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"When life gives you lemons, don't make lemonade. Make life take the lemons back! What am I supposed to do 

with these? I'm gonna get my engineers to invent a combustible lemon that burns your house down!" 

 Cave Johnson, Portal 2 



   
 

 

Abstract 

The aim of this thesis is to design, build and simulate an algorithm which provides guidance and control for 

autonomous UAVs in Agriculture 4.0 within the PRIN project “New technical and operative solutions for the 

use of drones in Agriculture 4.0”.  

The simulation scenario includes several targets which can represent plants, vegetables, or other vegetation 

where treatments deployed by the UAV is needed. The main objective of the developed algorithm is to guide 

the UAV, identifying and reaching all possible targets autonomously using information derived by depth 

cameras and other sensors. Another objective of the project is the application of the final algorithm with 

limited GPS or noisy signal conditions. This, in fact, is one of the most critical working scenarios and 

traditional guidance based on mission definition through waypoints could fail to achieve an acceptable level of 

positioning precision depending on the UAV’s mission profile.   

The simulation environment is developed using ROS (Robot Operating System) framework and the Gazebo 

simulator. Simulation includes the UAV and a physical environment which should represent a working 

scenario as close as possible to the real one.  

During the project will be developed an allocation algorithm, which objective is to map target’s positions in 

the local frame of reference, and a control method for three axes. Also, two Machine Learning (ML) 

applications are part of main challenge of the project. A U-Net, deep neural network, for target recognition 

will be implemented and a Reinforcement Learning (RL) algorithm, that describes the policy with which 

targets to reach sequentially are chosen, will be tested.  

Final results show the algorithm works in the simulated scenario, with the UAV being able to allocate each 

target in the correct position in local frame and subsequently reach them one after another without passing 

over the ones already reached. This is the case if a policy of following always the nearest target is passed to 

the UAV. The Reinforcement Learning method developed presents good but not optimal results: the UAV is 

able to complete the mission without hovering over the same target twice, but the algorithm will not learn to 

choose the best path, i.e. the one which requires less time. Some further testing in this case is required or 

heavy modification of the algorithm are needed.  
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1 Introduction  

The aim of this chapter is to provide the reader with an introduction to the topic of this thesis, the main scope 

of the project and the software components used. The general pipeline flowchart of the project, which explains 

the implemented methodology, is presented, and explained. 

 

1.1 Project description  

 

1.1.1 UAV precision agriculture  

Traditionally, spraying techniques are used in the agricultural industry to apply pesticides, such as fungicides, 

herbicides, and insecticides, to plantations. Several parameters have an influence on effectiveness, cost and 

environmental hazard of pesticides spraying, such as crop canopy, crop height, crop volume, etc. With 

conventional sprayers, it’s difficult to adapt the spraying technique to optimize the task for the above-

mentioned parameters, resulting in spray loss in the form of spray drift and off-target deposition. These 

problems results in environmental pollution, human health hazards and the waste of costly products. The use 

of robotics and automation to carry out spraying falls under the term precision agriculture, which aim is to 

reduce pesticide residues, save costs, make crop protection more compatible and reduce hazards to humans 

and the environment.   

In recent years, aerial spraying with UAVs has gained more interest as an effective alternative to achieve 

precision spraying. UAV spraying has several advantages or conventional methods:   

- Provides spraying methods for tall crops, such as maize and cotton, and for pond crops, such as rice.  

- Reduces spray loss in the form of spray drift by accurately positioning of the UAV using target 

recognition techniques. 

In terms of application, tank refilling can be a real issue, but in recent years ultra-low volume sprayers have 

been introduced, reducing the need for frequent tank refills (Fiaz Ahmad, 2021).   

Positional information is necessary for UAV spraying systems because of the need for accurate positioning. 

For some agricultural UAV based applications, such as yield monitoring, accuracies of less than 1 m can be 

achieved with differential GPS (DGPS). However, for spraying and other applications, accuracy below 

centimetres is required, thus making necessary the use of technologies such as real-time kinematic GPS 

(RTK-GPS) to meet this demanding requirement (Pérez-Ruiz, 2012).   
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RTK GPS works well and provides the robot, in this case the UAV, with a highly accurate position signal in 

real time. However, it has some drawbacks:  

- Setup requires a base station whose exact coordinates must be known. 

- The need for a base station with a clear view of the UAV.  

- GPS signal outage, depending on environmental conditions, greatly affects its accuracy (In-Su Lee, 

2005). 

- High cost. 

The main objective of this thesis is to extend on precision agriculture techniques by designing an algorithm to 

be implemented for a self-driving UAV for spraying operations with limited use of GPS information. During 

the project, machine learning techniques will be implemented, simulated, and tested to evaluate their 

usefulness in the proposed scenario. 

 

1.1.2 Project software components 

For this project, the mission objective is to autonomously reach five targets, randomly distributed or 

positioned with a criterion, in a working area. This objective can well represent what happens in a real 

scenario, where the UAV has to apply products only on some target plants and not on the whole plantation or 

follow a series of waypoints.   

The first problem to be solved is how to develop the algorithm. Since a real UAV would be costly and carry 

the risk of damaging the system and the environment, the simulation option is chosen. Simulating the UAV 

and the environment allows to try different solutions without the risk of damaging the system, it's easier and 

always the first step for rapid prototyping of control systems and guidance algorithms. The main issue is the 

need to build a realistic simulator, that can represent both the behaviour of the UAV and its interaction with an 

environment.  

The implemented solution is to simulate the UAV in the Gazebo simulator (Gazebo homepage, s.d.). Gazebo 

is a powerful simulator toolbox complete with development libraires, with the ability to generate several 

robots with a variety of sensors, such as cameras, GPS and IMUs. In Gazebo is also possible to generate an 

environment with 3D models, thus providing the needed UAV-environment interaction.   

The Iris UAV, powered by PX4 (px4 user guide homepage, s.d.) autopilot, is used in the simulated Gazebo 

environment.   

PX4 was chosen as the target firmware for the simulated UAV for the following reasons: 

- Validated in real-world scenarios: commercial PX4-based UAVs are on use worldwide, with 

thousands of flight hours accumulated. This allows the development of a project that not only works 
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in a simulated environment but could later be implemented on a real machine, with minor changes to 

the source code.  

- Open-Source Community: PX4 resources, documentation, code and troubleshooting methods are 

easily accessible to the user by consulting the official documentation or by referring to other users' 

suggestions on the official platforms. This allows for rapid debugging of the code and more secure 

project development.  

As for the UAV the Iris model is the quadrotor of choice used for this project development. The reasons for 

this choice are listed below:  

- Quadrotor design: In the UAV market, the quadrotor design is considered the simplest design for 

hovering UAVs. The clean design of Iris allows for faster simulation in Gazebo, as there are no fixed 

complex payloads pre-installed, and the collision/visual model is the simplest of any UAV available.  

- PX4 compatibility: Iris is one of the quadrotors available in the PX4 package that is compatible with 

the autopilot firmware out of the box, without the need to create additional ROS plugins, which would 

have added an extra layer of complexity to the project.  

- Several payloads are available: The Iris model comes with a GPS and IMU sensor already simulated 

in the base model, both of which are required for the project. Also, there are several Iris models 

already in the PX4 ROS package that come with a variety of cameras already configured. The 

availability of these additional payloads for the model is critical. 

The ROS (Robot Operative System) middleware (ROS homepage, s.d.) is used to manage the streams of 

messages output by the PX4 autopilot or generated by multiple sensor sources. ROS is an open-source 

software composed of packages that define interfaces, components, and tools so that sensors, control systems 

and actuators can be easily built, connected, and simulated in Gazebo.   

The MAVLink protocol (MAVLink Developer Guide, s.d.) is used for messages coming from and going to 

the PX4 FCU, as several ROS packages are available to read, write and generally manage them, ensuring 

great compatibility with the rest of the project. 

 

1.1.3 Algorithm architecture 

The main objective of the guidance algorithm is to provide the UAV's FCU with values in terms of velocities, 

both angular and linear, to follow in order to achieve the mission objective. The mission objective, as 

previously stated, is to reach all the targets spawned in the physical environment of the simulation.   

The proposed solution method is closely related to how biological species perceive the environment; if the 

objective is to reach some targets scattered in an environment, we would probably try to memorise their 

positions and then proceed to reach them one by one. For humans and other species, it is quite easy to perform 
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a similar task, even if some of the targets are not visible at any given time, because we are able to memorise 

their approximate positions after seeing them. The same basic idea is implemented in the guidance algorithm, 

which has to encode a part aimed at seeing the target and giving commands to the UAV to reach it based on 

visual data, and a part aimed at memorising the target positions in local coordinates after seeing them during 

the simulation.    

Therefore, the UAV must be able to recognise the targets through a machine learning based method known as 

image segmentation, so two depth cameras, able to give both the image and the pointcloud, are simulated as 

the payload of the UAV, better explained in chapter 2.2.  

Figure 1.1 shows the complete guidance flowchart implemented in this thesis.  In green, available information 

that can be obtained from the UAV's cameras and from the UAV's FCU is highlighted. While in blue 

components that provide guidance to the control loops are highlighted.  

The upper part of the diagram shows the signals coming from the frontal depth camera image and point cloud 

up to the generation of the target local position message. The idea is to process the data stream from the 

frontal camera in real time using a U-net, explained in detail in Chapter 3, to obtain image masks, 

representations of the target's body in a single channel image. The masks are then processed using a 

contouring algorithm to obtain target centroids, the process is explained in Chapter 4.1. The next step is to 

store the target positions in the local reference frame, for reference systems see chapter 2.1.4. To achieve this, 

the target centroid in the camera reference frame, the front camera point cloud and the UAV position are 

processed by the mapping algorithm explained in chapter 4.2.    

Once a mapping of the targets in the local coordinate frame has been obtained, the logic for selecting the 

target to be reached must be implemented. In this project, two selection methods have been implemented, one 

deterministic and one based on RL (Reinforcement Learning), both of which sequentially select one target 

after another without repeating the same one. The selection methods are better explained in chapters 6.1, 6.2. 

Now a single target is selected, and its local coordinates are available to be used as a command signal. A PID 

control method for the x and y axes is implemented so that the error signal generated by the difference 

between the target (x, y) position and the UAV (x, y) position can be used to produce commands in terms of 

linear velocity and angular position. 

It is also necessary to build an altitude controller so that the UAV can hover at a constant relative altitude even 

in the presence of uneven terrain, which could be a real case scenario. To achieve this goal, another PID 

control is implemented, z_PID, which takes as input an estimate of the UAV's relative altitude from the 

downward camera pointcloud and a reference value that represents the guidance. Using the error generated by 

these two messages, z control commands can be given to the FCU in the form of speed.   

The x_y_PID and z_PID logic is explained in more detail in chapter 5. 

Note that messages coming from GPS and IMUs are utilized in the allocation algorithm, however the idea is 

to provide guidance without or with limited use of the GPS message. In real operations, depending on the 
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environmental conditions, the GPS signal may be noisy, which also affects the position of the UAV, since the 

Kalman filtering takes multiple inputs (Vasko Sazdovski, 2005):  

𝑈𝐴𝑉 𝑠𝑡𝑎𝑡𝑒 = 𝐾𝑎𝑙𝑚𝑎𝑛(𝐺𝑃𝑆, 𝐼𝑀𝑈1, … , 𝐼𝑀𝑈4) 

This is an issue in the proposed method as the memorisation of target positions in the local frame implies the 

need for the UAV to know its position through the FCU. Since there is no other choice, the project 

development follows this route anyway, but tests in the presence of noise are obligatory to assert the 

robustness of the algorithm.  

 

 

Figure 1.1: Complete project flowchart.  

  



   
 

6 
 

2 Simulation set up  

In this chapter, the aim is to create the ROS workspace needed for the project, successfully launch the 

simulation generated in Gazebo and then spawning the Iris UAV with sensors such as IMUs, GPS and 

appropriate payloads such as cameras.   

After having correctly generated Iris quadrotor in the world, code written in ROS logic is presented which aim 

is to allow the UAV to move in the simulated physical environment taking in input commands directly from 

the user’s keyboard.  

These actions are considered the basic for the simulation to work properly and the starting point to achieve 

results presented in the successive chapters.   

 

2.1 ROS workspace initialization 

As mentioned in the previous introductory chapters the project runs entirely in ROS, so the first step to 

complete is setting up a ROS workspace and installing necessary packages.   

Then a list of the simulation components and configuration used is given to then start the simulation properly.  

 

2.1.1 Workspace configuration  

First of all, it is needed to source the setup.bash file so that environmental variable for both ROS and Gazebo 

are generated, then create the directory catkin_ws/src. catkin_ws is the working folder for the project, whereas 

src houses all user installed or created packages. Finally, through the command catkin build the ROS 

workspace is created.  

With the following commands, in figure 2.1, in a Linux terminal is possible to generate the workspace as 

explained. 
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Figure 2.2: catkin_ws main ROS workspace subfolders tree up until two levels from 
catkin_ws main folder 

 

Figure 2.1: commands for ROS workspace initialization 

 

The definition of ROS/Gazebo environmental variables through the command source …/setup.bash should be 

given each time a new terminal is opened, thus the command can be added directly at the end of Linux 

~/.bashrc file to speed up future ROS commands by terminal.   

Several ROS packages are installed and built in the catkin_ws workspace just created, so that the final tree 

project folder should look as in figure 2.2.  

- Firmware (px4): this ROS package contains the firmware for the PX4 autopilot, various airframe 

models with relative plugins which simulates their dynamics and sensors models and plugins. Every 

ROS plugin is accessible by the user making the firmware completely customizable.  

- mavros (mavros package summary, s.d.): this package provides a complete list of communication 

services and topics in MAVLink protocol (MAVLink Developer Guide, s.d.), with various quadrotor 

autopilots, including also PX4, the one used for this project. Without mavros topics and services, it 

will not be possible to communicate with the autopilot using python modules.  

- mavlink (mavlink package summary, s.d.): this package is mandatory for the functioning of the 

mavros package, it is a communication library for various autopilots.   
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Another ROS package, called drone_ml_main, is created to accommodate all the custom scripts and files, 

which subfolders tree is depicted in figure 2.3.   

Dependencies of the package must be defined in files CMakeList.txt and package.xml files.  

In this case dependencies that have to be added for the project are:  

- gazebo_ros: Gazebo services and topics in the ROS environment. 

- roscpp, rospy: ROS interfaces with C++ and Python programming languages. 

- message_generation: mandatory to define custom messages. 

In scripts/commander.py are allocated the majority of the basic methods which allow the UAV to execute 

flying tasks like taking inputs from keyboard or follow and find targets and also some more basic tasks like 

switch between flight modes. Each script is briefly explained in the next chapters. The last command to 

finalize the building of the project is catkin build that allows to build the whole project and highlight possible 

packages installation errors. If the installation is done correctly, the terminal after the build command should 

look as in the figure 2.4.   

 

 

Figure 2.3: drone_ml_main complete subfolders tree and files 
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Figure 2.4: terminal screen after applying catkin build command on the whole 
ROS workspace. 
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2.1.2 Simulation components  

In the chart in figure 2.5 are depicted all the file necessary for the simulation to run correctly as are called by 

the main launch file with the appropriate path relative to the machine utilized reported in the image.   

In the base PX4 package are already present some launch files ready to use in the folder Firmware/launch/…, 

but for this project a new custom launch file has been created called mavros_posix_sitl_CUSTOM.launch to 

implement the wanted models, simulation parameters and world file.   

Some simple modules in chart figure 2.5, which the launch file refers to, are briefly explained here, while the 

more customized and complex ones will be explained in detail in the next sections: 

- Iris_param.yaml is a file in yaml format, which is a type of data serialization format used to create 

configuration files. In this case it is used as a data file which contains parameters to run the 

simulation. This allows for quickly change parameters without searching them in the various python 

scripts. 

- rcS file is the PX4 Flight Management Unit initialization script, which resides in the PX4 firmware 

folder, and its use is to launch the PX4 autopilot bond to the Iris model.  

- px4.launch is a mavros launch file that enables the mavros ROS module, this gives access to all the 

services and topics needed to communicate with the UAV.  

- empty_world.launch (Gazebo) is launch file type which contains all of the default parameters 

necessary to launch the Gazebo simulator, and the commands to run both the gazebo server and client. 

One of the most relevant parameters listed in this file is also the physics model utilized by Gazebo, 

which in this case is set to “ode” model .  
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Figure 2.5 simulation file components called back by the launch file. 
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2.1.3 Starting the simulation 

To start the simulation it is necessary to source the working folder Firmware utilizing the 

Firmaware/Tools/setup_gazebo.bash file and build Firmaware as the default PX4 folder. Then ROS path 

should be added both to the Firmaware folder and then to Firmware/Tools/sitl_gazebo folder. Finally, the 

custom launch file can be called using roslaunch ROS command.  

Every step described before can be performed by the following lines of code in a Linux terminal, figure 2.6:  

 

When the simulation starts it is important to notice the roscore ROS node is already running due to the 

.launch file configuration, thus is not necessary to launch a new one from terminal as suggested in the 

standard ROS procedure.   

The Gazebo client is automatically deployed in a new Linux window and, if the simulation is launched 

correctly, should look like in figure 2.7, where the UAV is situated in local coordinates (0, 0, 0) at the center 

of the physical environment.  

 

Figure 2.7: Gazebo client at the start of a simulation launch. 

Figure 2.6: commands in Linux terminal to correctly start the simulation. 
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2.1.4 Reference systems  

In this section a brief explanation on frames of reference used during the project is presented.  

In figure 2.8a, the frame of reference body of the UAV, the one represented with longer and wider axes, and 

the camera frame of reference, with smaller axes, are depicted. These two frames are fixed to one another and 

rotated accordingly to values reported in chapter 2.2.2.   

Differently form the standard body axes configuration often used in aeronautics, Gazebo Iris model utilized a 

body frame with axis having origin in the CG (Center of Gravity) of the UAV, x axes directed forward, z axis 

upwards, from the bottom to the top of the UAV model, and y axis that completes the right-handed triad. 

Instead, the camera reference frame is centered in the CG of the camera, and it has the x axis going to the right 

side, the y axis going downwards, with respects to the view direction of the camera model, and the z axis that 

completes the right-handed triad.   

The local reference frame, depicted in figure 2.8b with the body frame, is fixed to the ground and centered in 

the origin point of the UAV [0, 0, 0].   

The last frame utilized, which was not possible to depict, is used to give commands in the ROS topic 

mavros/setpoint_raw/local. The topic, if called with the appropriate type_mask, provides the PX4 autopilot 

with linear or angular velocities to follow in a frame centered in the UAV’s body but with x-y plane parallel to 

the x-y plane of the local frame. This relative frame will turn in yaw as the body frame does. This allows to 

give commands easily without taking into account body and local frame relative rotations except the heading 

one.    

 

  
 
   Figure 2.8: 
   figure a: on the left side, body UAV frame with thick axis and camera frame in smaller axis. 
   figure b: on the right side, local frame of reference axis in the lower left corner and UAV body frame on the top.  

  

Fig. a Fig. b 
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2.2 Camera models  

In this section the design phase and implementation in Gazebo simulator of the UAV cameras chosen as 

payload are explained. Cameras parameters utilized in next project’s phases are reported and camera models, 

in their final configurations, are visualized.  

 

2.2.1 Design  

Although a wide variety of Iris models with different combinations of payloads are available on the PX4 base 

package, for this project a custom configuration for UAV payloads has been chosen.   

The specification choice for the reaching of the project objective: 

- Target locking: being able to clearly observe the physical environment in front of the UAV to identify 

the presence of targets from afar.  

- Maintained target visual contact: targets identified and followed should always be in the Field Of 

View (FOV) of the camera, even when the UAV is on top of the target during the application of 

gardening products. 

- Relative altitude estimation: The depth camera should be able to view a large portion of terrain 

directly under the UAV so the relative altitude could be estimated. 

It’s not possible for a single depth camera to satisfy all the specifications, so in the first iteration of the Iris 

model two depth cameras were simulated as payloads of the UAV. One of the two depth cameras was attached 

under Iris and angled 75 degrees on the y-body axis. Its task was both to estimate the distance from the ground 

and maintain the visual contact with the target. The other depth camera was angled 45 degrees on the y-body 

axis so that the environment in front of Iris could be visible and the images of the camera were overlapped to 

avoid the visual loss of the target.   

This first solution has been later discarded because required to unify the three channel bgr image and the 

pointcloud produced by both cameras into two messages. This action is both computationally demanding, 

since would have been required to work in real time, and difficult to code.   

Instead, another depth camera configuration has been favored which consists in one depth camera pointing 

directly below the drone, which task is just to estimate the distance on the ground generating a point cloud.  

The frontal camera is angled 55 degrees referring to the y-body axis and generates both a point cloud and a 

bgr image, being able to visualize both directly in front of the UAV and under it.   

This separation of tasks allows for a detailed optimization of camera parameters so that with FOV, and 

resolution and camera angles all the specifications can be respected.  
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2.2.2 Parameters and implementation 

Camera parameters in table 2.1 are obtained through trial and error method checking result during test, 

visualizing cameras performances in Rviz (rviz package summary, s.d.) and moving the UAV using python 

modules explained in chapters 2.4 and 2.5.   

 

 Frontal Depth Camera Downward depth camera 
 

Specification which complies to 
 

- Target locking  
- Maintained target visual 

contact 
 

 
- Relative altitude 

estimation 
 

Angular position (0 55 0) deg (0 90 0) deg 
Linear position (0.1 0 0) m (0 0 -0.04) m 
Update rate 10 Hz 3 Hz 
(Width, Height) (112, 168) pixels (10, 10) pixels 
Horizontal FOV 90 deg 97 deg 
 
Table 2.1: Table containing frontal and downward camera parameters as entered in the .sdf files. 

 

For the choice on camera parameters, angular and linear positions, and FOV are chosen as function of the 

specifications explained before.   

The update rate, width and height for the frontal camera is minimized so that less computational power is 

required when running the project in real time. There is a threshold on how low frontal camera resolution 

should be depending on the feature extraction on the U-net utilized for segmentation, better analyzed in 

chapter 3. The U-net must be able to recognize targets without losing accuracy.   

Also, in the update frequency parameter there is a lower threshold which depends on how frequently 

commands updates should be given to the UAV FCU. Some tests in the simulated environment highlighted 

that an update rate under 7 Hz generates instabilities in drone behavior when in OFFBOARD mode.  

For the lower threshold of the downward camera can be used for both update frequency and for camera 

resolution, this is because as mentioned before, the U-net does not take as input images from this camera but 

just from the frontal one. So, to evaluate height from the ground is sufficient to take data in a (10, 10) 

resolution 100 grid. For the update frequency in this case are allowed slower update rates on the z-controller 

so a 3Hz has been chosen to limit computational load.  

As for models in the launch file in figure 2.5 the iris_depth_camera2 model calls the base Iris model 

…/models/iris, which has not been modified and the two camera models ../models/depth_camera_forntal and 

.../models/depth_camera_downward which are custom models created using …/models/depth_camera as base 

but with the different parameters discussed before.  
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2.2.3 Visualization  

In Rviz the final configurations look as in the figure 2.9, where the frontal and the downward cameras are 

highlighted in red to make them visible, thus being able to notice their positioning and inclination from 

different angles.   

 

  
 
Figure 2.9: frontal and downward depth cameras highlighted in red fixed respectively on the frontal and lower part of 
the Iris UAV, as captured in the simulated environment. 

 

For the downward camera, in Rviz both the pointcloud and the image are visualized in figure 2.10, where the 

UAV is near an oak tree model. Points shown are relative to every pixel evaluated by the downward camera in 

the (10, 10) grid. On top left the frontal camera image is depicted as a reference to understand the UAV 

position, and on the bottom right it is visualized the output image from the downward camera, which is not 

utilized in the project but is shown so that the pointcloud can be confronted to the tree position.  

In figure 2.11, the point cloud and image generated by the frontal camera observing two tree models are 

depicted. As shown the point cloud is much denser than the previously shown downward camera and the 

image is more defined. Also, it is possible to see the point cloud shape extends both in front of the UAV and 

under it as specification requested.   
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Figure 2.10: Right side: pointcloud generated by the downward camera. Top left: image generated by the frontal 
camera. Bottom left: Image generated by the downward camera. 

Figure 2.11: Right side: pointcloud shape when observing two tree models. Left side: image generated by the frontal 
camera. 
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2.3 Physical environment 

In this section the design phase and visualization of the physical environment in Gazebo are presented. 

 

2.3.1 Design  

For this project the aim is to simulate an environment which can represent closely a real environment where 

the UAV could be hypothetically deployed. The ability to simulate a realistic environment is crucial for a 

future real application of the algorithm.   

For instance, the segmentation model can be designed and trained quicker in the simulation environment to 

then feed a real data set after the design phase, guide algorithm can be tested quickly and safely in the 

simulation if represents a real working environment.  

Unfortunately, it was not entirely possible to achieve this objective because of the lack of realistic models in 

the Gazebo libraries, so a list of minimum requirements for the environment has been created to ensure a 

standard for the design and testing phase of the algorithm:  

- Uneven terrain: crucial to test the effectiveness of the z-controller, end to ensure the UAV can fly 

over targets at the correct distance. 

- Non target models (trees): to provide a varied input source for the U-net model, to generate 

disturbances in the target recognition task.  

- Varied ambience color scheme: both in the terrain and in the non-target models, to generate 

disturbances in the target recognition task. 

- Shadow casting models: to make more challenging the target recognition with a disturbance which is 

close to the target itself.  

- Targets to reach: it is mandatory for the design and test of the algorithm.  

Trees models are not considered in this discussion as are basic models available in Gazebo standard libraries. 

In the next chapters, the generation of the terrain model and characteristics of targets are discussed.  
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2.3.2 Implementation and visualization  

The terrain is generated staring from an heightmap, extrusion of a 2D image, which can be used to produce a 

3D Gazebo model.   

To generate the heightmap Gimp (Gimp homepage, s.d.) image manipulator software has been used, with the 

option “Render-Clouds”.  

 

 

Gimp outputs a bidimensional distribution of numbers saved as hightmap.png, image in figure 2.12. The 

number distribution generated has the property to be continuous in both axis, the result shapes are random 

generated continuous slopes and hills. As depicted in the figure 2.5, the heightmap model file is saved in 

/home/matteo/.gazebo/models where model.sdf is present and recalls both the heightmap.png file and the 

textures files which are saved in the Gazebo file path /usr/share/gazebo-11/media/materials/textures.  

In model.sdf it is also possible to scale the max height of the slopes of the model with the appropriate 

parameter.  

Textures are then applied on top of the generated model to give a more realistic view from the frontal camera 

of the UAV. The textures are Gazebo textures already used in some other basic flat terrain models available in 

the basic package, which represents a grass field with yellow-brown-green shades, figure 2.13.   

The complete environment can be seen in figure 2.14, where the ground model is generated with trees models 

and targets.  

 

Figure 2.12: heightmap.png, distribution output of 
Render-Cloud of Gimp software. 
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Figure 2.13: textures applied on the heightmap model.   
From the left side to the right side:  fungus_diffusespecular.png, grass_diffusespecular.png, dirt_diffusespecular.png 

 

 
Figure 2.14: The physical environment generated in the Gazebo simulator, complete with oak and pine trees 
and targets. 
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2.3.3 Targets 

As mentioned in the introductory chapter of the design choice of this project, red cubes objects are utilized as 

targets for the UAV to follow their positions.   

The model for the target, as depicted in figure 2.5, is a custom model /model_editor_models/unit_cube_2 

called by the .launch file. Although their positions are initialized at the start of each simulation run, the five 

cubes are moved in random positions at the start each of episode or to a preselect one.  

In figure 2.15, targets simulated in Gazebo are depicted.   

 

  
 
  Figure 2.15: targets from different angles as seen in the Gazebo's simulation client. 
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2.4 Flight modes and UAV state  

In this section the aim is to implement the reading of UAV basic information during the simulation and 

compose a state ROS message. Then build methods which allows the UAV to switch PX4 flight modes, action 

required to effectively allow the UAV to move in the simulation. 

 

2.4.1 Introduction 

First of all, basic information regarding the UAV is gathered in the UAV state message, so that are easily 

accessible in other more complex methods later implemented.   

The information wanted for the UAV state message compositions are:  

- Drone flight mode and state  

- Linear position  

- Angular position, attitude  

- Linear velocity  

- Angular velocity  

- Relative altitude from the ground  

- Global position in ellipsoid coordinates frame  

Note that the UAV state message also includes the flight modes and the autopilot state here explained below. 

As for flight modes, in the PX4 autopilot are available a multitude of flight modes, some useful if a RC 

controller is utilized in a non-simulated scenario which will be neglected now. Flight modes used in this 

project are listed and briefly explained below (mavros custom modes, s.d.):  

- OFFBOARD: allows the UAV to actuate commands given using the mavros topic 

/mavros/setpoint_raw/local if a continuous stream of messages is pushed through this topic. 

- AUTO.LOITER: the UAV will stop to follow commands updated through /mavros/setpoint_raw/local 

topic and will hover around the last coordinates known when the switching between flight modes is 

given.  

- AUTO.RTL: the UAV will interrupt the mission, fly back to the initial take off point and land.  

- AUTO.LAND: the UAV will execute a landing in the local coordinates in which is the drone when 

the flight mode switching happens. 

The PX4 autopilot then has other two states, not to be confused with UAV states presented at the beginning of 

this section, to which can be set to. Armed state allows the autopilot to start rotors thus making possible the 
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execution of operations, disarmed state locks the rotors and makes impossible to take off from ground. If the 

UAV is on ground and are not given commands which result in a takeoff, the autopilot will automatically set 

itself in disarmed state. 

 

2.4.2 UAV state message composition   

To collect all the necessary information in real time sripts/commander.py/updateStateAct() function must be 

called. The figure 2.17 shows the flowchart representing the function logic.   

On the left side, all the mavros topics read through a series of rospy subscribers are listed. The callbacks 

function cycled in updateStateAct() fill the DroneState custom ROS message, defined in the 

catkin_ws/src/drone_ml_main/msg as in figure 2.16, which then gets used in all later implementations to 

access the UAV states. Separately it is also saved the drone State() message, which contains the UAV state 

armed/disarmed.   

 

 

Figure 2.16: DroneState ROS message definition.  

 

All the velocity and positional value, except for the global position, are in local reference frame.   

It is important to notice there aren’t any ROS nodes and publishers active during this cycle, which means 

DroneState message will be only accessible in the python module in which the function is called.  
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Figure 2.17: Flowchart representation of the updateStateAct() function.  
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2.4.3 Flight modes methods implementation 

In figure 2.18 are represented all the python methods implemented in commander.py/Commander class which 

allows to switch flight modes, with the specification of all the mavros services used and what message type is 

passed to the service call. The information is then passed to the FCU of the UAV.  

Below are listed functionalities of every method in figure 2.18:  

- setArm(): sets the state of the UAV to armed, which allows to actuate commands  

- setHoldMode(): sets the flight mode to AUTO.LOITER 

- setOffboardMode(): sets the flight mode to OFFBOARD  

- setDisarm(): sets the state of the UAV to disarmed, note the method call is only accepted when the 

autopilot has detected a landing, otherwise the method call will result in a failed UAV state change.  

- setForceDisarm(): sets the state of the UAV to disarmed, unlike the previous method this call disarms 

the UAV independently of the landing state. (e.g. If the UAV is flying and the method is called, rotors 

will stop to spin resulting in the crash of the UAV to the ground). 

- setAutoLandMode(): sets the UAV to AUTO.LAND mode. 

- setAutoRTLMode(): sets the UAV to AUTO.RTL mode. 

- setControlPosMode(x, y, z): this method uses some other previously described methods as listed in 

figure 2.18. In this case mavros type_mask parameter is used to switch type commands to follow, 

from (x, y, z) axis velocity to 3D array of local coordinates to reach. 

- setControlPosYawMode(x, y, z, yaw): similar to the previously described method, but the UAV in this 

case also follows a setpoint yaw command. 

Other two methods are implemented which may result useful for future work, this time communicating 

directly with Gazebo simulator. 

- pausePhysics(): pauses the simulation, the simulation time is stopped and also the integration of 

motion equations of the UAV and other dynamic elements. 

- unpausePhysics(): reverts the effects of the previous command. 
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Figure 2.18: Diagram representing basic methods implemented and respective ROS services used to communicate 
with the UAV’s FCU or to the Gazebo Simulator. 
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2.5 Key controls 

Moving around in the environment the UAV in a natural way from keyboard is a basic functionality which is 

implemented as soon the simulation is ready to run. Having the ability to pilot the UAV is crucial for various 

reasons:  

- Exploring the generated environment utilizing the point of view of the UAV. 

- Taking snapshots with the frontal camera to generate a data set for the segmentation model later 

explained in chapter 3. 

- Testing and designing the allocation algorithm later explained in chapters 4 and 6. 

 

2.5.1 Implementation  

For the development of the algorithm mavros topics are used to move the UAV. Figure 2.19 highlights which 

python modules are used, and which messages are passed between each other to permit the UAV to move. 

 

 

 

 

Figure 2.19: Flowchart representation of the moving drone python modules implementation.  
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To move the UAV in the simulated environment the user has to launch first the publish_key_controls.py 

script. In addition, the start_key_control_panel.py, opens a panel in which will be possible to type commands. 

The user enters commands from keyboard, which are detected utilizing the tkinter python package, (tkinter — 

Python interface to Tcl/Tk, s.d.) that allows to bind keys and call the callback_key function every time one of 

these keys is pressed.   

In this case the callback publishes keyboard entries as String format in a ROS message, which then gets read 

in the publish_key_controls.py module. Every time a key command is received callback_vel_commands is 

called which maps every entry to an update on the message self.position_targ_raw published in the 

mavros/setpoint_raw/local topic. This topic communicates directly with the drone’s FCU autopilot.  

The message self.position_targ_raw published is of type PositionTarget which is a ROS message defined in 

the mavros package.   

The DroneState message and self_state info get generated in the updateStateAct() method call, the state of the 

drone is the used in callback_vel_commands to correctly update the drone flight mode and state depending on 

the user’s commands.  

 

2.5.2 Command list and parameters  

The table 2.2 reports all the command which are possible to give form keyboard, what every key does, and all 

the commander.py/Commander methods which are called back.  

Some notes on the commands implemented:  

- Directional commands: (‘w’, ‘s’, ‘a’, ‘d’, ‘Up (↑)’, ‘Down (↓)’, ‘Left (←)’, ‘Right (→)’) 

automatically sets the UAV to OFFBOARD mode if is not already in in it. 

- Directional commands: they stop the UAV in the motion axis if the opposing one is pressed while the 

UAV has a velocity in the other direction.  

(e.g. The UAV is proceeding onward because the user pressed ‘w’, if the user presses ‘s’ then the 

UAV stops its motion in that axis. If another ‘s’ is pressed the UAV starts to move backwards). 

- Once pressed one of the directional commands the UAV continues to move without the need to 

maintain the key pressed. 

- If the user presses ‘g’ then the UAV switches to OFFBOARD mode so that a 3D coordinate vector 

can be reached in local frame coordinates. After reaching the point with a tolerance the UAV is set to 

AUTO.LOITER mode. 
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Key 
 

Description Methods called 

‘e’ Set the UAV to ARMED mode self.setArm() 
‘r’ Set the UAV to AUTO.RTL mode self.setAutoLandMode() 
‘g’ Set to OFFBOARD mode and asks the user to insert 

point to follow 
self.setControlPosMode() 

‘o’ Set to OFFBOARD mode self.setOffboardMode() 
‘h’ Stops the UAV and set to AUTO.LOITER mode self.setHoldMode() 
‘k’ Set the UAV position at starting coordinates 

WARNING: before take-off the user must wait 
sensors recalibration 

self.setModelStateDrone() 

‘x’ Sets the UAV to OFFBOARD mode 
Switches between normal/fast velocity modes 

self.setOffboardMode() 
 

‘q’ Completely stops the UAV in OFFBARD mode --- 
‘w’ Sets the UAV to OFFBOARD mode 

Sets forward velocity > 0 
self.setOffboardMode() 
 

‘s’ Sets the UAV to OFFBOARD mode 
Sets forward velocity < 0 

self.setOffboardMode() 
 

‘d’ Sets the UAV to OFFBOARD mode 
Sets strafe velocity > 0 

self.setOffboardMode() 
 

‘a’ Sets the UAV to OFFBOARD mode 
Sets strafe velocity < 0 

self.setOffboardMode() 
 

‘Down (↓)’ Sets the UAV to OFFBOARD mode 
Sets the vertical velocity < 0 

self.setOffboardMode() 
 

‘Up (↑)’ Sets the UAV to OFFBOARD mode 
Sets the vertical velocity > 0 

self.setOffboardMode() 
 

‘Right (→)’ Sets the UAV to OFFBOARD mode 
Sets yaw rate < 0 

self.setOffboardMode() 
 

‘Left (←)’ Sets the UAV to OFFBOARD mode 
Sets yaw rate > 0 

self.setOffboardMode() 
 

 
Table 2.2: contains all the key bind from keyboard, mapped to the respective command and methods called back 
corresponding to the button pressed. 

 

To move the UAV more effectively three flight methods have been implemented:  

- Normal (slow) mode: allows the user to move the UAV with slow velocities and rates thus achieving 

precise positioning. Parameters followed by Px4 autopilot are velocities and yaw rates in the local 

frame of reference.  

- Fast mode: allows the user to mode the UAV with high velocities and rates, thus being able to reach 

quickly far sections of the map. Parameters followed by Px4 autopilot are the same as the previous 

flight method.  

- Point follow: utilizing the type_mask parameter ( setControlPosMode(x, y, z) ) is possible to switch 

what parameters the UAV has to follow, in this case the user inputs a 3d vector containing the 

position for the UAV to reach in local frame coordinates. 
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The figure 2.20 depicts graphically linear and angular velocity commands which are possible to give to the 

UAV from a side and a top-down view.  

 

  
 
Figure 2.20: Graphical representation of rates and velocity commands available as inputs from Keyboard. 

 

In figure 2.21 it is possible to observe the effects of point follow flight methos implemented, accessible for the 

user after pressing ‘g’ on the tkinter window.   

The user should insert a 3D array containing (x, y, z) coordinates for the UAV to follow in the local 

coordinates frame. In 2.21a, the input array is (0 0 2), after the input the UAV takes off and reaches the 

desired coordinates, on top of the spawning area. In 2.21b the input array is (-5 -2 4).  

In both cases the UAV reaches the desired coordinates correctly.   

The time between the actual reaching of the point and the stabilization of the UAV with a tolerance of 0.07 m 

over it is tested to be always less than a few seconds. This value depends on the tolerances used and the 

dynamics of the UAV during the actuation of the command, thus can vary between being almost 

instantaneous, in the case the UAV is already in the right position, and a max of around 10 s in the worst 

cases, with a mean value around 2-3 s.   
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Figure 2.21: Point follow flight method implementation with terminals.  
figure a: representing input position (0 0 2) and starting point of the test. 
figure b: one representing (-5 -2 4) coordinates reached after the command.  
 

In table 2.3 parameters are reported which are used to execute key controls modules for the UAV with a brief 

explanation of what they do.   

 

Parameter name Value Notes 
linvel_const 0.7 m/s Linear velocity value for the UAV to follow in all three 

directions when flying in “Normal (slow) mode” 
angvel_const 30 °/s Angular rate for yaw in “Normal (slow) mode” 
linvel_const_s 3 m/s Linear velocity for “Fast mode” 
sngvel_const_s 90 °/s Angular yaw rate for “Fast mode” 
pos_toll 0.07 m Box tolerance, in all three directions, for the UAV to stabilize 

itself in the wanted position when flying in “Point follow” 
vel_toll 0.04 m/s Velocity tolerance in “Point follow mode”. Necessary to avoid 

the overshooting of the right position  
publishkey_rate 20 Hz Publish rate for the ROS publisher in 

/mavros/setpoint_raw/local topic  
 
Table 2.3: parameters table for key commands python modules. 

  

Fig. a Fig. b 
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3 Segmentation model 

In this chapter, the target recognition problem is explained, and a solution method is proposed, which consists 

in designing a CNN (Convoluted Neural Network) as a U-net. After defining the NN (Neural Network) 

architecture, the steps used to prepare and preprocess the data set needed during the training process are listed 

and explained. The final subsections of the chapter are dedicated to the testing phase, which is carried out 

directly in the simulated environment, after which the results are presented. 

3.1 Concept  

As mentioned in the introduction, using the output of the depth camera, which comes in two separate 

messages, one of pointcloud type and the other in image format, the software must be able to recognize targets 

that are randomly scattered throughout the physical environment. Target recognition is essential to obtain 

target distances and locate them in local coordinates, thus providing the necessary information to start 

developing control methods to follow target positions.   

This section explains in detail the model used for the recognition task and its implantation. 

 

3.1.1 Recognition task  

The aim is to recognize targets in the simulated environment. The first step in defining a working method is to 

list a series of specifications which the software must comply to:  

- Output type: the output of the model should be compatible with the next steps in the pipeline shown in 

figure 1.1, i.e. it should be able to provide information on both the presence of targets and their 

positions.  

- Input type: data the method takes as input should be compatible with the output of the frontal depth 

camera of the UAV, so should take in data in Image format, PointCloud, a combination of both, or 

another data type obtained as post processing of these two data types. 

- Computational speed: the recognition task has to be performed in real time, which imposes a strict 

constraint on the method of choice.  

The method of choice that meets all the above specifications is to perform segmentation using a CNN 

(Convolutional Neural Network) in the form of a U-Net.   

The output of the CNN U-Net is a single-channel grey-scale mask of the input image. Each pixel of the image 

is made up of values in the interval [0, 255], the NN estimates the probability that it belongs to the target [0, 

1], this value is then multiplied by 255, thus obtaining the mask in grey scale channel [0, 255]. If the value for 
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each pixel is in the interval [200, 255], the pixel is said to belong to the target; if not, the pixel is said not to 

belong to the target. This allows great compatibility with the output of the frontal depth camera, since the data 

required by the CNN is just a NumPy formatting of the already available Image ROS message.   

Compatibility with the rest of the pipeline is also ensured, since the output of the U-net is, as explained above, 

a mask containing information on both the presence of targets and their position in the camera's field of view, 

which allows to fuse the acquired masks and the pointcloud to obtain precise target positions.   

The computational complexity is low enough to allow the task to be performed in real time, as most of the 

computational effort is devoted to training the U-Net, which is done offline.   

Once the U-net has been trained, the only computations required when applying the model in real time are the 

multiplications between pixels and the stored weights of the CNN. Depending on the image quality, the task 

can be performed with little impact on the delay time between receiving the camera message and obtaining the 

target position as an (x, y) value in local coordinates. 

 

3.1.2 U-net Neural Network model 

The U-Net is a type of CNN which is state of the art for image segmentation tasks, preferred to the classic 

down-sampling CNN architecture in cases in which every pixel is required to have a label for localization 

purposes.  

The U-Net is first introduced in (Olaf Ronneberger, 2015), specifically for Biomedical Segmentation tasks, 

but later implemented in other more general applications. The basic idea is to have a contracting network, very 

reminiscent of classic CNN networks, that performs down-sampling, followed by an expanding network that 

performs up-sampling.   

The aim of the down-sampling layers is to extract image features, as in the classic CNN for labelling, which 

consists in updating the weights so that the filters can memorize target features in order to recognize them in 

the environment. The expanding part of the network instead performs up-sampling with a reverse architecture 

with respect to the classic CNN. The aim the U-Net is to use the filter data to generate the mask, which 

consists of a label for each pixel.   

Another innovation introduced in the U-Net are skip connections, which perform concatenations on layers of 

the contraction part with layers of the expansion part. Skip connections make it possible to obtain a more 

accurate output by using information from previous layers that is lost in the down-sampling section.  

The network used in this project is based on the original U-Net, but with some modifications. The model used 

is shown in figure 3.1. The differences in the implemented U-net with respect to the original one are a 

consequence of the task assigned to it.   

The first difference is the shape of the input data, in the original U-Net the image input shape was [572, 572, 

1], a square image with a single channel, whereas the implemented U-Net has a data shape of [168, 112, 3], a 



   
 

34 
 

square image with tree channels.   

The shape [168, 112, ...] is needed to make the U-Net directly compatible with the camera output, while 3 

channels are needed because the image is generated by the depth camera in bgr format.   

In the U-Net architecture, the depth of the network, i.e. the number of hidden layers implemented, depends on 

the smallest feature size of the targets that the U-Net can learn to recognize. The original U-Net takes as input 

an image of [572, 572, ...] and is compressed in the network bottleneck after filtering stages to [28, 28, ...] 

shape with a total of 26 layers. In the implemented U-Net, the goal is to maintain a similar bottleneck shape, 

regardless of the input shape. In the final architecture the input shape is [168, 112, ...] and in the bottleneck the 

data shape is [21, 14, ...] with a total of 17 layers. Tests have shown that having a smaller data dimension in 

the bottleneck doesn't lead to better performance on the given task.   

Another major difference is the number of feature maps in the convolutional layers, which are shown at each 

step in the graph in figure 3.1. The number of feature maps used depends on the complexity and number of 

features that the net has to store. The original U-Net has great generalization capabilities and can learn to 

recognize several objects, with a variety of features for each of them. In this case project, the task is to 

recognize a single type of target, so fewer feature maps are required.   

The original U-Net has a maximum of 1024 feature maps at the bottleneck, whereas the implemented one has 

a maximum of 64.   

Modifications on the original U-Net have been made to create a faster image recognition tool tailored to this 

project, to allow less computational complexity and reduce time delay in the real time application.  
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Figure 3.1: Modified U-Net model implemented in the project. 
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3.2 Training  

This section explains in detail how the custom U-net is trained and implemented as part of the guidance 

algorithm for the UAV. 

 

3.2.1 Data set 

The data set is obtained directly in the simulated environment through the frontal camera of the UAV. This 

project choice was made to allow the UAV to access the same type of data both during the training and in its 

simulated mission to simplify the task, although targets and background are the same, angles and point of 

view and number of targets per image acquired may differ greatly during training and application.  

To take snapshots of the targets the simulation in started in Gazebo with key control modules explained in the 

previous chapters. The python module drone_ml_main/scripts/take_snapshots.py allows to take a single 

snapshot and saves the instantaneous output the frontal depth camera sees. Captured images are saved in 

drone_ml_main/segmentation_model/samples/images in .png format, ordered as: [image0, …, imagen].  

Since the neural network application is supervised learning, each data sample in the training set must be 

associated with a mask, consisting of labels for each pixel as explained in the previous chapters. 

To generate masks VGG Image Annotator (VGG image annotator webapp, s.d.) is used, which allows to 

select targets and produce a mask. After annotating every image, a .json file is exported from the online tool 

and saved in drone_ml_main/segmentation_model/json_export.json.   

Using the python module drone_ml_main/segmentation_model/gen_masks_from_json.py with inputs images 

saved in ../samples/images and the json_export.json file it is possible to generate the mask set saved as .png 

format with names [mask0, …, maskn]. Mask numbers corresponds to the image number, so that images and 

masks can be easily associated during the training process.   

Some examples of images, with masks associated, are shown in figure 3.2. 
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Figure 3.2: Image obtained from the frontal camera with their respective mask generated with VGG annotator software. 

 

3.2.2 Data loader 

The purpose of the data loader is to feed the neural network with the data set so that the training process can 

be initialized. It is common practice for networks whose goal is to label or recognize, to pre-process the data 

so that more data samples can be extracted from the original images, resulting in a better generalization. 

In this case the data loader is coded using Tensorflow (Tensorflow homepage, s.d.) in 

drone_ml_main/segmentation_model/model/train_model.py, which already provides methods to perform the 

data augmentation process.   

The coded data loader takes images and masks as input, generates the data set, splits the whole data set into 

two subsets, the training set and the evaluation set, and applies data augmentation techniques.   

The goal of the training set is to provide a large data pool to train the neural network with, whereas the 

evaluation set aim is to evaluate the neural network results so that hyperparameters can be tuned accordingly. 

The evaluation set should be an unbiased set with respect to the training set, but both the training set and 

evaluation set are used in the training process. Finally, the test set is third subset of the complete data set 
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which goal is to provide a final evaluation of the trained model using a set of unbiased data samples, (Pietro 

Zanuttigh, 2021).  

In this project the test set is represented by the actual stream of frames extracted from the frontal depth camera 

in the simulated environment during an online simulation.   

The total data set consists of 55 images with 55 corresponding masks. The data set is divided into a training 

set consisting of 44 images and masks and an evaluation set consisting of 11 images and masks.  

The evaluation set will remain the same during the next steps, while the training set will be modified during 

the data augmentation process. At each step, the training set is remapped with the modifications and added 

back to the original training set.   

The modifications implemented in the augmentation process are listed below: 

- Normalization by 255  

- Brightness 

- Gamma  

- Hue  

- Flip horizontally 

An example of the augmentation process is shown in figure 3.3, where the original image is shown on the left, 

the modified image is shown in the middle column, and the associated mask is shown on the right.   

The images and masks shown are in bgr, unlike those in figure 3.2, which were in rgb, because the actual 

frontal depth camera generates them directly in this format. So, to avoid the extra steps that would consist in 

changing the color channels, they are fed directly into the network in bgr. For this reason, the neural network 

must be trained with bgr images and not in rgb.  

Also, in figure 3.3, the color scale is [0, 1] and not [0, 255], again because the network takes in input 

normalized images.   

At the end of the modification process, the training set consists of 220 images. The masks are not modified, 

except in the flip image case, but only associated to the original image and the modified ones generated from 

the same image.  
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Figure 3.3: Example of the augmentation process, from top to bottom brightness modification, gamma 
modification, flipped horizontally and hue modification.  
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3.2.3 Training parameters 

The neural network construction and training is made in Tensorflow and Keras (Keras homepage, s.d.) 

packages.  

Parameters for training the U-Net, are shown in table 3.1.  

Parmater Value Notes 
Buffer size 10 Buffer allocated for picking random samples to generate the 

new training set. A data shuffling method.  
Epochs 30 An epoch is an iteration of the entire training set, all the 

batches.  
Batch size 5 Size of batches in which the training set will be divided in 

each epoch to feed the NN. At the end of each batch the neural 
network is updated  

Optimizer “adam” Algorithm to change weights on the net in order to reduce the 
loss 

Loss function “binary crossentropy” Loss is computed through the difference between true mask 
and prediction. The aim of the NN is to minimize the loss 
function value at each iteration  

From_logits False Interpret the NN output as logits value. (True) 
Interpret the NN output as probability distribution (False)  

 
Table 3.1: U-Net training parameters. 

 

Before training the model, the training set is shuffled to avoid repeating the same samples in the same order at 

each epoch. The buffer size parameter determines how the shuffle is performed. Although it's usually a 

fundamental parameter, in this case, because many batches and many epochs are used, its value doesn't make 

much difference in the result.  

Batch size determines how many batches the training set is divided into. In this case, a batch size of 5 is 

selected, implying a lot of batches and updates at each epoch.  

The number of training epochs is the most important parameter, as it has the most impact on the final 

performance of the NN. Too few epochs will lead to underfitting, i.e. the NN has not learnt to recognize 

targets correctly, the error in the training set is high, in other words the training was ineffective.  

Too many training epochs will lead the NN to overfitting, which means the NN recognizes correctly all the 

samples in the training set but fails to generalize its behavior when fed with different samples.   

In this case, the number of training samples is small, which means that the NN must be fed several times to 

train it effectively (Pietro Zanuttigh, 2021).  

Moreover, in this case, overfitting is not as much of an issue as underfitting because the samples in the 

simulated environment are very close to those fed to the NN during training. The best results were found with 

an epoch value of 30. 
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The loss function of choice is the Binary Cross Entropy loss (George Cybenko, 1999).   

Let us define the true label distribution as 𝑝𝑖, whereas 𝑞𝑖 is the distribution of the predicted labels.   

Binary Cross Entropy it’s defined as a regression logistic type function loss. Regression means the output is 

not just a label but the probability which indicates the belonging to a specific class. Logistics means the output 

probability of the sample being in one of the two classes is modeled after the logistic function:  

𝑞𝑦=1 =  𝑦̂ =
1

1 + exp (−𝒘 ∙ 𝒙)
 

Where is explicated the probability of obtaining the output 𝑦 = 1. 𝒘 is a vector containing weights of the NN, 

which is updated at each step, and 𝒙 represents an input sample.   

In the same way, the probability of obtaining 𝑦 = 0 as output is simply: 

𝑞𝑦=0 =  1 − 𝑦̂ 

From the above explained notation can be noticed that distributions are limited in:  

𝑝 ∈ {𝑦, 1 − 𝑦} 

𝑞 ∈ {𝑦̂, 1 − 𝑦̂} 

Now it is possible to assemble the Binary Cross Entropy Loss function, which is a measure of the difference 

between the probability distributions of the true labels and the predicted ones: 

𝐻(𝑝, 𝑞) =  − ∑ 𝑝𝑖 log 𝑞𝑖

𝑖

=  −𝑦 log 𝑦̂ − (1 − 𝑦)log (1 − 𝑦̂) 

In this case 𝑖 represents all the possible outcomes so that the whole probabilities can be mathematically 

described.   

If we take as an example a single sample image from the training set, the idea is to compute the Binary Cross 

Entropy in all the pixels contained in the image to evaluate the difference between the NN evaluation and the 

real label. In this way, each pixel is assigned a predicted label, either belonging to the target or not belonging 

to the target. 

An optimizer is an algorithm that aims to change the values of the NN weights according to the calculated 

total loss. In this case the optimizer of choice is the Adam optimizer (Diederik P. Kingma, 2015). Stochastic 

optimization methods are wieldy used with success in machine learning, but also in other scientific fields with 

great results. Stochastic means the objective function to be optimized, in this case the NN, consists of a sum of 

subfunctions evaluated on some subsamples of the data. Adam’s goal is to make existing state-of-the-art 

stochastic methods, such as AdaGrad (Adaptive Gradient Algorithm) and RMSProp (Root Mean Square 
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Propagation) more efficient.  

Adam adapts its learning rate based on the average of the first and second moments of the gradient at each 

step, making it simple to implement as requires very little parameter tuning.   

Results shows that Adam works well in practice and has quickly become one of the currently recommended 

algorithms for training of deep NNs. 

 

3.2.4 Training results  

During the training process the metrics visualized were “accuracy” and the loss function value at each step, 

with which was possible to carry out parameter tuning.  

Accuracy in machine learning applications is simply defined as:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

Computed across all pixel labels and on all the data samples. 

Results in terms of accuracy and loss function value during the NN training are shown in figure 3.4.  

 

Figure 3.4: loss and accuracy during training of the U-Net with respect to epochs. 
figure a: loss trend on training and validation with respect to epochs. 
figure b: accuracy trend on training and validation with respect to epochs.   
(─): loss computed on the training set  
(--): loss computed on the validation set 
(─): accuracy computed on the training set   
(--): accuracy computed on the validation set 

Fig. a 

Fig. b 
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As shown in figure 3.4a, the loss value computed on both the validation and training sets decreases during 

training. Up to epoch 15 the loss plot, figure 3.4a, do not show a uniform decreasing trend, but after epoch 15 

the trend is always decreasing. A low value of the loss function means that the distributions of the predicted 

labels and the true labels are close to each other, which is the desired result. In figure 3.4b, the accuracy trend 

computed on the training and evaluation sets is always increasing uniformly until epoch 20, after which a 

plateau is reached.   

In conclusion, the training process is stable, at the end of which an optimal result is reached in terms of both 

accuracy and loss function. 

 

3.3 Testing and results 

This section presents the results of the U-net testing phase, with some notes on critical cases. 

 

3.3.1 Testing  

As mentioned in the previous chapters, there is no real test set of images available, so the testing phase can be 

carried out during the online simulation using key control Python modules to move the UAV in the physical 

environment.  

Using the python module drone_ml_main/scripts/test_segmentation_model.py, the camera's output, available 

subscribing to /depth_camera_frontal/rgb/image_raw, gets processed by the now trained U-Net in 

TestSegm.cam_callback and published in the topic prediction_img.  

It is now possible to read and display images from the two topics side by side with Rviz to observe the image 

seen by the camera and the mask generated by the U-Net in real time.   

A diagram of this process is shown in figure 3.5.  

 

Figure 3.5: implementation of U-Net testing.  
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3.3.2 Results 

Figure 3.6 shows images and masks generated by the U-Net. The results show that in these cases the neural 

network can correctly identify any target in the environment.  

 

  
 

 

 

 
 
Figure 3.6: Example of results of the U-Net predictions. On the top of each image is  
depicted the input of the camera, while at the bottom there is the output of the trained U-Net. 
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It is possible to observe the accuracy with which the net is able to track targets. The closer the target is to the 

UAV, the better the NN can correctly predict its shape; if the target is far away, the NN is able to identify it, 

but in most cases is not able to reconstruct its shape. There are several reasons for this inaccuracy, including 

low image resolution due to the hardware limitations of running the simulation and python modules in real 

time, environmental disturbances, such as the colour gradient of the terrain, and the shadow of the target, 

which can be mistaken for the target itself.   

As explained in more detail in chapter 6.4.1, shape imprecision in distant targets will have a bad effect on the 

classification algorithm.  

Figure 3.7a shows an example of critical conditions that can cause problems later in the project. There are two 

targets close together, and from the UAV's perspective they are also superimposed. In this case the U-net 

correctly detects the targets but cannot distinguish between them and interprets them as a single target.  

Unfortunately, this is not a failure of the U-net's detection capabilities, but rather an environmental problem. 

The same case is seen from a slightly different perspective in figure 3.7b, in this case there is no superposition 

of any kind, so the problem does not appear.  

 

  
 
Figure 3.7: images as output of the frontal camera and after the U-Net processing. 
figure a: on the left side two targets superimposed. 
figure b: the same two targets but seen from a different angulation. 

  

Fig. a Fig. b 
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4 Allocation algorithm  

This chapter aims at describing the project’s pipeline, starting from the mask generation, explained in the 

previous chapter, and moving on to the allocation algorithm. The algorithm is designed to analyse U-Net 

outputs and generates a message which contains targets positions in the local frame of reference.  

 

4.1 Topological mask analysis 

After the U-Net is complete, the next step shown in figure 1.1, is to process the image masks and compute 

targets centroids. The aim of this section is to explain the process that occurs after the mask generation and 

leads to the determination of the target’s centroids. 

 

4.1.1 Concept  

The basic idea is to exploit image masks generated by the U-Net, apply the algorithm described in (Satoshi 

Suzuki, 1985), already implemented in OpenCV (OpenCV homepage, s.d.) python package, thus obtaining 

both the number of targets seen by the frontal camera and centroids for each one of them.  

The algorithm used performs a border following topological analysis on binary images, that consist of pixels 

than can have a value of either (1-component) or (0-component). Where (1-component) and (0-component) 

are two different values. The aim is to convert the binary picture into a border representation of it. Also, this 

algorithm has the advantage to enumerate borders when it finds them in the binary image, this feature is 

crucial as it is needed to count number of target and thus distinguish them.   

For the algorithm explanation two definitions are important:  

- Outer border point: in the same row the (j-1) pixel is (0-component) and the j pixel is (1-component). 

- Hole border point: in the same row the j pixel is (1-component) and the (j+1) pixel is (0-component). 

The border following algorithm raster scans all the image, when an outer border point or a hole border point is 

detected, the raster stops. If the pixel satisfies both the above conditions, then is regarded as a border starting 

point condition. If this is the case, then a unique number is assigned to the newly detected border and the 

border is followed marking every pixel in it. When every border pixel is marked, and the border is complete, 

the raster scan is resumed to find other borders in the image.   

Now, it is possible to perform topological analysis and compute centroids of borders with OpenCV, which 

gives as output enumerated centroids.  
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4.1.2 Implementation 

The implementation of the mask analysis algorithm is closely related to the target allocation task and the 

control methods used to follow the targets. For this reason, it is better to first show the entire implementation 

flowchart in figure 4.1, which shows the code architecture used during the final simulation, and then explain it 

step by step in the next chapters as new solutions are implemented.  

As for the actual mask analysis algorithm implementation, with reference to the flowchart in figure 4.1, ROS 

subscribers are initialized in updateBGRCam() that subscribe to /depth_camera_frontal/rgb/image_raw, 

which returns as output the frontal image, and depth_camera_frontal/depth/points. This topic then gives as 

output the PointCloud message of the frontal depth camera. Every time is received a format Image message 

bgr_points_frontal_callback is called. In bgr_points_frontal_callback the U-Net trained model is used to 

generate image masks and through OpenCV the contour algorithm is applied. After that, the pixel_coord 

message is produced, which is a 2D array with rows 𝑖 ∈ [0, 4] representing the target number and columns 

𝑗 ∈ [0, 1] indicates the pixel coordinates of the centroid of the target.  

If the camera detects less than five targets, then pixel_coord free rows are filled with [−1, −1].   

pixel_coord is then used in other methods for assigning targets and in the PID control methods.  
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Figure 4.1; implementation of the final project as python modules and messages send and received. 

 

4.1.3 Testing 

For the testing phase, slight variations in the code are implemented so that it is possible to publish the 

processed and contoured image to Rviz. The results are depicted in figure 4.2, which shows examples of the 

original image and the contours obtained after topological analysis. Figures 4.2a and 4.2b show cases with 

multiple targets in visual contact, which the algorithm is able to recognise and find accurate contours. In 

figure 4.2c the UAV is close to a single target where contours are detected and drawn even in the presence of 

shadows cast by the same target. Figure 4.2d shows a close target half seen by the camera, the U-Net is able to 

recognize it anyway, since in the training set where implemented some similar samples, and contours are 

found. In this case, the calculated centroid will not be physically accurate, since it is based on the extracted 
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half contour, but this behaviour does not cause any issues in the final implementation of the guidance 

algorithm.  

At the end of this phase, the message pixel_coord is correctly generated, enumerating the targets.  

 

  
 

 

 

 
 
Figure 4.2: On the top of each image the output of the frontal camera, on the bottom the contoured image. 
figure a: top left, multiple targets. 
figure b: top right, multiple targets. 
figure c: bottom left, single close target. 
figure d: bottom right, single target half seen.   

Fig. a Fig. b 

Fig. c Fig. d 
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4.2 Target allocation algorithm  

This section focuses on explaining the allocation algorithm developed to store the local position of targets, 

update their positions when are visible to the frontal camera, and simply store them when targets are not in 

line of sight. 

  

4.2.1 Concept and operation  

The first step is to take as output the targets centroids stored in pixel_coord and use the frontal depth camera 

point cloud message to find their positions in the relative camera frame. To obtain the target positions in the 

local frame, it is necessary to rotate and translate the data in relative coordinates, according to the frontal 

camera attitude and position. This is possible because the UAV position and attitude are extracted from the 

FCU after the Kalman filter, while the relative position and attitude of the front camera with respect to the 

UAV is known as defined in section 2.2.2.  

Now the idea is to update a new message, targ_LOC, which memorizes the five targets in rows 𝑖 ∈ [0, 4] and 

contains target x and y local positions in columns  𝑗 ∈ [0, 1].   

The idea is to let targ_LOC to be a static message, that is updated only when targets are detected and their (x, 

y) values are close enough to one of the (x, y) values already contained in targ_LOC in the previous step. 

Note that targets enumeration between messages pixel_coord and targ_LOC is different because of how the 

updating process works.   

Although this idea theoretically could work in the simulated environment some issues arise:  

- UAV dynamics: when a command is given, the UAV attitude changes from the neutral stable state to 

a new configuration so that the linear velocity command can be followed.   

The dynamic of the UAV influences heavily how accurate targets positions, obtained from the 

previously described pipeline, are.  

- Distant targets: targets far away from the UAV are difficult for the U-Net to detect and their estimated 

position may be inaccurate as it depends on the shape of the target.  

Tests in the simulated environment have shown that these problems can cause incorrect updates to targ_LOC. 

For example, new positions on the message may be updated with incorrect values, effectively creating a 

virtual target that does not exist in the simulated environment.  

For these reasons here is introduced a buffer_matrix for the updating of targ_LOC. The buffer_matrix’s task is 

to filter out possible uncertainties on the output targets localization so that targ_LOC is always updated with 

secure targets positional values.  
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The basic idea is having the buffer_matrix be a 3D array, which stores target numbers in rows 𝑖 ∈ [0, 4], 

memorizes (x, y) local target coordinates in columns 𝑗 ∈ [0, 1], and stores successive target locations taken 

directly after the target localization, which is the noisy signal that must be cleaned, in the last index 𝑘 ∈

[0, 9].    

When targets are in view of the frontal camera a buffer_matrix_slice is generated, initialized with all rows i as 

[-1, -1]. The aim is assigning (x, y) positions of the targets acquired to the buffer_matrix_slice row i. The 

update logic is computing the difference between the acquired (x, y) and target positions contained in the last 

slice of the buffer_matrix, take the index which corresponds to the minimum difference.   

- If the difference is under a certain tolerance, then allocate (x, y) to that index buffer_matrix_slice row. 

- If the difference is over the tolerance, then allocate (x, y) values to a free buffer_matrix_slice row, 

containing [-1, -1].   

In case less than five targets are detected at the same time, which is almost always the case, then missing (x, y) 

positions in buffer_matrix_slice are let with [-1, -1].  

Then the newly sorted buffer_matrix_slice is appended at the end of the buffer_matrix, and the first position 

k=0 slice of the buffer_matrix is delated.  

In other words, the aim is to concatenate (x, y) values using matrix k row, so that buffer_matrix rows are filled 

just with values that should be similar to one another. Moreover buffer_matrix gets updated without changing 

its dimensions.   

In the next step buffer_matrix is checked at each updating cycle, if one or more rows k are completely full, 

without any [-1, -1], then the average of the row k, with respect to the j positions, are computed. This result 

should be a secure value of target position (𝑥𝑚, 𝑦𝑚) of the real target.    

Now targ_LOC must be updated with new values obtained (𝑥𝑚, 𝑦𝑚). targ_LOC message is initialized with all 

lines i with values [0, 0].    

- If targ_LOC is already full of target positions, there are no [0, 0] in the array, then the index of the 

line in which the difference between (𝑥𝑚, 𝑦𝑚) and target positions contained in targ_LOC is 

minimum is computed. In the next step the line of targ_LOC that corresponds to the index found is 

updated with (𝑥𝑚, 𝑦𝑚).   

- If targ_LOC is empty or partially full, at least a row containing [0, 0] is present, then two cases are 

possible. 

- If the difference between (𝑥𝑚, 𝑦𝑚) and target positions already contained is under a tolerance, 

then the update works the same way as before. 

- If the difference is over the tolerance, then (𝑥𝑚, 𝑦𝑚) is allocated to a new empty row.  

This way is possible to allocate to targ_LOC only target positions which passes through the buffer_matrix, so 

that only sure values are used for the updating. Moreover, if a target is not in sight the row containing its 
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relative position is not updated but its (x, y) values remains static. This allows to both memorize filtered target 

positions and updating them when they are in camera sight.  

 

4.2.2 Implementation 

The purpose of this section is to explain the implementation of the code architecture in the final project 

flowchart already presented in figure 4.1.   

When updateBGRam() is called, depth_points_frontal_callback is iterated, this happens every time the 

subscriber receives a pointcloud message in /depth_camera_frontal/depth/points topic.   

depth_points_frontal_callback takes as input the pointcloud message and pixel_coord array, previously 

generated in bgr_points_frontal_callback. The function implements the previously described allocation 

algorithm which, starting from pixel_coord and the frontal pointcloud produces as final output targ_LOC.  

Other two important messages, state_cam and PID_state, better explained in chapter 5.1.1, are generated 

during the iterations of depth_points_frontal_callback.   

 

4.2.3 Parameters  

Parameters necessary to run the target allocation algorithm are shown in table 4.1.  

Parameter Value Notes 
buff_toll 1.7 m Tolerance with which gets sorted buffer_matrix_slice 
targ_LOC_toll 2 m Tolerance with which values are allocated to targ_LOC 
buffer_matrix_lenght 15 Length, number of slices, in buffer matrix  
 
Table 4.1: target allocation algorithm parameters. 

 

The length of the buffer_matrix is fundamental parameter for the allocation algorithm. The parameter is 

closely linked to the update rate of the frontal camera, which is 10 Hz according to table 2.1. Since each time 

is reached a message in /depth_camera_frontal/depth/points topic buffer_matrix receives a single update, this 

means every 1.5 s of simulation buffer_matrix is completely updated from the first to the last slice. If a new 

target enters the visual range of the frontal depth camera, then the algorithm has at least 1.5 s delay before 

actually updating targ_LOC message. The higher buffer_matrix_length is, the slower the target allocation will 

be, but also if buffer_matrix_length is high, a better estimation of the targets is given, and less possibilities of 

identifying wrong target there is.   

A value of 15 is found to provide a good speed of allocation of true target’s positions to targ_LOC without 

compromising its precision.   
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buff_toll is the tolerance value used to sort out (x, y) in buffer_matrix_slice, while targ_LOC_toll is the 

tolerance used for the allocation of mean values, output of the buffer_matrix, to targ_LOC message, according 

to the procedure explained in the previous chapter.   

Below is a list of notes about these two parameters and how they interact is reported: 

- Minimum target distance: targ_LOC_toll dictates the minimum distance, in x and y, at which the 

algorithm is able to allocate targets correctly. In this case if targets are closer than 2 m in x or y or 

both coordinates, the allocation algorithm can confuse the two of them and could start to update their 

position mixing up the two targets.  

- buff_toll and the allocation speed: it has been tested that the higher buff_toll is the faster targets 

positions are given as output, but also the more imprecise they are, a compromise value which assures 

good results, taking into account this relation is found to be 1.7 m. 

 

4.2.4 Examples  

Figure 4.3 shows a snapshot of the buffer_matrix and the targ_LOC message 2 seconds after the start of the 

simulation. This is the ideal case where no noise is introduced into the position signals. The buffer_matrix in 

this case is ordered, for representative purposes, so that values of x and y are aligned.   

When a row is completely full of similar values, targ_LOC is updated. Note that in this case each target 

position is updated at the same time, except for the last target which is not even allocated in targ_LOC, this is 

because the frontal camera has yet to see it.   

Figure 4.4 shows a buffer_matrix snapshot in the same conditions as the previous case, but this time noise is 

introduced to the UAV position signals, making it more difficult for the algorithm to locate targets.   

In this case it can be seen that '-1.00' values are present in each row, meaning that no values are updated in 

targ_LOC at the time of the snapshot as no similar values are detected for a long enough period of time.  

targ_LOC, in this last case, contains two target coordinates because they were previously assigned with at 

least two full lines per target. 
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Figure 4.3: buffer_matrix working example. Every target is updated except the last one which is not seen by the frontal 
camera. 

 

 

Figure 4.4: buffer_matrix working example with noise. None of the target is being updated, in each line there is at least 
on occurrence of [-1.00]. 

 

As the allocation algorithm is a fundamental part of the project, its results and performance are discussed 

separately in chapter 6. 
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5 Control method  

In this chapter the concept and general chart of the control method implemented, which allows to reach 

targets, are presented. Then the targets sequential policies implemented, which are Reinforcement Learning 

and a deterministic one, are shown.   

 

5.1 PID control  

This section focuses on the PID control method used. As for the x, y control method, it takes into account the 

guidance obtained by the U-net and the subsequent pipeline, which gives as output the localisation of the 

targets in the local frame, as explained in chapter 4.  

This chapter also explains the implemented z-axis control method. 

 

5.1.1 Messages definition 

Firstly, messages generated in the allocation algorithm loops are explained since are fundamental for the 

proper functioning of the control method.   

PID_state is a 2D array generated using data in output by the mask analysis, it’s a message which contains 

relative target positions as seen by the camera without any operation of filtering applied. More specifically 

positions in columns j of PID_state contains [y_cam_coord, x_cam_coord, total_distance] with 𝑗 ∈ [0, 2], 

whereas rows 𝑖 ∈ [0, 4] are for targets enumeration. Note data collected in PID_state is in the camera’s frame 

of reference explained in 2.1.4. If the frontal camera identifies less than five targets then the PID_state array is 

shorter, has less rows, this means it changes its dimensions at each iteration.    

Another important message for the control method implemented, which is not reported in the control chart 

below for simplicity, is store_index 1D array, which aim is to map targets positions from targ_LOC to 

PID_state. This way targets stored in targ_LOC and targets seen in PID_state by the frontal camera can be 

correctly associated. store_index is generated by computing the difference between targ_LOC and targets 

positions directly seen by the frontal camera, the same data which composes PID_state. Then the index, which 

corresponds the row of the minimum difference in both (x, y), is found. Finally, this index is associated to the 

current iterated store_index position. Free positions are filled with [-1] and store_index is obtained.  

state_cam is a 2D array, with rows 𝑖 ∈ [0, 5] and 𝑗 ∈ [0, 2], used to communicate with the environment. In 

rows 𝑖 ∈ [0, 4] and 𝑗 ∈ [0, 2], the message contains the targ_LOC, whereas row 𝑖 = 5 contains the UAV 

position. If is encountered a target position still not filled of targ_LOC then also state_cam is filled with [0, 
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0]. Also, in state_cam message target reached are flagged substituting the (x, y) target coordinates with [100, 

100], this feature is better explained in chapter 5.2.2.  

In summary four important messages will be used discussing this section:  

- Targ_LOC: stores the targets positions in local frame of reference, represents the memory of targets 

positions the algorithm has.  

- PID_state: stores targets position in the relative frame of the camera, represents what is seen by the 

frontal camera instantaneously.  

- store_index: Keeps track of targets enumeration between targ_LOC and PID_state.  

- state_cam: stores target locations in the local frame and is send to the RL environment. Also stores 

target’s flags.  

 

5.1.2 Concept and operation 

A specific control method flowchart is shown in figure 5.1 in a “Simulink” style, where signals and gains are 

depicted. When a command is given, the mavros/setpoint_raw/local frame of reference, already described in 

chapter 2.1.4, is used. Colours in the chart indicates which control lines sends commands to which axis, blue 

for controls for the z axis, red for x axis, green for y axis and purple for yaw rates commands. Both feedback 

control lines are here regarded as outer loop, since they don’t communicate directly with actuators, electric 

motors, but with PX4 autopilot, which then performs the inner control loops. 

The discussion starts from the simplest control implemented, the one for the UAV’s z axis, the blue lines, 

which is always active during the mission. The basic idea, as stated in the introductory chapter, is gather the 

pointcloud message from the downward camera, apply an average of the z coordinates of the points seen to 

get an average altitude at which the UAV is flying. Then compute the difference between a guidance value, 

the one desired which remains constant, and the state estimated one to apply a PID controller to the difference 

signal. The output is the velocity in z axis the autopilot must follow. Also, a derivative gain is applied directly 

to the linear velocity in z axis extracted from the FCU. Tests highlighted a more stable and smooth behaviour 

in presence of this value.   

Note that to correctly compute the altitude estimation from the downward camera the UAV attitude must be 

taken into consideration. Thus, the relation below is utilized, where (𝜙, 𝜃) are respectively roll and pitch 

angles and height, width are number of data points given as output of the camera in the two directions. 

Pointcloud(z) is a 1D array representation containing all data points, in z camera frame axis, of the pointcloud 

message.  

ℎ_𝑎𝑣𝑔_𝑒𝑣𝑎𝑙 =
∑ 𝑃𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑(𝑧)𝑖 ∗ cos(𝜙) ∗ cos(𝜃)ℎ𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑑𝑡ℎ

𝑖=0

ℎ𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑑𝑡ℎ
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For the x and y axis control method, firstly one of the targets memorized in targ_LOC is chosen through the 

execution of a policy later explained in sections 5.2, 5.3, thus targ_LOC(n), relative to a single target, is 

obtained. Now two different control methods are applied depending on the case:   

If the target is located in targ_LOC but not detected by the frontal camera, the idea is to make the UAV turn in 

the target’s direction using targ_LOC information, and start moving in the target’s general position so that it 

can be eventually detected by the frontal camera.   

First, through trigonometric functions, is possible to relate the UAV’s current position, obtained from the 

DroneState message, to the target’s stored one, so the yaw_des, the guidance value, is obtained.  A PID control 

is applied to the difference signal between yaw, which is the actual yaw angle of the UAV, and yaw_des. The 

result is the yaw_rate the autopilot has to follow. If the UAV manages to turn itself in the target’s direction, 

within yaw_lim of difference error in yaw, and still the frontal camera does not detect it, then the velocity in 

the x axis is set to 2 m/s. The objective is searching for the wanted target.   

If the target is detected by the frontal camera, the UAV switches control method and passes to a complete 

visual guidance. This is the case in which the target is allocated in targ_LOC and also detected by the frontal 

camera.  

First the message store_index is used to map to PID_state the selected target in targ_LOC. For the x axis 

control the reference guidance value, camera_x_targ, is constant and depends on the distance, in the reference 

frame of the camera y axis, at which the UAV is hovering on top of the target. This value is equal for all the 

targets so is treated as a constant. The difference between camera_x_targ and PID_state(x), relative position 

of the target in y axis camera’s frame, is then used to implement a PID proportional value. The result is a 

command in the x axis.   

Note that “/dist” exists because the command is divided by the total target distance contained in the third 

column of PID_state. In the case the target is detected by the frontal camera, then this control in the x axis is 

always active.  

For yaw and y axis control, in the case in which the frontal camera is detecting the target, the best solution 

found is applying similar command patters a human would do if piloting the UAV manual. The idea is if the 

target is far then probably the best commands to give is trying to centre the target with yaw while proceeding 

towards it. Whereas if the target is close then move it with in x and y axis without manoeuvring in yaw.   

The x axis commands are already implemented as explained in the previous paragraph, and remains always 

the same, while to apply y axis command and yaw first must be computed the total distance from the UAV to 

the target using PID_state message.  

If the target is near, the distance is under the cct threshold, then a PID proportional command is applied to the 

signal PID_state(n, y) which carries the target position in the x axis camera frame. Since 0 is the guidance in 

this case: 𝑝_𝑡𝑦_𝑛𝑒𝑎𝑟 ( 0 − 𝑃𝐼𝐷_𝑠𝑡𝑎𝑡𝑒(𝑛, 𝑦)) =  − 𝑝_𝑡𝑦_𝑛𝑒𝑎𝑟 𝑃𝐼𝐷_𝑠𝑡𝑎𝑡𝑒(𝑛, 𝑦)  so a “-” is applied. The 
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output is a strafe command in the y axis.   

If the target is far, the distance is over the cct threshold, the same PID_state(n, y) signal is used and like 

before, since 0 is the guidance also in the yaw case,  a “-” is applied. The output is a command in terms of yaw 

rate.  
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Figure 5.1: Control method flowchart. 
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5.1.3 Implementation and parameters  

With reference to figure 4.1 now the implementation of controls in terms of code and python methods is 

explained with reference to figure 4.1.   

As explained previously state_cam, targ_LOC, PID_state and store_index are generated during the 

updateBGRCam() method cycle. These messages are used by the actuate_RL_choice() method. Firstly 

callback_action_choice is called each time a new message is received in action_choice_topic. The purpose of 

this callback is to interpret actions in terms of commands. In table 5.1 are listed all available actions and what 

they do. In particular, for 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∈ [0, 4] a different target is selected, thus obtaining the coordinates in local 

position to chase, that is the previously mentioned targ_LOC(n).   

 

Actions Notes 
action 0 Stops the UAV, selects target number 1 to be reached 
action 1 Stops the UAV, selects target number 2 to be reached 
action 2 Stops the UAV, selects target number 3 to be reached 
action 3 Stops the UAV, selects target number 4 to be reached 
action 4 Stops the UAV, selects target number 5 to be reached 
extra action 100 Stops the UAV, deactivates the (x, y) control logic, sets the UAV to point follow mode 

and sets coordinates to the starting point, resets the targ_LOC and state message with 
[0, 0] at every row, moves targets to new random positions within the workspace.   

extra action 101 Turns the UAV in yaw so that can scan the aera for targets before starting the mission 
 
Table 5.1: action table. 

 

PID_choice_callback, iterated at 10 Hz, takes as input the desired targ_LOC(n) to follow and applies the PID 

logic explained in the previous section. Commands are sent to the FCU in the usual topic 

mavros/setpoint_raw/local.  

The method depth_points_downward_callback, iterated at 3 Hz as mentioned in the camera models section, 

instead applies the z-control logic, writing commands in mavros/setpoint_raw/local topic.   

Table 5.2 lists the parameters mentioned in the operation of the algorithm. The results and commands 

generated by the implemented controls are reported in the last chapter, as they are closely related to the results 

of the whole project.  
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Parameter Value Notes 
cct 7 m Distance to switch between close and far flight controls  
yaw_lim 15 deg Tolerance of yaw to decrete if the UAV has turnd toward the 

target 
camera_x_targ 1.6 m Parameter relative to the camera frame, serves as guidance for 

the x axis once the UAV is detected by the frontal camera 
pos_toll_outer 0.07 m  Tolerance in x and y camera axis used to determine if the 

UAV is on top of the target by the control system  
vel_toll_outer 0.07 m  Tolerance in linear speed. UAV’s speed in x and y axis must 

be under it for the target to be determined as reached.  
h_avg_des 3.5 m Desired average altitude to maintain 
p_alt 3 s-1 Proportional for z axis control (trag_LOC guidance) 
d_alt 0.7 [-] Derivative for z axis control (targ_LOC guidance) 
p_tx 2.2 [-] Proportional for x axis control (visual guidance) 
p_ty_far 35 s-1 or deg/s Proportional for y axis control (visual guidance far) 
p_ty_near 0.5 s-1 Proportional for y axis control (visual guidance near) 
actuatecomm_rate 10 Hz Rate at which commands are sent to the FCU autopilot 
 
Table 5.2: control system parameters. 

 

5.2 Reinforcement Learning policy 

After a brief introduction to what Reinforcement Learning is, the specific model and implementation used in 

the project is presented.  

 

5.2.1 RL introduction  

Reinforcement learning (RL) is the third paradigm of ML methods, along with supervised and unsupervised 

learning. Supervised learning utilizes a training set made up by samples along with labels or result known a 

priori, as in chapter 3 for the segmentation task, whereas in unsupervised learning the training set is composed 

just by samples without labels or is not provided at all. Most of unsupervised learning algorithms are 

concerned with classification in different groups, like clustering applications.   

RL applications are fundamentally different from supervised or unsupervised learning. A RL flowchart is 

shown in figure 5.2. 
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Figure 5.2: Reinforcement Learning flowchart. 

 

RL is based on interactions between an agent, or actor, and an environment in a Markov Decision Process 

framework. The agent takes actions based on a policy, which is a probabilistic distribution which depends on 

the agent’s current state.   

The policy can be defined as π(𝑠, 𝑎) = 𝑃𝑟(𝑎 = 𝑎|𝑠 = 𝑠) which means, the probability that action a is taken 

knowing the state of the agent s. The action leads to a variation of the actor state in the environment.  

The environment chosen can be completely deterministic, as in the case of implementation of dynamical 

equations, or of probabilistic nature or a composition between the two. Based on the effects of the newly 

acquired state in relation to the environment a reward is assigned to the agent.  

The optimization process objective is to find the best policy π(𝑠, 𝑎) that maximizes the number of long-term 

rewards acquired. Learning in RL framework is done by trial and error, a training set is no longer required, the 

policy is updated by trying different policies and updating it every time a better one is found based on 

subsequent simulations of the system, called episodes. The policy used during the training process can be 

always the best found at every episode or can have elements of randomness, to avoid local minima.   

In most application the policy is described by a Deep Neural Network (DNN), which takes in input the actor 

state and outputs the action taken. During the optimization process weights of the net are updated so that a 

change in the policy is obtained (Barto, 2015).  

 

5.2.2 RL model and concept 

The main advantage in using a RL algorithm is that complex and nonlinear policies can be represented. In this 

case the objective is to find the best path between targets that minimizes the mission time at each episode.  

Now an explanation of components that build the implemented RL algorithm is given. 
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Each episode starts with the UAV at the starting point, at coordinates [0, 0, 2.5] m, and with a new 

configuration of targets in the physical environment. The goal of the mission is to reach all the targets without 

hovering over the same one two or more times; if this is achieved, the episode ends successfully. Each episode 

can also end without completing the mission if one or more of the other conditions listed in table 5.3 are met, 

see the last paragraph of this section for a more detailed explanation.   

Each step starts when an action is taken.   

One of the main components of any RL algorithm is the action space, which contains all the actions that the 

actor can take and that the policy can choose to actuate. In this case, the action space is defined as an array of 

five inputs [0, 1, 2, 3, 4], each action corresponding to one of the targets already detected and located in the 

targ_LOC message. Table 5.1 already lists all possible actions. A clarification should be made here: the action 

execution is part of the control system, whereas only the action space is part of the RL algorithm. The policy 

in this case is represented with a dense Neural Network that takes states as input and actions as outputs. The 

model is represented in figure 5.3. Note that the output of the Neural Network is a 64 neurons dense layer, this 

is done because Tensorforce (Tensorforce documentation, s.d.) automatically adds an additional layer with the 

same length as the action space, which in this case is 5.   

 

 

Figure 5.3: RL policy neural network architecture. 

 

The state message is called state in the environment module and state_cam in commander.py module. Rows 

are 𝑖 ∈ [0, 5], indices 𝑖 ∈ [0, 4] contains targ_LOC message, which represents target locations in local 

coordinates. The last row 𝑖 = 5 contains the UAV position. Every time a target is reached correctly then the 

position row corresponding to the target is updated with [100, 100] to flag reached one.   

The idea is to give to the algorithm both positions of the UAV and targets so that, based on coordinates, it can 

evaluate distance and possible best path to follow. Reached targets positions in state message are then flagged 

with [100, 100] to add information about already reached targets.   

Note that in this case the RL algorithm takes as input a flattened version of the state message described. This 
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is because in this case a CNN would not be a fitting model for the problem, but a completely dense net is 

selected, thus requiring a 1D array type input.  

The environment main task is to assign to the actor a cumulative reward so that it can learn, meaning weights 

of the policy NN are updated, thus a better policy is achieved each time the updating takes place. Moreover, a 

list of checks to determine the end of the episode are implemented. These checks are also part of the RL 

environment.   

Reward set is a key component of the environment, is the main parameter with which is possible to change 

actor behaviour. The positive reward set in this case is defined as a quadratic function in time. Every time the 

UAV is able to complete the mission, reaches all five targets, the time passed between the start and the end of 

the episode is computed. Using this time value, the reward is obtained by 250 −
3

100
 𝑡𝑖𝑚𝑒2. Whereas if the 

action extracted corresponds to a target already reached, at every step, then a negative reward of -10 is 

assigned.  

It is fundamental to check at each step if the episode is terminated or if environment conditions still permit the 

episode to continue. This is done with a series of checks the UAV must comply to always, otherwise the 

episode is declared as finished and a new one is started.   

In table episode checks with a brief explanation of what they do and their effects on the algorithm are listed.  

 

Bool parameter Notes Effects 
is_out_of_bonds Detects if UAV is inside the workspace or 

if for some malfunctioning is outside. 
Switches episode_done to True. 

is_upside_down  
 

Detects if the UAV flips itself. 
In this case it will not be possible to 
continue with the training and a restart of 
the simulator is obligatory.  

Switches episode_done to True. 

is_disarmed  
 

Detects if the UAV is on ground and 
disarmed. 

Switches episode_done to True. 

   
time_is_up  
 

Detects if the time limit for the episode is 
reached  

Switches episode_done to True. 

all_target_reached  
 

Detects if the UAV reached of the five 
targets in the environment  

Switches episode_done to True. 

episode_done Detects if one of the previous conditions 
is True  

Determines the episode end and 
restarts a new episode 

 
Table 5.3: Episode checks to determine the end of the episode at each step. 

 

When the reset episode is called the episode is interrupted and several actions take place which aim is to move 

targets in new positions, move the UAV in the starting position, and reset messages.  

More on episode reset is explained in chapter 6, since this functionality is heavily dependent on the specific 
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test, train or evaluation that is being run.   

After episode reset a new episode is ready to start.  

 

5.2.3 Implementation 

For the implementation explanation the chart in figure 4.1 is referenced again.  

To start the learning process the user has to launch actuate_RL_choice.py to activate the control system that 

allows targets to be reached, then has to launch start_RL_learning.py for the training to take place. 

Through BGRcam_state_env_topic is sent the state_cam message, to the Reinforcement Learning module so 

that it can be evaluated when an action is extracted from the policy. When the action is selected, it gets sent to 

the control module through the RL_choice topic.   

The RL algorithm is implemented using Tensorforce, a package for managing agent-environment interactions. 

Tensorforce allows to define an environment from scratch with maximum customization options and then 

manages the learning process after agent and hyperparameters selected by the user. (Tensorforce 

documentation, s.d.).  

Below Tensororce compatible obligatory functions implemented are listed: 

- states(): Defines the state message dimensions.  

- actions(): Defines the actions space dimensions.  

- reset(): Resets the actor and the environment. 

- execute(actions): sends the action selected to the control module and waits until a new target is 

reached.  

 

5.2.4 Environment parameters 

Parameters that fully define the environment are listed in table 5.4 with some explanatory notes.   

When an episode is reset, the targets are moved from their previous position to the newly generated position, 

thus are not respawned. This functionality is implemented this way because Gazebo allows objects to be 

spawned in an already running simulation, but only if a unique name is given to the object, making it easier to 

simply move them.   

Target positions are generated by checking, in both x and y coordinates, whether targets are more than 

cubes_toll away from each other. Targets must be moved within the workspace, defined in table 5.4, with a 

margin from the outer boundary of [x_min_lim, x_max_lim, y_max_lim, y_min_lim] so that when the UAV 

reaches them the environment does not detect that it is out of bounds.  
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For the reward set, several options are implemented to test different solutions during the design phase. For 

example, a reward can be given if all targets are reached, or a negative reward can be given if the UAV leaves 

the workspace boundaries or flips upside down. In the final project, only the values listed in the table are used, 

but the defined environment can be easily implemented for other UAV related RL tasks with a few 

modifications.  

Environment Parameters Value Notes 
cubes_toll 2.5 m Minimum distance with which can be moved targets 

from one target to the other both in x and y.  
start_point [0, 0, 2.5] m UAV starting point at each episode in local 

coordinates.  
start_yaw 0 deg UAV starting yaw in local coordinates in local 

coordinates.  
pos_toll_RL 1 m Tolerance in x and y to detect if the UAV is on top 

of the target and give the reward.  
yaw_rate_search 10 deg/s Yaw rate with which the UAV scans the 

environment at the start of each episode. See chapter 
6. 

time_limit 100 s Time limit for each episode.  
max_roll 90 deg Max Roll angle to detect if the UAV is upside down.  
max_pitch 90 deg Max Pitch angle to detect if the UAV is upside 

down. 
x_max 22 m Parameters identifying the workspace limit in which 

the UAV can operate.  
x_min -2 m -  
y_max 15 m - 
y_min -10 m - 
z_max 10 m - 
z_min -5 m - 
x_min_lim 5 m Parameters which identifies limits in which can be 

moved targets.  
x_max_lim 3 m - 
y_max_lim 3 m - 
y_min_lim 3 m - 
reward_target_reached 0 [-] Reward if a target is reached.  
reward_all_target_reached 250 −

3

100
 𝑡𝑖𝑚𝑒2 [-] Reward if a target reaches all the targets.  

reward_out_of_bounds 0 [-] Reward if the UAV exit out of workspace bonds.  
reward_upside_down 0 [-] Reward if the UAV flips itself upside down.  
reward_action_out_of_bonds -10 [-] Reward if an action is selected that corresponds to 

an already reached target.  
 
Table 5.4: Environment parameters. 
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5.2.5 Agent parameters  

Parameters that define the agent are listed in table 5.5 with some explanatory notes.  

Agent parameters Value Notes 
n_actions 5 [-] Length of the action array.  
nepisodes 600 [-] Episodes of training.  
nsteps 30[-] Maximum step number which is possible to try at every 

episode in training.  
nep_eval 100 [-] Episodes in evaluation.  
nst_eval 10 [-] Maximum step number which is possible to try at every 

episode in evaluation. 
agent “dqn” [-] Agent specification used to make decisions. 
memory 66 [-] Replay memory capacity.  
batch_size 64 [-] Number of timesteps per update batch.  
 
Table 5.5: actor definition parameters. 

 

The agent selection determines the operation of the algorithm, in this case the deep Q-network is implemented 

and operates as described in the original work (Volodymyr Mnih, 2015).   

The goal of the agent is learning to select actions so that the cumulative future reward across episodes is 

maximized, to accomplish this task the optimal action-value function is defined as:  

𝑄(𝑠, 𝑎) =  max
𝜋

𝐸[𝑟𝑡 + 𝛾 𝑟𝑡+1 + 𝛾2 𝑟𝑡+2 + ⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] 

The idea is to maximize the expected value of the sum in brackets across all possible policies 𝜋 = 𝑃(𝑎|𝑠).  𝑟𝑖 

is the reward at each time step i, whereas 𝛾 is a discount factor, that allows to discount rewards obtained from 

past steps and give importance to rewards obtained more recently. The action-value function depend on the 

state s, or observation, and action taken a. With these two information is possible to compute how valuable is 

an action depending on state and update the policy accordingly.   

The experience replay method is implemented to stabilize the learning process when a Neural Network is used 

to describe the policy. Again, the experience replay is a method developed in (Volodymyr Mnih, 2015). At 

each step, the reward, action, previous and current states are stored in a database, and then at each update 

samples are drawn uniformly from the database to compose minibatches that are used in the actual update 

process. The aim is to minimize the loss function defined as:  

𝐿𝑖(𝜃𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′) ~𝑈(𝐷) [(𝑟 + 𝛾 max
𝑎′

 𝑄(𝑠′, 𝑎′, 𝜃𝑖
−) − 𝑄(𝑠, 𝑎, 𝜃𝑖))

2

] 

Where values with “ ′ ” are referring to the 𝑡 + 1 timestep whereas other values, without apex, are referring to 

𝑡 timestep. 𝜃𝑖 are parameters, weights that define the policy, at timestep 𝑡, whereas 𝜃𝑖
− are targets parameters 

used to compute the difference between the action-value functions. Note that 𝜃𝑖
− parameters are updated only 
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every C steps and not every iteration like 𝜃𝑖. 𝛾 this time defines the agent’s horizon in terms of Q value.  

At every step the action-value function is compared to a target function, they depend respectively on action 

and states at time t and action and states at time 𝑡 + 1, the target function is evaluated in all the possible future 

actions 𝑎′ so that a horizon is obtained. This process is propagated using all (𝑠, 𝑎, 𝑟, 𝑠′) parameters extracted 

from the minibatch for the update. The aim is to chose 𝜃𝑖 so that the above reported relation is minimized.  

For the implementation the memory parameter determines how many samples are stored in the database used 

to generate minibatches, whereas batch size is the capacity of every minibatch. In this case a memory of 66 

and a batch size of 64 are used, so that at every update almost all the samples contained in memory are 

extracted. With a higher memory no differences in the result are highlighted.  

Episodes used in training are highly variable from task to task, in this case a total of 600 episodes, are used for 

multiple reasons. Firstly, as shown in chapter 6, reward across episodes converges before the training ends, 

this means even with more episodes results may not change much. Moreover, as explained in conclusions, 

Gazebo is not an optimal simulator to train RL models, thus limiting greatly training episodes number. 

 

5.3 Deterministic policy  

This section explains the implementation of a simple deterministic policy that chooses the target to reach 

based on distance, as an alternative to the RL method. 

 

5.3.1 Concept  

In the previous chapter the RL policy method of target selection was explained, this time a different, simpler 

policy is implemented. This is done mainly to compare results of the RL policy to results of a standard 

deterministic policy. In addition, a deterministic policy, makes it possible to test more rapidly the allocation 

algorithm previously described, as it requires less workload on the hardware and errors can be spotted easily.  

The idea is to select at every step the target, between the ones which are still not flagged as reached, that is 

closer to the UAV. This simple policy however does not minimize in every case the time for each episode to 

complete the mission, i.e. is reaching all the five targets.   

In some cases, depending on targets disposition, can happen the minimum distance policy minimizes also the 

time required to complete the mission, but in others it won’t.  
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Figure 5.4: practical example proving the policy based on minimum distance is not always the best policy. On the left 
side figure a, on the right side figure b. 

 

For instance, in the case represented in figure 5.3b, minimum distance target choosing also coincides with the 

optimal solution in term of time expended to finish the mission. In fact, the UAV will start from the closer 

side of the targets line and choses sequentially all the other targets as represented. However, in 5.3a is 

represented a case in which minimum distance choosing is not the best solution as the closer target is the one 

in front of the UAV, this leads to the UAV choosing a path which will overlap, thus obtaining a suboptimal 

solution in time expended to complete the mission.  

 

5.3.2 Implementation 

For the implementation, the idea is to keep the basic concept of the Reinforcement Learning state – action 

interaction but switching the policy with the deterministic rule. This allows the algorithm to run multiple 

scenarios one after another to simulate more cases and test the robustness of the algorithm.   

The implementation chart, in terms of python modules, is depicted in figure 5.5.   

It can be noticed the chart is similar to the RL one, the only difference is the start_RL_learning.py is replaced 

with iris_follow_targets.py. The new module does not contain states() and actions() methods since Tensorfoce 

is not required.   

 

Fig. a Fig. b 
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Figure 5.5: Implementation flowchart with the deterministic policy.  
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6 Results 

In this final chapter, results are shown in the case of deterministic policy implementation, with and without 

noise applied to the UAV position signal to simulate a malfunction in GPS and Kalman filter. The results of 

the RL policy are also reported and analysed.  

 

6.1 Deterministic policy  

In this section, several results are shown in multiple case scenarios, such as targets in line and scattered 

targets. From the graphs presented it is possible to evaluate the control system commands passed to the FCU, 

described in section 5.1, and the performance of the allocation algorithm, described in section 4.2. 

 

6.1.1 Test execution  

The aim of this section is to describe preparation steps for the tests regarding the deterministic policy.  

First of all, results shown in the next sections are obtained without any noise added to the UAV position. This 

means these tests are relative to an ideal case in which there is no GPS noise and Kalman filtering, simulated 

in Gazebo, works without any issue.   

When the test is started the reset() function is called, which, in this case performs the following actions:  

- Targets are moved to a random generated location in the workspace limits or to predetermined 

locations depending on the specific test. 

- targ_LOC and state_cam (state) messages are rest both with [0, 0] in all the rows.  

- Through the extra message “101” the UAV will turn itself first to the right and then to the left and 

then turns again to the initial heading value to scan all the environment and see all targets.  

Resetting the messages is fundamental as this way is possible to evaluate the performances of the allocation 

algorithm, such as how fast it can pick up targets and how precise it is.   

After these actions are completed, the UAV starts to follow the target chosen based on the distance 

deterministic policy. The test ends either if it fails, the UAV does not pass one of the checks described in table 

5.3, or if it completes the mission, reaching all five targets.  
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6.1.2 Vineyard row 

In the first test targets are not moved randomly but collocated in a diagonal line through small modification in 

the algorithm. The aim of this test is to represent a line of targets, since in most of agriculture scenarios plants 

are arranged in this way for productive and process purposes. For instance, this test can represent a vineyard 

row where products must be applied.  

In figure 6.1 the real targets positions in dotted lines, which remains the same during the test, and the 

predicted target allocation algorithm ones, that varies in ROS time, are represented. The graphs depict the 

whole episode until the UAV manages to successfully reach all targets. Below each graph, for both x and y, 

the UAV position is shown. At around time 20 s targets are moved and messages are reset, in this case all 

targets are already in visual contact with the camera, thus all of target’s positions are correctly pinpointed by 

the allocation algorithm with and error that varies in time. In the x graph, it appears the magenta and green 

curves overlaps thus confusing the two targets at around 25 s and 40 s marks. This does not happen as (x, y) 

target predicted coordinates are updated together if both of them are under a tolerance. In the y graph, in fact, 

at value 25 s does not show any significant error for the magenta and green curves, and in the 40 s, even 

though a bigger imprecision is present is not high enough to signify any malfunction or confusion between 

target located.   

Black solid curves, representing the UAV position, are shown so that precision of targets predicted position 

can be related to the progress of the test. For instance, at 55 s mark the UAV gets closer to the targets 

corresponding to magenta and green lines, when the camera sees both targets again the algorithm adjusts their 

local position, greatly reducing the estimation error.   

The relation that ties estimation error and UAV position is not always observable, since in most of the cases 

the algorithm is able to pinpoint with precision targets from the beginning and more importantly because 

visual contact with targets is not only dependent of UAV position but also on its heading.   

In figure 6.3 the error in x and y is represented for every target which varies with the time. Another visual way 

for representing error in pinpointing the targets positions is as in figure 6.2, where blue ellipses width and 

hight are maximum errors in y and x respectively evaluated during the whole test. UAV complete flight path 

is also shown along with red targets scaled accordingly to the graph’s dimensions. Targets are enumerated in 

the order in which they are moved during the reset of the environment. It is possible to relate target’s number 

to the colour used in graphs (1 – red, 2 – blue, 3 – green, 4 – magenta, 5 – black).   

In figures 6.4, 6.5 and 6.6 commands for the x axis, y and yaw and z axis, in the camera’s frame of reference, 

respectively are depicted. Colours, in this case, are selected as in figure 5.1 so that every type of command can 

be easily recognizable. In figure 6.4 the dotted red line represents the detected target of choice to be reached, 

whereas dotted black line is the desired value, camera_x_targ. If in the camera’s frame of reference, the 

chosen target is in the desired position then the target is directly under the UAV in x local coordinates. The 

solid red line is the command generated by the control system in terms of velocity.   
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It can be noticed that when a target is chosen then the target state spikes in the negative values and the 

commands acts accordingly to bring the camera detected target to camera_x_targ. This process repeats itself 

five times over. This happens only if the target is seen directly by the camera.  

If the chosen target is not on the visual contact with the camera, then the control method is switched, as 

happens in this case around 50 s – 55 s marks. Figure 6.5a is relative to the command given in the y axis, 

whereas the figure 6.5b is relative to the yaw rate command. This time the desired value is always 0 when 

visual controls are applied, as in both y, when the UAV is moved with strafe commands, and yaw, when the 

UAV is moved in heading, the aim to align the target with the x body axis of the UAV.   

In most of the cases the y commands are used more than yaw because targets are close one to another, 

however at marks 40 s and 52 s the UAV is not turned towards the target, so a command is given to turn so 

that the camera can see it. In this case the desired value to be reached is different from 0 and varies depending 

on target’s angle with respect to the UAV’s heading.   

In figure 6.6 commands generated for the z axis are represented along with the desired altitude and the actual 

UAV’s altitude. This is also the easier graph to read since there are not any switching of command modes.  
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Figure 6.1: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 

 

 

 
Figure 6.2: Top-down workspace graph. 
Targets scaled, maximum errors in x and y, local coordinates, evaluated during the whole episode,  
(--) UAV’s trajectory. 
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Figure 6.3: Error graph 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 

 

 

Figure 6.4: Command graph for x axis 
(─): command on x axis [m/s], (--): y camera target state [m], (∙∙∙): desired y camera target state [m] 
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Figure 6.5: y and yaw rate commands. The first graph, figure a, represent commands to the y axis,  
while the second one, figure b, depicts commands in yaw rate. 
(─): command on y axis [m/s], (--): x camera target state [m], (∙∙∙): desired x camera target state [m] 
(─): command in yaw rate [rad/s], (--): heading camera target state [rad], (∙∙∙): desired yaw camera 
target state [m] 

 

 

Figure 6.6: z control graph. 
(─): command on z axis [m/s], (--): UAV’s altitude [m], (∙∙∙): desired altitude [m] 
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6.1.3 Scattered targets 

This case is run as the previous one, but targets positions are random generated, thus providing with sparce 

targets in the workspace area.  

As before, in figure 6.7 predicted targets positions and real ones are depicted for x and y axis. Also, in this 

case the algorithm is able to pinpoint, with errors reported in figure 6.9, all target positions.   

Again, the magenta and blue lines deviate quite a bit from the exact target position, but, since the updating of 

targ_LOC message relies on both coordinates, the algorithm is not confusing them. In fact, for instance at 55 s 

mark the magenta line in the x graph moves towards the dotted blue line, however in the y case it moves 

towards the green line, this signifies the algorithm is making an error on the prediction but is not mixing two 

targets.   

As in the previous case in figure 6.8 maximum errors evaluated in the whole test are represented. Although 

bigger errors are present with respect to the previous case, this does not compromise the mission. When the 

algorithm selects the target affected by an error it uses its approximative position to turn in heading towards 

its general position, and, if the target is still not detected by the camera, the UAV starts to move in its 

predicted position anyway. Eventually the target enters in the visual range of the frontal depth camera, thus 

causing the control method switching to only visual guidance. From this point on the stored position depicted 

in graphs is used only if visual contact is lost. As the target gets closer the error, in both visual control and the 

memorized position one, diminishes as it is easier to make an estimation, thus making the control system 

effective at reaching targets with precision.   

In figure 6.10 the evolution of the predicted targets position error is visualized using snapshots of the test, the 

images are generated at the start of the test and each time the UAV successfully reaches a target.   

At the beginning, 6.10a, the UAV is still, and almost all the targets are pinpointed with a low error. Only 

targets number 2 and 4, which are the farthest ones, are pinpointed with a greater error.   

In 6.10b, the UAV moves to the closer target the number 3 however, since targets 2, 4 and 5 are still in the 

camera’s visual range, their stored positions are still updated. With respect to the previous snapshots targets 2 

and 4 position is estimated with a greater error, this is probably caused by the movements, dynamic response 

to command, of the UAV. Meanwhile target 5 position, which had an already small error, is estimated even 

better since the UAV is closer to it than before.   

In 6.10c the UAV moves to target 5 and, in its path, enters in visual contact again with target 4 but this time is 

closer. This makes possible for the algorithm to correct for the previous error and estimate precisely target 4 

position.  

In 6.10d the UAV moves to the target 4 and sees again target 2, which allows to correct its predicted position.  

In 6.10e and 6.10f, the UAV reaches both targets 2 and 1 thus completing the mission objective.  
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Figure 6.7: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 
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Figure 6.8: Top-down workspace graph. 
Targets scaled, maximum errors in x and y, local coordinates, evaluated during the whole episode,  
(--) UAV’s trajectory. 

 

 

Figure 6.9: Error graph 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 
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Figure 6.10: top-down view of the test with snapshots taken at the beginning and every time a new target 
is reached. Figure a: top left, figure b: top right, figure c: middle left, figure d: middle right, figure e: 
bottom left, figure f: bottom right.  

Fig. a Fig. b 

Fig. c Fig. d 

Fig. e Fig. f 
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6.1.4 Targets switching  

This case is run exactly as the previous one, this means target positions are randomized at the beginning of the 

test.  

In this case in figure 6.11, towards the start of the test at around 55 s and 75 s, when the UAV is still turning 

in search for targets, happens that some of them are reallocated in targ_LOC message in a different row 

position to the initial one. For instance, the black curve under the 60 s mark, which is relative to target 5, 

estimates the target position very close to the blue dotted line in both of the axis, but after seeing also the last 

target, the number 1, represented by the red lines, the black solid line jumps to the black dotted line, the 

correct one. Differently to the previous cases, in which this phenomenon does not show up, this time both the 

x and y estimation varies together from the blue dotted line to the correct black dotted line, thus meaning the 

target changed position in targ_LOC. This does not compromise in any way the mission as it happens before 

the UAV reaches the first target but can be a serious issue if it happens after on, when one or more of the 

switched targets are already reached. The issue arises as target reached are flagged enumerating them as they 

are presented in targ_LOC message, thus if two of them switch place the algorithm flags as reached the wrong 

one.  

In figures 6.12a and 6.12b, the maximum errors on target’s positions are depicted from the start of the test and 

after the correct reallocation of targets respectively. In 6.12a errors are large, specifically targets 2 and 5 

ellipses overlaps one over the other in both coordinates. The overlapping can also be seen in figure 6.11, 

where target 2 is described by the blue lines while target 5 is described by the black lines.   

In 6.12b, after the reallocation, errors are much smaller, the algorithm is able to pinpoint target’s position 

correctly.  
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Figure 6.11: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 
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Figure 6.12: Top-down of the workspace, errors are evaluated before the targets are correctly located          
in the figure a, on the left side, and after in figure b, right side. 

 

 

Figure 6.13: Error graph 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 

 

  

Fig. a Fig. b 
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6.2 Deterministic policy with noise  

In this case, noise is added to the UAV’s position signal, and similar tests to the previous ones are carried out.  

 

6.2.1 Test execution  

In this case the test steps are the same as the ones described in chapter 6.1, however noise in the position 

signal extracted from the UAV’s FCU is added.  

Noise values are extracted from a normal distribution defined with 𝜇 = 0 and 𝜎 variable. The disturbance 

signal is added directly to the message obtained from mavros/local_position/pose, effectively modifying the 

actual position of the UAV in DroneState message. The noise is actually added after the Kalman filter to 

consider the worst-case condition in which not only the GPS is affected by great errors but also IMUs outputs 

imprecise information. Furthermore, if the noise is added only on GPS signal it would be difficult to assess the 

allocation algorithm performances since the noise would change shape depending on the filtering process. The 

UAV position, as explained in the previous chapters, is used by the allocation algorithm to find correct targets 

positions, thus making it a crucial information for the control system operation when the target chosen is not 

in camera sight. However, once targets are correctly localized, and the UAV’s camera sees the target to reach, 

then the disturbance signal should not have any impact on the control system part that acts when there is the 

visual contact with the target.  

Another major difference on the algorithm here applied and then kept as part of the control system is the 

implementation of a PID_buffer variable. PID_buffer holds up five occurrences of requests of control mode 

switching from visual to following memorized target positions. When PID_buffer holds all the five requests 

then happens the switching, effectively generating a delay. However, the delay is none if the control switch is 

from following memorized targets to visual control.   

This solution is implemented as, during tests with noise, when the UAV is in visual control mode close to the 

target, happens that the target is instantly lost, thus reverting back the control mode to follow memorized 

targets. This generates instantaneous commands in yaw rate that, although do not compromise the mission, 

makes the UAV behaviour different with respect to the expected one. With PID_buffer method the issue is 

completely solved.  
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6.2.2 Vineyard noisy row 

The same test run in section 6.1.2, where targets are aligned diagonally, is implemented. This allows to 

compare results with and without disturbances in the position signal.  

For this test a high value of 𝜎 = 0.7 is chosen to define the normal curve to extract noise values. In figure 6.14 

the two normal curves, for both coordinates, are obtained as histograms with data collected from the whole 

test. Instead in figure 6.15 the UAV disturbed position in local coordinates is shown and in figure 6.16 the rate 

between the noisy signal and the ideal one is reported. 68.2 % of the noise generated is around ±1 𝑚 in both 

the axes, while the remaining percentage ranges from about [1, 2] m and [-1, -2] m, there is only one 

occurrence of a value which is over 2.5 m. As before results are shown in figures 6.17, 6.18 and 6.19.   

The test proceeds similarly to the vineyard test without noise, the UAV is able to correctly locate each one of 

the targets and reaches them successfully.   

Other more specific considerations are made in the next cases as some phenomena are more evident.    

 

 

Figure 6.14: Normal distributions obtained as histograms for noise generation. On the y axis % of occurrences 
of the same value are shown. On the left side the x noise distribution, one right side the y noise distribution in 
local coordinates. 
x local noise histogram [%], y local noise histogram [%], (--): corresponding analytical normal curve [%]. 
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Figure 6.15: UAV's position on local coordinates with noise added. 
(─): noise added on UAV’s position x signal [m], (─): noise added on UAV’s position y signal [m],          
(--): UAV’s position (x, y) [m]. 

 

 

Figure 6.16: Rate between UAV's position with noise and UAV's ideal position. 
(─): Rate for x local position [-], (─): Rate for y local position [-], 
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Figure 6.17: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 
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Figure 6.18: Top-down workspace graph. 
Targets scaled, maximum errors in x and y, local coordinates, evaluated during the whole episode,  
(--) UAV’s trajectory. 
 

 

 

Figure 6.19: Error graph. 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 

 



   
 

90 
 

6.2.3 Sparce targets noisy 

This test is run like the one just presented, however targets positions are reset randomly in the workspace.  

As before in figure 6.20, the normal distribution used to generate noise is reported. The normal distribution 

has the same 𝜎 = 0.7 as the previous case. Also, in this case the UAV is able to locate and reach each target in 

the workspace.   

From these results emerges the allocation algorithm, in presence of noise in the position signal, struggles to 

allocate targets in the targ_LOC message. This happens because the noisy signal must be filtered by the 

buffer_matrix, which has to wait until a full line of similar values, within the tolerance buff_toll, is found. This 

ensures the generation of a correct value, with an error, of targets positions, however in the presence of noisy 

signal multiple values are discarded because not close enough to the previous registered one. The result is the 

allocation process, in presence of noise, is slower than the one without noise, this can be seen in figure 6.21, at 

around 50 – 60 s mark, where two targets are immediately located, whereas the others are identified after a 

certain delay.   

Targets positions identified, in the noisy case, are more precise than the ones detected during the test without 

noise, proof of this can be seen in figures 6.22, 6.23. This happens because the noise distribution tends to 

average out other sources of errors like distance and the UAV dynamics that, in test without noise, produced 

most of the error. This relation is also noticeable in the previous test, however, is less evident.  

 

 

Figure 6.20: Normal distributions obtained as histograms for noise generation. On the y axis % of occurrences 
of the same value are shown. On the left side the x noise distribution, one right side the y noise distribution in 
local coordinates. 
x local noise histogram [%], y local noise histogram [%], (--): corresponding analytical normal curve [%]. 
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Figure 6.21: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 
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Figure 6.22: Top-down workspace graph. 
Targets scaled, maximum errors in x and y, local coordinates, evaluated during the whole episode,  
(--) UAV’s trajectory. 

 

 

Figure 6.23: Error graph. 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 
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6.2.4 Location error noisy  

This test is run exactly like the previous one, however a value of 𝜎 = 0.8 is used to generate disturbances to 

the UAV position signal. Also 𝜎 = 0.8 is the threshold value identified for the noise generation, above it the 

allocation algorithm, in most tests, is not able to identify all the targets during the initial searching phase. Even 

with 𝜎 = 0.8 not all tests have a completely positive outcomes because in some of them not every target is 

correctly located. In this case the UAV manages to reach all the targets, however some issues arise.  

Targets allocation in targ_LOC message is very slow, as shown in figure 6.24 the first target position is found 

at around 25 s mark, while the last is correctly located only after the 45 s mark.   

In figure 6.26 the trajectory of the UAV is reported, as always along with maximum errors. It can be noticed 

that between target 2 and 5 the UAV follows a twisted path, the control system does not behave as expected. 

Target 5 is described in all the graphs by the black lines, in figure 6.24 and 6.27 it can be noticed the error 

with which the algorithm estimates its position is high. What happens is the UAV starts to move along its 

memorized position when target 5 is chosen, however, due to the intense noise in the position signal, as the 

UAV gets closer, the algorithm can’t update quickly target 5’s position. The algorithm is faced with 

conflicting information, a memorized value affected by great error and the inability to find a corresponding 

candidate to follow with only visual control system. This results in the UAV circling around the memorized 

target position, which is incorrect. In this case, eventually the algorithm is able to update target’s 5 position 

after some time, thus managing to reach it.   

In figure 6.28 y and yaw commands, from 100 s to 120 s marks, the timespan corresponding to the issue, are 

reported. The control system gives yaw rate commands to follow the memorized target.  
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Figure 6.24: predicted target position and actual target position in x and y local coordinates. 
From the top, the first and the third graphs:  
(─): predicted target 1 position [m], (--): actual target 1 position [m] 
(─): predicted target 2 position [m], (--): actual target 2 position [m] 
(─): predicted target 3 position [m], (--): actual target 3 position [m] 
(─): predicted target 4 position [m], (--): actual target 4 position [m] 
(─): predicted target 5 position [m], (--): actual target 5 position [m] 
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Figure 6.25: Normal distributions obtained as histograms for noise generation. On the y axis % of occurrences 
of the same value are shown. On the left side the x noise distribution, one right side the y noise distribution in 
local coordinates. 
x local noise histogram [%], y local noise histogram [%], (--): corresponding analytical normal curve [%]. 

 

 

 

 

Figure 6.26: Top-down workspace graph. 
Targets scaled, maximum errors in x and y, local coordinates, evaluated during the whole episode,  
(--) UAV’s trajectory. 
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Figure 6.27: Error graph. 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 1 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 2 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 3 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 4 [m] 
(-.-): error on x local target 1 [m], (∙∙∙): error on y local target 5 [m] 

 

 

Figure 6.28: y and yaw rate commands. The first graph, figure a, represent commands to the y axis,  
while the second one, figure b, depicts commands in yaw rate. 
(─): command on y axis [m/s], (--): x camera target state [m], (∙∙∙): desired x camera target state [m] 
(─): command in yaw rate [rad/s], (--): heading camera target state [rad], (∙∙∙): desired yaw camera 
target state [m] 
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6.3 RL policy  

This section explains the process of model training and evaluation in RL and shows the results. 

 

6.3.1 Training and evaluation execution  

Unlike before, since the aim of this section is to train and test the RL model policy, no noise is added to the 

position message. This is done to ensure that during the iterations of subsequent episodes there are no errors in 

the evaluation of the target positions, which could lead to either an incorrect update of the policy or, in the 

worst case, a complete simulation stop.   

Another major difference from the deterministic policy section is that the target positions are now pre-

initialised in the targ_LOC message. This is again done to avoid the algorithm not finding targets or 

misplacing them. This means that only the effectiveness of the RL algorithm is now tested, as the performance 

of the allocation algorithm has already been evaluated.   

As a side note, although targ_LOC is pre-initialised, the allocation algorithm continues to update their 

positions throughout the simulation.   

When the test is started the reset() function is called, which, performs the following actions:  

- Targets are moved to a random generated location in the workspace limits. 

- state_cam (state) message is reset with [0, 0] in all the rows.  

- targ_LOC is reset with (x, y) target position in rows. 

After these actions are completed, the UAV starts to follow the target, that gets chosen based on RL algorithm 

learning method if it is in the training phase, and with the best value action if it is during the evaluation phase. 
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6.3.2 Training  

The training process is carried out in a total of 600 episodes and with parameters reported in tables 5.4, 5.5. 

In figure 6.29 the cumulative reward across episodes is shown. In most episodes at the start of the training the 

UAV does not correctly complete the mission as chooses almost always wrong targets, the ones that has 

already reached, thus resulting in multiple negative rewards. after the first 100-200 episodes, through the 

updating policy process, the algorithm learns to never choose the same target twice thus completing the 

mission in most of the next episodes. In the last episodes the policy is able to consistently complete the 

mission, thus reaches every time the final reward, based on time. This allows to update the policy optimizing 

actions so that a lower mission time can be obtained. The training process is stable, but after 300 episodes is 

far slower seemingly reaching a plateau on reward across episodes.   

In figure 6.30 a colormap representing rewards for each episode is reported. Episodes that are not completed 

only have negative rewards, dark coloured, whereas green rewards are positive ones, awarded after the 

mission is complete. The brighter the green colouring is the higher the reward is. 

 

 

         Figure 6.29: cumulative rewards across episodes during the training process. 
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       Figure 6.30: colormap representation of rewards at each step during the training process. 

 

6.3.3 Evaluation   

It's not easy to evaluate the trained policy performances since the target position change implies that, both in 

test and in the evaluation, some episodes have a reward cap higher than others. However, from evaluation 

episodes and results graphs, figure 6.31, observations, several conclusions can be drawn.  

First of all, the policy learns to choose at every step targets that have not been already reached, this means the 

UAV does not pass two times over the same target. This result is achieved primarily through the flagging of 

reached targets rows in state with [100, 100], and since 𝜋 = 𝑃(𝑎|𝑠), making it easier to understand still 

available targets.   

With previous trainings the policy used to learn to choose the same action sequence at every episode, 

independently of the state. With this training, however, this does not happen, and a different action sequence 

is chosen for every different episode. This means the algorithm actively choses actions on the state basis, 

which is the correct behaviour.   

The best result should be a policy which chooses, accordingly to the state, the action sequence which 

minimizes the episode time. This is not completely achieved, as some different behaviour occurs. The policy 

chooses consistently as the first or the first two targets the ones closer to the starting point. This behaviour is 

beneficial in every episode. The next choices after the first, or the first two, are sometimes based on target 

groupings. The algorithm chooses the successive target that is in the general area of the UAV actual position. 
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Although this is not an optimal solution is the best one achieved and brings every time high value reward. 

However, some other times the next actions seem to be random and, although the UAV manages to reach all 

targets, episode time is high thus achieving a lower reward. This behaviour can be caused by the training, 

perhaps the algorithm did not learn to generalize some target configurations thus it does not develop the 

ability to adapt in these cases. In some rare episodes the UAV can't complete the objective, this also happens 

in the case a target configuration is very different to the ones generated during training. 

A comparison between performances of RL algorithm and the application of the deterministic policy can be 

done. Results, in term of reward across episodes, are reported in the already discussed graph in figure 6.31, 

whereas results regarding the deterministic policy case evaluation are shown in figure 6.32.  

The average cumulative reward after an evaluation of 100 episodes is 77.41 for the RL algorithm, whereas the 

same result for the deterministic policy case is 141.29. Although the average in the case of the RL is lowered 

by four occurrences of failed missions, the application of the deterministic policy almost always performs 

much better in term of time spent at each episode.  

 

 

        Figure 6.31: reward across episodes during the evaluation phase. 
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      Figure 6.32: cumulative reward across episodes using deterministic policy. 
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7 Conclusions 

In this final section, the full performance of the algorithm is described and a brief section on possible future 

work is reported. 

 

7.1 Performances and future work 

 

7.1.1 Performances  

As for the implemented control system described in chapter 5, it manages to control the UAV by giving 

commands to the FCU in the form of an outer loop with respect to the PX4 autopilot, achieving the desired 

results. It is able to give effective commands both when the frontal camera has a direct line of sight to the 

selected target, and when commands are generated using memorised target positions. The control method 

switching is effective in managing the UAV's controls when it's far from the target and when it's close to it. 

The positioning error is less than 0.07 m in both the x and y axis with respect to the camera frame, although it 

can easily be reduced, but then more time is needed for the UAV to meet with the required new tolerance.  

For the allocation algorithm, tests without noise show that it is capable of quickly storing target positions with 

errors similar to those shown in the graphs reported in chapter 6.2. The error depends mainly on the distance 

to the target, the further away the target, the higher the error, and on the dynamics of the UAV during flight. 

Some errors generated during the pipeline can accumulate, such as the superposition of targets during the 

recognition task. However, even this phenomenon rarely affects the outcome of the mission.  

The UAV command response generates oscillations and changing in attitude which can result in a bigger 

error. However, the buffer_matrix implemented works well in mitigating these two sources of errors thus 

making the allocation algorithm robust at localizing targets each time.   

Parameters which have a great effect on the allocation algorithm performances are buff_toll, targ_LOC_toll, 

and buffer_matrix_lenght. buff_toll and targ_LOC_toll values should be selected depending on minimum 

distance between targets, whereas the greater buffer_matrix_lenght is the more precise prediction on target 

locations are made, but the longer it takes for the algorithm to pick up new targets.   

For now, the algorithm works best if all targets are seen and located before starting to reach them, as issues 

like the target switching discussed in chapter 6.4.1 can cause the mission to fail.    

From tests done with noise, considering a normal distribution used to generate the disturbance signal, emerges 

the allocation algorithm is able to locate targets correctly also in noisy condition with a normal curve 

described with 𝜇 = 0, 𝜎 < 0.8.   
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With the noisy signal is more difficult to pick up new targets, delays of several seconds have been found 

during test between the visual contact of the target to the memorization of its position. Also, once the target is 

located, errors are smaller than the ones in the case without noise, as explained in chapter 6.2.3.  

The idea of having two parts of the whole algorithm which one memorizes targets, while the other one outputs 

only visual information and both are used in the control system, allowed the UAV to complete the mission in 

both policy cases. Thus, making this idea the key which allowed the designing of the whole project.  

The RL policy obtained, based on a fully connected neural network, is able to correctly reach all targets 

scattered in the environment thus completing the mission but, in terms of time spent, in a not optimal way. 

The deterministic target choosing method, although it does not minimize the mission time, it is a great 

compromise between complexity and performances and, compared to the RL policy, achieves better results 

for now.   

Through the design process of the RL methods some critical issues regarding the Gazebo simulator have been 

encountered:  

- Large computing power required: Gazebo is a very precise simulator, representing with fidelity 

sensors behaviour, UAV dynamics, autopilots modes etc. this makes the simulation demanding and 

heavy to run. A simpler and more lightweight simulator would have been more effective for RL 

training as simulations can be run much faster than real time, reducing training time, which was not an 

option with Gazebo.  

- Realistic sensor and autopilot behaviour: Gazebo simulates with fidelity sensors and the autopilot 

operations. This implies the need to implement autopilot mode switching, realistic tuned control 

systems, and other real UAV functionalities just to train the model. This results in a complex RL 

environment with a high probability of errors and warnings from the simulator, which are not always 

easy to assess and eliminate. Also, during simulations, are experienced different delays from when the 

UAV is on top of the target to the declaration of target reached. This depends on control system gains 

and UAV's dynamics, although is a real effect, is not beneficial for the RL training. 

- No full reset possible: Once the simulation starts, is not possible to shut down and restart the whole 

simulation. Some other methods must be implemented like the one utilized, which consists in return 

the UAV back and move models. However, this method can cause issues, for instance if the UAV 

crashes into and environment model is not possible to reset and proceed the simulation. 

Although the Gazebo simulator has been used with partial success, for these reasons is not suitable for 

effectively training RL models.    
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7.1.2 Future work 

Starting from the U-Net utilized for target recognition, the next step is implementing in Gazebo realistic plants 

models and train the NN so that these models are recognized. Also, a catalogue of plants can be implemented, 

where different masks, depending on plant classification, are generated, so that only target plants of choice for 

the mission are reached and treated with appropriate products. This is feasible as the original U-Net in (Olaf 

Ronneberger, 2015) is able to generalize well also in the presence of multiple categories, although some 

modifications are needed. For instance, a CNN is utilized in the work of (Hehu Zhang, 2019) for foliage 

recognition of plants, in which useful CNN training advice are given.  

Although not optimal, the deterministic policy assures best performances, the next step would be to implement 

the algorithm with the deterministic policy in a real scenario with hardware sensors and UAV. This is useful 

to evaluate actual performances and apply modifications to the algorithm to account for real effects. This also 

represents the last step of the design process.  

The RL algorithm, although its performances are worse than the deterministic policy, is promising anyway. 

First, a new simpler simulator should be coded without real autopilot and sensors interaction, but that can 

represent an environment, for the sole purpose to train the RL model quickly. This way is also possible to run 

trainings in a brief time but with more episodes without errors, allowing to change hyperparameters quickly 

and try multiple different solutions in a fast way. Also, some environment agent interactions are 

understandable by the RL policy only after a much higher episode number than 600, depending heavily on the 

task. Then the trained policy should be implemented and tested in the Gazebo simulator to assess autopilot, 

sensors, and environment real effects interaction with precision.   

RL allows to implement also other solutions, such as obstacle avoidance and other functionalities in an 

organic manner with modifications of the already coded environment, this also requires a different reward set 

and multiple trainings.   
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