runs from the
ISR. This allows to finish running the loop() code without interrupting the loop()
routine which can be defined with a low-priority code.

5.3.3 Analog input
The Arduino DUE has an integrated ADC system that allows to convert of an
analog input that goes from 0 to 3.3V to a digital number that goes from 0 to 4095.
This means that in order to have the corresponding tension value, a conversion
needs to be done.

V = measurevalue
3.3

4095 (5.1)

Different methods of reading an analog voltage can be set up on the Arduino DUE.
The standard Arduino method is written below:

1 pinMode (A0 ,INPUT);
2 Reading = analogRead (pin);

Line 1 is needed the Pin A0 in INPUT mode, it is necessary otherwise no output is
read from the analogRead() function. When Line 2 is called, the ADC is activated,
reads the voltage from the output, and assigns to the Reading variable a number
that goes from 0 to 4095. Using the analogRead() function takes about 7.3 µs. The
total available time at 4000 RPM can be calculated using the Formula 2.1 that
becomes:

Sampling Rate = 2
 [4000]

60 [sec]
[min]

 720Sampling Rate = 96000Samples/s (5.2)

41

Arduino DUE

In this way it is possible to calculate the sample time which is:

Sampling Time = 1
Sampling Rate (5.3)

Sampling Time = 10µs (5.4)
This means that on the leftover time, it would be necessary to store the acquired
variables in the SD Card. This means that the risk of losing data is very high and
this makes drives to investigate faster analogRead methods. The other solution
is Direct Access Memory. To do so, the Datasheet needs to be studied, working
directly with the ADC means that pointers need to be used to assign values to the
registers.

1 ADC ->ADC_MR |= 0x80;
2 ADC ->ADC_CR = 0x02;
3 ADC -> ADC_CHER = 0x80;

Line 1 selects the free running mode for the ADC which means that the Arduino
Analog to Digital conversion is running continuously while the Arduino is doing
other operations. Line 2 is the Control register which starts the conversion, which
means that the Arduino is continuously converting from Analog to Digital. Line
3 is the Channel Enable register which is needed to select the Pin at which the
Analog input is inserted. Two lines of code allow to sample the ADC:

1 whi le ((ADC −> ADC_ISR & 0x80)) != 0) :
2 Reading = ADC −> ADC_CDR[7] ;

The first line checks if there is a data point ready, and if there is not, the software
waits until a Voltage reading is converted to an equivalent 0 to 4095 number. The
Interrupt Status Register allows to know when the ADC has completed a conversion,
this means that this line of code allows the system to wait if there is no converted
value yet. Line 2 is the assignation to a variable of the value which resides at the
ADC collected, it is a read-only register inside the ADC and corresponds only to
the channels which are enabled[24]. Using this method gives a sampling time that
is about 0.6µs due to the fact that the ADC is always running even when the data
is not required yet but the Arduino stores it only when the encoder triggers the B
Pulse.

5.3.4 SD Card implementation
To store the data it is necessary to integrate to this DAQ an external memory
where to save the measurements. This is required because the onboard Flash

42

Arduino DUE

memory of the Arduino DUE is not usable, while the SRAM capacity is not big
enough to store 100 cycles. For this reason, the introduction of an SD Card in this
Data Acquisition System is necessary. In this research, the Adafruit Data Logger
Shield is used, it is compatible with the Sdfat.h library which is the fastest SD
library available at the moment. Starting from the first part of the code, the first
parameter that needs to be set is:

1 const uint8_t SD_CS_PIN = 10;

This assignment needs to be done to allow the microcontroller to work with the
Adafruit Shield and communicate with the SD Card.

1 #define SPI_CLOCK SD_SCK_MHZ (40)
2 #define SD_CONFIG SdSpiConfig (SD_CS_PIN ,

DEDICATED_SPI , SPI_CLOCK)

The first line sets the SPI speed at which the communication between the Arduino
and the SD Card is going to run. The second line configures the SD Card through
the setting of the communication pin which changes if another shield is used. The
dedicated SPI is set due to the fact that no other SPI devices are connected to
the Arduino and this allows to run the interface at the maximum speed. The last
parameter is the SPI clock speed which was defined in Line 1

1 SdFat SD;
2 SdFile dataFile ;

The first line initializes SD object while the second one defines the file object which
will be used to call the various functions that allow the management of the files
and also to save the parameters needed to the SD Card.

1 if (!SD.begin(SD_CONFIG)) {
2 SerialUSB. println ("Card failed , or not present ");
3 SerialUSB. println ("Insert SD card and Restart the

Arduino ");
4 while (1) {
5 ;
6 }

43

Arduino DUE

This part of the code verifies if the SD Card is present in the Adafruit Shield and if
it is present, it starts the communication between the Arduino and it. If the card
is not present or there is an error in the communication then the Arduino prints
out the error and enters an infinite loop, which can be reset only by disconnecting
and reconnecting the Arduino to the computer, or pressing the reset button on the
PCB. This is made by choice so that while running the test, it is possible to notice
that the SD card is missing.

1 if (!SD.exists(filename))

This line of code checks if there is a file inside the SD card with the exact name
which is associated with the filename variable. If there is no file associated with it,
it goes on with the next line of code:

1 dataFile .open(filename , O_WRITE | O_APPEND | O_CREAT
);

This line of code creates a file with the filename associated with the stored variable
name. If the file is already present, it continues adding the values that we are
sending to it physically at the end of the file.

1 dataFile . truncate ();

This .truncate() function helps to speed up the storage of the data on the SD card,
this happens because the Arduino truncates the file from one position on which
means that the Arduino needs to save the data in an empty space. Finally the last
command of the Arduino Library is called:

1 dataFile .write(ToSD , sizeof(ToSD));

This command is used to send the data to the SD card, the data which are going
to the SD is written in bytes, and sizeof(ToSD) is needed to specify the number of
bytes that are being sent to the SD card. The code which is writing the measured
data to the SD card is running in the main loop, which means that compared to
the ISR code has a lower priority. This is done because the SD card works with an
internal buffer and when this buffer is full, it can take up to 160µs which means
that running everything with the same priority would cause some data losses while
normally when the buffer is not full, it takes up to 6 µs.

44

Arduino DUE

5.3.5 Queue implementation
A Queue is required in this code to enable data collection while the interrupts
triggered by the B pulse are in progress. During the execution of the interrupt
code, writing to the SD Card is suspended to allow the Arduino to locally store
the measurements on the SRAM. The interrupts are executed with higher priority
than the main loop function, facilitating the collection of data as soon as the B
pulse is detected by the Arduino without any loss of critical data. This system
allows transmission of data to the SD Card when the Arduino is free to execute
the loop function. For this purpose, the measurements are temporarily stored in
a Queue and subsequently transmitted to the SD Card using the Queue library.
Queue.h is a circular queue for Arduino embedded projects, it follows the FIFO
which means that the First element that enters the queue is the first element that
gets extracted.

Figure 5.1: Queue Schematics

Dequeue
Enqueue

Back Front

Source:Wikipedia

Figure 5.1 represents the logic that is used by the library. The head is the first
element that is inserted into the queue, when an element needs to be inserted, it
is connected to the back of the queue. This operation makes it possible to keep
the list ordered, when an element needs to be removed from the list, it is taken off
from the front of the Queue. These are the main operations that are needed to
work with the queue. At this point, the code explanation is shown.

1 #define maxlength 28800
2 Queue <uint16_t > Voltage_readings = Queue <uint16_t >(

maxlength);

This line defines the structure of the queue, it is declared as a queue of uint16_t
elements and it can reach a maximum length of 28800 elements, this is necessary
because when a high sampling rate is required, it is necessary that the measured
voltages need to be collected on the back of the queue, while the front of the queue
is sent to the SD card.

45

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

Arduino DUE

1 Voltage_readings .clear ();
2 Voltage_readings .count ()

Line 1 is the function that removes all the elements from the queue while Line 2
counts how many elements are present inside the queue, this is needed because a
check on the number of measurements which are already inside is needed. If the
number of elements in the queue reaches the maximum it means that some data
may be lost, for this reason, an error has to be set.

1 Voltage_readings .push(Atotal);
2 ToSD [0] = Voltage_readings .pop ();

The last two commands used from this Queue.h library are these ones. Line 1
adds a generic element at the back of the queue. In this case, it is used to store
the analog voltage which is read from the A0 pin.

Line 2 gets a generic item from the front of the queue, which in this case is
assigned to a variable that sends the value to the SD card.

5.3.6 Data output
To keep up with the amount of data that needs to be stored at the highest speeds
some considerations need to be done. First of all the amount of data out needs to be
reduced as much as possible, this means that just the pressure measurements can be
stored, not saving on the SD Card any other parameter that can be measured with
the Arduino. For example, there is the possibility to read the number of revolutions
and the total number of steps, but this would slow down the process of saving the
data to the SD card. The second observation which has to be made is about the
format of the numbers which are sent to the SD card, using the command:

1 dataFile .write(ToSD , sizeof(ToSD));

This command writes to the SD card the value corresponding to the variable in
function of how many bytes the variable has. In this way, only the useful bytes are
going to be written on the SD card.

46

Chapter 6

MATLAB Code

Once the data are collected, it is possible to open them with a MATLAB function,
to do so, first of all, it is necessary to convert the file from a Binary code to a
Human readable number, then it is possible to make some post-processing on the
code, in order to find the Pressure curve in function of the Crank Angle and so on.

6.1 Data Opening
To be able to read the data acquired from the Arduino, the file needs to be opened
directly from MATLAB because it is saved in the .bin file.

1 fileID = fopen (" LOG17.bin ");
2 A= fread(fileID ,[1, inf],'uint16 ') ';

Line 1 opens the file, filename, for binary read access, and returns an integer file
identifier equal to or greater than 3[25]. This File Identifier is then sent to the
function in Line 2, A = fread(fileID,sizeA,precision), the fread function reads file
data into an array, A, with dimensions, sizeA, and positions the file pointer after
the last value read. fread populates A in column order. Values are interpreted in
the file according to the form and size described by precision[freadmatlab]. Once
the numbers readable, it is needed to convert them from integers to Voltages, the
procedure to do so is the one explained in paragraph 5.3.3:

V = measurevalue
3.3

4095 (6.1)

These are the voltage output that the Arduino reads in function of the crank angle,
to have the pressure measurements another multiplication needs to be done.

47

MATLAB Code

6.1.1 Pressure Readings
To be able to convert the voltage measurements that are collected while the engine
was running into pressure measurements, the parameter which is calculated in
Chapter 4.1.2. It is important to remember that some pressure referencing has to
be done in order to have accurate data, this is needed because the piezoelectric
pressure transducer is not an absolute pressure transducer but it is a relative one.
It is capable to detect the pressure change, but not the absolute value with respect
to the external atmospheric pressure.

6.2 Pressure Pegging
By design, transducers respond to pressure differences by outputting a charge
referenced to an arbitrary ground. Thus to quantify absolute parameters such as
peak pressure and burn durations from heat release analyses, the transducer output
must be directly correlated to pressure(pegged) at some point in the cycle. The
procedure chosen is to set cylinder pressure at the inlet bottom dead center equal
to intake Manifold Absolute Pressure(MAP). This is a very accurate procedure
in untuned intake systems or at very low speeds in tuned systems. This method
loses some accuracy when the engine speed increases. A second limitation of this
procedure is that the pegging is done at a specific point in the cycle at IBDC. Noise
in the experimental data would lead to inaccurate referencing for the remainder of
that cycle. For this study, an average of five points, one crank degree before and
one after IBDC was used to reduce the potential for error associated with relying
on a point measurement[26]. In this MATLAB code, the pressure measurements
are organized in a matrix with 1440 lines and a number of columns which depends
on the number of cycles which are requested to be recorded, it can vary from 100
to 1000 cycles.

1 %% Peg Cylinder Pressure to Manifold Pressure Within
Window near -180deg

2 CApegi = -182;
3 CApegf = -178;
4 P.peg = mean(P.filt(find(CA >= CApegi ,1):find(CA >=

CApegf ,1) ,:) ,1) - (CAL.Pamb + P.MAP);
5
6 % Repeg Raw and Filtered Pressure Traces to Manifold

Pressure
7 P.raw = P.raw - P.peg;
8 P.filt = P.filt - P.peg;

48

MATLAB Code

The average in-cylinder pressure at IBDC is calculated with five points because
in this case, our pressure measurements have an increment of 0.5o CA. This allows
us to calculate the pressure shift for every single cycle and corrects every cycle to
have an in-cylinder pressure measurement equal to the MAP in this interval. As
written before this correction allows to have accurate pressure measurements.

6.3 Pressure Filtering
Low-pass filters are widely used as they are suitable for retaining the physical
information useful for combustion analysis while removing high-frequency noise.
The main problem associated with low-pass filters is the determination of the
optimum cut-off frequency[27]. To filter these pressure data a MATLAB function
is used:

1 [b,a]= butter(n,Wn ,'low ');
2 pressure_avg_filt = filtfilt (b,a, pressure_avg);

Line 1 returns the transfer function coefficients of an nth-order lowpass digital
Butterworth filter with normalized cutoff frequency Wn. The filter order represents
Wn is defined as:

Wn = 2fcutoff
RP M

60 Cycleduration
(6.2)

The cutoff frequency needs to be tuned in order to have a smooth resultant pressure
profile. Line 2 performs zero-phase digital filtering by processing the input data x
in both the forward and reverse directions. After filtering the data in the forward
direction, the function reverses the filtered sequence and runs it back through the
filter. The result has these characteristics:

• Zero phase distortion

• A filter transfer function equal to the squared magnitude of the original filter
transfer function

• A filter order that is double the order of the filter specified by b and a

Zero-Phase filtering helps preserve features in a filtered time waveform exactly where
they occur in the unfiltered signal. b and a are the transfer function coefficients
defined previously. Tuning these parameters it is possible to obtain smooth curves
for what regards the pressure transducer.

49

MATLAB Code

6.4 Diagrams
In this section different diagrams which are possible to produce using the acquired
data are explained.

6.4.1 Pressure signals
The pressure diagrams can be plotted in relation to the crank angle degree, this
allows observing the variation in pressure between each cycle. It is possible to
plot the filtered pressures superimposed to detect the variability in the combustion
cycle. It is also possible to calculate the average pressure with respect to all the
measured pressure values. These plots are shown in Chapter 7 divided into different
categories, starting from the idle load and idle speed recording 100 cycles, then
increasing the engine speed, and load, from 100 stored cycles up to 1000 cycles.

6.4.2 P-V diagram
The pressure-volume diagram is of interest because the work W produced by the
cylinder gas is:

W = F∆x = pA∆x + pdV (6.3)

Where:
F = force acting on the piston

∆x = incremental distance of the piston movement

p = in-cylinder pressure

A = piston cross-sectional area

∆V = incremental volume swept by piston

Thus when pressure is plotted against volume the area under the curve represents
the indicated work done by/on the cylinder gas. A shortcoming of the pressure-
volume (p-V) diagram is that the greatest rate of change of pressure occurs
during combustion near TDC of piston motion, when, given the traditional crank
mechanism, the velocity of the piston is low[28]. To calculate the volume, the
engine characteristics are required:

Number of Cylinders = 3

Bore diameter = 76.5mm

Stroke = 86.9mm

Rod length L = 138mm

50

MATLAB Code

r = S

2

λ = r

L

CR = 10.3

Vclearance =
2rπ B2

4
CR − 1

x(θ) = r
5
1 − cos(θrad) + 1

λ

3
1 −

ñ
1 − λ2sin(θrad)2

46
(6.4)

V (θ) = Vclearance + π
B2

4 x(θ) (6.5)

It is possible to calculate the displacement volume as a function of the crank angle,
which is required to create the P-V diagram and the indicated cycle.

6.4.3 Indicated Cycle
The indicated cycle is characterized by both axes in the logarithmic scale. Using
the logP-logV diagram it is possible to get pressure and volume at intake valve
closure and exhaust valve closure, this makes it possible to calculate easily the
polytropic exponent:

pV k = const (6.6)

ln(p) + kln(v) = ln(const)

k =
log P−100oCA bTDC

P−20oCA bTDC

log V−100oCA bTDC
V−20oCA bTDC

(6.7)

To calculate the polytropic coefficient, the assumption is made that the valve intake
opens at -100 CA degrees and closes at -20 CA degrees, as stated in Equation 6.7.
In Gasoline Internal Combustion Engines (ICE), the polytropic coefficient typically
falls between 1.32 and 1.4. This coefficient represents the compression phase of the
air within the cylinder, accounting for the heat transfer component as well.

Although the theoretical and experimental lines should be coincidental during
the compression phase, they may differ slightly due to various parameters. For
example, an inaccurate calibration of the clearance volume may result in imprecise
estimations of the volume function. In this case, certain engine parameters were
obtained from engines with similar maximum power and cylinder displacement,
with the assumed parameter being the rod length.

51

Chapter 7

DAQ Validation

This chapter presents the results acquired with the designed Data Acquisition
System discussed in the research. To validate the DAQ the testbench present in
the Oakland University Energy Lab is used to acquire data under several working
conditions. Different engine speeds and loads have been tested changing also the
amount of engine cycle stored continuously from the DAQ.

7.1 Engine speed evaluation
In order to assess the performance of the Arduino DUE-based DAQ, a series of
tests were conducted using various engine speeds. The tests commenced at an idle
speed and gradually increased to a maximum of 4000 RPM, as detailed in Table
7.1. Each test run stored 100 data cycles.

Table 7.1: Engine speed test conditions

Speed[RPM] MAP[bar] Throttle position[%] Power[kW]
930 -0.67 0 0.20
1500 -0.64 8 1.74
2000 -0.66 9 2.76
2500 -0.70 10 3.09
2800 -0.76 10 2.43
3000 -0.75 11 3.05
3500 -0.77 12 3.11
4000 -0.77 13 1.93

52

DAQ Validation

In this section, the plots with the results acquired from the DAQ are presented,
in Figure 7.1 the raw pressure signal in function of the Crank Angle Degree at idle
speed is presented. The intake phase starts at -360oCA, with TDC at -0.5oCA. It is
possible to notice that at idle speed the combustion phase happens after TDC, in
fact, the combustion hump is localized after the Top Dead Center. In the figures,
the average cycle is represented with a Black line and it is calculated by averaging
the pressure measurement for every 0.5o CA over the 100 cycles which are collected
consecutively.

Figure 7.1: 930 RPM Throttle valve 0%

53

DAQ Validation

In Figure 7.2 the test is running at low load at a speed of 1500RPM, it is possible
to notice that the cycle variability is bigger than it was before, with a peak in
pressure which happens slightly after the TDC. This happens because the ECU
varies continuously the running conditions in order to keep combustion stable, and
the running conditions as requested by the Armfield Software.

Figure 7.2: 1500 RPM Throttle valve 8%

54

DAQ Validation

In Figure 7.3 increasing the engine speed even if the engine load is low, increases
the pressure peak after TDC. It is noticeable that the pressure signals are clear
enough and there is not a lot of noise, what is important to consider is the variability
of the pressure in each cycle. The maximum peak in pressure during the combustion
phase reaches values of 15 bar for a few cycles with an average value of 11 bar over
100 cycles. In this figure, it is possible to notice some noise high-frequency noise
which is likely to be caused by the valve events.

Figure 7.3: 2000 RPM Throttle valve 9%

55

DAQ Validation

In Figure 7.4 the pressure peak increases even more due to the fact that the
throttle valve opening percentage is higher, which means that a larger amount of
air enters the cylinder together with a larger amount of fuel. The level of noise
increases with respect to the previous measurements, but the noise is showing
always at the same points. The peak pressure reaches 18 bar.

Figure 7.4: 3000 RPM Throttle valve 11%

56

DAQ Validation

In Figure 7.5 the trend continues, peak pressure increases, and also the pressure
traces in the combustion phase are spread more. The noise increases even more,
but as it is possible to see later, increasing the engine load, decreases the noise in
the pressure trace.

Figure 7.5: 4000 RPM Throttle valve 13%

57

DAQ Validation

7.2 Engine Load Evaluation
In this Section, the results of the pressure trace changing the engine load are
shown. These pressure measurements are taken considering a fixed engine speed,
but increasing the engine load for each measurement.

Table 7.2: Engine load test at 2000RPM

Throttle position[%] Brake load [%] Power[kW] MAP[bar]
9 15 2.95 -0.67
15 30 9.56 -0.39
20 37 13.33 -0.24
25 41 15.71 -0.16
50 47 18.44 -0.07

As stated in Table 7.2, a throttle valve opening sweep was conducted at a fixed
engine speed of 2000 RPM. The Armfield software automatically applies brake
loads based on the engine speed and throttle position, facilitating testing of the
engine under various working loads.

In the first test, the throttle position was set to 9%, and the resulting diagram
is displayed in Figure 7.6. Although noise is evident at the end of the intake phase,
the signal is sufficiently clear even without filtering.

Figure 7.6: 2000 RPM Throttle position 9%

58

DAQ Validation

In Figure 7.7 the engine load is increased, the throttle position is set at 15%,
and the brake load at 30%. It is possible to see that the pressure peak shifts to the
right of the TDC, it can also be noted that the noise during the valve events is less
relevant. The cycles oscillate due to the fact that the ECU corrects the combustion
parameters as Spark Advance and Injection duration in order to keep the engine in
steady-state conditions.

Figure 7.7: 2000 RPM Throttle position 15%

59

DAQ Validation

In Figure 7.8 the throttle valve is set at 25% with a brake load at 41% it is
possible to see that the combustion starts a bit earlier compared to the low load
run. The spark advance is set to 19 o CA. These curves in the figure are unfiltered,
and the noise is not so evident compared to the low-load working conditions.

Figure 7.8: 2000 RPM Throttle position 25%

60

DAQ Validation

In the last Figure 7.9 the throttle valve is set at 50% with a brake load at 47%,
it is the highest load condition that is tested in this research, and the highest
pressure measured is 54 bar. It is possible to notice that as soon as the in-cylinder
pressure starts increasing, the noise caused by the valve events decreases. With a
throttle valve opening of 9% noise oscillates at a maximum range of 2.8 bar, with
a throttle valve opening at 50% the maximum oscillation range is 0.5 bar.

Figure 7.9: 2000 RPM Throttle position 50%

61

DAQ Validation

7.3 Consecutive Cycle
Another point that was questioned in this research is how many cycles it is possible
to store continuously because of the limitations on the SRAM. This question is
reasonable because while the Arduino is recording new data points, it is also saving
the data in the queue, and from there it is storing them in the SD Card. Saving
measurements instantaneously takes time, for this reason, three engine speeds have
been tested: In the tests listed in Table 7.3 every run has stored 1000 engine cycles

Table 7.3: Engine load test at 2000RPM

Engine Speed [RPM] Throttle position[%] Power[kW] MAP[bar]
2800 10 2.43 -0.75
3000 11 3.11 -0.75
3500 12 2.73 -0.77
4000 13 1.93 -0.77

which means that the measurement points for 2000 revolutions are stored in the
Arduino. Some of the results of these tests are shown below.

62

DAQ Validation

Figure 7.10 displays the pressure traces as a function of the crank angle. As
previously mentioned, some noise is present during valve events, as detected by
the pressure transducer. However, disregarding this issue (which can be rectified
by modifying the Charge amplifier settings), the pressure readings during the
combustion phase are relatively clear.

Figure 7.10: 2800 RPM 1000 cycles

63

DAQ Validation

Figure 7.11 shows the results with a run still in low load conditions, it is possible
to see that the designed DAQ is still able to record all the engine cycles, with some
noise present especially in the intake phase.

Figure 7.11: 3500 RPM 1000 cycles

64

DAQ Validation

The last run is held at 4000 RPM and the results are shown in Figure ??. It is
possible to see that the pressure trace in the combustion phase looks good, and
over 1000 cycles the variability is high. In order to reduce the amount of noise
some filtering can be done through MATLAB, and the results are shown in the
next chapter.

Figure 7.12: 4000 RPM 1000 cycles

65

DAQ Validation

7.4 Data Filtering
Throughout the previous sections, the pressure signals were filtered for all the runs
under consideration. Although only a few examples are presented in this section
for comparison, this filtering process was applied consistently throughout. Figure
7.13 displays the filtered trace at 1500 RPM, enabling a comparison with Figure
7.2 which depicts the raw signal. The noise is entirely eliminated in the filtered
trace, and, apart from the combustion phase, the pressure measurements during
the intake, exhaust, and compression phases are nearly superimposed.

Figure 7.13: 1500 RPM Filtered trace

Figure 7.14 displays the pressure measurements taken at 3000 RPM after filtering,
as the engine speed increases. In contrast to the raw measurements at 3000 RPM
illustrated in Figure 7.4, the valve events are significantly attenuated in the filtered
version. This filtering method progressively eliminates the pressure oscillations
caused by noise while preserving the overall pressure trend. The last figure related
to the Pressure signal vs. Crank Angle degree is Figure 7.15 which is the filtered
pressure signal at 4000 RPM. The valve events are evident in this case, but the
noise amplitude is not as large as in the raw data. These pressure measurements
can be used to study the in-cylinder combustion variability between several cycles,
this variability is caused by the combustion process where the ECU controls the
parameters in order to have a stable ICE.

66

DAQ Validation

Figure 7.14: 3000 RPM Filtered trace

Figure 7.15: 4000 RPM Filtered trace

67

DAQ Validation

7.5 P-V diagram
This section presents the P-V diagrams, which are obtained by measuring the
pressure in relation to the Crank angle. With this data, it is possible to formulate
the equation that describes the cylinder displacement as a function of the Crank
Angle degree. This equation portrays the pressure variation inside the cylinder in
relation to its volume over a complete engine cycle.

Figure 7.16: PV diagram

Source: x-engineer

In Figure 7.16 the different valve events are defined, they are described below:

• IVO Intake Valve Opening, lets the fresh air with fuel mix enter the cylinder
to replace the previously burnt gas.

68

https://x-engineer.org/pressure-volume-pv-diagram/

DAQ Validation

• EVC Exhaust Valve Closing, closes the Exhaust valve and allows effectively
to fill the cylinder.

• IVC Intake Valve Closing closes the intake valve, which makes the compression
phase start.

• IGN Ignition, is the phase where the combustion process starts due to the
spark plug which ignites the fuel present in the mixture.

• EVO Exhaust Valve Opening, Opens the exhaust valves to allow the burnt
gasses to flow outside the cylinder an replace it with fresh mixture.

• +W is the useful work that is released in the combustion process

• -W is needed to refill the cylinder with a fresh charge.

In Figure 7.17, the PV diagram captured under idle load conditions is presented,
indicating that the engine is solely running to sustain itself without producing any
practical output work. The dotted curve represents the cycle-to-cycle variability
curves while the semi-transparent area represents the standard deviation of the
pressure data.

Figure 7.17: 930 RPM PV diagram

69

DAQ Validation

Figure 7.18 depicts the PV diagram obtained at 2000 RPM with a Throttle
opening at 50%. A significant difference is apparent when comparing Figure 7.17
and Figure 7.18, notably the considerably larger useful work area in the latter.
This discrepancy is primarily attributed to the fact that the output power in the
idle working condition is only 0.2 kW, whereas in the latter scenario, it amounts to
18.44 kW.

Figure 7.18: 2000 RPM PV diagram throttle opening at 50%

70

DAQ Validation

7.5.1 Indicated Cycle
Based on the previously computed data, it is feasible to construct a logarithmic
graph of the PV diagram. This enables us to visualize the compression phase,
which should exhibit linearity on the logarithmic axis.

In Figure 7.19 the indicated cycle at idle workload is shown, it is possible to see
that the polytropic coefficient, in this case, is 1.321.

Figure 7.19: 930 RPM PV diagram

71

DAQ Validation

In Figure 7.20 the high load diagram is shown, in this run the throttle opening
is set at 50%, and the polytropic coefficient is 1.32.

Figure 7.20: 2000 RPM Indicated Cycle throttle opening at 50%

It is important to note that a certain degree of discontinuity exists between the
measured pressure values with respect to volume and the theoretical trend line.
This disparity arises due to the Conrod length of the Armfield testbench, which
is not specified in the datasheet. To obtain a Conrod length that aligns with this
testbench, extensive research has been conducted on similar engine configurations
to achieve the maximum possible accuracy.

72

Chapter 8

Future development

This chapter discusses the future of the research, building upon the promising
results obtained through the Measurement Chain discussed earlier. The aim is to
explore modifications that can make the measurements more affordable for Formula
SAE teams, hobbyists, and engine builders. Some modifications which can decrease
the cost of the setup can be:

• Change the Pressure transducer with a cheaper measurement system;

• Change the Encoder with a less expensive one.

These modifications are discussed in the Sections below.

8.1 Alternative pressure measurement systems
The most straightforward approach seems the application of a piezo-electric washer
as a replacement of the original part equipping the spark plug. The main issue
affecting the accuracy of cylinder pressure measurement using the piezoelectric spark
plug washer is the effect of temperature variations both on the force transmitted
by the thread to the washer and piezoelectricity properties. Most of the solutions
for the estimation of cylinder pressure is based on indirect approaches. This choice
is twofold:

• there is no need for direct access to the combustion chamber, which prevents
complex machining operation;

• the sensor doesn’t need to operate in a high pressure and temperature environ-
ment, making it possible to use cheaper materials and constructive solutions.

These indirect pressure measurements systems can be useful to diminish the price
of installing a Pressure transducer, this system shows strong similarities in the

73

Future development

compression stroke with the Piezoelectric Pressure transducer, but the signal
diverges during the expansion stroke with systematically higher pressure readings
compared to the reference sensor. The possibility of using the washer signal to
limit knock intensity is possible using this pressure measurement device[29]. The
estimated cost for a piezoelectric washer in mass production is 10 to 100 times
lower than the reference sensor depending on the production volumes[30]. Another
in-cylinder pressure measurement system can be realized using Optical Fiber,
this system has a lower cost compared to the Piezoelectric pressure transducer.
Both systems have different responses under thermal shock, the Piezoelectric
pressure transducer underestimates the in-cylinder pressure while the optic fiber
pressure transducer reacts by either underestimating the pressure measurement or
overestimating it.

8.2 Encoder
The encoder used in this research is described in 3.2.2. To decrease the price for
the pressure measurement setup, it is possible to choose an encoder that has at
least one Absolute output, and one Incremental Output. The absolute output is
needed in order to know where the TDC is with respect to the crankshaft rotation.

8.3 Other improvements
One potential improvement for the future could be the development of a real-time
streaming system that would transmit pressure measurements from the Arduino
directly to a computer. This would enable live monitoring of the in-cylinder
pressure, providing more immediate and accurate data. Additionally, efforts could
be made to create a more compact design for the system, allowing for quicker
assembly, setup, and disassembly.

74

Chapter 9

Conclusions

The purpose of this study is to develop a Low-Cost Open-Source Data Acquisition
for High-Speed Cylinder Pressure Measurement using Arduino. The project is
implemented in the Energy Laboratory of Oakland University and then tested on
the Armfield CM11 MKII Gasoline Testbench. In Chapter 7 it is possible to find
the results of the engine runs on which the Arduino DUE DAQ has been tested.
This thesis shows the validation of the DAQ with the requirements described in
Chapter 2. It is possible to affirm that the designed Data Acquisition System is
capable of:

• Sampling pressure data from Idle speed up to 4000 RPM. This engine speed
is set as the target speed, the DAQ is not tested at higher engine speeds due
to engine limitations;

• Storing up to 1000 continuous engine cycles at 4000 RPM, it is possible to
modify the number of consecutive cycles stored directly from the Arduino IDE
software and then upload the new code on the Arduino DUE. The parameter
that needs to be modified to change the number of consecutive cycles that the
Arduino stores in the SD Card can be found in Section 5.2.1 Line 5

• Storing several data measurements to allow several engine conditions to be
tested without removing any data from the Arduino DUE SD Card. Whenever
it is necessary, it is possible to remove easily the storage unit from the Arduino
due to save the recorded data on a Computer which then allows the post-
process of the binary files in pressure measures;

• Reading pressure data coming from the Pressure transducer, the Analog input
pins of the Arduino DUE are able to read the voltage output of the Charge
Amplifier from 0 to 3.3V, for this reason, the input voltages in the Arduino
need to stay within this range.

75

Conclusions

Overall the results show that the requirements are met. It is evident that the
pressure measurements exhibit a high degree of accuracy, although some minor
noise is present due to the valve events that occur during high engine speeds and
low load conditions. To conclude, it can be confidently affirmed that the Data
Acquisition system is not only cost-effective but also holds potential value for
Formula Student teams, hobbyists, and engine builders alike. Furthermore, it is
noteworthy that the limits of this DAQ system were not fully reached during the
course of this research, indicating that further experimentation can be conducted
to fully explore the capabilities and limitations of the Arduino DUE-based DAQ
system. The present study provides a concise overview of the procedures necessary
to install an encoder on the Armfield Testbench. In addition, the electrical and
mechanical steps required to connect the encoder to the engine crankshaft and
synchronize the pressure readings with the quadrature signal of the encoder on our
DAQ are described. The methodology used to calibrate the pressure transducer
using a Deadweight tester is also presented in detail to ensure that precise pressure
measurements are obtained during the testing phase. In the latter portion of
this document, the code for Arduino DUE is presented along with a detailed
explanation of the utilized functions. Regarding post-processing, the primary
MATLAB functions are explicated, and subsequently, the validation of this data
acquisition system (DAQ) is discussed.

76

Bibliography

[1] Instruction Manual CM11-MK II. Armfield Limited. url: https://armfield.
co.uk/wp-content/uploads/2020/05/CM11MKII_Datasheet_v1d_Web.pdf
(cit. on p. 2).

[2] USB1808xDAQ. Measurment Computing. url: https://www.mccdaq.com/
PDFs/specs/DS-USB-1808-Series.pdf (cit. on p. 3).

[3] Arduino introduction. Arduino. url: https://www.arduino.cc/en/Guide/
Introduction (cit. on p. 5).

[4] Arduino DUE. Arduino. url: https://store.arduino.cc/products/
arduino-due (cit. on p. 5).

[5] Pressure Transducer and Charge amplifier Catalogue. Kistler. url: https:
//kistler.cdn.celum.cloud/SAPCommerce_Download_original/960-
695e.pdf (cit. on pp. 10, 20).

[6] Ruland controlflex coupling bundle. Ruland. url: https://www.ruland.com/
cprs12-5-a-cpfrg12-19-at-cprs12-4-a.html (cit. on p. 12).

[7] H25 | INCREMENTAL OPTICAL ENCODER. Sensata Technologies. url:
https://www.sensata.com/sites/default/files/media/documents/
2018-05-17/ourproducts_h25_incremental_optical_datasheet.pdf
(cit. on p. 17).

[8] Installation and Maintenance Manual for the ASHCROFT®Type 1305D
Deadweight Tester and Type 1327D Portable Pump. Ashcroft. url: https:
//www.instrumart.com/assets/1305D-1327D-manual.pdf (cit. on p. 22).

[9] Gasoline Port Fuel Injector. Bosch. url: https://www.bosch-mobility-
solutions.com/en/solutions/powertrain/gasoline/gasoline-port-
fuel-injection/ (cit. on p. 25).

[10] Arduino IDE 2.0. Arduino. url: https://docs.arduino.cc/software/ide-
v2/tutorials/getting-started-ide-v2 (cit. on p. 29).

[11] setup(). Arduino. url: https://www.arduino.cc/reference/en/language
/structure/sketch/setup/ (cit. on p. 38).

77

https://armfield.co.uk/wp-content/uploads/2020/05/CM11MKII_Datasheet_v1d_Web.pdf
https://armfield.co.uk/wp-content/uploads/2020/05/CM11MKII_Datasheet_v1d_Web.pdf
https://www.mccdaq.com/PDFs/specs/DS-USB-1808-Series.pdf
https://www.mccdaq.com/PDFs/specs/DS-USB-1808-Series.pdf
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://store.arduino.cc/products/arduino-due
https://store.arduino.cc/products/arduino-due
https://kistler.cdn.celum.cloud/SAPCommerce_Download_original/960-695e.pdf
https://kistler.cdn.celum.cloud/SAPCommerce_Download_original/960-695e.pdf
https://kistler.cdn.celum.cloud/SAPCommerce_Download_original/960-695e.pdf
https://www.ruland.com/cprs12-5-a-cpfrg12-19-at-cprs12-4-a.html
https://www.ruland.com/cprs12-5-a-cpfrg12-19-at-cprs12-4-a.html
https://www.sensata.com/sites/default/files/media/documents/2018-05-17/ourproducts_h25_incremental_optical_datasheet.pdf
https://www.sensata.com/sites/default/files/media/documents/2018-05-17/ourproducts_h25_incremental_optical_datasheet.pdf
https://www.instrumart.com/assets/1305D-1327D-manual.pdf
https://www.instrumart.com/assets/1305D-1327D-manual.pdf
https://www.bosch-mobility-solutions.com/en/solutions/powertrain/gasoline/gasoline-port-fuel-injection/
https://www.bosch-mobility-solutions.com/en/solutions/powertrain/gasoline/gasoline-port-fuel-injection/
https://www.bosch-mobility-solutions.com/en/solutions/powertrain/gasoline/gasoline-port-fuel-injection/
https://docs.arduino.cc/software/ide-v2/tutorials/getting-started-ide-v2
https://docs.arduino.cc/software/ide-v2/tutorials/getting-started-ide-v2
https://www.arduino.cc/reference/en/language/structure/sketch/setup/
https://www.arduino.cc/reference/en/language/structure/sketch/setup/

BIBLIOGRAPHY

[12] loop(). Arduino. url: https://www.arduino.cc/reference/en/language/
structure/sketch/loop/ (cit. on p. 38).

[13] #include. Arduino. url: https://www.arduino.cc/reference/en/langua
ge/structure/further-syntax/include/ (cit. on p. 38).

[14] #define. Arduino. url: https://www.arduino.cc/reference/en/languag
e/structure/further-syntax/define/ (cit. on p. 38).

[15] Unsigned int. Arduino. url: https://www.arduino.cc/reference/en/
language/variables/data-types/unsignedint/ (cit. on p. 39).

[16] Int. Arduino. url: https://www.arduino.cc/reference/en/language/
variables/data-types/int/ (cit. on p. 39).

[17] Char. Arduino. url: https://www.arduino.cc/reference/en/language/
variables/data-types/char/ (cit. on p. 39).

[18] Bool. Arduino. url: https://www.arduino.cc/reference/en/language/
variables/data-types/bool/ (cit. on p. 39).

[19] SPI Clock Divider. Arduino. url: https://www.arduino.cc/reference/
en/language/functions/communication/spi/setclockdivider/ (cit. on
p. 39).

[20] SerialUSB begin. Arduino. url: https://www.arduino.cc/reference/en/
language/functions/communication/serial/begin/ (cit. on p. 39).

[21] SerialUSB print. Arduino. url: https://www.arduino.cc/reference/en/
language/functions/communication/serial/println/ (cit. on p. 39).

[22] Reset your board. Arduino. url: https://support.arduino.cc/hc/en-
us/articles/5779192727068-Reset-your-board (cit. on p. 40).

[23] Reset your board. Arduino. url: https://www.arduino.cc/reference/en/
language/functions/external-interrupts/attachinterrupt/ (cit. on
p. 40).

[24] SAM3X/SAM3A Series Datasheet. MICROCHIP. url: https://ww1.mic
rochip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-
Microcontroller-SAM3X-SAM3A_Datasheet.pdf (cit. on p. 42).

[25] fopen. MATLAB. url: https://www.mathworks.com/help/matlab/ref/
fopen.html (cit. on p. 47).

[26] Andrew L. Randolph. «Methods of Processing Cylinder-Pressure Transducer
Signals to Maximize Data Accuracy». In: SAE Transactions 99 (1990), pp. 191–
200. issn: 0096736X, 25771531. url: http://www.jstor.org/stable/
44553970 (visited on 03/15/2023) (cit. on p. 48).

78

https://www.arduino.cc/reference/en/language/structure/sketch/loop/
https://www.arduino.cc/reference/en/language/structure/sketch/loop/
https://www.arduino.cc/reference/en/language/structure/further-syntax/include/
https://www.arduino.cc/reference/en/language/structure/further-syntax/include/
https://www.arduino.cc/reference/en/language/structure/further-syntax/define/
https://www.arduino.cc/reference/en/language/structure/further-syntax/define/
https://www.arduino.cc/reference/en/language/variables/data-types/unsignedint/
https://www.arduino.cc/reference/en/language/variables/data-types/unsignedint/
https://www.arduino.cc/reference/en/language/variables/data-types/int/
https://www.arduino.cc/reference/en/language/variables/data-types/int/
https://www.arduino.cc/reference/en/language/variables/data-types/char/
https://www.arduino.cc/reference/en/language/variables/data-types/char/
https://www.arduino.cc/reference/en/language/variables/data-types/bool/
https://www.arduino.cc/reference/en/language/variables/data-types/bool/
https://www.arduino.cc/reference/en/language/functions/communication/spi/setclockdivider/
https://www.arduino.cc/reference/en/language/functions/communication/spi/setclockdivider/
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/
https://support.arduino.cc/hc/en-us/articles/5779192727068-Reset-your-board
https://support.arduino.cc/hc/en-us/articles/5779192727068-Reset-your-board
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://www.mathworks.com/help/matlab/ref/fopen.html
https://www.mathworks.com/help/matlab/ref/fopen.html
http://www.jstor.org/stable/44553970
http://www.jstor.org/stable/44553970

BIBLIOGRAPHY

[27] F Payri, P Olmeda, C Guardiola, and J Martın. «Adaptive determination
of cut-off frequencies for filtering the in-cylinder pressure in diesel engines
combustion analysis». In: Applied Thermal Engineering 31.14-15 (2011),
pp. 2869–2876 (cit. on p. 49).

[28] Charles A. Amann. «Cylinder-Pressure Measurement and Its Use in Engine
Research». In: SAE Transactions 94 (1985), pp. 418–435. issn: 0096736X.
url: http://www.jstor.org/stable/44467432 (visited on 03/16/2023)
(cit. on p. 50).

[29] Enrico Corti, Marco Abbondanza, Fabrizio Ponti, and Lorenzo Raggini. «The
Use of Piezoelectric Washers for Feedback Combustion Control». In: SAE
International Journal of Advances and Current Practices in Mobility 2.2020-
01-1146 (2020), pp. 2217–2228 (cit. on p. 74).

[30] Enrico Corti, Lorenzo Raggini, Alessandro Rossi, Alessandro Brusa, Luca
Solieri, Daire Corrigan, Nicola Silvestri, and Matteo Cucchi. «Application of
Low-Cost Transducers for Indirect In-Cylinder Pressure Measurements». In:
SAE International Journal of Engines 16.03-16-02-0013 (2022) (cit. on p. 74).

[31] FIFO Computing. Wikipedia. url: https://en.wikipedia.org/wiki/
FIFO_(computing_and_electronics).

[32] The pressure-volume (pV) diagram and how work is produced in an ICE.
x-engineering. url: https://x- engineer.org/pressure- volume- pv-
diagram/.

[33] Voltage Divider. Wikipedia. url: https : / / en . wikipedia . org / wiki /
Voltage_divider.

79

http://www.jstor.org/stable/44467432
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://x-engineer.org/pressure-volume-pv-diagram/
https://x-engineer.org/pressure-volume-pv-diagram/
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Test-bench characteristics
	Data acquisition systems
	Arduino and Accesories
	Arduino platform
	Arduino DUE and accessories

	Measurement chain

	Requirements
	Mechanical Connection
	DAQ System Requirements
	Sampling Rate
	Storage

	Pressure Transducer and Charge amplifier

	Design
	Mechanical Design
	Crankshaft Coupling
	Encoder support
	Arduino Container

	Electrical Design
	Charge amplifier and Voltage Divider
	Encoder
	Arduino Cable Connections

	Calibration
	Pressure Transducer
	Testing
	Results

	Fuel Injector
	Testing
	Results

	Arduino DUE
	Arduino IDE
	DAQ code
	Main Code
	Queue.h Code

	Code explanation
	Arduino base commands
	External interrupts
	Analog input
	SD Card implementation
	Queue implementation
	Data output

	MATLAB Code
	Data Opening
	Pressure Readings

	Pressure Pegging
	Pressure Filtering
	Diagrams
	Pressure signals
	P-V diagram
	Indicated Cycle

	DAQ Validation
	Engine speed evaluation
	Engine Load Evaluation
	Consecutive Cycle
	Data Filtering
	P-V diagram
	Indicated Cycle

	Future development
	Alternative pressure measurement systems
	Encoder
	Other improvements

	Conclusions
	Bibliography

