
Master’s Thesis at Aerospace Engineering

A GENETIC ALGORITHM
FOR A TASK ALLOCATION
PROBLEM IN AN URBAN
AIR MOBILITY SCENARIO

Cristiano BICCHIERI

Supervisor: Giorgio GUGLIERI

Co-Supervisor: Stefano PRIMATESTA
Marco RINALDI

April 7, 2023

Abstract

In an aerial package delivery scenario carried out by multiple Unmanned Aerial
Vehicles (UAVs), it is important to maximize the collaboration and the resource
sharing in the fleet and to satisfy, according to the UAVs’ constraints, the largest
possible portion of the tasks’ requirements’ space.
In this thesis work, a UAVs-based parcel delivery problem is formulated and a
Genetic Algorithm (GA) is proposed for solving the formulated task assignment
problem for a fleet of heterogeneous UAVs.
GAs are a class type of algorithms inspired by the known evolutionary mechanism
of populations.
The objective of the proposed task allocation method is to minimize the energy
consumed by the fleet for executing the delivery tasks while respecting the time
window delivery constraints and the maximum payload capacity of each UAV.
Each task in the task set is considered with the parcel’s pick-up point and delivery
point, the payload mass, and parcel’s time delivery deadline.
The UAVs are assumed to be able to perform only one task at a time. In order
to address the service persistency issues, re-charge tasks can also be assigned and
added where the UAV’s energy is not sufficient to perform the next task.
The initial population of the genetic algorithm is created randomly, and subse-
quent mutation and crossover operations are performed to increase the diversity
of the population and avoid incurring in local minima.
The capability of the proposed solution of efficiently handling the formulated prob-
lem is demonstrated with ad-hoc defined scenarios, which represent the algorithm’s
instances.

Contents

1 Introduction 1

2 State of the art 3
2.1 Centralized algorithms . 4
2.2 Distributed algorithms . 5
2.3 Genetic-based algorithms . 6
2.4 Artificial neural network algorithms 7
2.5 Swarm intelligence-based algorithms 8
2.6 Summing up . 9

3 Problem statement 10

4 Proposed method 12
4.1 Genetic algorithms overview . 12
4.2 The procedure of the proposed GA V1 13

4.2.1 Double-chromosome encoding 14
4.2.2 Opposite population . 15
4.2.3 Crossover operation . 15
4.2.4 Mutation operation . 17
4.2.5 Check constraints . 19
4.2.6 Add charging tasks . 20
4.2.7 Individual evaluation . 23
4.2.8 Offspring population creation 24
4.2.9 Best solution selection . 25
4.2.10 Add random individuals . 25
4.2.11 Stopping criteria . 25

4.3 Others versions . 26
4.3.1 Mandatory delivery window constraints 26
4.3.2 Charging task only ay the end 27
4.3.3 Final versions . 27

4.4 Path planning . 28

i

CONTENTS ii

5 Simulation results 30
5.1 Simple scenario . 31
5.2 Complex scenario . 34

6 Conclusions 36

Bibliography 38

Nomenclature

δ Random number generated with δ ∈ [0, 1]

ε Tolerance below which convergence of the solution can be considered

η Energy computation efficiency factor

ρ Air density

ζ Task on time factor to account for tasks delivered on time

Ai
d Cross section of UAV i with respect to the direction of motion

Ai
r Total rotor disk area of UAV i

cid UAV i drag coefficient

Ei
available Current battery energy available in the i-th UAV

Ei
tj

Energy used by the UAV i for the j-ish task from the current UAV position

ETOT Total energy consumed by the NU UAVs to accomplish the NT tasks

F i
M UA V i Figure of Merit

g Gravity acceleration

J Fitting function of the genetic algorithm to be minimized

Li
1j

Minimum-risk path length from UAV i position to delivery task j pick-up
position

Li
2j

Minimum-risk path length from payload pick-up to delivery position of task
j with UAV i

mi UAV i mass

mpj Payload mass of delivery task j

iii

CONTENTS iv

mdw Mandatory delivery window parameter

ni Number of iterations of the GA to reach the solution

NP Max number of individuals within the population

NT Tasks number

NU UAVs number

Nbest Number of individuals automatiacally chosen for the next generation

nchar Number of recharging task in the final solution

nconv Number of the last iterations that are checked for convergence of the solution
with the tollerance ε

nmax Max number of iterations of the GA

ntonTime
Number of tasks delivered on time

P Current working population composed by possible solutions as individuals

P ′ Offspring population for next generation

pc Crossover probability

pm Mutation probability

ponT ime Percentage of tasks delivered within the time window

POPP Opposite population created with opposite individuals from P

rcinearer Nearer recharging task to i-th UAV position

rce Recharging task only at the end parameter

tij J-th task taken by i-ish UAV

TDDj
Due date of task j

tTOT Total algorithm time

ui I-th UAV with i = 0, 1, ..., NU

vij I-th UAV velocity to accomplish j-th task

List of Figures

2.1 An example of a simple neural network 8

4.1 Example of the partial-mapped crossover operator. 16
4.2 Example of flip mutation operator. 18
4.3 Example of swap mutation operator. 18
4.4 Example of slide mutation operator. 19

5.1 Operating environment simple scenario 32
5.2 Graph solution of V2 task allocation algorithm for the simple scenario 33
5.3 Progress of the fitting function for each iteration of the V2 algorithm

in the simple scenario . 34

v

Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have become
increasingly popular in recent years due to their versatility and relatively low
cost. Drones have a wide range of applications in various industries, including
agriculture, surveillance, mapping, and shipping.

In agriculture, drones are used for crop management, such as monitoring crop
health and identifying areas that need irrigation or fertilizer. This can help farm-
ers increase their crop yields while reducing the use of resources like water and
fertilizer.

In surveillance, drones offer enhanced situational awareness for security and
monitoring purposes. They can be used to monitor crowds at events, provide
aerial surveillance of large areas, and even aid in search and rescue operations.

In mapping, drones provide high-resolution aerial imaging that can be used
to create accurate 3D models of terrain, buildings, and other structures. This
information can be used for urban planning, construction, and other applications.

In shipping, drones have the potential to revolutionize the delivery industry.
With the rise of e-commerce and the increasing demand for faster and more effi-
cient delivery services, drones have emerged as a potential solution for last-mile
delivery. They offer a number of advantages over traditional delivery methods,
including faster delivery times, reduced costs, and the ability to reach remote or
difficult-to-access areas.

In the delivery sector, drones are being tested and used for a range of applications,
including delivering small packages, medical supplies, and even food. Companies
such as Amazon, UPS, and Google are investing heavily in drone delivery technol-
ogy, and several pilot programs have been launched in different parts of the world
to test the feasibility of drone delivery.

One of the biggest challenges facing drone delivery is regulatory approval. Govern-

1

CHAPTER 1. INTRODUCTION 2

ments around the world are still grappling with how to regulate and manage the
use of drones in public airspace, particularly in densely populated areas. There are
also technical challenges such as battery life, payload capacity, and weather condi-
tions that must be addressed to make drone delivery a reliable and scalable option.

Despite these challenges, the potential benefits of drone delivery are significant.
By reducing the need for delivery trucks and other vehicles, drones have the poten-
tial to significantly reduce traffic congestion and carbon emissions, making them a
more sustainable and environmentally friendly option. As the technology contin-
ues to advance and regulations become more supportive, drone delivery is likely
to become a more common sight in the skies in the years to come.

Although problems on maximum flight duration are still evident, a single UAV
can complete delivery tasks completely autonomously. As the number of tasks to
be accomplished by a UAV increases, it becomes essential to deploy multiple UAVs
and thus, it becomes crucial to optimize the distribution of tasks among the UAV
fleet.

One key challenge in multi-UAV task assignment is to consider all constraints
inherent to the UAVs and tasks while optimizing the distribution of tasks in the
fleet. Specifically, the algorithm should aim to minimize energy usage while en-
suring delivery times are met. Other constraints may include UAV battery life,
payload weight, and the delivery locations and times.

The task assignment problem in a single UAV setting can be viewed as a clas-
sic Travelling Salesman Problem (TSP) in the literature, where the objective is to
find the shortest path for a salesman to visit all cities. However, increasing con-
straints significantly complicate the problem, making multi-UAV task assignment
an NP-hard combinatorial optimization problem.

To address this challenge, various methods have been proposed in the literature.
In chapter 2, we will review these methods and their strengths and weaknesses.
In this paper, we propose the use of a genetic algorithm, which utilizes random
operations to search for the optimum global solution. This approach has shown
promise in solving similar problems and will be evaluated in the subsequent chap-
ters.

Overall, this work aims to optimize the distribution of tasks among a fleet of
UAVs, with the goal of minimizing energy usage while meeting delivery times. By
doing so, we can enable more efficient and cost-effective deliveries using UAVs.

Chapter 2

State of the art

This chapter provides an overview of the state-of-the-art surveys conducted in the
drone delivery system including the challenges and constraints faced.

The drone delivery system can be seen primarily as a task assignment problem, as
it contains additional sub-problems such as the routine problem and the charging
process.

This is why we will focus on the task assignment issue, and the algorithms used
in the literature.

As it is suggested by Poudel and Moh in [16], we can divide the task assignment
algorithms in five different categories:

• centralized;

• distributed;

• genetic;

• artificial neural network;

• swarm intelligence.

The last three of them are seen as bio-inspired algorithms, as they are inspired by
nature’s ability to solve problems.

Generally, the individual drone can be assigned one or multiple tasks, and the
goal of the algorithm is to optimize the way tasks are assigned to the different
drones that are part of the fleet. This is accomplished by, for example, trying to
minimize flight time or consuming the minimum amount of energy possible, all
while respecting predetermined delivery times.

3

CHAPTER 2. STATE OF THE ART 4

Obviously constraints can be added to the problem that add complexity to the
calculations. For example, the assigning tasks can be heterogeneous (delivering
packages, moving to a charging location, or moving the drone to a place where
it is most needed), and similarly we can have a fleet that is heterogeneous, i.e.,
with different types of drones and therefore with different characteristics, or even
different vehicles (e.g., drones in collaboration with trucks).

Similarly, as the number of fleet members increases, so does the complexity of
the problem and the time required to solve it.

The ease with which we can make a problem complex means that many of the
task-assignment problems can easily become NP-hard optimization problems.

For this very reasons, there is not always a mathematical solution to the prob-
lem that leads to the absolute optimum.

Therefore, many solving algorithms set as a goal to find a sub-optimal one,
that is one that is not necessarily the absolute optimum of the problem, but still
leads to a gain in computational time.

We will now analyze each task assignment algorithms categories with their pros
and cons and examples from the literature.

2.1 Centralized algorithms
Centralized task assignment algorithms involve a central hub that performs all the
calculations and then appropriately informs the various UAVs.

To allow the central hub to allocate tasks in the best possible way, data ex-
change from the drones is required for information regarding battery charge or
other telemetry data.

Since they rely totally on the central computing computer, any failure of it would
lead to a total shutdown of the task allocation system. For this reason, redundancy
should be provided to avert any failure.

Problems with few constraints can be viewed as linear type problems and solved
as such by arriving at an optimal solution.

Where we begin to add constraints to the problem, however, approximations
are needed to arrive at the solution. For example [5] use an approximation to lin-
earize the energy consumption of drones and thus be able to arrive at the optimal
solution with even large problems. The fleet is homogeneous and the problem is
solved using a branch-and-cut algorithm to solve the linear problem.

CHAPTER 2. STATE OF THE ART 5

Others [8] propose decomposing the problem into two subproblems: the first to
account for the cost of shipping on time, and the second to optimize the delivery
time from a cost perspective.

They too predict a linear approximation of the consumption problem, based
on payload and battery weight, and solve the problem using a mixed linear pro-
gramming algorithm with suboptimal type solutions.

2.2 Distributed algorithms
Distributed algorithms are based on the equal computation allocation of the task
assignement algorithm to each member of the fleet, so each UAV collaborates in
the optimal search for the solution to the problem, without having to rely on a
central control hub.

These algorithms turn out to be much more robust from the point of view of failure,
as by their very nature, each drone is on a par with the others, and therefore any
failure of a UAV would not lead to serious consequences. The only consequence
will be that the drone will no longer be able to contribute to deliveries until its
eventual repair.

Moreover, distributed algorithms are easily scalable in terms of fleet size. Com-
putationally, there is not a large increase in computation time where the number
of agents increases.

The most widely used algorithms in the distributed environment are marked-based
or auction-based algorithms. These algorithms are based on logic similar to what
we have in the marketplace, with each drone that competes with others by bidding
to grab the task.

The bid that the drone makes is based on complete knowledge of its telemetry
data, including the battery charge level. Data, therefore, that no longer has to be
transmitted to the central hub as in the case of centralized algorithms (chapter 2.1).

This implies the need for much less data exchange, but is still vital to have
maximum coordination between UAVs.

Obviously, since each drone has its own control center, distributed algorithms
require more computational power in the drone’s Flight Controller itself when
compared with centralized algorithms, but this can be seen as an advantage where
one wants to implement dynamic behaviors in response to external events by the
drone.

CHAPTER 2. STATE OF THE ART 6

In [10] they use a distributed version of the Hungarian method as a solution al-
gorithm for a task allocation problem. They manage in this way to find a global
solution.

As an assumption they have that each component knows the distance between
it and the target, but without the use of shared memory or central coordination.

Instead, Oh and Kim, in the paper [13] use a market-based distributed algorithm
to make a team of drones cooperate, adding time constraints to the problem. The
alogrithm has great scalability capabilities and can also consider dynamic scenar-
ios.

Similarly in [12] use a generalisation of the auction algorithm to solve a similar
task allocation problem with time constraints and also considering limited battery
life. They take into account a homogeneous bunch of robots but having different
suitability for different tasks.

Their algorithm requires little communication requirements and is easily scal-
able considering that it has a linear trend in solving time as a function of robots
and tasks.

2.3 Genetic-based algorithms
Genetic algorithms are an excellent choice for task assigement problems.

They are based on the idea of the heuristic search for natural selection. Starting
with a list of candidate solutions, it is found the one (or ones) that best survives
the conditions imposed by the problem.

Then starting from this "survivor", mutations and alterations are performed to
crate a new population, and this process is iterated until the conditions imposed
at the outset are reached.

With genetic algorithms, it is possible to have solutions in extremely fast compu-
tation times for even large and complex problems. They can take heterogeneous
cases into account with ease but they are not particularly well suited for dynamic
scenarios.

In [4] a genetic algorithm is used to optimize the tasks to be apportioned in a
fleet of warfare UAVs, with the goal of minimizing their flight time. The tasks
must all be executed but some have priority over others.

In contrast, in [23] a genetic algorithm is used to allocate tasks obtaining ex-
cellent results especially for large scale problems. An Opposition-based Genetic

CHAPTER 2. STATE OF THE ART 7

Algorithm using Double-chromosomes Encoding and Multiple Mutation Operators
(OGA-DEMMO) is used because of the complexity of the problem due to the het-
erogeneity of the UAV team and tasks set.

Another example of genetic algorithms used to solve complex problems can be
seen in [21]. Large fleets of UAVs are considered, taking into account both path
and task cost. The genetic algorithm is improved by also using simulated ISAFGA
annealing.

Vidal in [3] uses a hybrid genetic algorithm to minimize the total travel time
while respecting time constraints and vehicle characteristics.

2.4 Artificial neural network algorithms
Artificial neural network (ANN) algorithms (image 2.1) are gaining momentum in
the literature. They are inspired by neurons, specifically by their synapses, the
way they process information by creating interconnections between them.

They allow continuous learning that can give extreme adaptability to dynamic
environments. Moreover, with these algorithms there is generally better optimiza-
tion at the global level and not just in the locale of the specific moment.

ANN algorithms can be extremely fast and computationally efficient, taking into
account complex and heterogeneous problems.

The downside of these algorithms is that a large dataset with multiple different
scenarios is required for learning to occur appropriately.

In fact, ANN algorithms do not work well in cases where scoring population is
significantly different compared to training sample.

For example, in [22] could be seen how a neural network algorithm is used to
reallocate tasks to a team of robots dynamically.

Another interesting example is [19] where multi-agent reinforcement learning (RL)
is used to solve a dynamic task allocation problem for vehicles in an urban envi-
ronment.

RL is a special method of ANN. Learning does not occur from a database
but the algorithm itself learns automatically in a try-and-fail way that involves
awarding a prize when the algorithm has donated a good solution.

Although it requires a longer initial computational time in the learning phase,
the algorithm donates excellent results even in dynamic environments.

CHAPTER 2. STATE OF THE ART 8

Figure 2.1: An example of a simple neural network

2.5 Swarm intelligence-based algorithms
Swarm intelligence algorithms imitate the behavior of teams of simple enities work-
ing together toward a common goal.

Through interaction with the surroundings and other members of the group, a
collective consciousness is generated that allows the problem to be solved effectively
which is completely impossible for each member of the group.

Such behavior we can find for example in ant colonies or bee colonies, but it
is present both in larger animals, where they group together in herds, and in mi-
croorganisms such as bacteria.

Algorithms of this kind can be easily scalable and well robust, with short compu-
tation times. In particular, they can prove to be very flexible to easily adapt to
new scenarios and react to changes in the environment.

In [9] a K-means algorithm is used to assign tasks to a team of drones and then
use a hybrid algorithm based on bionic learning to assign tasks. The goal is to
minimize time and energy consumption.

The authors say that with not too many drones the algorithm gives better
results than other algorithms they tested, including a gentic algorithm.

CHAPTER 2. STATE OF THE ART 9

2.6 Summing up
To conclude this chapter on the state of the art, we can say that does not exist a
better solution for task assignements problems.

The algorithm to be used depends very much on the needs and means at disposal.
Obviously if you have a large amount of data and great computational power,

neural networks algorithms are recommended as they give better results in less
time and computational cost.

It should be noted, however, that the fusion of two or more different algorithms
is possible, and indeed recommended, to overcome the problems inherent in only
one type of algorithm and thus obtain more robust results that take into account
more variables at the same time.

Furthermore, it is important to note that this chapter is not a complete and ex-
haustive survey of the state of the art as this is not the purpose of this work.
For any further study, the reader is invited to more appropriate texts such as [16]
and [2].

Chapter 3

Problem statement

This chapter aims to give a clearer idea of the problem adressed and donate the
context the algorithm operates.

The main problem is to allocate NT delivery tasks on a team of NU UAVs. Each
delivery task involves the delivery of a parcel with mass mp, from a pickup location
P1 to a delivery location P2.

The goal is to allocate all charging tasks, minimizing the total energy use ETOT

required by the fleet of UAVs to complete all tasks, while trying to meet the time
delivery window TDW of all tasks.

Nowadays, the operational capacity of a battery is the most restrictive constraint
in drone utilization, so charging tasks are allocated, where they are needed by the
drone to complete the remaining tasks assigned to it.

In this way we ensure the continuous operation of the drone, which could be
reused for a new allocation at the end of the mission given to it.

Recharging tasks are defined by a PRT location within the operational area,
upon reaching which the drone’s battery is changed in negligible time.

As simplifying assumptions to the problem we then have:

• The battery change time is considered to be zero.

• During the execution of the task, the speed of the UAV remains constant.

• The flight altitude is considered constant.

• A UAV can take charge of only one task at a time, after which it will move
on to the next one.

• The trajectory of each UAV is simplified as straight.

10

CHAPTER 3. PROBLEM STATEMENT 11

• Any weather events such as wind and gusts are not taken into account.

• Takeoff and landing moments are not considered in the energy calculation.

As we will see later in chapter 4, the ability to operate in 4 different scenarios
has been added to the algorithm, based on two parameters that are chosen a priori.

The energy calculation for adding the charging tasks leads to a significant slow-
down of the algorithm, so through a rc only at the end parameter it is possible to
choose whether to apply the calculation of them only at the end, once the solution
is found. This will certainly lead to further simplification of the problem, but to
the benefit of reduced computation time.

Regarding task delivery times, they can be considered as hard or soft constraints,
through the mandatory delivery window parameter.

In this way, for complex scenarios, where it would not be possible to complete
all tasks in the due time, the algorithm can still arrive at a solution, if the con-
straint is set as soft. The solution found in this way will always be the one with the
lowest energy ETOT but which also respects the largest number of delivery windows.

The two parameters can be combined, thus resulting in 4 different possible so-
lutions, starting from the same operational scenario.

We will look at these features and operations in more detail in chapter 4, with
examples on the different solutions found in the following chapter 5,.

Chapter 4

Proposed method

In this chapter we will look in detail at the algorithm used to solve the task
assignment problem.

It is part of the family of genetic algorithms and as such, aims to arrive at a
solution using a set of random operations.

4.1 Genetic algorithms overview
As seen in the previous chapter, a genetic algorithm (GA) is a type of optimization
algorithm inspired by the process of natural selection and genetics. It starts with
a population of potential solutions to a problem, and iteratively improves them by
applying a set of genetic operators such as selection, crossover, and mutation.

The process begins with the creation of an initial population of potential solu-
tions. Each solution is represented as a string of values, called chromosomes,
which can be thought of as the candidate solution’s genes. These chromosomes
are evaluated according to some fitness function, which determines how well they
solve the problem.

The genetic operators then begin to act on the population. The selection operator
chooses the fittest individuals from the population and allows them to reproduce
by generating offspring. The crossover operator combines the chromosomes of two
individuals to create a new individual, while the mutation operator modifies an
individual’s chromosome in a random way to introduce new genetic material.

The new population of individuals produced by these operators is then evaluated,
and the process repeats until a satisfactory solution is found or some stopping
criterion is met.

12

CHAPTER 4. PROPOSED METHOD 13

The reason why GAs are well-suited to solve NP-hard problems is that they are
able to search a large and complex solution space efficiently. NP-hard problems
are those that cannot be solved in polynomial time, and traditional optimization
techniques such as brute force or gradient-based methods become computationally
infeasible as the problem size increases.

GAs are able to effectively search large and complex solution spaces by explor-
ing multiple solutions simultaneously and avoiding getting stuck in local optima.
The ability to maintain a diverse population of potential solutions also helps pre-
vent premature convergence to suboptimal solutions.

Overall, GAs are a powerful and flexible optimization tool that can be applied
to a wide range of problems, including those that are NP-hard.

4.2 The procedure of the proposed GA V1
The genetic algorithm proposed for task allocation can be found in Algorithm 1.

For semplicity reason here we will see only the version 1 (V1) of the algorithm.
This version is obtained with the configuration previously discussed in Chapter 3,
where the mandatory delivery window variable is set to true and rc only at the
end is set to false. However, it is important to note that different versions of
the algorithm exist, with varying combinations of variable values. These will be
explored in the next section (Section 4.3).

The genetic algorithm presented is designed for task allocation with a double
chromosome encoding (Section 4.2.1). The algorithm starts by creating a random
population, denoted as P , consisting of NP individuals. The algorithm then iter-
ates through a loop until a stopping criteria is met (Section 4.2.11).

In a genetic algorithm, an individual is a potential solution to the problem be-
ing solved. It is represented by two list of integers, defined as chromosomes, which
encodes the candidate solution’s properties.

During each iteration, an opposite population, denoted as POPP , is created from P
using an opposition-based learning approach (Section 4.2.2). Crossover and muta-
tion operations (respectively Section 4.2.3 and Section 4.2.4) are then performed
on both P and POPP to generate new individuals. The max payload constraint is
checked in both populations (Section 4.2.5), and charging tasks are added where
needed (Section 4.2.6). The delivery window constraint is then checked in both
populations (Section 4.2.5). At this point, each individual in both populations (P

CHAPTER 4. PROPOSED METHOD 14

Algorithm 1 Task allocation GA proposed - V1
1: procedure start GA
2: Random population P creation with NP individuals
3: while Stopping criteria is not meet do
4: Opposite population POPP creation from P
5: Crossover operation in P and POPP

6: Mutation operation in P and POPP

7: Check max payload constraint in P and POPP

8: Add charging tasks in P and POPP

9: Check delivery window constraint in P and POPP

10: Populations (P and POPP) evaluation
11: Offspring population P ′ creation from P and POPP

12: Best solution selection
13: while Individuals in P ′ < NP do
14: Add random individual in P ′
15: end while
16: P = P ′

17: end while
18: end procedure

and POPP) is evaluated (Section 4.2.7).

A new population offspring P ′ is created by combining the individuals from P
and POPP (Section 4.2.8). The best solution is then selected from P ′, and a while
loop is entered to ensure that the population size remains constant. During this
loop, new individuals are added to P ′ until it contains exactly NP individuals.
Finally, P is replaced with P ′ for the next generation operations.

This process continues until the stopping criteria is met at which point the best
solution is returned. Overall, the genetic algorithm employs several random oper-
ations during each iteration to search for a solution. This approach may reduce
the risk of getting trapped in local optima but does not guarantee that the global
optimal solution will be found.

4.2.1 Double-chromosome encoding

In the context of genetic algorithms, the chromosome is a representation of the
solution to the optimization problem at hand. The chromosome is typically en-
coded as an array of integers, which can be modified through genetic operators
like crossover and mutation.

CHAPTER 4. PROPOSED METHOD 15

For the present study, a double-chromosome encoding approach was employed.
This type of encoding is commonly utilized in genetic algorithms for optimization
problems that involve multiple variables.

In the double-chromosome encoding scheme adopted in this work, the first
chromosome (chromosome I) represents the task delivery sequence, while the sec-
ond chromosome (chromosome II) encodes the cut positions of the task delivery
sequence in chromosome I.

In chromosome I, each gene represents the index of a delivery task To ensure the
validity of the solution, the genes in chromosome I must be unique, and the total
number of genes is equal to NT . Chromosome II, on the other hand, encodes the
cut positions of chromosome I. Specifically, the value of any gene in chromosome
II must not be smaller than the values of the genes that precede it. Additionally,
the number of genes in chromosome II is set to NU − 1 to ensure that the task
delivery sequence in chromosome I is partitioned into NU subsequences.

4.2.2 Opposite population

Opposition-based learning in genetic algorithm is founded on the observation that
the opposite of a weak attribute is strong in the real world. This concept is utilized
to generate an opposite population POPP , following the initialization operation, to
explore broader region of the solution space.

For a variable z in the range [a, b], its opposition z′ is defined as:

z′ = a+ b− z (4.1)

In the GA proposed, each integer of chromosome I of an individual is treated as
a variable to calculate its opposition. And so in our case, considering zi the i-th
element of the array of a choromosome I, its opposite will be:

z′i = a+ b− zi i ∈ [0, NT] (4.2)

In this particular task allocation problem, a = 0 and b = NT . For instance, if
chromosome I is (1, 7, 0, 4, 5, 3, 6, 2), with lower and upper bounds of 0 and 7,
respectively, then the opposition of chromosome I would be (6, 0, 7, 3, 2, 4, 1, 5).

4.2.3 Crossover operation

This algorithm employs a crossover operator to create a pair of offspring chromo-
somes from a pair of parent chromosomes. However, it is worth noting that only

CHAPTER 4. PROPOSED METHOD 16

Figure 4.1: Example of the partial-mapped crossover operator.

chromosome I undergoes the crossover operation, while chromosome II remains
unchanged.

The partial-mapped crossover (PMX) operator is utilized in this work, where
a portion of genes from one parent is exchanged with the corresponding genes of
the other parent while preserving the remaining genes.

Algorithm 2 Crossover operation in population P
1: procedure start crossover in P
2: for each individual Pi in P , with i = 0, 1, ..., NP do
3: if δ < pc then
4: Perform crossover in Pi with Pj (j 6= i randomly chosen)
5: end if
6: end for
7: end procedure

Chromosome II is chosen at random in the population, making sure that chro-
mosome I is different from chromosome II.

Algorithm 2 demonstrates that the crossover operation is not applied to all in-
dividuals in the population, but only to those for which the randomly generated
number δ is less than the crossover probability parameter pc.

For each individual in the population, a random number δ ∈ [0, 1] is generated,
and if it is less than the value of pc, then the individual undergoes the crossover
operation.

It is worth noting how the same principle is then applied to all individuals in
the population POPP .

CHAPTER 4. PROPOSED METHOD 17

To illustrate the process of PMX, Figure 4.1 shows that two cut points are ran-
domly selected between the third and fourth genes and between the sixth and
seventh genes. Two mapping sections, (3, 4, 5) and (0, 5, 7), are identified along
with the mappings 3-0, 4-5, and 5-7. The mapping sections from parent I and par-
ent II are then copied to offspring II and offspring I, respectively. The remaining
genes in the offspring chromosomes are filled up by copying from the corresponding
parents or regenerating through the mappings.

For example, the first gene of offspring I is initially copied from parent I, but
since the gene 0 already exists, it is reset to 3 according to the mapping 3-0. Simi-
larly, the last gene of offspring I is 7 when copied from parent I, but since it already
exists, it is mapped to 4 according to the mappings 4-5 and 5-8, resulting in the
offspring I chromosome (3, 1, 2, 0, 5, 7, 6, 4).

4.2.4 Mutation operation

Mutation operations play a crucial role in preventing a population from getting
stuck in local minima and improving the overall convergence of a GA algorithm.
The GA proposed utilizes multiple types of mutation operators to increase popu-
lation diversity and enhance global exploration.

As seen on Algorithm3, the GA proposed, after the crossover operation, the pop-
ulation is divided into groups of eight individuals, and the best individual of each
group is mutated to generate eight new individuals, which will be then added to
the respective population.

This is done, following the same principle seen in crossover (Section 4.2.3).
Only where the random value δ results in less than the mutation probability pm
will the group of 8 individuals undergo mutation.

The same logic will then be used in the population POPP .

Because of the double-chromosome encoding used, different mutation operators
are applied to each chromosome.

Chromosome I is subject to flip, swap, and slide mutation operators, while
chromosome II undergoes a regenerate mutation operator. By combining these op-
erators, eight mutation operation results can be produced for double-chromosome
encoding.

. For example, if chromosome I is (1, 2, 3, 4, 5, 6) and chromosome II is (2, 4),
eight offspring individuals can be generated using different mutation operations.

CHAPTER 4. PROPOSED METHOD 18

Algorithm 3 Mutation operation in population P
1: procedure start mutation in P
2: for each group of 8 individuals [Pi, Pi+8] in P do
3: if δ < pm then
4: Perform mutation in [Pi, Pi+8]
5: end if
6: end for
7: end procedure

Figure 4.2: Example of flip mutation operator.

Flip mutation

To perform the flip mutation operator, the algorithm randomly selects two posi-
tions on chromosome I. The genes between these two positions are then reversed.
An illustration of this process is provided in Figure 4.2.

Swap mutation

The mutation process for chromosome I involves randomly selecting two positions,
followed by exchanging the genes at these positions, as illustrated in Figure 4.3.

Figure 4.3: Example of swap mutation operator.

CHAPTER 4. PROPOSED METHOD 19

Figure 4.4: Example of slide mutation operator.

Slide mutation

Firstly, two positions are randomly selected on chromosome I. Next, the gene on
the first selected position is moved to the end of the selected substring, causing
the remaining genes of the substring to slide forward. An example of the slide
mutation operator can be seen in Figure 4.4.

Regenerate mutation

The regenerate mutation operator randomly regenerates each gene of chromosome
II while ensuring that the constraints of chromosome II are satisfied during the
process.

4.2.5 Check constraints

To ensure that the final solution satisfies the constraints imposed by the problem,
each individual in the populations P and POPP undergoes a feasibility check.

Before undergoing selection for the next generation population, the individu-
als are verified for their feasibility in terms of the maximum payload that can be
carried by each UAV and the delivery windows considering the added recharging
tasks. While the payload constraint is considered hard, meaning that all solutions
must respect it, the delivery time constraint can be either hard or soft depending
on the parameter mandatory delivery window (mdw). The details of this constraint
as a soft constraint are discussed in Section 4.3.

The feasibility check is performed after mutation and crossover operations, which
increase the diversity and randomness of individuals in the populations. This ap-
proach allows for the possibility of finding usable individuals even when starting
from nonusable ones.

Individuals that do not satisfy the constraints are removed from the respective

CHAPTER 4. PROPOSED METHOD 20

population and do not undergo the subsequent selection process as described in
Section 4.2.8.

Check max payload

After the crossover and mutation tasks, each individual in the population under-
goes a feasibility check to ensure that it satisfies the maximum payload constraint.
Specifically, the feasibility check verifies that each UAV in the solution is assigned
tasks that do not exceed the UAV’s maximum payload capacity.

Infeasible individuals are discarded, thereby reducing the computational burden
of generating recharge tasks. As described in Section 4.2.6, generating recharge
tasks can be computationally expensive. Thus, removing infeasible individuals can
significantly reduce the time required to add recharge tasks.

Check delivery window

The constraint on delivery time is checked only after the addition of reloading
tasks, to account for the time taken to reach those locations.

Each individual in the population is then checked to ensure that the time taken
by the UAV to execute each task is within the specified delivery window for that
task, taking into account the time taken by the UAV to reach the initial position.

This is accomplished by calculating the energy used by the drone and the
corresponding speed and travel time needed to execute the tasks, as explained in
detail in Section 4.2.6.

4.2.6 Add charging tasks

After crossover and mutation operations, individuals that satisfy the maximum
payload constraint undergo the addition of recharging tasks, in order to enable
them to recharge their batteries and complete remaining deliveries. The algorithm
assumes that all tasks and their order are known in advance.

The algorithm used to add charging tasks can be seen in Algorithm 4. A more
specific overview on the optimizer and the path planner can be seen in the next
sections

When recharging tasks are only added at the end, the same algorithm is used
with a slight modification. In this case, the algorithm will only be called at the
end, after all iterations have been performed, and the individual in input to the
algorithm will be the solution itself.

CHAPTER 4. PROPOSED METHOD 21

Algorithm 4 Add charging task to individual I
1: procedure start
2: Decode C I and C II of I in task list per UAV
3: for each uav ui with i = 0, 1, ..., NU do
4: for each task tij in task list of UAV ui do
5: Compute Ei

tj
by calling optimizer and path planner

6: if Ei
tj
> Ei

available then
7: Find nearer recharging task rcinearer to current ui position
8: Add rcinearer before tij
9: end if

10: end for
11: end for
12: end procedure

To add charging tasks, the individual’s two chromosomes are decoded to create
a task list for each UAV. Only regular tasks are present in chromosome I, and
recharging tasks are added solely to ensure a feasible solution. The recharging
tasks are not considered in the subsequent rounds of the genetic algorithm and are
not subject to crossover and mutation operations.

For each UAV, the algorithm runs through each task in the task list one at a
time, and after calculating the energy required for the task to be completed, it
checks whether there is sufficient energy in the UAV’s battery. If the battery level
is sufficient, the energy required for the task is subtracted from the battery level,
and the position of the UAV is updated with the final position of the task. If the
battery level is insufficient, a recharge task is added before taking the task, and
the position is updated accordingly.

If at any time during the algorithm, a UAV has a fully charged battery, and
the energy required to perform the next task (charging or not) is higher than the
battery capacity, the individual I is discarded because it does not lead to a feasible
solution.

Algorithm 4 starts by decoding chromosomes I and II of individual I into task
lists per UAV. For each UAV, the algorithm then loops through the task list and
checks whether the energy required for each task is greater than the energy avail-
able in the UAV’s battery. If so, the algorithm finds the nearest recharging task
to the UAV’s current position and adds it to the task list before the task that
requires recharging.

CHAPTER 4. PROPOSED METHOD 22

In summary, the algorithm for adding charging tasks ensures that UAVs have
sufficient energy to complete all tasks by adding recharging tasks to the task list.
and trasform the double chromosome into a feasible solution This approach allows
for efficient and effective task allocation in UAV delivery systems.

The energy calculation for each task is performed through the use of optimizers
that differ depending on whether the task is delivery or charging.

However in both cases the optimization find the energy demanded by the task
and the time needed to complete it. These values will then be used in the fitting
function (Eq. 4.8) and during the phase of check constraints.

Task energy calculation

In the case of delivery tasks, the optimizer aims to minimize the energy used by
the UAV:

min Ei
tj
(vij) =

1

η

(
cidρA

i
d(L

i
1j
+ Li

2j
)vi

2

j +

+
Li
1j

√(
(mi +mpj)g

)3
vijF

i
M

√
2ρAi

r

+
Li
2j

√
(mig)3

vijF
i
M

√
2ρAi

r

)
(4.3)

Subject to the following constraints:

0 ≤ Ei
tj
(vij) ≤ Ei

available (4.4)

0 ≤ vij ≤ viMAX (4.5)

0 ≤ T i
i +

Li
1j
+ Li

2j

vij
≤ TDDj

(4.6)

Equation 4.3 represents the energy consumption required by UAV i to perform
task j with velocity vij. This energy consumption model is adapted from the work
of Aiello et al. [1], which proposes an energy estimation method for UAS-based
urban logistics based on Newton’s equilibrium in steady-state flight conditions.

However, it should be noted that this model does not take into account factors
such as cross-section variations during flight, energy consumption during take-off
and landing, changes in airflow direction, or different UAV speeds during task ex-
ecution. Nevertheless, given our assumptions, this model provides a satisfactory
estimation.

CHAPTER 4. PROPOSED METHOD 23

The constraint on the minimum remaining energy after task completion is ex-
pressed in Equation 4.4. The velocity of the UAV during the task is subject to
constraints on its upper and lower bounds, as stated in Equation 4.5. Furthermore,
the task’s due date constraint is represented by Equation 4.6.

The parameters L1j and L2j , as we will see in Section 4.4, are derived by calling
the path planner, to have the minimum risk path.

Recharging task energy calculation

When it comes to a charging task, it is no longer necessary to have the speed that
minimizes energy, but rather that the travel time is as minimal as possible.

In fact we can finish all the energy left inside the battery so that the time lost
per recharge is the minimum.

In this case then the equation to be minimized will be as follows:

min titj(v
i
j) =

Li
1j
+ Li

2j

vij
(4.7)

Subject to the Eq. 4.4 and Eq 4.5 constraints, with the parameters L2j and
mpj equal to 0.

4.2.7 Individual evaluation

Individual evaluation is a critical step in the genetic algorithm optimization pro-
cess. During this step, each individual in the population is assessed based on its
fitness or objective function value.

The fitness function represents the quality of the solution encoded in the indi-
vidual’s chromosome.

The fitness function is problem-specific and must be designed to evaluate the
individual’s solution to the problem at hand. It should take into account all the
constraints and goals of the problem and return a score that reflects how well the
individual’s solution meets these criteria.

Once each individual’s fitness value is calculated, they can be ranked according to
their scores, and the best solutions can be selected to form the next generation.

This selection process can be based on different strategies, such as elitism,
where the best individuals are directly copied to the next generation, or tourna-
ment selection, where individuals are randomly selected and compared in pairs.

CHAPTER 4. PROPOSED METHOD 24

In summary, individual evaluation is a crucial step in the genetic algorithm opti-
mization process. It involves assessing each individual’s fitness based on a problem-
specific fitness function and ranking them to select the best solutions for the next
generation.

Specifically, in the proposed task allocation algorithm, the fitting function is as
follows:

min J = ζ

NU∑
i

Ei
TOT (4.8)

that is, the sum of the total energy used by each drone to perform all the
assigned tasks. In fact, for the individual drone we can write:

Ei
TOT =

NT∑
j

Ei
tj

(4.9)

The parameter ζ in the Equation 4.8 in the specific case of the Algorithm 1
is constant and equal to 1. This is because it takes into account how many tasks
do not comply with the delivery window and in the specific case of mandatory
delivery window equal to true is not taken into account.

More informations about this parameter could be seen in the Section ??.

4.2.8 Offspring population creation

To generate the next generation, an offspring population is created by merging in-
dividuals from both P and POPP . Specifically, half of the individuals are randomly
selected from P , and the remaining half from POPP . The Nbest individuals with
the highest fitness scores from both populations are automatically included in the
new population P ′.

For the remaining individuals, the roulette wheel selection technique is applied.
This selection method is widely used in genetic algorithms and involves assigning
each individual a selection probability proportional to its fitness score.

The advantage of roulette wheel selection is that it favors individuals with higher
fitness values, while still allowing individuals with lower fitness values to have a
chance of being selected. This helps to maintain diversity in the population and
prevent premature convergence.

Additionally, it is a simple and easy-to-implement method that does not require
any additional parameters beyond the fitness values and it ensures that the new

CHAPTER 4. PROPOSED METHOD 25

population has a higher overall fitness than the previous generation. However, it
can be slow for large populations or if there is a wide range of fitness values, as
it requires calculating the fitness values and probabilities for all individuals in the
population.

4.2.9 Best solution selection

After generating the offspring population, the algorithm proceeds to select the
individual with the lowest fitness function from the list of individuals. This selected
individual forms the solution for the current iteration and is stored separately.

This step is crucial because Section 4.2.11 demonstrates that the algorithm
leverages the history of past solutions to determine when to stop if it converges.

Additionally, this approach safeguards against losing the best solution as the
chance-based crossover and mutation operations could lead to the displacement
of the individual with the highest fitness function, thereby removing it from the
P population.

4.2.10 Add random individuals

To maintain a constant starting population size (P) during the genetic algorithm,
a check is conducted to ensure that the population doesn’t fall below the pre-
specified population size (NP) before transferring individuals from the offspring
population (P ′) to P .

If P ′ has fewer individuals than NP , new individuals are randomly generated
and added to P ′ until NP is reached. This approach helps maintain diversity
in the population, as a lack of diversity can lead to premature convergence and
suboptimal solutions.

By introducing new individuals via random generation, previously unexplored
search spaces can be explored, and the probability of discovering new candidate
solutions is increased.

4.2.11 Stopping criteria

The algorithm stops when one of the following two cases is satisfied:

• The number of iterations is equal to the maximum iteration number n =
nmax.

• We have convergence of the solution and thus in the last nconv iterations, the
solution remains below a tolerance ε.

CHAPTER 4. PROPOSED METHOD 26

4.3 Others versions
The algorithm we have discussed thus far pertains to version 1, which can be cus-
tomized using the parameters mandatory delivery window and rc only at the end.
By adjusting these parameters to true or false, we can create up to four distinct
versions of the allocation algorithm.

It should be noted that the different versions may not necessarily produce dif-
ferent final solutions, as the optimal solution for one version may be the same as
that for another, given that the fitness function remains unchanged.

4.3.1 Mandatory delivery window constraints

We can choose whether to treat delivery windows as hard or soft constraints us-
ing the parameter mandatory delivery window, where setting it to true or false
corresponds to hard or soft constraints, respectively. For hard constraints, any
solution that fails to adhere to the delivery window for a given task is disregarded.
Algorithm 1 follows this approach.

Soft constraints, on the other hand, do not discard solutions that do not satisfy
the delivery window, but instead disfavor them.

Let ponT ime represent the percentage of tasks delivered within the window, then:

ponT ime =
ntonTime

NT

(4.10)

Where with ntonTime
we indicate the number of tasks delivered on time.

The parameter ζ in Equation 4.8 is modified as follows:

ζ =
1

ponT ime

(4.11)

The fitting function in the proposed algorithm is adjusted based on the percent-
age of tasks delivered within their respective scheduled delivery windows. When
all tasks are completed within their scheduled windows, the fitting function is
multiplied by a value of one. However, as the number of tasks not completed
within their scheduled windows increases, the value by which the fitting function
is multiplied also increases.

As a result, the algorithm may prioritize a task allocation that minimizes en-
ergy consumption but fails to adhere to delivery windows, over an allocation that
consumes more energy but satisfies all delivery windows.

CHAPTER 4. PROPOSED METHOD 27

4.3.2 Charging task only ay the end

The computational time required for incorporating charging tasks is substantial, as
it necessitates the optimizer to calculate energy and travel times. To address this,
we introduced the parameter rc only at the end. When set to true, the recharge
tasks are added after the final solution is found, allowing for faster completion of
the algorithm. However, this approach sacrifices accuracy as the algorithm may
not discover the global minimum without considering recharge tasks.

The modified Algorithm 1 searches for the energy required for each drone for each
task, without considering the drone battery’s charge state, which is assumed to be
maximum. The resulting version of the algorithm can be seen on Algorithm 5.

Algorithm 5 Task allocation GA with recharging task only at the end
1: procedure start GA
2: Random population P creation with NP individuals
3: while Stopping criteria is not meet do
4: Opposite population POPP creation from P
5: Crossover operation in P and POPP

6: Mutation operation in P and POPP

7: Check max payload constraint in P and POPP

8: Energy calculation in P and POPP

9: Compute ζ for each individual in P and POPP

10: Populations (P and POPP) evaluation
11: Offspring population P ′ creation from P and POPP

12: Best solution selection
13: while Individuals in P ′ < NP do
14: Add random individual in P ′
15: end while
16: P = P ′

17: end while
18: Add recharging task to final solution
19: end procedure

4.3.3 Final versions

The final versions of the algorithm can be classified into four distinct types based
on the parameter settings for mandatory delivery window (mdw) and rc only at
the end (rce). In this context, the parameter mdw determines whether the algo-
rithm should consider the delivery window as a hard or soft constraint, whereas

CHAPTER 4. PROPOSED METHOD 28

rce decides whether the recharging tasks should be added during the optimization
process or only at the end.

The resulting versions of the algorithm are denoted as V1, V2, V3, and V4.
Specifically, when both mdw and rce are set to true, the algorithm takes the

form of V3. When mdw is true and rce is false, the algorithm is referred to as
V1. When mdw is false and rce is true, the algorithm takes the form of V4.
Finally, when both mdw and rce are false, the algorithm is denoted as V2.

A schematic view of the different versions can be had from the Table 4.1.

mdw / rce T F
T V3 V1
F V4 V2

Table 4.1: Task allocation alogithm version schema

4.4 Path planning
In the proposed evolutionary-based task allocation solutions, multiple paths con-
necting the UAV position to the task positions need to be computed. To achieve
this, the risk-aware path planning method proposed in Primatesta et al. [18] is
adopted. This method involves a two-step procedure where a risk map is first
generated, followed by a path planning algorithm that searches for the minimum
risk path while minimizing the overall risk and flight time.

As described in Primatesta et al. [17], the risk map is a two-dimensional
location-based map, where each element represents a specific location and is asso-
ciated with a risk value. The risk value is computed using a probabilistic ground
risk assessment approach that estimates the expected frequency of fatalities after
a ground impact accident, expressed in fatalities per flight hour (h−1). The risk
map depends on the UAV type and characteristics, such as mass, dimensions, and
maximum flight speed. Thus, a risk map must be computed for each UAV type
considered, including the mass of the payload delivered. For more details about
the generation of the ground risk map, please refer to Primatesta et al. [17].

After generating the risk map, the risk-aware path planning approach utilizes
the RRT* algorithm, introduced by Karaman and Frazzoli [11], to compute the
minimum risk path in the map. RRT* explores the search space, constructing an
asymptotically optimal tree, and the near-optimal solution is the branch of the
tree that connects the start and goal. The method is used to minimize overall

CHAPTER 4. PROPOSED METHOD 29

risk with respect to flight time, where the risk, expressed in flight hour (h−1), is
proportional to the flight time. For more information about the risk-aware path
planning approach, please refer to Primatesta et al. [18].

Moreover, before returning the path to the task allocator, it is important to ver-
ify that the average risk of the minimum risk path is lower than an Equivalent
Level of Safety (ELOS), as recommended by Dalamagkidis et al. [7]. An accept-
able ELOS with lightweight UAVs is 10−6h−1. This last step is crucial because
the risk-aware path planning approach only returns the minimum risk path in the
risk map, without ensuring that the computed path has an adequate level of safety.

The path planner generates output in the form of path lengths, which are then
utilized as parameters of the tasks L1 and L2 in Equation 4.3 and given to the
optimizers for further processing.

Chapter 5

Simulation results

This chapter presents numerical simulations that showcase the effectiveness of the
proposed method and established models.

The algorithms are implemented in Python 3 and tested in three different
scenarios. The first scenario is a simple test to verify the algorithm’s proper func-
tioning and to provide a clear understanding of its operation. The remaining two
scenarios are complex, representing real-world situations with multiple tasks and
UAVs for task allocation.

To compare the results obtained, each scenario was tested using all four versions
of the algorithm. For the simulations, a constant UAV thrust-to-weight ratio FM

of 0.9, cd of 0.3, η of 0.8, and a density of ρ of 1.23 kg/m3 were assumed.

Table 5.1 provides a list of further characteristics of the fleet of UAVs used, with
a maximum payload equal to the mass of the UAV itself mi

pMAX
= mi for all of

them.
The tasks were created from a set of 40 points in the operational environment,

with each task having a pickup point and an end point.
The payloads were assigned to have 4 different weights: 0.5, 1, 2, 3, and 4 kg.

Additionally, four charging points were defined in the operational environment.

The operational environment used was a portion of the city of Turin, Italy, and
the path planner was launched on it accordingly.

To reduce computational time, the path planner was launched prior to the
task allocation algorithm. The path planner calculated the values of the distances
between the various points and saved them in a matrix (triangular with zero di-
agonal) that the algorithm retrieved when it required data regarding the distance
between two points, instead of recalculating it.

30

CHAPTER 5. SIMULATION RESULTS 31

UAV id m[kg] Ar[m
2] Ad[m

2] vMAX [m/s] EMAX [MJ]
0 1 0.2 0.4 16 0.68
1 2 0.28 0.6 19 0.9
2 3 0.36 0.8 20 1.17
3 4 0.44 1 22 1.43

Table 5.1: UAVs’ fleet characteristic

In both the simple and complex scenarios, the genetic algorithm was configured
with values of 0.3 for both the mutation and crossover probabilities (pm and pc),
a population size of 30 individuals (NP), the number of elite individuals selected
for the next generation set to 5 (Nbest), the convergence threshold (nconv) set to 8,
the energy tolerance between the last solutions (ε) set to 300 J, and the maximum
number of iterations of the GA (nmax) set to 20.

5.1 Simple scenario
For the simple scenario, the task is to allocate 5 delivery tasks (NT = 5) among a
fleet of 2 UAVs (NU = 2), with the availability of 2 charging stations (NCT = 2)
for the UAVs to use when required. The UAVs used in this scenario are identified
as number 1 and number 3, as shown in Table 5.1.

The tasks were randomly selected from the list of 40 points, as were the charging
stations. Each task’s delivery window (TDDj

) was assigned randomly from 0 to 3
hours.

The operating environment is illustrated in Figure 5.1, which presents the complete
scenario. The 5 delivery tasks are indicated with a continuous line, and the pickup
position is denoted by a bottom-up triangle while the delivery position is marked
with a top-down triangle, as shown in the legend. The 2 recharging stations are
represented by a "+" symbol, and the starting points of the two UAVs are shown
on the map with a square.

The scenario is solved using the 4 different versions of the algorithm and the
results are shown in Table 5.2.

We can visualize the solution obtained by version 2 of the algorithm on the map
in Figure 5.2. The path taken by the drone starting from the initial position is
shown with a dotted line. UAV 0 performs tasks 1, 0, and 4 before heading to the
charging station (6) and then completing the last task 3. On the other hand, UAV
1 only handles task 2.

CHAPTER 5. SIMULATION RESULTS 32

Figure 5.1: Operating environment simple scenario

As a case in point, in Figure 5.3, we can observe the performance of the fit-
ting function during each iteration and how convergence is achieved. It is worth
noting that the final solution was obtained after the sixth iteration, but an ad-
ditional eight iterations were carried out to explore a wider range of possibilities
and enhance the likelihood of discovering the local minimum. The significance of
this can be grasped by the fact that a minimum was found after iteration 1, which
may have appeared to be global, since it was not until the sixth iteration that
an improvement was achieved. A higher value of nconv augments the possibility
of identifying the global minimum of the fitting function at the cost of increased
computational time due to the greater number of iterations. However, this can be
circumvented by raising the ε tolerance.

At first glance, this allocation may not seem fair, but it is because UAV 0 has
a lower payload capacity and therefore consumes less energy for the same distance
traveled. This is particularly true given that all tasks are delivered within their
time windows. Hence, the algorithm assigns only UAV 1 to task 2, as it exceeds
the maximum payload capacity of UAV 0.

CHAPTER 5. SIMULATION RESULTS 33

From the results of the simple scenario, we can observe that there is no signif-
icant difference in the energy consumption between using the rte parameter set
to true or false. However, the computation times with false are considerably
longer.

Version Run time [s] J [MJ] ponT ime Uav 0 tasks Uav 1 tasks ni

V1 5.19 2.03 1.0 1, 4, 3, 5, 0 2 7
V2 4.80 1.85 1.0 1, 0, 4, 6, 3 2 7
V3 1.47 2.53 1.0 3, 5, 0, 4 1, 6, 2 9
V4 1.66 2.03 1.0 1, 4, 3, 5, 0 2 11

Table 5.2: Results of simulations for different algorithm versions in the simple
scenario

Figure 5.2: Graph solution of V2 task allocation algorithm for the simple scenario

CHAPTER 5. SIMULATION RESULTS 34

Figure 5.3: Progress of the fitting function for each iteration of the V2 algorithm
in the simple scenario

5.2 Complex scenario
In order to evaluate the performance of the genetic task allocation algorithm in
complex scenarios, 40 delivery tasks were assigned to 4 UAVs along with 4 charg-
ing points on the map. Two scenarios were considered: scenario A, which involves
random assignment of the delivery window for each task, and scenario B, which as-
sumes a uniform delivery window of 5 hours for all tasks. Monte Carlo simulations
were conducted 20 times for both scenarios using each version of the algorithm.
The results are presented in Table 5.3 and Table 5.4, where the mean value µ
and standard deviation σ are reported for the total energy required by the fleet to
complete all assigned tasks ETOT , the number of iterations done by the algorithm
ni, the total running time of the GA tTOT and the number of charging stations
visited nchar.

CHAPTER 5. SIMULATION RESULTS 35

It should be noted that the genetic algorithm assigns all tasks to the entire fleet,
and if a solution cannot be found to satisfy the delivery time and payload con-
straints, the algorithm will return no output. This is why versions 1 and 3 of the
algorithm did not produce any results in scenario A. However, versions 2 and 4
achieved a delivery success rate of 86% and 88% respectively, indicating that the
minimum energy was achieved by delivering the majority of the parcels within the
available delivery window.

Interestingly, version 2 of the algorithm, which adds charging tasks at each cy-
cle rather than just at the end, provided the minimum energy solution. However,
the energy savings were only 2.5%, which may not be significant compared to the
gain in computation time of 510%.

It is important to note that while the genetic task allocation algorithm showed
promising results in these complex scenarios, further research is needed to explore
its performance in uncertain and changing environments and to improve its scal-
ability and efficiency.

Similar results can be seen in scenario B, where this time because of the very
large time delivery windows for all tasks, we have a solution with all versions of
the GA. Comparing the V2 with the V4, the energy is 5.8% lower but the total
running time of the algorithm was 6.5 times more.

Version ETOT [MJ] ponT ime nchar ni tTOT [s]
µ± σ µ± σ µ± σ µ± σ µ± σ

V1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
V2 15.79 ± 0.52 0.857 ± 0.030 4 ± 0 8.9 ± 4.0 2690.2 ± 1548.8
V3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
V4 16.09 ± 0.60 0.879 ± 0.017 4 ± 0 9.0 ± 5.2 526.7 ± 340.8

Table 5.3: Simulation results complex scenario A

Version ETOT [MJ] ponT ime nchar ni tTOT [s]
µ± σ µ± σ µ± σ µ± σ µ± σ

V1 15.06 ± 0.60 1 ± 0 4 ± 0 7.8 ± 3.4 2428.8 ± 1375.3
V2 14.79 ± 0.46 1 ± 0 4 ± 0 8.2 ± 3.2 2354.0 ± 1503.9
V3 15.50 ± 0.62 1 ± 0 4 ± 0 7.4 ± 3.2 347.4 ± 341.2
V4 15.70 ± 0.81 1 ± 0 4 ± 0 8.8 ± 3.6 373.6 ± 199.7

Table 5.4: Simulation results complex scenario B

Chapter 6

Conclusions

The genetic task allocation algorithm proposed in this thesis is based on a genetic
algorithm framework, which is a powerful and flexible optimization technique in-
spired by natural evolution.

The algorithm takes into account various factors, such as task requirements,
UAV capabilities, and charging constraints, to generate an optimized task allo-
cation schedule that minimizes energy consumption and computation time. The
algorithm also incorporates a novel charging task insertion method to improve the
overall efficiency of the schedule.

In terms of results, the algorithm was tested on a variety of problem instances
involving different task and UAV configurations. The results demonstrated that
the algorithm is effective in generating high-quality task allocation schedules that
minimize energy consumption and computation time.

The algorithm’s performance was particularly impressive when charging tasks
were strategically placed only at the end of the final solution resulted in significant
improvements in computation time, without compromising energy efficiency. The
algorithm demonstrated exceptional performance under this configuration.

It is important to note that the algorithm does not always guarantee to find the
optimal solution, but rather aims to generate a near-optimal solution within a
reasonable amount of time.

To achieve even better results, future research could focus on identifying the
optimal combination of parameters that would lead to faster convergence to the
minimum solution.

While the genetic task allocation algorithm proposed in this thesis has demon-
strated its potential, there are some important considerations to keep in mind.
For instance, the algorithm assumes perfect information regarding the environ-

36

CHAPTER 6. CONCLUSIONS 37

ment and task requirements, which may not always be available in practice. Thus,
exploring how the algorithm can adapt to uncertain and changing environments is
an interesting avenue for future research.

Furthermore, scalability and efficiency are critical factors that should be taken
into account when applying the algorithm to larger problem instances. Thus, it is
important to investigate how to improve the algorithm’s scalability and efficiency
without compromising solution quality.

It is important to note that the algorithm does not always guarantee to find the
optimal solution, but increasing the number of individuals and iterations, as well
as implementing stop conditions for convergence, can improve the probability of
finding the minimum solution.

The genetic task allocation algorithm constructed has considerable room for
improvement in the view of optimizing it and thus improving computation time.
However, it was not the goal of this thesis to make the algorithm more efficient,
but rather to show its actual usability in the task allocation scenario for package
delivery.

Overall, the genetic task allocation algorithm presented in this thesis provides a
promising solution for task allocation problems in the UAV domain. Nevertheless,
further improvements and optimizations are necessary to expand its capabilities
and applicability in real-world scenarios.

Bibliography

[1] Giuseppe Aiello et al. “Energy consumption model of aerial urban logistic
infrastructures”. In: Energies 14.18 (2021), p. 5998.

[2] Taha Benarbia and Kyandoghere Kyamakya. “A literature review of drone-
based package delivery logistics systems and their implementation feasibil-
ity”. In: Sustainability 14.1 (2021), p. 360.

[3] Diego Cattaruzza et al. “A memetic algorithm for the multi trip vehicle rout-
ing problem”. In: European Journal of Operational Research 236.3 (2014),
pp. 833–848.

[4] Genshe Chen and Jose B Cruz. “Genetic algorithm for task allocation in UAV
cooperative control”. In: AIAA Guidance, Navigation, and Control Confer-
ence and Exhibit. 2003, p. 5582.

[5] Chun Cheng, Yossiri Adulyasak, and Louis-Martin Rousseau. “Drone routing
with energy function: Formulation and exact algorithm”. In: Transportation
Research Part B: Methodological 139 (2020), pp. 364–387.

[6] Shushman Choudhury et al. “Efficient large-scale multi-drone delivery using
transit networks”. In: Journal of Artificial Intelligence Research 70 (2021),
pp. 757–788.

[7] Konstantinos Dalamagkidis, Kimon P Valavanis, and Les A Piegl. On inte-
grating unmanned aircraft systems into the national airspace system: issues,
challenges, operational restrictions, certification, and recommendations. Springer,
2009.

[8] Kevin Dorling et al. “Vehicle routing problems for drone delivery”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.1 (2016), pp. 70–
85.

[9] Xiaoyu Du et al. “Multi-UAVs cooperative task assignment and path plan-
ning scheme”. In: Journal of Physics: Conference Series. Vol. 1856. 1. IOP
Publishing. 2021, p. 012016.

38

BIBLIOGRAPHY 39

[10] Stefano Giordani, Marin Lujak, and Francesco Martinelli. “A distributed al-
gorithm for the multi-robot task allocation problem”. In: International con-
ference on industrial, engineering and other applications of applied intelligent
systems. Springer. 2010, pp. 721–730.

[11] Sertac Karaman and Emilio Frazzoli. “Incremental sampling-based algo-
rithms for optimal motion planning”. In: Robotics Science and Systems VI
104.2 (2010).

[12] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. “Distributed algo-
rithms for multirobot task assignment with task deadline constraints”. In:
IEEE Transactions on Automation Science and Engineering 12.3 (2015),
pp. 876–888.

[13] Gyeongtaek Oh et al. “Market-based distributed task assignment of multi-
ple unmanned aerial vehicles for cooperative timing mission”. In: Journal of
Aircraft 54.6 (2017), pp. 2298–2310.

[14] Alena Otto et al. “Optimization approaches for civil applications of un-
manned aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks
72.4 (2018), pp. 411–458.

[15] Andrew J Page, Thomas M Keane, and Thomas J Naughton. “Multi-heuristic
dynamic task allocation using genetic algorithms in a heterogeneous dis-
tributed system”. In: Journal of parallel and distributed computing 70.7 (2010),
pp. 758–766.

[16] Sabitri Poudel and Sangman Moh. “Task assignment algorithms for un-
manned aerial vehicle networks: A comprehensive survey”. In: Vehicular
Communications (2022), p. 100469.

[17] Stefano Primatesta, Alessandro Rizzo, and Anders la Cour-Harbo. “Ground
risk map for unmanned aircraft in urban environments”. In: Journal of In-
telligent & Robotic Systems 97 (2020), pp. 489–509.

[18] Stefano Primatesta et al. “An innovative algorithm to estimate risk optimum
path for unmanned aerial vehicles in urban environments”. In: Transportation
research procedia 35 (2018), pp. 44–53.

[19] Wei Qin et al. “Multi-agent reinforcement learning-based dynamic task as-
signment for vehicles in urban transportation system”. In: International Jour-
nal of Production Economics 240 (2021), p. 108251.

[20] Deo Prakash Vidyarthi and Anil Kumar Tripathi. “Maximizing reliability
of distributed computing system with task allocation using simple genetic
algorithm”. In: Journal of Systems Architecture 47.6 (2001), pp. 549–554.

BIBLIOGRAPHY 40

[21] Xueli Wu et al. “Multi-UAV task allocation based on improved genetic algo-
rithm”. In: IEEE Access 9 (2021), pp. 100369–100379.

[22] Anmin Zhu and Simon X Yang. “A neural network approach to dynamic
task assignment of multirobots”. In: IEEE transactions on neural networks
17.5 (2006), pp. 1278–1287.

[23] WANG Zhu et al. “Multi-UAV reconnaissance task allocation for hetero-
geneous targets using an opposition-based genetic algorithm with double-
chromosome encoding”. In: Chinese Journal of Aeronautics 31.2 (2018), pp. 339–
350.

	Introduction
	State of the art
	Centralized algorithms
	Distributed algorithms
	Genetic-based algorithms
	Artificial neural network algorithms
	Swarm intelligence-based algorithms
	Summing up

	Problem statement
	Proposed method
	Genetic algorithms overview
	The procedure of the proposed GA V1
	Double-chromosome encoding
	Opposite population
	Crossover operation
	Mutation operation
	Check constraints
	Add charging tasks
	Individual evaluation
	Offspring population creation
	Best solution selection
	Add random individuals
	Stopping criteria

	Others versions
	Mandatory delivery window constraints
	Charging task only ay the end
	Final versions

	Path planning

	Simulation results
	Simple scenario
	Complex scenario

	Conclusions
	Bibliography

