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Abstract 
 
In recent times, renewable resources have been increasingly exploited, with wind energy being 
second only to hydro and solar power. Over the last decade, thanks to technological advances, the 
average cost of energy has come down considerably, making this sector increasingly competitive. 
Although onshore wind and fixed offshore are more widespread due to their greater development and 
fewer technological challenges, floating offshore is also starting to progress, also thanks to the 
possibility of exploiting areas with good wind resources but with a deep seabed and to the possibility 
of reaching large sizes without visual pollution or environmental impact problems. 
 
With the development of floating offshore wind turbines (FOWTs), it therefore becomes necessary to 
adapt control strategies, starting from conventional controllers used in the non-floating counterpart, or 
developing new types of control, such as those based on PID logic, or unconventional ones. The aim 
of this thesis is the realization of a controller that falls into the latter category that is based on MPC 
(Model Predictive Control) logic. Controllers of this type exploit the knowledge of the mathematical 
model of the controlled system to find the optimal values of the control actions with the aim of 
maximizing its performances. 
 
After a brief introduction on the current situation of wind energy and the description of the main 
components of a wind turbine, the case study adopted for the implementation of the controller will be 
described. After that, the mathematical model of the latter will be obtained, based on a pre-existing 
model, and validated through it. In a second step, the control strategies for wind turbines will be 
analysed and a linear MPC controller will be studied from a theoretical point of view. Finally, exploiting 
the knowledge of the system’s model and of the theoretical foundations above mentioned, an MPC 
controller will be implemented, based on a set of LTI (Linear Time Invariant) systems, each of which is 
obtained by linearizing the starting non-linear system in different operating conditions. It will be 
exploited for the realization of the various controller modules, together with optimization algorithms for 
the search of the control actions and algorithms for the estimation and forecasting of some unknown 
quantities for the control loop closure. Once implemented, the controller will be tested by comparing its 
performance with other widely used conventional controllers, in order to draw some conclusions on its 
effectiveness and trying to understand how its unconventional logic can be exploited for further 
developments. 
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1 Introduction  
 
In this section wind energy current situation is briefly shown, whit a look on market status of 2021 and 
market outlook until 2031, according with information shared by GWEC, the Global Wind Energy 
Council. Most of data which will be shown are from last reports compiled by GWEC: "Global Wind 
Report 2022" [1], "Global Offshore Wind Report 2022" [2] and "Floating Offshore Wind - A Global 
Opportunity" [3]. In addition to discussing the economic point of view, on which the first part of this 
introduction focuses, a brief explanation of the various components that constitute a wind turbine will 
be given in the second part, in which technology innovation in this field will be discussed. Since the 
subject of this thesis is focused on floating offshore wind turbines, particular attention will be paid to 
the platforms on which these types of turbines are mounted, giving an overview of the different types 
of solutions adopted and trying to understand their advantages and disadvantages. 
 

1.1 Wind Energy Overview 
 
The wind industry has made good progress recently, 
with 2020 and 2021 as the years of highest annual 
growth ever. Regarding 2022, this trend was slightly 
worse than precedent years due to energy crisis, but it 
has led to positive changes in term of green energy 
goals, so there are pretty good chances development of 
this sector will rapidly increase.  

According to the Global Wind Energy Council's (GWEC) 
'Global Wind Report 2022', almost 94 GW of power will 
be installed in 2021, with a 12% year-on-year (YoY) 
increase, despite the ongoing COVID-19 pandemic. The 
onshore wind market added 1,8% less capacity than the 
previous year due to a slowdown in China and the US, 
the world's two largest wind markets. However, there 
was record growth in Europe, Latin America and Africa 
and the Middle East. The offshore wind market recorded 
its best year ever in 2021, three times added capacity 
more than the previous year. China contributed 80% of 
this offshore growth, the fourth year in which China led 
the ranking of new installations. Europe is the only other 
region to record new offshore wind installations, thanks 
to the UK's record year.  
 
A total of 557 GW of capacity is expected to be added globally in the period 2022-2026.  Furthermore, 
these market forecasts could be revised upwards due to ongoing changes in energy policies and the 
impact of the Ukrainian crisis in 2022. However, this growth rate may not be fast enough to reach the 
targets set by the Paris Agreement or to achieve zero net emissions by 2050. Policy changes and 
faster authorisations for wind power projects are needed to accelerate the deployment of renewable 
energy. 
 

Figure 1.1: Wind turbines’ photos 
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1.1.1 Market Status up to 2022 
 
In 2021, 72.5 GW of new onshore wind capacity was recorded globally, bringing cumulative onshore 
wind capacity to 780 GW. China had a 39% drop in new installations compared with 2020, following 
the end of the Feed-in-Tariff (FiT) and the transition to a "grid parity" system, where onshore wind is 
paid based on the regulated price for coal power. In the US, growth slowed down in the second half of 
the year due to supply chain issues and other disruptions caused by COVID-19. In addition to China 
(30.7 GW) and the US (12.7 GW), the top five onshore wind markets were Brazil (3.8 GW), Vietnam 
(2.7 GW) and Sweden (2.1 GW).  
In 2021, the world saw a record-breaking 21.1 GW of offshore wind become grid connected, bringing 
the total global offshore wind capacity to 57.2 GW. China led the way in annual offshore wind 
installations for the fourth consecutive year, with nearly 17 GW of new capacity, bringing its cumulative 
offshore wind installations to 27.7 GW. Europe accounted for most of the remaining new capacity, with 
3.3 GW of offshore wind capacity added in 2021. The UK installed 2.3 GW of new offshore wind last 
year, making it the largest European offshore wind market in 2021, followed by Denmark (608 MW) 
and the Netherlands (392 MW). There was only one small offshore wind project under construction in 
Germany during 2021, and no offshore wind turbines were installed, primarily due to previously 
unfavourable market conditions and a low level of short-term offshore wind projects. 

 

Figure 1.2: Onshore and offshore new installation and total installation, percentages related to different countries [1]. 
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1.1.2 Market Outlook 
 
The global wind industry is expected to see even more growth in the coming years, with a CAGR of 
6.6% for the next five years. Despite the second highest level of installed capacity in history in 2021, 
GWEC Market Intelligence predicts that 557 GW of new capacity will be added in the next five years 
under current policies, which equates to more than 110 GW of new installations each year until 2026. 

 
The global onshore wind industry is expected to see a compound annual growth rate (CAGR) of 6.1% 
in the next five years. The average annual installation is expected to be 93.3 GW, with a total of 466 
GW likely to be built between 2022 and 2026.  
 
The global offshore wind market outlook looks extremely promising for the medium and long-term. 
With an expected compound average annual growth rate of 6.3% until 2026 and 13.9% up to the 
beginning of next decade. GWEC Market Intelligence expects that over 315 GW of new offshore wind 
capacity will be added over the next decade (2022-2031), bringing the total offshore wind capacity to 
370 GW by the end of 2031. 29% of this new volume will be installed in the first half of the decade 
(2022-2026). The volume of annual offshore wind installations is expected to more than double from 
21.1 GW in 2021 to 54.9 GW in 2031, bringing offshore share of global new installations from 23% in 
2021 to 32% by 2031.  
 
 
 
 

Figure 1.3: New wind power installation outlook 2022-2026. CAGR is the compound annual growth rate [1]. 
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Although global offshore wind market has seen significant growth in recent years, with Europe 
currently leading in terms of total installed capacity, floating offshore wind technology has lagged 
behind fixed-bottom installations, with only 121.4 MW of net capacity in operation worldwide as of the 
end of 2021. Despite this, significant progress has been made in the development of floating wind, 
with a global pipeline of 120 GW now in place. The UK, Portugal, Japan, Norway, and China currently 
lead in terms of total gross installations. 
GWEC Market Intelligence predicts that 18.9 GW of floating wind capacity will be built globally by 
2030. The majority of new installations are expected to come online in 2027-2031, with Europe 
contributing 59.2% of total installations, followed by Asia at 29.4% and North America at 11.4%. By 
2031, a total of 28.8 GW of floating wind is expected to be installed worldwide, bringing its contribution 
to total offshore wind installations to 7.8%. 
 
 
 
 
 
 
 
 
 
 

Figure 1.4: Outlook for new offshore installations (MW) up to 2031, divided by Countries [2]. 
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1.1.2.1 Europe Market Outlook 
 
The European continent remains the leader in the offshore wind industry, with a mature supply chain 
established in countries surrounding the North Sea and Baltic Sea. Europe is still the largest regional 
market in terms of total offshore wind installations as of the end of 2021. However, Asia has taken the 
lead in terms of new installations in 2020. Market growth in Europe is expected to be slow in the near-
term (2022-2024) due to lower activity in established markets, but it is expected to accelerate from 
2025 onwards. The total capacity to be added in the next ten years (140.8 GW), 79% will be built in 
the second half of the decade (2027-2031). 

 

 
 

 
 
 
 
 
 
 
 
 

Figure 1.5: Europe’s offshore total capacity added between 2022 and 2031, divided by countries [2]. 
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1.2 Wind Turbine Technology 
 
Wind turbine technology is a complex field involving several technical disciplines such as 
aerodynamics, mechanics, meteorology, and electrical engineering. It deals with the generation, 
transmission, and integration of wind energy into power systems. This technology has made 
considerable progress over the years and is now considered the most reliable and promising 
renewable energy technology. The size and design of wind turbines have evolved considerably from 
the small kilowatt turbines of the 80s to the larger multimegawatt turbines of today. The design has 
also moved from being based on conventions to being optimised for the specific operating conditions 
and market environment.  
There are different types of wind turbines, with a wide range of sizes and power output. The main 
subdivision is between Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines 
(VHWT), which differ in the orientation of the axis of rotation of the blades. The focus here will be on 
HAWTs, given their greater prevalence and the fact that floating wind turbines (the subject of this 
thesis) only exist today with horizontal axis.  
In the following sections, main components of this type of turbine will be listed, briefly explaining their 
function. 
 
 

1.2.1 Wind Turbine Components 
 
The main components of a wind turbine are the rotor, nacelle, tower and foundation (or the floating 
platform in the case of floating offshore wind turbines). The rotor consists of the blades and the hub, 
through which connection to the nacelle is made. The nacelle contains various components that 
contribute, with their specific function, to the wind energy conversion process into electricity.  
 

1.2.1.1 Rotor  
The wind turbine's aerodynamic rotor converts the wind's power into kinetic energy by means blades, 
which are attached to the hub via mechanical joints. Modern wind turbines typically have two or three 
blades (because it leads to optimal performance/cost combination) made of fiberglass-reinforced 
polyester or fiberglass reinforced with carbon fiber, through which the highest possible strength-to-
weight ratio is sought. The blades in older turbines were fixed to the hub, while in newer ones they can 
rotate around their longitudinal axes to optimize performance and prevent damage in high wind 
conditions.  
The design of the blades in a wind turbine is crucial for reducing noise, surviving high winds, and 
producing high energy output. The main concept behind this is the use of two types of aerodynamic 
forces generated by airflow over a surface: drag forces in the direction of the airflow and lift forces 
perpendicular to the wind. To harness lift, the blades have a specially curved airfoil shape, similar to 
those on airplane wings. 
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The curve causes the wind to move faster along one side of the blade, creating a pressure difference 
that results in a net force perpendicular to the wind. This causes the blades to turn. The orientation of 
the blades, called the rotor pitch, must be precisely adjusted to maintain optimal performance as wind 
speeds change. 
 
 
 
 
 
 
 

 

 
 

1.2.1.2 Nacelle 
The nacelle is a protective covering that encloses the turbine's electrical and mechanical components. 
Made of materials such as fiberglass, it houses the main drive shaft, gearbox, and generator. 
Additionally, it includes the blade pitch control, a hydraulic system that adjusts the angle of the blades, 
and the yaw drive, which regulates the turbine's position in relation to the wind.  

Figure 1.6: Working principle of a wind turbine. 

Figure 1.7: Section of a Nacelle, in which its main components are visible. 
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Main nacelle’s sub-components are the drivetrain, the generator, the braking unit, the yaw mechanism 
and the control unit. All of them will be briefly explained below. 
 
Drivetrain 
There are mainly two types of turbines in terms of drivetrain, in the most common there is a 
transmission of mechanical power from the rotor to the generator via two shafts connected with a 
gearbox. This is used to switch between the low angular speed of the rotor and the higher speed 
required for proper operation of the electric generator. The gearbox is a bulky, heavy element and may 
cause problems from the point of view of the system's service life, so lately, direct-drive wind turbines 
in which the gearbox is not present are becoming increasingly common. In this type of turbine, 
generator’s rotor is integral with turbine’s rotor, while the generator stator is fixed with nacelle. The 
generator has numerous poles in order to feed power into the grid at the correct frequency despite the 
typically low angular speed of the rotors, which is around 6-9 rpm. Figure below shows the two 
solutions mentioned, where it can be seen that in the direct drivetrain case the components inside the 
nacelle are fewer, thus being able to reduce its size. 

 
 
Generator 
The electric generator is the component through which the mechanical energy of the rotor is converted 
into electrical energy to be fed into the electrical grid. The most commonly used generator types in 
wind turbines are the fixed speed squirrel-cage induction machine, the wound-rotor induction 
machines with variable resistance (through which it is possible to decouple the speed and torque of 
the generator, so as to have turbines with variable-speed rotor while maintaining the correct electrical 
frequency), the doubly fed induction machines (DFIM) with power electronics (through which the 
above-mentioned decoupling can reach wider ranges than in the previous case) and, finally, the 
permanent magnet generators (PMG) or other synchronous generators. 
 
 
 

Figure 1.8: Wind turbine nacelle in two different configurations. On the left there is the case with 
gearbox, while on the right there is the case with direct transmission. 
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Braking Unit 
The braking unit, in most cases, consists of a mechanical brake made up of a perforated disc and 
clamps. It is not used to slow down the rotor in normal operations, for which large breaking torques 
would be needed, leading to overheating and wear of the unit. In normal operations, an aerodynamic 
brake is used, which consists of rotating the blades around their own axis in order to manage 
aerodynamic torque and thus rotor speed. The mechanical brake, on the other hand, is mainly used to 
stop the rotor after it has been aerodynamically braked previously (for example during maintenance 
operations), or can be used in the event of a failure in the blade rotation system. 
 
Yaw Mechanism 
The yaw mechanism ensures that the turbine always faces into the wind. Since the wind direction is 
constantly changing, the rotor must follow the wind and adapt its orientation to obtain maximum 
power. The yaw mechanism helps to change the direction of the nacelle with respect to the wind 
direction. Usually, a servo-mechanism driven by a wind direction sensor controls the yaw motor, 
keeping the turbine correctly oriented. However, many turbine designs are limited in their yaw 
movement because the cables carrying the power and/or control signals from the bottom to the top of 
the tower are usually coiled together and can be twisted during the rotation of the nacelle. If these 
cables are twisted too much, they can be wrenched from their anchorages resulting in extreme 
damage. A limit switch is used to notify the controller when the twist limit is reached. 
 
Control Unit 
The control of a wind turbine is a challenging task due to the unpredictable nature of wind. Rapid 
fluctuations in wind speed can occur at any time, requiring constant adjustments to the turbine's power 
output. To overcome this, modern wind turbine generators require advanced and reliable controllers. 
These controllers monitor various parameters such as wind speed, direction, shaft speed, torque, and 
temperature to ensure optimal performance.  
The control system is responsible for several functions, including starting and stopping the turbine, 
adjusting the rotor's position to face the wind, regulating the power output by adjusting the pitch of the 
blades, and implementing safety measures. An anemometer is used to measure the wind speed and 
intensity, which can range from simple instruments to complex computer-aided systems. These 
measurements are used by the turbine's electronic controller to start the turbine when wind speed 
reaches a certain threshold and to stop it if wind speeds become too high to protect the turbine and its 
surroundings.  
A weathervane or wind vane is used to determine the wind direction and communicate with the yaw 
drive to orient the turbine accordingly. The yaw drive, powered by a motor, keeps the turbine facing 
the wind in upwind turbines, whereas it is not necessary for downwind turbines as the wind naturally 
blows the rotor away. A pitch system is used to control rotor speed to optimize the extracted power or 
for security purposes. Finally, the controller manages the generator torque to optimize the power too. 
The electronic controller also performs safety functions, such as automatically shutting down the 
turbine in case of overheating or other malfunctions and alerting the turbine operator via a telephone 
modem link. 
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1.2.1.3 Tower 
The wind turbine tower supports the rotor and nacelle, its height is important because taller towers 
allow turbines to capture more energy and generate more electricity, as wind speed increases with 
height. The tower also raises the turbine above any air turbulence near the ground caused by 
obstacles such as hills, buildings, and trees. On average, the tower is around 50 meters high, with the 
tallest reaching over 200 meters. The height is determined by the location, rotor diameter, and wind 
speed conditions. In general, the tower height is slightly taller than the rotor diameter for medium and 
large turbines, and taller than the rotor diameter for small turbines to avoid poor wind speeds from 
being too close to the ground. Increasing the tower height can greatly increase power output for a 
small investment. The average weight of a wind turbine tower is over 40 tonnes, and the tower can 
account for more than 10% of the total cost.  
The main design considerations for the tower include minimizing mass, maximizing the stiffness-to-
mass ratio and minimizing vibration. It is important to design the tower so that its natural frequencies 
are different from the excitation frequency due to the loads from the blades. Furthermore, when 
designing the tower, the maximum possible loads, e.g. in the event of strong wind gusts, must be 
taken into account, as well as fatigue loads and thus its service life. 
Three most common types of wind turbine tower are lattice tower, guyed pole tower and tubular tower, 
briefly explained below.  

 
Lattice Tower 
Lattice towers are constructed using welded steel 
profiles and are made up of steel rods that are 
connected to form a lattice-like structure.  
They have a similar appearance to traditional 
communications towers, are less expensive as they 
require less material than a free-standing tubular 
tower of comparable stiffness.  
These towers are also easy to transport and install in 
sections. However, their appearance is often 
considered a downside, and they are not as 
commonly used in contemporary wind turbines.  
 
 
Guyed Pole Tower  
This type of tower is only used for small turbines, they are held in place by four guy ropes (at 45°), with 
one rope that can be released to lower the tower for maintenance. These towers can be tilt-up or fixed 
and are sturdy and cost-effective when correctly erected. However, they require more space for guy 
wires surrounding the tower. The radius of the guy wires should be one-half to three-quarters of the 
tower height. 
 
 
 
 

Figure 1.9: Example of lattice tower wind turbine. 



11 
 

Tubular Tower  
Tubular towers, made of rolled steel plate or 
concrete, are the most common type of tower used in 
large wind turbines. They are fabricated in sections 
of 20-30 meters, with flanges at the end that are 
bolted together on site.  
The towers are typically coated with a zinc-based 
finish and epoxy and urethane layers for corrosion 
resistance. Most modern turbines have towers with a 
circular tubular steel design, with a diameter of 3 to 5 
meters and a height of 75 to 110 meters.  
These towers allow for safe access for repair and 
maintenance but are more expensive than lattice 
towers. 
 
 

1.2.1.4 Foundation - Platform 
The components analysed above are similar for all types of turbines, i.e., onshore, fixed offshore and 
floating offshore turbines, but when it comes to the element on which the turbine tower is mounted, the 
differences are evident in the three types mentioned above. In general, we speak of foundations for 
the first two types, and of a floating platform for the third. Below are the main characteristics of 
foundations and platforms. 
 
Onshore Wind Turbine Foundations 

Wind turbines are large structures that must 
be able to withstand high wind speeds and are 
anchored to the ground using deep, excavated 
holes. The foundations of these turbines are 
made of concrete with steel reinforcements, 
and the design of the foundation is determined 
by the soil conditions and wind strength.  

When the soil has good mechanical 
properties, a spread foundation is used, that 
consist of a big plate through which the loads 
are transferred to the ground. 

When the soil properties aren’t sufficient for a 
spread foundation, a god solution can be to 
install piles to conduct load at a greater depth 
in the ground. 
 
 
 

Figure 1.10: Example of tubular tower wind turbine. 

Figure 1.11: Onshore wind turbines’ spread and piled 
foundations [37]. 
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Fixed Offshore Wind Turbine Foundations 
Fixed offshore wind turbines are turbines located in the shallow sea and fixed to the seabed by means 
of different types of foundations, but in all cases, it is necessary that the seabed does not exceed a 
certain depth due to technical and economic aspects. The figure below shows the main types of 
foundations currently in use: monopile, gravity base, jacket, tripod and tripile. 

 
The above-mentioned foundations are described below. 
 
Monopiles 
The most typical offshore wind support construction is a monopile. On this support structure solution, 
more than half of all projects are constructed. The North Sea oil and gas industry, where monopiles 
have been employed for many years, is where this technology's origins can be found. This has made it 
possible for them to be implemented in the offshore wind industry with little risk and a variety of 
already-in-use procedures. The monopile's architecture is quite straightforward and consists of a 
foundation pile that is cylindrical and resembles the turbine tower. The erosion that water currents 
cause on the pile at seafloor level is a crucial factor to take into account during the monopile 
installation procedure. The length of the pile exposed to hydrodynamic loads increases as a result of 
the tendency of water flow to lower the layer of soil covering the pile. To solve this problem, stones are 
used to cover the foundation and prevent soil erosion. In general, monopiles are the most often 
utilised support structure because to the comparatively straightforward production and installation 
procedure. However, they have some water depth restrictions; in Europe, monopile support structures 
are not practical for waters deeper than 40 metres. 
 
 
 

Figure 1.12: Types of support structure concepts. From left to right: monopile, gravity base, jacket, tripod, tripile, spar and 
semisubmersible platform [38]. 
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Gravity base 
The tower and turbine are secured in place by gravity base support structures, which rely on their own 
weight and ballast. The tower is positioned on base constructions that are composed of steel-
reinforced concrete. Regarding the base structure, there are several designs. The gravity base has the 
benefit that no drilling or hammering is necessary during the installation process. However, the gravity-
based support structure requires a horizontal seafloor that has been covered in crushed stone, which 
ultimately raises the overall cost. Additionally, the overall cost typically varies with water depth, with 
levels deeper than 20 metres making it impossible to achieve an economically viable level. Ballast is 
filled on the gravity foundation once it has been put on the seabed. One benefit of this support 
structure is that it has a lifespan of more than 100 years with minimal maintenance after the 
installation is complete. 
 
Jackets 
The offshore oil and gas business first used jackets as structures. A structure with three or four legs 
joined by thin bracing is called a jacket. Since they are all tubular, welding is used to connect them all. 
Similar to monopiles, jackets require a support structure to hold up the wind turbine tower. One of the 
crucial processes in the manufacture of the jacket is melting the transition piece with the substructure. 
In the near future, it may be possible to observe variants or new concepts of jackets, such as those in 
which the weight of the transition piece is lowered, the jacket and the tower are combined into a single 
element, or twisted jackets are employed in place of the traditional approach. 
 
Tripod 
A tripod is a three-legged steel tube structure, these legs transition to the wind turbine tower by being 
joined to the main tube in the middle of the structure. Through sleeves at each leg's end, foundation 
piles are used to drive the substructure into the seabed. As part of the installation process, multiple 
tripods are loaded onto a barge and towed to the installation site, where a crane lifts and guides the 
support structures into place. At this point, each sleeve is penetrated by a pile, and the spaces 
between the piles and sleeves are filled with concrete or grouting. There is no need to prepare the 
seabed. 
 
Tripile  
The tripile is a modernised version of the conventional monopile. It is composed of three separate 
tubular steel piles, with a three-legged transition piece sitting on top of each one and linking it to the 
turbine tower. This construction has the benefit of being easily adjustable to account for changes in 
water depth. The transition piece proportions may be kept the same, but the pile dimensions may be 
changed to accommodate the site. The piles are first pushed into the seafloor during installation. The 
transition piece is then positioned on top with each leg end pointed into a pile as the piles' tops rise 
above the water. Making sure that the transition piece fits inside the piles at this stage of installation 
demands precision. 
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Floating Offshore Wind Turbine Platforms 
As a result of this industry's propensity to move into deeper waters, floating support structures have 
become more common in the offshore wind market. Offshore wind parks have gradually entered 
deeper and deeper oceans since the first gravity base was built, whether by monopiles, jackets, or 
tripods. The wind's superior quality at such sites is the primary driver of this transformation. However, 
some nations must dive deeper due to the topology of their bottom in addition to the need for a greater 
wind resource. There are now three major categories of floating foundations, each of which is based 
on a distinct approach, the spar buoy monopile, the semi-submersible platform and the tension leg 
platform. Figure below shows mentioned concepts. 

 
 
In the next page there is a briefly explanation of these platform concepts, with their advantages and 
disadvantages, especially in terms of production and installation costs. 
 
 
 
 

Figure 1.13: Three main types of floating wind turbine platforms. From left to right: Spar-buoy, Semi-
submergible, Tension Leg Platform. 
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Spar-buoy  
The Spar-buoy design is built on a cylindrical body made of steel and concrete. The construction is 
ballast-stabilized, and the stability is obtained by having the center of gravity lower in the water than 
the center of buoyancy. These floating foundations are ballasted with concrete and seawater and are 
typically distinguished by low water plane areas. These constructions also have a substantial draught, 
which maximizes stability and reduces heave motions. This technique draws its inspiration from the 
offshore oil business, where spar-buoy-based platforms are employed in 1000 m of water.  
The catenary, which is often composed of steel chains and/or wires, is the mooring system that is 
typically used with spar-buoy structures. The catenary's weight and curved shape hold the floating 
platform in place. The considerable draught of the structure additionally necessitates exact installation 
and shipping procedures. In fact, because the port's depth is smaller than the draught, it is essential to 
tow the structure to the site in a horizontal position, where a specialized vessel will complete the 
installation in deep water. The installation expenses of the structure may rise if specialized boats, such 
as heavy lift vessels, are used for placing.  
On the other hand, because the construction doesn't have any complicated pieces, the manufacturing 
expenses are not high. Additionally, since the metal only needs to have high structural stability and 
corrosion resistance, the cost of materials, and specifically the metal, is not prohibitive.  
 
The spar-buoy idea has the following benefits: 

- Low installed mooring cost;  
 

- Simple design that makes this design acceptable for serial fabrication process;  
 

- Tendency for lower critical wave-induced vibrations, which overall gives high stability. 
 
In contrast, the following are the key drawbacks of these concepts: 

- Needs deeper water (>100 meters) than other concepts;  
 

- Offshore operations require heavy-lift vessels and can currently only be done in relatively 
sheltered, deep water;  
 

- The installation of the wind turbine on the foundation cannot be done in port but must be done 
offshore. 
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Semi-submersible  
The semi-submersible structures are composed of three big columns joined to one another by 
connecting braces or submerged pontoons. The wind turbine may be fixed to one of the columns, or it 
may be placed in the geometric center of the column tubes and supported by lateral bracing 
components. With the platform tilted, the leeward portion of the platform has a bigger submerged 
volume, and the windward portion of the platform has a lower submerged volume than in the 
equilibrium state, which helps the semi-submersible design achieve the desired static stability. This 
indicates that the buoyancy force is greater in the leeward area. As a result, the restoring moment that 
is required to offset the wind inclining moment is created. 
Semi-submersible concepts are kept in place by mooring lines to prevent the platform from drifting 
away due to the impact of the wind, waves, and marine current forces. Semi-submersible offshore 
wind turbines can be installed considerably more easily, and they don't need specialized vessels 
because those are just needed for towing. These attributes result in a greater fabrication cost than 
with previous floating designs, but with reduced shipping and installation expenses. 
 
The semi-submersible concept has the following benefits:  

- Can be built on land or in a dry dock;  
 

- Fully equipped platforms, including turbines, can float during transport with draughts under 10 
meters;  
 

- Can be transported to the site using conventional tugs, resulting in low transport costs;  
 

- Can be used in water depths up to about 40 meters, providing high flexibility in the range of 
suitable locations related to sea depth;  
 

- Lower installed mooring costs;  
 
On the other hand, these notions' primary drawbacks are:  

- Tendency for higher critical wave-induced motions;  
 

- Tendency to employ more material and larger structures;  
 

- Complex fabrication when compared to other concepts, especially spar buoy. 
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Tension Leg Platform   
Tension leg platform (TLP) designs have a high degree of buoyancy and consist of a central column 
and radial arms attached to tensioned tendons that anchor the structure to pile or suction anchors. In 
reaction to wind and wave loads, the increased tension in the windward leg as opposed to the leeward 
leg provides a restoring moment that balances the inclining moment caused by the wind turbine 
aerodynamic thrust. It has a shallow draught that is larger than a semi-submersible design but smaller 
than a spar. As they can be put in moderately shallow to extremely deep seas, TLPs have significant 
water depth flexibility.  
 
The TLP concept has the following benefits:  

- Low mass;  
 

- Tendency for less severe wave-induced vibrations; 
 

-  Assembly on land or in a dry dock. 
 
The primary disadvantages of these principles, however, are:  

- More expensive installed mooring compared to other floating structure designs;  
 

- Depending on the design, a specific purpose vessel may be needed.  
 

- Harder to keep stable during shipping and installation. 
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2 Case Study Description 
 
The objective of this thesis is the realisation of an MPC (Model Predictive Control) controller for 
Floating Offshore Wind Turbines (FOWT), which will be implemented in such a way that it can be 
adapted to different types of turbines and platforms by simply varying the characteristics of the 
physical system under consideration. In this case, it was decided to use, for the development of the 
system model and therefore of the controller (which is based on the latter), a reference turbine 
(including floating platform) whose design was developed by the National Renewable Energy 
Laboratory (NREL), the Technical University of Denmark (DTU) and by the University of Maine 
(UMaine).  
 
Reference turbine means the simplified design of a turbine that does not necessarily have to reflect a 
specific real-world model, but is used, for example, for preliminary studies of such a system. For this 
reason, the design provided is simplified, i.e. only the main features are included and not, for example, 
details concerning structural aspects or details of the various secondary components such as the 
braking unit, cooling unit, etc. Reference wind turbines play a variety of functions within the wind 
industry; they are used as baselines for studies that investigate new technologies or design processes 
as open benchmarks that are set using publicly available design criteria. Reference wind turbines also 
facilitate collaboration between industry and outside researchers because of their open architecture. 
Industry can safeguard its intellectual property while still collaborating with outsiders on the 
development of sophisticated technology by adopting a reference turbine. Finally, they provide a 
starting point and educational platform for people new to wind energy.  
 
The NREL 5-MW turbine was the first widely used reference turbine and is still employed by many 
studies today. However, to keep up with the technological evolution of floating wind turbines, which in 
the coming years will have a nominal power of between 10 and 20 MW, a reference turbine with a 
nominal power of 15 MW, called “IEA (International Energy Agency) Wind 15-Megawatt Offshore 
Reference Wind Turbine”, has been developed by the aforementioned institutions, and such a turbine 
will be used in this thesis. Specifically, the National Renewable Energy Laboratory (NREL) and the 
Technical University of Denmark (DTU) have developed the turbine, which can be conceived as part 
of a fixed offshore device (coupled with a suitable platform) or can be coupled to a floating platform to 
be able to process FOWTs. In this case, since we will be dealing with a floating turbine, reference will 
be made to the VolturnUS-S platform, developed by the University of Maine (UMaine). 

 
In the following pages the main characteristics of the chosen turbine and platform will be listed and 
briefly explained. More information regarding the IEA Wind 15-Megawatt Offshore Reference Wind 
Turbine or the VolturnUS-S platform can be found here [4], [5]. 
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Figure 2.1 shows the case of study system, composed by the abovementioned IEA 15 MW Offshore 
Wind Turbine mounted on the VolturnUS-S platform. 

 

Figure 2.1: Illustration of the case of study system, i.e., the IEA 15 MW Offshore Wind Turbine mounted on the 
VolturnUS-S platform [5]. 
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The IEA 15 MW wind turbine is a direct-drive machine, with a rotor diameter of 240 m and a hub 
height of 150 m, while the VolturnUS-S platform is a four-column, three-radial and one central, steel 
semisubmersible platform kept in place through a three-line catenary mooring array that is deployed in 
200 meters (m) of water. Figure 2.2 shows orthogonal projections of the system and its main 
measures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Orthogonal projections of the IEA 15 MW Offshore Wind Turbine mounted on the VolturnUS-S floating platform 
and their main measures [5]. 
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Figure 2.3 shows the floating offshore wind turbine reference coordinate system used from now on; 
SWL means till water level; surge, sway and heave are the displacement of the origin of the system 
respectively along x, y and z directions; finally, roll, pitch and yaw are rotations respectively around x, 
y and z axes. 

 

 
 
In the next sections, the characteristics of the system will be presented, first focusing on the turbine, 
and then analysing the floating platform. 

 
 
 

Figure 2.3: Floating offshore wind turbine reference coordinate system [5]. 
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2.1 IEA 15 MW Wind Turbine 
 
The turbine considered is a direct drive turbine with a rated power of 15 MW and variable rotor speed. 
The rotor speed and extracted power are adjusted by varying the torque exerted by the generator and 
the collective blade pitch angle. The main characteristics of the turbine are shown in Table 2.1. Cut-in 
and cut-out speeds are defined as the wind speeds below which the turbine is inactive and above 
which the turbine enters a safe position to limit the loads on the blades. Rated wind speed, on the 
other hand, is the nominal wind speed from which rated power begins to be produced. 
 

Parameter Units Value 
Power rating MW 15 

Rotor orientation - Upwind 
Number of blades - 3 

Control - 
Variable speed, 

variable collective 
pitch 

Cut-in wind speed m/s 3 
Rated wind speed  10.59 

Cut-out wind speed m/s 25 
Rotor diameter m 240 

Hub height m 150 
Hub diameter m 7.94 
Hub overhang m 11.35 

Drivetrain - Direct drive 
Design tip-speed ratio - 9 
Minimum rotor speed rpm 5 
Maximum rotor speed rpm 7.56 
Maximum tip speed rpm 95 

Tilt angle deg 6 
Precone angle deg -4 

Blade mass t 65 
Rotor nacelle assembly 

mass t 1017 

Tower mass t 860 
 

Table 2.1: Main characteristics of IEA 15 MW offshore wind turbine. 
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2.1.1 Blade Properties  
 
This 15 MW IEA Wind reference turbine has a blade length of 117 m, a root diameter of 5.2 m, and a 
maximum chord of 5.77 m at around 20% of the span. The blade's overall mass is around 65 tonnes, 
and it is intended to have a power coefficient, or CP, of 0.489. The power coefficient is the ratio of 
produced to available power. 
The blades were created using airfoils from the DTU FFA-W3 series. These airfoils are well-known 
and openly accessible. In order to offer more room at the tip, the blade was constructed with a 
substantial pre-curvature away from the tower, with a 4 m distance between the chord line at the tip 
and the root. 
The blade's structural design is quite conventional, with reinforcements along the leading and trailing 
edges and two primary load-bearing spars positioned in a straight line linking the root and tip. These 
spars are arranged with one on the suction side and the other on the pressure side of the profile. The 
carbon fiber used in the spars ensures maximum stiffness while being lightweight. Two shear straps 
linking the pressure and suction sides of the blade are fastened to the main spars, which span 10% to 
95% of the aperture. Uniaxial glass fibre reinforcements were also added to the leading and trailing 
edges to give further edge stiffness. 
The table below provides the main features of the turbine blades. 
 

Parameter Units Value 
Blade length m 117 

Root diameter m 5.2 
Max chord m 5.77 

Max chord position m 27.2 
Tip prebend m 4 

Precone deg -4 
Blade mass t 65 

Blade center of mass m 26.8 
First flapwise natural frequency Hz 0.555 

First edgewise natural frequency Hz 0.642 
Design CP - 0.489 
Design CT - 0.799 

 
Table 2.2: Main features of IEA 15 MW offshore wind turbine’s blades. 

 

2.1.2 Tower Properties 
 
The tower is made of an isotropic steel tube, and a large portion of its design was bound by the fact 
that its initial tower mode falls between the ranges of frequencies at which blades pass in all wind 
speeds (1P and 3P). With 120-m blades, the tower height was designed so that the hub height 
reaches 150 m, providing 30 m of ground (water surface) clearance. 
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2.1.3 Nacelle, Drivetrain, and Hub Properties 
 
The IEA Wind 15-MW reference wind turbine uses a direct-drive layout with an outer-rotor permanent-
magnet generator. The assembly consists of a hub shaft supporting the turbine and generator rotors 
on two main bearings housed on a stationary turret that is cantilevered from the bedplate. The 
bedplate transmits the hub loads and weight of the rotor, generator, hub, shaft, and turret to the tower.  

 
The hub's structure is based on a straightforward concept of a spherical hub shell with cutouts for the 
blades and flange. The hub shell's thickness is intended to withstand the forces produced during an 
emergency shutdown event. 
The main shaft features a 6 degrees tilt and a hollow cylindrical cross section with a constant wall 
thickness. Two major bearings hold the main shaft and the rotor in place. These two main bearings 
both feature fixed inner raceways and spinning outer raceways. A turret supported by the bedplate can 
contain the outer raceways and the bearing housing. It is assumed that the main shaft transmits the 
entire thrust load to the upwind main bearing. Additionally, the turret has a hollow cylindrical cross 
section with walls that are cantilevered from the bedplate and have a constant thickness. A 2 m inner 
diameter was chosen to allow for technician access. 
The bedplate is a cantilever beam that is hollow, elliptically bent, and has circular cross sections. A 
smaller cross portion of the bedplate connects to the bedplate flange, and a bigger cross section 
connects to the yaw bearing at the top of the tower. 
The yaw system bearings are based on double-row, angular contact ball bearings that may be found 
in the SKF catalogue. The tower top and bedplate base are joined by the yaw system at a 6.5 m 
diameter. 
 
 

Figure 2.4: Nacelle layout of the 15 MW offshore wind turbine. 
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2.1.4 Generator Properties 
 
The generator structure comprises a radial flux topology machine with a surface-mounted permanent 
magnet on the outer rotor. This outer rotor design offers a robust and simple structure, efficient 
production, shorter terminal windings and better heat transfer than the inner rotor configuration. During 
optimization, only the radial components of the air gap flux were taken into account and no dispersion 
effects were considered. The optimized design includes 100 pole pairs in an air gap diameter of 10.53 
m, a height of 2.17 m and an efficiency of 96.5%. The total weight of the generator is 372 tonnes, 
including 227 tonnes for the stator and 145 tonnes for the rotor. At least half of the weight is attributed 
to the structural support. 
 
 
 

2.2 VolturnUS-S Platform 
 
Table 2.3 lists the general characteristics of the four-column, steel VolturnUS-S platform, including 
system masses, dimensions, centres of gravity and buoyancy, and inertias. Three pontoons and three 
radial struts attached to the bottom and top of the buoyant columns, respectively, connect the fourth 
central column (the interface between the platform and the tower) to the outer columns. The platform 
weighs a total of 17854 t when it is on station, of which 3914 t are made up of structural steel, 2540 t 
are fixed iron-ore-concrete ballast that is distributed evenly and placed at the base of the three radial 
columns, 11300 t are seawater ballast that floods the majority of the three submerged pontoons.  
 

Parameter Units Value 

Hull displacement m3 20206 

Hull Steel Mass t 3914 

Ballast mass t 13840 

Draft m 20 

Vertical center of gravity from SWL m -14.94 

Vertical center of buoyancy from SWL m -13.63 

Roll Inertia about center of gravity kg m2 1.25E+10 

Pitch Inertia about center of gravity kg m2 1.25E+10 

Yaw Inertia about center of gravity kg m2 2.37E+10 
 

Table 2.3: Main features of VolturnUS-S. 
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The mooring system is made up of three 850-meter-long chain catenary lines; at a depth of 14 m 
below the SWL, each line is joined at the fairlead to one of the platform's three outer columns. The 
lines extend radially to anchors at a depth of 200 m and spaced radially 837.60 m from the centerline 
of the tower, which are evenly spaced at 120 degrees in the surge-sway plane. A studless chain with a 
nominal diameter of 185 millimeters is used on all lines. The chain size was chosen to keep the 
system’s peak surge-sway offset under 25 m during normal operational conditions.  
 

Parameter Units Value 
Mooring system type - Chain catenary 

Line breaking strength kN 22286 
Number of lines - 3 
Anchor depth m 200 
Fairlead depth m 14 

Nominal chain diameter mm 185 
Dry line linear density kg/m 685 

Line unstretched length m 850 
 

Table 2.4: Main features of VolturnUS-S mooring system. 

Figure 2.5: Mooring system layout, top and side view [5]. 
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3 Model of the system 
In this work, the model adopted for the system is a 4 d.o.f. model, in which the firsts 3 are part of the 6 
d.o.f. of the structure and the fourth is the rotational joint between rotor and nacelle. The three d.o.f. of 
the structure considered are surge, heave, and pitch, according with figure 2.3. The model’s inputs are 
the free flow wind speed field, the excitation forces and torques caused by incident waves, generator 
torque and blade pitch angle. In this section the equations describing the above-mentioned nonlinear 
system will be obtained. First, we will find the motion equations of the structure and those related to 
the rotation equilibrium of the rotor, then the external inputs of the system will be defined. Finally, 
starting from system’s model obtained, a simplified model will be defined, which will be useful for MPC 
controller’s implementation. 
 

3.1 Model equations 
 

3.1.1 Structure equation 

From momentum and angular momentum equations (𝑑𝑷
𝑑𝑡
= ∑𝑭𝑒𝑥𝑡   ,   

𝑑𝑳

𝑑𝑡
= ∑𝑴𝑒𝑥𝑡) we can obtain the 

equations of motion for rigid bodies (considering all six degrees of freedom).  
 

m [𝒂𝑤𝑡 + �̇� ∧ 𝒓cg,wt +𝝎 ∧ (𝝎 ∧ 𝒓cg,wt  )] = ∑ 𝑭𝑒  (3.1) 

𝒓cg,wt  ∧  m 𝒂𝑤𝑡 + 𝐈 �̇� + 𝝎 ∧ 𝐈 𝝎 = ∑ 𝑴𝑒,𝑤𝑡              (3.2) 

 
- 𝒓cg,𝜔𝑡 = 𝒓𝑐𝑔 − 𝒓𝜔𝑡 ; 

- 𝒂𝑤𝑡 = {𝑠𝑢𝑟𝑔𝑒̈ , 𝑠𝑤𝑎𝑦̈ , ℎ𝑒𝑎𝑣𝑒̈ }⊤ ; 

- �̇� = {𝑟𝑜𝑙𝑙̈ , 𝑝𝑖𝑡𝑐ℎ̈ , 𝑦𝑎𝑤̈ }⊤; 

- 𝐈 = 𝑹0−𝑤𝑡 ⋅ 𝐈𝑤𝑡 ⋅ 𝑹0−𝑤𝑡
⊤ . 

 
 
 
All quantities without superscript are expressed in the world reference frame (see Figure 3.1), m is the 
whole structure mass and 𝐈𝑤𝑡 is the structure inertia matrix referred to its center of gravity and 
expressed in wind turbine (wt) reference frame. 𝑹0−𝑤𝑡 is the rotation matrix between world reference 
frame and wind turbine one. In particular, its columns are the base versor of wt-reference expressed in 
w.r.f. coordinates. 
 
 
 
 
 
 
 

Figure 3.1: Scheme of a 6 d.o.f. floating wind turbine. 
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Assuming three d.o.f. model, some simplifications can be made: 
 

- 𝑹0−𝑤𝑡 = 𝑹𝑦(𝑝) = [
cos 𝑝 0 sin 𝑝

0 1 0

−sin 𝑝 0 cos 𝑝
]→𝑰𝑦𝑦

0 = 𝑰𝑦𝑦
𝑤𝑡 ; 

- (𝝎 ∧ 𝐈 𝝎) ∙  �̂� =  𝟎 ; 

- Low speeds → 𝝎 ∧ (𝝎 ∧ 𝒓cg,wt  ) neglected; 

- Small-amplitude motion →  𝒓cg,wt  ≈  𝒓cg,wt
𝑤𝑡 ; 

 

 

Then we arrive to: 

[ 

𝑚 0 𝑚 𝑧𝑐𝑔
𝑤𝑡

0 𝑚 −𝑚 𝑥𝑐𝑔
𝑤𝑡

𝑚 𝑧𝑐𝑔
𝑤𝑡 −𝑚 𝑥𝑐𝑔

𝑤𝑡 𝐼𝑝𝑝
𝑤𝑡

 ] ⋅ { 
�̈�
ℎ̈
�̈�
 }   =   {

∑  𝐹𝑥𝑒
∑  𝐹𝑧𝑒
 ∑  𝑀𝑦𝑒

}                  →              𝑴 �̈� =  𝑭𝒕𝒐𝒕                  (3.3) 

𝑭𝒕𝒐𝒕 in expression (3.3) is the sum of all forces and moments, grouped as: 

𝑭𝒕𝒐𝒕  =  𝑭𝒉𝒚𝒅𝒓𝒐  + 𝑭𝒈  + 𝑭𝒂𝒆𝒓𝒐  +  𝑭𝒎𝒐𝒐𝒓𝒊𝒏𝒈        (3.4) 

Where: 

𝑭𝒉𝒚𝒅𝒓𝒐 ∶ Hydrostatic and Hydrodynamic forces (and torques); 

𝑭𝒈 ∶ Gravity force and torque; 

𝑭𝒂𝒆𝒓𝒐 ∶ Aerodynamics forces and torques produced by the airflow on the blades; 

𝑭𝒎𝒐𝒐𝒓𝒊𝒏𝒈 : Forces and torques due to mooring lines. 

 
 
 
 
 

Figure 3.2: Scheme of a 3 d.o.f. floating wind turbine. 
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3.1.1.1 Fhydro 
Hydrostatic and hydrodinamic forces/torques are: 
 

𝑭𝒉𝒚𝒅𝒓𝒐 = 𝑭𝑹𝒆𝒔𝒕 + 𝑭𝑭𝑲  +  𝑭𝑫  +  𝑭𝑹𝒂𝒅  + 𝑭𝑫𝒓𝒂𝒈           (3.5) 

 
Where: 

𝑭𝑹𝒆𝒔𝒕 ∶ Hydrostatic restoring forces (and torques); 

𝑭𝑭𝑲 ∶ Froude-Krylov forces, due to incident waves; 

𝑭𝑫 ∶ Diffraction forces, caused by interaction between incoming waves and the structure; 

𝑭𝑹𝒂𝒅 ∶ Forces caused by motion of the structure in the fluid; 

𝑭𝑫𝒓𝒂𝒈: Friction forces proportional to velocities squares. 

 
FRest    

Restoring forces/torques can be expressed as: 

𝑭𝑹𝒆𝒔𝒕 = {

𝐹x, Rest 

𝐹z, Rest 

𝑀y, Rest 

} = −𝑪 ∙ 𝑿 + {  

0    
𝛾𝑉𝑤 

𝛾𝑉𝑤 ∙ x𝐵
𝑤𝑡 ∙ cos(p) 

}     (3.6) 

 
- 𝑉𝑤: displaced fluid volume; 

- x𝐵
𝑤𝑡: position of buoyancy center in wt-coordinates; 

- 𝑿 = {
𝑠
ℎ
𝑝
} ∶ surge, heave, pitch; 

- cos(p) ≈  1 ,  due to small amplitude motion hypothesis; 

- 𝑪 = [ 
0 0 0
0 𝑪22 0
0 0 𝑪33

 ]: stiffness matrix, defined as: 

- 𝑪22 =
−Δ𝐹𝑧

ℎ
= ∫  

𝑆𝑏
𝜌𝑔ℎ ∙  𝐧 ⋅ �̂�  ⋅ 𝑑𝑆 ⋅

1

ℎ
= 𝜌𝑔𝐴 

   
 

- 𝑪33 =
−Δ𝑀𝑦

𝑝
= ∫  

𝑆𝑏
𝒓 ∧  𝑃 𝐧 ⋅ 𝑑𝑆 ⋅ 𝑗̂  ⋅

1

p
= 𝜌𝑔𝑉𝑤𝑧𝐵 + 𝜌𝑔∫  

𝑠𝑏
𝑥2 𝑛3 𝑑𝑆 
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FFK, FD and FRad 
Froude-Krylov, Diffraction and Radiation forces (and 
moments) are consequences, respectively, of fluid velocity 
fields associated with incident waves, diffracted waves 
(caused by interaction of incident waves with the structure) 
and radiated waves (due to structure motion). They can be 
calculated resolving a boundary value problem (BVP) based 
on potential flow theory, for which following hypotheses hold: 

 
 

        𝜌 = cos𝑡  ⇒    ∇ ⋅  𝒖 = 0           (3.7) 
        𝜇 = 0        ⇒    ∇ × 𝒖 = 0          (3.8) 

 
Thanks to (3.8) velocity field can be expressed as gradient of a function, in this case called 𝜙, and due 
to (3.7): 

𝒖 = ∇𝜙 
∇ ⋅ (∇𝜙) = 0   ⇒    ∇2𝜙 = 0   (3.9) 

 
Moreover, with these condition, Bernoulli’s equation for non-stationary systems, expressed in term of 
the potential 𝜙, is valid: 
 

∂𝜙(𝒙,𝑡)

∂𝑡
+
1

2
|∇𝜙(𝒙, 𝑡)|2 +

𝑝−𝑝𝑎

𝜌
+ 𝑔𝑧 = 0,     with 𝑧 = 0  𝑎𝑡 𝑠. 𝑤. 𝑙        (3.10) 

 
Then we arrive at the following system: 
 
∇2𝜙(𝒙, 𝑡) = 0,                                      𝒙 ∈ 𝑉 

∂𝜙

∂𝒏
= 𝐯 ⋅ 𝐧,                                            𝒙 ∈ 𝑆𝑏,               𝐯: 𝑏𝑜𝑑𝑦 𝑙𝑜𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑆𝑏: 𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒; 

∂𝜙

∂𝒏
= 0,                                                  𝒙 ∈ 𝑆𝑧,                𝑆𝑠: 𝑠𝑒𝑎 𝑏𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒; 

𝒖(𝒙, 𝑡) → 0,                                    |𝒙| → ∞                                                                                                                 (3.11) 

∂η

∂𝑡
+ ∇η ⋅ ∇𝜙 =

∂𝜙

∂𝑧
,                           𝒙 ∈ 𝑆𝑓 ,                𝑆𝑓: 𝑓𝑟𝑒𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒; 

∂𝜙

∂𝑡
+
1

2
|∇𝜙(𝒙, 𝑡)|2 + 𝑔𝑧 = 0,           𝒙 ∈ 𝑆𝑓 ,               𝑆𝑓: 𝑓𝑟𝑒𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒; 

 

Figure 3.3: Different types of waves. 

     With:   −  𝒖(𝒙, 𝑡): speed field (𝑚/𝑠);                
                     −  𝜇: viscosity (𝑁 𝑠  𝑚2⁄ ); 
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Assuming H << λ (where H and λ are waves height and wavelength) and a small-amplitude motion of 
the structure, non-linear terms depending on velocities can be neglected and free surface conditions 
can be simplified. The resulting linear BVP is:  
 

∇2𝜙(𝒙, 𝑡) = 0,                                𝒙 ∈ 𝑉 

∂𝜙

∂𝒏
= 𝐯 ⋅ 𝐧,                                     𝒙 ∈ 𝑆𝑏,                

𝒖(𝒙, 𝑡) → 0,                            |𝒙| → ∞           (3.12) 

∂2𝜙

∂𝑡2
+ 𝑔

∂𝜙

∂𝑧
= 0,                          𝒙 ∈ 𝑆𝑓 ,                 

∂𝜙

∂𝒏 
= 0,                                          𝒙 ∈ 𝑆𝑧,                 

− 𝐯: 𝑏𝑜𝑑𝑦 𝑙𝑜𝑐𝑎𝑙 𝑠𝑝𝑒𝑒𝑑    −  𝑆𝑏: 𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

− 𝑆𝑓 : 𝑓𝑟𝑒𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒          −   𝑆𝑧: 𝑠𝑒𝑎 𝑏𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

 
 

 

Solution of linear BVP-Frequency Domain 

In frequency domain analysis we assume motion in the form: 

  𝑿(𝑡) = 𝑋0 ∙ cos (ωt + 𝛗) = Re { 𝑿 ∙ 𝑒
j𝜔𝑡}, 𝑿 = 𝑋0𝑒

j𝜑                           (3.13) 
 
Considering linearity of the BVP, velocity potential (solution of the BVP) can be assumed in the form: 
 

  𝜙(𝒙, 𝑡) =  𝜑(𝒙) ∙  𝑒𝑗𝜔𝑡                                                                                            (3.14) 
  𝜙(𝒙, 𝑡) =  𝜙𝐼(𝒙, 𝑡) + 𝜙𝐷(𝒙), 𝑡 + 𝜙𝑅𝑎𝑑(𝒙, 𝑡)                                                      (3.15) 

 
Where 𝜑𝐼(𝒙) + 𝜑𝐷(𝒙) + 𝜑𝑅𝑎𝑑(𝒙) are, respectively, incident 
(Froude-Krylov), diffraction and radiation potentials. They 
will be analyzed separately to calculate related forces and 
moments.  Moreover, expression of surface elevation 
𝜂(𝒙, 𝑡) is chosen based on the hypothesis of regular 
unidirectional planar waves:  

𝜂(𝒙, 𝑡) = 𝜂0cos(𝜔𝑡 − 𝑘𝑥 + 𝜑) = Re{𝜼 ∙ 𝑒
j(𝜔𝑡−𝑘𝑥)}       (3.16) 

 
𝜼 = 𝜂0𝑒

j𝜑                                                                                    (3.17) 
 
 
 
 

Figure 3.4: Boundary of the boundary value problem. 

Figure 3.5: Rapresentation of regular waves. 
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Quantities in relations 3.16 and 3.17 are defined as: 
 

−   𝑇 =
2𝜋

𝜔
∶  𝑤𝑎𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑;            −   𝜂0 ∶ 𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒;

−   𝜆 =
2𝜋

𝑘
∶  𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ;              −   𝑐 =

𝜆

𝑇
=
𝜔

𝑘
: 𝑝ℎ𝑎𝑠𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦.

 

 

Fext 

Froude-Krylov and diffraction forces are present even in the absence of movement of the structure. 
For the purpose of calculating the forces, due to the hypothesis of small displacements, the structure 
is considered in the position of rest. They will be considered together defining 𝝓𝑒𝑥𝑡(𝒙, j𝜔) =
 𝝓𝐼(𝒙, j𝜔) + 𝝓𝐷(𝒙, j𝜔) , where 𝝓𝑒𝑥𝑡(𝒙, j𝜔) is Fourier transform of 𝜙𝑒𝑥𝑡(𝒙, 𝑡), the excitation potential, 
which is related with Fext , excitation forces. 

From Airy theory, excitation potential is:    

𝝓ext (𝒙, j𝜔) = 𝑗 ∙  
𝑔∙cosh (𝑘(𝑧+ℎ))

ω∙cosh (𝑘ℎ)
⋅ 𝜼 ⋅ 𝑒−𝑗𝑘𝑥                                         (3.18) 

Where the dispersion relation hold:   𝑘 tanh (𝑘ℎ) = 𝜔2

𝑔
. 

Considering deep water case, (3.18) and dispersion relation become: 

𝝓ext (𝒙, j𝜔) = 𝑗 ∙
𝑔

ω
⋅ 𝑒𝑘𝑧 ⋅ 𝜼 ⋅ 𝑒−𝑗𝑘𝑥              with: ω = √𝑔𝑘            (3.19) 

Remembering Bernoulli’s equation (3.10) we can calculate excitation forces and moments as 

consequences of dynamic pressure related to excitation potential: 

𝑭𝑒𝑥𝑡𝑖 = −∫  
𝑆𝑏
𝑝𝑒𝑥𝑡 ⋅ �̃�𝑖  𝑑𝑆 = ∫  

𝑆𝑏
𝜌
∂𝜙ext (𝒙,t)

∂𝑡
�̃�𝑖  𝑑𝑆                          (3.20) 

- 𝑭𝑒𝑥𝑡 = {

𝐹ext𝑥 

𝐹ext𝑧  

𝑀ext𝑦 

} , �̃� = {
𝐧 ⋅ �̂�
𝐧 ⋅ �̂�
(𝒓 ∧ 𝒏) ⋅ 𝑗̂

}; 

- 𝒓: distance between generic wet body surface point and center of 𝑤𝑡 reference frame.  

 

Then 𝑭ext(j𝜔), Fourier transform of 𝑭ext(t), is:   
 

𝑭𝑒𝑥𝑡(j𝜔) = 𝜼 ⋅ �̃�𝑒𝑥𝑡(𝑗𝜔)            (3.21) 

 

Where:    �̃�𝑒𝑥𝑡𝑖(𝑗𝜔) = −∫  
𝑠𝑏
𝜌 ∙ 𝑔 ⋅ 𝑒

𝜔2

𝑔
(𝑧 − 𝑗𝑥)

⋅ �̃�𝑖  𝑑𝑆 
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FRad 

FRad depends on radiation potential, it is defined as a sum of n terms, each term is related to motion of 
one degree of freedom and proportional to its amplitude. So, Fourier transform of potential 𝝓Rad (𝒙, t)  
is: 

𝝓Rad (𝒙, j𝜔)  = ∑𝝓Rad,i (𝒙, j𝜔)                          (3.22) 
𝝓Rad,i (𝒙, j𝜔) = 𝝓′Rad,i  (𝒙, j𝜔) ∙ 𝑿𝑖(𝑗𝜔)         (3.23) 

 
Remembering Bernoulli’s equation (3.10) we can calculate radiation forces and torques as 
consequences of dynamic pressure related to radiation potentials. Focusing into one of the three 
component of generalized forces (forces along surge and heave direction and torque around y axis) 
we have: 

𝑭𝑅𝑎𝑑𝑖(𝑡) = −∫  
𝑆𝑏

𝑝𝑅𝑎𝑑 ⋅ �̃�𝑖  𝑑𝑆 = ∫  
𝑆𝑏

𝜌
∂𝜙Rad (𝒙, 𝑡)

∂𝑡
�̃�𝑖  𝑑𝑆       (3.24) 

With:   �̃� = {
𝐧 ⋅ �̂�
𝐧 ⋅ �̂�
(𝒓 ∧ 𝒏) ⋅ 𝑗̂

} 

And given (3.13) and (3.16): 
 

𝑭𝑅𝑎𝑑𝑖(𝑗𝜔)  =  𝑗𝜔 ⋅ ∑  𝑗 𝑿𝑗 ⋅ ∫ 𝜌 
𝑆𝑏

⋅ 𝜙′Rad,j
∂𝜙′Rad,i

∂𝑛
⋅ 𝑑𝑆 =  𝑗𝜔 ⋅ ∑  𝑗 �̃�𝑅𝑎𝑑𝑖,𝑗(𝑗𝜔)  ∙  𝑿𝑗         (3.25) 

 

With:   �̃�𝑅𝑎𝑑𝑖,𝑗(𝑗𝜔) = ∫ 𝜌 
𝑆𝑏

⋅ 𝜙′Rad,j
∂𝜙′Rad,i

∂𝑛
⋅ 𝑑𝑆 

 

𝑭𝑅𝑎𝑑𝑖(𝑗𝜔)  =  − ∑  𝑗
1

𝜔
⋅ Im [�̃�𝑅𝑎𝑑𝑖,𝑗] ∙ 𝜔

2 𝑿𝑗   +   ∑  𝑗 Re [�̃�𝑅𝑎𝑑𝑖,𝑗] ⋅ 𝑗 𝜔 𝑿𝑗                     (3.26) 

 
Finally, generalized forces vector is: 
 

𝑭𝑅𝑎𝑑(𝑗𝜔)  = 𝜔
2  𝐀(𝜔) ∙ 𝑿  −   𝑗 𝜔 ∙ 𝐁(𝜔) ∙  𝑿𝑗              (3.27) 

 
Once defined added mass matrix A and radiation damping matrix B: 
 

𝐀𝑖,𝑗(𝜔) = − 
1

𝜔
⋅ Im [�̃�𝑅𝑎𝑑𝑖,𝑗 (𝑗𝜔)]       (3.28) 

𝐁𝑖,𝑗(𝜔) = − Re [�̃�𝑅𝑎𝑑𝑖,𝑗(𝑗𝜔)]             (3.29) 
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In this figure there is an example of A and B matrix components with respect to wave frequency. 

 
Figure 3.6: Added mass A and radiation damping B matrix coefficients with respect to frequency (rad/s) 
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Solution of linear BVP-Time Domain 

As for the frequency analysis, thanks to linearity of BVP, we can threat potential as a sum of incident, 
diffracted and radiated ones and calculate the response of the system as sum of response due to 
different effects (superposition effect). 
 

𝜙(𝒙, 𝑡) = 𝜙𝐼(𝒙, 𝑡) + 𝜙𝐷(𝒙) + 𝜙𝑅𝑎𝑑(𝒙, 𝑡)      (3.30) 
 
Once each potential is computed, correlated forces can be obtained through Bernoulli’s equation 
(3.10). 
 
 
Fext 

We treat, as in the frequency analysis, the incident and diffracted potential together. Their sum, the 
exitation potential, is defined as follows: 
 

 𝜙𝑒𝑥𝑡(𝒙, 𝑡) =  𝜙𝐼(𝒙, 𝑡) + 𝜙𝐷(𝒙, 𝑡)                        (3.31) 
 
In time domain analyses we assume possibility of any form of surface elevation 𝛈(t), instead of regular 
waves used in frequency domain. To do so, 𝛈(t) can be expressed as the sum of its harmonics, 
everyone in the form: η(t) = 𝜂0cos (𝜔𝑡 −  𝑘𝑥 + 𝜑). 
 

𝜂(𝑡) =∑  

𝑖

𝜂0𝑖 ⋅ cos (𝜔𝑖𝑡 − 𝑘𝑖𝑥 + 𝜑𝑖) = 𝑅𝑒∑  

𝑁

1

𝜂0𝑖𝑒
𝑗(𝜔𝑖𝑡−𝑘𝑖𝑥+𝜑𝑖)            (3.32) 

 
So, remembering (3.21), obtained in previous analysis, and assuming N components: 
 

𝑭𝑒𝑥𝑡(𝑡) = 𝑅𝑒[∑  𝑁1 𝜂0,𝑖 ∙ �̃�ext(𝜔𝑖) ⋅ 𝑒
𝑗(𝜔𝑖𝑡+𝜑𝑖)]       (3.33) 

 
𝑭𝑒𝑥𝑡(j𝜔) = 𝜼 ⋅ �̃�𝑒𝑥𝑡 (𝑗𝜔)                                     (3.34) 

 

With:            �̃�𝑒𝑥𝑡𝑖(𝑗𝜔𝑖) = −∫  
𝑠𝑏
𝜌 ∙ 𝑔 ⋅ 𝑒

𝜔𝑖
2

𝑔
(𝑧 − 𝑗𝑥)

⋅ �̃�𝑖  𝑑𝑆  
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FRad 

FRad depend on radiation potential, it is defined as a sum of n terms, each term is related to motion of 
one degree of freedom and proportional to its amplitude. Cummins [6] proposed a solution of BVP in 
which radiation potential is expressed as: 

𝜙Rad (𝒙, 𝑡) = 𝚿(𝒙) ∙ �̇�(𝑡)  + ∫ 𝝌(𝒙, 𝑡 − 𝜏) ∙ �̇�
𝑡

0

(𝜏)  𝑑𝜏          (3.35) 

With:   �̇�(𝑡) = {�̇�(𝑡), ℎ̇(𝑡), 𝑝𝑖𝑡𝑐ℎ̇ (𝑡)}𝑇,    𝚿,𝝌 ∈ ℝ1×3 
 

Remembering Bernoulli’s equation (3.10) we can calculate radiation forces and moments as 
consequences of dynamic pressure related to radiation potentials. Focusing into one of the three 
component of generalized forces (forces along surge and heave direction and torque around y axis) 
we have: 

𝑭𝑅𝑎𝑑𝑖(𝑡) = ∫  
𝑆𝑏 

𝜌
∂𝜙Rad (𝒙, 𝑡)

∂𝑡
�̃�𝑖  𝑑𝑆         (3.36) 

𝑭𝑅𝑎𝑑𝑖(𝑡) = −[∫ −  𝜌 ⋅
𝑆�̇�

𝚿(𝒙) ⋅ �̃�𝑖𝑑𝑆] ⋅ �̈�(𝑡) − ∫ [∫ − 𝜌 
Sb

∂𝝌(𝒙,𝑡−𝜏)

∂𝑡
⋅ �̃�𝑖 ⋅ 𝑑𝑆]

𝑡

0
∙ �̇�(𝜏)𝑑𝜏   (3.37) 

With:  �̃� = {
𝐧 ⋅ �̂�
𝐧 ⋅ �̂�
(𝒓 ∧ 𝒏) ⋅ 𝑗̂

} 

Finally, generalized forces vector is: 

𝑭𝑅𝑎𝑑(𝑡)  = − 𝑨∞ ⋅ �̈�(𝑡)  −  ∫ 𝑲𝑅
𝑡

0
(𝑡 − 𝜏) ∙ �̇�(𝜏) 𝑑𝜏     (3.38) 

 
Once defined: 

𝐀∞,𝑖𝑗 = −  𝜌 ∫ Ψ𝒋(𝒙) ⋅ �̃�𝑖𝑆�̇�
 𝑑𝑆              (3.39) 

 
𝐊𝑅,𝑖𝑗(𝑡) = −  𝜌∫ ∂𝜒𝑗(𝒙,𝑡)

∂𝑡
⋅ �̃�𝑖

𝑆�̇�

 𝑑𝑆          (3.40) 

 
On the next page there is the representation of 𝐊𝑅,𝑖𝑗(𝑡), (Figure 3.7), in which we notice that some 
extra-diagonal terms are much smaller than the relative diagonal terms. For this reason, these 
components will be neglected. Furthermore, since the convolution integral in (3.38) requires a lot of 
computation time, it was decided to approximate the latter with the output of a state space system 
whose inputs are structure’s speeds �̇�(𝑡). Due to approximations mentioned above the convolution 
integral becomes: 

∫ 𝑲𝑅
𝑡

0
(𝑡 − 𝜏) ∙ �̇�(𝜏)𝑑𝜏  = ∫ [

𝐾𝑅11 0 𝐾𝑅13
0 𝐾𝑅22 0

𝐾𝑅31 0 𝐾𝑅33

] ∙ �̇�(𝜏)𝑑𝜏 =

{
 
 

 
 ∑  𝑗=1,3 ∫  

𝑡

0
𝐾𝑅1𝑗(𝑡 − 𝜏) ⋅ �̇�𝑗 𝑑𝜏

∫  
𝑡

0
𝐾𝑅22(𝑡 − 𝜏) ⋅ �̇�2𝑑𝜏

∑  𝑗=1,3 ∫  
𝑡

0
𝐾𝑅3𝑗(𝑡 − 𝜏) ⋅ �̇�𝑗 𝑑𝜏}

 
 

 
 

   
𝑡

0
 (3.41) 
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Then, each scalar convolution integral is approximated with a linear SISO state space whose input is 
the related velocity component and output is the contribution of the related component of radiation 
forces vector.  

∫  
𝑡

0
𝐾𝑅𝑖𝑗(𝑡 − 𝜏) ⋅ �̇�𝑗  𝑑𝜏 ≈  𝑦𝑅𝑖𝑗  ↔   {

�̇�𝑅𝑖𝑗 = 𝑨𝑅𝑖𝑗 ∙ 𝒒𝑅𝑖𝑗  + 𝑩𝑅𝑖𝑗 ⋅ �̇�𝑗 

𝑦𝑅𝑖𝑗 = 𝑪𝑅𝑖𝑗 ∙  𝒒𝑅𝑖𝑗
       (3.42) 

  

𝑨𝑅𝑖𝑗 , 𝑩𝑅𝑖𝑗  𝑎𝑛𝑑 𝑪𝑅𝑖𝑗  can be calculated as that who lead to have a system whose impulse response 
is 𝐾𝑅𝑖𝑗(𝑡 − 𝜏).  Putting SISO state spaces together we obtain a MIMO state space with velocity vector 
�̇� as input and convolution integral as output: 
 

∫  
𝑡

0
𝑲𝑅(𝑡 − 𝜏) ⋅ �̇�(𝜏) 𝑑𝜏 ≈ 𝒚𝑅  ↔   {

�̇�𝑅 = 𝑨𝑅 ∙ 𝒒𝑅  + 𝑩𝑅 ⋅ �̇�
𝒚𝑅 = 𝑪𝑅 ∙  𝒒𝑅

                    (3.43) 

 
More information about approximation of added damping integral by a linear state space can be find 
here [7].  

Figure 3.7: Components of radiaton damping impulse rensponse function 𝑲𝑅(𝑡). 
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Relation Between Frequency and Time domain 
 
In this work we will use the time approach, so data needed for simulation are 𝐊𝑅 and 𝐀∞. They are 
obtained once A(ω) and B(ω) are known by solving the BVP problem in the frequency domain with 
Nemoh [8], an opensource software which solve it with panel method. 𝐊𝑅 and 𝐀∞ are then calculated 
utilizing A(ω) and B(ω). Alternatively, if state space representation of radiation convolution integral is 
used, we can directly estimate them from A(ω) and B(ω) matrices.  

To calculate 𝐊𝑅 and 𝐀∞  from A(ω) and B(ω), we can express equation (3.38) in frequency domain 
form taking Fourier transform of 𝑭𝑅𝑎𝑑(𝑡), once assumed regular waves and motion in the form 𝑿(𝑡) =
𝑿0 ∙ cos (ωt + 𝛗). 
 

ℱ[𝑭𝑅𝑎𝑑(𝑡)] ≡ 𝑭𝑅𝑎𝑑(𝑗𝜔)  = ℱ [− 𝑨∞ ⋅ �̈�(𝑡)  − ∫ 𝑲𝑅

𝑡

0

(𝑡 − 𝜏) ∙ �̇�(𝜏) 𝑑𝜏 ]                         (3.44) 

𝑭𝑅𝑎𝑑(𝑗𝜔)  =  (𝜔
2  𝑨∞ −   ℱ[𝑲𝑅(𝑡)] ∙ 𝑗 𝜔) ⋅ 𝑿(𝑗𝜔) )                                                (3.45) 

𝑭𝑅𝑎𝑑(𝑗𝜔)  = 𝜔
2  ( 𝑨∞ + 

𝟏

𝜔 
 𝐼𝑚[𝑲𝑅(𝑗𝜔)] ) ∙ 𝑿(𝑗𝜔)  −  𝑗 𝜔 ∙  𝑅𝑒[𝑲𝑅(𝑗𝜔)] ⋅ 𝑿(𝑗𝜔)     (3.46) 

 

With:            ℱ[𝑲𝑅(𝑡)] =  𝑲𝑅(𝑗𝜔) = 𝑅𝑒[𝑲𝑅(𝑗𝜔)]  +  𝑗 𝐼𝑚[𝑲𝑅(𝑗𝜔)]                               

                     𝑅𝑒[𝑲𝑅(𝑗𝜔)]  =  ∫  
∞

0
𝑲𝑅(𝑡) cos(𝜔𝑡) 𝑑𝑡                                                       

                     𝐼𝑚[𝑲𝑅(𝑗𝜔)]  = - ∫  
∞

0
𝑲𝑅(𝑡) sin(𝜔𝑡) 𝑑𝑡                                                      

 

Comparing (3.46) with (3.27):  𝑭𝑅𝑎𝑑(𝑗𝜔)  = 𝜔2  𝐀(𝜔) ∙ 𝑿  −   𝑗 𝜔 ∙ 𝐁(𝜔) ∙  𝑿𝑗  , relations 3.47-3.49, 
proposed by Ogilvie [9], can be written: 
 

𝑨(𝜔) = 𝑨∞ −
1

𝜔
∫  
∞

0
𝑲𝑅(𝑡) sin (𝜔𝑡) 𝑑𝑡       (3.47) 

𝑩(𝜔) = ∫  
∞

0
𝑲𝑅(𝑡) cos (𝜔𝑡) 𝑑𝑡                      (3.48) 

𝑲𝑅(𝑗𝜔) = 𝑩(𝜔) − 𝑗𝜔(𝑨∞ − 𝑨(𝜔))             (3.49) 
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FDrag 

Drag load considers the effects of damping due to the viscosity of the fluid dissipated energy in 
vortices. Since linear models don’t consider these phenomena because of their basic assumptions, 
extra damping it is necessary to accurately model the damping in a real system. These non-linearities 
can be supplemented by a quadratic drag force model. In this case drag forces vector, whose 
components are surge and heave forces and pitch moment, is defined as: 
 

𝑭𝐷𝑟𝑎𝑔(𝑡) =  𝑫 ∙ {

�̇� ∙ |�̇�|

ℎ̇ ∙ |ℎ̇|

�̇� ∙ |�̇�|

}                  (3.50) 

With: 𝐃 = [
𝑑11 0 𝑑13
0 𝑑22 0
𝑑31 0 𝑑33

], 𝐷𝑖𝑗  ∝   𝜌 𝐴𝑖 

 
 

3.1.1.2 Fg 
Gravity forces vector is defined below, m is the mass of entire structure, 𝑥𝑐𝑔wt  and 𝑧𝑐𝑔𝑤𝑡 are non-zero 
component of gravity center (cg) position with respect to wt center, expressed in wt-reference frame. 
The third term considers the fact that cg and wt, the point around which the moments are calculated, 
do not coincide. 
 

𝑭𝑔(𝑡) =  {

0
− 𝑚𝑔

𝑚𝑔 ∙ (𝑥𝑐𝑔
wt cos (𝑝) + 𝑧𝑐𝑔

𝑤𝑡  sin (𝑝))
}      (3.51) 
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3.1.1.3 Faero 

The aerodynamic loads acting on the rotor blades are calculated through BEM (Blade Element 
Momentum) theory, a union between two different methods: the first, provides a global approach, in 
which thrust and torque are calculated starting from momentum and angular momentum balances. In 
this case, various simplifications apply, such as an infinite number of blades and frictionless disk is 
considered. Moreover, the flow is stationary, incompressible and frictionless. The second method 
(Blade Element) starts from the calculation of the local forces acting on a blade element thanks to the 
knowledge of profile shape of the latter. 
 
Momentum – Angular momentum 
A simple turbine model, attributed to Betz [10], can be used to approximately compute extracted 
power of an ideal turbine and thrust force of the wind on the rotor. This model is based on momentum 
equation ( 𝑑𝑷

𝑑𝑡
= ∑𝑭𝑒𝑥𝑡 ) computed on an ideal rotor disk rotating in a control volume, with two cross-

sections of the streamtube and its surface as boundaries (see Figure 3.8). Following hypothesis are 
made: 
 
- Absence of flow through lateral 

surface; 
- Rotor with infinite blades (disk), 

which represent a pressure 
discontinuity; 

- Uniform thrust force over the rotor; 
- Static pressure far upstream and far 

downstream of the rotor is equal to 
the undisturbed ambient static 
pressure; 

- Non-rotating wake; 
- Air density ρ=cost. 

 
 
Since we assume constant air density and since mass flow rate must be the same everywhere, 
following equations can be write: 

�̇� = 𝜌𝐴∞𝑈∞ = 𝜌𝐴𝐷𝑈𝐷 = 𝜌𝐴𝑊𝑈𝑊     (3.52) 

Where ∞ refers to conditions far upstream, D refers to conditions at the disc and W refers to conditions 
in the far wake. Disk induces a velocity variation which is superimposed on the free stream velocity. 
The stream-wise component of this induced flow at the disc is given by −aU∞, where 𝑎 is called the 
axial flow induction factor, or the inflow factor, defined as: 

𝑎 =
𝑈∞−𝑈𝐷

𝑈∞
               (3.53) 

 
 

Figure 3.8: Betz ideal disk rotor model 
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At the disc, therefore, the net velocity is: 

𝑈𝐷 = 𝑈∞(1 − 𝑎)                  (3.54) 

Rate of change of momentum, since an air mass flow changes its speed from inlet to outlet of stream-

tube, is: 

𝑑𝑃

𝑑𝑡
= (𝑈∞ − 𝑈𝑊) 𝜌 𝐴𝐷  𝑈𝐷     (3.55) 

Rate of change of momentum equals force acting on air (which come entirely from pressure drop 
through the disk), which, for dynamic third principle, is equal and opposite to thrust force T acting on 
rotor disk.  

𝑇 = (𝑝𝐷
+ − 𝑝𝐷

−) 𝐴𝐷 = (𝑈∞ − 𝑈𝑊) 𝜌 𝐴𝐷  𝑈𝐷     (3.56) 

(𝑝𝐷
+ − 𝑝𝐷

−) is obtained from stationary Bernoulli’s equation ( 
1

2
𝜌𝑈2 + 𝑝 + 𝜌𝑔ℎ =  const) applied from 

upstream to disk section and from downstream to disk cross section. These equations, considering 
constant density and height and considering no work is produced, lead to:  

1

2
𝜌𝑈∞

2 + 𝑝∞ =
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
+    (3.57) 

1

2
𝜌𝑈𝑊

2 + 𝑝∞ =
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
−    (3.58) 

Thus, also remembering equation 3.54: 

𝑇 =  
1

2
𝜌(𝑈∞

2 − 𝑈𝑊
2 )𝐴𝐷 = (𝑈∞ −𝑈𝑊) 𝜌 𝐴𝐷  𝑈∞(1 − 𝑎)    (3.59) 

𝑈𝑊 = (1 − 2𝑎) 𝑈∞     (3.60) 

Finally, expression of thrust force and thrust force per area unit (with 𝑑𝐴 = 2𝜋𝑟𝑑𝑟 and considering 

uniform thrust, so constant axial induction factor along blade length) are: 

𝑇 =  
1

2
 𝜌 𝐴𝐷𝑈∞

2 𝐶𝑇                     (3.61) 

𝑑𝐹𝑁 = 𝜌 𝑈∞
2  𝐶𝑇  𝜋𝑟𝑑𝑟                         (3.62) 

Where 𝐶𝑇 is the thrust coefficient, defined as thrust over maximum ideal thrust 1
2
 𝜌 𝐴𝐷𝑈∞

2 (axial force 
that would occur if the downstream wind speed was zero, i.e., all momentum was transferred to the 
rotor): 

𝐶𝑇 = 
𝑇

1

2
 𝜌 𝐴𝐷𝑈∞

2
 =  4𝑎(1 − 𝑎)      (3.63) 
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Through thrust expression, ideal extracted power can be defined as: 

P =  T 𝑈D = 
1

2
 𝜌 𝐴𝐷𝑈∞

3  𝐶𝑃               (3.64) 

𝐶𝑃 is the power output over the available wind power,  1
2
 𝜌 𝐴𝐷𝑈∞

3, called power coefficient: 

𝐶𝑃 = 
𝑃

1

2
 𝜌 𝐴𝐷𝑈∞

3
 =  4𝑎(1 − 𝑎)2        (3.65) 

 
Actually, due to interaction with rotor, downstream air speed has an additional component opposite to 
rotor local velocity (wake effect). To consider the latter we can define the angular induction factor 𝑎′: 

𝑎′ =
𝜔3

2𝛺
            (3.66) 

𝜔3 , depending on position along blade length, is induced angular speed at the final cross section of 
rotor (point 3 in Figure 3.11). It is defined as induced velocity over radius at which a’ is computed. 
Furthermore, for convention, induced angular speed at a section corresponding to ¼ of chord length 
(point 2 in Figure 3.11) is 𝜔2 = 𝜔3 2⁄ . 

From angular momentum law ( 𝑑𝑳
𝑑𝑡
= ∑𝑴𝑒𝑥𝑡  ), torque per area unit can be expressed, at each radius, in 

terms of mass flow rate and angular induced speed: 

𝑑𝑄 =  �̇� 𝜔2 𝑟
2    (3.67) 

 
Finally, considering 3.52 and definition of a and 𝑎′, 𝑑𝑄 in term of axial and angular induction factor, 
undisturbed wind velocity, air density and rotor angular speed becomes [11], [12]: 
 

𝑑𝑄 = 𝜌 𝑈∞
2 ⋅ [4𝑎′ (1 − 𝑎)] ⋅ 𝜆𝑟𝜋𝑟

2𝑑𝑟     (3.68) 

With:                                    

-              𝜆𝑟 =
𝛺𝑟

𝑈∞
     (𝜆 =

𝛺𝑅

𝑈∞
 )              (3.69) 

 

Where 𝜆𝑟 and 𝜆 are local and global tip speed ratios. 
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Blade element 
Blades are divided into small elements of thickness dr represented by 2D airfoils which are only 
subject to local physical events. For each blade, the forces contribution from all elements are summed 
along the span of the blade to calculate the total loads on the rotor. It is possible, once the geometry of 
airfoils is chosen, to calculate lift and drag coefficients (𝐶𝐿  and 𝐶𝐷), through which lift and drag forces 
per unit length can be find. These coefficients depend on angle of attack α, that is the angle between 
the chord line and the direction of relative wind speed Vrel (see Figure 3.9). Lift and drag coefficients 
are defined as: 
 
  
       𝐶𝐿(𝛼) =

𝐿/𝑙
1

2
𝜌 𝑐 𝑉rel 

2
 

 

         𝐶𝐷(𝛼) =
𝐷/𝑙

1

2
𝜌 𝑐 𝑉rel 

2
  

         
− 𝑐: 𝑐ℎ𝑜𝑟𝑑;  − 𝐷: 𝐷𝑟𝑎𝑔 𝑓𝑜𝑟𝑐𝑒;  − 𝐿: 𝐿𝑖𝑓𝑡 𝑓𝑜𝑟𝑐𝑒;   

 

 
 
 

 
 

In the figure below there is an example of 𝐶𝐿  and 𝐶𝐷 with respect to angle of attack α: 
 

Figure 3.9: Blade profile, Lift force, Drag force and Pitching 
moment produced due to airflow inclined of 𝛼, angle of attack, 

from chord line. 

Figure 3.10: Lift and Drag coefficent with respect to angle of attack 𝛼 

 (3.70) 

(3.71) 
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From definitions (3.70-3.71), and looking pictures below, we can find expression of infinitesimal normal 
and tangential forces for each blade element. Vrel is relative velocity between air and point 2 (moving 
with blade), which is along chord line and far c/4 from point 1,  𝜙 is the incidence angle, 𝛼 is attack 
angle, c is the chord and Ω is the rotor angular velocity. 

 

𝑑𝐹𝑛𝑖 = 
1

2
𝜌𝑐𝑉rel 

2 ⋅ [𝐶𝐿(𝛼) cos𝜙 + 𝐶𝐷(𝛼) sin𝜙] 𝑑𝑟            (3.72) 

𝑑𝐹𝑡𝑖 =
1

2
𝜌𝑐𝑉𝑟𝑒𝑙

2 ⋅ [𝐶𝐿(𝛼) sen𝜙 − 𝐶D(𝛼) cos𝜙] ⋅ 𝑑𝑟          (3.73) 

t g𝜙 =
𝑈∞(1−𝑎)

Ω⋅ 𝑟⋅(1+𝑎′)
=

(1−𝑎)

𝜆𝑟(1+𝑎
′)
                                                   (3.74) 

             
Incident angle 𝜙 is the sum of attack angle and 𝜃, which is sum of blade pitch angle and twist angle: 

𝜙(𝑟)  = 𝜃(𝑟) + 𝛼(𝑟)                     (3.75) 

𝜃(𝑟) = 𝜃bp + 𝜃𝑡𝑤 (𝑟)                    (3.76) 

So, total infinitesimal forces (related to an annulus of thickness 𝑑𝑟) become: 

𝑑𝐹n =
1

2
𝜌𝜎𝑈∞

2 ⋅ (
1−𝑎

sin𝜙
)
2

⋅ [𝐶𝐿(𝜙 −  𝜃)cos𝜙 + 𝐶𝐷(𝜙 −  𝜃) sin𝜙]2𝜋𝑟𝑑𝑟        (3.77) 

𝑑𝐹t =
1

2
𝜌𝜎𝑈∞

2 ⋅ (
1−𝑎

sin𝜙
)
2

⋅ [𝐶𝐿(𝜙 −  𝜃) sin𝜙 − 𝐶𝐷(𝜙 −  𝜃) cos𝜙]2𝜋𝑟𝑑𝑟       (3.78) 

With:     𝜎 = 𝐵𝑐

2𝜋𝑟
 

𝐵: number of blades 

 

Figure 3.11: Speeds (left) and forces per unit length (right) involved in aerodynamic forces and moment computation. 
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Rearranging equations from momentum theory (3.62 and 3.68) ad from blade element one (3.74, 3.77 
and 3.78), we can find the system below, which will be iteratively solved to calculate a and a’. Once 
we find them, we can obtain 𝑑𝐹𝑛𝑖  and 𝑑𝐹𝑡𝑖 and, by integration, aerodynamic forces and moment acting 
on each blade (at blade root). 
 

{
 
 

 
 

𝜎

4sen2 𝜙
[𝐶𝐿cos 𝜙 + 𝑐Dsin 𝜙] =

𝑎

1−𝑎

𝜎

4sen2 𝜙
[𝐶𝐿sin 𝜙 − 𝑐Dcos 𝜙] =

𝑎′

1−𝑎

tg 𝜙 =
1−𝑎

𝜆𝑟(1−𝑎
′)

           (3.79) 

 
 

Corrections of BEM model 
The BEM model is simplified model in which many approximations are made. In order to consider 
some neglected effects (those which have more effect), the following factors are defined: 
 

- Prandtl’s tip and hub loss factors; 

- Glauert’s factor; 

- Actual wind velocity factor. 

 

Prandtl’s tip and hub loss factors 
 
Normally, in the middle of the blade, air flows straight across the wing, parallel to the airfoil, while in 
the hub and tip zones this isn’t true, the airflow is no longer parallel, and vortex are generated. So, to 
consider the consequent losses and to not overestimate aerodynamic forces, equations 3.62 and 3.68 
are modified with 𝐹𝑃𝑟(𝑟) factor, product of tip and hub contributes: 
 

𝑑𝐹𝑛 = 4𝑎(1 − 𝑎)𝐹𝑃𝑟𝑈∞
2  𝜌𝜋𝑟𝑑𝑟               (3.80) 

 
𝑑𝐹t = 4𝑎

′(1 − 𝑎)𝐹𝑃𝑟𝑈∞
2  𝜌𝜋𝑟Ω𝑑𝑟           (3.81) 

 

With:                                                𝐹𝑃𝑟(𝑟) = 𝐹𝑃𝑟,𝑡𝑖𝑝(𝑟) ⋅ 𝐹𝑃𝑟,ℎ𝑢𝑏(𝑟)               (3.82) 

                                               𝐹𝑃𝑟,𝑡𝑖𝑝(𝑟) =
2

𝜋
cos−1  𝑒−

𝐵

2
𝑅−𝑟

𝑟sin𝜙
               (3.83) 

                                                         𝐹𝑃𝑟,ℎ𝑢𝑏(𝑟) =
2

𝜋
cos−1 𝑒−

𝐵

2
𝑟−𝑅ℎ

𝑟sin𝜙
                 (3.84) 
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The figure below shows Prandtl’s factor along normalized radius. It can be seen that hub factor is 
influent in a narrow range, whereas tip factor has values far from 1 starting from roughly 80% of the 
radius. 

 
Glauert’s factor 
For induction factors a larger than about 0.4, a turbulent wake usually appears, not considered in 
momentum theory. Glauert firstly, and then many other authors, proposed a modify in the expression 
of thrust (3.62) when a is greater than a given threshold ac. In this work correction proposed by Spera 
and Wilson [13] is used and 3.62 becomes (also Prandtl’s factor is included in this formula): 

𝑑𝐹n = 𝐶𝑇 𝐹𝑃𝑟  𝑈∞
2 𝜌𝜋𝑟𝑑𝑟                   (3.85) 

With:           𝐶𝑇 = 4(𝑎(1 − 𝑎) + (𝑎 − 𝑎𝑐)+
2 ) 

(𝑎 − 𝑎𝑐)+: = 𝑚𝑎𝑥{0, 𝑎 − 𝑎𝑐},    𝑎𝑐 =  1/3 

In this figure we can see expression of  𝐶𝑇 , local thrust coefficient, with respect to induction factor for 
momentum theory ( 𝐶𝑇 = 4𝑎(1 − 𝑎)), with correction we made and from CFD analysis. 

Figure 3.12: Prandtl’s loss factor with respect to normalized radius. 

Figure 3.13: CT , local thrust coefficient, from Momenthum theory, Glauert’s correction and CFD analysis. 
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Actual wind velocity factor  
Until now, we have considered the undisturbed wind velocity (𝑈∞) as the wind speed blowing on the 
blades in x direction of blade reference frame (𝑏𝑙 in Figure 3.14). Actually, some clarifications have to 
be made.  
Firstly, the structure is moving, so relative velocity change; moreover, the rotor rotates around an axis 
which is inclined with respect to horizontal one by the tilt angle and the blades are inclined about 
rotation axis by the precone angle (see Figure 3.14). Furthermore, wind velocity isn’t constant in 
space, so different elements are subject to different flow. 

 

To consider these facts, we define 𝑣w𝑖
 as relative wind velocity along x direction of blade i reference 

frame calculated on point ct, center of thrust, and 𝑈∞,𝑚0  as the undisturbed wind mean velocity 
(assumed along x direction of world reference frame w.r.t.).  
𝑈∞,𝑚
0  is the mean of undisturbed wind velocities calculated on N points along blade length, whose 

distribution considers that elements at higher radii are more important in term of total aerodynamic 
torque. Similar considerations can be made about center of thrust. Figure (3.15) shows an example of 
distribution with N=4 points. 

Figure 3.14: Rapresentation of azimuth, tilt and precone angles (left), and rapresentation of forces per unit length acting at 
radius r of blade (bl) reference frame (right). 

Figure 3.15: Points at which wind speeds are computed (red) and center of thrust (green). 
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Here there are the expression of 𝑣w𝑖
, where 0 superscript indicates quantities are in w.r.t. coordinates. 

𝑣𝑐𝑡,𝑏𝑙𝑖
0  is center of thrust relative velocity of blade i, 𝑛𝑥,𝑏𝑙𝑖

0  is a versor parallel to x-direction of blade i 
reference frame and 𝛺 is rotor angular velocity. 𝑅ℎ𝑢𝑏   and 𝑅𝑐𝑡,𝑏𝑙𝑖 are hub radius and distance between 
blade root and blade center of thrust in z-direction of blade i reference frame. 

𝑣w𝑖
= (𝑈∞,𝑚

0 − 𝑣𝑐𝑡,𝑏𝑙𝑖
0 ) ⋅ 𝑛𝑥,𝑏𝑙𝑖

0          (3.86)         

       𝑣𝑐𝑡,𝑏𝑙𝑖
0 = {

�̇�
0
ℎ̇

} + 𝑅𝑦(𝑝) ∙ ({
0
�̇�
0

} ∧ 𝑟ℎ𝑢𝑏 
𝑤𝑡 ) + 𝑅𝑦(𝑝 + 𝑡𝑖) ⋅ ({

𝛺
�̇�
0

} ∧ 𝑅𝑦(𝑝𝑟) ⋅ {

0
0

𝑅ℎ𝑢𝑏 + 𝑅𝑐𝑡,𝑏𝑙𝑖

})       (3.87)        

With:      𝑅𝑦(∗) = [
cos ∗ 0 sin ∗
0 1 0

−sin ∗ 0 cos ∗
] 

 

Aerodynamic forces computation 
Once system (3.79) is improved with mentioned corrections, it can be iteratively solved to calculate, 
through integration along radius r (see Figure 3.14), forces and moment at blades root starting from 
infinitesimal normal and tangential forces. Forces and moment at blades root depend on actual 
undisturbed wind velocity, rotor angular speed and blade pitch. Below the expressions for a singular 
blade and an image showing an example of torque 𝑀𝑥𝑏𝑙(𝑣w𝑖

, Ω, 𝜃𝑏𝑙) for some values of 𝑣w𝑖
, Ω and 𝜃𝑏𝑙 . 

          𝐹𝑥
𝑏𝑙(𝑣w𝑖

, Ω, 𝜃𝑏𝑙 )  = ∫  
𝑅

0

𝑑𝐹𝑛(𝑟)                 (3.88)           𝑀𝑦
𝑏𝑙(𝑣w𝑖

, Ω, 𝜃𝑏𝑙) = ∫  
𝑅  

0

𝑟 ⋅ 𝑑𝐹𝑛(𝑟)           (3.90) 

          𝐹𝑦
𝑏𝑙(𝑣w𝑖

, Ω, 𝜃𝑏𝑙)  = ∫  
𝑅

0

𝑑𝐹𝑡(𝑟)                  (3.89)           𝑀𝑥
𝑏𝑙(𝑣w𝑖

, Ω, 𝜃𝑏𝑙) = ∫  
𝑅

0

− 𝑟 ⋅  𝑑𝐹𝑡(𝑟)       (3.91) 

Figure 3.16: Example of torque 𝑀𝑥
𝑏𝑙(𝑣𝑤𝑖 , 𝛺, 𝜃𝑏𝑙) for some values of 𝑣𝑤𝑖 , 𝛺 and 𝜃𝑏𝑙 
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Once forces and torques at blades roots for each blade are known, total torque applied on the hub and 
total forces and torques applied on the entire structure can be calculated. The first step is finding, for 
each blade, aerodynamic forces and torques expressed in the hub reference frame: 

𝐹𝑖
ℎ𝑢 = 𝑅ℎ𝑢−𝑏𝑙 ⋅ {

𝐹𝑥
𝑏𝑙𝑖

𝐹𝑦
𝑏𝑙𝑖

0

}                                                                   (3.92) 

𝑀𝑖
ℎ𝑢 = 𝑅ℎ𝑢−𝑏𝑙 ⋅ ({

𝑀𝑥
𝑏𝑙𝑖

𝑀𝑦
𝑏𝑙𝑖

0

} + {
0
0

𝑅ℎ𝑢𝑏

} ∧ {

𝐹𝑥
𝑏𝑙𝑖

𝐹𝑦
𝑏𝑙𝑖

0

})                       (3.93) 

        

                                         With:          −   𝑅ℎ𝑢−𝑏𝑙 = 𝑅𝑥(𝛼𝑖) ⋅ 𝑅𝑦(𝑝𝑟) 

                                                              −   𝛼𝑖 = 𝛼1 +
2

3
𝜋(𝑖 − 1) 𝑤𝑖𝑡ℎ  𝑖 = 1,⋯ , 𝐵 

                                                              −   𝑅0−𝑏𝑙𝑖 = 𝑅𝑦(𝑝 + 𝑡𝑖) ⋅ 𝑅𝑥(𝛼𝑖) ⋅ 𝑅𝑦(𝑝𝑟)  

 

So, total aerodynamic torque around hub x-direction is: 
 

𝐶aero = ∑  𝑖 𝑀𝑖,𝑥
hu      (3.94) 

 
While forces and torques around 𝑤𝑡 point, expressed in w.r.f. coordinates are: 
 

𝐹0 = 𝑅0−ℎ𝑢 ⋅ (∑  𝑖 𝐹𝑖
ℎ𝑢 )                                  (3.95) 

𝑀0 = 𝑅0−ℎ𝑢 ⋅ (∑  𝑖 𝑀𝑖
ℎ𝑢 ) + 𝑟ℎ𝑢𝑏

0 ∧ 𝐹0         (3.96) 

 

                          With:         𝑅o-hu = 𝑅𝑦(𝑝 + 𝑡𝑖),     𝑟ℎ𝑢𝑏
0 = 𝑅o-wt ⋅ 𝑟ℎ𝑢𝑏

wt  ,      𝑅o-wt = 𝑅𝑦(𝑝) 

 

𝑅𝑥(∗) = [
1 0 0
0 cos ∗ −sin ∗
0 sin ∗ cos ∗

],        𝑅𝑦(∗) = [
cos ∗ 0 sin ∗
0 1 0

−sin ∗ 0 cos ∗
] 

 

Finally, aerodynamic forces vector present in structure equation of motion is: 

𝐹aero = {

𝐹𝑥
0

𝐹𝑧
0

𝑀0
𝑦

}       (3.97) 
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3.1.1.4 FMooring 
FMooring in the generalized force vector containing forces and moment due to mooring lines action. 
During simulation of the system, they are computed thanks to pre-calculated results from an external 
software, called MAP (Mooring Analysis Program), designed to model static and dynamic forces of 
mooring systems ([14], [15]). It was developed by Marco Masciola with the National Renewable 
Energy Laboratory (NREL). 
In this paper, the implementation of a multisegmented, quasi-static (MSQS) mooring model is used. 
MSQS model is developed as an extension of a single-line element theory combining many individual 
catenary cables at common connection points. Once combined, static equilibrium is achieved when 
the connection point forces sum is zero. Figure below shows an example of mooring system with a 
line composed by 3 catenary elements and 4 nodes (node 1 is linked with seabed, while 3 and 4 with 
the floating platform).  

This model requires two different sets of equations to be solved. The first is the continuous catenary 
algebraic equations, while the second set checks if equilibrium is reached by compute the sum of 
forces at the connection nodes.  
 
First equations set are solutions to the common closed-form analytical equation for a single-line cable 
element hanging between two fixed points. Firsts of them are valid for a hanging cable that is not in 
contact with the seabed (case A in Figure 3.18). The horizontal l and vertical h fairlead displacement 
can be calculated knowing cable characteristics and nodes forces H and V: 
 

𝑙 =
𝐻

𝑊
[sinh−1 (

𝑉

𝐻
) − sinh−1 (

𝑉−𝑊𝐿

𝐻
)] +

𝐻𝐿

𝐸𝐴
                          (3.98) 

ℎ =
𝐻

𝑊
[√1+ (

𝑉

𝐻
)
2

− √1+ (
𝑉−𝑊𝐿

𝐻
)
2
] +

1

𝐸𝐴
(𝑉𝐿 −

𝑊𝐿2

2
)         (3.99) 

 

Figure 3.17: a) Example of mooring lines layout. b) Example of a multisegment mooring model of a line with 3 elemnts and 
4 nodes. 
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Lasts of them are valid for a cable in contact with the seabed (case B in Figure 3.18). The horizontal l 
and vertical h fairlead displacement can be calculated knowing cable and seabed characteristics and 
nodes forces H and V: 
 

𝑙 = 𝐿𝐵 +
𝐻

𝑊
sinh−1  (

𝑉

𝐻
) +

𝐻𝐿

𝐸𝐴
+
𝐶𝐵𝑊

2𝐸𝐴
[𝜇 (𝐿 −

𝑉

𝑊
−

𝐻

𝐶𝐵𝑊
) − (𝐿 −

𝑉

𝑊
)
2
]        (3.100) 

ℎ =
𝐻

𝑊
[√1+ (

𝑉

𝐻
)
2 

− 1] +
𝑉2 

2𝐸𝐴𝑊
                                                            (3.101) 

𝜇 = {
𝐿 −

𝑉

𝑊
−

𝐻

𝐶𝐵𝑊
     if (𝐿 −

𝑉

𝑊
−

𝐻

𝐶𝐵𝑊
) > 0

0     otherwise 
                                                     (3.102) 

 
 
Where:  
 

- H\HA: Horizontal fairlead\anchor force;  

- V\VA: Vertical fairlead\anchor force;  

- A: Cable cross-section line;  

- E: Young’s modulus;  

- g: Gravity acceleration;  

- ρcable: Cable density;  

 

- ρ: Fluid density;  

- L: Unstretched line length;  

- LB: Line length resting on the seabed;  

- CB: Seabed friction coefficient;  

- x0: Horizontal force transition point; 

- W: cable mass per unit length. 

 

Figure 3.18: A) Hanging cable. B) Cable in contact with seabed. 
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Second set of equations checks if each node is in an equilibrium condition; for this to happen, the sum 
of the tension forces of the elements connected to a node must equal the sum of the external forces 
applied to it. Equations for j-node are: 

𝐹𝑥
𝑗
=∑ 

𝑁

𝑖=1

𝐻𝑖cos 𝛼𝑖 − 𝐹𝑥𝑗
𝑒𝑥𝑡  <  𝜀                      (3.103) 

𝐹𝑦
𝑗
=∑ 

𝑁

𝑖=1

𝐻𝑖sin 𝛼𝑖 − 𝐹𝑦𝑗
𝑒𝑥𝑡 <  𝜀                        (3.104) 

𝐹𝑧
𝑗
=∑ 

𝑁

𝑖=1

𝑉𝑖 − 𝐹𝑧𝑗
𝑒𝑥𝑡 +𝑀𝑗𝑔 − 𝑔𝐵𝑗𝜌 <  𝜀        (3.105) 

 
Where:  
- N: Number of elements linked with node j; 

- Mj : Point mass applied to the j-node;  

- Bj : Displaced volume applied to j-node;  

- F ext: external force applied to j-node;  

- αi: Angle between i-element and global X direction.  

Once these equations are obtained, model of each mooring line can be solved iteratively for any 
structure position. The solution process begins by guess position of those nodes which isn’t linked with 
structure or seabed and then by evaluating the two continuous analytical catenary equations for each 
element based on l and h values obtained through node displacement relationships. An element is 
defined as the component connecting two adjacent nodes together.  

Once the element fairlead (H, V) and anchor (HA, VA) forces are solved at the element level, the forces 
are transformed from the local element frame into the global coordinate system. The force contribution 
at each element’s anchor and fairlead is added to the corresponding node it attaches to. Then thee 
force-balance equation is evaluated for each node, where 𝜀 is the convergence tolerance limit. Based 
on the error of Eq. (3.103 – 3.104), the node position is updated. As an outcome, the element forces 
must be recalculated, and the process begins again. When the solution is reached for all lines, forces 
of nodes linked with the structure are manipulated to obtain total force and moment acting on the 
structure, computed at a chosen point.  
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For this work, remembering the 3 d.o.f. assumptions, a certain number of combinations of surge, 
heave and pitch are chosen to obtain 𝐹x, 𝑴𝒐𝒐𝒓𝒊𝒏𝒈 , 𝐹z, 𝑴𝒐𝒐𝒓𝒊𝒏𝒈 and 𝑀y, 𝑴𝒐𝒐𝒓𝒊𝒏𝒈  acting at wt-reference 
frame center, then these result will be exploit, by interpolation, during the simulation to calculate 
mooring actions for any structure position 𝑿. 

 

𝑭𝑴𝒐𝒐𝒓𝒊𝒏𝒈 = {

𝐹x,𝑴𝒐𝒐𝒓𝒊𝒏𝒈 (𝑿)

𝐹z,𝑴𝒐𝒐𝒓𝒊𝒏𝒈 (𝑿)

𝑀y,𝑴𝒐𝒐𝒓𝒊𝒏𝒈 (𝑿)

} , 𝑿 = {  

𝑠𝑢𝑟𝑔𝑒
ℎ𝑒𝑎𝑣𝑒 
𝑝𝑖𝑡𝑐ℎ 

}        (3.106) 

 

Figure below shows mooring forces and moment with respect to structure displacements. Every 
component of interest is represented with respect to a motion mode keeping other displacements at 
their rest value.  

 

 

 

 

Figure 3.19: Mooring forces and moment with respect structure displacements. Every component of interest is represented 
with respect to a motion mode keeping other displacements at their rest value (surge=0 m, heave=0 m, pitch=0°). 
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3.1.2 Rotor equation 
 

In this section equation for fourth degree of freedom of the model is found. It is the rotational 
equilibrium equation around 𝑥 axis of hub reference frame. In this work we consider an ideal gearbox 
between generator and rotor shafts (unitary efficiency factor) and rigid and massless shafts. From 
figure (3.20) following relation can be write: 

𝐶aero − 𝐶𝑔𝑒𝑛,,𝑟𝑜𝑡 = 𝐼rot Ω̇𝑟𝑜𝑡            (3.107) 

𝐶𝑟𝑜𝑡,𝑔𝑒𝑛 − 𝐶𝑔𝑒𝑛 = 𝐼𝑔𝑒𝑛Ω̇𝑔𝑒𝑛           (3.108) 

  𝐼𝑒𝑞  =  𝐼𝑟𝑜𝑡 + 𝑁
2 ∙ 𝐼𝑔𝑒𝑛                      (3.109) 

 

With:  

- 𝐶aero : Aerodynamic torque around x- direction of hub reference frame (equation 3.82); 
- 𝐶𝑔𝑒𝑛,,𝑟𝑜𝑡: Internal torque from gearbox low speed shaft to rotor (same as 𝐶𝑟𝑜𝑡,𝑔𝑒𝑛); 
- 𝐼rot : Rotor moment of inertia (sum of hub’s and blades’ ones); 
- 𝐼𝑔𝑒𝑛: Generator rotor moment of inertia; 
- 𝑁: gearbox ratio, defined as 𝑁 = Ω𝑔𝑒𝑛 Ω𝑟𝑜𝑡  =  𝐶𝑔𝑒𝑛,𝑟𝑜𝑡 𝐶𝑟𝑜𝑡,𝑔𝑒𝑛 ⁄  ⁄ . 

 

Then, from equations (3.107–3.109), rotor angular acceleration can be expressed in term of 𝐼eq , 
𝐶aero (which depend on undisturbed wind speed field, rotor angular velocity, blade pitch angle and 
structure motion) and 𝐶′𝑔𝑒𝑛, defined as  𝐶′𝑔𝑒𝑛 = 𝑁 ∙ 𝐶𝑔𝑒𝑛 . 

 

Ω̇rot =
1

𝐼eq 
(𝐶aero − 𝐶

′
𝑔𝑒𝑛 )           (3.110) 

 

 

 

Figure 3.20: Free body diagram of rotor and generator shafts. 
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3.2 External Inputs 
 
In this section external inputs of the model are defined; they are wind speed field and excitation 
forces/moments due to incident waves. 
 

3.2.1 Wind 
 
System model receives as wind input the spatial distribution of wind undisturbed velocities along a 
spatial vertical grid whose origin is located at hub centre (see Figure 3.21). This grid is uniformly 
discretized with n points along z and y axis to obtain N=n x n total input velocities, which are obtained 
with TurbSim  [16], a stochastic, full-field, turbulent wind generator. It uses statistical models to 
calculate time series of a 3D wind field. In this work it is assumed presence of only speed component 
along surge axis (X in Figure 3.21), that is only U component is not null (which corresponds to 
undisturbed wind speed 𝑈∞ introduced in section (3.1.1.3), that, for simplicity, will no longer have 
subscript.  

 
U field depend on time, Y and Z and it is defined as the sum of a mean component 𝑈𝑚, function of 
only height Z, and a turbulent one, 𝑈𝑡: 
 

𝑼(𝑡, 𝑌, 𝑍) = 𝑼𝒎 (𝑍) + 𝑼𝒕 (𝑡, 𝑌, 𝑍)           (3.111) 
 
Mean speed component profile is calculated considering surface roughness and other factors, at swl it 
is null, then it increases with height until far-field value. It can be expressed, as suggested by Jonkman 
[17], by a power law, as a function of wind mean velocity at a reference height H and an exponent α: 
 

𝑼𝒎(𝑍)  =  𝑼𝒎(ℎℎ𝑢𝑏) ∙ (
𝑧 

ℎℎ𝑢𝑏
)
𝛼   

          (3.112) 
 
In this case exponent α=0.14, according to IEC 61400-3 [18] and assuming offshore wind turbine and 
hub height ℎℎ𝑢𝑏 is chosen as reference height. 
 

Figure 3.21: Example of 3D wind speed field on a grid lying on rotor plane. 
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Turbulent component 𝑼𝒕 (𝑡, 𝑌, 𝑍) is generated as a random signal in which its turbulence intensity 𝑇𝐼 is 
specified. Turbulence intensity is defined as  𝑇𝐼 = 𝜎 𝑈𝑚,𝐻𝑟⁄ , where σ is signal’s standard deviation 

(assumed equal for all points) and 𝑈𝑚,𝐻𝑟 is wind mean speed at a reference height Hr. Signal 
generation starts from this information and from choice of a spectrum type (for instance, Kaimal 
spectrum can be choose [19]), which determines the form of power spectral density (PSD) of the 
signal, related to signal power content at each frequency. Once PSD is obtained, Fourier transform of 
the signal is computed, also considering coherence spatial needs. As an example, two neighbouring 
points have more similar velocities than two points with high distance between each other. Moreover, 
other factors influence signal computation, for instance, low frequencies speed components are more 
correlated than high frequencies ones. Detailed information about turbulent wind speed computation 
can be find in TurbSim User’s Guide [16]. Figure 3.22 shows an example of wind field at a certain 
instant.  
Input of the treated model will be, at any time, a vector Uwind containing speed values of all grid points 
and their coordinates.  
 
 
 
 
 
 
 

Figure 3.22: A) Mean wind speed profile with respect to height. B) Example of wind speed field, Um is mean wind speed 
(red), while U is total wind speed,along x direction (blue). Black dots are locations of points at which velocitites are 

computed. 
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3.2.2 Waves 
 
External inputs related to waves action are forces and moment due to excitation velocity potential 
introduced in section 3.1.1.1, which considers incident and diffracted waves together. In this work 
irregular waves along surge direction are considered, that is all waves travel along x direction and their 
free surface elevation can take any form. In this case it is constructed from a linear superposition of N 
regular waves: 

𝜂(𝑡) =∑𝜂0𝑖 ⋅ cos (𝜔𝑖𝑡 − 𝑘𝑖𝑥 + 𝜑𝑖)

𝑁

𝑖=1

     (3.113) 

 
−   𝜔 ∶  𝑤𝑎𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑟𝑎𝑑/𝑠);                       −   𝜂0 ∶ 𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑚);

−   𝑘 ∶   𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟  (𝑚−1);                               −    𝜑 ∶  𝑝ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 (𝑟𝑎𝑑).  

According to Equation 3.33, the forces along x and z direction (surge and heave) and the torque 
around y direction (pitch) are defined as follows: 

𝑭𝑒𝑥𝑡(𝑡) = {

𝐹ext𝑥  (𝑡)

𝐹ext𝑧  (𝑡)

𝑀ext𝑦 (𝑡)
} = 𝑅𝑒[∑  𝑁1 𝜂0,𝑖 ∙ �̃�ext(𝜔𝑖) ⋅ 𝑒

𝑗(𝜔𝑖𝑡+𝜑𝑖)]       (3.114) 

Where �̃�ext(𝜔𝑖) is frequency dependent complex wave-excitation amplitude vector, which, as 
mentioned in section 3.1.1.1, is computed resolving the boundary value problem 3.12 with BEM solver 
NEMOH,[8]. 
Wave amplitude of each component is obtained from an energy spectrum which represent the energy 
content at different frequencies. If we define �̅� (J/𝑚2) as the wave energy per unit of surface area, 
omnidirectional energy spectrum S(f) (𝑚2𝑠) can be defined according to: 
 

𝐸

𝜌𝑔
= ∑  𝑖 �̅�𝑖/𝜌𝑔 = ∑  𝑖 𝑆(𝑓𝑖) ∙ Δ𝑓𝑖       (3.115) 

 

Where 𝑓𝑖 and Δ𝑓𝑖 are the i-frequency and its frequency range, while �̅�𝑖 is the energy per unit area 
associated to a single component. From Airy wave theory, �̅�𝑖 is: 

�̅�𝑖 =
1

2
𝜌 𝑔 𝜂0

2                   (3.116) 

So, wave amplitude of i-component can be expressed in term of energy spectrum: 

𝜂0𝑖 = √2 ∙ 𝑆(𝑓𝑖) ∙ Δ𝑓𝑖         (3.117) 

As mentioned above, we consider omnidirectional spectrum, which represent full energy content 
associated to unidirectional waves (in this case along surge direction). Moreover, to generate a no 
angular dependency (Gaussian) sea, phase angle of each component is chosen as a random value 
between 0 and 2π. 
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Many spectra can be used to compute wave elevation of an irregular sea condition, for example 
Pierson and Moskowitz one [20], who considers a fully-developed sea, that is waves reaches 
equilibrium with the wind after it has been blowing for a long time and over a wide area. To obtain the 
spectrum, they use measurements from accelerometers on British weather ships in the North Atlantic. 
Another spectrum, the one considered in this case, is the JONSWAP spectrum [21]. It assumes that 
sea is never fully developed, but it continues to develop through wave-wave interactions ever for long 
time and distance. JONSWAP spectrum S(f) is defined as: 

𝑆(𝑓) = 𝛼𝛾 ⋅
5

16
∙ 𝐻𝑠

2 ⋅
(2𝜋𝑓𝑝)

4

(2𝜋𝑓)5
⋅ 𝑒

−
5

4
∙(
𝑓

𝑓𝑝
)
−4

⋅ 𝛾𝑒
−
(𝑓−𝑓𝑝)

2

2𝜎2𝑓𝑝
2

        (3.118) 

 

With:    − 𝛼𝛾 = 1 − 0,287 ∙ 𝑙𝑜𝑔 (𝛾);               −  𝜎 = {
0,01 𝑖𝑓 𝑓 ≤ 𝑓𝑝
0,09 𝑖𝑓 𝑓 > 𝑓𝑝

 ;                     −  𝛾 = 3.3; 

            − 𝐻𝑠 = 4 ∙ √𝑚0;                                      −  𝑚𝑘 = ∑ 𝑓𝑖
𝑘𝑆(𝑓𝑖) ∙ 𝛥𝑓𝑖;                    

𝑁
𝑖=1 −  𝑇𝑝 = 1 𝑓𝑝⁄  

 
𝑇𝑝 is the peak period, at which energy density is the maximum, 𝐻𝑠 is the significant height, which is 
wave height a regular wave would have if all sea energy was associated to that wave. mk are the k-
moments of the spectrum, for instance, m0 is the total energy content per unit of area, density, and 
gravity acceleration. 

Figure below shows an example of JONSWAP spectrum with different values of peak period (Tp) and 
significant height (Hs). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.23: JONSWAP spectrum for some values of peak period (Tp) and significant height (Hs). 
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3.3 State space form of the model 
 
Once equations describing the floating wind turbine are obtained and once external inputs are defined, 
we can express the non-linear model equations in a compact form which will be useful in the next 
sections. It is a MIMO state space form, defined as: 
 

{ 
�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡))

𝒚(𝑡) = 𝑔(𝒙(𝑡), 𝒖(𝑡))
      (3.119) 

 
                           With:         𝒙 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, 𝛼, Ω, 𝒒𝑇

𝑅
}⊤ 

        𝒖 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤
 

        𝒗 = {𝑼wind 
𝑇 , 𝑭ext 

𝑇 }⊤ 

        𝒚 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, 𝛼, Ω, 𝑃}⊤ 
 

𝒙 is the states vector, composed by the four d.o.f. considered (surge, heave, pitch, and azimuth angle 
of the rotor), their derivatives, and qr (equation 3.43), which are the state vector of linear state space 
representation of convolution integral related to radiation damping term, part of hydrodynamics’ forces 
(section 3.1.1.1). u and v are inputs vectors. Two different vectors are defined to separate external 
inputs (v) and controlled input (u), which will be the inputs of the system defined by control unit.  
 

The controlled inputs are the torque electric generator exerts on the rotor, 𝐶gen 
′ , (defined in section 

3.1.2), and the collective pitch angle of the blades 𝜃𝑏𝑙. The external inputs are the undisturbed wind 
velocity vector Uwind (defined in section 3.2.1), and excitation forces vector Fext (defined in section 
3.2.2).  
 
Finally, output vector y is composed by elements of states vector and power output, computed as:   
𝑃 = 𝐶gen 

′ ∙ Ω. 
 

Considering above definitions, function 𝑓 is a vectorial function composed by 8+nqR scalar equations 
(nqR is radiation states’ number utilized for radiation damping convolution integral approximation). 
Inputs number is nx+nu+nv , with nx=8, nu=2 and nv=Ngrid+3, where Ngrid is the number of grid points at 
which wind speed data are provided). Equations 1,2,3 and 7 are simply in the form: �̇�  =  𝑑 𝑥(𝑡) 𝑑 𝑡⁄ , 
while equations 4,5,6 and 8 are structure and rotor relations found in the previous sections. 
Particularly, firsts three are vectorial structure equation 3.3 and last is rotor equilibrium 3.110. Vectorial 
equation g is composed by 9 scalar equations, with nx + nu inputs.  
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3.4 Simplified model 
 
In this section a simplified version of the previously obtained model is defined. As mentioned during 
the introductory part, in order to achieve the set objectives, it will be necessary to linearize the system 
model to obtain a set of LTI (linear Time Invariant) systems, each of which valid for certain parameter 
values specified by the choice of operational points around which the starting system is linearized. The 
simplifications that will be introduced are such as to obtain a model, again non-linear, but through 
which the computation and use of above mentioned LTI set is simplified. 
 
Simplifications made are: 
- Wind speed input: instead of having, as input, the wind speed for each point in a spatial grid, 

which would lead to a MIMO system with too many inputs, it was decided to consider only one 
speed data, e.g., the average speed (averaged over the grid points) or the speed relative to a 
certain point, e.g. at the hub. Once the speed has been chosen, it is considered to be constant 
along the entire grid. In system 3.120 it is named 𝑈𝑤𝑖𝑛𝑑,𝑚 since, in this case, mean speed is 
considered; 
 

- Azimuth state: Considering above approximation and considering rotor pitch inertia do not 
depend on azimuth angle, the latter only influences calculation of absolute speed of a certain point 
along blade, so relative speed between wind and the latter. As can be seen by comparing Figures 
3.33-3.35, considering or not the angular position of the rotor does not lead to great differences. 
Elimination of this state will lead to a simplification when linearizing the model, because it avoids 
having to consider numerous operating points at different azimuth values (since the sine and 
cosine functions, which appear in the model equations, are strongly non-linear, it would be 
necessary to divide one revolution into many angular segments). Furthermore, when the linear 
system used must be changed according to the current parameters, the elimination of this state 
leads to a reduction in the rate of change, making a certain linear model effective for a longer time; 

 
- Radiation damping: in order to reduce states’ number, so LTI set size and computation time, 

radiation damping forces and moment are neglected. This choice is made due to those actions are 
much smaller than other ones, i.e., excitation forces, since radiation damping is proportional to 
structure speed, which in this case, is limited. 

 
State space representation of simplified model is: 
 

{ 
�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡))

𝒚(𝑡) = 𝑔(𝒙(𝑡), 𝒖(𝑡))
       

 
 
 
 
 

 With:         𝒙 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω}⊤ 

                        𝒖 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤ 

                        𝒗 = {𝑈𝑤𝑖𝑛𝑑,𝑚 , 𝑭ext 
𝑇 }

⊤ 

                        𝒚 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω, 𝑃}⊤ 
 

 
(3.120) 
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3.5 Models validation 
 
In this section, a mostly qualitative validation of the previously obtained models will be carried out. To 
perform this, the behavior of the systems will be compared with a reference system. The latter is a 
non-linear, time domain numerical model for the simulation of offshore floating wind turbines, named 
MOST [23]. The model can evaluate the movement of the platform in six degrees of freedom, the 
power production and the loads acting on the blades. It is implemented in Matlab-Simulink 
environment using Simscape Multibody. The aerodynamics is modelled with BEM (Blade Element 
Momentum) theory and the hydrodynamics is modelled using WEC-Sim, a Simscape library 
developed by NREL and SANDIA [24].  
 
In other to compare the three model the same wind turbine and floating platform are considered, 
moreover, all inputs are equal, and the same control algorithm is adopted. Component characteristics 
are those mentioned in Section 2, whereas the controller used for validation is the Baseline controller 
described in Section 4. We do not focus here on the definition of the control algorithm as the main 
objective now is the comparison of the various systems, the important thing then being only that they 
all receive the same controlled input under the same conditions. 
 
MOST and not simplified non-linear model (named NL) receive as wind input velocities of each point 
of the spatial grid obtained from TurbSim (specifying mean velocity at hub position and turbulence 
intensity), as specified in section 3.2.1, while non-linear simplified model (named NLS) receives spatial 
mean of those speeds as unique wind data. Wave inputs are excitation forces/moments, equal for all 
model simulated, obtained, according with section 3.2.2, once spectrum type, peak period and 
significant height are specified. 
 
Figures below show time series of external inputs of simulations. 

Figure 3.24: Time series of 𝑈𝑤𝑖𝑛𝑑,𝑚 , spatial mean wind speed, obtained from TurbSim with hub temporal mean speed, 
𝑈ℎ𝑢𝑏,𝑚 =  9 𝑚/𝑠. 
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Figure 3.25: Time series of Fx,ext (wave excitation force along x direction), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 

Figure 3.26: Time series of Fz,ext (wave excitation force along z direction), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 

Figure 3.27: Time series of My,ext (wave excitation torque around y axis), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 
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Figures below show time some simulation result, that is time series of some of the output of the 
system described in section 3.3. Reported results are surge, heave, pitch, rotor angular speed and 
power output. 
 
 
 
 
 
 
 
 
 

Figure 3.28: Comparison between NL, NLS and MOST models, surge (m). 

Figure 3.29: Comparison between NL, NLS and MOST models, heave (m). 

 

Figure 3.30: Comparison between NL, NLS and MOST models, pitch (rad). 
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As can be seen from the comparative graphs, the full model, NL, and the MOST model fit quite well, 
larger differences, however, are found in the simplified model, although the trends can still be 
considered satisfactory for the objectives set. Among the approximations made to obtain the simplified 
model described in section 3.4, the one that most influences the results is the assumption of having an 
equal wind speed at every point in space. To demonstrate this, the following page shows the 
simulation output time series of pitch, rotor angular speed and power, having this time chosen a 
constant speed (in space) as wind input, for all three simulated models. With this assumption, both NL 
and NLS systems’ results fit well with MOST’s ones. 
 
 
 
 

Figure 3.31: Comparison between NL, NLS and MOST models, rotor angular speed Ω (rad/s). 

 

Figure 3.32: Comparison between NL, NLS and MOST models, output power (W). 
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Figure 3.33 Comparison between NL, NLS and MOST models with spatial constant wind speed, pitch (rad). 

Figure 3.34: Comparison between NL, NLS and MOST models with spatial constant wind speed, angular speed Ω (rad/s). 

 

Figure 3.35: Comparison between NL, NLS and MOST models with spatial constant wind speed, power P (W). 
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4 Wind Turbine Control 
In this section, the control of wind turbines will be discussed. First, the main objectives of the control 
unit will be identified, and then some of commonly used algorithms will be listed [25]. Next, some 
theoretical foundations will be taken up in order to study the main control strategies that can be used. 
Finally, two different control algorithms will be presented, which will then be compared with the MPC 
controller implemented in this work. 
 

4.1 Overview of Wind Turbine Controllers 
 
The control unit of a wind turbine has several tasks to perform, such as switching the system on or off 
according to wind conditions, safety functions or performance optimization. Regarding the first task 
mentioned, depending on the size and design of the turbine, there is a wind speed range outside 
which the system is turned off. If the wind speed is below the lower limit (cut-in speed), the system is 
stopped because the available power is too low and energy transformation becomes unprofitable. In 
the opposite case, when the wind speed is over the so-called cut-out speed, which would result in 
excessive loads, as an example, in most cases the blades are rotated to reduce the loads on the 
blades (basically, a very low angle of attack and thus low lift and drag forces are achieved. This 
position is called feathering). With regard to performance optimization, which is valid when the wind 
speed is in the useful range, various actuations can be used, such as varying the blade pitch angle 
(either individually or collectively), the torque of the electric generator or the yaw angle.  
Once the turbine and the generator have been designed, there is a rated power, beyond which it is not 
advisable to overtake because of generator overheating problems, as well as a maximum angular 
speed beyond which it would be dangerous to go because too high loads could occur. This rated 
power production, under design condition, is reached when wind blows at so called rated speed. 
When wind speed is smaller than it, principal goal of control unit is to maximize the power capture, 
while wind speed becomes grater, according with above, main task is to maintain power production 
and rotor angular speed at their rated values (more information about control strategies can be found 
in the next section). Moreover, other control objectives may exist, for instance offshore floating wind 
turbine should keep structure oscillations as low as possible. 
Most of installed wind turbine use classical Proportional-Integral-Derivative (PID) controller with 
constant gains or gain scheduled PID, which are controllers in which gains are made to vary according 
to system conditions. This type of control is useful when dealing with highly non-linear systems, as it is 
possible to adopt gain values adapted to the characteristics of the system when it is under certain 
conditions to always obtain an optimal control law. Despite their simplicity and robustness, these kinds 
of model have their limits, i.e., they are not suitable for MIMO systems, so they don’t work well with 
systems with many actuations. 
In addition to classical controllers, it is possible to rely on many innovative control strategies, such as 
algorithms based on optimization or prediction techniques. These are, for example, Linear Quadratic 
Gaussian (LQG) methods, which rely on knowledge of the system model to calculate an optimal 
control action once the system states have been estimated. Another example, similar to previous 
ones, are MPC controllers, which rely on knowledge of the model and the estimation of external inputs 
in order to find the optimal control trajectory within a certain time horizon.  
Other methods are becoming more widely available in wind turbine controls such as Neural Network 
(NN) and Fuzzy Logic (FL), or hybrid methods based on them, called Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS). 
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4.2 WT Design: Basic Concepts 
 
As already mentioned, maximizing the extracted power is the main objective of a wind turbine, as long 
as it remains within the prescribed limits with regard to, for example, loads on the structure or 
generator maximum permitted power. During turbine design, and in particular blades one, many 
decisions are made to achieve these objectives; quantities such as number of blades, their geometry 
or the twist angle are usually chosen at the design stage in order to obtain a good compromise 
between the various desired characteristics. To make some considerations on the subject, as well as 
to deal with the control of wind turbines, it is important to recall the expressions of the thrust and 
power coefficients and tip speed ratio TSR, introduced in section 3.1.13, where the aerodynamic 
forces on the blades are discussed. 

−  𝐶𝑇 = 
𝑇

1

2
 𝜌 𝐴𝐷𝑈∞

2
              −  𝐶𝑃 = 

𝑃
1

2
 𝜌 𝐴𝐷𝑈∞

3
            −  𝜆 =  𝑇𝑆𝑅 = 𝛺𝑅

𝑈∞
       (4.1) 

𝐶𝑇 is thrust force 𝑇 over maximum ideal one 1
2
 𝜌 𝐴𝐷𝑈∞

2 (thrust that would occur if the downstream 
wind speed were zero, i.e. all momentum was transferred to the rotor), 𝐶𝑃 is the output power P over 
the available wind power 1

2
 𝜌 𝐴𝐷𝑈∞

3. 𝑈∞ is the undisturbed wind speed, 𝐴𝐷 is the rotor area and ρ is 
the air density. 
From momentum theory [10], power coefficient ideal limit, called Betz limit, is 𝐶𝑃,𝑖𝑑  ≅  0.59. Introducing 
rotating wake effect (but still assuming other simplifications) it can be seen that 𝐶𝑃 tends to this limit for 
high values of TSR. Including other effect, some of them introduced in section 3.1.13, 𝐶𝑃 values 
decrease, as can be seen in Figure 4.1. It shows ideal 𝐶𝑃 and power coefficient values, with respect to 
design tip speed ratio, that can be reached in real turbines (𝜆d is the tip speed ratio at optimal working 
condition).  

Figure 4.1: Maximum CP coefficient with respect to design tip speed ratio 𝜆d for horizontal axis wind 
turbine with different number of blades and for some other types of wind turbines. 
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Most of HAWTs (horizontal axis wind turbines) have 3 blades. As can be seen in figure 4.1, they 
present higher maximum power coefficient than turbine with less blades, moreover, TSR range with 𝐶𝑃 
higher than a certain percentage of its maximum becomes smaller with higher number of blades. 
Another important factor is cost, for which there are often no more than three blades, despite some 
performance benefits. Regarding design tip speed ratio, an optimal value is chosen to maximize power 
as well as considering other factors, such as maximum tangential velocity. Very high tip speed can 
lead to erosion due to impact on dust or sand in the air, or to excessively high centrifugal loads. 
Furthermore, high speeds lead to high noise and vibrations, so typical range of design TSR for a three 
blades wind turbine is 𝜆𝑑 = 6 − 8.  
 
Once optimal TSR (design TSR) and blades’ number is chosen, from BEM theory (section 3.1.1.3), 
optimal blade features along its length (usually chord length and twist angle) can be computed to 
maximize performances when design TSR holds. Shortly, the aim is to have a constant angle of 
attack, which one leads to maximum value of CL/CD (with CL and CD lift and drag coefficient, see 3.70 
and 3.71), but actual blade shape is also influenced by structural and design purposes, such as 
connection with hub.  
 
Once turbine design is defined, actual power and thrust coefficients can be computed, through BEM 
theory. They are function of tip speed ratio (𝜆) and blade pitch angle (𝜃𝑏𝑙, we assume the same angle 
for each blade: collective pitch). Maximum value of power coefficient, which is the optimal/design 
value, is reached at design condition, that is design tip speed ratio and null blade pitch angle. 
 
An example of thrust and power coefficient, with respect to TSR and blade pitch angle, are shown in 
Figure 4.2; they refer to the wind turbine case of study presented in section 2. 
 

 
 

 

 

 

Figure 4.2: Example of real Cp and CT coefficient at different tip speed ratio (TSR) and collective blade pitch angle ( 𝜃𝑏𝑙 ). 
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4.3 Wind Turbine Control Strategies 
 
In this section some of the main control strategies used in wind turbine controls are introduced, all of 
them usually consist of yaw control module too, which will not be treated here, as well as emergency, 
cut-in/cut-off, or rotor braking ones. So, following information regard performance control, that is power 
optimization below rated conditions and rated power tracking above it; main strategies are: 
 
- Fixed-speed fixed-pitch: it is the simplest configuration, where it is impossible to improve 

performance during operations with active controls. In these turbines the generator is directly 
coupled with power grid since rotor speed is kept constant. Due to that, if wind speed varies, so 
does tip speed ratio and power coefficient. This means maximum power coefficient can be 
reached only at design wind speed. Regarding above rated wind speed condition, the so-called 
“stall passive control” occurs, through which power output is limited: with a wind speed increase, 
since rotor speed is constant, angle of attack increase too until stall is reached, with a decrease of 
lift and torque and an increase of thrust. This type of control is rarely used, particularly for big size 
wind turbines and not at all for offshore floating ones. 

 
- Variable-speed fixed-pitch: this configuration consists of a variable speed rotor/generator, so a 

frequency converter is needed to connect generator with power grid (it means more costs). 
Variable speed permits to keep the tip speed ratio constant (at its design value) to maximize power 
extraction in below rated wind conditions. Figure 4.3 shows power with respect to rotor angular 
speed, Ω, at different wind speed 𝑈𝑤𝑖𝑛𝑑 . Colored points are steady state conditions that can be 
reached thanks to rotor speed variation, while blue curve is optimal curve, representing 
convolution of these optimal working points. Then, to maximize power under nominal conditions, 
the generator torque is adjusted to reach the optimum speed. Above nominal conditions, on the 
other hand, the rotor speed is kept constant (thus having a similar behavior to the previous case) 
since, to have constant power equal to the nominal value, unacceptable rotor speeds would have 
to be reached. 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.3: Power production with respect to rotor angular speed Ω at different values of wind speed 𝑈𝑤𝑖𝑛𝑑. Optimal curve 
represent target working condition below rated wind speed for variable speed wind turbines.  𝛺𝑙𝑖𝑚,𝑖𝑛𝑓  and  𝛺𝑙𝑖𝑚,𝑠𝑢𝑝 are cut-in 
and rated rotor angular speed. 
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- Variable-speed variable-collective pitch: in this case control actions are generator torque and 
collective blade pitch angle (equal angle for each blade). Control strategies at below wind speed 
conditions are the same of previous category, since blade are kept at its rest position (design 
working point at null blade pitch). Above rated condition blade pitch is adjusted to track power 
production at its rated value. It ca be moved, to reduce power coefficient if wind speed increases, 
in both direction, increasing (stall) or decreasing (feather) angle of attack. In the first case 
sensitiveness is higher, so smaller angles are needed, but drag increases. On the other hand, in 
the second case, drag decreases with lift, but sensitiveness is smaller.  
 
In most cases, especially for traditional controller, generator torque is varied to track desired speed 
at below rated condition keeping constant the blade pitch angle (=0°), while blade pitch angle is 
controlled at above rated condition, keeping rotor speed constant at its rated value. With these 
actions it is theoretically possible to reach optimal trajectory, that is obtaining power maximization 
at below rated conditions and tracking rated one at above rated conditions (Opt. curve in Figure 
4.4).  
 
Figure 4.4 shows two plots with output power with respect to wind speed; in particular, first one 
shows three curves at different values of rotor speed (all with null blade pitch). In can be seen as 
wind speed increases, rotor speed for which power maximization occurs increases too. Red curve 
represents optimal one, obtained by reaching optimal rotor speed at each value of wind velocity. 
Second plot shows some curves at different values of blade pitch (all with rated rotor speed), 
through which it can be seen as wind speed increases (above rated one) blade pitch can be 
regulated to keep output power at its rated value.  
 

 
 
 
 

Figure 4.4: Output power at different values of rotor speed (left) and at different values of blade pitch (right). These graphs 
show control strategies adopted in variable-speed variable-pitch wind turbines to reach, at any wind speed condition, optimal 
power production, that is maximum one below rated wind and target one above rated wind speed (red curve). 
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- Variable-speed variable-individual pitch: this is an extension of the previous category. Despite 
optimal working condition can be theoretically reached also with collective blade pitch, the 
possibility of adjusting the various blades independently offers advantages in terms of reducing the 
loads on the blades and concerning the stability and oscillations of floating offshore wind turbines. 
Given the large number of controllable inputs, traditional controllers, often a combination of several 
SISO controllers, do not work well, which is why this strategy is more likely to be accompanied by 
more advanced controllers, which are designed to handle MIMO systems, such as model 
predictive controllers (MPC) or LQG ones. 

 
 
Figure below shows an example of three curves that represent normalized power with respect to wind 
speed of different control strategies. Particularly, control strategies showed are fixed-speed fixed pitch 
(FS-FP), variable-speed fixed pitch (VS-FP) and variable-speed variable pitch (collective pitch) (VS-
VP). In addition to being able to observe what has been explained above, it can be seen in cases with 
a fixed pitch, it is preferred to have a slightly lower power in the rated condition (in this case this is at 
wind speeds of around 15 m/s) in order not to exceed the maximum power when the wind speed is 
higher than the rated one. 

 
 
 
 

Figure 4.5: Relation between wind speed and output power for different control strategies: fixed-speed fixed pitch (FS-FP), 
variable-speed fixed pitch (VS-FP) and variable-speed variable pitch (collective pitch) (VS-VP). 
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4.4 Examples of Conventional Controllers 
 
In this section two different conventional controllers are presented; conventional controllers are those 
based on PID logic, possibly with some additional modules to improve performances. Specifically, the 
chosen ones are the Baseline controller, a well-known controller widely used in wind turbines, and the 
ROSCO controller (Reference Open-Source COntroller for fixed and floating offshore wind turbines), 
developed by researchers at the Delft University of Technology and presented in Mulders and van 
Wingerden (2018). 
 

4.4.1 Baseline Controller 
 
Baseline is a conventional variable-speed variable collective pitch controller [26], [27], which is made 
up of two independent systems: 
- A generator torque controller designed to maximize power extraction below nominal wind speed; 

 
- A blades collective pitch controller designed to regulate rotor and generator speed above nominal 

wind speed. 
This work does not include any further control for start-up, shutdown, safety and protection sequences 
or any nacelle-yaw regulation. Table 4.1 and Figure 4.6 show principal case of study wind turbine 
characteristics (IEA 15 MW, see Section 2 for more information) and a possible baseline control logic. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Parameter Value Unit 

Cut-in wind 
speed 3 m/s 

Rated wind 
speed 10.5 m/s 

Cut-out 
wind speed 25 m/s 

Rated rotor 
speed 7.56 rpm 

Drivetrain Direct 
drive - 

Rated 
torque 19.6 MNm 

Rated 
mechanical 

power 
15.5 MW 

Table 4.1: Main features of IEA 15 MW wind 
turbine. 

Figure 4.6: Baseline control scheme. 
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4.4.1.1 Generator-Torque Controller 
The generator-torque control law is designed to have three main regions and two transition ones 
between them. Aerodynamic torque acts as an accelerating load, the generator torque, converting 
mechanical energy to electrical energy, acts as a braking load. The generator torque is computed as a 
tabulated function of the filtered generator speed, incorporating 5 control regions: 1, 1.5, 2, 2.5 and 3. 
 
- Region 1: control region before cut-in wind speed, where the generator is detached from the rotor 

to allow the wind to accelerate the rotor for start-up. In this region, the generator torque is zero and 
no power is extracted from the wind; 
 

- Region 2: control region where extracted power is maximized. Here, to maintain the tip speed ratio 
constant at its optimal value, the generator torque is proportional to the square of the filtered 
generator speed. From definition of power coefficient (equation 4.1) aerodynamic torque can be 
expressed as: 

𝐶𝑎𝑒𝑟𝑜 =
1

2
 𝜌 π

𝑅5

𝜆3
𝐶𝑃  (𝜆, 𝜃𝑏𝑙) ∙  Ω

2  =  𝑘𝑜𝑝𝑡 ∙ Ω
2      (4.2)      

Where 𝑘𝑜𝑝𝑡 is obtained with TSR and blade pitch values that lead to maximum power coefficient 
(𝜆 = 𝜆𝑜𝑝𝑡  , 𝜃𝑏𝑙 = 0°); 

 
- Region 3: above rated condition region, where the generator torque is kept constant at its rated 

value. In this region pitch control is active to maintain rotor speed at its rated value. 
 
Regions 1.5 and 2.5 are transition region, the first one is called start-up region and permits a smooth 
transition between null torque and optimal one. Figure 4.7 shows control law of generator torque 
controller.  

Figure 4.7: Control law of generator torque controller. 𝛺 and 𝐶 ′𝑔𝑒𝑛 are, respectively, rotor angular speed and generator 
torque. Apex indicates torque on rotor shaft is considered (𝐶 ′𝑔𝑒𝑛 = 𝑁 ∙  𝐶𝑔𝑒𝑛 , see equation 3.110, but in this case, since a 
direct drivetrain is considered, N=1). 
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4.4.1.2 Blade-Pitch Controller 
As anticipated, the rotor-collective blade-pitch-angle regulates the generator speed in region 3 (where 
wind speed exceeds its rated value) to maintain it at its nominal value through a scheduled 
proportional-integral control (PI). The output of this PI-controller is used as reference pitch signal θref to 
the pitch system. The reference pitch angle θref is compared to the actual pitch angle θ and then the 
error ∆θ is corrected by the servomechanism. Scheduling is implemented to compensate the non-
linear aerodynamic characteristics. 
 
Rearranging equation 3.10, the equilibrium equation of the rotor around its axis of rotation obtained in 
section 3.2.1, we can write: 

𝐶aero − 𝐶
′
𝑔𝑒𝑛 =  𝐼eq Ω̇   (4.3) 

 
With  𝐶′𝑔𝑒𝑛 = 𝑁 ∙ 𝐶𝑔𝑒𝑛 and  𝑁 = Ω𝑔𝑒𝑛 Ω𝑟𝑜𝑡   ⁄ . The case study we refer to considers a direct drivetrain, 
so N=1. Due to this, we will omit apex.  
 
 
In region 3 generator torque is kept constant at its rated value, defined as 𝐶𝑔𝑒𝑛,𝑟 =  𝑃r / Ωr . 
Aerodynamic torque 𝐶aero depends on wind speed, rotor speed and blade pitch (section 3.1.1.3), but 
assuming in this region rotor speed maintains its rated value Ωr (this assumption can be made since 
the control objective is to track that value) and assuming power to wind speed sensitivity can be 
neglected, following expression holds: 
 

𝐶aero ≈ 𝐶aero (𝑈𝑤𝑖𝑛𝑑,0 , Ω𝑟  , 𝜃𝑏𝑙,0) +
𝑑𝐶aero (𝑈𝑤𝑖𝑛𝑑 ,   Ω,   𝜃𝑏𝑙)

𝑑𝜃𝑏𝑙
| 𝜃𝑏𝑙=𝜃𝑏𝑙,0
𝑈𝑤𝑖𝑛𝑑=𝑈𝑤𝑖𝑛𝑑,0

Ω=Ω𝑟

(𝜃𝑏𝑙 − 𝜃𝑏𝑙,0) =  

                      = 𝑃(𝑈𝑤𝑖𝑛𝑑,0 ,  Ω𝑟 ,   𝜃𝑏𝑙,0)

Ω𝑟
+

1

Ω𝑟

𝑑𝑃(𝑈𝑤𝑖𝑛𝑑 ,   Ω,   𝜃𝑏𝑙)

𝑑𝜃𝑏𝑙
| 𝜃𝑏𝑙=𝜃𝑏𝑙,0
𝑈𝑤𝑖𝑛𝑑=𝑈𝑤𝑖𝑛𝑑,0

Ω=Ω𝑟

(𝜃𝑏𝑙 − 𝜃𝑏𝑙,0)           (4.4) 

𝑈𝑤𝑖𝑛𝑑,0 and 𝜃𝑏𝑙,0 are wind speed and blade pitch at which linearization is made. Once first is chosen, 
𝜃𝑏𝑙,0 is which one leads to a steady state condition with extracted power equal to the rated one. So, 
aerodynamic torque expression becomes: 

𝐶aero ≈ 
𝑃𝑟

Ω𝑟
+

1

Ω𝑟

𝑑𝑃

𝑑𝜃𝑏𝑙
Δ𝜃𝑏𝑙         (4.5) 

Where ∆θbl represents a small perturbation of the blade pitch angle about its linearization point 𝜃𝑏𝑙,0  
(zero in this case).  
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By expressing the blade-pitch regulation starting from the speed perturbation with a proportional-
integrative control law (PI), it is possible to write: 

Δ𝜃𝑏𝑙 = 𝐾𝑃 ΔΩ + 𝐾𝐼 ∫  
𝑡

0
ΔΩ 𝑑𝑡     (4.6) 

Where 𝐾𝑃 is the proportional gain and 𝐾𝐼 the integrative gain; ΔΩ represents a small perturbation of 
rotor speed about its rated value: ΔΩ =  (Ω − Ω𝑟). 
By inserting equations (4.5), (4.6) and 𝐶𝑔𝑒𝑛,𝑟 =  𝑃r / Ωr   into the equation (4.3), it is possible to obtain, 
once defined ΔΩ =  �̇�, the following relation: 

𝑃𝑟

Ω𝑟
+

1

Ω𝑟

𝑑𝑃

𝑑𝜃𝑏𝑙
(𝐾𝑃�̇� + 𝐾𝐼𝛿) −

𝑃𝑟

Ω𝑟
= 𝐼𝑒𝑞�̈�       (4.7) 

Which can be rearranged as: 

𝐼𝑒𝑞 �̈� + [−
𝑑𝑃

𝑑𝜃𝑏𝑙

𝐾𝑃

Ω𝑟
] �̇� + [−

𝑑𝑃

𝑑𝜃𝑏𝑙

𝐾𝐼

Ω𝑟
] 𝛿 = 0    (4.8) 

That in the canonical form becomes: 

𝑀�̈� + 𝐶�̇� + 𝐾𝛿 = 0                (4.9)              

 

With:                               𝑀 = 𝐼𝑒𝑞 ,               𝐶 = [− 𝑑𝑃

𝑑𝜃𝑏𝑙

𝐾𝑃

Ω𝑟
],               𝐾 = [− 𝑑𝑃

𝑑𝜃𝑏𝑙

𝐾𝐼

Ω𝑟
] 

 
Now it is possible to choose proportional and integral gains in order to obtain desired characteristics of 
second order system 4.9. Its characteristics directly depend on natural frequency and damping ratio: 

𝜔𝑛 = √
𝑀

𝐾
  ,      𝜁 =

𝐶

2𝑀𝜔𝑛 
        (4.10) 

 

Once defined 𝜔𝑛 and 𝜁, expressions of proportional and integral gains become: 
 

𝐾𝑃 =
2 𝐼𝑒𝑞 𝜔𝑛  𝜁 Ω𝑟

−
𝑑𝑃

𝑑𝜃𝑏𝑙

        (4.11) 

 

𝐾𝐼 =
𝐼𝑒𝑞 𝜔𝑛

2  Ω𝑟

−
𝑑𝑃

𝑑𝜃𝑏𝑙

               (4.12) 
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The term 𝑑𝑃
𝑑𝜃𝑏𝑙

 is power to pitch sensitivity, which, as can be seen in equation 4.4, depends on wind 
speed and blade pitch (related each other as previously mentioned) adopted during linearization. So, 
to always have the same system characteristic (𝜔𝑛 and 𝜁), proportional and integral gains must vary 
with a variation of blade pitch and so of wind speed.  
Figure 4.8 shows power to pitch sensitivity with respect to blade pitch; as can be seen there, it can be 
well approximated with a quadratic regression, through which quadratic form that minimize sum of 
square error is computed. Thanks to this regression, power to pitch sensitivity expression becomes of 
the form: 

𝑑𝑃

𝑑𝜃𝑏𝑙
 ≈  𝑐1𝜃𝑏𝑙

2 + 𝑐2𝜃𝑏𝑙 + 𝑐3    (4.13) 

 
𝑑𝑃

𝑑𝜃𝑏𝑙
 is the power to pitch sensitivity and c1 (W/𝑑𝑒𝑔3), c2 (W/𝑑𝑒𝑔2) and c3 (W/𝑑𝑒𝑔) are the coefficients 

of its quadratic regression. 
 

 
 
 
 
 
 
 
 
 

Figure 4.8: Power to pitch sensitivity 𝑑𝑃
𝑑𝜃𝑏𝑙

 with respect to blade pitch 𝜃𝑏𝑙. Blue points are true values at 
several 𝜃𝑏𝑙 (and 𝑈𝑤𝑖𝑛𝑑 ), while red curve is their quadratic regression. 
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4.4.2 ROSCO Controller 
In this section main features of ROSCO controller are introduced; ROSCO controller (Reference 
Open-Source COntroller for fixed and floating offshore wind turbines) was developed by researchers 
at the Delft University of Technology [28] to provide a modular reference wind turbines controller that 
represent industry standards and performs comparably or better than existing reference controllers, 
such as baseline, discussed in previous section. Reference controllers commonly cited in literature 
have been developed to work with specific turbines, so they are difficult to modify for use on other 
turbines, while this controller has been developed to provide a reference from which also non-control 
engineers can deal with, starting from few information (substantially main geometric characteristics 
and power coefficient curve). The primary functions of the controller are still to maximize power in 
below-rated operations and to regulate rotor speed in above-rated ones, moreover, it also provides 
additional modules which can improve control performances. Figure 4.9 shows a block diagram of 
ROSCO logic where flow of input and output signals through its various modules can be seen. 

 

4.4.2.1 Control Regions 
ROSCO controller, as well as Baseline and most of other conventional ones, consists of two methods 
of actuation: generator torque and collective blade pitch. Strategies of actuation are commonly 
separated into four main regions, with transition logic between them. Regions 1 and 4 correspond to 
below cut-in and above cut-out wind speed conditions, these regions are generally out of interest for 
standard control purposes (performances optimization) and so they will not be further discussed 
below. In region 1 generator torque is set to zero to allow the wind to accelerate the rotor for start-up. 
In this region, no power is extracted. In region 4 blades are pitched to reduce thrust force to zero 
(feathering position). 
 
 

Figure 4.9: Block diagram showing ROSCO logic: blue squares represent generator torque and blade pitch controllers, while 
orange ones represent various additional (and optional) modules. Yellow squares are filters (LPF means Low-Pass filter), 
whose primary function is smoothing input signals. Input and output signals of different modules are: �̇�𝑡 (tower-top fore–aft 
velocity), β (collective blade pitch angle), ωg (generator speed), τg (generator torque),  βfloat (floating controller’s contribution 
to the blade pitch angle), βmin (minimum blade pitch angle), 𝑣 (estimated wind speed) and △ω (controller reference set point 
shifting term from the set point smoother). 
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Control strategies for regions 1.5, 2, 2.5 and 3 are highly like those ones adopted in Baseline control. 
Region 2 is when wind speed is below rated condition, here main goal is power extraction 
maximization. To do so, two methods can be used, a quadratic low (as in Baseline controller) of 
generator torque with respect to rotor angular speed or a tip speed ratio (TSR) tracking to maintain the 
latter at its optimal value (in this case a wind speed estimator is needed). Region 3 is when wind 
speed is above rated condition, blade pitch is regulated to maintain rotor speed at its rated value and 
to stabilize platform (for offshore floating wind turbines, through floating feedback module), while 
generator torque is kept constant at its rated value. Region 1.5 is a transition region from cut-in wind 
speed and region 2. Here generator torque is regulated to maintain a defined minimum rotor speed 
and blades are pitched to compensate resulting high values of TSR to improve power extraction. 
Region 2.5 is simply a linear transition between regions 2 and 3, reason why it is not depicted in 
Figure 4.10, which represents the values of inputs and some important outputs with respect to wind 
speed (steady state values) that summarize the strategies just explained. 

Figure 4.10: Steady state values of main input/output ROSCO controller signals with respect wind speed. Showed quantities 
are: P (extracted power), Ω (rotor speed), Cgen (generator torque), TSR (tip speed ratio), 𝜃𝑏𝑙 (blade pitch angle) and thrust 
force.  
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4.4.2.2 ROSCO Implementation 
Controller implementation starts from aerodynamic torque (𝐶𝑎𝑒𝑟𝑜) expression and rotor equilibrium 
equation, as in Baseline controller. Rearranging 4.2 and 4.3 following equations can be written: 
 

𝐶𝑎𝑒𝑟𝑜 =
1

2
 𝜌 𝐴𝐷  𝐶𝑃 (𝜆, 𝜃𝑏𝑙) 

𝑈∞
3 

Ω
       (4.14)    

 
    Ω̇ = 𝐶aero − 𝐶

′
𝑔𝑒𝑛

𝐼eq 
                          (4.15) 

 
With  𝐶′𝑔𝑒𝑛 = 𝑁 ∙ 𝐶𝑔𝑒𝑛 and  𝑁 = Ω𝑔𝑒𝑛 Ω𝑟𝑜𝑡   ⁄ . The case study we refer to considers a direct drivetrain, 
so N=1. Due to this, we will omit apex. Ω̇ is the rotor angular acceleration, 𝐼eq is the rotor inertia, 𝜌 is 
the air density, 𝐴𝐷 is the rotor area, Cp is the power coefficient (defined in eq. 4.1) and 𝑈∞ is the wind 
undisturbed wind speed. 
 
The first-order linearization of eq 4.14 at some nominal steady-state operational point is: 
 

Δ𝐶𝑎𝑒𝑟𝑜 = ΓΩ|
 
𝑜𝑝 ΔΩ + Γ𝜃𝑏𝑙|

 
𝑜𝑝 Δ𝜃𝑏𝑙 + Γ𝑈|

 
𝑜𝑝 Δ𝑈         (4.16) 

 

With:        ΓΩ|
 
𝑜𝑝 = ∂𝐶𝑎𝑒𝑟𝑜/ ∂Ω |

 
𝑜𝑝,      Γ𝜃𝑏𝑙|

 
𝑜𝑝 = ∂𝐶𝑎𝑒𝑟𝑜/ ∂𝜃𝑏𝑙  |

 
𝑜𝑝,       Γ𝑈|

 
𝑜𝑝 = ∂𝐶𝑎𝑒𝑟𝑜/ ∂𝑈 |

 
𝑜𝑝          (4.17) 

 
“op” denotes the steady-state operational point at which linearization is made. Equation 4.15 can then 
be rewritten as (Δ denotes the perturbation from steady state value “op” and 𝑿op = {𝜆op, 𝜃𝑏𝑙op}): 

 

ΔΩ̇ = 𝐴(𝑿op)ΔΩ + 𝐵𝐶𝑔𝑒𝑛Δ𝐶𝑔𝑒𝑛 + 𝐵𝜃𝑏𝑙(𝑿op)Δ𝜃𝑏𝑙 +𝐵𝑈(𝑿op )Δ𝑈     (4.18) 

 

With:                                     𝐴(𝑿op) =
1

𝐼eq 

∂𝐶𝑎𝑒𝑟𝑜

∂𝜆

∂𝜆

∂Ω
                                                 (4.19) 

                  ∂𝐶𝑎𝑒𝑟𝑜
∂𝜆

=
1

2 
𝜌𝐴D𝑅𝑈op

2 1

𝜆op
2 (

∂𝐶p

∂𝜆
𝜆op − 𝐶p,op)                    (4.20) 

                  ∂𝜆
∂Ω
=

𝑅

𝑈op
,  (𝜆 = 𝛺𝑅

𝑈
)                                                      (4.21) 

                  𝐵𝐶𝑔𝑒𝑛 = −
1

𝐼eq 
                                                               (4.22) 

                  𝐵𝜃𝑏𝑙(𝑿op) = 1

2 𝐼eq 
𝜌𝐴D𝑅𝑈op

2 1

𝜆op
2 (

∂𝐶p

∂𝜃𝑏𝑙
 𝜆op)                   (4.23) 

 

All derivatives are calculated at “op” values; Δ𝑈, difference between actual wind speed and wind speed 
at linearization point, is considered equal to zero during control tuning, that is computation of control 
gains. 
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Both generator torque and blade pitch controllers are PI controllers, generically defined as: 

𝑦 = 𝐾𝑃𝑢 + 𝐾𝐼 ∫  
𝑇

0
𝑢 d𝑡       (4.24) 

Where 𝑢 represents the input and 𝑦 the output, while 𝐾𝑃 and 𝐾𝐼 are respectively the proportional and 
integral gains. Generator torque controller has input and output: 

𝑢 = −𝛿Ω ,   𝑦 = Δ𝐶𝑔𝑒𝑛       (4.25) 

Blade pitch controller has input and output: 

𝑢 = −𝛿Ω,   𝑦 = Δ𝜃𝑏𝑙          (4.26) 

𝛿Ω is defined as a perturbation from the reference speed: 

Ω(𝑡) = Ωref + 𝛿Ω⟶ −𝛿Ω = Ωref −Ω(𝑡)                                 (4.27) 

While Δ𝐶𝑔𝑒𝑛 and Δ𝜃𝑏𝑙 are perturbations from steady state values: 

𝜃𝑏𝑙(𝑡) = 𝜃𝑏𝑙op 
+ Δ𝜃𝑏𝑙 ,     𝐶𝑔𝑒𝑛(𝑡) = 𝐶𝑔𝑒𝑛op + Δ𝐶𝑔𝑒𝑛                  (4.28) 

Now, defining ∆Ωref = Ωref −Ω𝑜𝑝  (assumed =0, since “op” point is chosen at a steady state condition 

with Ω𝑜𝑝 = Ωref ), we can combine equation 4.18 with above definitions to obtain a differential equation 
that relates ∆Ω = Ω− Ω𝑜𝑝 and ∆Ωref . Then, it we take the Laplace transform of this equation we arrive 
to two closed-loop transfer functions (one for the generator torque module and the other for the blade 
pitch one) in the form: 
 

𝐻(𝑠) =
∆Ω(𝑠)

∆Ωref(𝑠)
=

𝐵(𝐾𝑃(𝑿op)𝑠+𝐾𝐼(𝑿op))

𝑠2+(𝐵 𝐾𝑃(𝑿op)−𝐴(𝑿op))𝑠+𝐵𝐾𝐼(𝑿op)
       (4.29) 

 
Where 𝐵 is 𝐵𝐶𝑔𝑒𝑛  or 𝐵𝜃𝑏𝑙 ,depending on which module is considered, since when generator torque loop 
is considered, Δ𝜃𝑏𝑙 is set to zero and, when blade pitch loop is considered, Δ𝐶𝑔𝑒𝑛 can be equal to zero 
or 𝐵𝐶𝑔𝑒𝑛 can be englobed in 𝐴. Moreover, in both cases we consider Δ𝑈 = 0. 

𝐻(𝑠) is a simple second order system whose characteristics are strictly related to natural frequency 
and damping ratio of its canonical form. They can be defined, in order to reach desired performance, 
choosing values of proportional and integral gains. If we call 𝜔𝑛 the natural frequency and 𝜁 the 
damping ratio, 𝐾𝑃 and 𝐾𝐼 expressions (varying with operational steady state point) are: 
 

𝐾𝑃 =
1

𝐵(𝑿op)
(2𝜁𝜔𝑛 + 𝐴(𝑿op))      (4.30) 

𝐾𝐼 =
𝜔n
2

𝐵(𝑿op)
                                   (4.31) 
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Once transfer function of generator torque and blade pitch closed loop has been defined, and once 
way through which PI controllers’ gains are computed has been explored, we can focus, specifically, 
on the two different modules to investigate the reference speed signals adopted and how the 
scheduling of gains is performed, varying according to the conditions in which the system is. 
 

4.4.2.3 Generator Torque Controller 
Four different generator torque controllers are available in ROSCO, they are the possible combination 
between two methods for below wind speed operations and two methods for above wind speed 
conditions.  
 
Regarding below rated operations, to maximize extracted power at each wind condition, a quadratic 
low of generator torque with respect to rotor angular speed can be adopted. In this section we omit 
exploitation of this method since is the same adopted in Baseline controller (see equation 4.2). 
Alternatively, a tip speed ratio tracking to maintain TSR at its optimal value can be adopted. If the wind 
speed can be measured or estimated accurately, a generator torque controller can be designed to 
maintain the λopt and maximize power capture, so reference rotor angular speed becomes: 

Ωref𝜏 =
𝜆opt Û

𝑅
            (4.32) 

Where subscript 𝜏 indicates the reference speed of torque controller and �̂� is the estimated wind 
speed provided by wind estimator (one of the additional ROSCO modules). From equations 4.19, 
4.22, 4.30 and 4.31, it can be seen than integral gain 𝐾𝐼 of generator torque controller is constant, 
whereas 𝐴, so proportional gain 𝐾𝑃, are both dependent on U (wind speed). However, it was found 
that fixing 𝐾𝑃  = 𝐾𝑃 (U = Urated) does not negatively affect power production. 
 
 
Regarding the two existing methods for above rated conditions, first of them considers a constant 
generator torque, defined as: 

𝐶𝑔𝑒𝑛,𝑎𝑟(𝑡) =  𝐶𝑟𝑎𝑡𝑒𝑑 =
𝑃rated 

Ωrated
     (4.33) 

Where subscript “𝑎𝑟” means “above rated”.  
On the other hand, second strategy considers a constant extracted power equal to its rated value, so 
generator torque is defined as: 
 

𝐶𝑔𝑒𝑛,𝑎𝑟(𝑡) =
𝑃rated 

Ω
       (4.34) 
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4.4.2.4 Blade Pitch Controller 
Main goal of blade pitch controller is keeping rotor angular speed at its rated value, so reference 
speed is (both in below rated and above rated conditions): 

Ωref ,𝜃𝑏𝑙 = Ωrated    (4.35) 

Where subscript 𝜃𝑏𝑙 means we refer to blade pitch controller. In below rated conditions, generator 
speed is lower than rated value, so −𝛿Ω = Ωref −Ω >  0 and, since gains are normally negative, 𝜃𝑏𝑙 is 
saturated at its minimum value, defined by an additional module of ROSCO controller which will be 
discussed later. According to equations 4.31 and 4.32, to find controllers gain values, 𝐵𝜃𝑏𝑙(𝑿op) and 
𝐴(𝑿op) should be computed. They change for any operation point at which system is linearized, so 
they are function of 𝑿op = {𝜆op, 𝜃𝑏𝑙op}. Linearization point can be the optimal steady state values 
chosen during strategy definition (i.e. those showed in Figure 4.10), for which there is a unique 
relationship between 𝜆op and 𝜃𝑏𝑙op. For this reason, 𝐵𝜃𝑏𝑙  and 𝐴 can be expressed with respect to 
𝜃𝑏𝑙op, so gains’ values are scheduled with 𝜃𝑏𝑙   as parameter. 

 

4.4.2.5 Additional Control Modules 
In this section principal additional modules are briefly discussed to understand their functions and how 
they modify control output; for more information it is possible to consult [28]. They are: 
 
- Wind speed estimator: This module estimates wind sped used for TSR tracking in the generator 

torque controller. Employed algorithm is based on a continuous-discrete Kalman filter, which 
exploits system model (equations 4.4 and 4.5), a wind auto regressive model and other 
information, like covariance matrices based on the expected wind field or measure ’s confidence of 
rotor speed to estimate a mean wind speed across rotor area at each time. 

 
- Set Point Smoothing: Generator torque and blade pitch controllers will normally conflict with each 

other in near-rated operation due to incompatible reference rotor speed. To avoid this, a set point 
smoother can be employed; it shifts the speed reference signal of the inactive controller while the 
active one works. As an example, at above rated condition torque controller is the inactive one and 
vice versa. If TSR tracking were to be adopted for the torque generator, then the reference speed 
at high wind speeds would be higher than the one actually wanted (rated one), so the smoother 
brings the reference towards the rated speed and the resulting torque approaches the rated one, 
the one actually intended by adopting a constant torque strategy under above conditions. 

 
- Minimum pitch Saturation: This module defines a minimum value of blade pitch angle which will 

be used as a saturation limit during control operations. It mainly modifies expected blade pitch 
values in region 1.5 and near rated conditions and leads to two effects: 
 
- Peak shaving: Near rated condition thrust value reaches the highest values, since below rated 

wind speed is lower and above rated condition blade pitching reduces that force. So, to limit 
loads, minimum pitch module imposes not null pitch angles also below rated wind speed, near 
that value. 
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- Power maximization in low wind: In region 1.5, as mentioned in control region section, a 
minimum value of rotor speed is imposed, so at low wind speeds TSR deviates far from its 
optimum value. To compensate this fact and to increase power coefficient value in this 
condition, blade pitch is led to be greater. 
 
 

- Floating offshore wind turbine feedback: this module is though for FOWTs (Floating Offshore 
Wind Turbines) and introduces a new term in the PI blade pitch controller, which becomes: 

Δ𝜃𝑏𝑙 = − 𝑘p 𝛿Ω − 𝑘i ∫ 𝛿Ω 
𝑇

0
 d𝑡 +  𝑘𝜃𝑏𝑙,𝑓𝑙𝑜𝑎𝑡 

 �̇�𝑡     (4.36) 

Additional term is tower-top velocity �̇�𝑡 multiplied by 𝑘𝜃𝑏𝑙,𝑓𝑙𝑜𝑎𝑡 
 gain. The latter is chosen from a 

manipulation of rotor equilibrium equation and structure pitch equation, in which expression of 
thrust and power coefficients compare. The aim is to find gains’ value that reduces rotor angular 
acceleration to tower speed sensitivity in order to mitigate structure pitch effect on rotor 
aerodynamic torque. This expedient increases the average extracted power and stabilizes the 
structure.  
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5 Model Predictive Control 
 
In this section an advanced method of control which has had a great impact and development over the 
thirty lasts years. It has so far been applied manly in chemical and petrochemical industry, but it is 
currently being used in several other sectors. This control family is named MPC (Model Predictive 
Control) and comes from optimal control theory; its operation is based on the knowledge of the 
mathematical model of the system to be controlled and the calculation of the control actions that allow 
the system to evolve in such a way as to achieve certain objectives. Typically, an MPC controller uses 
the model to calculate the controlled inputs which allow a certain cost function (depending on them) to 
be minimized, also taking into account the possibility of having limits on the control actions or system 
outputs provided by the mathematical model.  
In the next sections, an overview of the main features of MPC controllers will be presented, with a brief 
discussion of the advantages and disadvantages compared to other types of control, then the main 
MPC algorithms will be listed, trying to understand when the use of one rather than other types is 
recommended and how they work. Finally, a particular case of MPC control will be discussed in detail 
(linear time invariant MPC controller), so that the next chapter, in which an MPC controller for 
controlling a wind turbine will be implemented and tested, can be addressed. 
 
 

5.1 MPC: an overview 
 
The main ingredients of an MPC algorithm are: 
- Process model:  MPC controllers exploit knowledge of the model of the system to be controlled to 

be able to predict its performance and, based on this, to obtain a control law that best achieves the 
set goals. The model of the system can be obtained in different ways, e.g., it is possible to obtain it 
from knowledge of the physical laws governing the phenomena under consideration, or it is 
possible to obtain a black-box model from experimental data.  
 

- Input, output, and state constraints: MPC controllers can deal with constrained control 
problems, and it is therefore possible to foresee, when calculating optimal control actions, limits 
both in the control actions and in the states and outputs of the system to be controlled. 
 

- Cost function: In order to quantify the goodness of the actions imposed by the controller, a cost 
function is normally defined, dependent on them. It must then be minimized to find the optimal 
values of the control actions (controller output and controlled system input). 
 

- Prediction and Control horizon: MPC control is based on prediction of system behaviour to 
compute control action which optimizes it. In particular a forecast within a certain time frame, 
called prediction horizon, is taken into account, moreover, an MPC control can generate, at every 
instant, a control strategy that covers a certain time frame, called control horizon. This means that 
it is possible to predict the control action for that time such as to optimize the response of the 
system within the prediction horizon. The control horizon can be equal to the prediction one or less 
(assuming constant control actions in the remaining time).  
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In principle, it is therefore possible to carry out the numerical optimization at time intervals equal to 
the prediction horizon. Despite this, the so-called receding horizon algorithm is often adopted, in 
which the optimization is carried out at each time step and only the first result of the calculated 
sequence are imposed as control actions. This technique, although leading to a greater use of 
calculation capacity, often allows a more successfully targets tracking because it mitigates 
possible discrepancies between the system outputs predicted by the model and the actual ones. 
 

- Optimisation algorithm: Once the cost function and constraints (if these exist) have been 
defined, the optimisation problem is fully formulated. It must then be solved using a specific 
algorithm, chosen according to the type of problem being handled. There are several algorithms 
that are useful for this purpose and some of them will be presented below. 

 
Figure 5.1 shows some described features of an MPC control algorithm with a SISO (Single-Input 
Single-Output) system; we now pay attention to a certain time instant k, the red line represents the 
reference trajectory of the single output considered. It is defined for the entire prediction horizon and is 
the target to be aimed at. The control signals applied in the instants preceding k and the values 
measured in the past of the system output are shown in blue and orange, respectively. Instead, the 
light-blue and brown curves are, respectively, the value of the control quantity (defined for the whole 
control horizon, but constant from control horizon end to predicted horizon one) resulting from the 
optimization carried out at instant k. The result of the optimization is a finite number of values of the 
control action, each of which is constant for a certain time period, called sample time, which is the time 
step with which the input data are updated and with which the subsequent optimizations are 
interspersed in the receding horizon algorithm case. This discrete subdivision is mainly due to the 
need to have a finite number of unknowns (control actions) and due to this nature of operation of MPC 
controllers in most cases they deal with discrete-time models. 

 
 

Figure 5.1: A basic working principle scheme of a discrete-time Model Predictive 
Control. 
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MPC controllers have had a great development and are chosen on several occasions because they 
have some characteristics that make them very competitive when compared to other types of control, 
such as traditional PID. Now that working principle has been understood, the main advantages and 
disadvantages compared to traditional controllers can be listed and quickly commented on. The main 
advantages can be summarized in: 
 
- Intuitive basic idea behind MPC algorithms (basically main goal is simply track plant output to a 

desired value finding optimal control action thanks to model system knowledge) and simple tuning. 
 
 

- An optimal control strategy can be calculated to achieve some desired plant output values, which 
is a feature that conventional control such as PID ones doesn’t have. As we have seen in section 
4, PID controllers can be tuned to have a desired closed-loop control dynamic, possibly by 
scheduling gains, but in any case, it is not possible to impose specific targets on the outputs of the 
plant to be controlled. 
 
 

- Possibility to deal with black-box system models, which permits an MPC algorithm implementation 
also without knowing physics equation that describe the plant. 
 

 
- Output constraints in the formulation of the control problem. For example, this option is not 

possible with other simpler controllers that are based on optimal control (for example LQR, Linear 
Quadratic Regulator, or LQG, Linear Quadratic Gaussian, controllers), as well as it is not possible 
in traditional controllers such as PID ones. Furthermore, considering the control actions constrains 
during optimization problem resolution eliminates problems linked with wind-up effect, since 
saturations of control signal are not ideally needed. 
 

 
- Presence of constrains in the optimization problem permits to work near limit conditions. If the 

desired control action is outside the imposed limits, the actual action will most likely be close to 
these limits, causing system performance to be often maximized, usually better than what could be 
achieved with classic controllers. 
 

 
- MPC is more convenient to use for Multiple-Input Multiple-Output (MIMO) systems than PID 

controllers because it is easily compatible with MIMO plants unlike PIDs where a lot of effort is 
needed to design flows where certain outputs of the system influence certain inputs. Actually, they 
are designed precisely to deal with this type of system, if then the system considered is SISO 
(Single-Input Single-Output) it will only be a matter of simplification of a MIMO. 
 

 
- Robust MPC controller can be implemented. During real operation, plant or measurements 

disturbances can exist, so model prevision and output measurement can be subjected to errors; 
MPC controller can be implemented considering this fact in order to obtain a so-called robust 
control, thank to statistical information about above mentioned disturbances. Moreover, MPC can 
exploit prevision of plant disturbances to improve control actions; to do so estimation and 
forecasting tool are needed. 
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Although there are many advantages to using MPC controllers rather than other types, there are also 
some disadvantages, which will be briefly described below. They are: 
 
- Problems related to the complexity in solving the constrained optimisation problem and thus to the 

high computational demand. This is the main problem usually encountered when dealing with this 
type of algorithm. However, this problem can be mitigated through certain measures, for example, 
it is possible to reduce the complexity of the model or to reduce the number of constraints. Another 
possibility is to reduce the control and prediction horizons, or to place a maximum limit on the 
number of iterations used during the optimisation procedure.  
 
If after trying these measures an effective compromise has not been found, a good idea would be 
to use a special type of MPC controller, called explicit MPC. Using the latter, it is not necessary to 
solve the optimisation problem online, but it is solved offline for a number of situations (dictated by 
the system's operating conditions) by obtaining the corresponding control strategies. During the 
system's operation, then, depending on the operating conditions, the results calculated offline will 
be applied when the system was in conditions similar to these. This technique allows a reduction in 
the computing power required during online operations, at the expense of more memory required 
to store offline results. 

 
- As seen above, MPC controllers are based on the model of the system, in most cases this model 

is expressed in the state space form, and to solve the optimisation problem, knowledge of the 
states of the system at each instant is required. In general, it is possible that the information 
regarding certain states is not available due to the lack of instruments to measure these states, 
which could be a disadvantage when using this type of controller. Usually, to overcome this 
drawback, estimators are used that exploit knowledge of the system's model and available 
measurements to evaluate quantities not known a priori. A frequently used estimation algorithm for 
this purpose is the Kalman filter, which will be discussed in detail (one of its many versions) later.  

 
 
Once basic concept of MPC controls and their main advantages and disadvantages are presented, we 
can make a simple classification of main types of MPC controller, also to understand the vastity of 
possible variation from the same idea. Since, as we have just seen, computational time is an important 
issue, the simplest version of MPC algorithm is usually used, in particular, it considers a linear state 
space model of the system, with linear constraint (both equality and inequality constraints can be 
implemented) and a simple form of cost function, i.e. a linear or a quadratic form. However, several 
times highly non-linear plant are involved, so it is difficult to deal with a linear model to control the 
system because that model may not represent well the plant.  Moreover, sometimes more complicated 
constrains or cost function are needed, so different model predictive control algorithm should be used.  
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A few types of MPC controllers will be described below, but it should be noted that there are many 
different variants not mentioned, not least because it is difficult to make a proper classification of this 
type of controller, since what they have in common is only their basic operating principle (technically, 
any control algorithm that uses the system's model to predict its behaviour in order to achieve optimal 
control can be placed in this category). The prominent types are as follows: 
- Linear-Time-Invariant (LTI) MPC: This is an MPC used to control linear plant dynamical systems 

with linear constraints and quadratic (or linear) cost functions. This is the simplest and widely used 
type, it is often used also with plant with non-linearities, as long as they are not too accentuated 
and in this case it is possible to linearize the non-linear model of the system in a suitable point. 
Discrete-time linear systems are often used, but it is also possible to implement MPC controllers 
that are based on continuous systems, even though the controller output continues to have a 
discrete nature. 
 

- Adaptive MPC: This MPC is used for highly non-linear plant models with linear constraints and 
linear or quadratic cost functions. The plant model is linearized at each point of interest in an MPC 
cycle so that a LTI MPC can be used to control this linearized model. This LTI model only works 
well at that particular operating point, so linearization of the system must be done at each time 
step (this considerably increase online computational time). The structure of the optimization 
problem, i.e. the number of states and constraints, remain the same at each operating point. 

 
- Gain-scheduled MPC: With this method, the non-linear system model is linearized offline to 

obtain several LTI MPC controller, each one valid in a particular condition. In this case each model 
may have its own unique number of states and constraints. When running, a switching algorithm is 
used to select the appropriate MPC at each time step, this consumes a lot more memory than 
previous MPC types since multiple MPCs are stored in memory, but it may be computationally less 
expensive since several operations are performed offline. 

 
- Non-Linear MPC: This MPC is used for nonlinear plant models with nonlinear cost functions and 

nonlinear constraints. As such, optimization is usually non-convex with many local optima and a 
global minimum difficult to find. Solving this optimization problem requires advanced optimization 
algorithms, which require high computational efforts, without the certainty of finding an optimal 
solution that leads to a stable and effective control of the system. 

 
As above mentioned, several other variants of MPC algorithm exist; as an example, in the next 
chapter an hybrid form between adaptive and gain-scheduled MPC will be implemented. 
 
In the next section simplest MPC version (LTI MPC) will be widely described to obtain an MPC 
problem solution, also describing some optimization algorithms, which can be exploited for the wind 
turbine MPC control implementation, main objective of this work. 
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5.2 Linear Time Invariant (LTI) Model Predictive Control 
 
In this section the simplest form of MPC, based on linear time invariant plant model, linear constrains 
and quadratic cost function, will be described in order to understand how a model predictive control 
works and how it can be implemented. Methods and solutions obtained here will be then used to 
implement an MPC control for an FOWT (Floating Offshore Wind Turbine) in the next chapter of this 
thesis.  
LTI MPC control exploits a linear model of the system, so it works well with systems whose differential 
equations governing it are linear or have slight non-linearities, such that its behaviour can be 
effectively approximated by a linear system obtained by linearising the starting non-linear model. In 
this section Multiple-Input Multiple-Output (MIMO) systems expressed in a state space form are 
considered, given that this mode of representation works well with MIMO systems, moreover, the MPC 
controller studied will be based on discrete systems, given the simplicity of treatment that follows and 
the good compatibility with MPC logic, which is discrete by nature.  
At first, the system model and cost function will be defined, and then the solution will be found if no 
constraints of any kind are present. In a second step, the case with constraints will be dealt with, in 
which some methods used to solve the constrained optimisation problem will be briefly described. 
 

5.2.1 Plant Model 
 
In this section plant’s discrete state space model which is used in the MPC algorithm will be derived. 
As starting point, we define the linear continuous state space model: 
 

{  
�̇�𝒎(𝑡) = 𝑨𝑚,𝑐 𝒙𝒎(𝑡)  + 𝑩𝑚,𝑐 𝒖𝒎(𝑡)

𝒚𝒎(𝑡) = 𝑪𝑚,𝑐 𝒙𝒎(𝑡) +  𝑫𝑚,𝑐 𝒖𝒎(𝑡)
          (5.1) 

 
Where 𝒙(𝑡), 𝒖(𝑡) and 𝒚(𝑡) are, respectively, the state, input, and output vectors. Assuming 𝒙 ∈  ℝn x 1, 
𝒖 ∈  ℝm x 1 and  𝒚 ∈  ℝq x 1, then 𝑨m,c ∈  ℝn x n, 𝑩m,c ∈  ℝn x m, 𝑪m,c ∈  ℝq x n and 𝑫m,c ∈  ℝq x m. 
Subscripts 𝑚 and 𝑐 indicates we are referring to model of the system in the continuous form. 
Moreover, due to the principle of receding horizon control, where a current information of the plant is 
required for prediction and control, we have implicitly assumed that the input cannot affect the output 
at the same time. Thus, 𝑫m,c  = 0 in the plant model and solution of the system is: 

 

{ 
𝒙𝒎(𝑡) = 𝑒

𝑨𝑚,𝑐 (𝑡−𝑡0) 𝒙𝒎(𝑡0) + ∫  
𝑡

𝑡0
𝑒𝑨𝑚,𝑐 [𝑡−𝜏] 𝑩𝑚,𝑐 𝒖𝒎(𝜏)𝑑𝑡

𝒚𝒎(𝑡) = 𝑪𝑚,𝑐 𝒙𝒎(𝑡)                                                                        
        (5.2) 

 

Where 𝑒𝑨𝑚,𝑐 𝑡 is defined as: 

𝑒𝑨𝑚,𝑐 𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +

1

3!
𝐴3𝑡3 +⋯        (5.3) 
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To obtain the discrete form of model state space, we define t0= 𝑘𝑇 and 𝑡 = (𝑘 + 1)𝑇, where 𝑇 is the 
sample time such that: 𝒙𝒎𝑘 = 𝒙𝒎(𝑘𝑇) , 𝒖𝒎𝑘 = 𝒖𝒎(𝑘𝑇)  and 𝒚𝒎𝑘 = 𝒚𝒎(𝑘𝑇). With these definitions we 
can write: 
 

𝒙𝒎((𝑘 + 1)𝑇) = 𝑒
𝑨𝑚,𝑐 𝑇 𝒙𝒎(𝑘𝑇) + ∫  

(𝑘+1)𝑇

𝑘𝑇

𝑒𝑨𝑚,𝑐 [(𝑘+1)𝑇−𝜏] 𝑩𝑚,𝑐 𝒖𝒎(𝜏)𝑑𝜏    (5.4) 

 

Here we assume 𝒖(𝑡) is constant along the sample time 𝑇, the discretization coming from this 
assumption is called ZOH (zero order hold). For information, there are other types of discretization, 
such as the one proposed by Euler, bilinear discretization or first order hold discretization, which 
assumes a linear variation of the input along time 𝑇. With this assumption and defining 𝜆 =  𝜏 − 𝑘𝑇, 
equation 5.4 becomes: 

𝒙𝒎
𝑘+1 = 𝑒𝑨𝑚,𝑐 𝑇  𝒙𝒎

𝑘 + ∫  
T

0
𝑒𝑨𝑚,𝑐 [𝑇−𝜆] 𝑩𝑚,𝑐 𝑑𝜆 ⋅  𝒖𝒎

𝑘   (5.5) 

 

Changing variables again to 𝜏 =  𝑇 − 𝜆 yields finally: 
 

𝒙𝒎
𝑘+1 = 𝑒𝑨𝑚,𝑐 𝑇  𝒙𝒎

𝑘 + ∫  
T

0
𝑒𝑨𝑚,𝑐 𝜏  𝑩𝑚,𝑐 𝑑𝜏 ⋅  𝒖𝒎

𝑘         (5.6) 

 

Now we can define discrete form of matrices 𝑨𝑚,𝑐  and 𝑩𝑚,𝑐 : 

 

𝑨𝑚,𝑑 = 𝑒
𝑨𝑚,𝑐 𝑇                                           (5.7) 

𝑩𝑚,𝑑 = ∫  
T

0
𝑒𝑨𝑚,𝑐 𝜏  𝑩𝑚,𝑐 𝑑𝜏                 (5.8) 

 
Finally, by these definitions we can write the discrete state space form of plant model, with 
discretization time 𝑇 such that 𝒙𝒎𝑘 = 𝒙𝒎(𝑘𝑇) , 𝒖𝒎𝑘 = 𝒖𝒎(𝑘𝑇) and 𝒚𝒎𝑘 = 𝒚𝒎(𝑘𝑇): 
 

{  
𝒙𝒎

𝑘+1 = 𝑨𝑚,𝑑 𝒙𝒎
𝑘  + 𝑩𝑚,𝑑  𝒖

𝑘

𝒚𝒎
𝑘 = 𝑪𝑚,𝑑 𝒙𝒎

𝑘       (5.9) 

 

Whit 𝑪𝑚,𝑑 = 𝑪𝑚,𝑐  , since output equation is a non-dynamic equation. 
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Once discrete state space model is obtained, it can be augmented to arrive at the so-called 
augmented system, which has an embedded integrator, useful, for control purposes, for those 
systems that do not already have this feature within them. From equation 5.9, since it is valid at each 
time, following expressions can be write: 

𝒙𝒎
𝑘 = 𝑨𝑚,𝑑 𝒙𝒎

𝑘−1  +  𝑩𝑚,𝑑  𝒖𝒎
𝑘−1     (5.10) 

 
Now, defining: 

Δ𝒙𝒎
𝑘+1 = 𝒙𝒎

𝑘+1 − 𝒙𝒎
𝑘                   (5.11) 

Δ𝒖𝒎
𝑘+1 = 𝒖𝒎

𝑘+1 −  𝒖𝒎
𝑘                 (5.12) 

Δ𝒚𝒎
𝑘+1 = 𝒚𝒎

𝑘+1 − 𝒚𝒎
𝑘                  (5.13) 

 
And subtracting 5.9 and 5.10, we arrive to: 

Δ𝒙𝒎
𝑘+1 = 𝒙𝒎

𝑘+1 − 𝒙𝒎
𝑘 = 𝑨𝑚,𝑑 (𝒙𝒎

𝑘 − 𝒙𝒎
𝑘 − 1) + 𝑩𝑚,𝑑 (𝒖𝒎

𝑘 −  𝒖𝒎
𝑘 − 1)                                 (5.14) 

Δ𝒙𝒎
𝑘+1 = 𝑨𝑚,𝑑 Δ𝒙𝒎

𝑘 + 𝑩𝑚,𝑑 Δ𝒖𝒎
𝑘+1                                                                                        (5.15) 

 

In order to relate the output 𝒚𝒎𝑘+1 to the state variable Δ𝒙𝒎𝑘 and 𝒚𝒎𝑘, we deduce that: 
 

𝒚𝒎
𝑘+1 = 𝒚𝒎

𝑘 + Δ𝒚𝒎
𝑘+1 = 𝒚𝒎

𝑘 + 𝑪𝑚,𝑑  Δ𝒙𝒎
𝑘+1 = 𝒚𝒎

𝑘 + 𝑪𝑚,𝑑 𝑨𝑚,𝑑 Δ𝒙𝒎
𝑘 + 𝑪𝑚,𝑑 𝑩𝑚,𝑑 Δ𝒖𝒎

𝑘    (5.16) 

 

Finally, we define state and output vectors of the augmented system (𝒙 and 𝒚) as: 

𝒙𝑘 = [Δ𝒙𝒎
𝑘𝑇  𝒚𝒎

𝑘𝑇]
𝑇
   (5.17) 

𝒚𝑘 = 𝒚𝒎
𝑘                      (5.18) 

 
From equations obtained above, following relations can be written: 
 

𝒙𝑘+1 = [
Δ𝒙𝒎

𝑘+1

𝒚𝑘+1
] = [

𝑨𝑚,𝑑 𝐙

𝑪𝑚,𝑑 𝑨𝑚,𝑑 𝑰
 ] ∙ [

Δ𝒙𝒎
𝑘

𝒚𝑘
] + [

𝑩𝑚,𝑑 
𝑪𝑚,𝑑 𝑩𝑚,𝑑 

] ∙ Δ𝒖𝒎
𝑘    (5.19) 

𝒚𝑘 = [𝒁 𝑰 ] ∙ [
Δ𝒙𝒎

𝑘

𝒚𝑘
]                                                                           (5.20) 

 
Where 𝑰 is the identity matrix with dimensions q×q, which is the number of outputs; and 𝒁 is a n×q 
zero matrix in equation 5.19 and a q×n zero matrix in equation 5.20.  
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Rewriting equations 5.19 and 5.20 in a more compact form, augmented system is: 

{  
𝒙𝑘+1 = 𝑨 𝒙𝑘  +  𝑩 Δ𝒖𝑘

𝒚𝑘 = 𝑪 𝒙𝑘
      (5.21) 

 
Where following definitions hold: 

𝑨 = [
𝑨𝑚,𝑑 𝐙

𝑪𝑚,𝑑 𝑨𝑚,𝑑 𝑰
 ] , 𝑨 ∈  ℝ(n+q) x (n+q)           (5.22) 

𝑩 =  [
𝑩𝑚,𝑑 

𝑪𝑚,𝑑 𝑩𝑚,𝑑 
] , 𝑩 ∈  ℝ(n+q) x m                    (5.23) 

𝑪 =  [𝒁 𝑰 ] , 𝑪 ∈  ℝq x (n+q)                             (5.24) 

𝒙𝑘 = [Δ𝒙𝒎
𝑘𝑇  𝒚𝒎

𝑘𝑇]
𝑇
, 𝒙𝑘 ∈  ℝ(n+q) x 1              (5.25) 

Δ𝒖𝑘 =  Δ𝒖𝒎
𝑘 ,  Δ𝒖𝑘 ∈  ℝm x 1                            (5.26) 

𝒚𝑘 = 𝒚𝒎
𝑘 , 𝒚𝑘 ∈  ℝq x 1                                       (5.27) 

 
 

5.2.2 Prediction of the Outputs 
Once mathematical model of the system is formulated, the next step in designing an MPC is to 
calculate the predicted output, with the control signals as variables, within the prediction horizon. It is 
defined as 𝐻𝑝 =  𝑇 ∙ 𝑁𝑝, where 𝑇 is the discretization time (corresponding to sample time used to 
obtain discrete model from continuous one) and 𝑁𝑝 is the size of prediction window. On the other 
hand, control horizon is the horizon within control variables are defined; it is defined as 𝐻𝑐 =  𝑇 ∙ 𝑁𝑐, 
where 𝑁𝑐 is the size of control window (equal or smaller than 𝑁𝑝). Furthermore, we assume that the 
control variables remain constant over the time span between the control and prediction horizons, so, 
remembering relation 5.26, Δ𝒖  is set to zero over this time. 

Remembering relations 5.26 and 5.27, we define future control trajectory vector 𝛥𝑼 and future output 
trajectory vector 𝒀 as: 

Δ𝑼 = [Δ𝒖𝑘
𝑇
, Δ𝒖𝑘+1

𝑇
, …  , Δ𝒖𝑘+𝑁𝑐−1

𝑇]
𝑇
, Δ𝑼 ∈  ℝ (𝑁𝑐∙ m) x 1   (5.28) 

𝒀 = [𝒚𝑘+1
𝑇
, 𝒚𝑘+2

𝑇
, …  , 𝒚𝑘+𝑁𝑝

𝑇]
𝑇
 , 𝒀 ∈  ℝ (𝑁𝑝∙ q) x 1                 (5.29) 

Where k indicates the instant at which the optimization is done; here we assume the state vector 𝒙𝑘 , 
which describes the plant information, is available through measurements. The more general situation 
where the state is not directly measured will be discussed later. 
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From state space form of the augmented system defined in 5.21, the future state variables can be 
calculated as follow: 

𝒙𝑘+1 = 𝑨 𝒙𝑘  +  𝑩 Δ𝒖𝑘 

𝒙𝑘+2 = 𝑨 𝒙𝑘+1  +  𝑩 Δ𝒖𝑘+1 = 𝑨2𝒙𝑘 +𝑨𝑩 Δ𝒖𝑘 +𝑩 Δ𝒖𝑘+1                                    (5.30) 
⋮ 

𝒙𝑘+𝑁𝑝 = 𝑨𝑁𝑝𝒙𝑘 +𝑨𝑁𝑝−1𝑩 Δ𝒖𝑘 +𝑨𝑁𝑝−2𝑩 Δ𝒖𝑘+1 +⋯+ 𝑨𝑁𝑝−𝑁𝑐𝑩 Δ𝒖𝑘+𝑁𝑐−1 
 
From the predicted state variables, the predicted output variables are: 

𝒚𝑘+1 = 𝑪𝑨 𝒙𝑘  +  𝑪𝑩 Δ𝒖𝑘 

𝒚𝑘+2 = 𝑪𝑨 𝒙𝑘+1  +  𝑪𝑩 Δ𝒖𝑘+1 = 𝑪𝑨2𝒙𝑘 + 𝑪𝑨𝑩 Δ𝒖𝑘 + 𝑪𝑩 Δ𝒖𝑘+1                             

𝒚𝑘+3 = 𝑪𝑨3𝒙𝑘 + 𝑪𝑨2𝑩 Δ𝒖𝑘 + 𝑪𝑨𝑩 Δ𝒖𝑘+1                                                                          (5.31) 

⋮ 

𝒚𝑘+𝑁𝑝 = 𝑪𝑨𝑁𝑝𝒙𝑘 + 𝑪𝑨𝑁𝑝−1𝑩 Δ𝒖𝑘 + 𝑪𝑨𝑁𝑝−2𝑩 Δ𝒖𝑘+1 +⋯+ 𝑪𝑨𝑁𝑝−𝑁𝑐𝑩 Δ𝒖𝑘+𝑁𝑐−1 
 

All predicted variables are formulated in terms of current state variable information 𝒙𝑘 and the future 
control movement Δ𝑼; collecting 5.28, 5.29 and 5.31 we can write the output vector as: 
 

𝒀 = 𝑭 ∙ 𝒙𝑘 +𝚽 ∙ Δ𝑼    (5.32) 
 
Where matrices 𝑭 and 𝚽 are defined as: 
 

𝑭 =

[
 
 
 
 
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

⋮
𝑪𝑨𝑵𝑷]

 
 
 
 

                (5.33) 

 

𝚽 =

[
 
 
 
 

 

𝑪𝑩 0 0 … 0
𝑪𝑨𝑩 𝑪𝑩 0 … 0
𝑪𝑨𝟐𝑩 𝑪𝑨𝑩 𝑪𝑩 … 0
⋮

𝑪𝑨𝑵𝑷−𝟏𝑩 𝑪𝑨𝑵𝑷−𝟐𝑩 𝑪𝑨𝑵𝑷−𝟑𝑩 … 𝑪𝑨𝑵𝑷−𝑵𝒄𝑩

 

]
 
 
 
 

      (5.34) 

 
 

Matrix 𝑭 has dimension qNp × n and 𝚽 has dimension qNp × mNc. 
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5.2.3 Cost Function 
 
The main objective of an MPC control is to find components of the control vector U such that a cost 
function is minimised. The cost function is usually defined in such a way as to consider both the output 
target and the control input target, i.e. the output signals must be as close as possible to the target 
and the rate of change of the control action must be as small as possible, in order to reduce energy 
requirements and actuator wear. 
A possible cost function may be defined as: 

𝐽 =
1

2
 [ (𝑻𝒀 − 𝒀)

𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝒀) + Δ𝑼
𝑇 ∙ 𝑾Δ𝑼 ∙ Δ𝑼]                     (5.35) 

 

With:                        Δ𝑼 = [Δ𝒖𝑘𝑇, Δ𝒖𝑘+1𝑇, …  , Δ𝒖𝑘+𝑁𝑐−1𝑇]
𝑇
, Δ𝑼 ∈  ℝ (𝑁𝑐∙ m) x 1           (5.36) 

𝒀 = [𝒚𝑘+1
𝑇
, 𝒚𝑘+2

𝑇
, …  , 𝒚𝑘+𝑁𝑝

𝑇]
𝑇
 , 𝒀 ∈  ℝ (𝑁𝑝∙ q) x 1                          (5.37) 

𝑻𝒀 = [ 𝒕
𝑘+1𝑇, 𝒕𝑘+2

𝑇
, … , 𝒕𝑘+𝑁𝑝

𝑇
 ]
𝑇
,   𝑻𝒀 ∈ ℝ

 (𝑁𝑝∙ q) x 1                           (5.38) 

 

Vectors t are target vectors (∈ ℝ 𝑞 x 1) for each time step within prediction horizon, while matrices 𝑾𝒀 
(∈ ℝ (𝑁𝑝∙ q) x (𝑁𝑝 ∙ q)) and 𝑾Δ𝑼 (∈ ℝ (𝑁𝑐∙ m) x (𝑁𝑐 ∙ m)) are diagonal weight matrices through which different 
importance can be given to different targets or inputs rate of change. 
 

5.2.4 Solution Without Constraints 
 
Once a cost function is defined and the prediction of system outputs is computed, we can obtain the 
solution of the optimization problem, that is the control action vector Δ𝑼 which minimize the cost 
function. We will initially focus on solving the relatively uncommon unconstrained problem, in which 
there are no conditions to be fulfilled in terms of output or control actions, and then concentrate in 
detail on the problem with constraints. 
 
By making some substitutions in relation 5.35, in particular, by inserting definitions 5.32, 5.33 and 
5.34, the cost function can be expressed as follows: 

𝐽 =
1

2
 [ (𝑻𝒀 − 𝑭 ∙ 𝒙

𝑘 −𝚽 ∙ Δ𝑼)
𝑇
∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙

𝑘 −𝚽 ∙ Δ𝑼) + Δ𝑼𝑇 ∙ 𝑾Δ𝑼 ∙ Δ𝑼]        (5.39) 

               𝐽 =
1

2
 (𝑻𝒀 − 𝑭 ∙ 𝒙

𝑘)
𝑇
∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙

𝑘) − Δ𝑼𝑇 ∙ 𝚽𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙
𝑘) +  

                      +
1

2
Δ𝑼𝑇 ∙ 𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 ∙ Δ𝑼 +

1

2
 Δ𝑼𝑇 ∙ 𝑾Δ𝑼 ∙ Δ𝑼                                                                  (5.40) 
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Now, noting that the first term of 5.40 does not depend on Δ𝑼, the cost function became a canonical 
quadratic function and can be rewritten as: 

  𝐽 =
1

2
Δ𝑼𝑇 ∙ (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼) ∙ Δ𝑼 − Δ𝑼

𝑇 ∙ 𝚽𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙
𝑘 )             (5.41) 

Finally, by imposing ∂𝐽
∂Δ𝑼

= 0 , we can compute optimal value of ΔU, which minimize cost function: 

 
∂𝐽

∂𝑼
= (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼) ∙ Δ𝑼 − 𝚽

𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙
𝑘 ) = 0                      (5.42) 

Δ𝑼 = (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼)
−1  ∙ (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝑻𝒀 −𝚽

𝑇 ∙ 𝑾𝒀 ∙ 𝑭 ∙ 𝒙
𝑘 )                 (5.43) 

 

Matrix (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼) has dimension mNc×mNc , 𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝑭 has dimension mNc×n and 𝚽𝑇 ∙ 𝑾𝒀 
has dimension mNc×qNp. 
 
Considering a receding horizon control strategy, through which only firsts 𝑚 elements of Δ𝑼 are 
considered and repeating the optimization procedure at each time step, the optimization procedure 
result is, according with definition 5.36: 

Δ𝒖𝑘 = [𝑰𝒎 𝒁𝒎    … 𝒁𝒎  ] ∙  (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼)
−1  ∙ (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝑻𝒀 −𝚽

𝑇 ∙ 𝑾𝒀 ∙ 𝑭 ∙ 𝒙
𝑘)   (5.44) 

Where 𝑰𝒎 and 𝒁𝒎 are, respectively, the identity and zero matrix with dimension m × m. Equation 5.44 
can be rewrite in a more compact form: 

Δ𝒖𝑘 = 𝐊𝐲  ∙  𝑻𝒀  − 𝐊𝐦𝐩𝐜  ∙  𝒙
𝑘   (5.45) 

 

With:         𝐊𝐲 = [𝑰𝒎 𝒁𝒎    … 𝒁𝒎  ] ∙  (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼)
−1  ∙ 𝚽𝑇 ∙ 𝑾𝒀                    (5.46) 

𝐊𝐦𝐩𝐜 = [𝑰𝒎 𝒁𝒎    … 𝒁𝒎  ] ∙  (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾Δ𝑼)
−1  ∙ (−𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝑭)       (5.47) 

 
Finally, we can write the closed-loop system obtained through receding horizon MPC control 
substituting equation 5.45 into the augmented system equation 5.21: 
 

{  
𝒙𝑘+1 = (𝑨 − 𝑩 ∙ 𝐊𝐦𝐩𝐜 ) ∙ 𝒙

𝑘 +  𝑩 ∙ 𝐊𝐲 ∙ 𝑻𝒀 

𝒚𝑘 = 𝑪 𝒙𝑘
      (5.48) 
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5.2.5 Solution With Constraints 
 
We have seen, in section 5.2.4, how future control action vector can be computed to minimize cost 
function. This vector, Δ𝑼, has been obtained not considering rate of change of control actions can 
have a limit, imposed by actuators characteristics. This fact may lead to a deterioration of system 
performances, since actual control action can be saturated due to physical limits and, as a result, 
outputs may be pretty different than those predicted by ideal solution. Taking into account actuators 
limits, on the other hand, can improve performances, also with the same physical limit, because during 
optimization problem computation a sub-optimal solution, which respect limits, is obtained, and in the 
most of cases it is better than the optimal solution a posteriori saturated.  
 
Furthermore, in addition to the limits on the rate of change of control actions, the limits of actions in an 
absolute sense should often also be considered, in order to avoid finding impossible solutions and 
falling into the same problem. This section will define how these constraints can be taken into account 
when solving the optimization problem, which becomes a constrained optimization problem. Here, for 
the sake of simplicity, only linear constraints will be considered, but it is also possible to deal with 
more complex non-linear ones. Finally, to complete the discussion, constraints on outputs will also be 
dealt with, also in the form of linear inequality. This type of constraint is very effective from the point of 
view of the final performance of the control and is usually impossible to apply in traditional controllers. 
 
Next, the way of expressing the above-mentioned constraints will be defined, after which some 
methods for solving constrained optimizations will be quickly presented, and finally, the method used 
in the controller implemented in this work will be discussed in more detail. 
 
 
 

5.2.5.1 Constraints Definition 
In these section the three types of constraints above mentioned will be defined, first one considers the 
limit on incremental variation of control variables, second one considers their absolute value, whereas 
third type considers output constraints. 
 
Constraint on Control Variable Rate of Change 
Considering a Multiple-Input system, with m control inputs, and according with definition 5.26, upper 
and lower limit on their rate of change can be defined as: 

Δ𝒖𝑚𝑎𝑥 = [Δ𝑢1
𝑚𝑎𝑥 , Δ𝑢2

𝑚𝑎𝑥 , … , Δ𝑢𝑚
𝑚𝑎𝑥]𝑇   (5.49) 

Δ𝒖𝑚𝑖𝑛 = [Δ𝑢1𝑚𝑖𝑛 , Δ𝑢2𝑚𝑖𝑛, … , Δ𝑢𝑚𝑚𝑖𝑛]
𝑇     (5.50) 
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Assuming, moreover, that these limits are constant throughout the time span defined by the control 
horizon 𝐻𝑐, we can write, remembering equation 5.28: 

             Δ𝑼 =   [Δ𝒖𝑘𝑇 , Δ𝒖𝑘+1𝑇 , …  , Δ𝒖𝑘+𝑁𝑐−1𝑇]
𝑇
≤    Δ𝑼𝑚𝑎𝑥         (5.51) 

                                           −Δ𝑼 = −[Δ𝒖𝑘
𝑇
, Δ𝒖𝑘+1

𝑇
, …  , Δ𝒖𝑘+𝑁𝑐−1

𝑇]
𝑇
≤ −Δ𝑼𝑚𝑖𝑛        (5.52) 

 

Where Δ𝑼𝑚𝑎𝑥 and Δ𝑼𝑚𝑖𝑛 are defined as: 
 

 Δ𝑼𝑚𝑎𝑥 = [ 
𝐼𝑚
⋮
𝐼𝑚

] ∙ Δ𝒖𝑚𝑎𝑥,    Δ𝑼𝑚𝑖𝑛 = [ 
𝐼𝑚
⋮
𝐼𝑚

] ∙ Δ𝒖 𝑚𝑖𝑛             (5.53) 

 

Where 𝐼𝑚 is the identity matrix with dimension m x m. Finally, 5.51 and 5.52 can be rewrite in a more 
compact form as follow: 

[
−𝐼𝑚∙𝑁𝑐
𝐼𝑚∙𝑁𝑐

] Δ𝑼 ≤ [−Δ𝑼
𝑚𝑖𝑛

Δ𝑼𝑚𝑎𝑥
]             (5.54) 

 
 
Constraints on the Amplitude of the Control Variable 

These are the most encountered constraints among all constraint types, which are the physical hard 
constraints on the control actions. Considering a Multiple-Input system, with m control inputs, upper 
and lower limit on the amplitude of the control inputs can be defined as: 

𝒖𝑚𝑎𝑥 = [𝑢1
𝑚𝑎𝑥 , 𝑢2

𝑚𝑎𝑥 , … , 𝑢𝑚
𝑚𝑎𝑥]𝑇   (5.55) 

𝒖𝑚𝑖𝑛 = [𝑢1𝑚𝑖𝑛, 𝑢2𝑚𝑖𝑛, … , 𝑢𝑚𝑚𝑖𝑛]
𝑇     (5.56) 

Assuming, that these limits are constant throughout the time span defined by the control horizon 𝐻𝑐, 
we can write: 

              𝑼 =    [𝒖𝑘𝑇, 𝒖𝑘+1𝑇, …  , 𝒖𝑘+𝑁𝑐−1𝑇]
𝑇
≤   𝑼𝑚𝑎𝑥         (5.57) 

                                            −𝑼 = −[𝒖𝑘
𝑇
, 𝒖𝑘+1

𝑇
, …  , 𝒖𝑘+𝑁𝑐−1

𝑇]
𝑇
≤ −𝑼𝑚𝑖𝑛         (5.58) 

 

Where 𝑼𝑚𝑎𝑥 and 𝑼𝑚𝑖𝑛 are defined as: 
 

 𝑼𝑚𝑎𝑥 = [ 
𝐼𝑚
⋮
𝐼𝑚

] ∙ 𝒖𝑚𝑎𝑥,    𝑼𝑚𝑖𝑛 = [ 
𝐼𝑚
⋮
𝐼𝑚

] ∙ 𝒖𝑚𝑖𝑛            (5.59) 
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Now we have to express equations 5.57 and 5.58 in terms of vector Δ𝑼, which is the variable vector of 
the optimization problem. To do so, equation 5.12 can be rewritten as: 

Δ𝒖𝑘 = 𝒖𝑘 −  𝒖𝑘−1     (5.60) 

Rearranging 5.60, following equations hold: 

𝒖𝑘 =  𝒖𝑘−1 +  Δ𝒖𝑘                        

𝒖𝑘+1 =  𝒖𝑘−1 +  Δ𝒖𝑘 +  Δ𝒖𝑘+1                                     (5.61) 

⋮ 

𝒖𝑘+𝑁𝑐−1 =  𝒖𝑘−1 +  Δ𝒖𝑘 +  Δ𝒖𝑘+1 +⋯+  Δ𝒖𝑘+𝑁𝑐−1   

Equations 5.61 in a more compact form becomes: 

𝑼 =

[
 
 
 
 

𝒖𝑘

𝒖𝑘+1

𝒖𝑘+2

⋮
𝒖𝑘+𝑁𝑐−1]

 
 
 
 

=

[
 
 
 
 

 

𝐼𝑚
𝐼𝑚
𝐼𝑚
⋮
𝐼𝑚

 

]
 
 
 
 

∙  𝒖𝑘−1 +

[
 
 
 
 
𝐼𝑚 0 0 … 0
𝐼𝑚 𝐼𝑚 0 … 0
𝐼𝑚 𝐼𝑚 𝐼𝑚 … 0

⋮
𝐼𝑚 𝐼𝑚 … 𝐼𝑚 𝐼𝑚]

 
 
 
 

∙

[
 
 
 
 

 

Δ𝒖𝑘

Δ𝒖𝑘+1

Δ𝒖𝑘+2

⋮
Δ𝒖𝑘+𝑁𝑐−1

 

]
 
 
 
 

     (5.62) 

 
Re-writing 5.62 in a compact matrix form and repeating for the lower limits, with C1 and C2 
corresponding to the appropriate matrices, constraints for the control actions are: 
 

− 𝑪𝟐 ∙ Δ𝑼 ≤ − 𝑼
𝑚𝑖𝑛  +  𝑪𝟏 ∙  𝒖𝑘−1     (5.63) 

   𝑪𝟐 ∙ Δ𝑼  ≤    𝑼𝑚𝑎𝑥  − 𝑪𝟏 ∙  𝒖𝑘−1     (5.64) 

 
 
Output Constraints 

Last type of constrain are those imposed on the output variables. As we have seen in Section 5.2.2, 
output variables across the prediction horizon can be formulated in terms of current state variable 
information 𝒙𝑘 and the future control inputs Δ𝑼; remembering definition 5.29 and equation 5.32 we can 
write: 

𝒀 = [𝒚𝑘+1
𝑇
, 𝒚𝑘+2

𝑇
, …  , 𝒚𝑘+𝑁𝑝

𝑇]
𝑇
 , 𝒀 ∈  ℝ (𝑁𝑝∙ q) x 1                 (5.65) 

𝒀 = 𝑭 ∙ 𝒙𝑘 +𝚽 ∙ Δ𝑼                                                            (5.66) 
 
As was assumed for the other constraint types, upper and lower bound values are assumed to be 
constant throughout the prediction horizon. 
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Output limits are defined as: 

  𝒀𝑚𝑎𝑥 = [ 
𝐼𝑞
⋮
𝐼𝑞

] ∙ 𝒚𝑚𝑎𝑥,    𝒀𝑚𝑖𝑛 = [ 
𝐼𝑞
⋮
𝐼𝑞

] ∙ 𝒚𝑚𝑖𝑛           (5.67) 

Where, according with dimension of the augmented model defined in section 5.2.1, matrix 𝐼𝑞  is the 
identity matrix of dimension q, number of different outputs of the MIMO augmented model.  Output 
constraints are often implemented as ‘soft’ constraints in the way that a slack variable sv > 0 is added 
to them. Main reason why we use a slack variable is because without it unsolvable optimization 
problem can occur, when any control action cannot produce output results within their limits. It is 
important to emphasize that when introducing a slack variable, the cost function must be modified by 
adding the latter in an attempt to minimize it. Outputs constrains are defined as follow: 
 

𝒀𝑚𝑖𝑛  −  𝐬𝐯  ≤  𝑭 𝒙
𝑘 +𝚽 Δ𝑼 ≤  𝒀𝑚𝑎𝑥 + 𝐬𝐯     (5.68) 

 
Rearranging 5.68 to express inequality in terms of control variable Δ𝑼, it becomes: 
 

[
−𝚽
𝚽
] ∙  Δ𝑼  ≤  [

−𝒀𝑚𝑖𝑛 + 𝑭 ∙ 𝒙𝑘  +  𝐬𝐯
   𝒀𝑚𝑎𝑥 − 𝑭 ∙ 𝒙𝑘 + 𝐬𝐯

]            (5.69) 

 
 
Finally, putting all constrain equation previously obtained together, and expressing them in a compact 
form with control vector Δ𝑼 as variable, we can write following relation: 
 

𝑴 ∙ Δ𝑼 ≤ 𝜸   (5.70) 
 

 With:                                                  𝑴 = [ 
𝑴𝟏

𝑴𝟐

𝑴𝟑

 ] ;    𝜸 = [ 
𝑵𝟏
𝑵𝟐
𝑵𝟑

 ] ; 

𝑴𝟏 = [
−𝐼𝑚∙𝑁𝑐
𝐼𝑚∙𝑁𝑐

] ;     𝑴𝟐 = [
−𝑪𝟐
𝑪𝟐

] ;     𝑴𝟑 = [
−𝚽
𝚽
] ; 

𝑵𝟏 = [
−Δ𝑼𝑚𝑖𝑛

Δ𝑼𝑚𝑎𝑥
]  ;     𝑵𝟐 = [

−𝑼𝑚𝑖𝑛 + 𝑪𝟏 ∙  𝒖
𝑘−1

𝑼𝑚𝑎𝑥 − 𝑪𝟏 ∙  𝒖
𝑘−1

]  ;    𝑵𝟑 = [
−𝒀𝑚𝑖𝑛 + 𝑭 ∙ 𝒙𝑘  +  𝐬𝐯
   𝒀𝑚𝑎𝑥 − 𝑭 ∙ 𝒙𝑘 + 𝐬𝐯

] 

 

When the constraints are fully imposed, the number of constraints is equal to 4 × m × Nc + 2 × q × Np, 
where m is the number of inputs and q is the number of outputs. Nc and Np are number of samples 
related to control and prediction horizons. 
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5.2.5.2 Numerical Solutions Using Quadratic Programming 
In this section, once cost function and constrain have been defined, numerical solution of a 
constrained optimization problem will be discussed. Since cost function was defined as a quadratic 
function and constrains one was defined as linear, the problem which must be solved is a standard 
quadratic programming with linear constrains problem, which has been extensively studied in the 
literature because of its key role in obtaining the optimal solution of the constrained control problems. 

To address the desired numerical solution, the cost function and the constraint relation (5.41 and 
5.70), the two components that make up the constrained optimisation problem, are recalled: 

  𝐽 =
1

2
Δ𝑼𝑇 ∙ (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾𝑼) ∙ Δ𝑼 − Δ𝑼

𝑇 ∙ 𝚽𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙
𝑘)        (5.71) 

𝑴 ∙ Δ𝑼 ≤ 𝜸   (5.72) 
 
For sake of simplicity, the following definitions are made: 

𝒛 =  Δ𝑼                                            (5.73) 

𝑬 = (𝚽𝑇 ∙ 𝑾𝒀 ∙ 𝚽 + 𝑾𝑼)                (5.74) 

𝒇 = −𝚽𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙
𝑘)            (5.75) 

 
Where, without loss of generality, E is assumed to be symmetric and positive definite. From these 
definitions, the objective function 𝐽 and the constraints are expressed as: 

 𝐽(𝒛) =
1

2
 𝒛𝑇 ∙ 𝑬 ∙ 𝒛 + 𝒛𝑇 ∙ 𝒇                     (5.76) 

𝒈(𝒛) = 𝑴 ∙ 𝒛 −  𝜸 ≤ 0                              (5.77) 

 
 
Minimization with only Equality Constraints 
In order to tackle the constrained optimisation problem with both equality and inequality constraints, 
we start by solving the simpler problem in which only the first type of mentioned constraints appear. In 
particular, we are going to find the minimum of a positive definite quadratic function with linear equality 
constraints.  
 
Positive definite quadratic functions have their level surfaces as hyper-ellipsoids, while linear equality 
constrains define hyperplanes. The constrained minimum is located at the point of tangency between 
constrain boundaries and hyper-ellipsoids. 
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In other words, considering a single constraint g(z), the gradient of g(𝒛), ∇𝑔(𝒛), is the direction 
perpendicular to the constraint, i.e. the direction in which one cannot move. If, at a certain point z*, this 
direction corresponds to the direction −∇𝐽(𝒛), i.e., the direction one would like to travel in order to go 
towards the minimum of 𝐽, then z* is a constrained minimum point. In mathematical terms, and 
considering the possibility of having several constraints (g(z) is a vectorial function), the conditions 
that must be fulfilled to have a constrained minimum point are: 

−∇𝐽(𝒛) = ∑  𝐶
𝑘=1 𝜆𝑘∇𝑔𝑘(𝒛)     ⟺   ∇𝐽(𝒛) + ∑  𝐶

𝑘=1 𝜆𝑘∇𝑔𝑘(𝒛) = 0      (5.78) 

Where 𝜆𝑘 are arbitrary scalar values. Substituting equations 5.76 and 5.77 in 5.78 we obtain: 

𝑬𝒛 + 𝒇 +𝑴𝑇𝝀 = 0     (5.79) 

Where 𝝀 is a vector containing C scalar values. Equation 5.79, with constraint equation 𝑴 ∙ 𝒛 − 𝜸 = 0, 
represent two necessary equations to solve the problem. To deal with this problem, it is convenient to 
introduce the method of Lagrange multipliers, where the basic idea is to convert the constrained 
problem defined by these two relations to an unconstrained one in which the so called Lagrangian 
function must be minimized. It is defined as: 

ℒ(𝒛, 𝝀) =
1

2
 𝒛𝑇𝑬 𝒛 + 𝒛𝑇 ∙ 𝒇 + 𝝀𝑇(𝑴 𝒛 −  𝜸)      (5.80) 

Now the coefficients 𝜆𝑘, components of 𝝀, are called Lagrange multipliers. By imposing the gradient of 
Lagrangian function equal to zero, ( ∇ℒ(𝒛, 𝝀) = 0 ), we arrive at the same equations as above:  

∂ℒ

∂𝒛
= 𝑬𝒛 + 𝒇 +𝑴𝑇𝝀 = 0   (5.81) 

∂ℒ

∂𝝀
= 𝑴 𝒛 −  𝜸 = 0           (5.82) 

Values of 𝒛 and 𝝀 that minimize the Lagrangian function (so, those which resolve linear equations set 
composed by 5.81 and 5.82) are: 

𝝀 = −(𝑴𝑬−𝟏𝑴𝑻)
−𝟏
(𝜸 +𝑴𝑬−𝟏𝒇)   (5.83) 

𝒛 = −𝑬−𝟏(𝑴𝑻𝝀 + 𝒇)                       (5.84) 

The number of equality constraints must be less than or equal to the number of decision variables 
(dimension of 𝒛). If the number of equality constraints equals the number of decision variables, the 
only feasible solution is the one that satisfies the constraints and there is no additional variable in 𝒛 
that can be used to optimize the original objective function. Finally, if the number of constrain is 
greater than the dimension of 𝒛 there is no feasible solution. 
 
 
 
 
 
 



102 
 

Minimization with Inequality Constraints 
Inequality constraints 𝑴 ∙ 𝒛 ≤  𝜸  can include active constraints and inactive constraints. An inequality 
constrain 𝑴𝒊 ∙ 𝒛 ≤  𝛾𝑖  (where 𝑴𝒊 is the i-row of M and 𝛾𝑖  is the i-element of 𝜸) is an active one if       
𝑴𝒊 ∙ 𝒛 =  𝛾𝑖 , whereas it is said inactive if 𝑴𝒊 ∙ 𝒛 <  𝛾𝑖 . To deal with an optimization problem with both 
inequality and equality constrains (or with only inequality ones) the so-called Karush-Kuhn-Tucker 
(KKT) conditions are used. They are a generalization of Lagrange multipliers, and they give a set of 
necessary conditions which solve this type of optimization problem. KKT conditions are: 

𝑬𝒛 + 𝒇 +𝑴𝑇𝝀 = 0       (5.85) 

𝑴 𝒛 −  𝜸 ≤  0              (5.86) 

𝝀𝑇(𝑴 𝒛 −  𝜸) = 0        (5.87) 

𝝀 ≥ 0                           (5.88) 

Where the vector λ contains the Lagrange multipliers. A constraint is active when the unconstrained 
minimum of cost function is in the not permitted region related to that constrain, in this case related 
component of λ is a positive number. On the other hand, a constrain is inactive when global minimum 
is in the permitted region, in this case related component of λ is zero. As can be seen in 5.85-5.88 in 
both cases KKT are met.  

These conditions can be expressed in a simpler form in terms of the set of active constraints. Let Sact 
indicates the index set of active constraints. Then the KKT conditions become: 

𝑬𝒛 + 𝒇 + ∑ 𝜆𝑘𝑴𝒌
𝑇 

𝒌 ∈ 𝑺𝒂𝒄𝒕 = 0                (5.89) 

𝑴𝒊 𝒛 −  𝛾𝑖 =  0     𝑖𝑓  𝑘 ∈  𝑆𝑎𝑐𝑡               (5.90) 

𝑴𝒊 𝒛 −  𝛾𝑖 <  0     𝑖𝑓  𝑘 ∉  𝑆𝑎𝑐𝑡               (5.91) 

𝜆𝑘 > 0                 𝑖𝑓  𝑘 ∈  𝑆𝑎𝑐𝑡               (5.92) 

𝜆𝑘 = 0                 𝑖𝑓  𝑘 ∉  𝑆𝑎𝑐𝑡               (5.93) 

 

If the active set were known, the original problem could be replaced by the corresponding problem 
having related equality constraints only, since inactive constrains do not affect the search for the 
minimum. 

The algorithms involved in solving this type of optimisation problem have the task of working out which 
constraints are active, so that inactive constraints can be neglected, and the constrained minimum 
point obtained as in the case of constrained optimisation where only equality constraints appear. On 
the next page, two of the most common algorithms used within MPC controllers will be presented, 
after which a commonly used procedure exploiting one of the two algorithms will be described. It will 
also be used in the wind turbine MPC controller that will be implemented in the next chapter. 
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Active Set Method  
The main idea of active set methods is to define, at each iteration of an algorithm, a set of constraints 
that is treated as the active set. The active set is chosen to be a subset of the constraints that are 
active at the previous step (at the first iteration all constrain are considered active). The algorithm then 
proceeds to move on the surface defined by the working set of constraints to find a constrained 
minimum, so at each step of the active set method, an equality constrained problem is solved.  
If all the active set’s Lagrange multipliers λact ≥ 0, then the point is a local solution to the original 
problem. If, on the other hand, there exists a λi < 0, then the objective function value can be decreased 
by relaxing the constraint i (i.e., deleting it from the constraint equation). During minimization, it is 
necessary to monitor the values of the other constraints to be sure that they are not violated, since all 
points defined by the algorithm must be feasible. It often happens that while moving on the working 
surface, a new constraint boundary is encountered. It is necessary to add this constraint to the 
working set, then proceed to the re-defined working surface.  
The algorithm proceeds until the actual active constrains are found, checking that all inequalities of 
inactive set are verified. This type of algorithm does not work well if there are a lot of constraints, in 
which case calculation time can become very long, reason why it may not be suitable for real-time 
calculations, a typical situation of MPC controllers. 
 
 
Primal-Dual Method 
Primal-dual method derives from Lagrangian duality theory, through which an optimization problem 
can be solved. The basic idea is to solve a problem, called primal problem, by looking at a different 
optimization problem, the dual problem. More specifically, the solution of the dual problem can provide 
the same optimal solution as the primal problem, which is useful if the primal problem is harder to 
solve than the dual one.  
In this case, the primal problem is the minimization of cost the function such that some constrains are 
satisfied: 

                           𝑚𝑖𝑛     𝐽(𝒛) =
1

2
 𝒛𝑇 ∙ 𝑬 ∙ 𝒛 + 𝒛𝑇 ∙ 𝒇                                        

𝑠. 𝑡.     𝒈(𝒛) = 𝑴 ∙ 𝒛 −  𝜸 ≤ 0         (5.94) 

 
Let the optimum of this problem be 𝒛*. As seen previously, the Lagrangian function is defined as: 

ℒ(𝒛, 𝝀) = 𝐽(𝒛) + 𝝀𝑇𝒈(𝒛)               (5.95) 

 

The Lagrange dual function is defined to be: 

𝓆(𝝀) = min
𝒛
ℒ(𝒛, 𝝀)                       (5.96) 

Where minimization 5.96 is unconstrained. 
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For 𝝀 ≥ 0 and for any 𝒛 that obeys the constrain 𝒈(𝒛) ≤ 0, generally called 𝒛’, following relation holds: 

ℒ(𝒛′, 𝝀) ≤ 𝐽(𝒛′ )     (5.97) 

Thus, in particular, if 𝒛* is the optimum of the original problem: 

𝓆(𝝀) = min
𝒛
ℒ(𝒛, 𝝀) ≤ ℒ(𝒛′, 𝝀) ≤ 𝐽(𝒛∗)          (5.98) 

So, it is natural to look for the highest value of 𝓆(𝝀), along 𝝀 ≥ 0. This is the Lagrange dual problem: 

                           𝑚𝑎𝑥     𝓆(𝝀)                                                 

𝑠. 𝑡.     𝝀 ≥ 0          (5.99) 

Dual problem can also be written as a minimization problem changing sign of argument: 

                             𝑚𝑖𝑛    − 𝓆(𝝀)                                                 

𝑠. 𝑡.     𝝀 ≥ 0        (5.100) 

Remembering that: 

𝓆(𝝀) = min
𝒛
[ℒ(𝒛, 𝝀) =

1

2
 𝒛𝑇𝑬 𝒛 + 𝒛𝑇 ∙ 𝒇 + 𝝀𝑇(𝑴 𝒛 −  𝜸)]   (5.101) 

And that this minimization is unconstrained, we can find values of 𝒛, depending on 𝝀, that minimize the 
Lagrangian function ℒ: 

𝒛 = −𝑬−𝟏(𝑴𝑻𝝀 + 𝒇)     (5.102) 

Substituting 5.102 in 5.101, the dual problem 5.100 becomes: 

                                         𝑚𝑖𝑛       
1

2
 𝝀𝑇 𝑯 𝝀 + 𝝀𝑇𝑲 +

1

2
 𝜸𝑇 𝑬−𝟏 𝜸                                                         

                                                          𝑠. 𝑡.         𝝀 ≥ 0                           (5.103) 

Where matrices 𝑯 and 𝑲 are given by: 

𝑯 = 𝑴𝑬−𝟏𝑴𝑻                     (5.104) 

𝑲 = 𝜸+𝑴𝑬−𝟏𝒇                 (5.105) 
 

Resolving 5.103 values of 𝝀 can be found, those which are negative are set to zero and those which 
are positive become the active ones, through which, from equation 5.102, optimization problem can be 
solved.  
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Hildreth’s Quadratic Procedure 
In this section a simple procedure to solve the primal-dual problem, described above, can be solved. 
This algorithm is called Hildreth’s quadratic procedure [29], [30]. In this algorithm vector of Lagrangian 
multipliers is computed with an iterative procedure, finding it element by element through the primal-
dual method. Thanks to an element-by-element search it does not require any matrix inversion. 
Looking at the dual problem 5.103, we see that the last term does not depend on the variable 𝝀, so it 
reduces to the following minimization: 

min
𝝀≥0

  
1

2
 𝝀𝑇 𝑯 𝝀 + 𝝀𝑇𝑲                            (5.106) 

 
Whose solution is: 

𝑯 𝝀 + 𝑲 = 0    ⟺    𝝀 = −𝑯−𝟏𝑲        (5.107) 
 
A generic i-row of 5.107 can be write as follows: 
 

∑  𝐶
𝑗=1 𝐻𝑖𝑗 ∙ 𝜆𝑗 + 𝐾𝑖 = 0     ⟺     ∑  𝐶

𝑗=1
𝑗≠𝑘

𝐻𝑖𝑗 ∙ 𝜆𝑗 +𝐻𝑖𝑘 ∙ 𝜆𝑘 + 𝐾𝑖 = 0         (5.108) 

Where C is the number of constraints, that is the dimension of 𝝀. From 5.108, by using the k-row to 
calculate 𝜆𝑘, we can write: 

𝜆𝑘 = −
1

𝐻𝑘𝑘
 [ ∑  𝐶

𝑗=1
𝑗≠𝑘

𝐻𝑘𝑗 ∙ 𝜆𝑗 + 𝐾𝑘  ]       (5.109) 

 
Finally, Hildreth’s procedure can be started from choosing a first attempt 𝝀 vector, with all null 
elements, then an iterative procedure starts, when at each iteration l all element of vector 𝝀𝑙+1 are 
calculated from vector computed at previous step, 𝝀𝑙, through following expression (if computed value 
is negative, it is substituted with 0, since it indicates that corresponding constrain is inactive): 

𝜆𝑘
𝑙+1 = 𝑚𝑎𝑥 (0 , −

1

𝐻𝑘𝑘
[∑  𝑘−1

𝑗=1 𝐻𝑘𝑗𝜆𝑗
𝑙+1 +∑  𝐶

𝑗=𝑘+1 𝐻𝑘𝑗𝜆𝑗
𝑙 + 𝐾𝑘])              (5.110) 

The iterative procedure continues until a converged vector 𝝀∗ is obtained, with null component for 
inactive constrain. Finally, 𝝀∗ is used to compute optimum z, which corresponds to the control variable 
vector that leads to a constrained minimization of cost function J(z). To do so, following equation is 
exploited: 
 

𝒛 = −𝑬−𝟏(𝒇 + 𝑴𝑻𝝀∗)      (5.111) 
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- 𝒙: states vector, 𝒙 ∈ 𝑅𝑛 𝑥 1; 
 

- 𝒖: inputs vector, 𝒖 ∈ 𝑅𝑚 𝑥 1, known by assumption; 
 

- 𝒘: process noise vector, 𝒘 ∈ 𝑅𝑑 𝑥 1. It is a vector whose component are inputs of the 
system whose value is normally unknown. In the Kalman filter algorithm, process noise 
is assumed to be a random process, that is a white noise with zero mean and a certain 
value of variance; 
 

- 𝒚: outputs vector, 𝒚 ∈ 𝑅𝑞 𝑥 1. The outputs are measured quantities, whose measure is 
composed by a deterministic part (𝑪 𝒙) and stochastic one due to sensor noise; 

 
 

5.2.6 State Estimation 
MPC controllers are based on knowledge of the system states and inputs at each instant. This is only 
possible in ideal cases in which all inputs are known, and the system model perfectly describes the 
real behaviour of the system, or in cases in which every state of the system can be measured using 
error-free measuring instruments. In most cases, however, some states of the system cannot be 
directly measurable and those that are measured, corresponding to the outputs of the system, are 
affected by measurement errors; in addition, some input may be unknown.  
In order to cope with all these problems, it is therefore often necessary to resort to algorithms by 
means of which it is possible to estimate the value of the states of a system. They work thanks to its 
mathematical model, the measurements taken by sensors and the knowledge of certain information 
regarding the measurements of the outputs and the disturbances acting on the system.  
These types of algorithms are called observers, and, in this section, we will discuss one in particular, 
probably the most commonly used and most famous, called Kalman Filter. It can also be used to 
obtain an estimate of a certain signal measured by non-ideal sensors by exploiting the model of the 
system. This is why the term filter is used, while Kalman derives from the name of the author who 
proposed it. There are different types of Kalman filter, which can deal with linear or non-linear, discrete 
or continuous ones. In the following we will study the simplest of them, a discrete Kalman filter based 
on a linear time-invariant system model. 
It is important to specify that the system model used by the observer may be different from the system 
model used by the MPC controller for numerical optimisation, the one introduced in section 5.2.1. To 
give one example, if an input of the controlled plant is unknown, an observer can be used to estimate 
it. The observer will exploit the model of a system in which this quantity is an unknown state, which will 
be then estimated. 
 

5.2.6.1 Discrete Kalman Filter 
Model 
In this section, the algorithm for a discrete linear Kalman filter will be derived. As mentioned above, it 
utilises the linear model of a certain system whose states are to be known; it is expressed in the 
discrete state space form, and it is defined as follows: 

{
   𝒙𝒌+𝟏 = 𝑨 𝒙𝒌 +𝑩 𝒖𝒌 +𝑮 𝒘𝒌

𝒚𝒌 = 𝑪 𝒙𝒌 + 𝒗𝒌                  
       (5.112) 

 
Where: 
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- 𝒗: measurement noise vector, 𝒗 ∈ 𝑅𝑞 𝑥 1 . It is the stochastic part of the outputs’ 
measurement. As process noise, in the Kalman filter algorithm measurements noise is 
assumed to be a white noise with zero mean and a certain value of variance; 
 

- 𝑨: state matrix, 𝑨 ∈ 𝑅𝑛 𝑥 𝑛; 
 

- 𝑩: input matrix, 𝑩 ∈ 𝑅𝑛 𝑥 𝑚; 
 

- 𝑮: process noise matrix, 𝑮 ∈ 𝑅𝑛 𝑥 𝑑; 
 

- 𝑪: output matrix, 𝑪 ∈ 𝑅𝑞 𝑥 𝑛; 
 

- 𝑇: sample time of discrete model, that is, as an example 𝒙𝒌 = 𝒙(𝑘𝑇). 
 

 

Process and Measurement Noises characteristics 

The other information required for the execution of the algorithm is statistical information regarding 
process noise and measurements noise. Since, by definition, they are white noise, their expected 
value, at each instant of time, is zero: 

𝐸[𝒘𝑘] = 0,       𝐸[𝒗𝑘] = 0       (5.113) 

Where 𝐸[𝒘𝑘] indicates the expected value of vector 𝒘𝑘. Each i-th component of 𝐸[𝒘𝑘] is defined as: 
𝐸[𝑤𝑘𝑖] =  ∑ 𝑝𝑛 𝑤𝑘𝑖𝑛𝑛  , with 𝑝𝑛 the probability correlated with 𝑤𝑘𝑖𝑛, that is the probability that at time k, 
the i-th component of 𝒘𝑘 is 𝑤𝑘𝑖𝑛. The same is valid for 𝒗𝑘. 

 
Given two vectors, for example 𝒘𝑘 and 𝒘𝑠, the covariance matrix is defined as the matrix 𝑪𝒐(𝒘𝑘,𝒘𝑠), 
whose ij-th component is: 

𝑪𝒐(𝒘𝑘 ,𝒘𝑠) 𝑖𝑗 =  𝐸 [(𝑤𝑘𝑖 − 𝐸[𝑤𝑘𝑖]) ⋅ (𝑤𝑠𝑗 − 𝐸 [𝑤𝑠𝑗])]      (5.114) 

𝑪𝒐(𝒘𝑘 ,𝒘𝑠) 𝑖𝑗 is the covariance between 𝑤𝑘𝑖 and 𝑤𝑠𝑗, which is strictly linked with the correlation 
between them. If the correlation is zero, it means that the variation of one value is not influenced by 
the other and vice versa, while a positive correlation means that the probability of having a positive 
variation of one of the two quantities is greater if there is a positive variation of the other, vice versa for 
negative values of covariance.  

In matrix form, covariance matrix 𝑪𝒐(𝒘𝑘,𝒘𝑠) is defined as: 

𝑪𝒐(𝒘𝑘 ,𝒘𝑠)  = 𝐸[(𝒘𝑘 − 𝐸[𝒘𝑘]) ⋅ (𝒘𝑠 − 𝐸[𝒘𝑠])
𝑇 ]            (5.115) 

Subscripts k and s indicate two different time instants. If two vector involved are coincident, the matrix 
𝑪𝒐 is called auto-covariance matrix. 
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We assume there is no correlation between process noise and measurements one, also considering 
the same instant, since they are two white noises. From these considerations we can write: 

𝑪𝒐(𝒘𝑘 , 𝒗𝑠) = 0,    ∀ 𝑘, 𝑠                (5.116) 
 
Moreover, by definition of white noise, signals at different time are uncorrelated, hence: 

𝑪𝒐(𝒘𝑘 ,𝒘𝑠) = 0,    𝑖𝑓   𝑘 ≠ 𝑠         (5.117) 

𝑪𝒐(𝒗𝑘 , 𝒗𝑠)   = 0,     𝑖𝑓   𝑘 ≠ 𝑠        (5.118) 

If, on the other hand, 𝑘 = 𝑠, that is we are considering the same instant, non-zero covariances may 
exist. In this regard, we define: 

𝑹𝑘 = 𝑪𝒐(𝒗𝑘 , 𝒗𝑘),    𝑹𝑘 ∈ 𝑅
𝑞 𝑥 𝑞     (5.119) 

𝑸𝑘 = 𝑪𝒐(𝒘𝑘 , 𝒘𝑘),   𝑸𝑘 ∈ 𝑅
𝑑 𝑥 𝑑     (5.120) 

 

𝑹𝑘 is the covariance matrix of 𝒗𝑘, its diagonal contains variances of 𝒗𝑘, while extra-diagonal terms are 
the covariances between different components of that vector. In Kalman filter matrices 𝑹𝑘 and 𝑸𝑘 are 
considered time-invariant, for this reason they will be indicated simply by 𝑹 and 𝑸. 
 
 
Definitions 
Before deriving the algorithm, it is necessary to make a few definitions; they generally apply to all 
quantities. As an example, for the state variable 𝒙, the definitions are: 

- 𝒙𝑘∣𝑘−1: Subscript “𝑘 ∣ 𝑘 − 1” indicates a variable at time 𝑘 computed with information available at 

time 𝑘 − 1; 

 

- 𝒙𝑘  : Subscript “𝑘” indicates a variable at time 𝑘 computed with information available at time 𝑘; 

 

- �̂� : The hat indicates the expected value of a certain variable: �̂� = 𝐸[𝒙]; 

 
Then two errors are defined, both of which are the difference between the expected value of the vector 
x at a certain instant k and its actual value. The first error, called ‘a priori’ error, 𝜺𝒌, considers the 
expected value calculated with the information available at time 𝑘 − 1, while the second, called ‘a 
posteriori’ error, 𝒆𝒌, uses the information up to time k. According with above definition, we can write: 

𝜺𝒌 = �̂�𝒌∣𝒌−𝟏 − 𝒙𝒌   (5.121) 

𝒆𝒌 = �̂�𝒌 − 𝒙𝒌         (5.122) 
 
 



109 
 

Kalman Filter Derivation 
Basic idea of Kalman filter is to obtain the estimation of state vector at time 𝑘, �̂�𝑘, through a correction 
of the value predicted by the model of the filter, �̂�𝑘∣𝑘−1, which is made thanks to the measurement 𝒚𝒌. 
Estimated value also depends on matrices R and Q and information at time 𝑘 − 1. A common form of 
correction is: 

�̂�𝒌 = �̂�𝒌∣𝒌−𝟏 +𝑲𝒌 (𝒚𝒌 − �̂�𝒌)   (5.123) 
 

Where, by definition �̂�𝒌∣𝒌−𝟏 = 𝑪 �̂�𝒌∣𝒌−𝟏 and �̂�𝒌∣𝒌−𝟏 = 𝑬[𝑨 𝒙𝒌−𝟏 +𝑩 𝒖𝒌−𝟏 +𝑮 𝒘𝒌−𝟏] = 𝑨 �̂�𝒌−𝟏 +𝑩 𝒖𝒌−𝟏. 

𝑲𝒌 is the Kalman gain matrix which is needed to estimate �̂�𝒌. It is calculated as the value that 
minimize the square sum expected value of ‘a posteriori’ error components, called 𝐽 = 𝑬[𝒆𝒌𝑻𝒆𝒌]. The ‘a 

posteriori’ error, according with 5.121 and 5.122, is: 
 

              𝒆𝒌      = �̂�𝒌 − 𝒙𝒌 = �̂�𝒌∣𝒌−𝟏 +𝑲𝒌(𝒚𝒌 − 𝑪 �̂�𝒌∣𝒌−𝟏) − 𝒙𝒌 

                             = �̂�𝒌∣𝒌−𝟏 +𝑲𝒌(𝑪 𝒙𝒌 + 𝒗𝒌 − 𝑪 �̂�𝒌∣𝒌−𝟏 ) − 𝒙𝒌                                     (5.124) 
                             = (𝑰 − 𝑲𝒌𝑪)𝜺𝒌 +𝑲𝒌𝒗𝒌 

Thus: 

              𝒆𝒌𝑻𝒆𝒌  = [𝜺𝒌 − 𝑲𝒌𝑪𝜺𝒌 +𝑲𝒌𝒗𝒌]𝑻[𝜺𝒌 −𝑲𝒌𝑪𝜺𝒌 + 𝑲𝒌𝒗𝒌]                                       

                             = 𝜺𝒌
𝑻𝜺𝒌 + 𝜺𝒌

𝑻𝑪𝑻𝑲𝒌
𝑻𝑲𝒌𝑪𝜺𝒌 − 𝟐𝜺𝒌

𝑻𝑲𝒌𝑪𝜺𝒌 + 𝟐𝜺𝒌
𝑻𝑲𝒌𝒗𝒌                        (5.125) 

                                  −𝟐𝒗𝒌
𝑻𝑲𝒌

𝑻𝑲𝒌𝑪𝜺𝒌 + 𝒗𝒌
𝑻𝑲𝒌

𝑻𝑲𝒌𝒗𝒌 
 
 

Taking the derivative of 𝒆𝒌𝑻𝒆𝒌 with respect to gain 𝑲𝒌, and omitting subscript k for simplicity (from this 
point, an omitted subscript means there should be a k): 

𝑑

𝑑𝑲 
(𝒆 
𝑻𝒆 ) =

𝑑

𝒅𝑲
[𝜺𝑻𝑪𝑻𝑲𝑻𝑲 𝑪𝜺 − 2𝒗𝑻𝑲𝑻𝑲𝑪𝜺+ 𝒗𝑻𝑲𝑻𝑲𝒗] + 2

𝑑

𝑑𝑲
[𝜺𝑻𝑲𝒗− 𝜺𝑻𝑲𝑪𝜺] 

                   = 2𝑲𝑪𝜺𝜺𝑻𝑪𝑻 − 2[𝑲𝑪𝜺𝒗𝑻 +𝑲𝒗𝜺𝑻𝑪𝑻] + 2𝑲𝒗𝒗𝑻 + 2[𝜺𝒗𝑻 − 𝜺𝜺𝑻𝑪𝑻]                      (5.126) 
 
 

Since 𝑑

𝑑𝑲𝒌
(𝑬[𝒆𝒌

𝑻𝒆𝒌]) = 𝑬[ 
𝑑

𝑑𝑲𝒌
(𝒆𝒌
𝑻𝒆𝒌)] and 𝐽 = 𝑬[𝒆𝒌𝑻𝒆𝒌] we can write: 

 
𝑑𝐽

𝑑𝑲𝒌
= 𝑬 [ 2𝑲𝑪𝜺𝜺𝑻𝑪𝑻 − 2[𝑲𝑪𝜺𝒗𝑻 +𝑲𝒗𝜺𝑻𝑪𝑻] + 2𝑲𝒗𝒗𝑻 + 2[𝜺𝒗𝑻 − 𝜺𝜺𝑻𝑪𝑻]]              (5.127) 

 

Then, 𝑲𝒌 such that 𝑑𝐽

𝑑𝑲𝒌
= 0 is the optimal gain we are looking for because it minimizes norm of ‘a 

posteriori’ error. 
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Thus, the following equation must be solved: 

𝑬[ 𝑲𝑪𝜺𝜺𝑻𝑪𝑻 −𝑲𝑪𝜺𝒗𝑻 − 𝑲𝒗𝜺𝑻𝑪𝑻 + 𝑲𝒗𝒗𝑻 + 𝜺𝒗𝑻 − 𝜺𝜺𝑻𝑪𝑻] = 0                                        (5.128) 

Thanks to linearity of expectation value operator: 

𝑲𝑪 𝑬[𝜺𝜺𝑻]𝑪𝑻 −𝑲𝑪 𝑬[𝜺𝒗𝑻] − 𝑲 𝑬[𝒗𝜺𝑻]𝑪𝑻 +𝑲 𝑬[𝒗𝒗𝑻] + 𝑬[𝜺𝒗𝑻] − 𝑬[𝜺𝜺𝑻]𝑪𝑻 = 0      (5.129) 

We note that following relations hold: 

𝑬[𝒗𝜺𝑻] = 𝑬[𝜺 𝒗𝑻] = 𝑬[(�̂�𝒌∣𝒌−𝟏 − 𝒙) 𝒗
𝑻] = 𝑬[�̂�𝒕∣𝒕−𝟏 𝒗

𝑻] − 𝑬[𝒙 𝒗𝑻] = 0                         (5.130) 

Now we define the matrix 𝑷𝒌|𝒌−𝟏 as the auto-covariance matrix of the ‘a priori’ error at time k, 𝜺 :  

𝑷𝒌|𝒌−𝟏 = 𝑬[𝜺𝜺
𝑻]                                        (5.131) 

With 5.119, 5.130 and 5.131, the equation 5.129 becomes: 

𝑲𝑪𝑷𝒌|𝒌−𝟏𝑪
𝑻 + 𝑲𝑹− 𝑷𝒌|𝒌−𝟏𝑪

𝑻 = 𝟎            (5.132) 

From 5.132, we obtain Kalman gain (at time k) expression: 

𝑲 = 𝑷𝒌|𝒌−𝟏𝑪
𝑻[𝑪 𝑷𝒌|𝒌−𝟏𝑪

𝑻 +𝑹]
−𝟏              (5.133) 

Only unknown quantity in equation 5.133 is the covariance matrix of ‘a priori’ error, 𝑷𝒌|𝒌−𝟏. To 
compute it we define 𝑷𝒌, the covariance matrix of ‘a posteriori error’, as: 

𝑷𝒌 = 𝑬[𝒆 𝒆
𝑻] = 𝑬[(�̂�𝒌 − 𝒙𝒌)(�̂�𝒌 − 𝒙𝒌)

𝑻]        (5.134) 

Substituting 5.124 in 5.134 and remembering 5.130, we have: 

𝑷𝒌 = 𝑬[ ((𝑰 − 𝑲𝑪)𝜺 + 𝑲𝒗)((𝑰 − 𝑲𝑪)𝜺 + 𝑲𝒗)
𝑻 ]    

      = 𝑬[ (𝑰 − 𝑲𝑯)𝜺𝜺𝑻(𝑰 − 𝑲𝑯)𝑻] + 𝑬[(𝑰 − 𝑲𝑯)𝜺𝒗𝑻𝑲𝑻 ] +  𝑬[𝑲𝒗𝜺𝑻(𝑰 − 𝑲𝑯)𝑻] + 𝑬[𝑲𝒗𝒗𝑻𝑲𝑻]        (5.135) 

       = (𝑰 − 𝑲𝑯)𝑬[𝜺𝜺𝑻](𝑰 − 𝑲𝑯)𝑻 + 𝑲𝑬[𝒗𝒗𝑻]𝑲𝑻 

       = (𝑰 − 𝑲𝑪)𝑷𝒌|𝒌−𝟏(𝑰 − 𝑲𝑪)
𝑻 + 𝑲𝑹𝑲𝑻 

Finally, putting 5.133 in 1.135, following relation can be written: 

𝑷𝒌 = (𝑰 − 𝑲𝑪)𝑷𝒌|𝒌−𝟏        (5.136) 
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In order to compute 𝑷𝒌|𝒌−𝟏, we note that 𝑷𝒌|𝒌−𝟏 at time k is the same as 𝑷𝒌+𝟏|𝒌 calculated at previous 
step. To do so, we note that: 

                        𝜺𝒌+𝟏     = �̂�𝒌+𝟏 − 𝒙𝒌+𝟏                                                                                 

                     = 𝑨 �̂�𝒌 +𝐁 𝒖𝒌 − (𝐀 𝒙𝒌 + 𝐁 𝒖𝒌 +𝐆𝒘𝒌) = 𝑨 𝐞𝒌 − 𝐆 𝒘𝒌                    (5.137) 

                   𝑷𝒌+𝟏|𝒌 = 𝑬[𝜺𝒌+𝟏𝜺𝒌+𝟏𝑻 ] = 𝑬[(𝑨 𝐞𝒌 − 𝐆 𝒘𝒌)(𝑨 𝐞𝒌 − 𝐆 𝒘𝒌)
𝑻] =                     

                                      = 𝑨𝑬[𝒆𝒌𝒆𝒌
𝑻]𝑨𝑻 −𝐆𝑬[𝒘𝒌𝒆𝒌

𝑻]𝑨𝑻 −𝐀𝑬[𝒆𝒌𝒘𝒌
𝑻]𝑮𝑻 + 𝐆𝑬[𝒘𝒌𝒘𝒌

𝑻]𝑮𝑻         (5.138) 

Finally, since 𝑬[𝒆𝒌𝒘𝒌𝑻] = 𝑬[𝒘𝒌𝒆𝒌𝑻] = 𝟎 , 𝑬[𝒆𝒌𝒆𝒌𝑻] = 𝑷𝒌 and 𝑬[𝒘𝒌𝒘𝒌𝑻] = 𝑸, 𝑷𝒌+𝟏|𝒌 is: 

𝑷𝒌+𝟏|𝒌 = 𝑨 𝑷𝒌 𝑨
𝑻 + 𝐆𝑸𝑮𝑻        (5.139) 

 
Kalman Filter Algorithm 
Main relations derived in previous section can be put together to get the discrete Kalman filter 
algorithm, whose inputs are measurements 𝒚𝒌 (at instant k), input of the model at time 𝑘 − 1, 𝒖𝒌−𝟏, 
and initial values of covariance matrix of the ‘a priori’ error, 𝑷𝟎, and the initial estimated state, �̂�𝟎. The 
output of the observer is the state vector’s estimation at instant 𝑘, �̂�𝒌. 

 
Figure 5.2: Scheme of the algorithm used in the Kalman filter, with its 

inputs, outputs and needed equations. 



112 
 

6 Implementation of an MPC for Floating 
Offshore Wind Turbines 
 
In this chapter, a Model Predictive Control (MPC) for Floating Offshore Wind Turbines (FOWTs) will be 
implemented. The theoretical bases on MPCs described in Chapter 5 will be applied and adapted to 
the case under consideration. In particular, the notions seen for linear MPCs will be exploited for the 
design of a controller which is able to handle non-linear systems. Several linear systems are used to 
create MPC models, each consisting of the same states, inputs, and outputs, and obtained offline by 
linearising a non-linear starting system under certain operating conditions. 
 
 
Initially a LTI (Linear Time Invariant) systems set is computed, it is a collection of LTI systems in state 
space form obtained by linearising a non-linear system at different points of a grid, which are identified 
by a set of parameters. Then they will be used to create different models for the MPC optimizations. 
The LTI systems set is calculated from the non-linear floating wind turbine model presented in Chapter 
3, specifically the simplified system called NLS and described in Section 3.4. 
 
 
Then the modules which make up the implemented controller will be described, most of which exploit 
the LTI systems set mentioned above. The main modules are: 

 
- Estimation: In this module, some unknown quantities will be estimated, which are required to 

perform the numerical optimisation by which the control actions are calculated. To do this, 
linear Kalman filters such as the one described in Chapter 5 will be used. 
 
 

- Forecasting: In this module, to complete the information required for numerical optimisation, 
the future values of the model's external inputs will be estimated within the prediction horizon 
of the MPC. To reach these results, an auto-regressive model will be used whose coefficients 
will be calculated online via a recursive least square method (RLS). 
 
 

- Optimization: It is the main module, in which all information from other ones are used to 
perform the numeric optimization through which control output values are computed. An 
optimization will be performed each time step and only the first of a certain number of resultant 
future control actions will be considered (receding horizon method). Regarding optimization 
main ingredients (system model, cost function and constraints), at each time different version 
of them will be used to better describe real system and to correctly implement the strategies 
adopted in wind turbine control, described in Chapter 4. 
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6.1 LTI Systems Set 
As above mentioned, the MPC controller implemented in this chapter is based on an set of LTI (Linear 
Time Invariant) systems, that is a set of linear systems in the state space form obtained from the 
linearisation of a certain non-linear system carried out at certain operation points to which are 
associated certain parameters whose time-varying values determine which of the linear systems must 
be used to appropriately describe the dynamics of the real system. In order to better understand how it 
is obtained and how it works, let us start with the non-linear model of the system obtained in Chapter 
3. The model used for the construction of this set is the simplified system called NLS (Simplified Non-
Linear) described in section 3.4: 
 

                              {  
�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡))

𝒚(𝑡) = 𝑔(𝒙(𝑡), 𝒖(𝑡))
        (6.1) 

 
With:                                           𝒙 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω}⊤ 

            𝒖 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤ 

𝒗 = {𝑈𝑤𝑖𝑛𝑑,𝑚 , 𝑭ext 
𝑇 }

⊤
         

     𝒚 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω, 𝑃}⊤ 
 

We recall that 𝒙 is the states vector, whose component are surge (s), heave (h), pitch (p), their time 
derivative (�̇�, ℎ̇, �̇�) and rotor angular speed (Ω). Firsts three quantities are the 3 degrees of freedom of 
the floating structure considered, while rotor speed is the time-derivative of the fourth d.o.f., that is the 
azimuth angle.  

Vector 𝒖 is the controlled inputs vector, composed by quantities whose values are chosen by the 
control law, i.e., the generator torque (𝐶gen 

′ ) and the collective blade pitch angle (𝜃𝑏𝑙), since we are 
going to deal with a variable-speed variable-collective-pitch wind turbine (see section 4.3). 

Vector 𝒗 is the external inputs vector, whose components are the uncontrollable quantities that act on 
the system and influence its behaviour. They are wind speed (𝑈𝑤𝑖𝑛𝑑,𝑚) and wave excitation forces 
(𝑭𝑒𝑥𝑡). It should be noted that in the simplified model, as specified in section 3.4, the entire velocity 
field distributed along the rotor area is not taken into account, but a single velocity value is considered, 
obtained as the average of a number of equally spaced values belonging to a grid covering the 
aforementioned area. Furthermore, let us remember that it was decided to separate the controlled 
inputs from the external ones because it will be useful in the implementation of the MPC controller and 
because it makes sense on a conceptual level; however, formally they are the same thing and for now 
we could consider a single vector grouping the quantities of 𝒖 and 𝒗. The main reason for making this 
distinction even now is to have a notation compatible with the following sections. 

Finally, vector 𝒚 is the outputs vector, whose chosen component are all the model states and the 
extracted power, that is the product of the generator torque and its angular speed. 
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The goal, in this section, is to linearize the simplified floating wind turbine nonlinear model and obtain 
the associated LTI systems set. To do this, it is necessary to choose in an appropriate way the points 
around which to carry out the linearization, called linearization points. A linearization point is uniquely 
defined by the value of the states and inputs of the system, and the resulting linear system will behave 
similarly to the nonlinear when it is under similar conditions, i.e., when the value of states and inputs 
do not differ much from those adopted during the linearization. 
To understand what the appropriate points may be, we need to think about the control strategy 
adopted for the wind turbine and therefore, what will be the regime values of states and controlled 
inputs as the external inputs vary, considering the latter constant over time. From now on, we will call 
'Operation Points' those points (characterized by determined values of the states, inputs and outputs) 
required by the control strategy. Recalling what is written in section 4.4.2.1, for example, according to 
the region in which one is located, i.e. according to the wind speed, different control strategies are 
undertaken and it is possible to assign the desired values of the controlled inputs in order to have the 
desired outputs, in particular, the power and rotor speed values . 
It is assumed that if the control of the system occurs correctly, with a certain value of the external 
inputs and imposing the corresponding controlled inputs desired by the strategy, then the system will 
behave in a similar way to the desired one. For example, with a certain wind speed and resulting 
controlled inputs, the system conditions will most likely not deviate much from the nominal ones, so 
using a system linearized around that condition might be a good way. In the next sub-section, we will 
explain how the 'Operating Points' are chosen and how the corresponding states and controlled inputs 
of the system are calculated. Once they have been obtained, starting from them the linearization 
points will be defined and how to obtain the LTI systems set will be explained. 
 

6.1.1 Operation Points 
As mentioned earlier, in order to know which operation points are chosen, it is necessary to define the 
control strategy to be adopted. Since in the following sections we will compare the traditional 
controllers presented in section 4 with the MPC controller implemented in this chapter, we will 
consider the same control strategy adopted in the ROSCO controller, the one described in section 
4.4.2.1, in which the different control regions were discussed, and in which the stationary values of the 
controlled inputs, rotor speed and extracted power as the average wind speed varies were defined for 
each region (see Figure 4.10). From now on, we will call SS these steady state points provided by 
control strategy, while we will call OP the operation point obtained from the model. 

Specifically, OP points are computed through a Simulink tool which can calculate trim points from the 
non-linear model and from some specification. A trim point is a point whose values of states, their 
derivative, inputs, and outputs of the system are compatible with specification made. Simulink tool 
searches, by means of a sequential quadratic algorithm, the system condition that comes closest to 
the desired nominal condition set in the specification. Stationary points are often sought, so the 
derivatives of the system states are often set to zero, but it is also possible to impose no constraint on 
these quantities or to impose values other than zero.  

To each imposed quantity, it is also possible to indicate minimum and maximum values beyond which 
the search algorithm tries not to go, as well as it is possible to impose starting values of unknown 
quantities and some algorithm options, such as maximum number of iteration it can make and 
tolerances value, that is the maximum error value (in the sense of the magnitude of departure from the 
limits) allowed. 
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In this case, for each OP computed, following specifications are made: 

- Inputs:  
o External inputs 𝒗: As mentioned above, main quantity on which the control strategy is 

based is wind speed. For each OP a certain value of the mean wind speed across rotor 
area, 𝑈𝑤𝑖𝑛𝑑,𝑚, is chosen. As far as wave excitation forces are concerned, they are 
specified as zero. All external inputs are imposed to be know, that is during search their 
value cannot vary. 
 
 

o Controlled Inputs 𝒖: Generator torque, 𝐶gen 
′ , is specified to be unknown so that the most 

suitable value can be found, even though the value predicted by the control strategy is 
known. This is done so as not to over-constrain the search, but nevertheless tight bounds 
are adopted so that the value found by the algorithm does not deviate much from that 
predicted by the SS points. As for the blade pitch angle, 𝜃𝑏𝑙 , however, it is considered to be 
known and its value is that predicted by the control strategy. 
 

 
- States: The states surge (s), heave (h) and pitch (p) are specified to be unknown. Their initial     

………...values are calculated starting from thrust force provided by steady state condition at wind 
………...speed considered. Their derivative, on the other hand, are imposed to zero to try to obtain 
……’…..an OP that is also a steady state value. Rotor speed Ω is imposed to be unknown and 
……’…..limited by tight bounds as done with generator torque. 

 

- State derivatives: The state derivatives are, in this case, all imposed to be zero. 
 
 

- Outputs: The only one of the outputs for which no specification has yet been made, since the 
others correspond to the states of the system, is the power extracted from the electric generator. 
This is considered unknown, and the value expected by the control strategy for the wind speed 
considered is specified. 

 
 
Three examples of results from the operation point search are shown on the following page. It was 
decided to also depict the results obtained from the MOST model and the non-simplified non-linear 
model, NL, in order to understand whether the simplified model (NLS) gives results that were 
compatible with the models most faithful to the real system. The black lines and dots refer to the 
nominal conditions, i.e., the stationary points predicted by the control strategy (see Figure 4.10), while 
the red, blue and green dots show the operation points obtained through the search explained above. 
The red dotted line represents the constant power curve whose value corresponds to the nominal one, 
to see how close the points found come to this objective. It can be seen from the graphs that the 
results obtained are quite accurate and compatible with each other. 
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Figure 6.1: Example of Operation Point at three different mean wind speed. Each plot shows comparison between steady 
state values suggested by control strategy (SS) and operation points (OP) computed through trimming algorithm for MOST, 
NL and NLS models.  
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Figure 6.2 shows the operation points found for the simplified model (NLS) for all considered wind 
speeds. The OP points obtained are compared with the nominal steady state points SS, predicted by 
the control strategy, and it can be seen that the obtained results are overall very close to the nominal 
values. Furthermore, it is interesting to note that for wind speed values a little higher than the nominal 
one, slightly lower blade pitching values occur, to compensate for the fact that the model achieves 
lower powers than the theoretical ones, mainly due to the non-zero angle between wind and rotor 
caused by the structure being rotated by a certain pitch angle (not taken into account when calculating 
the SS values). 

 

 
Finally, in Figure 6.2, as in 6.1, only some of the quantities in play are represented, but it is important 
to emphasise that for each search, the values of all states, inputs and outputs are found. 
 
 
 
 
 
 
 

Figure 6.2: Comparison between nominal steady state point provided by control strategy (SS) and operation point (OP) 
obtained by trimming search for the simplified model NLS. Quantities represented are the two controlled inputs (𝐶𝑔𝑒𝑛  𝑎𝑛𝑑 𝜃𝑏𝑙), 
rotor angular speed 𝛺 and extracted power P. 
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6.1.2 Linearization 
In the previous section, the operating points, i.e. the steady state points (denoted by their values of 
states, inputs and outputs), varying with average wind speeds were identified. It was also mentioned 
that the system model, given its non-linearities, can only be appropriately approximated by a linear 
system if the operating conditions do not deviate much from those under which the linearisation is 
carried out. It is now necessary to understand what are the points around which to linearise the 
system in order to obtain a set of linear systems which, together, are able to approximate the 
simplified nonlinear system well. A linearisation point is uniquely defined once the states and inputs of 
the system have been defined, so it is understood that if one wanted to have a set of linear systems 
covering all possibilities it would require a lot of computing time to obtain it and a lot of memory to use 
it. It is therefore necessary to make choices to obtain a set of linear systems that is not too numerous. 
Linearization points will correspond to any possible combination of these parameters. For this reason, 
the set of systems which is considered is called "parameter varying system ". 

 

Given what has been explained in the previous section and in the section dedicated to the explanation 
of the control strategies, the first parameter that has been chosen to use is the average wind speed, 
on which depends, in addition to the behaviour of the system, the control strategy. Due to its 
importance, it was decided to have a dense discretization of this parameter within the considered 
range. Furthermore, for the LTI systems set that will be built, it was decided to adopt two further 
parameters, in order to have a total of three parameters, which we have seen to be a good 
compromise between the performance offered and the memory occupied, as well as calculation time 
to obtain it. The two further parameters chosen are the rotor speed and the collective blade pitch.  

 

The system presents evident non-linearities also in the mooring forces and on the viscous friction 
forces, proportional to the square of the speed, which lead to greater discrepancies between the non-
linear system and the linearized system when the surge value and its derivative deviate from those 
adopted during linearization (as far as heave and pitch are concerned, the effect is less as they tend to 
have smaller ranges of variation). However, it was decided not to consider the surge and the surge 
speed as parameters, in order to reduce the size of the LTI systems set, because the errors that arise 
are in terms of these two quantities, which are of low importance for the turbine control , in the sense 
that it is not necessary to predict the value of these quantities with certainty because it is not 
necessary to trace them precisely. 
 

The last important concept to underline is that, as we have seen previously, as the wind speed varies, 
the operation points obtained also have different values of the states, therefore it is advisable to take 
this into account during the linearization. On the other hands, as far as the other two parameters vary, 
only the corresponding state (or input) varies. In this case it was decided to vary it uniformly, with the 
central value corresponding to that in the operation point obtained with a given wind speed. In other 
words, for each wind speed an OP is obtained from which different linearization points are obtained by 
uniformly varying the remaining two parameters. 
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The set of linearization points chosen is called linearization grid and, in accordance with what has 
been said up to now, the image below shows an example of a linearization grid with the three 
parameters previously described. In this image, for graphic reasons, there is a reduced number of 
points, but actually, to obtain a systems set that well approximates the non-linear system, a greater 
number of points will be adopted, especially as regards the wind speed. 
 

 

 
 
 

Figure 6.3: Example of linearization grid; here the adopted parameter are mean wind speed across rotor area (𝑈𝑤𝑖𝑛𝑑,𝑚), 

rotor angular speed (𝛺) and collective blade-pitch angle (𝜃𝑏𝑙). The image is divided into three parts, where in the second      
two a projection onto  𝛺 − 𝑈𝑤𝑖𝑛𝑑,𝑚 plane and onto 𝜃𝑏𝑙 −𝑈𝑤𝑖𝑛𝑑,𝑚   plane are depicted, to clearly show that 𝛺 and 

𝜃𝑏𝑙  central grid points depend on 𝑈𝑤𝑖𝑛𝑑,𝑚 , while other ones are evenly spaced around the latter. 



120 
 

Once we have understood how to obtain the linearization points, we proceed to explain how the 
linearization is carried out. In this case, a centered finite difference method is used, implemented via a 
Matlab function. The starting point is the simplified non-linear system (NLS): 
 

{  
�̇�(𝑡) = 𝑓(𝒙,𝒖, 𝒗)

𝒚(𝑡) = 𝑔(𝒙, 𝒖)
   (6.2) 

 
A linearization point is denoted with subscript 0, and particularly with its states, controlled inputs and 
external inputs, respectively vectors 𝒙0, 𝒖0 and 𝒗0. Using first order Taylor approximation of states 
derivatives and outputs, we can write: 
 

�̇� = 𝑓(𝒙,𝒖, 𝒗) ≈ 𝑓(𝒙0, 𝒖0, 𝒗0) +
∂𝑓

∂𝒙
|
𝒙0,𝒖0,𝒗0

⋅ (𝒙 − 𝒙0) +
∂𝑓

∂𝒖
|
𝒙0,𝒖0,𝒗0

⋅ (𝒖 − 𝒖0) +
∂𝑓

∂𝒗
|
𝒙0,𝒖0,𝒗0 

⋅ (𝒗 − 𝒗0)      (6.3) 

𝒚 = 𝑔(𝒙,𝒖) ≈ 𝑔(𝒙0, 𝒖0) +
∂𝑔

∂𝒙
|
𝒙0,𝒖0

⋅ (𝒙 − 𝒙0) +
∂𝑔

∂𝒖
|
𝒙0,𝒖0

⋅ (𝒖 − 𝒖0)                                                                      (6.4)    

 
Now, some definitions can be made: 

∂𝑓

∂𝒙
|
𝒙0,𝒖0,𝒗0

= 𝑨,        
∂𝑓

∂𝒖
|
𝒙0,𝒖0,𝒗0

= 𝑩𝒖 ,        
∂𝑓

∂𝒗
|
𝒙0,𝒖0,𝒗0

= 𝑩𝒗      

∂𝑔

∂𝒙
|
𝒙0,𝒖0,𝒗0

= 𝑪,     
∂𝑔

∂𝒖
|
𝒙0,𝒖0,𝒗0

= 𝑫      

All these quantities, valid for one linearization point (𝒙0, 𝒖0, 𝒗0), can be computed, as in this case, 
through a centred finite difference. Specifically, taking matrix 𝑨 as an example, it is calculated as 
follows: 

𝑨𝑖𝑗 =
∂𝑓𝑖

∂𝒙𝑗
|
𝒙0,𝒖0,𝒗0

≈ 
𝑓𝑖(𝒙0+𝛆𝒙,𝑗,𝒖0,𝒗0)−𝑓𝑖(𝒙0−𝛆𝒙,𝑗,𝒖0,𝒗0)

2∙ϵ𝒙,𝑗
     (6.6) 

 
Where 𝛆𝒙,𝑗 is a vector of the same dimension of 𝒙 with all zero component except the j-th one, which is 
ϵ𝒙,𝑗. Using the same technique, the components of the other matrices can be calculated. Generally, 
the values of ϵ can be different between states, inputs, and outputs and between the various 
components of them, but in this case, it was decided to adopt a single value, equal to 0.01% of the 
value of the component at the linearisation point (or 10−6 if the latter is zero). 
 
 

(6.5) 
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From equations 6.3 and 6.4, we can define: 

(�̇�)0 = 𝒇(𝒙0, 𝒖0, 𝒗0), 

𝒚0 = 𝒈(𝒙0, 𝒖0) 

𝛿𝒙 = 𝒙 − 𝒙0 

                              𝛿𝒖 = 𝒖 − 𝒖0                            (6.7) 

𝛿𝒗 = 𝒗− 𝒗0 

𝛿𝒚 =  𝒚 − 𝒚0 

𝛿�̇� = �̇� 

Finally, we can write the obtained linear system in state space form as: 

 

{
   𝛿�̇� = (�̇�)0 +𝑨 ⋅ 𝛿𝒙 + 𝑩𝒖 ⋅ 𝛿𝒖 + 𝑩𝒗 ⋅ 𝛿𝒗
𝛿𝒚 = 𝑪 ⋅ 𝛿𝒙 + 𝑫 ⋅ 𝛿𝒖                                 

          (6.8) 

 
 
System 6.8 is different for each combination of parameters, more precisely, there are different offsets 
and matrices for any combination of them. Offsets are the quantities 𝒙0, 𝒖0 , 𝒗0, 𝒚0 and (�̇�)0 , while the 
matrices are 𝑨,𝑩𝒖 , 𝑩𝒗 , 𝑪 and 𝑫. Moreover, in this case, a nearest-point interpolation is performed, i.e. 
once the parameters have been measured, the linear system adopted is that obtained from the grid 
point that has the closest parameter values to those measured. The search for the nearest grid point is 
carried out at each simulation step, so each different linear system is active for one step. 
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6.1.3 LTI Systems Set Validation 
 
In this section, a mostly qualitative validation of the previously obtained LTI systems set will be carried 
out. To perform this, the behavior of the systems will be compared with the non-linear system from 
which it is computed, that is the simplified model called NLS (Non-Linear-Simplified), described in 
section 3.4. To compare these two models, simulations with the same inputs and control algorithm are 
carry out. 
 
External inputs are the wave excitation forces/torques and a simplified form of wind speed, that is the 
average speed across rotor area, instead of wind speeds at several grid points distributed along it, as 
it occurs with NL (Non-Linear) model described in section 3. Alternatively, wind speed at grid point 
corresponding with hub center can be considered. In this case, the wind speed data used are obtained 
from TurbSim by setting an average speed (over time) at the center of the hub of 9 m/s (see section 
3.2.1). While, regarding the waves, a JONSWAP spectrum with significant height Hs=4 m and peak 
period Tp=6 s is used (see section 3.2.2). 
 
Since the MPC controller implemented in this chapter has not yet been described in detail, a Baseline 
controller will be used for these simulations, which has already been described in Section 4.  
 
Figures below show time series of external inputs and some simulation result, that is time series of 
some of the output of the system (see equation 6.1). Reported results are surge, heave, pitch, rotor 
angular speed and power output. 

Figure 6.4: Time series of 𝑈𝑤𝑖𝑛𝑑,𝑚 , spatial mean wind speed (obtained from TurbSim with hub temporal mean speed 
𝑈ℎ𝑢𝑏,𝑚 =  9 𝑚/𝑠 ). 
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Figure 6.5: Time series of Fx,ext (wave excitation force along x direction), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 

Figure 6.6: Time series of Fz,ext (wave excitation force along z direction), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 

Figure 6.7: Time series of My,ext (wave excitation torque around y axis), computed with a JONSWAP (JS) spectrum, 
significant height Hs=4 m and peak period Tp=6 s. 
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Figure 6.8: Comparison between simplified-non-linear (NLS) and linear-time-invariant (LTI) models: surge (m). 

Figure 6.9: Comparison between simplified-non-linear (NLS) and linear-time-invariant (LTI) models: heave (m). 

 

Figure 6.10: Comparison between simplified-non-linear (NLS) and linear-time-invariant (LTI) models: pitch (rad). 
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From the graphs, it can be seen that the two systems lead to very similar results, it can also be noted 
what has been said before about the choice of parameters, i.e., the surge and/or its derivative, on 
which largely non-linear forces depend, were not chosen as linearization grid parameters. This leads 
to greater differences between the models in terms of surge, however, the choices made (blade pitch 
angle and rotor speed) lead to greater accuracy in terms of rotor speed and extracted power. 
 
 
 
 

Figure 6.11: Comparison between simplified-non-linear (NLS) and linear-time-invariant (LTI) models: rotor angular speed Ω 
(rad/s). 

 

Figure 6.12: Comparison between simplified-non-linear (NLS) and linear-time-invariant (LTI) models: extracted power (W). 
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6.2 MPC Modules 
 

6.2.1 Estimation 
In this section, we will deal with the estimation of the unknown model quantities that must be known to 
construct the MPC controller. In particular, the model of the system used for the constrained 
optimisation in the controller algorithm is derived from the LTI systems set, where each optimisation is 
performed with the linear model that best approximates the starting non-linear model at the instant in 
which the calculation is performed. As will be specified later, the only quantities that will not be 
measured, which are to be estimated, are the wind speed and the wave excitation forces, which, as 
seen in Section 6.1.2, are treated as inputs.  
Furthermore, in section 5.2.6 it was shown how to estimate certain unmeasured states of a linear 
system by means of so-called observers, and the algorithm of one type of them, called Kalman filter, 
was obtained. To perform the estimation of unknown external input, two different observers will be 
built. For each of them, models will be constructed from the previously obtained LTI systems set, in 
which the unknown quantities become states of the system, so that they can be estimated by means 
of a linear discrete Kalman filter, whose algorithm was described in section 5.2.6.1. 
 
 

6.2.1.1 Wind Kalman Filter 

The starting LTI systems set from which the model for the Kalman filter will be constructed is defined 
as follows (obtained in section 5.2.6.1): 

{
   𝛿�̇� = (�̇�)0 

𝑖𝑝 + 𝑨 
𝑖𝑝 ⋅ 𝛿𝒙 + 𝑩𝒖 

𝑖𝑝 ⋅ 𝛿𝒖 + 𝑩𝒗 
𝑖𝑝 ⋅ 𝛿𝒗

𝛿𝒚 = 𝑪 
𝑖𝑝 ⋅ 𝛿𝒙 + 𝑫 

𝑖𝑝 ⋅ 𝛿𝒖                                        
    (6.9) 

With:                −   𝒙 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω}⊤ ,                            −    𝒚 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω,𝑃}⊤ 

                          −   𝒖 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤
,                                     −   𝒗 = {𝑈𝑤𝑖𝑛𝑑,𝑚, 𝑭ext 

𝑇 }
⊤
 

                          −   (�̇�)0 
𝑖𝑝 = 𝑓( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 , 𝒖0  

𝑖𝑝 ),                    −   𝒚0 
𝑖𝑝 = 𝑔( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 ) 

                          −   𝛿𝒙 = 𝒙 − 𝒙0  
𝑖𝑝 ,                                            −   𝛿𝒖 = 𝒖 − 𝒖0 

𝑖𝑝  

                                 −   𝛿𝒗 = 𝒗 − 𝒗0  
𝑖𝑝 ,                                            −   𝛿𝒚 =  𝒚 − 𝒚0 

𝑖𝑝  

The vectors 𝒙, 𝒖, 𝒗 and 𝒚 are, respectively, the states, controlled inputs, external inputs, and outputs 
vectors. The states are s (surge), h (heave), p (pitch), their derivatives and the rotor speed Ω. The 
controlled inputs are the generator torque 𝐶gen 

′  and the collective blade-pitch angle 𝜃𝑏𝑙. The external 
inputs are the average wind speed (across rotor area) in the direction parallel to the surge, 𝑈𝑤𝑖𝑛𝑑,𝑚 , 
and the wave excitation forces 𝑭𝑒𝑥𝑡 . Finally, the outputs are the states and the extracted power P. 
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- 𝒙𝐾𝐹
  : It is the Kalman filter states vector, which is defined as follows:                                    
𝒙𝐾𝐹
 = {Ω−Ω0  , 𝑣𝑤𝑡 , 𝑣𝑤𝑚 −𝑈𝑤𝑖𝑛𝑑,𝑚,0}

⊤, where 𝑣𝑤𝑚 is the (temporal) mean part of 
wind speed 𝑈𝑤𝑖𝑛𝑑,𝑚, while 𝑣𝑤𝑡 is the turbulent part, such that their sum is the wind 
speed 𝑈𝑤𝑖𝑛𝑑,𝑚 . All states are expressed in term of difference from values assumed at 
linearization condition (turbulent component at linearization condition is imposed to be 
zero). 
 
 

- 𝒖𝐾𝐹
   : It is the Kalman filter inputs vector, known by assumption. It is defined as follow: 
𝒖𝐾𝐹
 = {𝐶gen 

′ − 𝐶gen 
′

0
,  𝜃𝑏𝑙 − 𝜃𝑏𝑙0, 𝑝 − 𝑝0, �̇� − �̇�0, ℎ̇ − ℎ̇0, �̇� − �̇�0, Ω̇0}

⊤. Subscript 
0 indicates values at linearization point. Last four input defined are considered known 
(instead of the state Ω, for which a noise is assumed) because their influence on states 
derivatives is lower, so, to simplify the model, we assume there is no noise on this 
information without committing high errors. 
 

 
- 𝒘: It is the Kalman filter process noise vector. It is a vector 𝒘  = { 𝑤1, 𝑤2, 𝑤3}

⊤ , whose 
component are inputs of the system and whose value is normally unknown. In this case 
they are the “stochastic part” of the states, assumed to be random processes, which 
are white noises with zero mean and a certain value of variance; 
 
 

- 𝒚𝐾𝐹
  
  : It is the Kalman filter output vector (in this case with only one component), it is 

defined as  𝒚𝐾𝐹
 = { Ω −Ω0}

 . It is the measured quantity, whose measure is composed 
by a deterministic part (𝑪   ∙ 𝒙    ) and stochastic one due to sensor noise (𝒗 ); 

 
 

The 𝒙0, 𝒖0 , 𝒗0, 𝒚0 and (�̇�)0 vectors, called offsets, are the 𝒙, 𝒖, 𝒗, 𝒚 and �̇� vectors calculated at the 
points of the linearisation grid, while the 𝑨,𝑩𝒖 , 𝑩𝒗 , 𝑪 and 𝑫 matrices are the matrices describing the 
linear system obtained at these points. The superscript ip is the grid index, which identifies which 
linear system is being considered among those constituting the LTI systems set. There will be a 
module in the controller which, based on the values of the parameters chosen to construct the 
linearisation grid, will work out which system is best to use, obtaining the appropriate ip-index at each 
step. 
From section 5.6.2.1, we recall the state space form of a discrete model used in a linear-discrete 
Kalman filter, where the subscript KF means we refer to quantities of Kalman filter model, while no 
subscript means we refer to LTI systems quantities or to quantities that only compare in the Kalman 
filter. Superscript ip indicates the linear system from which Kalman filter quantities are computed, 
since at each time step we are going to use a different Kalman filter model according to parameter 
values. All models are computed offline, so, during working operations, the better one (according to 
parameter values) is chosen to be used for that time step. From these considerations, discrete Kalman 
filter model becomes: 
 

{
   𝒙𝐾𝐹
𝑖𝑝 

𝒌 = 𝑨 ∙𝐾𝐹
𝑖𝑝 𝒙𝐾𝐹

 𝑖𝑝
𝒌−𝟏 + 𝑩 ∙𝐾𝐹

𝑖𝑝 𝒖𝐾𝐹
 𝑖𝑝

𝒌−𝟏 +𝑮 ∙  𝒘𝒌

𝒚𝐾𝐹
𝑖𝑝 

𝒌 = 𝑪𝐾𝐹
  ∙ 𝒙𝐾𝐹

 𝑖𝑝
𝒌 + 𝒗𝒌                                                 

       (6.10) 

 
 
Where: 
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- 𝒗: It is the Kalman filter measurement noise vector 𝒗  = { 𝑣1}
 , the stochastic part of the 

output’s measurement, which is assumed to be a white noise with zero mean and a 
certain value of variance, 𝜎2(𝑣1); 
 

- 𝑮: It is the process noise matrix; in this case it is defined as the identity matrix 𝑰, since, 
by definition,  𝒘𝒌 is already the vector defined as the difference between the actual 
vector of states and that predicted by the mathematical model. 

 
- 𝑪: It is the output matrix, which, in this case, is a row vector, since there is only one 

output ( 𝑦  = { Ω − Ω0}
 ). 𝑪  is defined as 𝑪  = { 1, 0, 0}

⊤, since output is equal to the 
first state. 

 
- 𝑇: sample time of discrete model, such that, as an example 𝒙𝒌 = 𝒙(𝑘𝑇). 

 
 
 
The elements in equation 6.10 that have yet to be defined are the matrices 𝑨𝐾𝐹

  and 𝑩𝐾𝐹
 , which 

express the relationship between states at time 𝑘 and states and inputs at time 𝑘 − 1, as well as 𝒘 at 
time 𝑘.  Focusing on the deterministic part (thus excluding the term dependent on 𝒘), the first row is 
the equation that results in the state Ω − Ω0 at time 𝑘 from the states and inputs at time 𝑘 − 1. This 
equation corresponds to the last row of the first vector equation of system 6.9, so the first rows of the 
matrices 𝑨𝐾𝐹

  and 𝑩𝐾𝐹
  can be derived by manipulating the matrices 𝑨,𝑩𝒖 and 𝑩𝒗 of the starting LTI 

system, after discretizing it. For other rows, on the other hand, it is necessary to define the wind 
model, i.e. the equations by which the states 𝑣𝑤𝑡  and  𝑣𝑤𝑚 − 𝑈𝑤𝑖𝑛𝑑,𝑚,0 at time 𝑘 can be predicted 
from the same quantities at time 𝑘 − 1. The wind model used is inspired by the model suggested by 
Knudsen T, Bak T and Soltani M in [31]. Adapting this model to the discrete case under consideration, 
the following equations can be written: 
 

𝑣𝑤𝑡,.𝑘 = (1 − 𝑇
𝜋 ∙ 𝑣𝑤𝑚,.𝑘−1 

2𝐿
) ∙ 𝑣𝑤𝑡,.𝑘−1 +𝑤2,𝑘                        (6.11) 

𝑣𝑤𝑚,.𝑘 − 𝑈𝑤𝑖𝑛𝑑,𝑚,0 = (𝑣𝑤𝑚,.𝑘 − 𝑈𝑤𝑖𝑛𝑑,𝑚,0) + 𝑤3,𝑘           (6.12) 

 

𝐿 is a turbulence length scale parameter generically defined as 𝐿 =  3𝐷, where 𝐷 is the rotor diameter. 
𝑇 is the discrete Kalman filter sample time, while 𝑤2, 𝑤3 are w vector’s component, all of them defined 

above. As can be seen in 6.11 and 6.12, mean part of wind speed is modelled as a random walk, 
while turbulent part step increment is proportional (with minus sign) to mean part. 
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Finally, to be able to implement the discrete Kalman filter algorithm obtained in section 5.2.6.1, it is 
necessary to derive the matrices 𝑸 and 𝑹, which we recall being the covariance matrices of the vector 
w (process noise) and the vector v (measurement noise). Matrix 𝑹, since we have only one measured 
output, is simply its variance: 𝑹 = 𝜎2(𝑣1). On the other hand, regarding matrix 𝑸, going back to the 
work done in [31] and modifying the results to make them compatible with the discrete model adopted, 
it is defined as follows: 

𝐐 𝑘 = 𝑇 ∙

[
 
 
 
 
1 × 10−5 0 0

0
𝜋∙𝑣𝑤𝑚,.𝑘  

3∙TI 
2

𝐿
0

0 0
22

600]
 
 
 
 

               (6.13) 

 
𝐐 has got a diagonal form (it means that different components of state vector are uncorrelated), where 
diagonal elements are the variances of w vector’s components. It can be seen variance of second and 
third state, parts of the unknown wind speed, have a greater variance due to the difficulty of modelling 
the phenomenon, which has a strong random component, while the first term is smaller, as any 
disturbances are much smaller than the deterministic part predicted by the model. Finally, it is possible 
to note that the variance of the turbulent component of the wind speed is greater when the average 
component is greater, furthermore, it depends on the TI term, which indicates the turbulence intensity. 
In this case, a TI value of 0.18 is adopted in accordance with IEC 614001-1 [32].  
 
At the operational level, as mentioned above, the offsets and matrices of the LTI systems set are 
calculated offline for each point on the linearisation grid. Starting from these and the 
considerations/definitions just made, all possible quantities are calculated offline, so that they can be 
called up during controller operation, knowing, instant by instant, the grid index ip to which reference 
must be made. During controller operation, the inputs to the Kalman filter for wind estimation are the 
measurements taken (vector y in 6.9), the controlled inputs (vector u in 6.9) and the grid index ip. 
From these, the vectors 𝒙𝐾𝐹

  and 𝒖𝐾𝐹
   are calculated online, then the time-dependent part of the matrix 

𝑨𝐾𝐹
𝑖𝑝  and matrix 𝑸 are calculated, both dependent on the average part of estimated speed in the 

previous step. Finally, the Kalman filter algorithm obtained in 5.6.2.1 is applied through which the filter 
model states are estimated. It is recalled here with a notation compatible with 6.10 and above 
definitions:  

�̂�𝒌∣𝒌−𝟏𝐾𝐹
𝑖𝑝 = 𝑨 ∙𝐾𝐹

𝑖𝑝  �̂�𝒌−𝟏𝐾𝐹
𝑖𝑝 + 𝑩 ∙𝐾𝐹

𝑖𝑝 𝒖𝐾𝐹
 𝑖𝑝

𝒌−𝟏 

𝑲𝒌 = 𝑷𝒌|𝒌−𝟏 ∙  𝑪𝐾𝐹
 𝑻 [ 𝑪𝐾𝐹

  ∙ 𝑷𝒌|𝒌−𝟏 ∙  𝑪𝐾𝐹
 𝑻 + 𝑹]

−𝟏 

                     �̂�𝒌𝐾𝐹
𝑖𝑝 = �̂�𝒌∣𝒌−𝟏𝐾𝐹

𝑖𝑝 +𝑲𝒌 ( 𝒚𝒌𝐾𝐹
𝑖𝑝 

 
− 𝑪𝐾𝐹

  ∙ �̂�𝒌∣𝒌−𝟏𝐾𝐹
𝑖𝑝 )              (6.14) 

𝑷𝒌 = (𝑰 − 𝑲𝒌 ∙ 𝑪𝐾𝐹
 ) ∙ 𝑷𝒌|𝒌−𝟏 

𝑷𝒌+𝟏|𝒌 = 𝑨 ∙𝐾𝐹
𝑖𝑝  𝑷𝒌 ∙ 𝑨𝐾𝐹

𝑖𝑝 𝑻 +  𝑸  

 

Once �̂�𝒌𝐾𝐹
𝑖𝑝  is obtained, the estimation of second and third states (𝑣𝑤𝑡,.𝑘 and 𝑣𝑤𝑚,.𝑘 − 𝑈𝑤𝑖𝑛𝑑,𝑚,0) are 

summed together, then the offset wind speed (𝑈𝑤𝑖𝑛𝑑,𝑚,0) is added to that sum to obtain estimation of 
wind speed 𝑈𝑤𝑖𝑛𝑑,𝑚 .  
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Below there is a graph showing, to do an example, the results obtained by simulating the non-linear 
model NL (see section 3.3) and estimating the wind speed with the Kalman filter just obtained. To 
carry out these tests, since the implementation of the MPC controller under examination has not yet 
been completed, it was decided to use the Baseline controller presented in section 4.4.1 as control 
algorithm. The external inputs of the model are the wave excitation forces/torques and the wind speed 
(see sections 3.2.2 and 3.2.1), while the system characteristics are those reported in section 2.  
We recall that the NL model receives, as wind input, the wind speeds at each point of a spatial grid 
over the rotor area, while the Kalman filter estimate the spatial average wind speed, or, to be more 
precise, the wind speed which lead to the best fit between measured output (of Kalman filter model) 
and those one predicted by model, also considering sensor characteristics (matrix R) and  model 
reliability (matrix Q). It is therefore clear that although the algorithm works correctly, there are 
differences between the real average speed and the estimated speed. In any case, it can be noted 
that the results obtained are satisfactory.  
Since wind speed isn’t a priori known, an initial estimate speed has been set (in this case it is 9 m/s), 
which can also be very different from the actual speed at the initial instant. Despite this, as can be 
seen from the graph, the estimated speed quickly converges to a value close to the correct one. 
To evaluate the estimation performances, a factor called “Goodness-of-Fit”, GoF, is computed from 
simulation results and reported on graph; it is defined as: 

𝐺𝑜𝐹 = 1 −
√∑ (𝑦𝑘−�̂�𝑘

 )
2𝑁

𝑘=1

√∑ (𝑦𝑘−𝑦𝑘̅̅ ̅̅  )
2𝑁

𝑘=1

     (6.15) 

Where �̂�𝑘  is the estimation of 𝑦𝑘 at time 𝑘, 𝑦𝑘̅̅ ̅ is the average value of 𝑦  and 𝑁 are the number of 
samples. 
 

Figure 6.13: Comparison between 𝑈𝑤𝑖𝑛𝑑,𝑚, average wind speed across rotor area (mean of wind speed computed at 
grid points), and its estimation through Kalman filter. 
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6.2.1.2 Wave Kalman Filter 
 
As with the Kalman filter for wind speed estimation, the LTI systems set (see section 5.2.6.1) is called 
up from which the construction of the mathematical model adopted in the observer algorithm starts: 
 

{
   𝛿�̇� = (�̇�)0 

𝑖𝑝 + 𝑨 
𝑖𝑝 ⋅ 𝛿𝒙 + 𝑩𝒖 

𝑖𝑝 ⋅ 𝛿𝒖 + 𝑩𝒗 
𝑖𝑝 ⋅ 𝛿𝒗

𝛿𝒚 = 𝑪 
𝑖𝑝 ⋅ 𝛿𝒙 + 𝑫 

𝑖𝑝 ⋅ 𝛿𝒖                                        
      (6.16) 

 

With:                  −   𝒙 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω}⊤ ,                               −    𝒚 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω, 𝑃}⊤ 

                          −   𝒖 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤,                                        −   𝒗 = {𝑈𝑤𝑖𝑛𝑑,𝑚 , 𝑭ext 
𝑇 }

⊤ 

                          −   (�̇�)0 
𝑖𝑝 = 𝑓( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 , 𝒖0 

𝑖𝑝 ),                     −    𝒚0 
𝑖𝑝 = 𝑔( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 ) 

                          −   𝛿𝒙 = 𝒙 − 𝒙0 
𝑖𝑝 ,                                             −   𝛿𝒖 = 𝒖 − 𝒖0 

𝑖𝑝  

                                 −   𝛿𝒗 = 𝒗 − 𝒗0 
𝑖𝑝 ,                                             −   𝛿𝒚 =  𝒚 − 𝒚0 

𝑖𝑝  
 
To be clear, let us remember that the vectors 𝒙,𝒖, 𝒗 and 𝒚 are, respectively, the states, controlled 
inputs, external inputs and outputs vectors. The states are s (surge), h (heave), p (pitch), their 
derivatives and the rotor speed Ω. The controlled inputs are the low-shaft generator torque 𝐶gen 

′  and 
the collective blade-pitch angle 𝜃𝑏𝑙. The external inputs are the average wind speed (across rotor 
area) in the direction parallel to the surge, 𝑈𝑤𝑖𝑛𝑑,𝑚 , and the wave excitation forces 𝑭𝑒𝑥𝑡 . Finally, the 
outputs are the states and the extracted power P. 
 
The 𝒙0, 𝒖0 , 𝒗0, 𝒚0 and (�̇�)0 vectors, called offsets, are the 𝒙, 𝒖,𝒗, 𝒚 and �̇� vectors calculated at the 
points of the linearisation grid, while the 𝑨,𝑩𝒖 , 𝑩𝒗 , 𝑪 and 𝑫 matrices are the matrices describing the 
linear system obtained at these points. The superscript ip is the grid index, which identifies which 
linear system is being considered among those constituting the LTI systems set. There will be a 
module in the controller which, based on the values of the parameters chosen to construct the 
linearisation grid, will work out which system is best to use, obtaining the appropriate ip-index at each 
step. 
 
From section 5.6.2.1, we recall the state space form of a discrete model used in a linear-discrete 
Kalman Filter, where the subscript KF means we refer to quantities of Kalman filter model, while no 
subscript means we refer to LTI systems set quantities or to quantities that only compare in the 
Kalman filter. Superscript ip indicates the LTI linear system from which Kalman filter quantities are 
computed, since at each time step we are going to use a different Kalman filter model according to 
parameter values. All models are computed offline, so, during working operations, the better one 
(according to parameter values) is chosen to be used for that time step.  
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- 𝒙𝐾𝐹
  : It is the Kalman filter states vector, which is defined as follows:                                    
𝒙𝐾𝐹
 = { F𝑒𝑥𝑡,𝑥 𝑓𝑥⁄  ,  F𝑒𝑥𝑡,𝑧 𝑓𝑧⁄  ,  M𝑒𝑥𝑡,𝑦 𝑓𝑦⁄  }

⊤, where  F𝑒𝑥𝑡,𝑥   and F𝑒𝑥𝑡,𝑧  are the wave 
excitation forces along x (surge) and z (heave) directions, while  M𝑒𝑥𝑡,𝑦 is the 
wave excitation torque around y (pitch) axis. Factors 𝑓𝑥 , 𝑓𝑧 and 𝑓𝑦  are three factors used 
to scale forces and torque, in order to have similar values, around unity, for the three 
states. 
 

- 𝒖𝐾𝐹
   : It is the Kalman filter inputs vector, known by assumption. It is defined as follow: 
𝒖𝐾𝐹
 = {𝑠 − 𝑠0, ℎ − ℎ0, 𝑝 − 𝑝0, �̇� − �̇�0, ℎ̇ − ℎ̇0, �̇� − �̇�0, 𝐶gen 

′ − 𝐶gen 
′

0
,  𝜃𝑏𝑙 − 𝜃𝑏𝑙0,

𝑈𝑤𝑖𝑛𝑑,𝑚 − 𝑈𝑤𝑖𝑛𝑑,𝑚,0, �̈�0, ℎ̈0, �̈�0}
⊤. Subscript 0 indicates values at linearization point. 

All these quantities are considered to be known, although, actually, the first six can be 
affected by measurement errors, while wind speed is only an estimate (made by the 
Kalman filter dedicated to it).  

 
- 𝒘: It is the Kalman filter process noise vector. It is a vector 𝒘  = { 𝑤1, 𝑤2, 𝑤3}

⊤ , whose 
component are inputs of the system and whose value is normally unknown. In this case 
they are the “stochastic part” of the states, assumed to be Gaussian processes, which 
are white noises with zero mean and a certain value of variance; 
 

- 𝒚𝐾𝐹
  
 : It is the Kalman filter output vector, which is defined as follows:                                    
𝒚𝐾𝐹
 = { �̇� − �̇�0, ℎ̇ − ℎ̇0, �̇� −  �̇�0}

 
. It is the measured quantity, composed by a 

deterministic part (𝑪  𝒙 +𝑫𝒖 ) and stochastic one due to sensor noise (𝒗 ); 
 

 
 

From these considerations, discrete Kalman filter model adopted to estimate waves excitation 
forces/torques becomes: 
 

{
   𝒙𝐾𝐹

  
𝒌 = 𝑨 ∙𝐾𝐹

 𝒙𝐾𝐹
 𝑖𝑝

𝒌−𝟏 + 𝑮 ∙  𝒘𝒌                                  

𝒚𝐾𝐹
𝑖𝑝 

𝒌 = 𝑪𝐾𝐹
 𝑖𝑝

 ∙ 𝒙𝐾𝐹
  
𝒌 + 𝑫𝐾𝐹

 𝑖𝑝
 ∙ 𝒖𝐾𝐹
 𝑖𝑝

𝒌−𝟏 + 𝒗𝒌          
  (6.17) 

 

Where: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

- 𝒗: It is the Kalman filter measurement noise vector, the stochastic part of the output’s 
measurement, which is assumed to be a white noise with zero mean and a certain 
value of variance; 
 

- 𝑮: It is the process noise matrix; in this case it is defined as the identity matrix 𝑰, since, 
by definition,  𝒘𝒌 is already the vector defined as the difference between the actual 
vector of states and that predicted by the mathematical model. 

 
- 𝑇: sample time of discrete model, such that, as an example 𝒙𝒌 = 𝒙(𝑘𝑇). 
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The elements in equation 6.17 that have yet to be defined are the matrices 𝑨𝐾𝐹
 , 𝑪𝐾𝐹

 𝑖𝑝  and 𝑫𝐾𝐹
 𝑖𝑝 . 

Focusing on the matrix 𝑨𝐾𝐹
 , as can be seen in 6.17, it relates state vectors at time 𝑘 and at time 𝑘 − 1, 

according with the mathematical model chosen to represent wave forces/torques. In this case, we 
assume a simple random walk, that is we consider the forces/torque at time 𝑘 equal to those at time 
𝑘 − 1, to which is then added a white noise, i.e. a random term, w, with zero mean and a certain value 
of variance, in mathematical terms: 
 

   𝒙𝐾𝐹
  
𝒌 = 𝒙𝐾𝐹

  
𝒌−𝟏 +  𝒘𝒌            (6.18) 

 
It is clear, from equation 6.18 that matrix 𝑨𝐾𝐹

  is the identity matrix 𝑰. As for the matrices C and D, they 
are derived by manipulating the matrices of LTI systems set 6.16, in particular from the rows 
corresponding to the equations linking the deviations of the derivatives of  �̇�, ℎ̇  and �̇�  from their 
values at linearization points to the states vector, 𝛿𝒙, to the inputs ones, 𝛿𝒖 and 𝛿𝒗, and to states 
derivatives at linearization points, (�̇�)0. 
 
Finally, lasts quantities must be defined to implement the wave Kalman filter are the matrices 𝑸 and 𝑹, 
which are the covariance matrices of process and measurements noise ( 𝒘   and 𝒗). They are defined 
as diagonal matrices, i.e., it is assumed that two different components of the same vector are 
statistically uncorrelated, i.e., their covariance is zero. The principal diagonals of the 𝑸 and 𝑹 matrices, 
on the other hand, are non-zero and are the variances of their components. Given the way in which 
the wave excitation force model has been defined, i.e., a random walk, one wants to give more 
importance to the 𝒚𝐾𝐹

𝑖𝑝 
𝒌 measurements rather than the states’ values predicted by the model. This 

means that the Kalman filter constant 𝑲𝒌 (see second relation of 6.19) should be similar to 𝑪−1. For 
this to happen, the 𝑪𝐾𝐹

  ∙ 𝑷𝒌|𝒌−𝟏 ∙  𝑪𝐾𝐹
 𝑻 term should be much greater than 𝑹. Matrix 𝑷, covariance 

matrix of ‘a priori’ error, however, tends to converge quickly to small values with the result that more 
importance is given to the prediction of states made by the model rather than to the information 
received from the measurements. To cope with this problem, a so-called forgetting factor, 𝒇𝒇, has 
been introduced into the algorithm, which is between 0 and 1 and modifies the way in which the matrix 
𝑷 evolves. This modification results in slower convergence at larger values. 
The Kalman filter algorithm resulting from definition and consideration just made, and according with 
those one obtained in section 5.6.2.1, is: 

�̂�𝒌∣𝒌−𝟏𝐾𝐹
 =  �̂�𝒌−𝟏𝐾𝐹

  

𝑲𝒌 = 𝑷𝒌|𝒌−𝟏 ∙  𝑪𝐾𝐹
 𝑻 [ 𝑪𝐾𝐹

  ∙ 𝑷𝒌|𝒌−𝟏 ∙  𝑪𝐾𝐹
 𝑻 +𝑹 ∙ 𝒇𝒇]

−𝟏 

             �̂�𝒌𝐾𝐹
  = �̂�𝒌∣𝒌−𝟏𝐾𝐹

  +𝑲𝒌 ( 𝒚𝒌𝐾𝐹
𝑖𝑝 

 
− 𝑪𝐾𝐹

 𝒊𝒑
 ∙ �̂�𝒌∣𝒌−𝟏𝐾𝐹

 − 𝑫𝐾𝐹
 𝑖𝑝  ∙ 𝒖𝐾𝐹

 𝑖𝑝
𝒌−𝟏)      (6.19) 

𝑷𝒌 = (𝑰 − 𝑲𝒌 ∙ 𝑪𝐾𝐹
 𝒊𝒑 ) ∙ 𝑷𝒌|𝒌−𝟏 

𝑷𝒌+𝟏|𝒌 =   𝑷𝒌 𝒇𝒇⁄ +  𝑸  

 
Once �̂�𝒌𝐾𝐹

  is obtained, the estimation of is computed by multiplying the latter with the scaling factor 
previously introduced: 𝑓𝑥 , 𝑓𝑧  and 𝑓𝑦. 
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Below there are some graphs showing, to do an example, the results obtained by simulating the non-
linear model NL (see section 3.3) and estimating the wave excitation forces/torques with the Kalman 
filter just obtained. To carry out these tests, since the implementation of the MPC controller under 
examination has not yet been completed, it was decided to use the Baseline controller presented in 
section 4.4.1 as control algorithm. The external inputs of the model are the wave excitation 
forces/torques and the wind speed (see sections 3.2.2 and 3.2.1), while the system characteristics are 
those reported in section 2. Wave forces/torques inputs of simulation are generated through a 
JONSWAP spectrum with a significative height Hs=4 m and a peak period Tp=6 s. 

 
 

Figure 6.14: Comparison between 𝐹𝑒𝑥𝑡,𝑥, wave excitation force along x (surge) direction, and its estimation obtained 
through Kalman filter. 

Figure 6.15: Comparison between 𝐹𝑒𝑥𝑡,𝑧, wave excitation force along z (heave) direction, and its estimation obtained 
through Kalman filter. 
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From these results the fit between the actual and estimated values is quite good, however, the 
simulated measurements are free of noise and some quantities are defined as input that are not 
actually known, which means that the results could actually be worse. To obtain an estimate that 
produces good results even without these simplifications, it may be necessary to use a better model 
than a simple random walk. One solution might be to model the wave excitation forces as the 
summation of a certain number of harmonics at a certain frequency, where the states of the system 
are the amplitudes of these harmonics. The problem with this mode is that the frequency of the 
harmonics cannot vary and the number of them cannot be too high for reasons of computational 
onerousness. Another solution could be to reformulate the model in such a way as to have both the 
amplitudes and the frequencies of a certain number of harmonics as states, or to adopt different types 
of models, such as autoregressive models in which the value at a certain instant depends, according 
to coefficients used as states, on the previous values of the estimated quantity. Before arriving at the 
solution adopted in this work, an attempt was made to implement the first solution mentioned above, 
which was, however, discarded because the results produced were not sufficiently better to justify the 
greater complexity and thus the greater computational effort. It was therefore preferred to opt for a 
filter in which the model produces less reliable results and in which more importance is given to the 
measurements taken. 
 
 
 
 
 
 
 
 

Figure 6.16: Comparison between 𝑀𝑒𝑥𝑡,𝑦, wave excitation torque around y (pitch) axis, and its estimation obtained through 
Kalman filter. 
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6.2.2 Forecasting 
As mentioned in the introductory part of this chapter, in order to correctly perform numerical 
optimisation within the MPC controller for the calculation of optimal control actions, it is necessary to 
know the value of the model's external inputs used for the controller within the entire prediction 
horizon. In the previous section, we explored how to estimate their values if they are not measured, 
whereas in this section, we define how to estimate their values in the future from those in the past 
(and present). In particular, from the estimates (made by the Kalman filters defined in 6.2.1 and 6.2.2) 
of the wind speed and wave excitation forces, their values will be forecast throughout the prediction 
horizon provided by the MPC optimisation algorithm. 
 
Regarding wave excitation forces, the forecasting method chosen is based on an auto-regressive 
model (AR) and a recursive least square algorithm to estimate model’s coefficients. For what 
concerning wind speed forecasting, on the other hand, an actual forecast is not done, but we simply 
assume a constant wind speed within prediction horizon, which value corresponds to estimated wind 
speed at the beginning of the interval. The reason of this choice is the highly stochastic nature of wind 
speed, especially if the prediction interval is small, as happens in the case of the implemented MPC 
controller, which deals with time horizons in the order of seconds. Different forecasting methods have 
been tried, but with poor results, for example the method used for waves or based on ARI (Auto-
Regressive with Integrator) models, or still based on the study of signal frequency. Even using the 
wind model used for the related Kalman filter, this time to perform a forecast, i.e. to estimate the future 
values of the states based solely on its the model, has not led to good results. 
 

6.2.2.1 Wave Forecasting 

As just mentioned, the estimation of the future values of the excitation forces of the waves is 
performed by means of autoregressive (AR) models and a recursive algorithm for the least squares 
estimation of the coefficients describing these models. In particular, three separate estimates are 
made for the two unknown forces and for the unknown torque. An autoregressive model is a discrete 
model, through which it is possible to estimate a certain quantity at time step t+1 knowing the values in 
the previous n steps, where n indicates the order of the model, which corresponds to the number of 
coefficients needed for its description. 

The auto-regressive model of order n, denoted as AR(n), of a general signal 𝑦 is defined as follow: 
 

𝑦(𝑡 + 1) = �̅� + 𝛽1 ∙ ( 𝑦(𝑡) − 𝑦 ̅) + 𝛽2 ∙ ( 𝑦(𝑡 − 1) − 𝑦 ̅) +⋯+ 𝛽𝑛 ∙ (𝑦(𝑡 − 𝑛 + 1) − �̅�) + 𝑒(𝑡 + 1)   (6.20) 
 
Where 𝑦(𝑡 + 1) is the signal’s value at time step t+1 (the same holds for other time steps), 𝑦 ̅ is the 
average value of 𝑦 , 𝛽𝑖 (with 𝑖 = 1,… , 𝑛) are the model coefficients and 𝑒(𝑡 + 1) is the value at time 
t+1 of a with noise, that is a Gaussian signal with zero mean. The idea of an AR model is that the 
signal at a certain time step t+1 is the sum of a deterministic part, determined thanks to knowledge of 
model coefficients and signal’s values at previous n steps, and of a random portion, of which only the 
variance may be known. 
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From now on, a signal with zero mean is considered (𝑦 ̅ = 0), given that the quantities to be estimated 
(the excitation forces of the waves) actually have a zero mean and that in any case the generality of 
the treatment is not lost by making this hypothesis. Furthermore, considering that 𝑒 is a white noise 
and that signal’s values at time steps before that one at which prevision is done are known, the 
expected value of the signal at the time step t+1, called �̂�(𝑛 + 1), can be written as:  

           �̂�(𝑡 + 1) = 𝐸[𝑦(𝑛 + 1)] = 𝛽1 ∙ 𝑦(𝑡) +⋯+ 𝛽𝑛 ∙ 𝑦(𝑡 − 𝑛 + 1)        (6.21) 

Equation 6.21 will be used to find future values of 𝑦 once coefficients vector 𝜷 is known (and with 
present and past values of y). To obtain 𝜷, a set of equation of the same type of 6.21 can be write, all 
of them with known past values of 𝑦 and with vector 𝜷 as the unknown variable. Normally the number 
of equations, which we define m, is higher than the order, so the resulting linear system is an over-
dimensioned one, which can be solved by least-squares. To do so, we can define: 

𝜷 = {𝛽1, ⋯ , 𝛽𝑛}
⊤,    𝜷 ∈ ℝ𝑛×1                                                                             (6.22) 

𝒚(𝑘) = {𝑦(𝑘 −𝑚 + 1), 𝑦(𝑘 −𝑚 + 2),⋯ , 𝑦(𝑘)}⊤,   𝒚(𝑘) ∈ ℝ𝑚×1           (6.23) 

�̂�(𝑘) = {�̂�(𝑘 −𝑚 + 1), �̂�(𝑘 −𝑚 + 2),⋯ , �̂�(𝑘)}⊤,   �̂�(𝑘) ∈ ℝ𝑚×1           (6.24) 

𝒆(𝑘) = 𝒚(𝑘) − �̂�(𝑘),   𝒆(𝑘) ∈ ℝ𝑚×1                                                                 (6.25) 

𝝓(𝑘) = {𝑦(𝑘 − 1), 𝑦(𝑘 − 2),⋯ , 𝑦(𝑘 − 𝑛)},   𝝓(𝑘) ∈ ℝ1×𝑛                       (6.26) 

𝚽(𝑘) = [

𝝓(𝑘 −𝑚 + 1)
𝝓(𝑘 −𝑚 + 2)

⋮
𝝓(𝑘)

] ,𝚽(𝑘) ∈ ℝ𝑚×𝑛                                                        (6.27) 

 
The goal is to find the vector 𝜷 such that the norm of vector 𝒆 is minimized, to do so, we define a cost 
function 𝐽(𝑘): 

𝐽(𝑘) =
1

2
 𝒆(𝑘)⊤ 𝑨(𝑘)  𝒆(𝑘)       (6.28) 

Where 𝑨(𝑘) is a weight matrix through which we can give less importance to samples more distant in 
the past. It is a diagonal matrix defined by 𝜆, called forgetting factor, whose value must be between 0 
and 1 (0 < 𝜆 ≤ 1). 

𝑨(𝑘) = (

𝜆𝑚−1 0 
0 ⋱ 

…   0
   ⋮

⋮  
0    …

𝜆    0
0    1

),  𝑨(𝑘) ∈ ℝ𝑚×𝑚                        (6.29) 

By imposing ∂𝐽(𝑘)
∂𝜷

= 0 we can obtain value of vector 𝜷 which minimize 𝐽(𝑘): 

𝜷(𝑘) = (𝚽(𝑘)⊤ ⋅ 𝑨(𝑘) ⋅ 𝚽(𝑘))−1 ⋅ 𝚽(𝑘)⊤ ⋅ 𝑨(𝑘) ⋅  𝒚(𝑘)         (6.30) 
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In equation 6.30 we named coefficients vector 𝜷(𝑘) and not only 𝜷 to underlying it is computed with 
information at time 𝑘, composed by samples from time 𝑘 − 𝑚 − 𝑛 + 1 to time 𝑘. A method can be used 
to compute 𝜷 at any time step is building 𝚽 , 𝑨(𝑘) and 𝒚 at each time and then calculating 𝜷 with 
6.30. This method is called “Batch Least Square”, (BLS), and requires the calculation of the inverse of 
a matrix at each step, as well as the construction of the above-mentioned matrices. However, to 
reduce computational demand, a different method can be adopted, through which, starting from vector 
𝜷(𝑘) (computed at time step k with, as an example, a BLS method), it is possible to compute 
coefficient vector at next time step, 𝜷(𝑘 + 1), by modifying 𝜷(𝑘) only with new information available at 
time step 𝑘 + 1. This method is called “Recursive Least Square” (RLS) and it is that one used in this 
work. 
 

To implement the RLS algorithm some quantities at time step 𝑘 + 1 should be defined: 
 

𝐲 (𝑘 + 1) = [
𝐲 (𝑘)

𝑦(𝑘 + 1)
] ,    𝐲 (𝑘 + 1) ∈ ℝ

(𝑚+1)×1                              (6.31) 

 

𝚽(𝑘 + 1) = [
𝚽(𝑘)

𝝓(𝑘 + 1)
] , . . 𝚽(𝑘 + 1) ∈ ℝ(𝑚+1)×𝑛                           (6.32) 

 

𝑨(𝑘 + 1) = [
𝜆 ∙ 𝐀(𝑘) 𝑍𝑚×1
𝑍1×𝑚 1

],  𝑨(𝑘 + 1) ∈ ℝ(𝑚+1)×(𝑚+1)         (6.33) 

 

Where 𝑍1×𝑚 is a zero matrix of dimension 1 ×𝑚. Then we define the matrix 𝐏 through its inverse: 
 

𝐏−1(𝑘) = 𝚽⊤(𝑘)𝐀(𝑘)𝚽(𝑘),    𝐏 (𝑘) ∈ ℝ𝑛×𝑛                            (6.34) 
 

From 6.30-6.34, the inverse of 𝐏 at time 𝑘 + 1 is: 
 

   𝐏−1(𝑘 + 1) = 𝚽⊤(𝑘 + 1)𝐀(𝑘 + 1)𝚽(𝑘 + 1) = 𝜆𝐏−1(𝑘) +𝚽⊤(𝑘) 𝚽(𝑘)                                      (6.35) 
 

Matrix 𝐏(𝑘 + 1) can be obtained by rule (𝐀 + 𝐁𝐂𝐃)−1 = 𝐀−1 − 𝐀−1𝐁(𝐃𝐀−1𝐁 + 𝐂−1)−1𝐃𝐀−1: 
 

𝐏(𝑘 + 1) =
1

𝜆 
(𝐏(𝑘) − 𝐏(𝑘) ∙ 𝝓𝑇(𝑘 + 1) ∙ 𝚪(𝑘) ∙ 𝝓 (𝑘 + 1) ∙ 𝐏(𝑘))                                        (6.36) 

        With:   𝚪(𝑘) = (𝝓 (𝑘 + 1) ∙ 𝐏(𝑘) ∙ 𝝓𝑇(𝑘 + 1) + 𝜆)−1,   𝚪(𝑘) ∈ ℝ                                          (6.37) 
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Now, from 6.30, we can write unknown coefficient vector 𝜷 at time 𝑘 + 1: 

𝜷(𝑘 + 1) = (𝚽(𝑘 + 1)⊤ ⋅ 𝑨(𝑘 + 1) ⋅ 𝚽(𝑘 + 1))−1 ⋅ 𝚽(𝑘 + 1)⊤ ⋅ 𝑨(𝑘 + 1) ⋅  𝒚(𝑘 + 1)        (6.38) 

Substituting equation 6.35 and applying definitions 6.31-6.33 we have: 

𝜷(𝑘 + 1) = 𝐏(𝑘 + 1) ⋅ (𝜆 𝚽⊤(𝑘) ∙ 𝐀(𝑘) ∙ 𝐲 (𝑘) + 𝝓 
⊤(𝑘 + 1) ∙ 𝑦(𝑘 + 1))                                 (6.39) 

 

Finally, by further developing equation 6.39, we arrive at the following final expressions: 

                𝜷(𝑘 + 1) = 𝜷(𝑘) + 𝐏(𝑘 + 1) ⋅ 𝝓 ⊤(𝑘 + 1) ⋅ (𝑦(𝑘 + 1) − 𝝓  (𝑘 + 1)𝜷(𝑘))             (6.40)           

𝐏(𝑘 + 1) =
𝐏(𝑘)

𝝓 (𝑘 + 1) ∙ 𝐏(𝑘) ∙ 𝝓𝑇(𝑘 + 1) + 𝜆
                                                                (6.41) 

 
To summarise: assuming we are at time 𝑘 + 1 and knowing the values of 𝑦(𝑘 + 1), 𝝓 (𝑘 + 1) and, 
𝐏(𝑘); it is possible to calculate the updated values of the coefficients 𝜷(𝑘 + 1) of the AR auto-
regressive model using 6.40 and 6.41. Having known 𝜷(𝑘 + 1), it is then possible to calculate the 
expected values of 𝑦 at subsequent instants (𝑦(𝑘 + 2), 𝑦(𝑘 + 3), . . . 𝑒𝑡𝑐. ) with expression 6.21. 
 
At the operational level, the forecasting algorithm initially accumulates the estimates produced by the 
Kalman filter until enough equations are available for estimation. When this condition is reached, 𝐏 
and 𝜷 are calculated using the BLS method (Equation 6.30 and 6.34). After that, from the next step, 𝜷 
is calculated using 6.40 and 6.41. As for future estimates of wave forces, these are calculated with 
6.21 from the first instant at which 𝜷 is available (they are set to zero before that time). 
 
We have seen that by means of the previous samples, the coefficients of a model can be estimated by 
which the future values of the sampled signal can be predicted, i.e., it is possible to derive a model 
describing the signal. It is therefore natural to think of exploiting this model in the observer dedicated 
to the estimation of wave forces in order to try to improve the overall performance and to integrate the 
two modules together. By doing so, one could structure the filter differently to give more confidence to 
the model's predictions, thus having fewer problems in the case of incorrect measurements. However, 
the first attempts in this direction proved to be inconclusive because instability problems arose, since 
an incorrect model leads to incorrect values of the observer's estimate, leading itself to models that 
are even further away from the correct one. 
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Below there are, to do an example, some graphs representing the results produced by the wave 
excitation force forecasting module. They come from a simulation of the non-linear model NL (see 
section 3.3) with a Baseline controller (see section 4.4.1), since the implementation of the MPC 
controller under examination has not yet been completed. The external inputs of the model are the 
wave excitation forces/torques and the wind speed (see sections 3.2.2 and 3.2.1), while the system 
characteristics are those reported in Section 2. Wave forces/torques inputs of simulation are 
generated through a JONSWAP spectrum with a significative height Hs=4 m and a peak period Tp=6 s. 
Average wind speed at hub height is 7 m/s. 

 

The main choices made for the forecasting algorithm are: a 30th-order AR model (𝑛=30), a sample 
time of 0.2 s, 60 equation to do the first estimation of 𝜷 (m=60) and a forgetting factor 𝜆 =0.996.  

 

The graphs show “present” values estimated by the Kalman filter (grey curve) and “future” values 
computed at the starting point of each line (coloured lines). In this case a prediction horizon of 6 
seconds is chosen. Moreover, only some of the previsions are represented, but during real operations, 
a new computation is done every controller optimization, since we will adopt the receding horizon 
method (see section 5). 
 

 
 
 
 
 

Figure 6.17: Predicted values of 𝐹𝑒𝑥𝑡,𝑥, wave excitation force along x (surge) direction. Grey line shows “present” values 

estimated by dedicated Kalman filter, whereas colored plots are the predicted values within prediction horizon. Starting point 
of those plots are the time step at which the computation of future value is done. 



141 
 

 
From the graphs it can be seen that the results are qualitatively correct, i.e., the prediction is 
successful, but with not too precise fits, especially for of 𝑀𝑒𝑥𝑡,𝑦, for which mean value of 𝐺𝑜𝐹 may be 
under 0.5 (see definition 6.15). However, we must consider that, given that a receding horizon method 
will be adopted for our MPC controller (see section 5), the important thing is to have good results in 
the firsts instants of the future. Moreover, optimal knowledge of these forces does not lead to a 
significant improvement in controller performance, which is why suboptimal prediction performance 
does not lead to major problems. 
 
 

Figure 6.18: Predicted values of 𝐹𝑒𝑥𝑡,𝑧, wave excitation force along z (heave) direction. Grey line shows “present” values 

estimated by dedicated Kalman filter, whereas colored plots are the predicted values within prediction horizon. Starting point 
of those plots are the time step at which the computation of future value is done. 

Figure 6.19: Predicted values of 𝑀𝑒𝑥𝑡,𝑦, wave excitation torque around y (pitch) axis. Grey line shows “present” values 

estimated by dedicated Kalman filter, whereas colored plots are the predicted values within prediction horizon. Starting point 
of those plots are the time step at which the computation of future value is done. 
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6.2.4 Optimization 
 
As mentioned in the introductory part of this chapter, now that the various ingredients required to be 
able to implement a model predictive control have been defined and explained, it is possible to 
reconnect with the basic concepts presented in Chapter 5 in order to define the control algorithm that 
is the subject of this work, which is used for the management of floating wind turbines. In particular, in 
this section we will define the mathematical model used for numerical optimisation and the cost 
function, which determines the objectives to be pursued. 
At first, the mathematical model of the system used for the optimisation module will be defined, after 
which the cost function and constraints will be defined, and finally, the method by which the optimal 
solution will be found will be explained.  
 
 

6.2.4.1 MPC Model 
In Chapter 5, we saw that a fundamental element of MPC controllers is the mathematical model that 
describes the system to be controlled. As mentioned earlier, the entire control algorithm is based on a 
set of linear systems, each of which is valid around certain operating conditions. This set consists of a 
number of linear systems, each of which describes the system well when certain quantities (called 
parameters) have certain values, close to those used to linearise the starting non-linear system. The 
idea is therefore to create a set of models for the MPC algorithm and to use the most appropriate one 
each time the optimisation is to be performed. To do this, the starting point is the LTI systems set 
obtained in section 6.2.1, through the linearization of the non-linear model of the system called NLS, 
defined in section 3.4. By adding the LTI subscript, to distinguish itself from the other models that will 
be defined, the LTI systems set model is defined as follows (see equations 6.1 and 6.8): 
 

{
  𝛿�̇� 
 

𝐿𝑇𝐼  = 𝑨 
𝑖𝑝

 𝐿𝑇𝐼 ⋅ 𝛿𝒙𝐿𝑇𝐼 + 𝑩𝒖 
𝑖𝑝

 𝐿𝑇𝐼
⋅ 𝛿𝒖𝐿𝑇𝐼 + 𝑩𝒗 

𝑖𝑝
 𝐿𝑇𝐼

⋅ 𝛿𝒗𝐿𝑇𝐼

𝛿𝒚𝐿𝑇𝐼 = 𝑪 
𝑖𝑝

 𝐿𝑇𝐼 ⋅ 𝛿𝒙𝐿𝑇𝐼 + 𝑫 
𝑖𝑝

𝐿𝑇𝐼 ⋅ 𝛿𝒖𝐿𝑇𝐼                                   
      (6.42) 

 

With:                  −   𝒙𝐿𝑇𝐼 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω}⊤ ,                         −   𝒚𝐿𝑇𝐼 = {𝑠, ℎ, 𝑝, �̇�, ℎ̇, �̇�, Ω, 𝑃}⊤ 

                          −   𝒖𝐿𝑇𝐼 = {𝐶gen 
′ , 𝜃𝑏𝑙}

⊤,                                  −   𝒗𝐿𝑇𝐼 = {𝑈𝑤𝑖𝑛𝑑,𝑚 , 𝑭ext 
𝑇 }

⊤ 

                          −   (�̇�)0 
𝑖𝑝 = 𝑓( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 , 𝒖0 

𝑖𝑝 ),                    −    𝒚0  
𝑖𝑝 = 𝑔( 𝒙0 

𝑖𝑝 , 𝒖0 
𝑖𝑝 ) 

                          −   𝛿𝒙𝐿𝑇𝐼 = 𝒙𝐿𝑇𝐼 − 𝒙0 
𝑖𝑝 ,                                 −   𝛿𝒖𝐿𝑇𝐼 = 𝒖𝐿𝑇𝐼 − 𝒖0  

𝑖𝑝  

                                 −   𝛿𝒗𝐿𝑇𝐼 = 𝒗𝐿𝑇𝐼 − 𝒗0 
𝑖𝑝 ,                                 −   𝛿𝒚𝐿𝑇𝐼 = 𝒚𝐿𝑇𝐼 − 𝒚0  

𝑖𝑝  

 

We recall the vectors 𝒙𝐿𝑇𝐼 ,𝒖𝐿𝑇𝐼 ,𝒗𝐿𝑇𝐼 and 𝒚𝐿𝑇𝐼  are, respectively, the states, controlled inputs, external 
inputs and outputs vectors. The states are s (surge), h (heave), p (pitch), their derivatives and the rotor 
speed Ω.  
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The controlled inputs are the generator torque 𝐶gen 
′  and the collective blade-pitch angle 𝜃𝑏𝑙. The 

external inputs are the average wind speed (across rotor area) in the direction parallel to the surge, 
𝑈𝑤𝑖𝑛𝑑,𝑚 , and the wave excitation forces 𝑭𝑒𝑥𝑡 . Finally, the outputs are the states and the extracted 
power P. 

The 𝒙0, 𝒖0 , 𝒗0 and 𝒚0vectors, called offsets, are the 𝒙𝐿𝑇𝐼 ,𝒖𝐿𝑇𝐼 ,𝒗𝐿𝑇𝐼 and 𝒚𝐿𝑇𝐼  vectors calculated at the 
points of the linearisation grid, which do not have LTI subscript since they compare only in the LTI set. 
𝑨 

𝑖𝑝
 𝐿𝑇𝐼 , 𝑩𝒖 

𝑖𝑝
 𝐿𝑇𝐼
 , 𝑩𝒗 
𝑖𝑝

 𝐿𝑇𝐼
 , 𝑪 
𝑖𝑝

 𝐿𝑇𝐼  and 𝑫 
𝑖𝑝

𝐿𝑇𝐼 matrices are the matrices describing the linear system 
obtained at these points. The superscript ip is the grid index, which identifies which linear system is 
being considered among those constituting the LTI systems set. As it can be noted comparing 
equation 6.42 with 6.8, the vector (�̇�)0 (i.e. values of states’ derivatives at linearization points) is now 
omitted for sake of simplicity, since it will be anyhow simplified in the next calculations. 
 
Having defined the starting LTI systems set, it is now possible to define the mathematical model used 
for the optimization of the MPC controller, indicated with the subscript 𝑚. According to equation 5.1, 
the linear model in the state space form is shown below. It is somewhat different from the one defined 
in that section: according to 6.42, controlled inputs are distinguished from external ones. Furthermore, 
as explained in Chapter 5, the matrix 𝑫𝑚,𝑐  is omitted for reasons of causality, given that in this case 
the control law 𝒖𝒎 in a certain instant will have to depend on the outputs (and therefore on the states) 
in that instant. From now on the apex 𝑖𝑝 will be omitted for simplicity, however it must be remembered 
that each model that will be defined will be one of many (defined in a similar way), each of which is 
valid around a given linearization point, i.e., valid for a certain value of the chosen parameters and 
therefore a certain 𝒊𝒑 index. 

 

{  
�̇�𝒎(𝑡) = 𝑨𝑚,𝑐 𝒙𝒎(𝑡)  + 𝑩𝒖𝑚,𝑐 𝒖𝒎(𝑡)  + 𝑩𝒗𝑚,𝑐 𝒗𝒎(𝑡)

𝒚𝒎(𝑡) = 𝑪𝑚,𝑐 𝒙𝒎(𝑡)
      (6.43) 

 

Where:                                              𝒙𝒎 = {𝛿𝒙𝐿𝑇𝐼 ,   ∫ 𝑃 − 𝑃0 𝑑𝑡 
𝑡

0
}
𝑻
 

𝒖𝒎 = 𝛿𝒖𝐿𝑇𝐼 

𝒗𝒎 = 𝛿𝒗𝐿𝑇𝐼 

                                                                                           𝒚𝒎 = 𝒙𝒎 
 

From definition above, and from 6.42, matrices of model 6.43 can be defined as follows (𝒁 are zero-
matrices of needed dimensions): 

𝑨𝑚,𝑐 = [
𝑨 
 
 𝐿𝑇𝐼 𝒁

𝑪 
 
 𝐿𝑇𝐼(𝑒𝑛𝑑, : ) 𝒁

  ]    (6.44) 

𝑩𝒖𝑚,𝑐 = [
𝑩𝒖 
 

 𝐿𝑇𝐼

𝑫 
 
 𝐿𝑇𝐼(𝑒𝑛𝑑, : )

 ]        (6.45) 

 



144 
 

𝑩𝒖𝑚,𝑐 = [
𝑩𝒗 
 

 𝐿𝑇𝐼

𝒁
 ]   (6.46) 

𝑪𝑚,𝑐 = 𝑰                     (6.47) 

The reason why last state of the system is the integral of difference between extracted power and its 
linearization value, ∫ 𝑃 − 𝑃0 𝑑𝑡 

𝑡

0
, instead of 𝑃 − 𝑃0, is linked with causality issue above mentioned, 

since 𝑃 − 𝑃0 also depends on 𝒖𝒎. It can’t be only an output, so it would have to compare as a state, 
and to do so, since we have to find a relation between state derivative with states and inputs, we have 
chosen to consider integral ∫ 𝑃 − 𝑃0 𝑑𝑡 

𝑡

0
 as a state, such that its derivative, 𝑃 − 𝑃0, can be expressed 

in terms of 𝒙𝒎 and 𝒖𝒎. Reasoning in terms of the discrete system, with this method the integral at time 
step 𝑘 + 1 is given by the sum of the integral at time step 𝑘 and the quantity (𝑃 − 𝑃0) ∙ 𝑇 at time step 𝑘, 
i.e. the forward Euler method is used.  
 
Once the continuous state space model adopted for MPC optimization is obtained, it can be 
discretized and then augmented according with what has been explained in section 5.2.1. Following 
system is the discrete form of 5.43, with discretization time 𝑇 such that, as an example, 𝒙𝒎𝑘 = 𝒙𝒎(𝑘𝑇) 
and 𝒙𝒎𝑘+1 = 𝒙𝒎((𝑘 + 1) ∙ 𝑇). Discretization method which was used is ZOH (zero-older-hold). 

 

{  
𝒙𝒎

𝑘+1 = 𝑨𝑚,𝑑 𝒙𝒎
𝑘  + 𝑩𝒖𝑚,𝑑  𝒖𝒎

𝑘 + 𝑩𝒗𝑚,𝑑  𝒗𝒎
𝑘    

    𝒚𝒎
𝑘 = 𝑪𝑚,𝑑 𝒙𝒎

𝑘 
   (6.48) 

 

Finally, augmented system is: 

{  
𝒙𝑘+1 = 𝑨 𝒙𝑘  + 𝑩𝒖 Δ𝒖

𝑘 + 𝑩𝒗 Δ𝒗
𝑘

    𝒚𝑘 = 𝑪 𝒙𝑘
                            (6.49) 

 

Where following definitions hold:  

𝒙𝑘 = [Δ𝒙𝒎
𝑘𝑇  𝒚𝒎

𝑘𝑇]
𝑇
          (6.50) 

𝒚𝑘 = 𝒚𝒎
𝑘                             (6.51) 

Δ𝒙𝒎
𝑘 = 𝒙𝒎

𝑘 − 𝒙𝒎
𝑘−1          (6.52) 

Δ𝒖 
𝑘 = 𝒖𝒎

𝑘 −  𝒖𝒎
𝑘−1          (6.53) 

Δ𝒗 
𝑘 = 𝒗𝒎

𝑘 −  𝒗𝒎
𝑘−1          (6.54) 
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𝑨 = [
𝑨𝑚,𝑑 𝐙

𝑪𝑚,𝑑 𝑨𝑚,𝑑 𝑰
 ]             (6.55) 

𝑩𝒖 = [
𝑩𝒖𝑚,𝑑 

𝑪𝑚,𝑑 𝑩𝒖𝑚,𝑑 
]               (6.56) 

𝑩𝒗 = [
𝑩𝒗𝑚,𝑑 

𝑪𝑚,𝑑 𝑩𝒗𝑚,𝑑 
]               (6.57) 

𝑪 =  [𝒁 𝑰 ]                          (6.58) 

 
The difference between this system with that one derived in section 5.2.1 is the separation of input 
vector in two vectors to decouple controlled and external inputs. As can be noted from above 
definitions, they are mathematically treated in the same way, reason why mathematical steps to obtain 
augmented system matrices are not given here. 
 
Once augmented model is derived, we can define vectors containing future values of controlled inputs, 
Δ𝑼, external inputs, Δ𝑽, and outputs predicted by the model, 𝒀: 

Δ𝑼 = [Δ𝒖𝑘
𝑇
, Δ𝒖𝑘+1

𝑇
, …  , Δ𝒖𝑘+𝑁𝑐−1

𝑇]
𝑇
, Δ𝑼 ∈  ℝ (𝑁𝑐∙ mu) x 1   (6.59) 

Δ𝑽 = [Δ𝒗𝑘
𝑇
, Δ𝒗𝑘+1

𝑇
, …  , Δ𝒗𝑘+𝑁𝑝−1

𝑇]
𝑇
, Δ𝑽 ∈  ℝ (𝑁𝑝 ∙ mv) x 1    (6.60) 

                                          𝒀 = [𝒚𝑘+1
𝑇
, 𝒚𝑘+2

𝑇
, …  , 𝒚𝑘+𝑁𝑝

𝑇]
𝑇
 , 𝒀 ∈  ℝ (𝑁𝑝∙ q) x 1                (6.61) 

Outputs and external inputs vectors contain 𝑁𝑝 elements, to cover the prediction horizon  𝐻𝑝 with a 
sample time 𝑇 (corresponding to sample time used to obtain discrete model from continuous one), 
while controlled inputs vector contains  𝑁𝑐 elements, to cover the control horizon 𝐻𝑐 with the same 
sample time. Furthermore, we assume that the control variables remain constant over the time span 
between the control and prediction horizons, so, remembering relation 6.53, Δ𝒖  is set to zero over this 
time. 𝑚𝑢,𝑚𝑣 and 𝑞 are, respectively, the number of controlled inputs, external inputs and outputs. 

Remembering relations 5.32, we can express 𝒀 in terms of current state vector at time step 𝑘, 𝒙𝑘 , 
future control movements Δ𝑼 and future external inputs Δ𝑽 : 
 

𝒀 = 𝑭 ∙ 𝒙𝑘 +𝚽𝒖 ∙ Δ𝑼 + 𝚽𝒗 ∙ Δ𝑽   (6.62) 
 

Where matrices 𝑭 and 𝚽𝒖  are those obtained in 5.33 and 5.34, while 𝚽𝒗 can be derived following the 
same way of 𝚽𝒖. Matrix 𝑭 has dimension q∙ 𝑁𝑝  × 𝑛 , 𝚽𝒖 has dimension 𝑞 ∙ 𝑁𝑝× 𝑚𝑢 ∙ 𝑁𝑐 and 𝚽𝒗 has 
dimension 𝑞 ∙ 𝑁𝑝× 𝑚𝑣 ∙ 𝑁𝑝 (𝑛 is the dimension of state vector 𝒙𝑘). 
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6.2.4.2 Cost Function 

In this section, we will define the cost function to be minimised to find the vector of future controls U. It 
is based on the cost function defined in section 5.2.2, which set as its objective the minimum 
difference between the model's predicted outputs and the imposed targets, and the minimisation of the 
rate of change of the inputs. Weight matrices were also defined to give different importance to different 
targets. In this case, the cost function is slightly different, in fact, a term is added by which we try to 
have the controlled inputs close to the corresponding reference values. The cost function used is 
defined as follows: 

𝐽 =
1

2
 [ (𝑻𝒀 − 𝒀)

𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝒀) + Δ𝑼
𝑇 ∙ 𝑾Δ𝑼 ∙ Δ𝑼 +  (𝑻𝑼 −𝑼)

𝑇 ∙ 𝑾𝑼 ∙ (𝑻𝑼 − 𝑼)]         (6.63) 

 
 Δ𝑼 and 𝒀 are those defined in 6.59 and 6.51, while 𝑻𝒀 ,  𝑻𝑼 and 𝑼 are: 

𝑻𝒀 = [ 𝒕𝑦
𝑘+1𝑇, 𝒕𝑦

𝑘+2𝑇, … , 𝒕𝑦
𝑘+𝑁𝑝

𝑇
 ]
𝑇
,   𝑻𝒀 ∈ ℝ

 (𝑁𝑝 ∙ q) x 1                 (6.64) 

𝑻𝑼 = [ 𝒕𝑈
𝑘+1𝑇, 𝒕𝑈

𝑘+2𝑇, … , 𝒕𝑈
𝑘+𝑁𝑝

𝑇
 ]
𝑇
,   𝑻𝑼 ∈ ℝ

 (𝑁𝑐∙ mu) x 1             (6.65) 

𝑼 = [𝒖𝒎
𝑘𝑇, 𝒖𝒎

𝑘+1𝑇 , …  𝒖𝒎
𝑘+𝑁𝑐−1

𝑇]
𝑇
, 𝑼 ∈  ℝ (𝑁𝑐∙ mu) x 1             (6.66)            

Vectors 𝒕𝑦 are output target vectors (∈ ℝ 𝑞 x 1) for each time step within prediction horizon, while 
vectors 𝒕𝑈 are controlled input reference vectors (∈ ℝ 𝑚𝑢 x 1) for each time step within control horizon. 
Matrices 𝑾𝒀 (∈ ℝ (𝑁𝑝∙ q) x (𝑁𝑝∙ q)), 𝑾Δ𝑼 (∈ ℝ (𝑁𝑐 ∙ mu) x (𝑁𝑐∙ mu)) and 𝑾𝑼 (∈ ℝ

 (𝑁𝑐∙ mu) x (𝑁𝑐∙ mu)) are diagonal 
weight matrices through which different importance can be given to output and input targets and to the 
rate of change of inputs. 

Vector 𝑼 can be expressed in terms of vector Δ𝑼 and vector 𝒖𝒎𝑘 , as we have seen in section 5.2.5.1: 

𝑼 = 𝑪𝟏 ∙  𝒖𝒎
𝑘−1 + 𝑪𝟐 ∙ Δ𝑼     (6.67) 

 

With:                                                                                  𝑪𝟏 =

[
 
 
 
 

 

𝐼𝑚
𝐼𝑚
𝐼𝑚
⋮
𝐼𝑚

 

]
 
 
 
 

      

 

𝑪𝟐 = 

[
 
 
 
 
𝐼𝑚 0 0 … 0
𝐼𝑚 𝐼𝑚 0 … 0
𝐼𝑚 𝐼𝑚 𝐼𝑚 … 0

⋮
𝐼𝑚 𝐼𝑚 … 𝐼𝑚 𝐼𝑚]
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Targets 𝑻𝒀 and 𝑻𝑼 
The targets 𝑻𝒀 and 𝑻𝑼 are considered constant along the corresponding time horizons and their value 
depends on the wind speed 𝑈𝑤𝑖𝑛𝑑,𝑚 at the initial instant of these horizons. The trend of the targets with 
respect to wind speed is that of the steady state values dictated by the control strategy. A strategy 
close to that of the ROSCO controller presented in section 4.4.2.1 was chosen, in which the possible 
wind speed range was divided into 4 main regions. Regions 1 and 4 are inherent below the cut-in 
speed and above the cut-out speed. The former involves zero generator torque and rotor start-up, 
while the latter involves the feathering manoeuvre, with maximum blade angle to reduce loads. Region 
2 is the constant TSR ratio region at its optimum value, while region 3 is the constant power region at 
its rated value. Finally, regions 1.5 and 2.5 are connection regions. 
The image below shows the values of the 𝑻𝒀 and 𝑻𝑼 targets versus wind speed according to the 
control strategy adopted. Some of the 𝑻𝒀 targets are not represented, essentially for two reasons: the 
targets concerning the outputs s (surge), h (heave) and p (pitch) are not represented because their 
weight will be considered null, because no particular goals are set for these quantities. Concerning the 
outputs �̇�, ℎ̇ and �̇�, the corresponding targets are set to zero for each wind speed, as the aim is to 
stabilise the structure. 

 

 
 
 
 

Figure 6.20: Targets TY and TU with respect to average wind speed across rotor area 𝑈𝑤𝑖𝑛𝑑,𝑚. 
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Weight Matrices 𝑾𝒀, 𝑾𝚫𝑼  and 𝑾𝑼  
It was seen in the previous sections that the model of the system used for the MPC changes with each 
optimisation performed. At each step, the model chosen is the appropriate LTI one, i.e. that one 
obtained under the conditions closest to those in which the real system is. The 𝑾𝒀, 𝑾𝚫𝑼 and 
𝑾𝑼 matrices also change according to this logic, so it is possible to give different weights according to 
the region of the linearisation grid in which the system is situated. 
 
Specifically, for each matrix, a base matrix is defined, after which it is multiplied by factors dependent 
on the zone in which plant is located. In this case, the parameters used to create the grid are wind 
speed, collective blade angle and generator torque. The first and third parameters are divided into 
three zones, while the factor related to the second parameter is always 1. However, there could be as 
many regions as the number of linearisation grid points.  
 

The chosen zones for wind speed 𝑈𝑤𝑖𝑛𝑑,𝑚  are: 

o Zone 1:    𝑈𝑤𝑖𝑛𝑑,𝑚 < 9 m/s; 

o Zone 2:    9 m/s ≤ 𝑈𝑤𝑖𝑛𝑑,𝑚 < 11 m/s; 

o Zone 3:    11 m/s ≤ 𝑈𝑤𝑖𝑛𝑑,𝑚. 

Considering 𝑾𝒀 matrix, factors other than 1 were only chosen for the rotor speed and power targets. 
In the first and second zones, similar weights are given to the speed and power targets. In the third 
zone, on the other hand, a higher weight is given to the power target, while maintaining a non-zero 
weight for the speed target.  
 
Considering 𝑾𝚫𝑼 matrix, in the first zone, a high weight is given to the rate of change of the collective 
bladepitch angle, because we want to operate more through the generator torque, vice versa for zone 
3. In zone 2, on the other hand, approximately equal weight is given to the two rates of change.  
 
Finally, regarding the 𝑾𝑼  matrix, it was chosen to give a very high weight to the target related to the 
blade pitch in the first region, so as to have the angle value very close to the target one because in 
this region we want to operate by varying the generator torque. Vice versa for region 3, where it is 
preferred to operate via the blade pitch. 
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The chosen zones for rotor speed Ω are:  

o Zone 1:    𝛺 < 𝛺𝑡 − 0.1 𝑟𝑎𝑑/𝑠 

o Zone 2:    Ω𝑡 − 0.1 𝑟𝑎𝑑/𝑠 ≤  Ω < Ω𝑡 + 0.1 𝑟𝑎𝑑/𝑠; 

o Zone 3:    Ω𝑡 + 0.1 𝑟𝑎𝑑/𝑠 ≤  Ω . 

Where Ω𝑡 is the target rotor speed according with specification mentioned in the previous subsection. 
The strategy is to give more weight to the speed target and less weight to the power target when rotor 
speed is far from its target value, in order to be sure not to go too far from it. Moreover, weights related 
to inputs and their rate of chance are reduced in these zones to reach target rotor speed in a more 
effective way. 
 
All these choices are made in accordance with traditional wind turbine control strategies, discussed 
during the presentation of the Baseline and ROSCO controllers, in which the aim is to optimise the 
power tracking the correct rotor speed by mainly varying the generator torque when the wind speed is 
lower than nominal one. On the contrary, when the wind speed is higher than rated, we want to 
operate more through the blade pitch trying to maintain the power at its rated value, giving less 
importance to the rotor speed. Furthermore, the combination of the weights of the different arrays is 
designed to reduce conflicts between the two actuations. 
 

6.2.4.3 Constraints 
Implemented MPC considers constrain on both controlled inputs 𝑼, their rate of change Δ𝑼 and on 
predicted outputs 𝒀, and they can be equality or inequality constrain. In accordance with what was 
obtained in section 5.2.5.1, where we defined how to express the constraints, and adapting equation 
5.70 to this case, where there are also external inputs, we arrive at the following expression:  

𝑴 ∙ Δ𝑼 ≤ 𝜸   (6.68) 
 

 With:                                                  𝑴 = [ 
𝑴𝟏

𝑴𝟐

𝑴𝟑

 ] ;    𝜸 = [ 
𝑵𝟏
𝑵𝟐
𝑵𝟑

 ] ; 

𝑴𝟏 = [
−𝐼𝑚∙𝑁𝑐
𝐼𝑚∙𝑁𝑐

]  ;     𝑴𝟐 = [
−𝑪𝟐
𝑪𝟐

] ;     𝑴𝟑 = [
−𝚽𝒖

𝚽𝒖
] ; 

𝑵𝟏 = [
−Δ𝑼𝑚𝑖𝑛

Δ𝑼𝑚𝑎𝑥
] ;     𝑵𝟐 = [

−𝑼𝑚𝑖𝑛 + 𝑪𝟏 ∙ 𝒖𝒎
𝑘−1

𝑼𝑚𝑎𝑥 − 𝑪𝟏 ∙ 𝒖𝒎
𝑘−1

]  ;     𝑵𝟑 = [
−𝒀𝑚𝑖𝑛 + 𝑭 ∙ 𝒙𝑘  +  𝚽𝒗 ∙ Δ𝑽

   𝒀𝑚𝑎𝑥 − 𝑭 ∙ 𝒙𝑘 −𝚽𝒗 ∙ Δ𝑽
] 

 
𝑴𝟐 and 𝑵𝟐 matrices are derived from Equation 6.67, while 𝑴𝟑 and 𝑵𝟑 from Equation 6.62. Finally, 
𝐼𝑚∙𝑁𝑐   indicates the identity matrix of dimension 𝑚 ∙ 𝑁𝑐 ×𝑚 ∙ 𝑁𝑐, where 𝑚 is the number of controlled 
inputs and 𝑁𝑐 is the number of samples related to control horizons. 

 



150 
 

In this case, to reduce the required calculations, constraints can only be imposed for certain quantities 
and for a time that can be less than the control or prediction horizons. Main decisions made about 
constrains of our MPC are: 

- The constrained outputs 𝒀 are rotor speed and power. In both cases, a maximum and minimum 
differences to the target values are imposed. 
 

- The rates of change of the controlled inputs Δ𝑼 are all bound with absolute values. 
 

- Finally, the constrained inputs 𝑼 are the minimum and maximum difference of generator torque 
and blade pitch angle from their rated values. 

It is underlined that although only some of the input constraints may be active in the optimisation 
procedure, all of them are then saturated to the maximum and minimum values allowed by the 
actuators. 
 
 
 

6.2.4.4 Optimization Algorithm 
Once all the ingredients for constrained optimization have been obtained, i.e. the cost function and the 
constraints, it is possible to combine equations 6.62, 6.63, 6.67 and 6.68 and arrive at a canonical 
formulation for solving problems of this type such as the one presented in section 5.2.5.2. It consists of 
a quadratic cost function with symmetric and positive definite Hessian and linear constraints: 

{   
𝐽(𝒛) =

1

2
 𝒛𝑇 ∙ 𝑬 ∙ 𝒛 + 𝒛𝑇 ∙ 𝒇

 
𝒈(𝒛) = 𝑴 ∙ 𝒛 −  𝜸 ≤  0  

     (6.69) 

 

Where:                  𝒛 = Δ𝑼                                                                                                             

                             𝑬 =  (𝚽𝒖
𝑇 ∙ 𝑾𝒀 ∙ 𝚽𝒖 + 𝑾∆𝑼 + 𝐂𝟐

𝑇 ∙ 𝑾𝑼 ∙ 𝐂𝟐)                                                     

𝒇 =  −𝚽𝒖
𝑇 ∙ 𝑾𝒀 ∙ (𝑻𝒀 − 𝑭 ∙ 𝒙

𝑘 −𝚽𝒗 ∙ Δ𝑽)−𝐂𝟐
𝑇 ∙ 𝑾𝑼 ∙ (𝑻𝑼 − 𝐂𝟏 ∙ 𝐮𝒎

𝑘−1) 

 
The last thing to be defined is the resolution method, which may be one presented in section 5 or a 
different one. In this case, the Hildreth procedure presented there is adopted. 
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7 Results  
 
In this chapter, we will analyse the results from some simulations of the system controlled by the MPC 
controller defined in the previous chapter. The model adopted for the system is the non-linear model, 
called NL, obtained from the system equations in Chapter 3 and defined in the state space form in 
Section 3.3. The external inputs used for the simulation are those described in Section 3.2, i.e., the 
wind speed at N points on a spatial grid covering the rotor area and the wave excitation forces and 
torques. 
 
In a first step, we will look at some examples of results obtained from the simulations, to understand 
how the controller works and its potentialities related to the unconventional working approach. Then, in 
a second step, we will compare the performance of the MPC controller with the two conventional 
controllers presented in Chapter 4, that is, the Baseline and ROSCO controllers. In order to compare 
their performance, a number of indicators will be defined which go beyond the kind of control adopted, 
trying to make a reasonable comparison between the results obtained. 
 
 

7.1 Examples of MPC Results 
 
As just mentioned, below there are some examples in which the system controlled by the MPC 
controller is simulated, in order to emphasise some important aspects. 

 
Example n.1 
This example shows the results of two simulations where the average speed (over time) at the hub 
height is 7 m/s, and the wave characteristics are: Hs=4 m, Tp=6 s (see section 3.2 for details regarding 
these quantities). The two tests differ in the settings adopted in the controller, in particular, regarding 
in the weights for the rotor speed and power targets (all other settings are the same in the two cases).  
 
The choices made are: 

- Case 1: Rotor speed weight much greater than power one; 
- Case 2: Comparable rotor speed and power weights. 

For this first example only, graphs of external inputs (wind speed and wave excitation forces) will be 
shown. It should be noted that although the wind input concerns the speed at N points on a grid 
covering the rotor area, the average speed across this area is shown for simplicity. The results 
regarding the external input estimation module are also shown. They refer to case 1, we do not show 
those related to case 2 because they should correspond, although, due to the different evolution of the 
system, they differ, even if only slightly. Furthermore, the GoF (Goodness-of-Fit) is showed, to quantify 
how correct the estimate is (see definition 6.15). 
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Figure 7.1: Mean wind speed (across rotor area) and its estimation through dedicated Kalman filter.  

Figure 7.2: Wave excitation force along x (surge) direction and its estimation through dedicated Kalman filter. 

Figure 7.3: Wave excitation force along z (heave) direction and its estimation through dedicated Kalman filter. 
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It is important to remember that the main differences between actual and estimated wind speeds are 
due to the former is an average of the N speeds of the grid points, while the latter is the speed (the 
only one considered in the filter model, see section 6.2.1.1) that leads to the best match between the 
measurements taken and those predicted by the model. If the actual velocities were all the same (for 
each grid point), the estimate would be closer to the true value. 
 
The two images below show the time trends of rotor speed, generator torque and power in the two 
examined cases, the relative targets (subscript T in legend) are also shown, which differ only because 
of the slightly different wind speed estimation. 
 

 
 
 

Figure 7.4: Wave excitation torque around y (pitch) axis and its estimation through dedicated Kalman filter. 

 

Figure 7.5: Rotor angular speed of the two examined cases and their respective targets. 
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From the graphs shown, it can be seen that the choice of weights associated with the different targets 
is very important in order to achieve the objectives set. Although having the correct speed is sought to 
maximise power, because it leads to the optimum tip speed ratio, raising the associated weight too 
much leads to torque fluctuations (necessary for tracking the speed), resulting in high power 
oscillations. Conversely, raising its associated weight too much could lead to speed values too far 
from the nominal ones, resulting in operating conditions outside the linearisation grid with consequent 
problems for the controller, because invalid models would be used, generating incorrect results. A 
compromise situation must therefore be found, as happens, for example, in the second case, where 
the speed error is acceptable, and the power is sufficiently close to the target. 
 
 
 

Figure 7.6: Extracted power of the two examined cases and their respective targets. 

Figure 7.7: Torque exerted by the generator in the two examined cases and their respective reference values. 
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Example n.2 
This example shows the results of two simulations performed with wind speed (average, at hub height) 
of 19 m/s and the following wave characteristics: Hs=4 m, Tp= 6 s. As before, two different cases are 
compared, with different approaches to the weights adopted in the cost function of the controller, to 
realize how important it is to find the right compromise between the various objectives pursued. The 
cases adopted have the following peculiarities (the other settings are the same in both cases):  

- Case 1: Weight associated with the structure pitch speed very high compared to that 
associated with other targets; 
-  Case 2: Weight associated with power very high compared to the weights associated with 
the other targets. 

Below there are the power and structure’s pitch angular speed trends resulting from the simulations. 

 

Figure 7.8: Extracted power of the two examined cases and their respective targets. 

Figure 7.9: Structure pitch angular speed of the two examined cases and their respective targets 
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With this example, it is possible to appreciate the potential of the MPC control logic, indeed, from the 
graphs it can be seen that the desired targets can be reached with good precision. By giving more 
weight to a specific target, it is possible to make the system evolve towards that goal. Thus, by means 
of this type of control, it is possible to obtain the desired characteristics in a simple manner (only by 
varying the value of the weights of the cost function), unlike traditional controllers, where it is only 
possible, by varying the gains, to indirectly pursue the set targets, making it more difficult to reach the 
final objective, when this is feasible. 
 
To further emphasise the MPC control's ability to achieve its goals, below there is a graph of case 1, 
where the goal with the greatest weight is the structure's pitch speed. This graph shows the actual 
trend of this speed (blue) compared with the relative target (red) and the trend predicted by the model 
within the prediction horizon PH (green). In this case the prediction horizon is 3.2 s, while the time step 
with which the control actions vary is 0.4 s, i.e., each horizon consists of 8 steps. It can be seen that 
within each prediction horizon, with the control actions determined by numerical optimisation, the 
target of zero speed is reached, and the actual speed follows quite well what the model predicts, 
despite a certain difference mainly due to the fact that along that time the actual external inputs 
deviate from those predicted. 

 
Through these two examples, therefore, we have seen the good potential of this type of control, 
through which it is easy to pursue the objectives set, we have also seen, however, that if there are 
many objectives (among which are also the objectives concerning control actions, for which it is 
possible to provide limits in order to moderate them for reasons of wear and energy expenditure) it is 
necessary to find the right weight for each in order to obtain an overall satisfactory performance. 
 
As an example, in these last two analyzed cases, the target on which most of the focus was placed is 
tracked very well, but to the detriment of the other targets, so it is clear that the settings adopted here 
are not the optimal ones in order to perform well overall. The main challenge, therefore, is to find the 
best weights for the various targets, and since there are numerous variables (consider that different 
weight matrices can be defined for each parameter combination, see section 6.2.4.2), finding the right 
compromise may be difficult.  
 
 

Figure 7.10: Actual angular pitch speed of the structure (blue) compared with the related target (red) and the trend predicted 
by the model within the PH prediction horizon (green). 
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7.2 Comparison Between MPC, Baseline and ROSCO  
 

In this section, the performances of the MPC controller are compared with that of the Baseline and 
ROSCO controllers presented in Chapter 4. In summary, these are two gain scheduled PID controllers 
for variable speed and collective blade pitch angle turbines. In both cases, control strategy consists of 
power maximization at low wind speed (below rated value) and rotor speed and power tracking at their 
rated values when the wind speed is higher than rated one. 

 
The operating principle is similar, however, the ROSCO controller has additional modules with which 
performance can be improved. For example, it has a module consisting of a Kalman filter for 
estimating wind speed. This is used to calculate the reference rotor speed in order to optimise the tip 
speed ratio and thus the extracted power. In addition, it has a module or floating turbines, through 
which an attempt is made to reduce the oscillations of the structure and increase the power extracted.  

 
To compare controllers, the same system model and external inputs are used. Specifically, the 
external inputs are the wind speed (at N points on a spatial grid covering the rotor area) and the wave 
excitation forces defined in section 3.2. The system’s model used is the non-linear model called NL 
and defined in section 3.3. In addition, the limits on the torque that can be delivered by the generator 
and the blade angle, as well as those on their rates of change, are also considered to be the same in 
all cases. Moreover, the data from which the Baseline and ROSCO controllers are built (structure 
geometry and inertias, power coefficient, etc.) are the same, and the stationary nominal values of the 
quantity of interest (rotor speed, power, blade pitch, etc.) at different wind speeds used for ROSCO 
implementation are the values adopted for the MPC controller targets (Figure 4.10 and 6.20). These 
values are also used to define the torque-speed characteristic used in the Baseline. Finally, with 
regard to the estimation of wind speed in the ROSCO controller, it was decided to use the same 
Kalman filter as in the MPC controller, so that the performance of the latter would not affect the 
comparison between the two different control algorithms. 

 
Although the general objectives of all controllers are the same, it may not be easy to compare their 
performance, as the working principles are different. For example, the MPC controller explicitly tries to 
track the imposed targets, while the other two pursue these objectives due to the chosen gain values 
and, for the ROSCO, due to the various add-on modules. Therefore, to compare performance, it was 
decided to define a set of indices that provide information beyond these differences, which is of a 
general nature and does not favour or penalise a specific control strategy. 
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The performance indices chosen for the controller comparison are: 
 

- 𝑬𝜴,  𝒓𝒎𝒔 : root-mean square value of rotor speed relative error 𝐸𝛺 =
𝛺𝑇−𝛺

𝛺𝑇
, where 𝛺 is the actual 

rotor speed, while 𝛺𝑇 is its target value. The latter is given by steady state values of rotor speed 
with respect to wind speed, the same for all controllers and computed with actual wind speed. The 

root-mean square value of rotor speed relative error 𝐸𝛺 is defined as: 𝐸𝛺,   𝑟𝑚𝑠  = √
1

𝑁
∙ ∑ (

𝛺𝑇−𝛺

𝛺𝑇
)
2

𝑁
𝑘=1 ,  

where N is the number of samples obtained during simulations.  
 
 

- 𝑬𝑷,  𝒓𝒎𝒔 : root mean square value of power relative error 𝐸𝑃 =
𝑃𝑇−𝑃

𝑃𝑇
, where 𝑃 is the actual rotor 

speed, while 𝑃𝑇 is its target value. The latter is given by steady state values of rotor speed with 
respect to wind speed, the same for all controllers and computed with actual wind speed. Power 
root-mean square value is defined in the same way as rotor speed one. 

 
 

- �̇� 𝒓𝒎𝒔 : root mean square value of structure pitch angular speed. It provides information about the 
stability of the structure; a low value means, on average, low rotational speeds and smaller 
amplitudes of oscillations, considering the frequency dictated by the forcing action (mainly wind). 

�̇� 𝑟𝑚𝑠 is defined as follows: �̇� 𝑟𝑚𝑠 = √
1

𝑁
∙ ∑ �̇�2𝑁

𝑘=1  . 

 
 

- 𝑷𝒎𝒆𝒂𝒏,𝒏 : normalized mean extracted power, it is the ratio between mean power and nominal one: 
𝑃𝑚𝑒𝑎𝑛,𝑛 =

𝑃𝑚𝑒𝑎𝑛
𝑃𝑟𝑎𝑡𝑒𝑑
⁄ , it should be as high as possible when wind speed is lower than its rated 

value, whereas it should be as close as possible to the nominal value when the wind speed is 
above the rated value. 
 
 

- 𝑷𝒎𝒂𝒙,𝒏 : normalized maximum extracted power, it is the ratio between maximum power and limit 
one: 𝑃𝑚𝑎𝑥,𝑛 =

𝑃𝑚𝑎𝑥
𝑃𝑙𝑖𝑚𝑖𝑡
⁄ . The first is the maximum value reached during simulation, while the 

second one is the maximum allowed value, which is chosen taking into account that high power 
peaks could overload and damage the energy conversion system. This index will be accompanied 
by the percentage of time for which the power exceeds the limit: Pout,% . 

 

- �̇� 𝒃𝒍,  𝒓𝒎𝒔: root mean square value of blade pitch angular speed. This indicator takes into 
consideration the use of the servomotors used for the blade angle variation. With the same other 
goals achieved, it would be better to have low values, because they mean less use of the 
actuators, therefore less energy spent and less wear. Furthermore, a high utilization of this control 
often leads to disadvantageous fatigue cycles at the root of the blades. �̇� 𝑏𝑙,  𝑟𝑚𝑠  is defined as 

�̇� 𝑏𝑙,  𝑟𝑚𝑠 = √
1

𝑁
∙ ∑ �̇� 𝑏𝑙

2𝑁
𝑘=1 , where �̇� 𝑏𝑙 is the collective blade pitch angular speed. 
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- 𝑺𝒇, 𝟐𝟓𝒚 : safety coefficient to have a useful life of 25 years. It is defined as the ratio between the 
stress leading to a useful life of 25 years and the effective stress. This calculation refers to the root 
of the blades, i.e. the tension mentioned is calculated at the connection between hub and blade. In 
detail, for each simulation carried out, the forces and torques at the blade root are computed, and 
the time history of the equivalent stress at certain points of the section is calculated (considering 
the section a circular crown, some angularly equally spaced points of the periphery are taken). For 
each point, we then look for the safety coefficient which, multiplied by the stress time series, leads 
to a service life of 25 years. This calculation is performed by means of an optimisation function and 
the useful life is obtained from the stress by means of the rainflow method for counting load cycles 
and by means of the constant life diagram (CLD) of the chosen material. For each cycle, the 
damage related to it is calculated using this diagram, then the various damages are added 
together, and the useful life is obtained considering the time taken to accumulate this total 
damage. Finally, the lowest safety coefficient is chosen from the various points considered for the 
calculation of the indicator. 
The constant life diagram (CLD) is a representation of the results of fatigue analysis on a certain 
material. Normally, several fatigue tests are performed with a certain value of R (ratio of minimum 
to maximum stress, 𝑅 = 𝜎𝑚𝑖𝑛 𝜎𝑚𝑎𝑥⁄ ). S-N relationships are then obtained for each R, where S is 
normally the alternate stress and N is the number of cycles to failure. Finally, the CLD diagram is 
constructed by defining several curves for different values of N, each obtained by joining the points 
for each value of 𝑅 considered [33]. To better understand the nature of this diagram, an example 
relating to the material chosen for the calculation of the indicator is shown in figure 7.11. The 
material under consideration is a typical fiberglass laminate that is called DD-16 in the DOE/MSU 
Database [34], and it is a material usually used for wind turbine blades. This laminate has a 
[90/0/±45/0] configuration with a fiber volume fraction of 0.36 [35], [36]. 

Figure 7.11: Constant life diagram (CLD) of DD16 E-glass/polyester laminate for some values of N and R. 
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It is important to emphasise that we chose to perform the calculation of the safety coefficient at the 
root of the blades essentially for simplicity of calculation, given the simple section and the 
simplicity of calculating forces and torques at this point, since the results from BEM theory for 
calculating aerodynamic forces and torques refers to this section. Actually, the most stressed point 
of the blade is probably at a position with a larger radius. Furthermore, the section at the root of 
the blades is different from that adopted in the calculations, as the actual geometry is more 
complex, given the need for connection to the hub and the presence of the actuator system for 
varying the blade pitch angle. For this reason, the calculated safety coefficient is higher than the 
real one, but it remains a good indicator of the system's useful life, especially considering that the 
main need is to make a comparison between different controllers, where the same above 
assumptions have been adopted. 

 
 
 
In the next sections the results related to the comparison between the controllers will be reported, 
specifically the values of the indicators defined above and some examples of results of the simulations 
comparing the different control algorithms, to comment on and underline some aspects that can be 
deduced from the indicators. Unlike in the previous section, where the weights and limits of the MPC 
controller were chosen to highlight some important aspects that were wanted to be discussed, in this 
section we will use the values of these quantities that allow to have the best possible overall 
performance, considering all important aspects and looking for a good compromise between them. It 
should be noted that these values were chosen after many tests, but were not optimised, for example 
through optimization algorithms, mainly because of the difficulty of this operation, given the many 
variables and the high computational time required for simulations. It is therefore reasonable to think 
that with an adequate optimization the performance can improve further. 
 
 
The results obtained will be divided into three sections, relating to tests where the average wind speed 
is lower, around, or greater than the nominal speed, since the main objectives differ depending on 
whether we are above or below that speed. The central category, moreover, is considered apart 
because it is important to understand how the controllers work when the external conditions are those 
for which the turbine has been designed.  
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Below Rated Conditions 

In this area of operation, the targets of greatest interest are the errors related to rotor speed and 
power, as well as the average power produced, since under these conditions the main goal is to 
maximize the latter. The pitch angular speed of the structure is also important, although for low wind 
speeds it remains low compared to conditions close to nominal, where the thrust force is maximum 
(see figure 4.10). The same applies to the safety factor at the blades’ root. With regard, on the other 
hand, to the maximum power achieved compared to the limit one and the root mean square value of 
blades pitch speed, these indices have less relevance in this zone, since the powers involved are low 
compared to the other zones and since the control strategy in these conditions does not involve the 
use of the blade angle as a control action. 
 
Below are some graphs comparing the most relevant indices for these conditions for the three 
controllers examined. They are divided according to the simulations carried out, each of them with a 
different average hub height wind speed (Uwind,hub,mean). Notice that the input wind speeds at the 
various grid points covering the rotor area are generated from this average speed using the TurbSim 
software (see section 3.2.1).  

 

Figure 7.12: Comparison between Baseline, ROSCO and MPC, below rated conditions, 𝐸𝛺,  𝑟𝑚𝑠. 

Figure 7.13: Comparison between Baseline, ROSCO and MPC, below rated conditions, 𝐸𝑃,  𝑟𝑚𝑠. 
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Figure 7.14: Comparison between Baseline, ROSCO and MPC, below rated conditions, 𝑃𝑚𝑒𝑎𝑛,𝑛 =
𝑃𝑚𝑒𝑎𝑛

𝑃𝑟𝑎𝑡𝑒𝑑
⁄ . 

Figure 7.15: Comparison between Baseline, ROSCO and MPC, below rated conditions, �̇� 𝑟𝑚𝑠. 

Figure 7.16: Comparison between Baseline, ROSCO and MPC, below rated conditions, 𝑆𝑓, 25𝑦 . 
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From the graphs shown, it can be seen that the MPC controller achieves lower angular rotor speed 
and power errors than the other two controllers. In particular, the power output trend of the Baseline 
controller shows greater fluctuations around the local average value, while the trend of the ROSCO 
controller shows greater differences between the target and the actual value. To support this 
consideration, a graph depicting the power trend of the three different cases is shown, for the 
simulation with an average wind speed at hub height of 6 m/s.  
 

 
Although lower rotor speed and power errors can be achieved with the MPC controller than with the 
other controllers, it can be seen from Figure 7.14 that the average power extraction is very similar in 
the three cases, which suggests that better results are not actually achieved with the MPC. This could 
have been expected, since the two conventional controllers considered are optimized to extract the 
maximum possible power when under the conditions analyzed here. Different considerations, 
however, can be made regarding structure oscillations, an indication for which they are not directly 
optimized. In this case, there are better results in the case of the MPC controller, especially when 
compared to the ROSCO. Considering, however, that under these operating conditions in all cases the 
pitch speed of the structure is reduced, due to the low wind speed, the fact that the MPC is slightly 
improved does not lead to consider it much better than the others. Finally, regarding the safety factor 
(Figure 7.16), few considerations can be drawn since the hierarchy between the three controllers does 
not remain constant. However, where the coefficient presents lower values (with average wind speed 
at hub height of 7 and 8 m/s) MPC performances are slightly better. 
 
 
 
 
 
 
 
 
 

Figure 7.17: Extracted power trends for the three different controllers when simulated with an average speed at hub height of 
6 m/s. 
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Near Rated Conditions 
This section will analyse the performance of the three controllers when the wind speed is close to the 
nominal wind speed, which in this case is approximately 10 m/s. In this case, the main objective is to 
maximise power, but other objectives also become important, such as limiting the pitch rate of the 
structure (since this zone is the one with the maximum thrust force) and limiting the use of the blade 
pitch angle (since in this zone this control action begins to be used because it is possible to encounter 
wind speeds higher than the nominal one). Furthermore, in this zone it starts to become important not 
to exceed the maximum power, which in this case is set at 110% of the nominal power, for the 
reasons explained above. 
Below there are some graphs comparing the performance indices for these conditions for the three 
controllers examined. They are divided according to the simulations carried out, each of them with a 
different average hub height wind speed (Uwind,hub,mean). Notice that the input wind speeds at the 
various grid points covering the rotor area are generated from this average speed using the TurbSim 
software (see section 3.2.1). 

 

Figure 7.18: Comparison between Baseline, ROSCO and MPC, near rated conditions, 𝐸𝛺,  𝑟𝑚𝑠. 

Figure 7.19: Comparison between Baseline, ROSCO and MPC, near rated conditions, 𝐸𝑃,  𝑟𝑚𝑠. 
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Figure 7.20: Comparison between Baseline, ROSCO and MPC, near rated conditions, 𝑃𝑚𝑒𝑎𝑛,𝑛 =
𝑃𝑚𝑒𝑎𝑛

𝑃𝑟𝑎𝑡𝑒𝑑
⁄ . 

Figure 7.21: Comparison between Baseline, ROSCO and MPC, near rated conditions, 𝑃𝑚𝑎𝑥,𝑛 =
𝑃𝑚𝑎𝑥

𝑃𝑙𝑖𝑚
⁄ . 

Figure 7.22: Comparison between Baseline, ROSCO and MPC, near rated conditions, percentage of time for which the 
power exceeds the limit: Pout,% . 
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Figure 7.23: Comparison between Baseline, ROSCO and MPC, near rated conditions, �̇� 𝑟𝑚𝑠. 

Figure 7.25: Comparison between Baseline, ROSCO and MPC, near rated conditions, 𝑆𝑓, 25𝑦 . 

Figure 7.24: Comparison between Baseline, ROSCO and MPC, near rated conditions,�̇� 𝑏𝑙,  𝑟𝑚𝑠. 
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The graphs show that the MPC controller overall performs slightly better than the other two controllers. 
In favour of this thesis, one can note, for example, the generally lower values for power and speed 
errors. Regarding the average power output, however, the MPC never reaches the highest values. It 
should be noted, however, that the other two controllers present situations in which the power exceeds 
the limit, which is why average power tends to be higher than that produced with the MPC (it should 
be noted, however, that the differences are very slight). To better understand this, Figure 7.26 shows 
the time trend of the power in the three cases when the average wind speed at the hub is 11 m/s, as 
an example. Here, it can be seen that in the two conventional controllers, the power occasionally 
exceeds the limit. This fact is understandable, since there is no constraint on the output quantities in 
these controllers, as is the MPC case (this is, actually, a strength of this type of control and one of the 
main reasons why it was decided to try to implement an MPC controller for floating wind turbines).  
 
 

 
 
Another fact to consider is that the MPC controller achieves the power objectives no much worse than 
the other two, but performs better with regard to the angular pitch speed of the structure, for which it is 
the controller that performs overall better. In addition, regarding the use of actuators for varying the 
blade pitch angle, there are consistently better results than with the ROSCO controller, which is 
another point in favour of the MPC controller. This ties in with the discussion about finding the settings 
that give the best overall performances. In fact, focusing more on power, for example, would probably 
result in higher average powers for the MPC than for the other controllers, but worse values for other 
indices, such as structure stability and blade pitch actuator wear. 
 
  
 
 
 
 

Figure 7.26: Extracted power trends for the three different controllers when simulated with an average speed at hub height of 
11 m/s. 
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Above Rated Conditions 
This section will analyse the performance of the three controllers when the wind speed is above the 
nominal wind speed, which in this case is approximately 10 m/s. In this case, the main objective is to 
track the nominal power, but other objectives also are important, such as limiting the pitch rate of the 
structure and limiting the use of the blade pitch angle Furthermore, in this zone it is fairly important not 
to exceed the maximum power, which in this case is set at 110% of the nominal power, for the 
reasons explained above. 
Below are some graphs comparing the performance indices for these conditions for the three 
controllers examined. They are divided according to the simulations carried out, each of them with a 
different average hub height wind speed (Uwind,hub,mean). Notice that the input wind speeds at the 
various grid points covering the rotor area are generated from this average speed using the TurbSim 
software (see section 3.2.1). 
 

Figure 7.27: Comparison between Baseline, ROSCO and MPC, above rated conditions, 𝐸𝛺,  𝑟𝑚𝑠. 

Figure 7.28: Comparison between Baseline, ROSCO and MPC, above rated conditions, 𝐸𝑃,  𝑟𝑚𝑠. 
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Figure 7.29: Comparison between Baseline, ROSCO and MPC, above rated conditions, 𝑃𝑚𝑒𝑎𝑛,𝑛 =
𝑃𝑚𝑒𝑎𝑛

𝑃𝑟𝑎𝑡𝑒𝑑
⁄ . 

Figure 7.30: Comparison between Baseline, ROSCO and MPC, above rated conditions, 𝑃𝑚𝑎𝑥,𝑛 =
𝑃𝑚𝑎𝑥

𝑃𝑙𝑖𝑚
⁄ . 

Figure 7.31: Comparison between Baseline, ROSCO and MPC, above rated conditions, percentage of time for which the 
power exceeds the limit: Pout,% . 
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Figure 7.32: Comparison between Baseline, ROSCO and MPC, above rated conditions, �̇� 𝑟𝑚𝑠. 

Figure 7.34: Comparison between Baseline, ROSCO and MPC, above rated conditions, 𝑆𝑓, 25𝑦 . 

Figure 7.33: Comparison between Baseline, ROSCO and MPC, above rated conditions,�̇� 𝑏𝑙,  𝑟𝑚𝑠. 
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Even in the case with wind speeds higher than the nominal wind speed, we can see that the MPC 
controller overall performs slightly better. Apart from the error associated with rotor speed, for which a 
low weight is imposed in this area, since the main objective is not to track the latter, the other 
indicators tell us that, with a few exceptions, the MPC performs better than the other two. For 
example, the error associated with power is almost always lower, which leads to average power 
almost always being closer to the nominal one, without ever exceeding the limit, as is the case with 
the other controllers. As far as the Baseline is concerned, it can be seen that the lowest average 
power values are almost always obtained, despite the fact that it is the controller for which the 
percentage time in which the average power exceeds the limit is always the highest, a point against 
this type of controller. The ROSCO controller, on the other hand, performs better overall than the 
Baseline in terms of average power and maximum power, but even in this case there are cases in 
which the power limit is overcome, albeit with low percentages. 
  
With regard to the stability of the structure, which is closely linked to the index relating to its angular 
pitch speed, the MPC almost always offers the best results, and in any case always better than 
ROSCO, which is in fact the only one that competes with the MPC since the Baseline performs poorly 
in terms of power, as pointed out above. Unlike the other indicators, that relating to the safety factor at 
the root of the blades offers us limited points of reflection, as its trend does not present a constant 
pattern along wind speeds. Finally, the index relating to the use of the variation in the blades pitch 
angle tells us that MPC always performs better than ROSCO. The two (MPC and ROSCO), however, 
always have much higher values of this index than the Baseline, whose strength is that it makes 
minimal use of this type of control action. This characteristic, however, is of little relevance when other 
more important performance indices, such as those for average and maximum power, are 
considerably worse.  
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8 Conclusions 
 
In recent times, renewable resources have been increasingly exploited, with wind energy being 
second only to hydro and solar power. Over the last decade, thanks to technological advances, the 
average cost of energy has come down considerably, making this sector increasingly competitive. 
Although onshore wind and fixed offshore are more widespread due to their greater development and 
fewer technological challenges, floating offshore is also starting to progress, also thanks to the 
possibility of exploiting areas with good wind resources but with a deep seabed and to the possibility 
of reaching large sizes without visual pollution or environmental impact problems. With the 
development of floating offshore wind turbines (FOWT), it therefore becomes necessary to adapt 
control strategies, starting from conventional controllers used in the non-floating counterpart, or 
developing new types of control, such as those based on PID logic, or unconventional ones.  
 
 
The objective of this thesis is the realization of an unconventional controller based on MPC (Model 
Predictive Control) logic. This type of controllers exploits the knowledge of the mathematical model of 
the system to find the optimal values of the control actions with the aim of maximizing its 
performances. The main reasons behind the choice of this type of controller is the natural ability to 
deal with MIMO (Multiple-Input-Multiple-Output) systems and the possibility of having constraints on 
output quantities, a feature not possessed, for example, by conventional controllers such as those 
based on PID logic. 
 
 
After a brief introduction on the current situation of wind energy and the description of the main 
components of a wind turbine (Chapter 1), the case study adopted for the implementation of the 
controller was described (Chapter 2).  
After that, the mathematical model of the latter was obtained, based on a pre-existing model, and 
validated through it (Chapter 3). Specifically, the model of a four degree-of-freedom system (3 for the 
structure: surge, heave, and pitch, plus 1 associated to rotor rotation) was implemented. To obtain it, 
the equations of motion were written, and some external software were used, in particular, to solve 
aerodynamic forces (Blade Element Momentum theory), hydrostatic and hydrodynamic forces 
(NEMOH software and WEC-Sim Matlab-Simulink library) and forces exerted by moorings (MAP 
software). Once the state-space form of the system's non-linear model was obtained, a second model 
of the system was built from the first one by applying some simplifications to facilitate the further work.  
In a second step, the control strategies for wind turbines were analysed (Chapter 4) and an LTI (Linear 
Time Invariant) MPC controller was studied from a theoretical point of view (Chapter 5).  
Finally, exploiting the knowledge of the system’s model and of the theoretical foundations above 
mentioned, an MPC controller for floating offshore wind turbines was implemented (Chapter 6). The 
implemented controller consists of several modules, mainly a numerical optimization module through 
which the optimal control actions are calculated, two modules for the estimation of external inputs that 
are not a priori known, one for the wind speed and one for the wave excitation forces, and, finally, a 
module for the forecasting of the latter forces along the prediction horizon of the controller, which 
exploits an autoregressive model and a recursive least square algorithm to compute its coefficients.  
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The optimization and estimation modules (the estimation modules consist of two Kalman filters) are of 
the discrete linear type and are based on Linear Time Invariant (LTI) models. These models are part 
of a set of LTI models obtained by linearizing the simplified non-linear model of the system mentioned 
above, and the idea is to call, at each time step, the most appropriate LTI model according to the 
conditions in which the physical system is located, i.e. the one obtained from the linear model of the 
system obtained by linearizing the non-linear model under the conditions closest to the actual 
conditions. The resulting final MPC controller is thus a set of MPC LTI controllers, each of which is 
used when most appropriate, based on the value of certain parameters that uniquely identify one of 
the models obtained by linearization. This technique is made possible by the fact that the controlled 
system has relatively slow dynamics with respect to the time step with which it changes from one LTI 
MPC to another, thus neglecting the fact that the matrices adopted for numerical optimization do in 
fact vary over the prediction horizon. The choice of models to be used in the various modules at each 
time step is made by a dedicated module, which receives the values of the above-mentioned 
parameters as input. 
Finally, the results from the simulation of the system controlled by the implemented MPC controller 
were observed and analyzed (Chapter 7), comparing its performance with that of other widely used 
conventional controllers. In this comparison, it was seen that the implemented controller offers good 
performance, overall, more satisfactory than that offered by the conventional controllers with which it 
was compared. It was seen that the logic with which it works, by means of which it is possible to 
impose limits on output quantities and through which it is possible to explicitly pursue certain 
objectives, is effective, boding well for future developments in this direction, for example by further 
improving the controller implemented here or by building more advanced MPC controllers, such as 
adaptive or LPV MPCs. 
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9 Future Works 
 
The controller implemented in this thesis has proven to be quite effective, and offers good 
performances, which are slightly better than those of other conventional controllers used today for the 
management of wind turbines, such as the Baseline and ROSCO used here as a term of comparison. 
However, the implemented controller does not differ much from the simplest existing version of MPC, 
which may suggest that by adopting different versions, better results may be obtained, although it 
must be borne in mind that such versions may require much more computing time and thus prove to 
be unfeasible.  
 
Basically, three roads can be pursued for possible future developments, the first by making 
improvements to the controller implemented here, the second by opting for more complex types of 
MPC controllers, such as adaptive or non-linear MPCs, and the third by opting for different control 
strategies.  
 
Regarding the first way, some operations that can be performed may be to improve the various 
module that make up the controller. For example, a very simple numerical optimisation method 
(Hildreth's procedure) was used here, but this often leads to sub-optimal solutions if the procedure is 
stopped to reduce calculation time. It might be a good idea to use different methods that lead to better 
solutions, albeit taking longer. Regarding the Kalman filters used for estimating external inputs, it 
might be a good idea to improve the models describing them, especially the one relating to wave 
forces, which in this case is a simple random walk. Furthermore, if these models were improved, they 
could be used to predict these quantities and thus integrate the estimation and forecasting modules 
together, thus being able to carry out forecasting also for wind speed, which is currently missing. On 
the other hand, improvements to the forecasting module could be made, for example by also 
implementing this type of module for wind speed, which is currently lacking, since no effective method 
could be found due to the random nature of this quantity. Instead of using AR autoregressive models 
or derivatives (e.g., ARI, ARIMA, etc.), other methods not explored here could be adopted, such as 
neural networks or others. On the other hand, with regard to the switching method used, 
improvements could be made by interpolating the matrices constituting the linear models used more 
effectively, e.g., by means of linear interpolation of the latter if the current operating conditions do not 
correspond to the conditions used for linearization but deviate slightly from them. A good way forward 
could be to adopt an LPV MPC, for which, however, it is necessary to know the model matrices as the 
parameters change explicitly, a non-trivial undertaking. Finally, improvements could also be made by 
adopting models of the controlled system that are more faithful to reality, making fewer simplifications 
than those adopted here. However, it must be borne in mind that doing so could lead to situations in 
which the calculation times required to operate the controller could become too high, leading to 
unfeasible situations.  
 
Regarding the third way mentioned, a good idea might be to implement a control that provides a 
different pitch angle for each blade. Although this involves more computational effort, through such a 
technique it might be possible to best combine performance related to extracted power and 
performance related to structure stability or blade root fatigue. By doing so, one could vary the 
average angle of the blades to maximize power performance and at the same time exploit the 
variation between the angles to pursue the other objectives. 
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