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Summary

The first five CubeSats were released from the Kibō module of the International Space
Station (ISS) via the JAXA J-SSOD deployer on 4th October 2012. A CubeSat,
as a U-factor standard size, has been revolutionizing access to low-Earth orbit
(LEO). Since then, a recurrent need of knowing about the lifetime of CubeSat in
orbit. Thus, the main objective of this thesis is to explore the main parameter
influencing the lifetime of CubeSat deployed from the ISS. The work is performed in
collaboration with Nanoracks Space Outpost Europe, which offers the opportunity
to deploy satellites from the ISS. Therefore, the spacecraft parameters together with
the effect of the deployment and perturbation due to the Space environment are the
main elements of this study. An estimation is performed via the Systems Tool Kit
(STK) software of AGI and choosing Astrogator as the orbit propagator which allows
simulating the release of the CubeSats, including the ∆V provided by the deployer
and the possibility of varying satellite parameters during the decay. The subjects
of the analysis are single-unit, double-unit and triple-unit CubeSat also known as
1U, 2U and 3U which are the most deployed in recent years. Considering tumbling
satellites, deployed in 2022, an orbital decay of 277, 337 and 357 days is estimated
for 1U, 2U and 3U respectively. Then, a longer lifetime by switching the satellite to
the minimum drag mode, resulting in an increase of 100 days for 1U and 600 days for
3U could be reached. In conclusion, predicting the satellite’s attitude may help in
the estimation. Nevertheless, the prediction of solar activity is still another element
to be taken into account for an improvement of the accuracy and precision of the
simulation.
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Chapter 1

Introduction

The work developed for the purpose of this thesis is carried out in collaboration
with Nanoracks Space Outpost Europe (NRSOE), a Space company which provides
three different options to deploy satellites from the International Space Station
(ISS) according to their size: Nanoracks CubeSat Deployer (NRCSD) for CubeSats,
Nanoracks Kaber MicroSat Deployer (Kaber) for MicroSatellites and Nanoracks
Bishop Airlock for larger SmallSats. In particular, this work focuses on the orbital
decay of the CubeSats, which growth is enlarging. Therefore, this chapter introduces
the definition of CubeSats, the analysis of methods and mechanisms for releasing
satellites into Space, and the explanation of the objectives of this work.

1.1 CubeSat Definition
A CubeSat is a satellite with a standardized shape called a unit, U. The size of a
unit is 10 cm × 10 cm × 10 cm with a typical weight of less than 1.33 kg [1]. The
concept of CubeSats originated from a collaboration between California Polytechnic
State University in San Luis Obispo and Stanford University in Stanford, California.
For the first time, a small educational platform called “CubeSat” was developed.
Over the years, it has played a key role in the “democratization” of Space, making
Space exploration and research accessible for universities and scientists [1]. This
development is based on the low cost of manufacturing and putting CubeSats into
orbit. Although CubeSats originally consisted of a single cube called a 1U, other
different combinations as shown in figure 1.1, have been developed due to their
widespread use in recent years [2].

Figure 1.1: CubeSat unit possible combinations. Credit NASA [2]
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Introduction

The advantage of these larger CubeSats lies in the possibility of obtaining more
science at a lower cost, due to the additional volume, power and overall increase in
capacity. Today, after their physical expansion, CubeSats belong to the common
category of small satellites (a satellite with a mass of less than 180 kg according
to the Small Spacecraft Technology Programme) according to the mass definition
of the sub-category: a CubeSat with a mass greater than 10 kg is a microsatellite,
otherwise, a nanosatellite [2].

1.2 Deploying satellites from ISS
With the spread of the CubeSat concept, a large market for adapters and dispensers
to compactly accommodate CubeSats on existing launchers was created [2]. The
purpose of these technologies is both to mechanically interface the CubeSat to the
launcher and to deploy it. The method to bring a satellite in Space integrated into
the launch vehicle or separation system is called rideshare. In general, the choice of
this way of releasing CubeSats into orbit implies total dependence on the customer
of the primary spacecraft, who can decide whether to share the journey and how
and when to deploy the secondary payload. In addition, the secondary payload must
comply with the requirement not to damage the first payload or other satellites in
the case of multi-mission launches. This may include restrictions on the design of
the CubeSat.

By designing a small satellite launcher installed on the ISS and then demonstrating
the ability to deploy a satellite from it successfully, the Japan Aerospace and
Exploration Agency (JAXA) revolutionized the way small satellites are ejected in
LEO. Specifically, as shown in figure 1.2, the Japanese Experiment Module (JEM)
Small Satellite Orbital Deployer (J-SSOD) uses the JEM Remote Manipulator System
(JEMRMS), which is a robotic arm, to position itself away from the station and
safely deploy satellites [1].

JEM Airlock Slide Table

MPEP

J-SSOD

JEM Airlock

JEM Remote Manipulator 

System (JEMRMS)

Figure 1.2: Deployment of 1U using JEMRMS and J-SSOD platform. Credit JAXA
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Unlike rideshare, deploying from ISS implies:

• The independence of the launch enables the best time to eject the small satellite
to be chosen without affecting the timing of the leading satellite. It is possible
to exploit the regularly scheduled cargo resupply flights on which CubeSats can
easily travel.

• A moderate vibration environment enables satellites not to have to pass stringent
vibration tests. Satellites are delivered to the ISS in soft bags (Cargo Transfer
Bags) buffered with packing materials. As a consequence, the level of vibrations
they are subjected to is lower than when they are deployed from the launch
vehicle.

• The final satellite checkout ensures its safety before deployment. Before use,
astronauts can perform quality checks on the hardware.

In particular, the second and third features allow designers to choose electrical parts
without traditional Space classifications, thus saving money and accelerating new
space-qualified technology. This mainly refers to small satellite developers, because
some of them, such as university students, for instance, cannot afford to use expensive
aerospace-rated electrical parts to pass vibration tests.

The adoption of satellite deployment from the ISS has increased the use of
Space Station deployments by potential developers of small satellites. As a result,
universities, companies and other non-traditional space users are finding economic
access to space [1]. In fact, since 2018, in addition to J-SSOD, other platforms have
been used, such as Nanoracks CubeSat Deployer, developed by Nanoracks LLC,
and CYCLOPS, developed by NASA [1]. As for the NRCSD, it is a self-contained
CubeSat deployment system designed to accommodate any combination of CubeSats
up to a maximum volume of 6U, or a single 6U CubeSat in the 1×6×1U configuration
[3]. Specifically, as shown in figure 1.3 it is a rectangular “silo” that consists of four
sidewalls, a base plate, a pusher plate assembly with an ejection spring, two access
panels, two doors, and a primary release mechanism [3]. There is also an NRCSD
DoubleWide which can accommodate CubeSats up to 12U (2×6U).

Figure 1.3: NRCSD and DoubleWide version. Credit [3]

Payload integration takes place on the ground, where the CubeSats are mechanically
and electrically isolated from the supply vehicles, the ISS and the ISS crew. As far
as deployment is concerned, the deployer is moved outside the airlock of the Kibō
module on a sliding table. Specifically, the NRCSD mounts on the Multi-Purpose
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Experiment Platform (MPEP), which in turn mounts on the JEM Airlock Slide Table,
which is grasped by the JEMRMS which moves it to the correct launch position,
generally below the ISS and in the opposite direction to the ISS velocity vector to
avoid potential contact with the ISS [3].

1.3 Objectives of the study
In contrast to the advantages of deploying CubeSats from the ISS, as seen in 1.2,
the deployment altitude imposed by the ISS, between 400-420 km, generally implies
a short lifetime for the satellites. At this altitude, perturbative forces, mainly
atmospheric drag, reduce the energy of the satellite, which consequently moves
to a smaller orbit. If satellites are not equipped with a propulsion system, they
cannot avoid the inevitable re-entry into the atmosphere, i.e. the end of their life.
A reliable prevision on the satellite’s lifetime, i.e. the time that has elapsed since
deployment to when it burns in the atmosphere is fundamental for customers who
want to bring their experiment into Space. Since accurately predicting the decay of
a satellite is very complex, mainly due to the high level of uncertainty in predicting
atmospheric drag, this is one of the points of discussion during negotiations between
NRSOE and customers. Therefore, it is fundamental to investigate the dynamic
behind the orbital decay of satellites deployed from the ISS. Within the company,
this study was treated in two different ways: a code development and a parametric
study. The first involves the development of a code to estimate the lifetime of
the satellites by implementing a general perturbation technique then integrated
numerically with Runge Kutta 4, and is reported in [4]. The second method is
reported in this thesis and concerns the lifetime analysis of CubeSat 1U, 2U and 3U
without a propulsion system through a parametric analysis that took into account
environmental perturbations and the physical properties of the satellite. To achieve
this, several simulations were performed using the AGI Systems Tool Kit (STK)
software, choosing Astrogator as the orbit propagator.

1.4 Lifetime estimation approach
According to the standardized methods to assess orbital lifetime [5] shown in figure
1.4, it’s necessary to select the analysis method among high-precision numerical
integration, rapid semi-analytical orbit propagation and numerical table look-up.
While the latter is a simple look-up of tables, graphs and equations generated using
the other 2 methods, the second exploits the definition of average orbital elements,
semi-analytical orbit theory and an average ballistic coefficient model to ensure rapid
integration with reasonable accuracy. Unlike semi-analytical propagation and table
look-up, numerical propagation is high-fidelity but requires more calculation time.
As previously mentioned, the former is chosen for this work and the analyses were
performed with STK’s Astrogator propagator. The numerical integration uses a
numerical integrator and accounts for a detailed gravity model, third-body effects,
solar radiation pressure and a detailed model of the satellite’s ballistic coefficient.
As will be seen in chapter 4, however, an average ballistic coefficient is adopted in
this work due to the difficulty of obtaining its precise values. In addition to the
ballistic characteristics of the spacecraft and the attitude rules, the initial orbital
conditions and the atmosphere model are selected as input for the analysis method.
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Figure 1.4: Lifetime estimation process

In particular, the choice of the appropriate atmosphere model to be incorporated
into the orbit acceleration formulation is followed by the selection of the appropriate
inputs to that model [5]. Therefore, it is important to choose an atmosphere model
that accommodates solar activity variation to obtain more accurate results.

To execute the analysis, the process shown in Figure 1.4 is followed, while to
study the effect of the parameters affecting the orbital decay, [6] and [7] are the main
references.

5



Chapter 2

Orbital Dynamics

2.1 Two-Body Problem
A model for describing the motion of planets and later satellites is provided by
Kepler’s law, while Newton’s law of universal gravitation is an explanation of such
motion [8]. By applying the equation derived from the latter law and Newton’s
second law of motion, the equation of motion for planets and satellites is developed.

Newton’s second law of motion states that “the time-rate change of momentum is
proportional to the force impressed and is the same direction as that force” and for
systems of constant mass is expressed mathematically by the equation 2.1:Ø

F̄ = m¨̄r (2.1)

where q F̄ is the vector sum of all the forces acting on the mass and ¨̄r is the vector
acceleration of the mass measured with respect to an inertial reference frame.

Regarding the law of gravity, it states that “any two bodies attract one another
with a force proportional to the product of their masses and inversely proportional
to the square of the distance between them” and is expressed mathematically by the
equation 2.2:

F̄g = −GMm

r2
r̄

r
(2.2)

where F̄g is the force on mass m due to mass M , r̄ is the vector from M to m and G

is the univeral gravitational constant roughly equal to 6.673 × 10−20 km3

kg·s2 .
It is assumed that the bodies are spherically symmetric and the gravitational

forces are the only ones acting on the system and along the line joining the centre of
two bodies. Specifically, the system, as shown in figure 2.1, consists of two bodies
of masses M and m, known as the two-body problem. In addition, there are two
coordinate systems, one inertial (X’,Y’,Z’) and the other (X,Y,Z) non-rotating,
with axes parallel to the first and originating in the body of mass M . Applying
Newton’s law in the inertial reference frame and measuring the relative position,
velocity and acceleration in (X,Y,Z), the equation of motion 2.3 is obtained:

¨̄r + µ

r3 r̄ = 0 (2.3)

where µ is the gravitational parameter, i.e the product between M and G, and
resulting from the assumption of M >> m. In fact, the mass of a satellite in Earth’s
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Figure 2.1: Relative motion of two-body problem

orbit is negligible compared to the mass of the Earth.
The equation 2.3 is a second-order non-linear vector differential equation describing
a model in which a small mass (e.g. a satellite) moves in a gravitational field
whose force is always directed towards the centre of a large mass (e.g. the Earth).
Since one of the above assumptions implies the presence of only the gravitational
force in the two-body system, and since a gravitational field is “conservative”, the
specific mechanical energy E of the satellite is conserved. In addition, the satellite’s
specific angular momentum h̄ concerning the centre of the reference frame (X,Y,Z)
is constant due to the radial direction of the gravitational force (i.e. there are no
tangential forces that can change the angular momentum). Furthermore, from the
definition of h, the satellite’s motion must be confined to a plane that is fixed in
space, the orbital plane.

2.1.1 The Trajectory Equation
It is possible to obtain easily a partial solution of the equation 2.3 by crossing this
equation into h̄ and performing several algebraic steps. The resulting equation 2.4
provides information on the size and shape of the orbit:

r =
h2

µ

1 +
1

B
µ

2
cos ν

(2.4)

where B is the module of the constant vector of integration B̄ and ν is the angle
between B̄ and r̄. The equation 2.4 is the trajectory equation expressed in polar
coordinates where ν is the polar angle [8]. There is a similarity between equation 2.4
and the general equation of a conic section written in polar coordinates:

r = p

1 + e cos ν
(2.5)

where p is a geometric constant of the conic called semi-latus rectum, while e, which
determines the type of conic, is called eccentricity. Therefore, not only is Kepler’s
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first law (“the orbit of each planet is an ellipse, with the Sun at a focus”) verified
but the law is extendable to orbital motion along any conic section path.

A conic section may be defined as the curve of the intersection of a plane and
a right circular cone [8]. Figure 2.2 shows a geometric representation of an elliptic
conic section.

Figure 2.2: Elliptic conic section

The ellipse has two foci, where F is the primary focus (e.g. the Earth’s centre for
satellites’ orbit) and F ′ is the secondary focus. Half the distance between foci is
the dimension c, while a is the semi-major axis and b is the semi-minor axis of the
ellipse. The distance from the primary focus to the farthest point of the ellipse is
called the radius of apogee, ra, and to the closest point of the ellipse is called the
radius of perigee, rp.

An ellipse is a closed curve, so an object along this orbit always travels the same
path. The time it takes the satellite to complete one revolution around its orbit is
called the period Π. It is expressed by the equation 2.6:

Π = 2π

ó
a3

µ
(2.6)

In the case of a circular orbit, Π is expressed by the equation 2.7:

Π = 2π

ó
r3

µ
(2.7)

The circular orbit is a special case of the ellipse in which the semi-major axis is
constant and coincides with the radius.

Useful for analysis is also the definition of mean motion with units of radians
per unit of time [9]. This is therefore the average angular velocity of change of the
satellite in orbit. It is expressed by the equation 2.9:

n =
ò

µ

a3 (2.8)

2.2 Satellite State
Defining the state of a satellite in space requires six components. Their collection
is called either state vector or element sets. The former is usually associated with
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position and velocity vectors, while the latter is typically used with scalar magnitude
and angular representations of the orbit and is called orbital elements [9]. Both
refer to a particular coordinate frame. As far as element sets are concerned, the
classical orbital elements, often called Keplerian elements, are the most common.
Other element sets have been developed for convenience or to avoid the difficulties
the classical orbital elements suffer for certain orbital geometries, such as two-line
and equinoctial ones [9].

2.2.1 Classical Orbital Elements
Considering the orbit of an Earth satellite in the geocentric-equatorial system using
IJK unit vectors, the classical set of six elements, shown in figure 2.3, is defined by
[8]:

a, semi-major axis a is a constant defining the size of the conic orbit.
e, eccentricity e is a constant defining the shape of the conic orbit.
i, inclination i is the angle between the K unit vector and the angular moment

vector h̄.
Ω, longitude or right ascension of the ascending node Ω (RAAN) is the angle,

in the fundamental plane, between the I unit vector and the point where
the satellite crosses through the fundamental plane in a northerly direction
(ascending node) measured counterclockwise when viewed from the north side
of the fundamental plane.

ω, argument of perigee ω is the angle, in the plane of the satellite’s orbit, between
the ascending node and the periapsis point, measured in the direction of the
satellite’s motion.

ν, true anomaly at epoch ν is the angle, in the plane of the satellite’s orbit,
between perigee and the position of the satellite at a particular time called the
epoch.

Figure 2.3: Keplerian orbital parameters

The first five elements are sufficient to completely describe the size, shape and
orientation of an orbit, whereas the last is necessary to identify the position of the
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satellite along the orbit at a given time. Sometimes the semi-latus rectum p replaces
a or time at perigee passage T, i.e. the time when the satellite was at perigee,
replaces ν. Furthermore, the listed definitions are suitable also considering another
coordinate system, only the definitions of unit vectors and the fundamental plane
would be different.

2.2.2 Two-Line Element Sets

Two-line element sets (TLE) are available to the general public through Air Force
Space Command (AFSPC) [9]. TLE sets describe the Space object’s orbit at a
specific epoch using a specific definition of the orbital parameters and are generated
using the SGP4 perturbation model. TLE elements are collected in a table with 72
columns and two rows. The time unit is in Universal Time Coordinate (UTC), while
the coordinate system should be considered a true-equator, mean equinox system
In addition, the units of each variable in the table are different and specific to each
measure.

Table 2.1: TLE sets line 1

Column Description
01 Line number of element data
03-07 Satellite number
08 Classification (U=unclassified)
10, 11 International Designator (Last two digits of launch year)
12-14 International Designator (Launch number of the year)
15-17 International Designator (Piece of the launch)
19, 20 Epoch Year (Last two digits of year)
21-32 Epoch (Day of the year and fractional portion of the day)
34-43 First-time derivative of the mean motion
45-52 Second-time derivative of mean motion (decimal point assumed)
54-61 BSTAR drag term (decimal point assumed)
63 Ephemeris type
65-68 Element number
69 Checksum (letters, blanks, periods, plus signs=0; minus signs=1)

Specifically, from the definition of mean motion, which is different from that of
subsection 2.1.1, it is possible to derive the period of the orbit:

Π = 86400 s

N
(2.9)

where N is the number of orbits per day and the numerator represents the number of
seconds in a day. Moreover, in table 2.1, BSTAR is an adjusted value of the ballistic
coefficient using the reference value of the atmospheric density ρ0 :

B∗ = Bρ0

2 (2.10)
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Table 2.2: TLE sets line 2

Column Description
01 Line number of element data
03-07 Satellite number
09-16 Orbital inclination (degrees)
18-25 Right ascension of the ascending node (degrees)
27-33 Orbital eccentricity (decimal point assumed)
35-42 Argument of perigee (degrees)
44-51 Mean anomaly (degrees)
53-63 Mean motion (orbit per day)
64-68 Revolution number at epoch (orbits)
69 Checksum (Modulo 10)

2.3 Perturbations
The theory of the two-body problem cannot resolve accurately the real-world trajec-
tory problems [8]. Perturbations caused by other bodies and additional forces not
considered result in the theoretical orbit being changed. In particular, perturbations
are deviations from a normal, idealized, or undisturbed motion [9]. Fortunately,
most orbital flight perturbations are predictable and analytically treatable. However,
others require a stochastic approach, such as solar activity. Therefore, perturbation
methods are essential to obtain more realistic results. There are two main categories
of perturbation techniques, special and general perturbations. The former deal with
the direct numerical integration of the equations of motion including all necessary
perturbing accelerations, while the latter involve an analytical integration of series
expansions of the perturbing acceleration [8]. Note that in the case of numerical
integration, any perturbative acceleration can be considered. Considering special
perturbations, the output refers to a specific problem or set of initial conditions,
whereas in the case of general perturbation, the result provides more detail and covers
many cases. This is particularly true when the calculations are of long duration.

2.3.1 Special Perturbation Techniques
Cowell’s method is the simplest and most widespread special perturbation technique
[8]. It consists of implementing the equations of motion of the studied object,
including all perturbations, and then integrating them numerically step by step.
Taking the perturbations into account in the two-body problem is possible by adding
the perturbing accelerations as shown in the equation 2.11:

¨̄r + µ

r3 r̄ = āp (2.11)

where āp is the total acceleration caused by other forces acting on the satellite.
Fortunately, the form of the equation 2.11 allows each effect to sum linearly. The
equation 2.11 is known as the Cowell’s formulation and is a second-order differential
equation of motion that is numerically integrated, while the Cowell’s method is a
technique that uses the calculus of finite differences to perform the integration [9].
For numerical integration, the Cowell’s formulation would be reduced to first-order
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differential equations 2.12:
˙̄r = v̄

˙̄v = ap − µ

r3 r̄
(2.12)

where r̄ and v̄ are the radius and the velocity of a satellite with respect to the larger
central body [8]. In addition, to solve the equations 2.12, it is necessary to use the
vector components.

The main advantage of this method is its simplicity in formulation and implemen-
tation. However, solving the equation of motion in the vicinity of a large attractive
body requires smaller integration steps, which affect the time and cumulative error.
Furthermore, the velocity is rough 1/10th that of Encke’s method and is not suitable
for lunar trajectories [8].

Encke’s method isn’t very popular today but it is historically relevant [9]. Instead
of integrating the sum of all the acceleration, it integrates just the difference between
the two-body acceleration and the perturbed acceleration. The perturbations to the
orbit are integrated with cartesian elements. This method implies a reference orbit
along which the object would move in the absence of all perturbating acceleration
called the osculating orbit. The process continues until a rectification point where the
osculating orbit is re-initialized. Integrating only between the osculating (two-body)
orbit and the actual perturbed implies the magnitudes are much smaller and the
computational precision is greater [9]. Therefore, the Encke’s method is much faster
than Cowell’s due to taking larger integration step sizes when near a large attracting
body [8]. Moreover, it is especially useful for interplanetary trajectories.

Figure 2.4: Encke’s method

Considering the equation 2.11 as that for the true orbit and the equation 2.13 for
the osculating orbit:

¨̄ρ + µ

ρ3 ρ̄ = 0 (2.13)

the difference between the two accelerations is given by the equation 2.14:

δ ˙̄r = āp + µ

ρ3

CA
1 − ρ3

r3

B
r̄ − δr̄

D
(2.14)

Another interesting method involves the variation of parameters or elements and
was first developed by Euler in 1748 [8]. It is recommended in the presence of small
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perturbing forces. While the previous methods refer to coordinates, this one concerns
orbital elements or any set of parameters describing the state of the satellite. The
latter is based on research into how the selected parameters vary over time due to
perturbations. Therefore, analytical expressions of these variations are defined and
then integrated numerically. Note that orbital parameters vary slowly concerning
position and velocity over an entire orbit, so a larger integration step can be chosen
in which total acceleration (as in Cowell’s method) or perturbative acceleration (as
in Encke’s method) is integrated. Furthermore, a difference between this method and
Encke’s method is that in the latter the orbit is constant until rectification, whereas
in the method of parameter variation the reference orbit changes continuously [8].

2.3.2 Numerical Integration Method
Before evaluating different numerical integration methods, it is important to know
the type of errors involved. Rounding and truncation errors are the main types of
errors. The former arises from the finite number of digits of any number that a
computer can carry forward, while the latter are due to an inexact solution of the
differential equation [8]. Note that a numerical integration is an exact solution of
the difference equation, which imperfectly represents the true differential equation.
In particular, the truncation error results from not using all the series expressions
used in the integration method. This error is directly proportional to the value of
the step size. Eventually, the rounding errors depend on the machine, whereas the
truncation errors on the integration method.

Runge-Kutta, Adams-Moulton, Gauss-Jackson and Adams-Bashforth are some
representative numerical integration methods. The former is a single-step method,
while the others are multi-step. These latter require a single-step method to be
started at the beginning and after each change in step size [8].

The most well-known numerical integrators are the Runge-Kutta methods originally
presented by Carl Runge in 1895, and Wilhelm Kutta in 1901 [8]. They derive from a
Taylor series, but differ from it in that, instead of having to derive application-specific
formulae for the terms of the upper derivatives, they simply use the slope at different
points within the range over which it is integrated. Equations 2.15 and 2.16 shows
the classical fourth-order Runge-Kutta method:

xn+1 = xn + 1
6 (k1 + 2k2 + 2k3 + k4) (2.15)

where

k1 = hf (tn, xn)

k2 = hf

A
tn + h

2 , xn + k1

2

B

k3 = hf

A
tn + h

2 , xn + k2

2

B
k4 = hf (tn + h, xn + k3)

(2.16)

and n is the increment number.
Conventionally, a method is termed fourth-order if it’s locally accurate to fourth-

order, globally correct to third-order, has fifth-order local error and fourth-order
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global error [9]. Other forms are derived from the basic method, such as the Runge-
Kutta-Fehlberg (RKF) method, which uses a variable step size. The main feature
is to adjust h to keep local truncation errors within certain tolerances. At each
step, the equations of motion are numerically integrated twice in a different order
and the results are compared. If they are not reasonably close, the step size is
modified to maintain a uniform difference in the evaluations along the orbit. The
final result uses the initial values with a seventh order with eighth-order Runge-Kutta.
This approach is optimal when studying highly eccentric orbits such as Molniya’s.
Without this variable step size, much time is lost in the vicinity of the apoapsis,
when the integrator is taking too small a step. Likewise, the integrator may not use
a sufficiently small step size at periapsis, where the satellite is travelling very fast [9].

In general, the Runge-Kutta methods are stable, easy to implement, have a
relatively small truncation error, do not require a start-up procedure and the step
size is easily changed. On the other hand, it is not easy to determine the truncation
error and thus the correct step size.

Adams-Bashforth is a multistep “predictor-corrector” method. It uses a calculated
predictor value x̄n + 1 to estimate a correct one [8]. The first value is substituted
into the differential equation to obtain ˙̄xn + 1, which is used to calculate the correct
value x̄n + 1. In general, multistep methods are faster than single-step methods, but
they are more complex. The Adams-Moulton method adopts the Adams-Bashforth
scheme by adding a fourth-order formula. The difference lies in using the correcting
formula to find the correct value of x̄n + 1. In addition, it is possible to iterate over
the correcting formula until there is no significant change in the value x̄n + 1. This
method requires a single-step method to start with and the Runge-Kutta is the one
suggested [8].

As far as the Gauss-Jackson method is concerned, it was developed for the
integration of systems of second-order equations. Its predictor alone is generally more
accurate than other methods, although it also includes a corrector. It also handles
the effect of rounding errors well. However, it is more complex than other methods.
It is one of the best for trajectory problems of the type Cowell and Encke. Instead,
for integration of first-order equations such as occur in the variation parameters
method, Adams-Bashforth or Adams-Moulton are more suitable.

2.3.3 Disturbing Forces
Several aspects shall be taken into account in the general equation of motion. The
satellite may orbit in the Earth’s atmosphere and therefore drag effects may be
present. If the a of the satellite’s orbit is large, solar radiation may be considered.
The effects of the planet’s non-spherical shape, third body and tides may be other
sources of perturbations. To integrate Cowell’s formulation numerically, mathe-
matical models are required for each perturbing force. Therefore, this subsection
derives analytical formulations of the accelerations resulting from the most common
perturbative forces. Note that only the simplest forms are considered, and more
complex and more accurate could be added.

The Non-spherical Earth
From the section 2.1, the Earth’s gravitational potential is µ/r and is due to a
spherically symmetrical body of mass, resulting in conical orbits. Actually, the
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Earth is swollen at the equator, flattened at the poles and generally asymmetrical.
According to Vinti [10], a potential function that takes into account the Earth’s
non-sphericity is expressed by the equation 2.17:

ϕ = µ

r

C
1 −

∞Ø
n=2

Jn

3
R⊕

r

4n

Pn sin La

D
(2.17)

where µ is the gravitational parameter, Jn is the coefficients to be determined by
experimental observation, R⊕ is the equator radius of Earth, Pn is the Legendre
polynomials, La is the geocentric latitude and sin La is equal to z/r. Considering a
geocentric, equatorial coordinate system, acceleration can be found from the potential
using the equation 2.18:

ā = ∇ϕ = δϕ

δx
Ī + δϕ

δy
J̄ + δϕ

δz
K̄ (2.18)

Note that by developing the partial derivative, one always obtains a first term which
is the acceleration of the two-body problem and the remaining terms represent the
perturbation accelerations resulting from the non-sphericity of the Earth. Regarding
Jn, a representative set of values for the first seven is given by the equation 2.19
defined by the Earth Gravitational Model EGM2008 [11] (an ASCII file containing
the Central Body geopotential model coefficients):

J2 = (1082.63) × 10−6

J3 = (−2.532) × 10−6

J4 = (−1.62) × 10−6

J5 = (−0.15 ± 0.1) × 10−6

J6 = (0.57 ± 0.1) × 10−6

J7 = (−0.44 ± 0.1) × 10−6

(2.19)

As observed, the confidence factor decreases beyond J4. In particular, J2 takes into
account the fact that the Earth is flattened at the poles and J3 that the southern
hemisphere is more massive than the northern. Furthermore, J2 causes regression of
the node line and precession of the apsidal line of the satellite’s orbit.

The equations 2.17 only include zonal harmonics, i.e. those harmonics that de-
pend only on the mass distribution, which is symmetrical concerning the Earth’s
north-south axis (with no longitudinal dependence). There are other types of har-
monics, tesseral harmonics that depend on both latitude and longitude and sectoral
harmonics that depend only on longitude. The EGM2008-WGS84 version takes into
account all three classes of harmonics.

Atmospheric Drag
Atmospheric drag mainly affects the motion of satellites in low Earth orbit (LEO).
The effect of aerodynamic drag slowly reduces the energy of the orbit, which becomes
smaller. The decrease in altitude implies an increase in drag. This triggers a chain
effect that leads to an altitude so low that the satellite re-enters the atmosphere.
Below about 120 km, the satellite’s lifetime is very short and re-entry occurs rapidly.
Instead, above 600 km the lifetime could be more than 10 years [12].
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As shown in equation 2.20, the acceleration due to atmospheric drag force is
opposite the direction of the satellite’s velocity vector relative to the atmosphere:

¨̄r = −1
2

CDXA

m
ρv2

a

˙̄ra

va

(2.20)

where CD is a dimensionless quantity which reflects the satellite’s susceptibility
to drag forces, approximately equal to 2.2, called the drag coefficient [9]; ρ is the
atmospheric density at each satellite altitude; XA is the exposed cross-sectional area,
i.e. the area which is normal to the satellite’s velocity vector; m is the satellite’s
mass; ˙̄ra is the velocity vector relative to the rotating atmosphere, while va is its
module. Specifically, ˙̄ra is expressed by the equation 2.21 [9]:

˙̄ra = ˙̄r − ω̄⊕ × r̄ = [ẋ + ω⊕y ẏ − ω⊕x ż]T (2.21)

where ˙̄r is the inertial velocity, ω̄⊕ is the vector rate of rotation of the Earth and x
and y refer to the geocentric, equatorial coordinate system This formulation may be
complicated by the introduction of expressions for theoretical density, altitude above
an oblate Earth, wind variation etc.

In the equation 2.20 appears the inverse of m
CDA

, usually called the ballistic
coefficient β. It is another value that indicates the behaviour of satellites under drag
effects. Its definition implies that the lower β is, the greater the drag effect on the
motion of the satellite, and vice versa.

Drag is one of the significant sources of the unpredictability of the satellite’s
position and lifetime. This difficulty involves the variation of drag due to the attitude
of the spacecraft and the dramatic influence of solar activity on the atmospheric
density trend as altitude changes. Specifically, the density of the upper atmosphere
is strongly affected by the interaction between the nature of the atmosphere’s
molecular structure, the incident solar flux, and geomagnetic interactions [9]. Solar
flux is represented by Extreme Ultraviolet Radiation (EUV) arriving from the Sun,
which heats the upper atmosphere. Instead, geomagnetic activity retardedly heats
atmospheric particles created by collisions with energetically charged particles from
the Sun. The heating of the atmosphere causes it to expand and rise so that the
portion of the atmosphere at 200 km moves to, say, 250 km, representing a much
denser atmosphere for a satellite at that altitude [12].

The level of solar flux and geomagnetic activity is difficult to predict, but very
important for precise models. As just said, the contribution of solar flux to at-
mospheric density is mainly from EUV incoming from Sun. From 1940, scientists
measure both EUV and incoming solar radiation with a wavelength of 10.7 cm,
F10.7 (f = 2800 MHz), originating in the same layers of the Sun’s chromosphere and
corona [9]. EUVs can’t reach the Earth’s surface because the atmosphere doesn’t
allow their transmission. On the other hand, Earth’s atmosphere is transparent to
F10.7 radiation. The relative strength of FEUV , from Earth-based measurements, is
expressed in Solar Flux Units, SFU where:

1 SFU = 1 × 10−22 W

m2Hz
(2.22)

The most commonly accepted measurement of F10.7 is distributed daily by the
National Oceanic and Atmospheric Administration (NOAA) at the National Geo-
physical Data Center in Boulder, Colorado. Measurements were routinely made
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at the Algonquin Radio Observatory in Ottawa, Ontario, Canada from 1947 until
31th May 1991 at 1700 UT. Since then, the measurements have been made at the
Dominion Radio Astrophysical Observatory (DRAO) Penticton, British Columbia,
Canada, at 2000 UT. Daily values are averaged to produce 81-day average values (3
solar rotations) denoted with a bar [9]. The solar flux data may be either observed
(at the true Sun-Earth distance) or adjusted to 1.0 AU. The conversion is explicated
by the equation 2.23:

F10.7(obs) = F10.7(adj)AU2

R2
⊕ − Sun

(2.23)

Figure 2.5 shows the historical record of solar activity from 1957 to 3th March 2022,
obtained plotting the data of the SpaceWeather.txt file of STK.
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Figure 2.5: F10.7 daily observed values over the years

As observed, typical values range from less than 70 to more than 300 SFU. Moreover,
there are peaks that correspond approximately to solar maxima, i.e when the solar
activity is intense and consequently the atmospheric density is high. There are also
idle zones where an opposite trend occurs and consequently, the atmospheric density
is low. Note that there is an 11-year solar cycle corresponding to the sunspot cycle,
in which fluctuations in the number and size of sunspots and solar prominences are
repeated due to the solar magnetic field completely reversing every 11 years [12].
This behaviour causes the amount of incoming solar radiation reaching the Earth to
vary. Specifically, the level of F10.7 is different from cycle to cycle and there are large
month-to-month variations. Therefore, predicting the value at any specific future
time is uncertain.

As far as geomagnetic activity is concerned, charged particles of any magnetic
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disturbance cause ionization in the upper atmosphere, thus affecting the density
and, consequently, drag. Charges on particles can also alter the attractive forces
experienced by the satellite, but this effect is very small and is almost always ignored.
In addition, ionization interferes with satellite tracking and communication, and
charged particles can interfere with onboard electromagnets that impose torques
and perform slow attitude manoeuvers. Since the magnetic field strength varies
with the Earth’s surroundings, it is usually modelled with a spherical harmonic
expansion of low degree and order (exactly analogous to gravitational models) [9].
To measure geomagnetic activity and determine the heat generated, two geomagnetic
indices, planetary index kp and planetary amplitude Ap are used. The former is
a quasi-logarithmic, worldwide average of geomagnetic activity below the auroral
zones, while the latter is a linear equivalent of the former index, designed to minimize
differences at 50° latitude. Both of them are compiled using measurements from
twelve observatories which lie between 48° N and 63° S latitudes, but the most
accepted compilation of the measurements from these observatories is from the
Institut für Geophysik at Göttingen University, Germany [9].

Figure 2.6 shows the daily values of the planetary amplitude from 1986 to 2022,
in gamma units, where one gamma equals 10−9 Tesla.
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Figure 2.6: Ap daily values over the years

As observed in figure 2.6, Ap has values from 0 to 300, but values greater than 100
are rare, and values of 10–20 are average. Ap daily values tend to follow the 11-year
cycle of sunspots, although consistently large maxima of Ap usually occur in the
declining phase of each 11-year cycle of F10.7. variations are mainly due to solar
flares, coronal holes, disappearing solar filaments, and the solar-wind environment
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near the Earth (Fraser-Smith, 1972).
Eventually, the effects of drag resulting from magnetic disturbances are noticeable

for satellites at altitudes between 300 km and 1000 km [9].

The Solar Radiation Pressure
The solar radiation pressure (SRP) effect consists of a force, due to incoming radiation
from the Sun, that is exerted on the satellite. In the analysis of SRP, modelling
and predicting solar activity is fundamental. In fact, during periods of intense solar
activity, the effect of SRP may be more intense than those of the other perturbation,
while negligible during low solar activity. In addition, the effect of solar radiation
pressure is directly proportional to the altitude.

The relevant aspects in defining the acceleration due to SRP are the determination
of the orbital attitude of the satellite, the value of the solar radiation pressure, the
determination of the cross-section exposed to incoming radiation and the coefficients
modelling the reflectivity of the satellite [9]. Over the cross-sectional area, as for
drag, SRP also requires to determine the shadowing effect on the spacecraft. To
develop the expression of the acceleration on satellite due to SRP commonly used in
numerical analysis, finding the solar pressure, the force due to incoming radiation
and then dividing by the mass of the satellite is necessary. Starting with Einstein’s
law relating energy with mass, E = mc2 and explicating the momentum m c, the
value of solar pressure is obtained:

pSRP = SF

c
= 1367

3 × 10−8
W/m2

m/s
= 4.57 × 10−6 N

m2 (2.24)

where SF is the solar-radiation constant and c is the speed of light. SF is a constant
approximation of the intensity of the energy of the incoming radiation from the Sun.
Many programs use this value or a similar one because determining the actual is
challenging and varies over time [9]. In the end, the acceleration due to SRP is
defined by the equation 2.25:

¨̄r = −pSRP cR A⊙

m

r̄sat⊙

rsat⊙
(2.25)

where cr is the reflectivity and A⊙ the exposed area to the Sun. Adopting r̄sat⊙/rsat⊙
as a unit vector, the minus sign indicates that the direction of the acceleration on
the satellite is always away from the Sun. As far as the cr, it indicates how the
satellite reflects incoming radiation. It has a value between 0.0, i.e. the object is
translucent to incoming radiation, and 2.0, i.e. all the radiation is reflected. It is
another parameter that varies with time and is difficult to evaluate, especially for
complex satellites made of various materials, that enter and exit eclipse regions, and
have a constantly changing orientation.

Note that equation 2.25 is an estimation of the actual problem because it is assumed
that the surface maintains a constant attitude perpendicular to the Sun. In addition,
the reflection process is featured by absorption followed by reflection and the surface
can reflect diffusely or mirrorlike with changing aspects toward the Sun. Hence, at
any moment, the satellite will experience a net force, not along the Sun-satellite
vector, plus a net torque [9]. Due to the interest in orbital motion, often the torque
is ignored and A⊙ is an average effective cross-section that implicitly incorporates cR.
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Third body and Tides
Supposing mp and µp the mass and the gravitational parameter of the third body
respectively, R̄ as the distance between the third body and the Earth and ρ̄ as the
distance between the third body and the satellite, it is obtained the equation 2.26:

¨̄r + µ

r3 r̄ = µp

A
R̄

R3 − ρ̄

ρ3

B
(2.26)

The equation 2.26 is derived as the two-body equation 2.1, thus first considering an
inertial frame (X,Y,Z) and a non-rotating frame parallel to the first originating in
M, and then studying the relative position, velocity and acceleration in the second,
as shown in figure 2.7.

Figure 2.7: Third Body

Note that āp, i.e. the perturbative acceleration (the second member of the equation
2.26) acts on the direction connecting the spacecraft to the Earth. Furthermore, the
perturbative action results from the difference in the action of the attractive force of
the third body on the Earth and the satellite. It also noticed that third bodies, such
as the Sun or Moon, have a greater effect on satellites in higher-altitude orbits.

At this point, the third-body’s effect on the satellite is determined by integrating
numerically equation 2.26. However, considering the disturbing third body is the
Sun, the distance from the satellite to the Sun and the distance from the Earth
to the Sun are very similar, so āp is very small and may introduce errors during a
simulation. Long et al. [13] state this numerical difficulty is not a problem for Earth
satellites, but it can be a problem around other central bodies and may produce
significant errors for the Moon. Therefore, a different solution has to adopt as using
the expansion of Taylor neglecting small terms [13] or Legendre function [14].

As for other perturbative forces, which are often small and negligible, tides are the
result of a gravitational distortion caused by an external body (e.g. the Earth, Moon
and Sun) [9]. Furthermore, the Earth’s rotation introduces periodicity into these
effects. Tides include those of the solid Earth as well as those of the oceans. The
former are deformations of the Earth due to perturbing forces of external gravitational
attraction, in particular the Moon, while the latter cause a large change in mass
distribution as water reacts to various gravitational attractions. The accuracy of
measurements made with tide gauges (in particular their location is crucial) and
human’s limited understanding of the world’s oceans are the two main problems
related to the subject of tides.
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Simulation software

3.1 Systems Tool Kit
The simulation of CubeSat orbital dynamics is performed by STK with an educational
license. It is a multiphysics software application from Ansys Government Initiatives
(AGI), the US national security subsidiary of Ansys, a world leader in engineering
simulation.

STK is a mission modelling and analysis software for space, defence and intelligence
systems. It allows analysing of the behaviour of complex systems in their operational
environments, within a realistic and dynamic three-dimensional simulation over time.

Concerning STK Space, space platform systems and payloads are modelled,
including orbit design and manoeuvre planning for satellite and spacecraft missions.
The simulations planned for this thesis were carried out either by working directly
with STK’s graphical user interface or by integrating STK and MATLAB to automate
and visualise the analysis results. Integration takes place via STK’s COM interface,
sending Connect commands directly to STK without communicating through a port,
while results are discussed using STK’s reports, graphs and 3D animations. The
STK capabilities used in this thesis are:

• Building a Scenario
• Astrogator
• High Precision Orbit Propagator (HPOP)
• Access Tool
• Conjunction Analysis
• Generating Reports and Graphs

The main reference of this chapter is the STK online guide provided by AGI [15].

3.2 Building a Scenario
The scenario is the environment in which a mission is simulated by creating models
of systems and evaluating their characteristics and interactions based on physics.

General properties define the scenario, such as analysis period, units of measure,
and animation. The definition of units allows all units used in the scenario to be set,
including for the period of analysis. The latter is necessary to establish the epoch
and the start and end times. The former is a reference for all other times, so the
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epoch time and date correspond to zero epoch seconds. The seconds, on the other
hand, identify the propagation limits of the satellite’s orbit.

For each scenario, various objects can be identified for investigation, such as
facilities, satellites, aircraft and ground vehicles to instruments such as receivers and
transmitters. By selecting the Insert STK Objects tool from the insert menu, object
properties can be defined, while with Standard Object database, the object and its
characteristics are downloaded from the local STK database or from the online one.
Eventually, reports and other analytical tasks, derived from the scenario information,
enable the results of the work for further analysis.

3.3 Astrogator
With regard to the Satellite object with which, in this study, the properties and
behaviour of the CubeSats in Earth orbit are modelled, the customized basic property
is the orbit. This includes defining the orbit propagator and subsequently the
coordinate system, orbital elements, and time parameters of the satellite. The STK
Astrogator capability is chosen as the orbit propagator, which enables the modelling
of impulsive and finite manoeuvers, spacecraft trajectory design and orbit propagation
with high fidelity. It calculates satellite ephemeris by executing a Mission Control
Sequence (MCS), defined according to mission requirements.

Astrogator also uses a component catalogue and STK editor called Component
Browser. The latter allows the definition and customization of engine models, force
models, propagators, core bodies, atmospheric models and other elements of a space
mission analysis scenario. A customized component can be created by duplicating
an existing component or by importing one from a file.

3.3.1 Mission Control Sequence
The MCS is a sequence of mission segments that define how Astrogator calculates
the spacecraft’s trajectory based on the general settings of each segment. It is
represented schematically by a tree structure that lists the segments and illustrates
their relationships to each other. Segments are generally subdivided into those that
generate ephemeris and those that concern the execution of the MCS. Those used in
this thesis belong to the first category and are:

Follow The Follow segment enables the spacecraft to be attached to another
vehicle (the leader) at a certain offset and to be separated when certain conditions
occur. In this segment, the offset from the leader’s body frame, joining and
separation conditions, spacecraft and fuel tank (if any) parameters can be set.
The segment adds the specified offset to the ephemeris points of the leader from
the fulfilment of the join condition to the fulfilment of the separation condition.

Initial State The Initial State segment defines the initial conditions of MCS or
of a subsequence within the MCS. In this segment, in addition to the parameters
of the spacecraft and the fuel tank (if any), it is possible to set the coordinate
system, orbit epoch and orbital elements of the spacecraft. In particular, the
orbit epoch is the time when the established elements of the orbit are true. The
defined state is added to the ephemeris and passed on to the next segment.

Maneuver The Maneuver segment enables to model a finite, impulsive or
optimal finite manoeuvre. As for the impulsive manoeuvre, the new state,
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added to the ephemeris and passed on to the next segment, is calculated by
adding a ∆V vector to the velocity of the final state of the previous segment.
In contrast, in the case of finite manoeuvre, the state is evaluated as in the
Propagate segment with the addition of a thrust. Finally, the finite optimal
manoeuvre allows the calculation of the thrust attitude and manoeuvre duration
to optimise a certain objective function and satisfy a set of constraints, after
the selection of the thrust magnitude. Thus, the kind of manoeuvre, the engine
model, the attitude, i.e the way to define the manoeuvre-pointing direction, the
magnitude of the thrust and the propagator (in case of finite manoeuvre) can be
set. Specifically, in the attitude window is possible to describe the direction of
acceleration applied to a satellite thanks to the Thrust vector command. This
direction is opposite to the exhaust of an engine.

Propagate The Propagate segment enables the movement of the spacecraft
along its current trajectory to be modelled until the specified stopping conditions
are reached. In this segment, the stopping conditions and the propagator can
be set. The latter is accessible from a list of predefined propagators, but can
also be customised from the Component Browser. Over the propagation, each
new point of the state is added to the ephemeris. After each step, the stopping
conditions are checked. If they are satisfied, the propagation is stopped and the
state is passed to the next segment.

Update The Update segment is used to change spacecraft properties during
propagation. It is possible to replace the parameter value with a new one or
subtract and add an entered quantity.

3.4 High Precision Orbit Propagator
A propagator enables the orbit of a satellite to be defined, including the coordinate
system, orbital elements and time values as well as propagating the orbit. HPOP
generates ephemerides using numerical integration of the differential equations of
motion. The choice of HPOP as a propagator also includes the definition of force
models, the selection among several perturbation techniques and formulations of the
equation of motion.

Usually, it is possible to select and customized HPOP from the Orbit properties
page of the satellite object. In this thesis, however, it is proceeded from the Component
Browser page by selecting the Propagators. This is the way to use a custom HPOP
in the Propagate and/or Maneuver segment of Astrogator. Satellite’s interval and
step size (i.e period of analysis, Orbit Epoch and Coordinate Epoch which specifies
the epoch of the input coordinate system), coordinate system, coordinate type, force
models, integration methods and covariance (i.e. to propagate the matrix that
expresses the uncertainty of the satellite’s position and velocity) can be entered
with the first method. Instead, from the Component Browser is possible to define
the integration and the force models, while the other properties are defined in the
Astrogator’s MCS.

Force modelling involves a full gravitational field model (based upon spherical
harmonics), third-body gravity, atmospheric drag, solar radiation pressure and third-
body perturbation. Regarding the atmospheric models, the following are selected:

Jacchia-Roberts Jacchia-Roberts model computes atmospheric density based
on the composition of the atmosphere, which depends on altitude and seasonal
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variations, using analytical methods to improve performance. The lower altitude
boundary is 90 km.

DTM 2012 DTM 2012 is the 2012 version of the Drag Temperature Model, a
semi-empirical model that computes the temperature, density, and composition
of the thermosphere. It was developed at CNES and has a valid range of 120 to
1,500 km.

NRLMSISE 2000 NRLMSISE 2000 is an empirical density model developed
by the US Naval Research Laboratory and based on satellite data. It finds the
total density by accounting for the contribution of N, N2, O, O2, He, Ar and H.
It includes anomalous oxygen. This 2000 version has a valid range of 0 to 1,000
km.

Atmospheric models are closely related to the solar flux and geo-magnitude values.
Constant values or data files can be entered. As seen in subsection 2.3.3, the flux
file contains the data Ap, kp, F10.7 and the average of F10.7 for each date. STK
reads the geomagnetic flux data, Ap and kp from a file and each density model uses
the appropriate data natively. The files used in this thesis are SpaceWeather.txt
and SolarFluxCSSI.dat. The first one is available on the Celestrak website [16] and
sponsored by CSSI and AGI. It contains daily observed solar flux and geomagnetic
indices, and approximately ten years of predicted data. For geomagnetic flux data,
a daily value and eight values measured at three-hour intervals for each date are
included. Moreover, it contains an observed F10.7 value and one adjusted to 1 AU,
obtained with the equation 2.23.

SolarFluxCSSI.dat is an ASCII file used for long-term forecasts. The file contains
the predicted values of the monthly average of F10.7 and the geomagnetic index, Ap

in UTC. The file consists of a first line with seven numbers describing the data limits
and the remaining lines containing the forecasts. Specifically, the first line contains
the year and month in which the data begin and end, the year and month in which
the predictions were generated, and the number of points that follow. Each of the
remaining rows, instead, assuming the day to be the 15th of the month, contains the
year and month, followed respectively by the +2s and nominal forecasts of F10.7 and
the +2s and nominal forecasts of Ap. Taking into account the +2s value means to
consider the nominal solar flux plus the product of the solar flux sigma level and the
standard deviation σ associated with the nominal solar flux value.

With regard to the gravity model, it enables configuring a central body gravity
model, solid and ocean tide effects, and third body gravity effects. The effect of the
Moon and Sun as the third body perturbation and EGM2008 as the gravity field
file are the STK default inputs. In the Gravitational Force menu, it is possible to
include the perturbation of the gravity field caused by the effects of solid tides, using
the solid-tide model available for the Central Body. It is possible to exclude this
contribution, consider only the permanent ones or take them all into account. It is
also possible to select Truncate to Gravity Field Size to exclude the solid tide terms
beyond the degree and order selected for the gravity model itself and to select Use
Ocean Tides. By default, 21 is the order and degree for the gravity model, while the
options Truncate to Gravity Field Size and Permanent tide only are selected, but
not Use Ocean Tides.

Modelling SRP consists of selecting the shadow model, the sun position type,
the eclipsing body and the atmospheric altitude for the eclipse. A shadow model
allows selecting the level of precision to compute the reduction in solar radiation
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pressure caused by an eclipsing body as it obscures the sun. By default, the dual cone
model uses the actual size and distance of the Sun to model regions of full, partial
(penumbra), and zero (umbra) sunlight. The visible fraction of the solar disk is used
to compute SRP during penumbra. The primary central body is always considered
an eclipsing body except for the case where the primary central body is the Sun. The
Moon, instead, is the default extra-central body. Computing the Sun position means
identifying the direction of the Sun for SRP computations. By default, Apparent Sun
to True CB is selected. It takes into account the time required for light to travel from
the sun to the central body. By default, STK uses the Earth’s surface shape, which
corresponds to an atmospheric altitude of 0 km. Thus, attenuation and refraction of
solar radiation through the atmosphere are not accounted for.

Finally, the integrator model allows the selection of the integration method,
step size control, interpolation method and other functions related to the chosen
integration method. RKF 7(8) is the STK’s default integration method of 7th order
with 8th order error control for the integration step size. The step size control can
be Fixed Step i.e. the step size remains constant throughout the integration of the
orbit and no error control is used or Relative Error i.e. the step size control is
based on the relative error by providing the error tolerance and the minimum and
maximum integration step size to be allowed by the relative error control. Among
the possible interpolation methods is the Lagrange interpolation method, which
uses the standard Lagrange interpolation scheme, interpolating position and velocity
separately; it is also possible to specify the order of interpolation. Alternatively, a
Hermitian interpolation scheme can be selected, which uses position and velocity
ephemerides to interpolate position and velocity together (i.e., using a polynomial
and its derivative). It is also possible to specify the interpolation order. In addition,
a propagation stop is possible if any sample of the force model occurs at an altitude
less than this specified value.

3.5 Access Tool
The Access Tool allows determining when an object can access or see another object.
Furthermore, valid accesses can be identified by imposing constraints as properties
on the objects between which accesses are calculated. It is possible to calculate the
accesses of all types of vehicles, structures, area targets and sensors to all objects
within a scenario.

Access is defined by two objects, a primary object and an associated object, for
which STK computes the access. The access created maintains a close relationship
with the defining objects. If the definition objects are removed from the scenario
or one of them changes in a way that alters the access times, STK automatically
removes the access data or recalculates it, respectively.

The Access Tool models also signal transmission between the two objects. Usually,
STK will consider light time delay between the objects but will only consider
aberration in certain circumstances. Moreover, it can compute accesses to an entire
group of assets using the Chain object. The latter object enables the assignment of
objects to the chain and defines the order in which the objects are accessed.

With the Access Tool it is possible to generate a report or graph providing access
times between the primary object and one or more selected objects. In addition, an
access report or graph can be generated with azimuth (Az), elevation (El) and range
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data. Displayed data are for valid access periods. On the other hand, the azimuth
and elevation values are calculated based on the local coordinate system of the
object for which the access window is displayed. As far as satellites, it is the Vehicle
Velocity Local Horizontal (VVLH) which consists of three axes in the Earth’s Inertial
reference system aligned and constrained to position and velocity vectors along the
trajectory of the point (the satellite) relative to the reference system. Specifically,
the Z-axis is opposite to the position vector and X-axis is toward the inertial velocity
vector. El is measured toward negative Z. Figure 3.1 shows the VVLH coordinate
system and how azimuth and elevation are defined in it.

Figure 3.1: VVLH coordinate system
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Chapter 4

Simulation properties

4.1 Nominal simulation parameters

4.1.1 Satellite modelling
The simulations performed involve CubeSats deployed from the ISS. Single-unit,
double-unit and triple-unit CubeSats are considered. Their nominal physical features
are summarised in table 4.1 while figure 4.1 shows the process of evaluating the
average area adopted by the CROC tool.

Table 4.1: CubeSat nominal properties

CubeSat Size m XA CD Attitude
1U 102 · 10 cm3 1 kg 0.0148 m2 2.2 tumbling
2U 102 · 20 cm3 2 kg 0.0247 m2 2.2 tumbling
3U 102 · 30 cm3 3 kg 0.0346 m2 2.2 tumbling

................

XAaverage = (XA1 + XA2 + ... + XAn)/n

Figure 4.1: Cross-sectional area estimation process

As shown in figure 4.2, the simplest versions of CubeSats are chosen, so a cube with
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an edge of 10 cm and two parallelepipeds with a base of 10 cm and a height of 20
cm and 30 cm respectively are entered in the CROC tool as satellite models. They
could be a good approximation of real CubeSats with body-mounted solar panels
and small antennas.

1U

2U

3U

Figure 4.2: CubeSat modelling
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Regarding CubeSat nominal properties, typical values of size, mass and CD are
assumed, while the CROC tool of ESA’s open-source software Drama is used to
estimate the average cross-sectional area of satellites. In the analyses of this thesis,
the way adopted to simulate a specific attitude of the satellite is to vary the value of
the input cross-sectional area. With regard to the nominal attitude, it is assumed
that the satellites rotate randomly around their body axes after deployment so an
average area as a drag area is suitable for analyses. This area is calculated by the
CROC tool by averaging the flat projections of the satellites for each of their possible
space orientation (figure 4.1).

4.1.2 Epoch and classical orbital elements of the ISS
Time data are expressed in gregorian UTC (UTCG). 1th October 2022 12:00:00.000
UTCG is selected as the default start time of the simulations. At this instant, the
orbital elements of the ISS are those highlighted in table 4.2. The ISS data are
downloaded by STK thanks to the function Standard Object database (explained
section 3.2), which provides access to the satellite database updated by the U.S.
Strategic Command (USSTRATCOM) [15].

Table 4.2: Orbital elements of the ISS

Subject a e i Ω ω ν

ISS 6798 km 0.0013 51.68◦ 169◦ 60.8◦ 323◦

4.1.3 General features of Astogator’s MCS
The Follow segment and the Maneuver segment are added to the MCS to fully model
the release of satellites from the ISS. In the first one, the ISS is chosen as Leader
Vehicle, while the position of the CubeSat with respect to the leader’s body frame is
represented by the X, Y and Z distances:

X = 0.006 km

Y = −0.014 km

Z = 0.008 km

This point is a good approximation of the point at which, in the ISS extravehicular
environment, the JEMRMS transports the NRCSD from the pressurised volume
to deploy the satellites. The Joining conditions, the Separation conditions and the
Spececraft parameters to enter in the segment, instead, are defined according to the
type of simulation.

Regarding the ∆V of deployment, i.e the impulse provided by the deployer to the
CubeSat, in the Maneuver segment an impulsive manoeuvre is selected and choosing
Thrust Vector in the attitude control window, the thrust is defined in spherical
coordinates. VVLH are the thrust axes while Az, El and magnitude are the spherical
coordinates: 

Az = 180◦

El = 45◦

Magnitude = 1.5 m/s
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These values are chosen to simulate a nominal deployment where the NRSCD points
45◦ downwards and in the opposite direction to the motion of the ISS. Figure 4.3
is a representation of the direction of the thrust imparted to the CubeSat in the
VVLH coordinate system, while figure 4.4 shows the position of the CubeSat at the
beginning of the simulation on STK.

Figure 4.3: Thrust Vector

JEM

Figure 4.4: Deployment position on STK

As shown in figure 4.4, the yellow vector indicates the direction of deployment (i.e.
the thrust vector in figure 4.3) and the green line the orbit. Furthermore, the image
of the CubeSat is only a cad model loaded to represent its dimensions, but STK only
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propagates the mass point and therefore the figure also represents the starting point
of propagation (i.e. the deployment position).

As far as the orbit propagation, two stop conditions are defined in the Propagate
segment. The first is a duration of 3 years, whereas the second is an altitude of 120
km above the central body. Moreover, HPOP, which is customised in the Component
Browser according to the type of simulation, is chosen as the propagator for this
segment. The nominally HPOP consist of STK default models of the gravitational
force and spherical SRP, while NRLMSISE 2000 is chosen as the atmospheric model
and SpaceWeather.txt as the solar flux file. The influences of the Moon and the Sun
are taken into account. In addition, the integration method is RKF 7(8) and an
initial and minimum step of 300 s and 350 s respectively are selected. Finally, when
it is not possible to simulate a complete deployment due to the lack of ISS TLE, an
Initial State segment is necessary. In this case, the ISS orbital parameters (table 4.2)
are chosen as CubeSat ones while the deployment date and time as the Orbit Epoch.

4.2 Preliminary analysis
First, the effect of the satellite’s position along its orbit on its lifetime is studied.
Subsequently, the variation of the longitude of the ascending node is also considered.
Tables 4.3 and 4.4 show the relevant inputs of the simulation of the position in orbit
and of the variation of the Ω, respectively.

Table 4.3: Inputs for the orbit position study

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Follow, Maneuver and Propagate

Follow segment
Leader Vehicle ISS
Offset from leader X=6 m, Y=-14 m, Z=8 m
Joining Conditions 1st October 2022 12:00:00.000 UTCG
Sep. Conditions ν=0◦, 60◦, 120◦, 180◦, 240◦, 300◦, 360◦

Fuel tank engines and tanks not planned
Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.0247 m2 0.0346 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km
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Table 4.4: Inputs for the Ω study

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Initial State, Maneuver and Propagate

Initial State segment
Orbit Epoch 1st October 2022 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
a 6798 km
e 0.0013
i 51.68◦

Ω 0◦, 60◦, 120◦, 180◦, 240◦, 300◦, 360◦

ω 60.8◦

ν 324◦

Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.0247 m2 0.0346 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

The scenario epoch is the 1st October 2022, while the satellite features are those
highlighted in table 4.1.

As far as the position study, the Astrogator’s MCS consist of the Follow, Maneuver
and Propagate segments. In the Follow segment, the ISS is selected as the Leader
Vehicle, whereas the ν of the CubeSats as Separation conditions and its value is
overridden by automating with MATLAB. In this way, during propagation, when
the ISS reaches the position in orbit corresponding to the specified value of ν, the
CubeSat is deployed from the ISS. In the second segment, the default manoeuvre
is defined as described in subsection 4.1.3, while the nominal HPOP and Stopping
conditions are entered in the Propagator segment.

Concerning the Ω analysis, the Astrogator’s MCS consist of Initial State, Maneuver,
and Propagate segments. In this case, it is not possible to use the Follow segment
because, on the date of deployment, the Ω of the ISS is equal to the value indicated
in table 4.2 and cannot be changed. As a consequence, the Initial State segment is
chosen to define the CubeSat properties. The orbital parameters are chosen the same
as the ISS in table 4.2 while the value of the Ω is varied. In the second segment,
the default manoeuvre is defined as described in subsection 4.1.3, while the nominal
HPOP and Stopping conditions are entered in the Propagator segment.
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4.3 Deployment altitude
Since the birth of the ISS, the altitude of the orbiting Space Station has changed
continuously. The ISS trajectory is subject to perturbative actions such as resistance
due to the Earth’s atmosphere reducing its altitude. To compensate for this, the
Space Station receives periodic boosts. Figure 4.5 shows the average altitude of
the ISS over the years, obtained using the definition of mean motion (equation 2.9)
contained in the TLE of the ISS provided by CeleStrack, and the orbital period
equation (equation 2.6). In particular, an Earth radius of 6378 km is considered and
the altitude is calculated by subtracting this value from the semi-major axis of the
ISS. Based on the values obtained, the purpose of the Deployment altitude analysis is
to understand how the variation in ISS altitude can affect the lifetime of CubeSats.
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Figure 4.5: ISS altitude over the years

The date of deployment is 1st October 2022. The Astrogator’s MCS is composed
of the Initial State, Maneuver and Propagate segments. In the first segment, the
nominal parameters of the satellites (table 4.1), their orbital elements (chosen equal
to those in table 4.2) and the Orbit Epoch are entered. Particularly, the value of
the semi-major axis is overridden by automating with MATLAB. The a value is
calculated supposing an Earth radius of 6378 km. In this case, it is not possible to use
the Follow segment because, on the date of deployment, the a of the ISS is equal to
6798 km (table 4.2) and it cannot be changed. With regard to the Maneuver segment
the nominal parameters as described in subsection 4.1 are selected. The same is
true for those in Propagate segment with the exception of the atmospheric density
model which is overridden by automating with MATLAB. The models selected are
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Jacchia-Roberts, DTM 12 and NRLMSISE 2000. Table 4.5 shows the relevant inputs
of the simulation.

Table 4.5: Inputs first simulation

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Initial State, Maneuver and Propagate

Initial State segment
Orbit Epoch 1st October 2022 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
a 6738→6818 km
e 0.0013
i 51.68◦

Ω 169◦

ω 60.8◦

ν 324◦

Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.0247 m2 0.0346 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000, DTM 12, Jacchia-Roberts
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

4.4 Deployment date
The Deployment date analysis consists of changing the day of deployment and
comparing the effect of two different solar flux files on the decay time. In particular,
the purpose of this simulation is to understand how solar activity influences CubeSat’s
time in orbit.

Also in this simulation, Follow segment is not chosen due to the impossibility to
foresee the future TLEs of the ISS. Therefore, the Astrogator’s MCS is composed
of the Initial State, Maneuver and Propagate segments. In the first segment, the
nominal parameters of the satellites (table 4.1) and the orbital elements (chosen
equal to those in table 4.2) are entered. Moreover, the value of the Orbit Epoch
is overridden by automating with MATLAB, to simulate the CubeSat deployment
in subsequent years. Therefore, the year of the chosen dates increases by one at a
time from 2022 until 2030, while the day and month remain the 1st October. The
Maneuver segment has the nominal features as described in section 4.1, while in the
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Propagate segment after entering the nominal propagator, density model and Stopping
conditions, two solar flux files from the STK’s default data, SolarFluxCSSI.dat and
SpaceWeather.txt, are overridden by automating with MATLAB. Table 4.6 shows the
relevant inputs of the simulation.

Table 4.6: Inputs second simulation

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Initial State, Maneuver and Propagate

Initial State segment
Orbit Epoch 1st October 2022→2030 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
a 6798 km
e 0.0013
i 51.68◦

Ω 169◦

ω 60.8◦

ν 324◦

Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.02470.0148 m2 0.03460.0148 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt, SolarFluxCSSI.dat
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

4.5 Parametric study
The Parametric study involves the estimation of the CubeSats lifetime by varying
the elements that make up the ballistic coefficient. In addition, it varies the ∆V of
deployment also.

In this analysis, the deployment from the ISS is completely simulated. Astrogator’s
MCS, in fact, consist of Follow, Maneuver and Propagate segments. In the first
segment, ISS is selected as Leader Vehicle while the Joining condition is the epoch
of the scenario, the 1st October 2022. By automating with Matlab, the element
constituting the β, and the |∆V| of deployment are overridden as many times as the
number of inputs in the satellite properties window (in the Follow segment) and in
the Manoeuvre segment window respectively. Tables 4.7 shows the main inputs in
the Astogrator’s segments, while table 4.8 shows the different cases analysed in this
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simulation.

Table 4.7: Inputs third simulation

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Follow, Maneuver and Propagate

Follow segment
Leader Vehicle ISS
Offset from leader X=6 m, Y=-14 m, Z=8 m
Joining Condition 1st October 2022 12:00:00.000 UTCG
Sep. Condition 1 s
Fuel tank engines and tanks not planned

Maneuver segment
Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

Table 4.8: Cases of the third simulation

Parameter First case Second case Third case Fourth case
1U

CD 1.8→3 2.2 2.2 2.2
XA 148 cm2 100→190 cm2 148 cm2 148 cm2

m 1 kg 1 kg 0.8→2.4 kg 1 kg
|∆V| 1.5 m/s 1.5 m/s 1.5 m/s 0.3→2.5 m/s

2U
CD 1.8→3 2.2 2.2 2.2
XA 247 cm2 100→328 cm2 247 cm2 247 cm2

m 2 kg 2 kg 1.8→3.6 kg 2 kg
|∆V| 1.5 m/s 1.5 m/s 1.5 m/s 0.3→2.5 m/s

3U
CD 1.8→3 2.2 2.2 2.2
XA 346 cm2 100→477 cm2 346 cm2 346 cm2

m 3 kg 3 kg 2.8→4.8 kg 3 kg
|∆V| 1.5 m/s 1.5 m/s 1.5 m/s 0.3→2.5 m/s

Four cases are defined and in each of them one of the four parameters, CD, XA, m
or |∆V| is varied while the others are fixed. The range of mass variation respects the
limits imposed by the NRCSD [3]. On the other hand, |∆V| is varied between the
value imposed by [17] a plus to study other intervals. As for XA, a range is chosen
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with extremes the minimum value estimated by the CROC tool and the maximum
value plus ten per cent to simulate possible appendages. Finally, the CD value varies
between the typical values for these categories of satellites [5].

4.6 Drag sail
In this simulation, the effects of deploying a passive de-orbit system, specifically a
drag sail, on the time of decay of a 3U are studied.

Table 4.9: Inputs fourth simulation

Parameter Value
Scenario Epoch 1st October 2029 12:00:00.000 UTCG
MCS segments Initial State, Maneuver and Propagate

Initial State segment
Orbit Epoch 1st October 2029 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
a 6798 km
e 0.0013
i 51.68◦

Ω 169◦

ω 60.8◦

ν 324◦

Satellite 3U
m 3 kg
XA 0.0346 m2

CD 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=180◦, El=45◦, |∆V|=1.5 m/s

First Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 360 km, 370 km, 380 km, 390 km, 400 km

Update segment
New XA 0.1 m2, 0.25 m2, 0.5 m2, 0.75 m2, 1 m2

Second Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

1st October 2029 is chosen as the deployment date of the satellite. This year is
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expected a minimum solar activity according to the solar flux files of STK. Therefore,
it could be interesting to note how to reduce the satellite’s time in orbit during this
period, exploiting the deployment of a drag sail.

The Astrogator’s MCS is sequentially composed of Initial State, Maneuver, Prop-
agate, Update and Propagate segment. In the first segment the nominal CubeSat
properties (table 4.1) and orbital elements (chosen equal to those in table 4.2) and
the Orbit Epoch are entered. In the second one, the default manoeuvre is defined as
described in subsection 4.1.3, while the first Propagate segment is used to select at
which altitude to deploy the drag sail. The latter datum is overridden by automating
with MATLAB. The Update segment enables to modify the spacecraft parameters.
In this simulation, the value of XA is changed defining a new one. Particularly, it is
assumed that after the deployment of the drag sail, the CubeSat assumes a minimum
drag attitude. As a consequence, the drag sail area corresponds to the new value of
XA. Finally, in the second Propagate segment are entered the nominal propagator
and Stopping conditions.

4.7 Deployment direction
Finally, the effect of changing the deployment direction is studied. From section
1.2, the nominal direction for satellite deployment is at 45◦ in the direction opposite
to the ISS movement and downwards. This choice is motivated by safety reasons.
To implement the STK study, the coordinates of the Thrust Vector are changed.
As described in subsection 4.1.3, Az, El and magnitude are required to define the
Thrust Vector. First, a simulation is run in which the values of magnitude and El
are taken as nominal, 45◦ and 1.5 m/s respectively, while Az is varied. Figure 4.6
shows the vectors of some deployment directions implemented in this first simulation.
The CubeSat is positioned at its deployment point (defined in line six of table 4.10),
while the yellow vector represents the direction in which the CubeSat is released.

Figure 4.6: Deployment direction with El=45◦
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In a second simulation, however, El is kept equal to 0◦ as Az is varied. Figure 4.7
shows 4 of the deployment directions implemented in this second simulation.

Figure 4.7: Deployment direction with El=0◦

Tables 4.10 and 4.11 highlight the main inputs of the two simulations of this section.

Table 4.10: Inputs for first analysis on deployment direction

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Follow, Maneuver and Propagate

Follow segment
Leader Vehicle ISS
Offset from leader X=6 m, Y=-14 m, Z=8 m
Joining Conditions 1st October 2022 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.0247 m2 0.0346 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=0◦→315◦, El=45◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km

The Astrogator’s MCS is sequentially composed of Follow, Maneuver and Propagate
segment. In the Follow segment, the ISS is selected as the Leader Vehicle while the
nominal HPOP and Stopping conditions are entered in the Propagator segment.In the
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second segment, following the definition of the manoeuvre in subsection 4.1.3, the
impulsive manoeuvre, the VVLH system and the spherical coordinates are selected.
While the value of El is set at 45◦, the value of Az is overwritten with MATLAB
from 0◦ to 315◦. In the same way, the second analysis is set up, but in contrast, the
value of El is fixed at 0◦.

Table 4.11: Inputs for the second analysis on deployment direction

Parameter Value
Scenario Epoch 1st October 2022 12:00:00.000 UTCG
MCS segments Follow, Maneuver and Propagate

Follow segment
Leader Vehicle ISS
Offset from leader X=6 m, Y=-14 m, Z=8 m
Joining Conditions 1st October 2022 12:00:00.000 UTCG
Fuel tank engines and tanks not planned
Satellite 1U 2U 3U
m 1 kg 2 kg 3 kg
XA 0.0148 m2 0.0247 m2 0.0346 m2

CD 2.2 2.2 2.2
Maneuver segment

Type of Maneuver Impulsive
Thrust axes VVLH
Thrust Vector Az=0◦→315◦, El=0◦, |∆V|=1.5 m/s

Propagate segment
Propagator HPOP
Density model NRLMSISE 2000
Solar flux file SpaceWeather.txt
Stop condition 1 Duration of 3 years
Stop condition 2 Altitude of 120 km
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Chapter 5

Results

5.1 Preliminary analysis
According to the simulation, varying the ν, i.e the CubeSat position relative to
the perigee along the orbit, does not affect the lifetime. Figures 5.1 show how the
CubeSat’s time in orbit changes as the ν value varies depending on the size of the
satellites.
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Figure 5.1: Satellite position in orbit study

The three-lifetime lines show the same nearly linear trend. The same applies if the
Ω changes as shown in figure 5.2. Furthermore, this analysis provides a general
assessment of the lifetime for CubeSat releasing from the ISS the 1st October 2022.
Considering the size of the CubeSat, approximately the decay time for a 1U is 277
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days and 337 days for a 2U. Even longer is the decay time of a 3U, about one year
(357 days exactly).
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Figure 5.2: Ω study

Finally, these results show that by setting the deployment date and spacecraft
parameters (CD, XA and m), choose in the Astrogator’s MCS the Follow segment
with ISS as Leader Vehicle or the Initial State segment entering the ISS orbital
elements as those of the CubeSats makes no difference.

5.2 Deployment altitude
According to the simulation, an increase in deployment altitude results in a longer
lifetime, regardless of the size of the satellite and the type of atmospheric density
model used. As expected, the higher the altitude, the lower the perturbative effect
of the Earth’s atmosphere, and the decay time rises.

Generally, there is no drastic difference in the performance of 2U and 3U. On the
other hand, the estimated lifetime of 1U is always shorter than the others, and the
difference increases as the deployment altitude changes. The reason for this pattern
lies in the ballistic coefficient. In particular, in the motion equation appears the
inverse of β. Trascurating the CD, the area-mass ratio of 1U is the biggest and equal
to 0.0147 m2

kg
. Therefore, the perturbative effect due to atmospheric drag is strongest

on the 1U and its lifetime is the shortest one.
Figures 5.3, 5.4, 5.5 provide further details on the lifetime trend as deployment

altitude and atmospheric density model vary.
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Figure 5.3: Effect of varying deployment altitude on 1U lifetime
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Figure 5.4: Effect of varying deployment altitude on 2U lifetime

43



Results

360 370 380 390 400 410 420 430 440

Altitude in km 

100

150

200

250

300

350

400

450
L
if
e
ti
m

e
 i
n
 d

a
y
s

 3U Lifetime vs Altitude

Jacchia-Roberts

DTM 2012

NRLMSISE 2000

Figure 5.5: Effect of varying deployment altitude on 3U lifetime

Under 360 km, the lifetime is less than 100 days in all cases, whereas from 400 km to
440 km the CubeSats could remain in orbit for 200 days to 1.3 years. As shown in
figure 4.5, in recent years the altitude of the ISS has fluctuated between 410 km and
420 km so this range may be more interesting. Specifically, at 415 km (i.e. equal to
6792 km considering the Earth radius of 6378 km), the decay time of the 3U is 310
days, while that of the 2U is 287 days. Even shorter is the decay time of 1U, 234
days.

For all CubeSat types, considering NRLMSISE 2000 or DTM 2012 as atmospheric
density model implies similar lifetime evaluations, while Jacchia-Roberts provides
always a shorter lifetime. This gap rises with altitude. Considering a 3U, STK allows
the value of density over time to be evaluated accounting for the type of atmospheric
density model chosen. Therefore, figure 5.6 shows the variation of density over time
according to the chosen density model, while figure 5.7 shows how the altitude of
the CubeSat goes down with time according to the density model. Specifically, the
graph in figure 5.6 plots density values using a logarithmic scale in base 10, due to
the enormous difference between values at high altitude (on the order of 10−3 kg/m3)
and those at low altitude (from 10−1 to 22 kg/m3 at 120 km). Note that already at
high altitudes, the three density models have different values. Although the latter
are not significantly different from each other, there is a faster decay for 3U, whose
lifetime is evaluated with Jacchia-Roberts. The trends of DTM 2012 and NRLMSISE
200 are similar up to an altitude of about 320 km. Below this altitude, the latter
predicts higher density values and so the final lifetime is shorter than that evaluated
with the former of 6 days. Approximately below 200 km, the density values are
similar among both density models and increase rapidly as altitude reduces.
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Figure 5.6: Lifetime of 3U depending on the density model chosen
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Figure 5.7: Comparison density model
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Both Jacchiara-Roberts, DTM 2012 and NRLMSISE 2000 contain geomagnetic
and solar flux indices and are therefore suitable for a valid lifetime estimate. The
differences in the prediction of orbital decay lie in the number of atmospheric drag
data incorporated as the basis of their basic assumptions, which in the latter two
methods are greater than in the former because they are more recent [5]. Nevertheless,
considering a possible error of one month in the lifetime prediction, Jacchia-Roberts
can be chosen to reduce the calculation time. In fact, as shown in 5.1, it works
very fast, especially if 1 s and 60 s are entered in the integrator settings as the
minimum and initial steps respectively. These values are the defaults for RKF 7(8),
but in this work, 300 s and 350 s are included in the integrator settings as initial
and minimum steps respectively. It is evident from the table 5.1 that this choice
results in a 6-day difference in the prediction of orbital decay, but enables a drastic
reduction in computational time.

Table 5.1: Computational time analysis

Density model Jacchia-Roberts DTM 2012 NRLMSISE 2000
Initial step = 60 s, Min step = 1 s, Max step = 86400 s

Time 96 s 120 s 148 s
Decay date 18 Aug 2023 24 Sep 2023 18 Sep 2023

Initial step = 300 s, Min step = 300 s, Max step = 86400 s
Time 19 s 24 s 29 s
Decay date 24 Aug 2023 29 Sep 2023 23 Sep 2023

5.3 Deployment date
Figure 5.8 compares the two solar flux files downloaded from STK. It should be
noted that the values are forecasts, except for the data of SpaceWeather.txt until
31th December 2021, which are observed data. Moreover, in SpaceWeather.txt, up to
13th February 2022, there are daily data, whereas after that date only monthly data
related to the first day of the month. In contrast, SolarFluxCSSI.dat contains only
monthly data. The values plotted in figure 5.8 are daily, so those up to 13th February
2022 for SpaceWeather.txt are average values. As observed, SolarFluxCSSI.dat and
SpaceWeather.txt have a similar mountainous trend until 2030. Thereafter, the former
repeats its trend with higher peaks, while the latter shows anomalous behaviour
predicting a minimum solar activity of about 10 years. The SolarFluxCSSI.dat essen-
tially duplicates the data of the current solar cycle and scales it slightly according to
what is expected to happen. On the other hand, the strange trend of SpaceWeather.txt
is due to the high uncertainty in predicting F10.7 values for the next solar cycle. For
this reason, a date range from 2022 to 2030 is chosen in the Deployment date analysis.
This temporal range is not suitable for predicting a lifetime of more than eight years,
but this is not the case for the CubeSats chosen in this thesis.

As expected, the solar flux files pattern affects the estimated decay time. Particu-
larly, lower values of F10.7 correspond to a longer time in orbit for CubeSats, while
higher values of F10.7 correspond to faster decay. The reason lies in the influence of
solar activity on the Earth’s atmospheric density and, consequently, on the atmo-
spheric drag and satellite decays.
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Figure 5.8: F10.7 values over the years

Figures 5.9, 5.10, 5.11 show more details on the effect of deployment date on CubeSat
lifetime as the solar flux file changes. In the period of the analysis, the two solar
flux files show an alternating pattern for a specific period in which one predicts
higher F10.7 values than the other and vice versa in the subsequent period. In all
three analysed cases (1U, 2U, 3U), in fact, the lifetime evaluated by considering
SpaceWeather.txt as the solar flux file is longer than the other case from 2022 to 2025
while it is shorter from 2025 to 2030. The choice of one or the other flux file implies
a difference in decay time from days to about three months, regardless of satellite
size. The maximum difference occurs deploying in 2028, while the minimum is in
2024.

It is interesting to note what occurs during the maximum solar activity, which
in this twenty-fifth cycle is expected for 2025. Considering SpaceWeather.txt, it is
expected to decay in 198 days for 3U, whereas in 186 days for 2U. Even faster for
1U, 157 days. The difference between these values lies in the ballistic coefficient,
which for the 1U is the lowest. Moreover, the lifetime reduction during this period
is very drastic when compared to the value estimated in section 5.1. On the other
hand, the decay is slower during the minimum solar activity that could occur from
2028 onwards. In particular, considering SpaceWeather.txt and deploying in 2030,
the lifetime is 1.5, 1.9 and 2.1 years for 1U, 2U and 3U respectively.

Eventually, considering SpaceWeather.txt, the average lifetime is 290, 360 and 390
days for 1U, 2U and 3U respectively. Instead, considering SolarFluxCSSI.dat, the
lifetime is about 30 days longer for each category. The performances of 2U and 3U
are similar because of the similar β, which is not very different between them.
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Figure 5.9: Effect of varying deployment date on 2U lifetime
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Figure 5.10: Effect of varying deployment date on 3U lifetime
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Figure 5.11: Effect of varying deployment date on 1U lifetime

5.4 Parametric study
Figures 5.12, 5.13 and 5.14 show the result of the third simulation. The blue line
represents the lifetime trend, while the red line is the ballistic coefficient. As described
in section 2, the drag perturbation is inversely proportional to β. As a consequence,
the red line also describes how the variation of the spacecraft parameters can affect
the motion perturbation of satellites.

The CubeSat attitude is also taken into account in this simulation. The way to
model a satellite attitude in this simulation is by varying their cross-sectional area.
Three attitudes and consequently three different drag areas are identified:

Minimum drag To consider Minimum drag as satellite attitude the smallest
drag area is selected.

Gravity gradient To consider Gravity gradient as satellite attitude the greatest
surface of the CubeSat is selected.

Tumbling To consider Tumbling as satellite attitude the averaged drag area is
selected.

Concerning the general tendency, the higher the CD value, the shorter the evaluated
CubeSat lifetime. Similar behaviour occurs as the cross-sectional area varies. Con-
versely, the greater the mass of CubeSat, the longer it remains in orbit. Even β and
lifetime have the same trend: if β rises, the decay time lengthens, while if β goes
down, the decay time shortens. Eventually, it is noticed that the ∆V has a negligible
influence on the satellite’s decay. Specifically, increasing the deployment ∆V reduces
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Figure 5.12: Parametric analysis for 1U

the lifetime by a few days. It should be noted that ∆V values depend on the satellite’s
physical properties and the limit imposed by deployers. As a consequence, a small
impulse from the deployer may not be sufficient to avoid the satellite’s return and
collision with the deployer or with ISS. This parameter is regulated by [17].

Regarding 1U results (figure 5.12), a rise in CD value from 2.2 to 3 reduces the
lifetime by about 50 days. Specifically, it is noticed that as the β continues to go
down, the reduction in lifetime is less and less. The same occurs in the XA case, with
approximately the same reduction rate (maximum 23 days per step to minimum 7
days per step). However, a significant impact occurs with a greater satellite’s mass:
a mass of 2 kg entails a lifetime of about 1.4 years, whereas in the nominal case (m
equal to 1 kg) it is only 277 days (just over half). In this case, the increase in β leads
to a greater increase in decay time than its decrease in the CD case and is roughly
constant (about 30 days per step). It’s relevant to observe that a massive CubeSat
minimises the drag perturbation when other terms are considered fixed.

The trend of β is also similar in the 2U and 3U cases. However, there is a different
time interval between decay evaluations as the XA changes. Considering 2U, the
reduction is 100 days at the first variation of XA, while it becomes 19 days at the
last. Even longer is the case of 3U, which goes from 200 days to 23 days.

It is observed that a 2U weighing 3 kg, has a lifetime of 1.25 years. In contrast, a
3U with the same weight has a lifetime of 0.99 days. Obviously, the difference lies in
the different drag areas and, consequently, in the different value of β.
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Figure 5.13: Parametric analysis for 2U
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Figure 5.14: Parametric analysis for 3U
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Table 5.2 shows the estimated lifetime of satellites as their attitude changes. Inter-
estingly, the difference between the decay of 1U, 2U and 3U CubeSats in nominal
mode (Tumbling attitude and nominal characteristics (table 4.1)) are in terms of
months, whereas they are similar in the case of Gravity gradient attitude. On the
other hand, it becomes huge in Minimun drag conditions. In fact, in the Tumbling
case, the mass-area ratio (i.e. β disregarding the CD which is considered 2.2 for all
satellites) is equal to 100 kg

m2 for all CubeSats, while in Minimun drag mode, β value
for 1U, 2U and 3U is 100, 200 and 300 kg

m2 respectively.

Table 5.2: Attitude analysis

Satellite Minimum drag Gravity gradient Tumbling
XA Lifetime XA Lifetime XA Lifetime

1U 100 cm2 1.1 yr 100 cm2 1.09 yr 148 cm2 0.75
2U 100 cm2 1.98 yr 200 cm2 1.08 yr 247 cm2 0.93
3U 100 cm2 2.74 yr 300 cm2 1.07 yr 346 cm2 0.99

Another way to decrease the atmospheric perturbation is to reduce the cross-sectional
area of the CubeSat, e.g. by modifying the geometry of the satellite during the
design phase or by modifying its attitude along the orbit. An example of this effect
on decay time is shown in figure 5.15.
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Figure 5.15: Effect of changing attitude on lifetime

In the condition of Minimum drag the 3U life is 2.74 years, about three times the
value in the nominal case (table 5.2).
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With a XA equal to 0.01 m2, β is equal to 45.45 kg
m2 . This value of XA also

corresponds to both the Minimum drag case and the Gravity gradient case. Actually,
an extendable boom will be required to guarantee this second case. As highlighted
in the table 5.2, with a XA of 0.01 m2 the value of lifetime is 1.09 years while
considering the averaged area of 0.0148 m2 it is approximately 0.75 years.

The typical life of a default 2U with a tumbling attitude is approximately 357
days. If a longer time in orbit is desired, the cross-sectional area can be reduced.
With a XA equal to 0.02 m2, the satellite remains in orbit for 37 more days.

5.5 Drag sail
According to the Drag sail analysis, the sooner the drag sail unfolds, the faster the
decay will be. As observed in section 5.4 and the area of the drag sail being the new
XA of the satellite, a larger one implies a shorter time in orbit. Figure 5.16 show the
pattern of the lifetime as the altitude of deployment of the drag sail and the size of
the latter change.
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Figure 5.16: Effect of deploying a drag sail on lifetime

Deploying the drag sail at 400 km, it sufficient an area of 0.1 m2 to reduce the
3U lifetime from roughly 600 days to 274 days. Using a device to increase the
atmospheric drag is more efficient at high altitudes where the density is still low.
Exploiting a drag sail of 1 m2 when the CubeSat reaches 360 km entails a decrease
of only 14% in the lifetime. A common trend is a small difference in decay choosing
a drag sail of an area between 0.5 and 1 m2. Contrastly, the rise in the area from 0.1
to 0.25 m2 implies the biggest lifetime decrease.
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Figure 5.17 shows an example of the effect of deploying a drag sail with an area of
0.25 m2 on 3U orbital decay at 380 km. With this combination, it could be possible
to have a life a month smaller than that of the 3U deployed in 2022 when the solar
activity is more intense.
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Figure 5.17: Effect of deploying a drag sail on lifetime

5.6 Deployment direction

In the last simulations, the effects of changing the direction of satellite deployment
are studied. Figures 5.18 and 5.19 show the trend of the lifetime of 1U, 2U and 3U
as the Az coordinate of the Thrust Vector changes, keeping El equal to 45◦ and 0◦

respectively.
In figure 5.18 is also plotted a vertical dashed black line representing the values

of lifetime obtained in the nominal case (i.e. Az=180◦ and El=45◦). Note that the
three curves have a mirror-image pattern with respect to the nominal case. In fact,
launching a CubeSat at 45◦ or 315◦, at 135◦ or 225◦ and at 90◦ or 270◦ makes no
difference in terms of the time a CubeSat stays in orbit. As a general trend, changing
the deployment direction from the nominal one always means increasing the lifetime.
On the one hand, deploying with Az equal to 135◦ and 225◦ leads to a negligible rise
of the lifetime of about 1 or 2 days. On the other hand, deploying with Az equal to
0◦, 45◦ and 315◦, the lifetime goes up to 25 days longer for 1U and 22 for 2U and 3U.
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Figure 5.18: Effect of changing deployment direction keeping El equal to 45◦

0 50 100 150 200 250 300

Azimuth Az in degrees

280

300

320

340

360

380

400

L
if
e
ti
m

e
 i
n
 d

a
y
s

Deployment direction vs lifetime (El=0°)

1U

2U

3U

Figure 5.19: Effect of changing deployment direction keeping El equal to 0◦
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As is observed in figure 5.19, by choosing the El of the Thrust Vector equal to 0◦, the
three curves have a mirror-image trend with respect to the case where Az is equal to
180◦ but do not correspond to the nominal orbital decay (i.e. lifetime obtained when
Az is equal to 180◦ and El equal to 45◦) but to lower values. Instead, the nominal
lifetime is obtained by launching the CubeSats at Az equals 135◦ and El equals
0◦, Furthermore, in this second simulation the forward deployment implies longer
lifetimes than in the previous simulation, while the backward deployment implies
shorter lifetimes. The longest orbital decay is always obtained with 0◦ of Az and
is longer than in the previous study, but only by about 5 days for each category of
CubeSat. The reason for the increase in the duration of the time in orbit lies in the
direction of the ∆V provided to the CubeSat: providing a forward impulse implies an
increase in the semi-major axis of the orbit and consequently an increase in lifetime.
This is true both for a thrust vector with El equal to 0◦ and equal 45◦ because in
the latter case, there is also a component of ∆V in the direction of velocity.

Related to the deployment directions topic, the safety problem in terms of crush
with the ISS is to be considered. Therefore, the range between CubeSat and ISS is
plotted in figure 5.20.
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Figure 5.20: Range between ISS and CubeSat

In figure 5.20 are shown three of the cases studied: CubeSat deployment at Az equals
180◦ and El equals 45◦ (case 1), CubeSat deployment at Az equals 0◦ and El equals
45◦ (case 2) and CubeSat deployment at Az equals 0◦ and El equals 0◦ (case 3). The
range between CubeSat and ISS over time is reported after 2 hours, 24 hours, 7
days and 20 days. Note that in case 1, the CubeSat after deployment continuously
moves away, while the CubeSat in case 2 after moving away returns to a distance
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of 3 km from the station on 1th October at 17:00 and then moves away again. A
similar trend occurs for the CubeSat in case 3, but it comes close to the station
on 18th October. Figure 5.21 shows an enlargement of cases 2 and 3 in figure 5.20
where both cases reach a distance from the ISS below 5 km. Therefore, a change
of deployment direction shall be followed by a risk analysis to find out whether the
minimum distances stated above are acceptable.
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Chapter 6

Conclusion

This work has been performed through the various chapters where the specific topics
have been developed. Chapter 1 describes the main features of the deployment of
satellites from the ISS, and the study objectives and concludes with introducing
the approach followed for the lifetime estimation. Chapter 2 describes the orbital
dynamics useful to understand the orbital decay problem, and the perturbation
techniques to propagate the orbit accounting for perturbations and concludes with
an overview of the latter. Chapter 3 describes the main adopted STK capabilities,
while chapter 4 reports about implementations of the different simulations and what
the inputs are for each of them. Eventually, chapter 5 refers about the results of
each analysis through tables, graphs and comments.

By using Astrogator as the STK propagator, the orbital decay of tumbling
CubeSats with typical physical features has been investigated taking into account
atmospheric drag, solar radiation pressure, moon and sun perturbations and the
effect of the non-spherical Earth. In addition, solar activity has been also considered
choosing density models that require geomagnetic and solar flux indices in input.
Since foreseeing the time a satellite will remain in orbit is a difficult task with
uncertain results, parametric analyses have been performed varying the possible
parameters influencing the prediction to provide a predicted life span for different
scenarios. Particularly, analyses of deployment altitude, date, directions and the
ballistic coefficient have been carried out. According to this work:

• The lifetime of 1U, 2U and 3U CubeSats with a tumbling attitude and deployed
from the ISS on the 1st October 2022, is about 277, 337 and 357 days respectively.

• The reduction of the initial deployment altitude leads to a reduction in the
duration of the time in orbit due to the high density at low altitudes. Therefore,
an adequate atmospheric model, especially those that accommodate solar activity
variations as described in the section 2.3.3 (high solar activity means high density
fixing the altitude), plays a relevant role. However, the prediction of solar activity
is still uncertain as shown in figure 5.8, thus the most recent atmospheric models
shall be considered because they are based on more atmospheric drag data
collected over the years [5].

• To foresee a lifetime longer than six years is necessary a SolarFluxCSSI.dat
due to the uncertainty on the next solar cycle, otherwise, SpaceWeather.txt is
usually recommended. Contrary to the nominal deployment date, the release of
a CubeSat during solar maximum results in an orbital decay of 157, 186 and
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198 days for respectively 1U, 2U and 3U. On the other hand, during the solar
minimum, the lifetime is approximately doubled for all CubeSats.

• 2U and 3U CubeSats have similar trends in the different simulations due to
their β being similar. In contrast, the ballistic coefficient of a 1U is lower than
the former, for this, its lifetime is very frequently shorter.

• To counter atmospheric drag, the satellite’s mass or reducing its XA shall be
increased. The latter modification can also be made during its operational
life by changing the satellite’s attitude to minimum drag mode substantially
increasing its lifetime. In particular, it has a greater influence on the lifetime of
2U and 3U, which rises from about 1 year to 2 and 3 years respectively.

• A drag sail of 0.25 m2 could reduce the 3U’s time in orbit during periods of
intense solar activity to about one month less than the estimated duration
during a normal period.

• Interestingly, deploying the CubeSat at 45◦ and forward increases the lifetime by
about 25 days. The same effect is obtained if El is equal to 0◦, but in both cases,
safety analyses shall be carried out for the risk of collision between CubeSat
and ISS.

To conclude the lifetime of a CubeSat deployed from the ISS could be affected
primarily by the atmospheric drag and solar activity as environmental perturbation
and by mass and cross-sectional area as physical properties. Nevertheless, the
uncertainty of solar activity and the difficulty in the satellite’s attitude prediction
could be antagonists in accurate prevision. On the other hand, solar radiation
pressure, CubeSat position in orbit, the majority of downward deployment direction
and |∆V| of deployment have little or no influence on CubeSats deployed at an
altitude between 360 and 440 km.

Most of the numerous unknowns have been analyzed in this study and, several
aspects of the lifetime of the CubeSat deployed from the ISS have been clarified. To
obtain more precise results, this work could be further developed with more input
data. An ad-hoc analysis of the satellite’s attitude and CD could be carried out.
Other forms of CubeSat could be studied and a Monte Carlo analysis could improve
the road map outlined in this work. Furthermore, by varying other STK settings,
such as modifying the integrator adopted by HPOP and searching for pitch values
that represent the right meeting point between fast computation times and precise
results, customised solutions could be obtained according to the type of precision
required.
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