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1. Introduction 
 

Since 1961, global average sea level has risen at an average rate of 1.8 mm/year and 

accelerated to 3.1 mm/year in 1993, with contributions from thermal expansion [1].  

Approximately 70% of the world’s population live within 100 miles of seacoasts, and nearly 

50 million people now live at risk of coastal flooding and displacement by tidal and storm 

surges. Sea levels are anticipated to rise by another 7.6–91.4 cm by 2025 due to a 

combination of polar icecap and glacial meltdown, increased precipitation, coastal land 

erosion and subsidence, and unpredictable thermal expansion from rising seawater 

temperatures [1]. Furthermore, to date, 2.4 billion people live in coastal communities (40% 

of the global population) and the demand for urban space is on the rise because of 

demographic and urbanization processes. A modular floating structure (MFS) which is 

composed of hexagonal floating modules provides a feasible way to create useable land on 

the sea to solve the challenges brought from the increasing population and land scarcity of 

coastal cities. Compared with the traditional very large floating structures (VLFS), the 

production, transportation, installation, and maintenance of the MFS are more convenient, 

more importantly, it can greatly reduce the hydroelastic response of the structure [2] [3]. 

Furthermore, VLFS are usually designed to serve a single purpose (e.g. airport, storage 

facility etc.) and are not considered a viable alternative for residential development. The 

hypothesis is that MFS offers a unique, new, and sustainable solution for addressing issues 

related to coastal urbanization and global sea level rise, for example these systems can be 

used to support the emerging floating renewables industry as a logistics support base, for 

O&M operations and the installation of processing plants. Further applications may include 

support for aquaculture, seaweed farming and vertical farming activities for countries 

suffering from land shortages; or the creation of floating port terminals to solve the problem 

of shipping congestion. 

The MFS concept has the potential to solve all these deficiencies by using medium size 

(relative to operated ship sizes) rigid modules that create a large-scale consolidated platform 

for urban development. These floating modules or ‘Building Units” can be designed ad-hoc 

for any urban purpose (e.g. residential, recreational facilities, parks, etc.), and can be 

arranged and rearranged in numerous spatial configurations. This facilitates future growth 

and development, as it can be realized by simply adding new modules in correlation to actual 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/subsidence
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demand. Typical offshore structures are too industrial and robust for “normative” urban 

applications, and perhaps even too expensive. Therefore, to bring the urban MFS concept 

into realization, there is a need to narrow the gap between currently available engineering 

solutions (technology) and architectural design (concept). The proposed MFS concept aims 

to narrow this gap by providing engineering solutions, and design methodologies, suitable 

for urban needs offshore.  

It is practically not possible to construct just single rigid body floating structure for the 

purposes due to high stresses induced by the sea waves and high cost of transportation or 

manufacturing [4]. To tackle this, the platforms can be connected together to produce a large 

platform such a way that the high forces are damped by the connectors. The primary 

objective of this study is the design of a connection between the platforms, with particular 

interest in the correlation between connector parameters and hydroelastic responses of the 

MFS. 

The problem of reducing the hydroelastic response has been analyzed by several researchers 

[2][3], and the most common solution is to increase structural stiffness at the expense of 

higher costs due to additional construction materials needed. Another attractive solution 

involves the use of semi-rigid connectors instead of rigid ones to relax the structural loads. 

The modular solution allows the individual platform to be considered as a rigid body 

simplifying the numerical modelling and reducing the computational time to simulate the 

system. This method is called “rigid module, flexible connector” (RMFC) approach [5], and 

it assumes that the modules are more rigid than the connections where deformations are 

concentrated, reducing the size of the numerical model. The proper design of connector 

stiffness can positively affect the hydroelastic response of modular floating islands (MFI) 

with reduction of structural loads, and thus it represents the most significant design 

parameter [6] [7]. Results of Jiang et Al. [8] showed that compared to the responses of rigid 

connectors, flexible hinge-type or semi-rigid connector can effectively reduce the 

hydroelastic responses of MFI system. 
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2. State of the art 

2.1 Floating platforms 
 

The realisation of floating communities is extremely strategic in the future perspective of 

rising seas due to climate change and, in the short term, to solve the problem of land shortage, 

nowadays suffered by a large number of territories. The idea of creating land for human 

activities from the sea is not new. The technique of land reclamation is well known and used 

for creating new land [4] from sea and consists of filling the area with inert material and 

building protective walls with devasting impacts on local environmental balances [9]. 

Another promising and environmentally less impactful solution is the creation of land on the 

sea through the so-called very large floating structures (VLFS). VLFS are artificial portions 

of land on the sea anchored to the seabed and can be divided into two major categories the 

semi-submersible type and pontoon-type. 

The basic idea is to create “land on sea” by connecting a number of standardized modular 

units to form the desired size and shape for generic applications. Floating platforms are large 

structures that can float in the open sea which can be useful for different activities from 

storage facility to landing runway platforms. 

The relative motion between adjacent floating structure consists of six components, grouped 

into translational motions (surge, sway, and heave) and rotational motions (pitch, roll and 

yaw), as shown in the Figure 2.1.  

 

 

Figure 2.1 translational motions and rotational motions  
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Among all the parameters to be evaluated, the main ones are module size, which determines 

the overall dimensions including, but not limited to draft and edge lengths, and module 

shape, referring to the curvature of the hull lines, this design category is of particular 

importance due to the modular approach. Most architectural renderings of modular floating 

platforms have presented solutions based on equilateral triangular, quadrangular, or 

hexagonal footprints. Each shape has advantages and disadvantages when considering e.g., 

transport and response to waves or on-board logistics and storage and the choice is not 

straightforward, since it affects the whole design.  

The choice fell on the hexagonal platform, which allows a spatial arrangement as shown in 

the Figure 2.2: 

 

 

Figure 2.2 hexagonal platform spatial arrangement  

 

To create a large structure that floats, it is only practical to joint small structures so to tackle 

the unwanted loads by the sea waves. These small structures can be connected by means of 

flexible connector which can act as a damper to the wave motion so to create a stable floating 

platform. Both rigid and flexible connectors have positive and negative aspects, summarized 

in Figure 2.3. 
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Figure 2.3 Connector systems 

 

Since the structure is floating in the sea, the consideration of hydro elastic responses is very 

important. The safety of these floating platforms depends on the hydro elastic response. The 

study of the flexible joints shows that the semi- rigid joints can reduce the hydro elastic 

response in a significant amount.  

 

2.2 Connector systems 
 

The massive single continuum structure may suffer large bending stress and induce many 

problems in manufacturing as well as transportation. A single continuum structure may not 

a good design for VLFS, while the modularization seems a better choice. Large floating 

structures are occasionally made of several modules with space in between to improve 

mobility. In such cases, the rigidity of connector systems is designed in accordance with 

different practical situations, including rigid connector system, vertical-free connector 

system, hinge connector system and fully flexible connector system. 

For multimodular floating systems, the connector between modules becomes the weakest 

component in the whole system, which is subjected to large loads and is easily damaged. 

These connectors are designed to avoid the failure due to high stresses that can arise in the 

connectors due to the dynamic behaviour of the sea. One of the technical challenges is to 

find the stiffness of the connecting system according to the practical situation.  

Apart from being acting as a simple connector between platforms, there is more functions 

that needed to be satisfied by these connectors. For example, the connector is also 
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responsible for the alignment of the platforms in the open sea, safety of the platforms by 

damping, reduction of construction or assembling time and so on. 

 

 

Figure 2.4 Types and direction of connectors 

 

Figure 2.5 shows a connection module where alternative male and female type connectors 

are used to join the platforms together. With this concept, the self-aligning capability as well 

as the secure connection with the damping effect can be achieved.  

 

 

Figure 2.5 connection module with alternative male and female type connectors 
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There are different methods and concepts to connect the large floating structure together in 

the open sea so that the connection can be stable with the response of the sea waves. Due to 

the large structure of floating platform, there will be high loads in the connections. A better 

idea is to prove a flexible joint to connect the adjacent floating platform with considerable 

amount of stiffness. There are various flexible connector concepts are published which varies 

in their designs and material.  

 

 

Figure 2.6 example of flexible connection  

 

In the article by Huai et al. [10], a type of structural design for a flexible connection for 

connecting the platforms is discussed. Here, there will be a male and a female part of the 

connector where the combination of steel and rubber material is used to produce the 

flexibility in the connector.  

 

 

Figure 2.7 flexible connection with the combination of steel and rubber material 
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For a connector system, the strength and stiffness are equally important [11]. Strength affects 

the structural integrity, and the stiffness determines the dynamical properties of the system. 

A modularized platform is studied in the article by Ye et al. [12] consist of multiple floating 

modules and huge operating decks. The upper deck is hollow and internal space can be used 

for storages. The modules are connected using flexible connections, upper decks connected 

using hinge connection and upper deck connected to modules using rubber pads. 

 

 

Figure 2.8 multiple floating modules with operating decks 

 

Figure 2.9 shows a connecting method studied in the article [13], where concrete pontoons 

are connected together with a male and female shear key. The male- female shear key is 

advantageous in terms of construction time, cost of equipment or the working environment. 

 

Figure 2.9 connecting method with a male and female shear key 

 

Considering the current state of the art on elastic connections between platforms, no 

convincing solutions have been found, especially in terms of construction and 

implementation cost. The purpose pre-posed in this paper with the modelling of an elastic 

connection involves the use of a widely studied and low-cost technology: the elastomeric 

bearing 
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3. Elastomeric bearings 
 

Connector of multi-modular MFI is a key component which determines the connection load 

and the dynamic behavior of the system. Previous attempts to develop connection systems 

have been proposed in the literature and the most interesting concern kinematic connections 

such as hinges, or elastic solutions based on the adoption of elastic and damping elements 

[14]. The state-of-the-art present the following limitations: lack of a comprehensive 

optimisation and design methodology integrated with the dynamics of MFIs, challenging 

engineering solutions, high costs, absence of studies concerning durability in the marine 

environment and maintenance. To overcome these limitations, this paper presents a new 

design of the flexible connection, based on elastomeric bearings that meets the requirements 

of flexibility, durability in marine environment, ease of connection and disconnection, and 

low cost. 

Elastomers are an attractive material for MFI connectors as they possess excellent elastic but 

also shock-absorbing characteristics. The design of elastomeric bearings deals with the 

equilibrium between having sufficient stiffness that can withstand the imposed vertical loads 

and enough flexibility to allow for the expected deformations. The stiffness and flexibility 

requirements are well enhanced with the use of steel plates and rubber, respectively. Then, 

elastomeric bearings can either be plain or reinforced with internal steel plates.  

 

 

Figure 3.1 Elastomeric bearing – components 

 

The proper design of connector stiffness can positively affect the hydroelastic response of 

MFI with reduction of structural loads, and thus it represents the most significant design 
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parameter. Given the duration of the project, optimal stiffness values will initially be 

estimated by means of parametric simulations. 

The functional requirements for the connection system include also: ease of connection at 

sea, durability in marine environment, easy decoupling procedure, able to withstand high 

loads. 

In Figure 3.2 an example of constructive solution for the novel flexible connector is 

illustrated.  The platforms are kept firmly together through a post-tensioning system using 

steel cables or rods, elastomeric bearings, and steel plates.  

 

 
Figure 3.2 example of constructive solution 

 
Elastomeric bearings are a well-known technology used principally in civil engineering 

[15][16] to damp vibrations and oscillations in bridges and earthquake-resistant buildings. 

Fender systems for port applications are another example of the use of elastomeric material 
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for shock attenuation of ships and pontoons at berth and demonstrate the use of this material 

in marine environments In the offshore field, they are used as interface between the hull and 

superstructure in Floating Production Storage Offloading (FPSO) vessels [17]. The 

mechanical properties of elastomers combined with durability in the marine environment 

make this technology an excellent candidate for inter-platform connections. Experimental 

studies [18] have also shown the excellent fatigue behaviour of natural rubber in the presence 

of seawater compared to air under both relaxed and non-relaxed loading conditions[19]. The 

elastic characteristics depend mainly on the mechanical characteristics of the rubber and 

geometrical properties of the bearings. The size and type of rubber material, the presence of 

reinforced steel plates and lead plug are fundamental parameters of the elastomeric bearing 

design to guarantee the mechanical and functional requirements of the connector. Once the 

design requirements have been defined, different connection layouts will be studied to define 

the best solution. 

 

3.1 Elastomeric bearings: uses and features 
 

The use of elastomeric bearings is becoming popular considering its well-known property of 

damping effect. Because of their relatively low production cost, easy installation, and good 

mechanical properties, they are used in civil engineering, especially in bridge construction 

and, more recently, as seismic isolators in buildings. But the application of theses bearings 

is not limited to construction, it is used for the construction of joints where the damping 

effect is useful such as connecting of floating platforms.  

Elastomeric bearings allow displacement and rotation of individual parts of the supported 

structure by deformation of the elastomeric material, that is, rubber. Steel-reinforced 

elastomeric bearings (SREB) are made by inserting steel plates between layers of rubber 

compound and vulcanizing this composite material [20]. The steel plates reduce the surface 

area of the elastomer that is free for bulging, that is, reduce the compressive deformations of 

the elastomer under compressive load, making the bearings stiffer. The compressive stiffness 

of a rubber pad is highly influenced by the shape factor S, that is, the ratio between the loaded 

area and the area free to bulge. 

Steel plates are bonded with rubber, either natural or polychloroprene, in alternating layers 

to form a sandwich. The finished product contains rubber cover on the top and bottom and 
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around the edges, creating a sealed system in which the plates are protected against corrosion 

[20]. The rubber and steel layers are bonded together by an adhesive that is activated when 

the rubber is cured. Curing, or vulcanization, is the process of subjecting the raw rubber 

compound to high temperature and pressure, which both change its chemical structure and 

cause it to take the shape of the mold. 

A plain elastomeric pad responds to vertical load by expanding laterally and slipping against 

the supporting surface as shown in Figure 3.3 (a). The rubber at the top and bottom surfaces 

of the pad is partially restrained against outward movement by friction against the support, 

but the rubber at mid thickness is not [20]. This results in some bulging at the edges. The 

lateral expansion leads to significant vertical deflections. By contrast, the rubber in the 

laminated pad is largely prevented from such expansion by its bond to the steel plates, and 

the layers only form small bulges, as shown in Figure 3.3 (b). 

 

 

Figure 3.3 rubber in plain (a) and laminated (b) pad 

 

Rubber is almost incompressible, so the volume of rubber remains almost constant under 

load, and the small lateral expansion leads to only a small vertical deflection. The laminated 

bearing is much stiffer and stronger in compression than a plain pad. However, the steel 

plates do not inhibit the shear deformations of the rubber, so the bearing is still able to 

undergo the same shear deformations as the plain pad for the purpose of accommodating 

changes in length of the girders [20]. Usually, these bearings are stiffer in the vertical 

direction and flexible in the lateral direction which enables the flexibility within the bearings. 
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Figure 3.4 real image of a steel-reinforced elastomeric bearing 

 

3.2 Parametric modelling 
 

The elastomeric bearings can be considered as a single link element for the structural 

analysis. Stiffness of this link element can be calculated given the input parameters such as 

dimensional properties and shear modulus.  

 

 

Figure 3.5 link element 

 

The behaviour of elastomeric material, that is, rubber under compression, is strongly 

influenced by different geometrical characteristics. Under compression, rubber bulges and 

vertical planes take up parabolic shapes. The compressive stiffness of a rubber pad is usually 
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related to a dimensionless parameter, the shape factor S (loaded area/area free to bulge). In 

this section, the compression of a rectangular rubber pad (a × b × t) bonded to rigid plates is 

considered and the shape factor (3.1) is given by: 

 
𝑆 =

𝑎 𝑏

2 𝑡 (𝑎 + 𝑏)
 (3.1) 

The Australian standard (clause 12.7) provides calculations of the stiffness of the bearings. 

For a rectangular cross section elastomeric bearing with certain assumptions, the simple 

equations can be formulated based on the Figure 3.6:  

 

 

Figure 3.6 shear, compression and rotational deformations 

 

For the compression stiffness 𝐾𝐶 (3.2): 

 
𝐾𝑐 =

1

∑
1

𝐾𝑐𝑛

𝑛
1  

 

 

(3.2) 

Where, 

𝐾𝑐𝑛 =
𝐸𝑐𝐴𝑏

𝑡𝑛
: compressive stiffness of an individual layer of elastomer 

𝐸𝑐 = 4𝐺 [1 − (
𝑞

1+𝑞2)
2

] + [
𝑐1𝐺𝑆2

1+
𝑐1𝐺𝑠2

0.75𝐵

] : effective compression modulus of elastomer 

𝐶1 = 4 + 𝑞(6 − 3.3𝑞) 
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𝑞: minimum value of the side-to-side elastomer ratios 

𝐺 : elastomer shear modulus 

𝑆 : elastomer layer shape factor 

𝐵 : bulk modulus of elastomer 

𝐴𝑏: bonded surface area 

𝑡𝑛: thickness of a layer of elastomer 

For the shear stiffness 𝐾𝑠  (3.3): 

 
𝐾𝑠 =

𝐴𝑟𝐺

𝑡
 

 
(3.3) 

Where, 

𝐴𝑟: average rubber layer plan area 

𝑡 : total thickness of elastomer in bearing 

For the rotational stiffness 𝐾𝑟 (3.4): 

 
𝐾𝑟 =

1

∑
1

𝐾𝑟𝑛

𝑛
1  

 

 

(3.4) 

Where, 

𝐾𝑟𝑛 =
𝐸𝑟𝑙

𝑡𝑛
 : compressive stiffness of an individual layer of elastomer 

𝐸𝑟 = 4𝐺 [1 − (
𝑚

1+𝑚2)
2

] + [
𝐶2𝐺𝑆2

1+
𝐶2𝐶2

0.758

] effective compression modulus of elastomer 

 𝐶2 = 4 −
32

10+𝑚(4+3𝑚+𝑚2)
 

m: parallel-to-transverse side of span elastomer dimension ratio for rotation about an axis 

parallel to the long dimension of the bearing 

I: Moment of inertia about the axis of rotation 

To account for the compressibility of rubber, it is necessary to accurately estimate the 

material's resistance to volume change under compression, that is, the value of the bulk 

modulus of rubber. According to the European standard EN 1337–3, typical rubber used for 
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SREBs is carbon-filled rubber with a hardness of 60 IRHD (International Rubber Hardness 

Degree), elastomer shear modulus  𝐺 = 0.9 MPa and bulk modulus 𝐵 = 2000 MPa. 

 

3.3 Stiffness and geometrical parameters  
 

The effect of the variation of the construction parameters of the bearings on axial, lateral and 

bending stiffness was analysed. In particular, the shape of bearings selected is square, since 

those are the ones that are most easily found on the market.  

It can clearly be observed form Figure 3.7 that increasing the number of layers, and 

consequently the overall height of the bearing, leads to a reduction of the compression 

stiffness. The trend observed is characteristic of springs positioned in series, adding layers 

of rubber in fact is equivalent to adding stiffnesses one above the other, this results into a 

reduction in the overall stiffness. The magnitude in the reduction in axial stiffness decreases 

as the number of elastomer layers increases; in fact, the most significant reduction occurs 

when going from a bearing with only one elastomer layer to one with 2 layers. 

 

Figure 3.7 compression stiffness for variable number of elastomer layers 
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It can be observed from Figure 3.8 that increasing the number of layers, and consequently 

the overall height of the bearing, leads to a reduction of lateral stiffness. It is also noted that 

the value of the lateral stiffness is an order of magnitude less than that of the axial stiffness; 

this is a fundamentally important observation, as this value of stiffness could be a limiting 

factor in the sizing of the connection due to its small magnitude. Just as observed in the case 

of axial stiffness, again the most significant reduction is observed in the transition from the 

1-layer elastomer configuration to the 2-layer configuration. 

 

Figure 3.8 shear stiffness for variable number of elastomer layers 

 

The increase in the rubber surface leads to an increase in axial stiffness (Figure 3.9), this is 

clearly due to the fact that the increase in the size results in an increase in the form factor, 

directly proportional to the stiffness of the bearings. The increase in axial stiffness is not 

linear with elastomer size but has a clearly quadratic trend; this is something that will have 

to be particularly taken into account when sizing the connection, since small changes in size 

correspond to high changes in stiffness. 
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Figure 3.9 compression stiffness for variable elastomer length 

 

The increase in the rubber surface leads to an increase in shear stiffness (Figure 3.10), this 

is clearly due to the fact that the increase in the size results in an increase of the average 

rubber layer plan, directly proportional to the shear stiffness of the bearings. The increase in 

shear stiffness is not linear with elastomer size but has a quadratic trend; but the range of 

stiffnesses available is very much reduced if compared with the one of the compression 

stiffness. 

The stiffness of elastomeric bearings is largely influenced by the ratio of height to the area 

of the bearing and the number of laminated reinforcing plates. The elastomeric bearings of 

the same size may have different stiffnesses depending on the number of reinforcing plates 

inserted into the elastomer. 
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Figure 3.10 lateral stiffness for variable elastomer length 

 

To analyse the effect of the reinforcing plate on the compression and shear of an 600 × 600 

× 300 mm elastomeric bearing was selected as the target model. The number of reinforcing 

plates (Ns) was selected as a design parameter, and a total of 9 models with 0 to 8 reinforcing 

plates with 5 mm thickness were selected as analysis models. 

For the same size and overall bearing height, a substantial increase in axial stiffness is 

observed as the number of reinforcing steel plates increases (Figure 3.11). The steel plates 

reduce the surface area of the elastomer that is free for bulging, that is, reduce the 

compressive deformations of the elastomer under compressive load, making the bearings 

stiffer. It is also noted that the increase in stiffness is Greater as the number of steel plates 

used increases. 
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Figure 3.11 axial stiffness for variable number of steel reinforcing plates 

 

Overall, the influence of the number of reinforcing plates (Ns) on the shear stiffness of the 

elastomeric bearing is small (Figure 3.12). It is observed that the addition of reinforcing steel 

layers does not have a major impact on the lateral stiffness if the total elastomeric thickness 

remains the same. In fact, the steel plates do not inhibit the shear deformations of the rubber, 

so the bearing is still able to undergo the same shear deformations as the plain pad. 
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Figure 3.12 lateral stiffness for variable number of steel reinforcing plates  
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4. Dynamics of multibody system 

 

The work presented in this chapter focuses on the optimization of the connection stiffness of 

modular hexagonal floating islands. The connection system is described by an equivalent 

system consisting of linear springs whose stiffness is the objective of optimization. The aim 

is to find an optimal spring stiffness solution (unique for the different island configurations) 

that is compliant with dynamic constraints of human comfort and that minimizes the loads 

acting on the connections.  

The methodology developed in this work can be applied for various geometries and sizes of 

floating platforms and can be extended for a different number of connected devices. A 

hexagonal platform geometry was chosen for the analysis, as this allows for honeycomb 

layouts for greater freedom of shape of the floating island. In addition, the hexagonal shape 

allows for a better spatial distribution of the connection forces, compared to the square 

geometry case. 

Acceptable human comfort values of accelerations and displacements, required by structures 

for residential purposes, pose new and unique challenges for the design of MFIs and plays a 

significant role in the design feasibility. The system will be simulated both in regular and 

irregular waves. 

 

4.1 Connector stiffness matrix 
 

In general, a multibody system is defined to be a collection of subsystems called bodies, 

components, or substructures [21]. The motion of the subsystems is kinematically 

constrained because of different types of joints, and each subsystem or component may 

undergo large translations and rotational displacements. Basic to any presentation of 

multibody mechanics is the understanding of the motion of subsystems (bodies or 

components). The multibody system consists of interconnected rigid and deformable bodies, 

each of which may undergo large translational and rotational displacements [21]. 
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Figure 4.1 example of multibody system 

 

Many mechanical and structural systems such as vehicles, space structures, robotics, 

mechanisms, and aircraft consist of interconnected components that undergo large 

translational and rotational displacements.  

The term rigid body implies that the deformation of the body under consideration is assumed 

small such that the body deformation has no effect on the gross body motion. Hence, for a 

rigid body, the distance between any two of its particles remains constant at all times and all 

configurations [21]. The motion of a rigid body in space can be completely described by 

using six generalized coordinates, but the problem has been approached in a plane system in 

which each body has three degrees of freedom: surge, heave, and pitch.  

 

 

Figure 4.2 surge, heave and pitch motions 
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The configuration of a multibody system can be described using measurable quantities such 

as displacements, velocities, and accelerations. These are vector quantities that have to be 

measured with respect to a proper frame of reference or coordinate system. Generally, in 

dealing with multibody systems two types of coordinate systems are required. The first is a 

coordinate system that is fixed in time and represents a unique standard for all bodies in the 

system. This coordinate system will be referred to as global, or inertial frame of reference. 

In addition to this inertial frame of reference, a body reference to each component in the 

system is assigned, for example 𝑥1𝑧1 for the first body, his body reference translates and 

rotates with the body; therefore, its location and orientation with respect to the inertial frame 

change with time. The position of the global reference XZ is defined, and the position of 

inertial frames of reference to each component in the system, for example 𝑋1𝑍1 for the first 

body (Figure 4.3).  

 

 

Figure 4.3 frames of reference 

 

The connection system is represented by a system of equivalent linear springs as shown in 

the Figure 4.4. The layout of the connection ensures a certain degree of rigidity between the 

platforms by acting on the surge, heave, and pitch degrees of freedom. These hypotheses 

allow us to better highlight the effect of the stiffness of the connections on the dynamics of 

interconnected floating platforms under the action of sea waves. Future work will expand 

the model to consider the three-dimensional effects of the connections on the various sides 

of the hexagon in various configurations. 
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Figure 4.4 equivalent linear springs 

 

Although the study has been conducted for only two platforms it is of general value, since it 

can be easily extended, in the linear case, to multiple bodies by manipulation of the stiffness 

matrix. 

The points designated as “P” are the anchor points between elastomers and platforms, 

through these points the transmission of forces between the platforms takes place; it follows 

that the distances 𝑃1𝑃2
̅̅ ̅̅ ̅̅  and 𝑃3𝑃4

̅̅ ̅̅ ̅̅   are of fundamental importance for the study of the system. 

This distance depends on surge, heave, and pitch motion of the individual platforms, for the 

ith platform those quantities are identified respectively as 𝜃𝑖 , 𝑥𝑖 𝑎𝑛𝑑 𝑧𝑖 (Figure 4.5).  

 

Figure 4.5 surge, heave, and pitch motion of the individual platform  

The dimensions of the floating structure under investigation are shown in the table 4.1. The 

small size of the platform is motivated by the fact that a 1:3 scale prototype is being 

developed to be installed in a protected site for experimental purposes. As the numerical 
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model adopted is linear, the results obtained here can be scaled up to assess the effects on 

the system at full scale. 

Dimensions  Description Value 

a distance between elastomer application point and centre 

of the connection 1.2 m 

D diameter of the circumference circumscribed by the 

hexagonal platform 18 m 

b apothem of the hexagonal platform 7,8 m 

H hight of the platform 3 m 

𝑙0 length of the elastomer at rest 0.5 m 
 

Table 4-1 platform dimensions 
 
 

 

Figure 4.6 main dimensions of the platform 

The position of each point is derived, with respect to the local inertial frame of reference 

𝑋𝑖𝑍𝑖 first and then with respect to the global reference system XZ. 
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𝑂1𝑃1
̅̅ ̅̅ ̅̅  = {𝑥1 + 𝑏 cos 𝜃1 − 𝑎 𝑠𝑖𝑛 𝜃1

𝑧1 + 𝑏 sin 𝜃1 + 𝑎 𝑐𝑜𝑠 𝜃1
                    𝑂2𝑃2

̅̅ ̅̅ ̅̅  = {𝑥2 − 𝑏 cos 𝜃2 − 𝑎 𝑠𝑖𝑛 𝜃2

𝑧2 + 𝑏 sin 𝜃2 + 𝑎 𝑐𝑜𝑠 𝜃2
 

 

𝑂𝑃1
̅̅ ̅̅ ̅ = {

𝑥1 + 𝑏 cos 𝜃1 − 𝑎 𝑠𝑖𝑛 𝜃1 + 𝑏

𝑧1 + 𝑏 sin 𝜃1 + 𝑎 𝑐𝑜𝑠 𝜃1 +
𝐻

2

              𝑂𝑃2
̅̅ ̅̅ ̅ = {

𝑥2 − 𝑏 𝑐𝑜𝑠 𝜃2 − 𝑎 𝑠𝑖𝑛 𝜃2 + 3𝑏 + 𝑙0

𝑧2 + 𝑏 𝑠𝑖𝑛 𝜃1 + 𝑎 𝑐𝑜𝑠 𝜃1 +
𝐻

2

 

 

𝑂1𝑃3
̅̅ ̅̅ ̅̅  = {𝑥1 + 𝑏 cos 𝜃1 + 𝑎 𝑠𝑖𝑛 𝜃1

𝑧1 + 𝑏 sin 𝜃1 − 𝑎 𝑐𝑜𝑠 𝜃1
                    𝑂2𝑃4

̅̅ ̅̅ ̅̅  = {𝑥2 − 𝑏 cos 𝜃2 + 𝑎 𝑠𝑖𝑛 𝜃2

𝑧2 − 𝑏 sin 𝜃2 − 𝑎 𝑐𝑜𝑠 𝜃2
 

 

𝑂𝑃3
̅̅ ̅̅ ̅ = {

𝑥1 + 𝑏 cos 𝜃1 + 𝑎 𝑠𝑖𝑛 𝜃1 + 𝑏

𝑧1 + 𝑏 sin 𝜃1 − 𝑎 𝑐𝑜𝑠 𝜃1 +
𝐻

2

              𝑂𝑃4
̅̅ ̅̅ ̅ = {

𝑥2 − 𝑏 cos 𝜃2 + 𝑎 𝑠𝑖𝑛 𝜃2 + 3𝑏 + 𝑙0

𝑧2 − 𝑏 sin 𝜃2 − 𝑎 𝑐𝑜𝑠 𝜃2 +
𝐻

2

 

 

The mechanical behaviour of the connection system is represented by an equivalent system 

of two linear springs (see Figure 4.7) that constraint respectively the relative surge, heave, 

and pitch motion of adjacent platforms. 

 

Figure 4.7 equivalent system of two linear springs 

 

Given this schematization, it is possible to derive the elastomer shortening in the x-direction 

and z-direction for both connections: 

𝛥𝑥𝑃1𝑃2
= 𝑂𝑃2(𝑥)

̅̅ ̅̅ ̅̅ ̅̅ − 𝑂𝑃1(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2𝑏 − 𝑏 (cos 𝜃2 + cos 𝜃1) + 𝑎 (sin𝜃1 − sin 𝜃2) + 𝑥2 − 𝑥1 

𝛥𝑧𝑃1𝑃2
= 𝑂𝑃2(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ − 𝑂𝑃1(𝑧)
̅̅ ̅̅ ̅̅ ̅̅ = −𝑏 (sin 𝜃2 + sin 𝜃1) + 𝑎 (cos 𝜃2 − cos 𝜃1) + 𝑧2 − 𝑧1 
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𝛥𝑥𝑃3𝑃4
= 𝑂𝑃2(𝑥)

̅̅ ̅̅ ̅̅ ̅̅ − 𝑂𝑃1(𝑥)
̅̅ ̅̅ ̅̅ ̅̅ = 2𝑏 − 𝑏 (cos 𝜃2 + cos 𝜃1) + 𝑎 (sin 𝜃2 − sin 𝜃1) + 𝑥2 − 𝑥1 

𝛥𝑧𝑃3𝑃4
= 𝑂𝑃2(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ − 𝑂𝑃1(𝑧)̅̅ ̅̅ ̅̅ ̅̅ = −𝑏 (sin 𝜃2 − sin 𝜃1) + 𝑎 (cos 𝜃2 − cos 𝜃1) + 𝑧2 − 𝑧1 

 

A simplification, valid in the case of small oscillations as the one considered in this work, is 

applied at this stage: this consists in confusing the axial and lateral stiffness of the elastomer 

as the stiffnesses along x and along z, respectively. This is a simplification since in reality 

in the presence of non-zero platform pitch the axial direction of the elastomer will no longer 

coincide with the “x” direction but will be slightly different. However, for small pitch angles 

this difference can be neglected. The forces acting along x(4.1) and z(4.2) will therefore be: 

  

𝐹𝑥 = 𝐾𝑥(𝛥𝑥𝑃1𝑃2
 +  𝛥𝑥𝑃3𝑃4

) 

 

(4.1) 

 𝐹𝑧 = 𝐾𝑧(𝛥𝑧𝑃1𝑃2
 +  𝛥𝑧𝑃3𝑃4

) 

 

(4.2) 

 

From the deformations, not only the forces exchanged but also the elastic potential energy 

for each connection is calculated. It is observed that for each connection the elastic energy 

is composed of two terms, one involving the deformation along x(4.3) and the other along 

z(4.4). 

 
𝑈𝑒1−2 

=
1

2
(𝐾𝑥 (𝛥𝑥𝑃1𝑃2

)
2
 + 𝐾𝑧 (𝛥𝑧𝑃1𝑃2

)
2
) (4.3) 

 

 
𝑈𝑒3−4

=
1

2
(𝐾𝑥 (𝛥𝑥𝑃3𝑃4

)
2
 + 𝐾𝑧 (𝛥𝑧𝑃3𝑃4

)
2
) (4.4) 

 

At this point in order to apply Hamilton's law, the spatial derivative of the elastic potential 

energy is calculated, with respect to each degree of freedom: 

For the connection between platforms 1 - 2: 
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𝜕𝑈𝑒1−2 

𝜕𝑥1
= −𝐾𝑥(𝛥𝑥𝑃1𝑃2

) −𝐾𝑧(𝛥𝑧𝑃1𝑃2
) 

𝜕𝑈𝑒1−2 

𝜕𝑥2
= 𝐾𝑥(𝛥𝑥𝑃1𝑃2

) + 𝐾𝑧(𝛥𝑧𝑃1𝑃2
) 

𝜕𝑈𝑒1−2 

𝜕𝜃1
= 𝐾𝑥(𝛥𝑥𝑃1𝑃2

)(𝑏 𝑠𝑖𝑛 𝜃1 + 𝑎 cos 𝜃1) + 𝐾𝑧(𝛥𝑧𝑃1𝑃2
)(−𝑏 𝑐𝑜𝑠 𝜃1 + 𝑎 sin 𝜃1) 

𝜕𝑈𝑒1−2 

𝜕𝜃2
= 𝐾𝑥(𝛥𝑥𝑃1𝑃2

)(𝑏 𝑠𝑖𝑛 𝜃2 − 𝑎 cos 𝜃2) + 𝐾𝑧(𝛥𝑧𝑃1𝑃2
)(−𝑎 𝑠𝑖𝑛 𝜃2 − 𝑏 cos 𝜃2) 

For the connection between platforms 2 - 3: 

 

𝜕𝑈𝑒3−4 

𝜕𝑥1
= −𝐾𝑥(𝛥𝑥𝑃3𝑃4

) −𝐾𝑧(𝛥𝑧𝑃3𝑃4
) 

𝜕𝑈𝑒3−4 

𝜕𝑥2
= 𝐾𝑥(𝛥𝑥𝑃3𝑃4

) + 𝐾𝑧(𝛥𝑧𝑃3𝑃4
) 

𝜕𝑈𝑒3−4 

𝜕𝜃1
= 𝐾𝑥(𝛥𝑥𝑃3𝑃4

)(𝑏 𝑠𝑖𝑛 𝜃1 − 𝑎 cos 𝜃1) + 𝐾𝑧(𝛥𝑧𝑃3𝑃4
)(−𝑏 𝑐𝑜𝑠 𝜃1 − 𝑎 sin 𝜃1) 

𝜕𝑈𝑒3−4 

𝜕𝜃2
= 𝐾𝑥(𝛥𝑥𝑃3𝑃4

)(𝑏 𝑠𝑖𝑛 𝜃2 + 𝑎 cos 𝜃2) + 𝐾𝑧(𝛥𝑧𝑃3𝑃4
)(𝑎 𝑠𝑖𝑛 𝜃2 − 𝑏 cos 𝜃2) 

 

The equations derived are clearly nonlinear, since it’s interest of this work a qualitative 

calculation, designed to verify that the forces and deformations involved allow the usage of 

elastomeric bearing to construct the link between the platforms, and since low pitch values 

are expected, the assumption of linearity is made, simplifying as:  

 

sin 𝜃  ≈  𝜃 ; 

cos 𝜃  ≈ 1; 
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Substituting gives: 

𝜕𝑈𝑒1−2 

𝜕𝑥1
≈ −𝐾𝑥(𝑎 𝜃1 − 𝑎 𝜃2 + 𝑥2 − 𝑥1) −𝐾𝑧(−𝑏 𝜃1 − 𝑏 𝜃2 + 𝑧2 − 𝑧1) 

𝜕𝑈𝑒1−2 

𝜕𝑥2
= 𝐾𝑥(𝑎 𝜃1 − 𝑎 𝜃2 + 𝑥2 − 𝑥1) + 𝐾𝑧(−𝑏 𝜃1 − 𝑏 𝜃2 + 𝑧2 − 𝑧1) 

𝜕𝑈𝑒1−2 

𝜕𝜃1
= 𝐾𝑥(𝑎

2 𝜃1 − 𝑎2𝜃2 + 𝑎 𝑥2 − 𝑎 𝑥1) + 𝐾𝑧(𝑏
2 𝜃1 + 𝑏2 𝜃2 − 𝑏 𝑧2 + 𝑏 𝑧1) 

𝜕𝑈𝑒1−2 

𝜕𝜃2
= 𝐾𝑥(−𝑎2 𝜃1 + 𝑎2 𝜃2 − 𝑎 𝑥2 + 𝑎 𝑥1) + 𝐾𝑧(𝑏

2 𝜃𝜃1 + 𝑏2 𝜃2 − 𝑏 𝑧2 + 𝑏 𝑧1) 

Doing the same for 𝑈𝑒3−4 
, the values of the linearized spatial derivatives are obtained. At 

this point the Hamilton's theorem is applied, for which, from the value of the spatial 

derivatives the stiffness matrices of the system are derived. The stiffness matrices [𝐾𝑥](4.5) 

and [𝐾𝑧](4.6) can be written as: 

 

 
[𝐾𝑧] = −2 𝐾𝑧 [

1 𝑏 −1 𝑏
𝑏 𝑏2 −𝑏 𝑏2

−1 −𝑏 1 −𝑏
𝑏 𝑏2 −𝑏 𝑏2

] (4.5) 

 

 
[𝐾𝑥] = −2 𝐾𝑥 [

1 0 −1 0
0 𝑎2 0 −𝑎2

−1 0 1 0
0 −𝑎2 0 𝑎2

] 

 

(4.6) 

And the overall stiffness matrix (4.7): 

 

 

[𝐾] = −2 

[
 
 
 
 
 

𝐾𝑥 0 0 −𝐾𝑥 0 0
0 𝐾𝑧 𝑏 𝐾𝑧 0 −𝐾𝑧 𝑏 𝐾𝑧

0 𝑏 𝐾𝑧 𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 −𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧

−𝐾𝑥 0 0 𝐾𝑥 0 0
0 −𝐾𝑧 −𝑏 𝐾𝑧 0 𝐾𝑧 −𝑏 𝐾𝑧

0 𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 −𝑏 𝐾𝑧 𝑎2𝐾𝑥 ]
 
 
 
 
 

 

 

(4.7) 
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At this stage the main goal of the analysis is achieved, which is to derive a stiffness matrix 

that can be implemented in the numerical model of the system to perform the simulations, 

in order to observe the behaviour of the system as the stiffnesses changes and as the sea state 

changes. However, the result of the multibody analysis satisfies us only in part; in fact, it is 

our intention to simulate the behaviour of three interconnected platforms. From the result 

obtained, however, it is possible to get the stiffness matrix of a system consisting of any 

number of interconnected platforms by applying a linear combination of the matrices. Thus, 

the stiffness matrix for three interconnected platforms (4.8) is derived.  

 

[𝐾] = −2

[
 
 
 
 
 
 
 
 
 

𝐾𝑥 0 0 −𝐾𝑥 0 0 0 0 0
0 𝐾𝑧 𝑏 𝐾𝑧 0 −𝐾𝑧 𝑏 𝐾𝑧 0 0 0

0 𝑏 𝐾𝑧 𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 −𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 0 0
−𝐾𝑥 0 0 2 𝐾𝑥 0 0 −𝐾𝑥 0 0
0 −𝐾𝑧 −𝑏 𝐾𝑧 0 2 𝐾𝑧 0 0 −𝐾𝑧 𝑏 𝐾𝑧

0 𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 0 2 (𝑎2𝐾𝑥 + 𝑏2𝐾𝑧) 0 −𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧

0 0 0 −𝐾𝑥 0 0 𝐾𝑥 0 0
0 0 0 0 −𝐾𝑧 −𝑏 𝐾𝑧 0 𝐾𝑧 −𝑏 𝐾𝑧

0 0 0 0 𝑏 𝐾𝑧 −𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 0 −𝑏 𝐾𝑧 𝑎2𝐾𝑥 + 𝑏2𝐾𝑧 ]
 
 
 
 
 
 
 
 
 

 

(4.8) 

 

From the analysis of the stiffness matrix, it can be observed how the different quantities are 

related to each other, for example how the pitching moment is strongly related to the size of 

the platform and the positioning of the elastomer. 

 

 

4.2 Regular wave analysis 
 

Within this framework, linear three-dimensional potential flow theory will be used to 

calculate the hydrodynamic forces. This theory assumes incompressible fluid and 

irrotational and inviscid flow. The 3-D Boundary Element Method (BEM) open-source 

software Nemoh [22] is adopted to compute the hydrodynamic frequency domain 

coefficients. BEM codes solve the interaction problem between multiple floating bodies by 

considering all bodies as part of the boundary value problem (BVP) for the calculation of 

the potential flow solution. In this preliminary work the influence of the mooring system will 
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be neglected and only the surge, heave and pitch motion of each platform is considered in 

the analysis to simplify the analysis. Figure 4.8 shows the global and body reference system 

of the case study under analysis, that consists of three hexagonal floating platforms arranged 

in a line. 

 

Figure 4.8 global and body reference system 

 

 The mesh of the system has been calculated with SALOME-MECA tool and it is illustrated 

in figure 4.9. 

 

 

In this case study only the surge, heave, and pitch degree of freedoms (4.9) of the three 

floating bodies are considered, and thus the state variable vector X has dimension 9: 

 X = [x1, z1, δ1, x2, z2, δ2, x3, z3, δ3]  (4.9) 

 

Solving the BEM problem makes it possible to calculate the frequency-dependent 

hydrodynamic coefficients and thus to define the equations describing the dynamics of the 

multibody system in the frequency domain (4.10): 

 [−2(𝑀 + 𝐴()) + 𝑖𝐵() + (𝐾ℎ + 𝐾𝑐)]𝑋() = 𝐹𝑒𝑥𝑡() (4.10) 

Figure 4.9 mesh of the system 
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Where 𝑀 is the structural inertia, 𝐴 is the added mass, 𝐵 is the linear radiation damping, 𝐾ℎ 

is the hydrostatic stiffness, 𝐾𝑐 is the linearised stiffness matrix of the connection system and 

𝐹𝑒𝑥𝑡 is the excitation force coefficients vector and is directly proportional to the wave 

amplitude 𝑎. The mathematical derivation of the stiffness matrix due to connections will be 

addressed in the next section. From equation (4.10) is possible to define the frequency 

dependent Response Amplitude Operator (RAO)(4.11) of the entire multi-body floating 

system: 

 
𝑅𝐴𝑂() =

𝑋()

𝑎
=

𝑓()

[−2(𝑀 + 𝐴()) + 𝑖𝐵() + (𝐾ℎ + 𝐾𝑐)]
 (4.11) 

 

Within this modelling framework, we preliminarily neglect the effects of second order 

forcing, the average force components due to waves, currents, and wind, and consider long 

crested waves without directional spreading. Concerning the modelling of irregular waves, 

in this work we refer to the analytical spectrum of Jonswap considering a peak enhancement 

factor γ = 3.3. Since the numerical model is linear, it is possible to calculate the Power 

Spectral Density (PSD) of the system state variables 𝑆𝑋(), given the RAO of the system 

and the wave PSD 𝑆(): 

𝑆𝑋() = |𝑅𝐴𝑂()|2𝑆() 

Given the PSD of the state variables it is possible to compute their expected RMS value 

RMSX (equivalent to the standard deviation σX of the statistical process). Since the input 

wave is assumed to be a Gaussian process, thus also the output is Gaussian. Thus, we 

consider as maximum value of the process Xmax = 3・σX, that includes 99.73% of the 

probability of the Gaussian process. 

 

The first simulations are the ones in regular wave, these were performed by simulating on 

the Matlab platform sine waves of constant amplitude and phases. The RAO was calculated 

for different values of the system, including elastomer deformation in x and z direction, 

pitching of individual platforms, and forces exchanged between platforms. 

Looking at the Figure 4.10, it can be observed that in for each platform motion analysed 

there is a different displacement of the isolated platform compared to the three platforms 
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when placed together in the sea, in particular the pitch motion is reduced for each wave 

period considering the three platforms.  

A further observation that can be made by looking at the graphs is that the first platform has 

a much more pronounced motion than that of the other platforms, this is due to the fact that 

the first platform is to first to be hit by the wave, the other two platforms are therefore 

shielded from it and for this reason a reduced motion is observed.  

Finally, it can be observed that the maximum pitching motion occurs for different wave 

periods among the platforms, around 5 s in the case of the first platform as well as for the 

single platform, and for increasing wave periods for the other platforms, up to a maximum 

of about 6 s for the third platform.  

The motion of the isolated platform is compared with the other platforms when connected 

to each other via the elastomeric connection; at this stage non-optimized values of stiffnesses 

Kx and Kz are used, for the sole purpose of observing the effect of the connection on the 

motion, in particular at this stage values of 20 kN/mm and 5 kN/mm of Kx and Kz are 

assumed. 
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Figure 4.10 RAO – max pitch unconnected platforms 

 

The addition of a connection of stiffness Kx = 20 kN/mm and Kz = 5 kN/mm results in a 

significant reduction in the pitching of the system (Figure 4.11), compared to the 

configuration without a connection it can be noted that the platforms pitch in unison with 

similar pitching values among them. A first maximum is observed for T = 4 s and a second 

maximum for longer periods, this is a dynamic that is absent for individual platforms and is 

only observed in the presence of connection. 
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Figure 4.11 RAO – max pitch connected platforms 

 

It can be observed that the increase in stiffness results in a significant reduction in pitching 

motion for all platforms (Figure 4.12), in particular it can be observed that for the first 

platform there is a more gradual reduction in pitching, an indication of the fact that greater 

stiffnesses are required than for the other platforms for its motion to be mitigated, the second 

platform on the contrary undergoes a significant reduction in pitch amplitude already for 

modest stiffnesses, this is observed since the central platform is the most sheltered one, this 

being constrained on both sides. Finally regarding the third platform, an increase in the 

amplitude of oscillation is observed for low values of connection stiffness, this is due to the 

fact that by applying the connection the third platform begins to be affected by the action of 

the others that precede it, but since the connection is very yielding this is not able to attenuate 

the oscillation. It is also observed that for high stiffness values it’s influence on the motion 

of the platforms is greatly reduced, which means that the behaviour of the platforms for high 

stiffnesses is similar to that of a rigid body.  
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Figure 4.12 RAO – max pitch platform 1 for variable Kx and Kz = 0.5 Kx 

 

The increase in axial and lateral stiffness allows a significant reduction in elastomer 

shortening between platforms in both axial and lateral directions for all wave periods (Figure 

4.13). In particular, it is observed that for stiffnesses Kx of less than 10 kN/mm and Kz of 5 

kN/mm the attenuation is reduced, and resonance is observed shifting to larger periods as 

stiffness increases. For greater stiffnesses, resonance is not observed; a maximum is 

observed at periods of about 7s, the magnitude of which decreases as stiffness increases, 

assuming the behaviour of a rigid body. 
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Figure 4.13 RAO – max deformations between platforms 1-2 for variable Kx and Kz = 0.5 Kx 

 

The forces exchanged between the platforms have a similar trend to that of the shortenings, 

with a maximum that for modest stiffnesses moves toward greater periods as stiffness 

increases (Figure 4.14).  For stiffnesses greater than 10 kN/mm the magnitude of the forces 

exchanged varies little with the stiffness of the connection, since an increase in stiffnesses 

corresponds to a corresponding reduction in shortenings. It is found that at an increase in 

stiffness, for the same wave period, the forces exchanged are reduced; the effect of reducing 

the shortening between platforms therefore has a greater impact than increasing stiffnesses. 
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Figure 4.14 RAO – max forces between platforms 1-2 for variable Kx and Kz = 0.5 Kx 
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4.3 Irregular wave analysis 
 

The natural seaway on the oceans is irregular. It is also referred to as random sea, or as 

confused sea. The sea shows rarely a unidirectional, regular sinusoidal wave pattern, but we 

observe a mixture of waves of different length, height, and direction. 

 

 

Regular wave: 

- Single frequency 

 

 

Irregular wave 

Many frequencies 

 

 

The natural seaway can be decomposed to a sum of partial sinusoidal waves, each having a 

relatively small steepness, even for a severe sea. Therefore, the spectral approach with a sum 

of partial waves constitutes a valid representation for a random sea. From careful 

observation, certain typical or characteristic parameters can be estimated [23]. 

Figure 4.15 Regular and irregular wave 

https://www.sciencedirect.com/topics/engineering/spectral-approach
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Dimensions  Description Value 

𝐻𝑚𝑎𝑥 Largest wave height in the sample 𝐻𝑚𝑎𝑥 = max
𝑖

(𝐻𝑖) 

𝐻𝑎𝑣 Mean wave height 𝐻𝑣 =
1

N
∑𝐻𝑖 

𝐻𝑟𝑚𝑠 Root-mean-square wave height 𝐻𝑟𝑚𝑠 = √
1

N
∑𝐻𝑖^2  

𝐻1/3 Average of the highest 𝑁/3 waves 𝐻1/3 =
1

𝑁
3

∑𝐻𝑖

𝑁/3

1

 

𝐻𝑚0 Estimate based on the rms surface 

elevation 𝐻𝑚0 = 4 (2)
1
2 

𝐻𝑆 Significant wave height Either 𝐻1/3 or 𝐻𝑚0 

 

Table 4-2 wave’s height characteristic parameters 

 

 

Dimensions  Description 

𝑇𝑆 Significant wave period (average of highest 𝑁/3 

waves) 

𝑇𝑃 Peak period (from peak frequency of energy 

spectrum) 

𝑇𝑒 Energy period (period of a regular wave with same 

significant wave height and power density; used in 

wave-energy prediction; derived from energy 

spectrum) 

𝑇𝑧 Mean zero up-crossing period 

 

Table 4-3 wave’s period characteristic parameters 
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For a narrow-banded frequency spectrum the probability distribution of wave heights the 

Rayleigh probability distribution is appropriate. The probability density functions is: 

 

𝑓(𝐻) = 2 
H

Hrms
2

𝑒
−(

𝐻
𝐻𝑟𝑚𝑠

)
2

 

 

The spectrum provides the information about the distribution of the wave energy among the 

different wave frequencies (or wave periods) or wavelength on the sea surface being 

analysed. The spectral density can be defined as an image that identifies the relative wave 

energy presenting all frequencies or periods at a fixed location or region for a predefined 

time period, regardless of the energy’s directional heading. In other words, it shows at which 

frequencies variations are strong and at which frequencies variations are relatively weak. 

We’re interested in the power spectrum of the waves, the energy in a wave is proportional 

to 2, where 𝜂 is surface displacement while the energy spectrum, or power spectrum, is the 

Fourier transform of 2. 

In order to define the distribution of energy with frequency we use the JONSWAP (Joint 

North Sea Wave Project) spectra, the underlying equation is: 

𝑆() =
α g2

5
 𝑒 

−[𝛽
𝑝

4

4]
𝑎 

Where, 

𝑎 = exp [−
(− 𝑝)

2

2 𝑝 
2 2

] 

 = {
0.07 𝑖𝑓  <  𝑝 

0.09 𝑖𝑓  >  𝑝 
 

𝛽 =
5

4
 

α is a constant that relates to the wind speed and fetch length. 

 is the wave frequency 
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𝑝 is the peak wave-frequency 

The irregular wave analysis allows us to simulate real sea states, based on which the effect 

of different combinations of axial and lateral stiffness on the motion of the platforms are 

evalueted. Three different sea states were simulated, with height 𝐻𝑆 = 0.5m and periods of  

𝑇𝑃 = 2s,  𝑇𝑃= 4s, and  𝑇𝑃 = 6s.  

  

The study of maps in irregular wave allows us to clearly distinguish the effect of individual 

axial and lateral stiffnesses (Figure 4.16). The greatest effect on platform pitching is given 

by the value of axial stiffness, the effect of lateral stiffness is greatly reduced. As the wave 

period increases there is an increase in the pitch of the platforms for each combination of 

stiffnesses, this is due to the fact that for longer period waves there is also greater 

wavelength, and when this becomes similar to the size of the connected platform system this 

goes into resonance amplifying the pitching. For periods of 2 and 4 seconds as axial stiffness 

increases there is a decrease in platform pitching; in fact, resonant wave periods stress the 

platforms taken individually much more than when connected, and the addition of a 

connection makes them less susceptible to these wave periods. For longer wave periods, e.g., 

T = 6s, for reduced stiffnesses the pitching of the platforms is reduced because waves of 

longer wavelengths stress much less the platforms taken individually. As stiffness increases, 

the system behaves more and more like a rigid body, and for this reason it is more stressed 

by longer wavelength waves, this results, as detectable from the third graph, in increased 

pitching as the stiffness of the connection increases. 

This finding strongly supports the choice of using elastomeric bearings for the design of the 

connection, since these have a much higher axial stiffness that is easily modified by changing 

the construction parameters, compared to the lateral stiffness, which it has been noted how 

it changes relatively little by modifying the geometry of the bearings.  
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Figure 4.16 Maps –max. pitch platform 1 for T = 2-4-6 s 

 

The greatest effect on the axial deformation of the connection is given by the value of axial 

stiffness (Figure 4.17); the effect of lateral stiffness is greatly reduced. As the wave period 

increases, there is an increase in the deformation of the connection for any combination of 

stiffnesses. The small axial stiffness generates considerable deformations already for wave 

periods of 4 s, as stiffness increases this value rapidly decreases up to stiffnesses of 50 

kN/mm and then continues to decrease but more slowly for larger axial stiffnesses. 
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Figure 4.17 Maps – max. axial deformations between platforms 1-2 for T = 2-4-6 s 

 

The greatest effect on the lateral deformation of the connection is given by the value of 

lateral stiffness (Figure 4.18); the effect of axial stiffness is greatly reduced. As the wave 

period increases, there is an increase in the deformation of the connection for each 

combination of stiffnesses. The magnitude of lateral deformations is significantly less than 

those in the axial direction, for each combination of stiffnesses and for each wave period. 

This is due to the fact that the forces in the Heave direction are much smaller than those in 

the surge direction. 
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Figure 4.18 Maps – max. lateral deformations between platforms 1-2 for T = 2-4-6 s 

 

The surge forces exchanged between the platforms (Figure 4.19) have an increasing trend 

for periods of 2 and 4 s, while they exhibit a maximum for lower stiffness values and then 

decrease as stiffness increases in the case of T = 6. The reasons for this are to be found in 

the trend of deformations in the x-direction, described earlier. For each value of axial 

stiffness, there are bigger exchanged forces for larger wave periods because of the larger 

deformations that occur under these conditions. 
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Figure 4.19 Maps – max. surge forces between platforms 1-2 for T = 2-4-6 s 

 

The heave forces exchanged between the platforms (Figure 4.20) have an increasing trend 

for periods of 2 and 4 s, while they exhibit a maximum for lower stiffness values and then 

decrease as stiffness increases in the case of T = 6. The value of the exchanged forces is 

lower than the forces in the surge direction because of the lower strains; unlike the latter, 

moreover, a substantial effect of the lateral stiffness value on the exchanged forces is 

observed. For each value of axial stiffness, there are larger exchanged forces for larger wave 

periods, because of the larger deformations that occur under these conditions. 
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Figure 4.20 Maps – max. heave forces between platforms 1-2 for T = 2-4-6 s 
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4.4 Comfort Criteria 
 

In order to identify allowable rigidities for the system, it is necessary to identify what are the 

comfort limits within which it is necessary to be in order for the platforms to be used for 

living purposes. These limits were identified during the Living@Sea project [24], the vision 

of this project is to create a sustainable and safe city on water, considering the demands of 

the inhabitants and the environmental conditions. 

 

Limiting Criteria 

Limiting 

value 

Inclination for floating residential areas 1 degree 

Max vertical height difference between module 

edges 

ideally only 10 

mm 

Vertical accelerations/heave motion 

max. RMS 0.15 

m/s² 

Horizontal accelerations/lateral motions 

max. RMS 0.03 

g 

Max metres of green water on deck 0 m 

Table 4-4 limiting comfort criteria 

 

By applying the above criteria to the maps obtained for irregular waves, it is possible to 

eliminate from the maps the combinations of axial and lateral stiffnesses that do not 

guarantee compliance with one or more of the criteria listed above.  

Below are the maps obtained by eliminating the above stiffnesses from the map, the values 

shown in the maps are those of forces exchanged between the platforms, on them in fact no 

limit has been placed. A limit to the axial deformation will be placed during the sizing of the 

elastomeric bearings. 

For period of 3 s almost all the stiffnesses obtainable from elastomeric bearings are 

permissible (Figure 4.21), this is because the motion of the platforms is small for these wave 

periods, and small stiffnesses are sufficient for the comfort limits to be met. The greatest 

values of exchanged forces occur along the axial direction, this is because the stiffnesses are 
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considerably greater along this axis. It is also observed that the magnitude of the exchanged 

forces increases as stiffness increases, although this leads to a reduction in the relative 

displacement to which the forces are proportional. There is also a decisive increase in the 

exchanged forces at stiffnesses compared to the sea state case with a period of 3s, this is 

evidently due to the increased relative displacement between the platforms.  

 

For period equal to 4s the range of possible stiffnesses is reduced along both x and z, an 

increased sea state therefore requires the use of higher stiffnesses to limit the motion of the 

platforms and ensure comfort limits. The largest values of exchanged forces also occur in 

the axial direction, it is also observed that here too the magnitude of the exchanged forces 

increases with increasing stiffness, although this results in a reduction in the relative 

displacement to which the forces are proportional. 

For period of 5 s the range of possible stiffnesses is reduced more, the largest values of 

exchanged forces also occur in the axial direction, but a substantial difference is observed: 

the magnitude of the exchanged forces decreases as the stiffness increases. This is due to the 

fact that for wave periods between 5-6 s the system goes into resonance, as the wavelength 

becomes comparable to the length of the platform system. For small stiffnesses, the motion 

of the platforms is so accentuated by resonance that the forces exchanged reach a maximum 

value for these stiffnesses, due to the high relative displacements between the platforms. As 

stiffness increases, the relative displacements become smaller, leading to a reduction in the 

forces exchanged.   

Observing how the maps showing the stiffness combinations that guarantee compliance with 

the comfort parameters change as the simulated wave period changes, we find that the range 

of permissible stiffnesses narrows considerably as the wave period increases, corresponding, 

as noted earlier, to very pronounced platform motions. 
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Figure 4.21 Constrained maps – max. surge forces for T = 3-4- 5s 

 

 

 

 

 

 

 

 



 
55 

 

5. Connection design  
 

The design of the connection aims to position the elastomeric bearings in such a way that 

they can effectively be active when there is shortening or elongation of the distance between 

the platforms. This is a nontrivial result to achieve because by their nature elastomeric 

bearings work only in compression and not in tension, so it is necessary to design a system 

that allows the elastomeric bearings to go into compression when the distance between the 

platform increases. 

After the identification of the right disposition of the bearings, the actual sizing of the 

elastomeric bearings is carried out, taking into account the results obtained from the irregular 

wave simulations, which made it possible to identify the minimum stiffness values that must 

be respected in order for the comfort parameters to be met. 

 

5.1 Constructive solution 
 

The constructive solution hypothesized involves obtaining compartments within the 

platforms (Figure 5.1), in which to place the elastomeric bearings; these are placed in tension 

through the use of steel strands, such a configuration allows the relative receding motion of 

each platform to be transmitted to the other, inducing a compression of the bearings. 

 

Figure 5.1 detail of compartments and bearings  
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For relative approach motion, on the other hand, the bearings positioned between the 

platforms, in parallel with each other, are the ones that oppose resistance to the motion 

(Figure 5.2). It should be noted that for such an arrangement the only bearings to resist lateral 

motion between the platforms are those positioned between the platforms, the strands by 

which motion transmission occurs for the bearings in traction are in fact incapable to transmit 

the lateral motion of the platforms. 

 

Figure 5.2 view of the connection from above 

 

Finally, about the pitching of the platforms, depending on the direction of pitching motion, 

one row of bearings will be put in compression and the other one in tension, which is why it 

has been chosen a disposition of two rows of bearings between the platforms (Figure 5.3). 

Furthermore, both compression and tension bearings are placed at the same elevation, so as 

not to have inhomogeneity in torsional stiffness. 
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Figure 5.3 detail fo the bearings traction system 

 

5.2 Equivalent stiffness 
 

Since the quantities of interest for this work are surge, heave, and pitch, the equivalent 

stiffnesses were calculated along the x and z axes, and the rotation around the y axis. 

 

Figure 5.4 side view of the connection 
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Along the surge direction the bearings positioned between the two platforms result in 

compression as the relative distance between them decreases; since in presence of only the 

motion along x these bearings see the same shortening between them, they appear to be in 

parallel (Figure 5.4). Called 𝐾𝑐 the axial stiffness of the single bearing and called 𝑛 the 

number of bearings placed in compression; the equivalent compressive stiffness will be 

given by: 

 
𝐾𝑥𝑐 = ∑𝐾𝑐

𝑛

1

 (5.1) 

 

Unlike the latter, the bearings placed in the compartments are shortened when the relative 

distance between the platforms increases. As they are arranged, in presence of only motion 

along x axis, these bearings appear to be placed in series with each other, thus the overall 

stiffness is reduced. Called 𝐾𝑡 the axial stiffness of the single bearing and being two the 

number of bearings placed in traction for each couple of traction bearings; the equivalent 

tensile stiffness, will be given by: 

1

𝐾𝑡′
𝑥

= ∑
1

𝐾𝑐

2

1

 

Considering a couple of bearings in traction we can write that: 

 
𝐾𝑡′𝑥 =

𝐾𝑐

2
 (5.2) 

 

As for each pair of bearings in tension we have a bearing in compression (𝑚 = 2𝑛), we can 

write that, 

 
𝐾𝑥𝑐 = 𝐾𝑥𝑡 = 𝐾𝑥 = ∑𝐾𝑐

𝑛

1

 (5.3) 

 

It is therefore found that the stiffness along x axis is equal in case of both compression or 

traction. 

A similar study can be made for the calculation of equivalent lateral stiffness, paying 

attention to the fact that the only bearings which oppose effective resistance to the motion 
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along z are the ones placed between the two platforms. Between the bearings in traction, in 

fact, the forces are transmitted via pre-tensioned steel cables, which can transmit forces only 

along the x axis. Therefore, given 𝐾𝑡 the lateral stiffness of the single bearing, we find that 

the lateral stiffness 𝐾𝑧 is: 

 
𝐾𝑧 = ∑𝐾𝑡

𝑛

1

 (5.4) 

 

Finally, we evaluate the pitching stiffness, in the presence of pitching we have that one row 

of elastomers is put in compression and one in tension, having called  𝛥𝑥 the shortening of 

the elastomers as a result of the pitching motion, we will have that the elastic forces 

opposing the motion are: 

𝐹𝑥 = 𝑟 𝐾𝑐  𝛥𝑥 

Calling "a" the distance between the centre of the connection and the point of application of 

the elastomers, we can approximate the shortening 𝛥𝑥 as 𝑎 ∗  𝜃 where 𝜃 represents the 

pitching angle. The elastic resistant moment will therefore be: 

𝑀𝜃 = 𝑟 𝐾𝑐 𝑎
2 𝜃 𝑁𝑐 

Hence the pitching stiffness: 

𝐾𝜃 = 𝑟 𝐾𝑐 𝑎
2 𝑁𝑐 

But 𝑟 𝐾𝑐 𝑁𝑐 is the equivalent stiffness 𝐾𝑥 found above, we can therefore write that: 

 
𝐾𝜃 = ∑𝐾𝑐

𝑛

1

 𝑎2 = 𝐾𝑥 𝑎
2 (5.5) 

 

5.3 Bearings Dimensioning 
 

From the analysis of the maps obtained from the irregular wave studies, the minimum lateral 

and axial stiffness values required for the system to met comfort constraints were derived. 

In this section the objective is to size a connection based on the use of the elastomeric 

bearings noted in Chapter 2. When talking about connection sizing the choice of several 
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parameters is implied, which we saw in Chapter 2 how they greatly influence the stiffness 

of the connection. These parameters include: 

 

Constructive parameters Symbol 

Number of bearings placed for each row Nc 

Size of elastomeric pads a 

Choice of using unreinforced or reinforced bearings, and in this 

case choice of the number of steel plates to be used 
Ns 

Overall height of elastomer H 
 

Table 5-1 elastomeric bearing’s main constructive parameters 

 

 

Figure 5.5 elastomeric bearings main constructive parameters  

 

Instead, other parameters were set with the aim of making it easier to obtain the possible 

configurations; in particular, the number of rows of elastomeric bearings, equal to 2, the 

square shape of the bearings and finally the maximum lateral dimension of the pads, equal 

to 75 cm, were set.  

Analyzing the axial and lateral stiffness ranges allowed by the elastomeric bearings and 

comparing them with the values found in the maps obtained from the irregular wave study, 

it is clearly observed that the limiting factor is the equivalent lateral stiffness. For example, 

it is observed that the addition of reinforcing steel layers does not have a major impact on 

the lateral stiffness if the total elastomeric thickness remains the same. This observation is 
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the basis for writing the algorithm that allows us to obtain the curves with the possible 

elastomer configurations.  

In fact, the algorithm for a certain range of dimensions "a" which has been noted to be 

superiorly limited to 75 cm, calculates the axial stiffness for a set of decreasing values of H, 

in doing so it has been noted from the graphs obtained in Chapter 2, there is an increase in 

both axial and lateral stiffnesses. The algorithm stops when it finds the maximum value of 

H that provides the minimum desired lateral stiffness for a set of a, Nc, and Ns; stopping in 

correspondence of the minimum desired value of Kz the value of axial stiffness is minimized.  

This allows us to generate curves in which for each value of “a” there is a value of H that 

guarantees the minimum lateral stiffness while minimizing the value of axial stiffness. This 

calculation is then repeated for different values of number of bearings per row Nc.  

The only parameter that seems to be excluded from the algorithm for finding configurations 

appears to be the number of reinforcing steel plates, in fact this is a choice since it has been 

noted that the addition of steel plates results in a substantial increase in axial stiffness without 

a corresponding increase in lateral stiffness, so there is no doubt that the number of steel 

plates to be used is the minimum possible, and the idea of using unreinforced bearings has 

also been considered. 

However, the absence of steel plates may lead to a problem with the stability of the bearings, 

in fact the bearing may become thick enough that instability affects their performance and 

bearing that is too tall and slender will fail by buckling, so stability is a potential problem, 

although only for relatively thick bearings. To assess whether conditions exist for using 

unreinforced bearings, the value of the parameter "a/H" was reported for the different 

possible configurations that guarantee the minimum lateral stiffness derived from the maps, 

which is 20 kN/mm, while minimizing axial stiffness. 

In the case of reinforced bearings (Figure 5.6 ), the parameter 𝐻𝑒𝑓𝑓  refers to the sum of the 

thickness of the elastomer layers. It can be noted from the graphs that the a/H parameter 

varies very little for configurations with reinforced and unreinforced bearings. However, the 

stability limits in the two cases are different: taking the AASHTO Specifications [25] as a 

reference, the stability of the bearings is ensured by the limitation of the effective thickness 

of rubber, particularly for reinforced bearings the stability is ensured by the condition: 
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𝑎

𝐻
> 3 

While for unreinforced bearings, stability is ensured by the condition: 

𝑎

𝐻
> 5 

Looking at the graphs of possible configurations for unreinforced bearings, it is observed 

that there are no stable configurations, i.e., with 𝑎
𝐻

> 5.  So, although the configurations with 

unreinforced bearings offers lower axial stiffness, we are forced to choose a reinforced 

configuration for stability issues. It can be noted that among the possible configurations with 

reinforced bearings there are several curves above the limit value of 𝑎

𝐻𝑒𝑓𝑓
> 3 . 

At this point the number of steed plates to insert is studied, for this purpose the axial stiffness 

value for configurations with bearings reinforced with 1 or 2 steel plates is reported. Only 

the curves for which the stability limit noted above is met are specifically reported. 

 

Figure 5.6 possible bearings configurations – a/H stability parameter for different values of a and 
Nc 
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From Figure 5.7 it can be observed that in order to minimize axial stiffnesses, it is appropriate 

to choose a configuration with only one reinforcing steel plate; such a configuration, in fact, 

allows us to comply with the stability constraint while having a fair number of configurations 

to choose from. Finally, note how the application of the constraint on the ratio 𝑎

𝐻𝑒𝑓𝑓
  caused 

some configurations to be greatly reduced, until they disappeared, in particular the 

configurations with high number of bearings for example in the case of 𝑁𝑐 = 9. In these 

configurations, in fact, the minimum value of axial stiffness was found by the algorithm for 

big total heights of the bearings. The high number of bearings is in fact compensated with 

limited axial stiffness of the individual elements due to the considerable overall height.   

In order to determine the most advantageous configuration for our purposes, the curves 

obtained for stable configurations with bearings reinforced by a steel plate are reported. 

 

Figure 5.7 stable bearings configurations – stiffness for different values of a and Nc 
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Figure 5.8 shows that for the same Nc, the most favourable conditions in terms of limiting 

axial stiffness occur for larger values of "a," compensated by larger overall heights of the 

bearings. The choice among the possible stable configurations at this point should be made 

following what are the design constraints posed, with a limitation on the minimum distance 

between the platforms a configuration with smaller Nc might be adopted, while with limits 

on the size of the elastomers a solution with larger Nc in order to guarantee the minimum 

lateral stiffness while minimizing the value of Kx might be adopted.  

In our case, an intermediate configuration between the two has been selected, characterized 

by:  

- a = 0.6 m; 

- H = 0.2 m; 

- Ns = 1; 

- Nc = 6; 

 

This configuration allows us to obtain stiffnesses equal to: 

- Kz = 20 kN/mm; 

- Kx = 370 kN/mm; 
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Figure 5.8 stable bearings configurations – H and Kx for different values of a and Nc 

 

The maximum axial deformation is about 0.8 mm, and meets the stability criterion of the 
AASHTO Specifications: the maximum axial deformation should be less than 7% of the 
maximum bearing height, which is about 14 mm. 
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Figure 5.9 Maps – max. axial deformations of bearings for T = 6s 
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Conclusions and future developments 
 

In this work, an innovative elastic connection has been studied that would allow the 

connection of modular floating platforms, with the aim of improving the hydrodynamic 

response of the system. Numerical modelling of the connection, based on multbody system 

analysis, made it possible to derive a linearized stiffness matrix in the case of three platforms 

connected in series, which allows describing the behaviour of the platforms in the surge, 

heave, and pitch degrees of freedom. 

The dynamics of the system were then studied through regular and irregular wave 

simulations as the stiffnesses of the connection changed, with the aim of optimizing its value, 

based on the comfort parameters the system must meet. In light of the stiffnesses required 

by the connection to guarantee the comfort parameters, the technology identified for the 

design of the connection is that of elastomeric bearings: a technology widely used in the civil 

sector that consists of an elastomer with a variable number of reinforcing plates, used to 

absorb high-frequency vibrations during earthquakes, which for this project was thought to 

be repurposed because of their stiffness characteristics, compatible with those required by 

the connection to effectively attenuate wave-induced platform motion. 

Finally, the connection design was carried out, which consisted of finding the arrangement 

of elastomeric bearings capable of providing the required stiffnesses in both compression 

and traction directions. Finally, sizing of the connection took place by evaluating the 

geometric characteristics to be assigned to the individual bearings and their arrangement in 

terms of number of bearings to be installed. 

The results obtained were satisfactory in the different works conducted: numerical modelling 

of the connection by the technique of multibody system analysis allowed obtaining a 

nonlinear model of the connection, which has been linearized in this work to facilitate 

computation during simulations of the system. The regular wave simulations made it 

possible to clearly distinguish the behaviour of the system as the wave period varies and for 

different values of stiffness, it has been noted that the system consisting of three platforms 

requires axial stiffnesses in the order of 10 kN/mm in order for the motion of the platforms 

to begin to feel the benefits offered by the connection, in terms of limiting pitching motions 

and reducing transmitted forces. It has also been observed that as the stiffness of the 

connections increases, the resonance of the system shifts toward higher periods; this is an 
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important result indicative of the fact that the system behaves for high stiffnesses of the 

connection, as a rigid body of characteristic size equal to the sum of the lengths of the 

platforms, and therefore resonated by waves of higher period (and consequently length). 

The irregular wave study, on the other hand, allowed the effect of individual axial and lateral 

stiffnesses to be studied in more detail; it was observed that axial stiffness has a much more 

significant influence on the dynamics of the system, while the influence of lateral stiffness 

seems to be limited to the relative tangential motion between platforms and the forces 

exchanged in this direction. On the basis of the irregular wave study, it was also possible to 

identify the combinations of axial and lateral stiffnesses capable of guaranteeing the comfort 

and liveability criteria of the platforms, it has been noted that these ranges of stiffnesses are 

strongly dependent on the wave period considered and that in general they undergo a 

considerable reduction when higher wave periods are considered. This observation suggests 

that the increase in the number of platforms connected to each other may cause this range of 

stiffnesses that can be used for connection to vary considerably, an indication that the 

stiffness optimization should be repeated depending on the number of platforms used. 

Finally, the bearings were sized in order to design a connection that provides the minimum 

stiffness values to guarantee the comfort parameters, the minimum lateral and axial stiffness 

values, evaluated from the most restrictive allowable stiffness maps corresponding to wave 

periods of 5s, were identified as 20 kN/mm and 50 kN/mm, respectively. The identified 

connection configuration was also found to comply with the stability limits of elastomeric 

bearings. 

The natural development of this work involves the addition of mooring to the physical 

system, a factor that is expected to further constrain the motion of the platforms by relaxing 

the identified connection stiffness limits, and the analysis of the nonlinear model of the 

connection in order to identify similarities and any discrepancies from the linear model 

studied in this work. Further developments also involve building a scaled prototype in order 

to validate the obtained numerical model and adding degrees of freedom to the physical 

system, expanding the model to consider the three-dimensional effects of the connections on 

the various sides of the hexagon in various configurations. 
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Appendix

 
 RAO – max deformations between platforms 2-3 for variable Kx and Kz = 0.5 Kx 
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RAO – max forces between platforms 2-3 for variable Kx and Kz = 0.5 Kx 
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Maps – max. surge forces between platforms 2-3 for T = 2-4-6 s 
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Maps – max. surge forces between platforms 2-3 for T = 2-4-6 s 

 

 

 

 

 

 

 

 


