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Abstract 

This study involves the analysis of the conceptual design of a thermal management system designed 

for a hybrid-electric aircraft, with the objective of establishing a digital and seamless connection 

between the system model, developed using Model Based System Engineering, and numerical 

simulation models. The system overview is provided by Embraer Research and Technology Europe 

- Airholding S.A, the project partner, which also supplies the Matlab and Simulink numerical models 

utilized throughout the study. The first step is to conduct an evaluation of the engineering workflow 

to identify areas for improvement where the above-mentioned connection could enhance the system 

development process. The subsequent focus of the study is on creating the tool required to establish 

the seamless connection, which comprises of an MBSE architectural model built using the ARCADIA 

methodology in Capella software, and a digital bridge developed in Python programming language, 

linking the MBSE model with the Matlab and Simulink models. The outcome is a shareable MBSE 

TMS formal model, functioning as an accessible framework for all the engineers involved in the 

design process, this contains the system characterization and is directly connected to its 

corresponding numerical model via the digital bridge. 
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1 Context and motivation 

The thesis project is concerned with Model Based System Engineering (MBSE), an approach that 

digitizes Systems Engineering practices. This approach has many advantages over traditional 

document-based methods, including a single point of reference and the elimination of many of the 

challenges associated with the latter paradigm. 

Aiming to this innovative approach, an interoperable workflow should be established between 

different tools. These include those that support MBSE and those that model the physical behaviour 

of systems and their components. The project target is to show how MBSE and Model Based 

Engineering (MBE) can be linked in a seamless way using the Capella MBSE tool and MATLAB for a 

Thermal Management System Architecture of a Hybrid-Electric Aircraft. This involves modelling the 

system in Capella and creating an interlink architecture between the system model and physical 

model developed in MATLAB. 

The MBSE approach offers a solution to some of the complexities and challenges associated with the 

document-based paradigm. This is achieved by allowing for faster communication between Model 

Based System Engineering and numerical simulation environments. By exploiting these capabilities, 

the project wants to boost and make the engineering process more effective. 

The intention is that the cross-domain information exchange, which is where most engineering 

mistakes occur, will benefit from this project. A consistent MBSE model combined with a digital 

bridge to the simulation environment will hopefully eliminate many of the errors that arise from 

miscommunication between different domains. 

The project aims to demonstrate how MBSE and MBE can be interlinked digitally in a seamless way. 

By creating a unified digital environment for the system model, engineers will be able to collaborate 

more efficiently and effectively. This will enable them to identify and resolve issues more quickly, 

and ultimately, to design and build better systems. 

One of the main advantages of the MBSE approach is that it offers a single point of truth reference 

for the entire system. This means that all stakeholders have access to the same information, reducing 

the likelihood of errors and misunderstandings. In contrast, document-based paradigms often result 

in multiple versions of the same information, leading to confusion and errors. 

Another objective is to demonstrate the benefits of a digital bridge between the MBSE model and the 

simulation environment. This will enable engineers to simulate the behaviour of the system in a 

virtual environment, allowing them to identify and resolve issues before building the physical 

system. By simulating the system in this way, engineers can reduce the likelihood of errors and 

improve the efficiency of the design process. 

The project focuses specifically on the Thermal Management System Architecture of a Hybrid-

Electric Aircraft. This is an important area of research, as hybrid-electric aircraft are becoming 

increasingly common in the aviation industry. These aircraft have unique design challenges, 

including the need to manage both electrical and thermal energy. By developing a unified digital 

environment for the system model, the project aims to help engineers design more efficient and 

effective hybrid-electric aircraft. 
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This project is linked to the FutPrint50 effort that in fact regards the development of a Hybrid-

Electric aircraft.  

 

 

 

 

 

This work was preceded by an internship project (30) carried out within the Model Based System 

Engineering (MBSE) framework, the aim was to carry out a preliminary study of the requirements, 

tools and strategies for linking the Capella software with programs that simulate the physical 

behaviour of dynamic systems (e.g. Matlab).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: FutPrint50 logo 
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2 Introduction to Model Based System Engineering 

Over the past two decades, there has been a significant shift in the engineering and manufacturing 

sector towards utilizing a model-based approach to system engineering instead of the traditional 

document-based method. This shift has been driven by the digitization of processes, the need to meet 

technological demands, and competition among companies to provide higher quality products and 

services at a faster pace and lower cost (13), (14). 

The document-based method involves generating system information and specifications through 

documents, which can become overwhelming in number for complex projects such as satellite or 

aircraft design. The large number of documents and the complexity of information can lead to 

difficulties in management and updating, which can result in cross domain communication problems 

(15), (16). Additionally, sometimes documents may contain conflicting information, which can lead 

to unexpected outcomes (15). 

In contrast, model-based system engineering (MBSE) involves the formal use of modelling to 

support system requirements, design, analysis, verification, and validation activities from the 

conceptual phase throughout development and later life cycle phases (15). According to E. Burger's 

doctoral thesis "A conceptual MBSE framework for satellite AIT planning," MBSE uses coherent, 

integrated, and complete computerized models (17) of physical systems and processes (18) that 

represent an abstract representation of reality (16). 

MBSE brings numerous benefits to the engineering and manufacturing sector. Improved 

communication between designers and customers is facilitated by better data sharing and 

information exchange (15), (16). Enhanced management of system complexity and reduced risk of 

limitations are also benefits of MBSE (15), (16), (1). Higher product quality is achieved through a 

unique system model (15), while increased productivity is achieved through reduced time and cost 

with the help of recycled models and traceable requirements (15), (1). Additionally, standardized 

models make it easier to teach and learn MBSE concepts (15). 

One of the primary advantages of MBSE is improved communication between designers and 

customers. The use of a coherent and integrated computerized model facilitates better data sharing 

and information exchange between stakeholders. This improved communication leads to a better 

understanding of the system's requirements and enables designers to respond to customer needs 

more efficiently (15), (16). 

Another significant benefit of MBSE is enhanced management of system complexity and reduced risk 

of limitations. The use of a model allows for the identification and management of interdependencies 

between system components. This, in turn, helps to reduce the risk of limitations and ensures that 

the system functions as intended (15), (16), (1). 

Higher product quality is also a plus of MBSE, the use of a unique system model ensures that all 

stakeholders have a common understanding of the system's requirements, design, and functionality. 

This results in a more cohesive and robust system that meets customer needs and specifications 

(15). 

The productivity is increased as MBS allows reduced design time and cost, the use of recycled models 

and traceable requirements helps to reduce the time and cost associated with system design and 

development. This, in turn, helps organizations to deliver higher quality products and services at a 

faster pace and lower cost (15), (1). 
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Finally, MBSE offers easier teaching and learning of system engineering concepts through 

standardized models. The use of standardized models helps to ensure that all stakeholders have a 

common understanding of system engineering concepts, reducing the potential for 

miscommunication and errors (15). 

The shift towards model-based system engineering has been driven by the need to improve the 

quality of products and services, meet technological demands, and compete in a rapidly changing 

engineering and manufacturing sector. MBSE offers all the numerous benefits mentioned above: 

improved communication, enhanced management of system complexity, higher product quality, 

increased productivity, and easier teaching and learning of system engineering concepts. As 

organizations continue to adopt MBSE, it is expected to become the standard approach to system 

engineering in the future. 

While Model-Based Systems Engineering (MBSE) offers numerous benefits, implementing it can also 

present various challenges for organizations in the engineering and manufacturing sector. One 

challenge is the need for a significant cultural shift within the organization to move from a document-

based approach to a model-based one. This shift requires rethinking traditional practices and 

adopting new methods and tools, which can be challenging and require extensive training for the 

team. 

Another challenge is the potential complexity of the models themselves. As the number of 

components and subsystems in a system increases, the models can become intricate and difficult to 

manage. It requires careful planning, design, and organization to ensure that the models remain 

understandable, maintainable, and scalable. 

Furthermore, integrating MBSE into existing systems and processes can be challenging, particularly 

when those systems and processes have been in place for a long time. Integrating MBSE into existing 

processes requires careful coordination and communication, and organizations may need to invest 

in additional technology or personnel to make the transition smoothly. 

Finally, there is the challenge of ensuring that the models accurately reflect reality. The models must 

accurately represent the system and its behaviour, and any changes to the system must be reflected 

in the model. This requires careful coordination between stakeholders and a well-defined change 

management process. 

MBSE implementation challenges are in conclusion cultural shift, model complexity, integration into 

existing systems, and ensuring that models accurately reflect reality. Addressing these challenges 

requires careful planning, coordination, and communication, and organizations must be willing to 

invest in the necessary training, technology, and personnel to make the transition to MBSE 

successfully. 

As Model-Based Systems Engineering (MBSE) continues to gain widespread adoption across various 

industries, several potential future developments could emerge. One such development is the 

increasing use of Artificial Intelligence (AI) and Machine Learning (ML) techniques to analyse system 

models and automatically generate them. Additionally, the use of Virtual and Augmented Reality 

technologies could provide more immersive and interactive experiences for MBSE users. Another 

development could be the integration of MBSE with the Internet of Things (IoT), enabling the 

creation of more complex systems that can adapt and learn from real-time data. Finally, the 

standardization of MBSE methodologies and tools across different industries could help to further 

accelerate its adoption and enable more seamless collaboration between organizations. 
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2.1 Definition of methodologies, processes, tools 

Implementing MBSE requires the application of the appropriate methodology, consisting of 

"processes," "methods," and "tools." According to J. Estefan's "Survey of Model-Based Systems 

Engineering (MBSE) Methodologies, 2008," a process is a logical sequence of tasks performed to 

achieve a particular objective. It defines 'WHAT' is to be done but does not specify 'HOW' each task 

is performed. The structure of a process provides multiple levels of aggregation, allowing analysis 

and definition at different levels of detail to support various decision-making needs. On the other 

hand, a method consists of techniques for performing a task and defines the 'HOW' of each task. At 

any level, process tasks are performed using methods. But each method is also a process, with its 

sequence of tasks to be performed. The 'HOW' at one level of abstraction becomes the 'WHAT' at the 

next lower level. 

A tool is an instrument that enhances the efficiency of a task when applied to a particular method. It 

facilitates the accomplishment of the 'HOWs.' In broader terms, it enhances the 'WHAT' and the 

'HOW.' MBSE is primarily based on tools, which are usually software, that allow for the creation of 

models using appropriate languages. There is a wide variety of tools available on the market, and 

designers can choose the one that best suits their needs based on the strengths and weaknesses of 

the software. It is not possible to adopt MBSE without a specific tool. 

The methodology of MBSE is defined as the set of processes, methods, and tools that allow for the 

application of model-based techniques in different project phases. It is a "recipe" that can be applied 

to problems that have common elements. J. Estefan notes that the concept of "environment" is also 

related to these definitions. The environment is everything that surrounds us, including external 

objects, conditions (such as social, cultural, personal, physical, and political), and factors that can 

influence the choices of a community. 

Therefore, the MBSE environment must allow for the integration of the tools and methods used in a 

project, enabling both the 'WHAT' and 'HOW.' Figure 3.2 shows a visual diagram of the PMTE 

elements (process, methods, tools, environment) and their links with technology and people, which 

should always be considered in every project. This emphasizes the importance of choosing the right 

tools and methods that align with the specific project's requirements and goals. 

In conclusion, the implementation of MBSE requires the application of the appropriate methodology, 

consisting of processes, methods, and tools. A clear definition of these terminologies is crucial to 

avoid ambiguities and semantic discrepancies between academia and industry. Choosing the right 

tools and methods that align with a specific project's requirements and goals is critical in the MBSE 

environment. 
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2.2 The ARCADIA methodology 

ARCADIA, which stands for Architecture Analysis & Design Integrated Approach, is a methodology 

developed by Thales Airborne Systems in 2007 with the aim of defining and validating the 

architecture of complex multidomain systems (1). The ARCADIA methodology is designed to be 

flexible and can be used with top-down, bottom-up, or middle-out approaches, allowing 

stakeholders to share information and engage in co-engineering by jointly creating models that are 

not only descriptive but also interact with each other (1). 

ARCADIA is used by Thales for complex systems across various industries, including Defence, Space, 

Aeronautics, Land Transport, and Security (1). The methodology covers all project activities at 

different levels, allowing stakeholders to share information and engage in co-engineering by jointly 

creating models that are not only descriptive but also interact with each other (1). 

The ARCADIA methodology is represented by a series of diagrams with interconnected elements 

that form the structure and behaviour of the system. The methodology has five work levels (1): 

• Operational Analysis: This level identifies the actors and analyses the problems and requests 

of the users and is the highest level of the methodology (What the user needs to do?) 

• System Analysis: This level identifies the functions that the system must perform to meet the 

user requests (What the system needs to do to meet the user need?). 

• Logical Architecture: This level recognizes the logical components of the system, their sub-

functions, relationships, and content, considering any constraints (How the system will 

work?). 

• Physical Architecture: This level defines the structure of the system and how it will be 

executed, identifying the behavioural components that can perform the required functions 

(How the system will be built?). 

• End Product Breakdown Structure (EPBS): This level establishes the design limitations of 

the architecture and deduces the constraints to be met (Expectations from each component 

provider). 

Figure 2.1: The PMTE Elements and Effects of Technology and People (20) 
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It is important to note that not all project levels are required, as the Operational Analysis and EPBS 

levels are considered optional and may or may not be implemented based on design difficulties (1). 

The ARCADIA methodology is used to improve communication and collaboration among different 

stakeholders involved in the design process, from engineers to managers to customers (2). It enables 

the creation of a model that integrates different domains, such as hardware, software, and human 

factors, and allows for the identification of potential issues early in the design process, reducing the 

risk of costly errors later on(2). 

In conclusion, the ARCADIA methodology is a flexible and versatile approach to system design and 

validation that facilitates communication and collaboration among different stakeholders. Its 

implementation through MBSE tools, such as Capella, enables the creation of descriptive and 

interactive models that allow for the identification of potential and costly issues. 

 

 

 

 

 

 

 

 

 

 

2.2.1 The Capella software 

ARCADIA is accompanied by a modelling tool developed by Thales, which was initially known as 

Melody Advance and later became open source as Capella. This is a hybrid modelling tool that 

incorporates elements of SysML and is designed to help with system engineering and architecture 

problems. Capella provides support for the main levels of the ARCADIA methodology and offers 

seven types of diagrams for each project stage, including data flow diagrams, scenario diagrams, 

architecture diagrams, mode and state diagrams, distribution diagrams, class diagrams, and 

capability diagrams (19), (1). This tool will be used throughout the project, and its diagrams will be 

utilized in the most suitable manner. 

Furthermore, Capella has optional features called add-ons that could be downloaded and used in 

synergy with the main capabilities, add-ons basically introduce new elements in the MBSE 

environment, the ones interesting for this project are: 

Requirements viewpoint: allow requirement creation and import into the Capella environment so 

that they can be addressed in the model. 

Figure 2.2: The main engineering levels of Arcadia [1] 
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Property Value Management Tool (PVMT): this add-on allows the creation of data, values that could 

be addressed as properties to various Capella elements. 

Python4Capella (P4C): this add-on implements a python interpreter into the Capella environment, 

this allow to access many of the Capella elements through Python programming language, in this 

way the language can be used to perform other activities and then change the model on that base. 

Capella is a powerful tool that can assist system engineers to model complex systems and optimize 

their design. In this article, we will explore Capella in more detail, including its capabilities, features, 

and add-ons. We will also discuss how Capella integrates with other tools to create a complete 

system engineering solution. 

Capabilities of Capella: 

Capella is designed to support system engineers at each level of the ARCADIA methodology, from the 

operational to the logical, and the physical to the implementation level. The tool provides a graphical 

modelling environment for system modelling and supports the creation of models in various 

diagrams. Capella's capabilities include the ability to define system requirements, design and 

architecture, allocate functions, and verify system behaviour. 

One of the strengths of Capella is its flexibility in modelling complex systems. For example, Capella 

can model systems with multiple configurations, or systems that evolve over time. The tool supports 

the creation of models in different levels of abstraction and allows engineers to describe the system 

architecture at different levels of granularity. This allows for a more accurate representation of the 

system and helps to identify potential issues early in the design phase. 

Features of Capella: 

Capella provides a range of features to support system engineers. One of the key features of Capella 

is its support for the creation of models in various diagrams. The tool offers seven types of diagrams 

for each project stage, including data flow diagrams, scenario diagrams, architecture diagrams, mode 

and state diagrams, distribution diagrams, class diagrams, and capability diagrams (19), (1). 

Another important feature of Capella is its support for the creation of system requirements. The tool 

provides a requirements viewpoint add-on, which allows for the creation and import of 

requirements into the Capella environment. This feature ensures that requirements are addressed 

in the model, enabling system engineers to design and optimize the system with the requirements 

in mind. 

Capella also includes a Property Value Management Tool (PVMT) add-on. This feature allows the 

creation of data and values that can be addressed as properties to various Capella elements. The 

PVMT add-on is useful for managing properties such as cost, weight, or performance, and can help 

engineers to optimize the system design. 

Furthermore Capella can include the Python4Capella (P4C) add-on, which implements a Python 

interpreter into the Capella environment. This feature allows engineers to access many of the Capella 

elements through the Python programming language. This means that engineers can use Python to 

perform other activities and then change the model on that basis. For example, engineers can use 

Python to perform simulations, optimization, or data analysis, and then update the Capella model 

based on the results. 
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Integration with other tools: 

Capella can integrate with other tools to create a complete system engineering solution. For example, 

Capella can integrate with requirement management tools, such as DOORS, to manage system 

requirements. In addition, Capella can integrate with version control tools such as Git to manage 

model versions and changes. This allows engineers to work collaboratively on the same model and 

track changes made by different team members. 
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3 Use case description 

In this section the FutPrint50 hybrid-electric aircraft is presented, this gives the context within 

which the TMS will operate. 

The partner of this project is Embraer Research and Technology Europe (Airholding), the company 

provides the use case that is the Thermal Management System for a hybrid-electric aircraft. The 

system of interest will be described in detail in the following sections, starting from the customer 

needs and the high-level requirements to the specific TMS layout and the Matlab model used to 

analyse it. 

 

3.1 The Company 

The project has been carried out within Embraer Research and Technology Europe that is the 

European arm of the Embraer Research and Technology Unit, and is part of Airholding S.A., a full 

European subsidiary of Embraer S.A. 

Embraer S.A. is a Brazilian multinational aerospace manufacturer that produces commercial, 

military, executive and agricultural aircraft, and provides aeronautical services. 

Airholding S.A. is mostly involved in collaborative projects with partners in Europe and elsewhere. 
The company aims at high level, to bring value to the Embraer group by: fostering strategic 
relationships with European networks of partners and suppliers, creating, exploiting and sustaining 
new European based technology and business streams, and contributing to the overall of aviation 
safety improvement.  

In specific, Airholding S.A. is mainly active in projects related with cyber-physical systems, future 
propulsion, automation, sustainability, and mobility.  

Airholding S.A. benefits from Embraer 50-year heritage of successful aircraft design, production, 
certification and support and more than 14 years collaboration with European partners in 
Framework and National European R&I programmes. Airholding S.A. can complement its expertise 
with know-how from the EMBRAER group, extending its capabilities. 

 

 

 

 

 

  

3.2 FutPrint50 

In recent years, there has been a significant rise in the number of passengers traveling by air, with 

4.5 billion passengers recorded in 2019, which is 56% more than in 2004 (24). To address the issue 

Figure 3.1: Embraer logo 

https://en.wikipedia.org/wiki/Multinational_corporation
https://en.wikipedia.org/wiki/Aerospace_manufacturer
https://en.wikipedia.org/wiki/Aircraft
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of harmful emissions that result from aviation, the global aviation industry has committed to achieve 

full decarbonization by 2050 under the Green Deal pacts, joined by the European Commission in 

2019 (23). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a result of this commitment, the FutPrint50 project was initiated to reduce the environmental 

impact of regional air traffic. The project has 14 international partners based in Europe, and is 

focused on reducing pollution in regional aviation routes that have seen steady growth since 2003 

(23). 

The most effective way to reduce harmful emissions in aviation is through the electrification of the 

power train. However, current technology doesn't allow for the use of electric engines alone, as the 

specific energy of modern batteries is too low to support aircraft design. The solution proposed by 

the FutPrint50 project is to partially electrify the power train by combining conventional gas 

combustion engines with electric engines, resulting in increased efficiency and reduced emissions, 

as well as a more manageable flight plan (23). Additionally, the conventional engine will use 

innovative drop-in sustainable fuel instead of conventional jet fuels. 

The goal of the FutPrint50 project is to introduce a hybrid-electric regional 50-seats aircraft (HEA) 

by 2035/2040, which will contribute to the advancement of electric propulsion technology and 

unconventional aircraft design. This aligns with the European Commission's vision of reducing the 

environmental impact of the aviation industry. 

 

3.3 Aircraft requirements 

For this peculiar project specific requirements have been developed, these requirements are 

significant in the way that they start putting constraints and indication about the unconventional 

aircraft design. 

What makes possible to identify goals and requirements are the stakeholders and their needs, so the 

stakeholder analysis and the interaction with them is fundamental to ensure that the project is going 

the right direction and that the requirements that have been set will eventually validate the overall 

system. 

Figure 3.2: Air traffic trend (24) 
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The stakeholder identified for the FutPrint50 project are (23): 

• EU citizen 

• Authorities  

• Operator 

• Airport 

• Air traffic management 

• Supplier of energy 

• Passenger 

In this view the HEA can be seen as a system within a system influenced by the surrounding 

environment 

 

 

 

 

 

 

 

 

 

 

 

These top-level aircraft requirements (TLARs) set a first step in the design definition, they are 

divided in four categories: environment, market, operations, and performance. They are the result 

of a comparative analysis carried out for this aircraft 

In the following tables are reported requirements like they appear in the (23) reference for the 

FutPrint50 project. 

 

3.3.1 Environmental requirements 

TLAR (environment) Value 

Reduction of CO2 emissions >= 75% vs ATR42 

Reduction of NOx emissions >= 90% vs ATR42 

Figure 3.3: System of systems (23) 
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Reduction of noise emissions >= 65% vs ATR42 

Emissions during ground operations 

 

No emissions 

Materials used in the design Sustainable end-of-life solution 

Use of alternative propellants Yes 

Table 3.1: TLARs about environmental aspects (23) 

What is desired is not just to reduce emissions during operations but in the whole life cycle of the 

system. 

 

3.3.2 Market requirements 

TLAR (market) Value 

Number of passengers < 50 

Cargo capacity >= 50 kg 

Luggage bins >= 0.06 m3 / passenger 

In-flight entertainment 

 

Seamless connectivity 

Cabin altitude <= 2000 m 

Cabin ventilation >= 0.25 kg/(min fresh air per 

passenger) 

Cabin temperature 23 °C 

Cabin humidity 10% 

Lavatory >= 1 

Galley >= 1 

Direct operating costs Competitive with ground transport 

Dispatch reliability >= 98% 

Table 3.2: TLARs about market aspects (23) 

These requirements have been set to guarantee passenger comfort and to ensure to be competitive 

on the market compared to other types of transport, also some requirements have to meet 

international regulation and specifications (CS-25 large airplanes). 

 

3.3.3 Operational requirements 
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TLAR (operation) Value 

Wingspan < 36 m 

Weather operations All weather 

Turn-around time <= 25 min 

Table 3.3: TLARs about operational aspects (23) 

The wingspan shorter than 36 m will allow to be compliant with aerodromes of category 2C, to 

increase productivity the aircraft will have to be able to operate with all weathers and with a reduced 

turn-around time. 

 

3.3.4 Performance requirements 

TLAR (performance) Value 

Design cruise speed 450-550 km/h (Mach 0.40-0.48) 

Design payload 5300 kg 

Maximum payload 5800 kg 

Design range 

 

400 km + reserve 

Maximum range 800 km + reserve 

Reserve fuel policy 185 km + 30 min holding 

Range from hot and high airports 

(design payload, international standard 

atmosphere (ISA) +28, 5400 ft) 

450 km + reserve 

Range from cold airports (design 

payload, ISA −30) 

450 km + reserve 

Take-off field length (maximum take-off 

mass (MTOM), sea level (SL), ISA, paved) 

<= 1000 m 

Take-off field length STOL (SL, ISA, 

paved, > 80% pax) 

<= 800 m 

Landing field length (SL, ISA, paved) <= 1000 m 

Rate of climb (MTOM, SL, ISA) >= 1850 ft/min 

Rate of Climb at top of climb >= 1.5 m/s 

Time to climb to FL 170 <= 12.7 min 

Maximum operating altitude 7620 m 
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Service ceiling for one engine 

inoperative (OEI) (or equivalent) (95% 

MTOM, ISA +10) 

4000 m 

Table 3.4: TLARs about performance aspects (23) 

As said before this aircraft will be competitive for short flight ranges where other means of transport 

lack infrastructures, for this purpose also the take-off length will be compatible with small airports. 

The cruise altitude is set to 7620 m for multiple reasons: the turboprop duration mission does not 

require a higher altitude; with this altitude the cruise segment will be longer allowing a more 

comfortable travel and a lower fuel consumption due to the reduced climb segment (23). 

From the requirements mentioned in section 3.3.1, 3.3.2, 3.3.3, 3.3.4 derive the TMS requirements 

that will concern this project, work will be done to assess which requirements have a direct impact 

on the TMS and therefore which are of interest for this project. 

 

3.4 Reference mission 

The reference mission stems from the range requirements and more generally from the stakeholders 

target to be competitive with other ground transports on regional routes. 

Since there is the need to test different possible operational conditions, different missions are 

identified, each one of these will be characterized by a particular demanding flight condition. All 

these routes take place between real existing airports all over the world. 

Flight Mission Route Characteristic 

Design range EDI – DUB 400 km 

Maximum range TJM – NJC 800 km 

Cold operations RKV – EGS ISA -10 

Hot and high operations MAX – ACA MEX: 2230 m, ISA +10 

Extreme cold operations YKS – VYI ISA -40 

Mountain operations LIM – AYP After take-off: 3000 m at 80 

km, 4500 m at 150 km 

Island operations TMS – PCP Two 200 km-legs without 

refueling 

STOL operations CVU – HOR CVU: Runway length 800 m 

Table 3.5: Chosen flight missions and their characteristics (23) 

This paragraph reports the selected missions because it will be significant in identifying the most 

critical conditions in which the aircraft would have to work, this is strictly related to the most critical 

thermal loads that the TMS will have to withstand during its operations. 
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Here is also reported a typical flight profile for a given mission (Figure 3.4), as it can be seen it 

includes climb, cruise, descent, approach and at the end it is hypothesised either a go around or, in 

the image, an alternative flight. 

In the following work the flight mission will be discussed in more detail since it will be associated 

with possible TMS scenarios, for instance in this flight profile initial phases like taxi and engine-start 

are not considered. 

 

 

3.5 Aircraft layout 

This section presents the aircraft as shown in (27). 

From figures 3.5 and 3.6 it can be observed that the aircraft has a high-wing configuration with a 

conventional fuselage and a T tail design. There are four propellers, the biggest two are positioned 

closer to the body and the two smallest are at the wing tip, this power train configuration is quite 

unusual, and it comes with the innovative hybrid concept that this aircraft aims to implement.  

The aircraft will have a MTOM of approximately 20 tons. 

Figure 3.6 also depicts the most important aircraft dimensions and sizes. 

 

 

 

 

 

 

 

Figure 3.4:  Example of flight route and profile of the design range mission EDI–DUB (Edinburgh, United Kingdom to Dublin) (23) 

Figure 3.5: Aircraft layout (27) 
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It is expected to board 48 passengers, 2 cabin crew elements and 2 pilots. 

As figure 3.7 illustrates the innovative propulsion system is formed by two gas-turbine engines, 

which drive the two internal propellers, and two electric motors that drive the wing tip propellers. 

Moreover, the SAF fuel has been selected as a more sustainable way to power the conventional 

engines. The goal for the FutPrint50 aircraft is to reach a level of hybridization of installed power of 

approximately 10-30%. The parallel architecture provides also other benefits in terms of 

redundancy and therefore ensuring safety during operations. 

 

 

 

 

 

 

The electrical configuration associated to the propulsions system includes motor/generators for all 

four engines, these components can work in both directions either to generate thrust or to charge 

batteries in case of need. In this configuration a Power Monitoring and Distribution Unit (PMDU) is 

needed to direct the energy in the right direction and monitoring the status of all components. 

Figure 3.7: Aircraft propulsion layout (27) 

Figure 3.6: Aircraft dimensions (27) 
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Batteries are also one of the main components of this architecture since they will provide the 

necessary energy to power electrical engines, the power electronics will drive this energy to the 

motors which move the propellers. 

Batteries can be charged through the generators associated to the turboprops, the alternative 

solution, in case of need, will be to use the wing tip propellers as turbines to collect energy that would 

be converted switching the electric motors into generators (figures 3.7 and 3.8). For the batteries 

the aim is to provide a voltage of 1600 V with a specific energy of 300 Wh/kg, it is expected that the 

volume occupied from all the batteries will be between a range of 3.7 and 5 m3.   

In figure 3.9 is possible to see the main components necessary to the electric architecture. Overall, 

the installed power of this aircraft will be of 4-5 MW. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Aircraft propulsion layout with energy interconnections (27) 

Figure 3.9: Aircraft electric components layout (27) 
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3.6 Thermal Management System layout 

In the reference (27) is also located information regarding the operating temperatures of the 

components shown in the previous layout, the scheme in figure 3.10 is coherent with the one in 

figure 3.8, is thus possible to have details about the ideal temperatures demanded to the TMS from 

different components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clearly these are not the only temperatures under which the equipments are able to work, but they 

are the optimal ones. 

The required temperatures data are the base from which the TMS will be developed. 

Note that this Thermal Management System regards specifically the components involved in 

providing thrust through the propeller driven by the electrical motor, so it is a very specific TMS 

built to cool the “electrical drive train”. 

Element Temperature range (°) 

Electric motor 120<T<180 

Motor/Generator 120<T<180 

Inverter/Converter 50<T<75 

Battery T≈25 

Converter -20<T<75 

Table 3.6: Equipments temperature range (27) 

Figure 3.10: Equipment operating temperatures (27) 
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As can be seen from figure 3.11, a possibility is to implement 4 TMS in the configuration, two for the 

two couples battery/converter in the aircraft body and then one TMS for each wing regulating the 

temperature of the electric motor, the inverter/converter and motor/generator units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 3.12 is depicted an option for the TMS configuration, in this case the equipments, namely 

inverter and battery, are refrigerated through a Liquid Cooling Cycle (LCC) combined with a Vapour 

Cooling Cycle (VCS). 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: TMS layout (27) 

 

Figure 3.12: TMS architecture option 1 (27) 
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The LCC consist of an architecture in which the liquid Ethylene-Glycol (EGW) is driven through a 

pump to the supply line that passes through an evaporator, this element cools down the liquid that 

then goes to refrigerate the components absorbing the heat loads. In this architecture also an 

accumulator, a filter and a redundant pump are planned. 

The VCS cycle is used to cool the refrigerant liquid, this cycle exploits the properties of different 

states of the circulating refrigerant. In this case the R314 is driven through a condenser where the 

ram air cools and condense it (lowers enthalpy), then an expansion valve further lowers its 

temperature (lowers enthalpy) and then inside the evaporator the R314 absorbs the EGW energy 

increasing its temperature and evaporating (increase enthalpy), the R314 in aerial state then goes 

again into the compressor that passes work to the flow increasing again its enthalpy. 

The air used in the condenser comes from the external environment through a NACA scoop and a 

fan. 

The architecture also includes different valves that allow a better control of the whole system. 

In figure 3.13 is presented another configuration of the TMS, in this case is possible to observe the 

addition of a Skin Heat Exchanger (SHX) in the liquid cooling line, this element is used to further 

decrease the liquid temperature boosting the refrigerating capacity of the system. 

 

 

 

 

 

 

 

 

 

 

The skin heat exchanger uses ducts in proximity of the fuselage skin to let the fluid being cooled 

down from the external atmosphere air temperature. 

Other solutions for the TMS design are shown in figures 3.14 and 3.15, in these cases the layout is 

like the configurations presented above but now the refrigerant liquid passes the heat directly to the 

external atmosphere through the Ram Air Heat Exchanger (RAHX). 

In the latest solution (figure 3.15) is placed again a SHX so that a portion of the heat is removed from 

the liquid through this component. 

In the following sections the text will refer to these options in terms of option 1, option 2, option 3, 

option 4. 

Figure 3.13: TMS architecture option 2 (27) 
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3.7 TMS requirements 

At an early stage of the system development, like the one within which this work is being carried on 

there are not specific system component requirements yet, these are the ones that directly 

determine how the components will be built to obtain a successful TMS.  

Instead of having component requirements there are some higher-level TMS requirements that 

derives from a preliminary analysis on the aircraft configuration and on the available technology for 

such a system. The requirements available and provided by the company are listed in table 3.7. 

Figure 3.14: TMS architecture option 3 (27) 

Figure 3.15: TMS architecture option 4 (27) 
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As can be seen some parameters still have to be decided and evaluated, in the first column there are 

the values for a reference architecture, in the second there are values referring to the state-of-the-

art technology and in the last column there are the target goals that the system designers aim to 

achieve by 2030. 

The max thermal power dissipation is the maximum heat flow that the TMS shall remove from the 

subsystems. 

 The specific power dissipation is a parameter defined as: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 =  
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

𝑇𝑀𝑆 𝑚𝑎𝑠𝑠
                                     (3.1) 

This parameter allows to estimate how well the TMS configuration can remove the heat. 

The max power required is the maximum electrical power required by the TMS to remove the 

amount of heat. 

The COP stands for coefficient of performance and is defined as follows: 

𝐶𝑂𝑃 =  
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

𝑇𝑀𝑆 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
                                                              (3.2) 

It evaluates how much heat the system can manage depending on the electrical power used to work. 

The last parameter regards how the TMS inlets and scoops affect the aircraft aerodynamic but it has 

to be evaluated in the future. 

 

3.8 TMS Matlab/Simulink models 

This section reports the models provided by the company and used throughout this project, it shall 

be considered that during the design process of the system the models are constantly updated, but 

for the purpose of this work it has been chosen to stick with the version delivered at the beginning 

of the project. 

More precisely Embraer company provided four Matlab/Simulink models, one for each cooling 

layout option reported in the previous paragraph. 

The models carrying out the analysis are built in the Simulink environment, nevertheless every 

simulation needs to be initialised and thus a Matlab script operates the pre-processing phase 

Table 3.7: TMS requirements and targets 
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assigning to the model variables those needed values. In particular, the data imported in the 

Simulink model through Matlab concern: 

• Properties of the atmosphere and external air 

• Properties of the EGW 

• Properties of R314 changing phase fluid (option 1 and 2) 

• Flight conditions 

• Geometric parameters 

• Pressure losses 

• VCS parameters (option 1 and 2) 

• Efficiencies 

The properties of air, EGW and R314 are in turn imported in Matlab from tables provided by the 

company, is possible to find these tables in Appendix I 

In addition, the main parameters which characterize the simulation are the heat load and the target 

temperature, these values are defined in the Matlab script as well so that the simulation can access 

them through the workspace. 

The Simulink model itself is a static model, it does not perform an analysis of how the system is 

behaving along the mission, but instead having the data about the mission, the heat load and target 

temperature, it evaluates in a preliminary way how the TMS affects the aircraft configuration. 

The heat load is a value related to heat dissipated from a certain component and therefore that must 

be removed by the TMS, in the same way the target temperature is a value related to the optimal 

operating temperature considered for that component. With these numbers set and the description 

of the system through the parameters imported the Simulink model can evaluate results in terms of: 

• Mass 

• Power consumption 

• Ram air consumption 

The results refer directly to the inputs given during the pre-processing, so if the heat load refers to 

heat that a single component or subsystem produces then the results will refer to a hypothetical TMS 

which will have to cool just that component. 

It is not a goal of this project to perform a deep analysis of the Simulink models provided for this use 

case, anyway it is worth presenting them and highlighting the most significant features.  
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Figure 3.16: TMS Simulink model option 1 

Figure 3.17: TMS Simulink model option 2 



27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These Simulink models were clearly built exploiting similarities with the image representing the 

layout for each TMS option. It is possible to identify different blocks which works as the related 

component, although the models do not use simulation capabilities provided by Simulink, many 

block types and features are used to create sizing models that consider the impact of every 

component on the TMS preliminary evaluation (lookup tables). 

In the models for option 1 and 2 can be seen the two different cycles namely the liquid and the vapour 

cycle, while for the last two options there is just the liquid cycle. In the same way for option 2 and 4 

it can be found the skin heat exchanger component.  

It is clear from this design that every key component of the TMS, described in previous sections, is 

built in the model, and thus simulated. 

Figure 3.18: TMS Simulink model option 3 

Figure 3.19: TMS Simulink model option 3 
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Anyway, to extract the results from the simulation a post-processing script is provided in the Matlab 

environment, this retrieves the simulation values and gives the overall results explained before. 

The pre-processing and post-processing Matlab scripts are similar for all four cases, in Appendix II 

can be found an example of these codes. 

It must be considered that the aim of this work is not either to modify or discuss the models 

presented in this section, the project goal is to connect these models to the MBSE environment in a 

suitable manner. 
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4 Goals outline 

At this stage of the work the research area and the use case are defined, despite that a specific target 

for the project has not been identified yet. It is known that the main topics are the MBSE model and 

the connection with Matlab/Simulink, there is now the need to understand in which direction to 

orient the project development so that the result could be helpful for the engineers working on the 

FutPrint50 project. We have to clearly understand which capabilities of the MBSE environment to 

exploit and what we want the model and the connection to do or to verify, another key phase of the 

work is to understand how the engineers are working on this use case and how the information 

exchange works between different teams, this to identify what kind of MBSE model they could 

possibly need. 

This section reports the activities carried out on both these sides. 

 

4.1 Research paths 

Since MBSE has a wide range of sub-topics is not possible to focus on all of them at the same time, 

instead it is interesting to concentrate on a specific aspect of the MBSE approach and eventually 

bring that knowledge to a specific use case such as the TMS considered in this work.  

The first part of the project is to research about possible exploration paths that could be followed 

along the work, the aim in this preliminary phase is basically to gain knowledge about some MBSE 

aspects and then decide what practises to leverage during the modelling activity. 

The research regarded the following MBSE topics: 

• Requirements Verification Automation 

• Scenario Validation Automation 

• Sub-systems Integration 

For every path it is desired to know what the “state of art” is currently and if there are either tools 

or software that could be exploited that are available and what could be free to use. 

 

4.1.1 Requirements verification automation 

Requirements verification and validation (V&V) is a fundamental practice in engineering, it must be 

accomplished effectively to ensure consistent results. There are many tools that allow requirements 

management, for instance IBM Doors is one of the most known, but not all of them are developed to 

also support the V&V phase.  

Validation and verification basically require that results coming from a set of predefined activities 

are compared with values and indications written in the first place as requirements. Performing this 

operation for thousands of requirements may lead to errors and is extremely time-consuming, also 

considering that the results can come from very different tasks carried out separately from each 

other. Results can come from experimental tests, inspections, measurements and simulations: in 

particular, this last source is of interest in this work and at the moment it seems that a seamless way 
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to link the results of a dynamic simulation and requirements manager tools is not commercially 

available. 

A software supporting V&V graphically help the engineer keeping track of all requirements and 

results imported in several ways, also changes in both sides are considered and pointed out to the 

user. An example of this type of tool is the V&V Studio developed by The Reuse Company, but many 

requirements management tools implement similar features. 

The requirement engineer has to derive, starting from high-level customer needs, the specific system 

and performance requirements. The process to trace every requirement in detail creating a coherent 

requirement tree is complex and error-prone, furthermore at the end the low-level requirements 

have to be addressed to specific system components.  

To make this task easier and more consistent there is the possibility to write requirements and the 

whole requirement chain in a simplified and controlled way leveraging Controlled Natural 

Languages (CNL). These languages consist of a set of rules that drive the user in the writing process, 

CNLs are exploited by a few requirements management tools, this kind of software provide the user 

also the possibility to create patterns through which the engineer is forced to keep a coherent form 

while writing. For example, the RAT tool provided by The Reuse Company enables these 

functionalities and associated to a MBSE architecture modelling tool like Capella, creates a consistent 

reference between model elements and requirements (Knowledge Manager), avoiding possible 

misunderstandings and repetitions while writing them. 

All the information reported in this section is brought from sources (2), (3), (4), (5), (6), (7), (8) and 

university lectures, it is not an aim of this project to discuss them in further detail. 

CNL is a key point that could help automating V&V, indeed controlling the language is the first step 

of translating requirement sentences into values and constraints that could then be addressed to 

components and managed by an automatic process. As said before, the other feature that seems 

missing now among requirements V&V tools, is a framework built specifically to link simulation 

results with requirements and able to analyse the comparison between them. 

To conclude this section, it can be assumed that integrating the two points mentioned above within 

a MBSE tool supporting the development of the model, could guarantee a helpful way to manage the 

model itself, requirements allocation and traceability, simulation results and requirements 

verification. 

 

4.1.2 Scenario validation automation 

Within the MBSE approach there is the need to describe and model how the system will work in 

different situations, for this purpose there is the possibility to create various diagrams that represent 

the sequence of actions that a certain system performs and the states through which the system 

passes. These types of diagrams are namely Scenario diagrams and Mode and State Machine 

diagrams. 

These diagrams are exploited in MBSE practises to have a preliminary idea of how the system will 

behave and so having in advance an idea of possible optimization areas and critical conditions. 
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Once that the project has gone forward there will be then the need to verify if the system is 

performing like it was assumed in first place, this operation can be carried out either by observing 

the real system or creating a model that simulate his dynamic and behaviour. This second option is 

particularly interesting for this project where the desire is eventually a lean and seamless way to 

validate scenarios through simulations. 

Specifically for the Capella tool are being developed solutions that allow to connect the MBSE tool 

with a simulation environment (Matlab) to validate correctness of scenarios. The solution described 

in (8) is not commercially available yet but the DESS add-on (9) it is. This tool leverages Mode and 

State machine diagrams to run test simulations in Simulink environment and creating simulation-

based scenario diagrams that at the end could be compared with scenario assumed while modelling.  

This solution partially aligns with the intentions of this work and perhaps it could be helpful in the 

following activity, however it should be noted that this process is not totally automated and for that 

it must be created a set of rules to decide whether the scenario is validated or not. Those rules could 

be for instance simulation values that have to be compared with constraints given by requirements, 

this kind of results could certificate that the system is working as expected and that it is in a certain 

state. The issue that remains is how to relate constraints to different scenario phases or machine 

modes and then how to actually make the comparison. 

 

4.1.3 Sub-system integration 

Integration of multiple subsystems in a common architecture is a delicate matter, to properly work 

together different subsystems that interact with each other need to share compatible interfaces, to 

be placed in a suitable manner and be provided with the means to exchange information or 

substances. 

The work of the integrator engineer is to support the system development from a global point of 

view, giving indications for the project of the single subsystems that at the end will work together in 

the same architecture. So, there is the need to check if different parts of the system are being 

developed to be compatible with each other, at present there is not an actual guideline for system 

integration, it is known that it can be a discipline itself and that if not considered integration could 

cause several problems in the system development. The integration is treated with a set of specific 

requirements precisely concerning those topics of interest for integration, for example interface 

requirements, dimensions requirements and control requirements. 

In (10) and (11) are described activities and suggested operation that the system integrator should 

perform along all the project development and that would eventually benefit the overall result. 

These are not rules but just recommended actions that those articles claim to be necessary for an 

effective integrated system design. 

From this project perspective it could be interesting to find a way to early identify those 

requirements that regard integration to manage them separately if needed and at the end 

automating their verification similarly to this work purpose for all the others. 

 

4.1.4 Possible work directions 
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Considering all the topics mentioned in sections 4.1.1, 4.1.2 and 4.1.3 some of the MBSE features that 

could possibly be helpful for this work are identified, however this first research does not outline 

completely what will be the direction to take throughout the project, before that there is the need to 

clarify how the MBSE environment could be used to enhance the engineering activities carried out 

to design the system. MBSE is a powerful tool but its effectiveness depends on the choice of when to 

use it to overcome complex design issues and what features to exploit, thus before proceeding the 

engineering workflow, which occur between the engineers involved in this case, will be analysed, 

the goal is to identify an area where MBSE can really boost the design process. After that the final 

decision on the project target will take place. 

 

4.2 Workflow analysis 

The purpose of this project is to be useful for the engineers developing the thermal management 

system, to achieve that goal is therefore important to know how activities are split into different 

teams. In this section all the people whose work affect directly or indirectly the TMS design are 

considered, from an operational point of view these teams are stakeholders of the system since they 

are the very first people to interact with it. 

Before speaking about people we have to understand that every team is obviously related to a 

specific subsystem they are working on, thus it makes sense to first consider the main components 

which from a functional point of view are connected with the TMS. Furthermore, the use case is 

specifically focused on the electrical drive train, as mentioned in the third chapter, thus now we are 

considering a very specific set of components: 

• Aircraft: 

This is the global system with which the TMS must interact, it includes most of the following 

points and its configuration affects all the aspects of the mission and the on-board system. 

Hence it could be said that basically is the aircraft that with its operational needs gives the 

high-level requirements and demands from the TMS system. 

• Airframe: 

This aircraft component provides the structure to the aircraft and supports all aircraft 

systems and therefore the TMS; it has to be considered that, from the airframe, depends the 

lift capacity of the airplane and so designing or modifying it for a certain system is 

particularly critical. The airframe so imposes volumes, weight constraints, and ensure 

physical coherence to the TMS. Within the airframe there shall be also all the ducts and 

elements that will allow the TMS to perform its duty in all the components which need its 

action. 

• Energy storage 

On the aircraft the energy storage is represented by batteries, these shall provide energy for 

all the sub-systems also when an energy source (generator) is not available. This component 

so provides energy to the TMS, but it also needs the TMS to regulate its temperature, its 

operating range was presented in the previous section. 

• Electric propulsion system: 

The propulsion system, shown in the previous chapter, has its optimal temperature and 

hence the electric motors and all the electrical components such as the converters/inverters 

and all the power electronics will have to be properly cooled. It is also important to consider 

that from the propulsion system comes the energy that drives the TMS itself, it is therefore 
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fundamental to maintain the health of these components which harvest the energy from the 

GT generator and from the external propeller generator in case of need. 

• Power transmission: 

Similarly, as the propulsion system, all the electrical components are a key element to drive 

the energy that powers the TMS, but at the same time the electrical lines will have to be 

refrigerated. 

It is easy to understand now that the main engineering teams that this work is going to consider are: 

• Mission team: 

This teams works with the aim to derive from high-level customer needs a possible aircraft 

configuration, they perform preliminary evaluations analysis and, in the end, giving more 

detailed information and constraints to the teams developing subsystems. 

• Airframe design team: 

Works on the integration of all system in the configuration, this team shall discuss and verify 

the feasibility of some systems design and eventually gives constraints about some key 

parameters. 

• Energy storage design team: 

Here we are considering the storage of electrical energy, this team evaluates the layout and 

the technology of those devices suitable for carrying and then providing the electrical power 

needed from the electrical motors and other components. 

• Power transmission design team: 

This team designs the means and the layout so that the electrical energy can flow from one 

component to another. 

• Propulsion system design team 

This teams works to design all those components that transform the electrical power coming 

from the energy storage segment into thrust, thrust is a key parameter of the configuration 

and so the entire configuration is sensitive to the outcome of this subsystem. 

• TMS design team: 

The TMS was not mentioned among the stakeholders because it is the system of interest 

itself, anyway this team considers all the cooling needs coming from evaluations of others 

teams and works to define a suitable TMS configuration. 

 

4.2.1 Information exchange 

It is interesting to investigate the data and information that the design teams are exchanging 

between them, the MBSE model will really be oriented to the kind of information and evaluations 

that all the teams are carrying out. In this section it is assumed that every team works in a 

straightforward way starting from some inputs, performing its analysis, and providing the outputs. 

To represent the information exchange tools coming from Multi-Domain Optimization Analysis 

(MDOA) are exploited, the matrix built and reported in figure 4.1 that is a tool that allow to 

immediately distinguish the inputs and the outputs of a certain block. For our use case the blocks 

are alle the design teams mentioned above, all the vertical lines connected to the blocks are inputs 

while the horizontal lines are outputs. 
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The matrix presented in figure 4.1 follows a waterfall logic: the process starts from the team working 

on the “outer problem” that is the mission definition to satisfy customer needs, then to achieve those 

mission goals a certain thrust is required and so on the diagonal the Propulsion System (PS) team 

works to identify a suitable solution. 

Descending on the other subsystems we consider that the electrical propulsion requires electrical 

power and so Energy Storage (ES) team and then Power Transmission (PT) team are represented in 

this order. In order to work properly all these subsystems, need to be cooled, and thus the TMS 

design team works to guarantee the proper operating temperatures for all components. 

 

Descending on the other subsystems we consider that the electrical propulsion requires electrical 

power and so Energy Storage (ES) team and then Power Transmission (PT) team are represented in 

this order. To work properly all these subsystems, need to be cooled, and thus the TMS design team 

works to guarantee the proper operating temperatures for all components.  

At the end the airframe design team works to assess the feasibility of the design and begins a 

discussion with the TMS and all the other teams to check the integration of all systems and eventually 

requiring changes in some components or, in the worst case, in the mission. 

First the mission design team performs preliminary estimations and gives three outputs of interest 

for this case: energy required, thrust required and aircraft configuration. 

The PS team design the components that produce the thrust required in that configuration and 

evaluates the electrical power required. 

The ES team estimates batteries layout basing on the power and energy requirements. 

The PT team similarly estimates all the components that transfer electrical power. 

PS, ES and PT teams all provide to the TMS design team the heat loads that must be absorbed and 

the optimal operating temperature range for each of their subsystems. The TMS design team basing 

Figure 4.1: Information exchange matrix 
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on this information and considering some specific cooling constraints (for instance on the cooling 

mean for the batteries), uses the Matlab and Simulink static model to evaluate TMS mass, ram air 

consumption and power consumption. 

The airframe team gets the TMS team results and works to estimate the integration of the TMS into 

the configuration, also they start discussing with the TMS team about volume and mass constraints, 

space coherence, shape and location requirements. 

The TMS also slightly affects the batteries layout with the power that it requires so the ES team must 

consider it. 

The airframe team at the end gives back their outputs to the mission team so that evaluation on 

mission feasibility could be made. 

The matrix in figure 4.1 is “mission centred” which means that from the mission comes before every 

other analysis, in another way it is interesting to build also a “TMS centred” version of the matrix, 

this is depicted in figure 4.2. 

In this matrix is possible to clearly identify all the variables that the TMS design team uses as input 

and how the TMS results affect the other teams work in a waterfall logic also used before. 

Thus, the MBSE model will have to enhance this information exchange boosting the TMS 

development, the key parameters are the ones closely related to the TMS design team.   

  

 

                  

4.2.2 Work flowchart 

The key information that we want to know to properly direct this work is understanding at what 

stage of the system development the TMS MBSE model will be placed and used. The TMS modelling 

Figure 4.2: "TMS centred" information exchange matrix 
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activity would significantly change depending on how deeply defined the system architecture is at 

this stage of the work.  

To better highlight the TMS project workflow a flowchart of all the activities is built and depicted in 

figure 4.3. 

Figure 4.3: Work flowchart 



37 
 

The starting point of all the activities is obviously the mission analysis, then the activity flow follows 

the path explained in the previous paragraph, what it is interesting to note is that after the 

configuration choice for PS, PT and ES there is a first “path” followed by the activities. 

This first loop is “unconstrained”, this means that no trade off analysis is performed, in this phase 

the TMS design team gets the cooling needs from the other subsystem requirement and gives a 

solution that can reach that cooling capacity, the estimations about this hypothetically 

unconstrained TMS are done through the Matlab/Simulink static model. At the end of this first 

iteration the TMS configuration is verified against integration requirements with the airframe design 

team, if integration is feasible the process goes directly to the end since the system will be built in 

this way. 

Realistically this is not what happens in real life, the first iteration scope is to see if the work and the 

TMS layout is being developed in the right direction, usually then it begins the second loop in which 

trade-offs between integration and cooling needs are performed to obtain a TMS that could be fitted 

in the aircraft and that cools enough all the equipment. 

This second loop could end if a suitable solution is found within the technology limit of the system, 

this means that if a solution cannot be found changing either TMS layout or components or materials 

then the process cannot be closed, and a third iterative loop is required. 

This third loop also involves the choice of PS, PT and ES configurations, indeed if the second loop do 

not solve the situation there is the need to change something in the other subsystem configurations 

until we find that a certain equipment configuration can be cooled by a certain TMS layout. 

Note that in the second and third loop the cooling requirements and the temperature ranges are not 

the only inputs, so the first thing to verify in these cases is that the cooling capability of the layout. 

To verify the cooling requirements there will be the need of a dynamic model that once simulated 

could predict the behaviour of the TMS throughout the mission.   

Hypothetically there is also another loop not considered in the flowchart, indeed the worst case is 

that not even changing all subsystems configuration a suitable solution can be found, in this situation 

there will obviously be the need to reconsider the high-level requirements and the feasibility of the 

mission with that aircraft configuration. 

From this analysis is clear that this project is at its early stage and furthermore a dynamic model of 

the system has not been built yet, this means that this project is collocated at the beginning and thus 

in the first unconstrained iteration of the development.  

A feasible goal is thus to support the TMS design team and all the other teams interacting with them 

by creating a suitable MBSE model that will allow faster information exchange and will make easier 

to check and share the model results. 

 

4.3 Target definition 

The goal of this work is to support the design of a thermal management system through the creation 

of a sort of tool that allows the seamless interconnection between the digital system model and the 

Simulink simulation model. This project aims to facilitate the tasks of system designers and model 

developers accelerating the requirements verification process, the target is to create the code that 
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links MBSE with the simulation environment. This tool will be tailored on the TMS, and the project 

will also regard the modelling activity and the identification of suitable scenarios to simulate where 

then requirements will be checked.  

This work is collocated within those research projects whose purpose is to gradually introduce the 

MBSE practise in the engineering environment and aims to facilitate this transition showing all the 

possibilities that this new paradigm brings.  

 This section also illustrates the goals of the project and defines which are the steps that have to be 

taken to get to the result.  

As said before the TMS engineers needs that give the motivation of this project are: 

• A digital and agile model that could be shared within design teams. 

• A clear relation between requirements and the model. 

• To identify suitable scenarios where to implement requirements verification. 

• Connect the MBSE and Simulink models in a seamless way to allow scenarios validation. 

• A code that implements a preliminary requirements verification tailored on the TMS. 

In this way the MBSE environment and more specifically the Capella software will be exploited to 

create a “tool” that will allow a faster communication between all the engineers working on the 

project. 

This tool will be formed by the formal system specific architecture built in Capella and by the 

connection with Matlab/Simulink models. 

First a coherent architectural model of the aircraft will be built in Capella, then sticking on an aircraft 

perspective, the architectural model will be focused more on the “TMS for electrical drive train” 

subsystem. 

With a solid architectural model there will be the possibility to place and allocate the requirements 

and constraints into it. At this point the MBSE model will be linked with the Matlab/Simulink model, 

the connection will be built through Python programming language so that P4C capabilities could be 

exploited. 

A peculiar aspect of the modelling part of the project is that it will be performed in parallel with the 

system development, usually MBSE helps during the conceptual design phases of the system 

architecture definition, but now hypothesis on the configuration are available and were presented 

in section 3. Thus, in this case the design activity has already started and therefore the conceptual 

MBSE model will not precede the other engineering steps, moreover we shall consider that the 

Matlab and Simulink models are already available and thus the MBSE model will need to consider 

what kind of system simulation will relate to.  

To manage both the model from an aircraft perspective and keeping it coherent with what is being 

developed by the engineers, a sort of “bottom-up” approach will be fundamental for achieving a 

successful result.  

In the end it will be interesting to perform a preliminary requirement verification against the 

parameters set as requirements and allocated in the model. 
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Hopefully this project and this tool will be useful for the FutPrint50 engineers and will connect in a 

seamless way the MBSE world with the MBD environment (Matlab) so that all the engineering 

activities, from high-level mission definition at an operational level to the low-level system 

simulation, are connected.  

Another motivation for this project is that this approach could be used in the future for other aircraft 

subsystems, now the work is focused on the TMS use case but in the future other tools tailored on 

other subsystems could be built. This will be allowed by building the model from an aircraft 

perspective that will create a sort of common base layer from where then different works could focus 

on different subsystems.  

Since the focus will stay on the conceptual design of the system some assumptions will be made 

throughout the project, it will be important to point them out highlighting how they affect the system 

development, what analysis they allow to perform and how at the end they impact on the component 

design in future work stages. 
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5 Building the digital tool – Phase one 

In this section all the activities that lead to the construction of the digital MBSE tool that will support 

the engineering work will be described. The actions foreseen to get to a consistent result were listed 

before. 

The process starts from building the model for the aircraft, this methodology has been chosen to 

keep the aircraft perspective all along the project, the aim is not just to model the TMS but to place 

it the aircraft formal framework.  

 

5.1 Capella aircraft model 

In this first part the aim is to build a Capella model from an aircraft point of view, this process will 

follow the Arcadia methodology with all its steps. We have to consider that the level of detail of the 

model is strictly related to its purpose, so when the model will be detailed enough to place all 

requirements and values the process will stop. 

This model is built considering the aircraft subsystem division explained in (29), to perform the 

operational analysis, the systema analysis and the logical architecture there is the need to find a solid 

reference that describe the aircraft from a functional point of view, this is found in (28).  

In (28) aircraft activities at all levels are represented and grouped in functions and subfunctions, 

these will be the ones used in the model and placed in the respective aircraft subsystems. 

 

5.1.1 Operational analysis 

To perform the operational analysis, it must first be considered what is the purpose of the system 

that is going to be built, since the operational analysis is a process focused on what the system needs 

to achieve we assume for this very first that the aircraft is not identified yet as a possible solution 

for the problem. 

The “problem” that drives the need of a system is to perform a fast and effective transport on regional 

routes, this was expressed also in section 3, so from an operational capability point of view there is 

just the need to move passengers on those ranges. 

 

 

 

 

 

 

 Figure 5.1: Aircraft operational capability diagram 
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At this level it is assumed that the main stakeholder who seeks to solve the problem is the airline, 

indeed the need of such a transport directly comes from market analysis that the airlines carry out 

to provide always better transport solutions. 

The airline is the transport provider, the main actor who wants to solve the problem of a fast regional 

transport on difficult routes and aims to earn money to be economically profitable.   

Obviously, the solution for this kind of transport starts to be oriented to a sort of “flighting device” 

capable of transporting people and things. 

In (28) there is a division in some very high-level functions for all aircraft activities, for this case 

there will be considered all the functions grouped into the “perform air transport mission” function, 

thus excluding functions like manufacturing, facilities, and support. 

These functions are the ones depicted in the operational activity diagram (figure 5.2), as it can be 

observed they are very general and at this stage they could be easily addressable to another type of 

flight transport rather than an aircraft. 

Again, for the purpose of this work we are not considering the functions that at this level regard 

specifically the mission and the situational scopes. 

In the Capella environment at operational level there are no actually functions but activities, anyway  

the concept of high-level function could be directly translated into a Capella activity. 

The sequence described in figure 5.2 regards essentially all the phases that every flying system must 

perform. It involves all the nominal activities after the manufacturing phase and before the removal 

from service. 

• Pre-flight operations: 

This activity involves all the operations carried out on-ground to prepare the machine for 

the flight. 

• Take-off preparations: 

This activity sequence begins when the vehicle is pushed away from the gate and ends when 

the take-off clearance is given, this involves all the activities performed during the taxi phase. 

• Flight operations: 

It is the main flight activity of the flying vehicle, and it involves all flight phases from take-off 

to exit runaway. 

• Post-landing operations: 

This activity involves all sub-activities from the moment when the flying transport leaves the 

runaway to when the vehicle is stationary, this includes similar sub-activities and functions 

to “take-off preparations”. 

Figure 5.2: Aircraft operational activity diagram 
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Capella gives us also the possibility to create a diagram where can placed all the stakeholders that 

will interact with the system that we want to build. This diagram is called entity diagram and is 

represented in figure 5.3. 

 

 

 

  

  

 

 

 

 

 

For this operational analysis there were made a lot of assumptions and one of them is that the system 

will have connections with just the entities present in figure 5.3. 

Obviously, the Airline at this stage is the main entity involved in all the operations and activities, it 

provides the transport mean, namely the flying vehicle, and manages the air transport mission. 

The other entities considered in this Capella layer are:  

• Atmosphere, that forms the environment through which the mission will take place. 

• Airport, that is the starting and arriving facility for the vehicle. 

• Pilot, who drives and manages the flight. 

• Passengers, that are the payload that need a transport mean. 

With the available information these were the only diagrams created for the Capella operational 

layer, going down through the other layers this project and system will be described in further detail, 

this kind of process follows the ARCADIA methodology where every Capella layer has its own  level 

of detail. 

 

5.1.2 System analysis 

In the system analysis the scope is to identify what the system of interest will have to achieve to 

satisfy the needs expressed in the operational level, it is at this stage that ideally, we start proposing 

a “solution” that will solve the regional air transport problem. 

Speaking about capabilities we start detailing a bit more than what we had at operational level, as 

said before the mission of this project is to “perform fast and effective transport”, but then every 

Figure 5.3: Aircraft operational entities diagram 
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system actor has its own commitment. The pilot must drive the vehicle that will have to allow 

passengers transport, the airline is the main actor that provides this transport service. 

 

 

 

 

 

 

 

 

 

Thanks to (28) it is possible now to explicit those activities considered at operational level, as it can 

be seen from figure 5.5, we are making explicit functions for “take-off preparation” and “flight 

operations”, this because “pre-flight operations” are out of the scope of this project and on the other 

hand “post-landing operations” are like “take-off preparations”. 

Take-off preparations: 

• Provide carriage: the system must provide a mean to move on the ground. 

• Provide braking: the system must provide on-ground brake capabilities. 

• Provide steering: the system must provide on-ground steering capabilities. 

Figure 5.4: Aircraft system mission and capability diagram 

Figure 5.5: Aircraft system functional dataflow diagram 
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Flight operations are the core functions for the flying vehicle, in this step we are not proposing yet a 

system, but we are specifying in further detail what such a system shall do during this kind of 

operations. 

Flight operations: 

• Provide aerodynamic performance: the system aerodynamic shall allow to fly. 

• Provide thrust: the system shall have propulsion means. 

• Provide passengers and crew accommodations: the system shall have suitable 

accommodations for people on-board. 

• Provide cargo capability: the system shall provide the space where to place payload. 

• Provide environmental control: the system shall maintain an environment suitable for 

people. 

• Provide communications: the system shall allow incoming and outgoing communications. 

• Provide guidance ad navigations: the system shall provide guidance and navigations 

instruments. 

• Maintain structural integrity: the system shall resist external loads without affecting its 

integrity. 

• Provide power: the system shall provide all kinds of power to all the subsystems that need 

it. 

• Provide situational awareness: the system shall have the possibility to analyse the situation 

around itself. 

All these functions, listed also in (28), could refer to a very “general” flying vehicle, but it is at this 

stage that we start proposing a system that could include all the functions mentioned above, for our 

case this is the unconventional FutPrint50 aircraft. 

In figure 5.6 the Capella system architecture diagram gives the possibility to represent the system of 

interest, namely the aircraft, and all the other actors involved in its operations. 

  

 

 

 

  

 

 

 

 

 
Figure 5.6: Aircraft system architecture diagram 
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In this type of diagram is then possible to allocate all the functions created at system level, now the 

airline is still the transport provider but it supports the aircraft that is the system performing the air 

transport. The connections with all the other actors are made coherently with what discussed 

before: the atmosphere is the environment around the aircraft, the airport provide the facilities to 

allow the ground connection, the pilot has his controls to manoeuvre the aircraft, the passengers are 

seated in the aircraft accommodations. 

 

5.1.3 Logical architecture 

In the logical stage of the process, we try to define how the system will be built to satisfy what 

expressed in previous layers. First, we use (28) to make it even more explicit the functional division, 

we consider just the “flight operations” phase as it is the most representative for this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.7: Aircraft logical functional dataflow diagram for flight operations 
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On this Capella layer we see more detailed subfunctions that carry a very specific meaning, each of 

these requires that the system architecture provides subsystems or components to fulfil system 

needs. 

The functions at logical architecture level are: 

• Provide aerodynamic performance: 

o Provide lift. 

o Provide drag. 

o Provide stability. 

o Provide aerodynamic control. 

• Provide thrust: 

o Provide forward thrust. 

o Provide reverse thrust. 

• Provide passengers accommodations: 

o Provide passengers and crew space. 

o Provide seatings. 

o Provide storage. 

o Provide gally. 

o Provide lavatory. 

o Provide entertainment. 

• Provide cargo: 

o Provide cargo space: 

o Provide cargo loading. 

• Provide environmental control: 

o Provide air conditioning. 

o Provide pressurization. 

o Provide oxygen. 

o Provide rain protection. 

o Provide ice protection. 

• Provide communications: 

o Provide internal communications. 

o Provide external communications. 

• Provide guidance and navigation: 

o Determine aircraft location. 

o Determine aircraft attitude. 

o Determine aircraft speed. 

o Determine aircraft direction. 

o Provide flight management. 

• Provide structural integrity: 

o Sustain loads. 

o Maintain pressure. 

• Provide power: 

o Provide electrical power. 

o Provide hydraulic power. 

o Provide pneumatic power. 

Provide situational awareness: 
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o Monitor aircraft status. 

o Provide external awareness. 

 

Changing the focus on how we need to build the system we start evaluating which subsystem the 

aircraft will need, for this purpose is possible to find in literature information about main aircraft 

subsystems (29).  

The main subsystems are: 

• Airframe 

• Landing gear 

• Electrical power system (EPS) 

• Hydraulic system 

• Pneumatic system 

• Propulsive system 

• Environmental control system (ECS) 

• Ice protection system (IPS) 

• Flight control system (FCS) 

• Communication system 

• Navigation system 

• Surveillance and identification system 

• Vehicle management system 

• Fuel system 

It comes then natural to match the aircraft functions with the aircraft subsystems, addressing the 

functional need to its own subsystem that will provide that system behaviour. This is shown in figure 

5.8. 

A difference from what was retrieved from (28) is that the “store fuel” functions was added to give 

to the fuel system its proper scope. 

Obviously these are just some of all the functions that every system performs during aircraft 

operations, but it is still interesting to note an almost perfect match between functions and 

subsystems although the references do not belong to same papers. This works in this way because 

now we are considering just the fundamental functions for every aircraft system. 

It can be observed that in this section it has not been mentioned the thermal management system 

yet, in the following work the model focus will slide to the TMS, but the framework will remain the 

one developed for the general aircraft system.  

The importance of creating the aircraft model stands into the approach the functional analysis of the 

TMS shall be coherent with what brought from (28) and (29). If here functions and subsystems were 

brought from literature, from now on developing the TMS model will require the creation of new 

elements and functions, but these will be placed in the same Capella aircraft model and will relate to 

some of the subsystems here created. 

 At this point of the ARCADIA methodology, we realise that is the moment for the thermal 

management system to appear inside the aircraft model, therefore the work will stick on the logical 
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architecture layer but changing the focus on the TMS. There is not the need to go into the physical 

architecture and EPBS levels since no other useful information will be added. 

 

 

5.2 Capella TMS model 

In the aircraft model presented before the thermal management system does not appear, for our use 

case although the thermal management system is needed to cool down the electrical drive train. This 

part of the work consists in analysing the TMS information (section 3) and translating it into a 

Figure 5.8: Aircraft logical architecture diagram 
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Capella coherent model. Also, this activity is a sort of bottom-up engineering process because on the 

other side the sizing models are already available in Matlab/Simulink and thus the TMS architecture 

in Capella will have to consider how the system is being evaluated exploiting also what is possible 

to deduct from the numerical models. 

Since the goal is to place the TMS inside the aircraft architecture there is no need to repeat all the 

ARCADIA steps also for our system of interest These reasonings bring to the conclusion that the 

aircraft logical architecture will be modified in order to consider specially TMS activities and 

interactions with other subsystems, thus the TMS modelling work will start from the logical 

architecture level. 

It is important to note that this approach can be reproduced also for all other aircraft subsystems. 

The first thing to consider is that the TMS will be an aircraft system and so it will be represented as 

a subsystem block (logical element). Since the terminology TMS is very “general” the assumption is 

to work just with the TMS for electrical drive train.  

During the discussions with the TMS engineers it emerged that ideally the TMS will group under its 

name subsystems like the IPS, ECS and in the end TMS for electrical drive train, this last subsystem 

is the one that this project focuses on. 

It is now time to consider, in the aircraft architecture, just those elements that have a direct 

interaction with the TMS, coherently with what presented in section 3 and 4 the main subsystems 

that are connected with the thermal management for electrical drive train are: 

• Propulsive system 

• Electrical energy storage 

• Electrical power transmission 

While the propulsive system was already created building the aircraft architecture, the last two 

elements are not in the model yet. However, is possible to observe that electrical energy storage and 

power transmission could both be place inside the EPS element as they are EPS subsystems. 

From a management point of view it makes sense also to consider the vehicle management element 

because in the future there will certainly be the need to implement a TMS control strategy. 

The only external actor that relates with the TMS is the atmosphere since the air will be the heat sink 

of the TMS process. 

The resulting architecture is shown in figure 5.9. 

Considering then the functional behaviour of the system, the TMS shall perform two main activities: 

• Absorbing heat from equipments: 

The TMS is a cooling device that aims to remove the dissipated heat from PS, PT and ES. 

• Dissipate heat into the atmosphere: 

The TMS shall pass the heat to the final heat sink that is the atmosphere air.  

Then on the controlling side the TMS shall: 

• Power its own process: 
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Provide the components to drive the heat removal process. 

• Provide management capabilities: 

Allow the implementation of a control strategy. 

• Provide a cooling mean: 

Provide a way to move the heat from the equipments to the heat sink. 

 

 

 

At this point we change the perspective, and we try to identify which are the equipments functions 

that affect the TMS. The three cooled subsystems produce waste heat while performing their 

operation, this is the heat that interests the TMS, on the management side the subsystems will have 

to provide the capability to inform the TMS about their operating temperature. 

Following these reasonings the function considered are: 

• Propulsive system 

o Provide forward thrust: 

The electrical PS produce waste heat while operating (already created for the aircraft 

architecture). 

o Provide thermal information to the TMS: 

Through sensors the PS passes its thermal condition. 

• Energy storage 

Figure 5.9: TMS logical architecture diagram (only logical elements) 
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o Store electrical power: 

The ES produce waste heat while operating. 

o Provide electrical power: 

The ES produce waste heat while operating. 

o Provide thermal information to the TMS: 

Through sensors the ES passes its thermal condition. 

• Power transmission 

o Transmit electrical power:  

The PT produce waste heat while operating. 

o Provide thermal info to the TMS: 

Through sensors the PT passes its thermal condition. 

The last created function also regards the vehicle management system that must monitor the aircraft 

status and thus also the TMS subsystem. 

Speaking about the only external actor considered for this TMS logical level, namely the atmosphere, 

it relates to the TMS as it is the final heat sink, and it must absorb all the heat removed from the 

subsystems. 

The resulting architecture with function allocation is reported in figure 5.10. 

 

The main heat chain that interests the TMS is the one that regards the heat removal process from 

the subsystems to the atmosphere sink (figure 5.11).  

Figure 5.10: TMS logical architecture diagram with logical elements and functions allocations 
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We have now to consider how are all these functions connected between each other, to do that the 

concept of functional chain (1) can be exploited, there are several chains to be considered and 

differentiating them helps clarifying how the system behaviours. 

 

 

 

 

 

It is now clear how the heat flows from the “source” functions to the final heat sink. 

Another fundamental functional chain is the management chain that involves the functions that will 

impact on the control strategy of the TMS (figure 5.12). 

 

 

 

 

 

 

All the equipments provide thermal information to the TMS that decides how to implement the 

cooling capability sending a control signal to those components that regulate the process, at the same 

time the TMS informs the aircraft about its status. 

The last chain is not really involved in this project scope but it appears in the model and so it makes 

sense to make it explicit, it is the “powering” chain in which the electrical energy flows from the 

storage to the propulsive system, where is used to produce thrust, and to the TMS where is used to 

drive the heat removal process (figure 5.13). 

  

 

 

 

The power required by the TMS is significantly lower than the power required by the electric motors, 

ideally the power will be transmitted to drive the first two TMS chains. 

Figure 5.11: TMS absorbing and dissipating heat chain 

Figure 5.12: TMS management functional chain 

Figure 5.13: Propulsive system powering chain 
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At the end if we place all the information in a single architecture diagram the result obtained for the 

Thermal management system is this (figure 5.14): 

The chain highlighted in the diagram is the absorbing and dissipating heat chain that is the one that 

this project will focus more on since is the one that affects the TMS sizing and that contains many 

important TMS details. 

The diagrams created in this paragraph are the core of the TMS model and are the base to further 

develop the architecture, the logical architecture diagram for the TMS is also the first step of the tool 

structure that this project aims to create.  

It can be observed that no sequence or scenario diagrams were created to support this architecture, 

the aim could be not to describe the TMS cycle itself with a scenario diagram loop, that is already 

clear, but to associate the TMS behaviour to the mission flight phases. This would mean to depict the 

functional flow that characterizes a particular flight phase and eventually differentiating the TMS 

behaviour in different situations. At this stage of the system development however there are not 

sufficient information and details to define particular TMS differences between flight phases, it is 

known that basically the TMS is required the most when the electric thrust is needed, for instance 

during taxi, take-off and climb, but a controlling strategy is not implemented yet and thus during 

these phases it will certainly be working but there is no way to distinguish other TMS states than 

Figure 5.14: TMS logical architecture diagram 
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“on” and “off”. Therefore, scenario diagrams would not add relevant information to the already built 

model. 

 

5.2.1 Allocation of values and requirements 

To be useful to the engineers the model must allow the allocation of various data inside the Capella 

architecture, there are several ways to add information to the Capella diagrams, but the choice must 

follow a method to be coherent with the model developed so far, and consistent with the TMS 

engineers indications. 

The first way to allocate additional information into the model is the PVMT Capella add-on (section 

2), this tool allows to create and associate a set of data to every Capella element present in the 

developed logical architecture: logical components, component exchanges, functions, functional 

exchanges, function and component ports, the diagram itself. This could be very useful as every 

element could be described some information and could carry significant values for the design 

process. 

The main data on which the TMS is being evaluated are the heat load coming from the cooled 

equipments and the optimal operating temperature range required, thus it makes sense to address 

this information to the logical elements for PS, ES and PT. These are basically the external conditions 

that affect the TMS design and sizing, also in the Matlab/Simulink models these are key parameters 

needed to perform the preliminary systema evaluation. 

 Another interesting information is the TMS configuration that we want to implement and verify with 

the simulation. 

At this point there is the need to make a critical assumption to continue developing the tool, indeed 

is given the possibility to associate to each of the three cooled subsystems a certain TMS 

configuration (option 1, 2, 3, 4). For instance there will be the possibility to state in the model that 

the PS is cooled with TMS option 1, the ES with option 2 and PT with option 3. 

 

 

 

 

 

 

 

 

 

 
Figure 5.15: Aircraft cooling strategy 
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This assumption can be quite accurate if we consider that the TMS architecture is supposed to be 

strictly modular inside the aircraft. Referring to figure 5.15, that shows a hypothesis of aircraft TMS 

implementation it can be noted that different aircraft segments have different cooling strategies 

(liquid colling or VCS).  

The TMS design team now is developing the configuration so that these different modules do not 

have common parts and are connected to different components. Redundancies are not yet 

considered but it makes sense to create a redundancy number value expecting that in the future will 

be used to characterize this TMS aspect. 

A further consideration is that, even though different subsystems can be cooled by the same TMS, 

the sizing Matlab/Simulink model senses just the overall amount of heat load. Although considering 

multiple cooled subsystems now there is just the possibility to size the TMS with the overall heat 

load amount and with one reference temperature, namely the lowest or the most significant for a 

group of elements. 

Setting in the model different TMS options for different logical elements means that ideally, we want 

to evaluate different TMSs tailored on each of the cooled subsystems, but since the relation between 

heat loads, temperatures and the Matlab results is not linear, we have to consider that the 

assumption could not be the most conservative one. Since this is a preliminary stage of the design 

process, the assumption made in this section could not badly affect the design, instead of considering 

a modular architecture based on aircraft subsystem’s location we are basing it on functional 

subsystem modules, this could be almost more detailed, but we have to mind the conservative 

aspects.  

For instance, evaluating a single TMS for two subsystems (summing the heat loads) or two different 

TMSs (summing the results) does not give the same result. Experimenting the model with reference 

values the difference is never higher then 5% of the calculated mass but the result depends on the 

reference temperature and on the heat load value, thus there is not the possibility to determine a 

constant conservative or risk factor. 

After all these considerations the set of values created for the PS, ES and PT logical element is the 

one depicted in figure 5.16. 

 

 

 

 

 

 

 
Figure 5.16: Propulsive system property value data set 
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Selecting the value box is possible to set the value for all the data considered, in the image (figure 

5.16) is shown the example for the propulsive system but the layout is the same also for the energy 

storage and power transmission. 

On the TMS side there is the need to provide a way to allocate the system description, it is assumed 

that this description comes from the simulation results, thus through the PVMT add-on it is created 

another set of values that will be filled in some way after performing the simulation. 

The TMS data set is depicted in figure 5.17. 

 

 

 

 

 

 

The last thing that can complete the model description at logical level is the requirement allocation, 

the parameters considered in the paragraph 3.9 are now translated into Capella requirement 

elements through the Requirement viewpoint add-on. This Capella feature is exploited to create a 

set of requirements that would be allocated into the TMS logical element.  

Obviously, we have just the requirements for the thermal management system since the project 

focuses on it, but in the future the approach could be used also for other subsystems development.  

The maximum thermal dissipated power is not really a requirement in this model, instead it is an 

input that shall be set into every cooled subsystem block and that initialise the simulation. 

Discussion about heat load settings will be made in the following sections. 

An additional constraint that could be set as a requirement is a maximum mass limit that in the 

future could surely refer to a certain percentage of the aircraft MTOM. 

The set of requirements created as explained is represented in the diagram as requirement elements 

connected to the TMS for electrical drive train logical element (figure 5.18). 

The mass editing view available in Capella could be used to modify requirements values in the model 

(figure 5.19). 

Requirement elements have a set of standard attributes, aside from them three attributes are added: 

• Verification: a Boolean value that states if the requirement is satisfied. 

• Description: the full requirement description. 

• Value: the value associated to the requirement. 

Inside the description and value attributes is placed the information reported in section 3, where 

possible we refer to the 2030 goal column. From this view is possible to access all the requirement 

Figure 5.17: TMS property value data set 
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attributes and modify them when needed, for instance if during the system development the 

requirement value can be easily changed. 

 

This paragraph completes the Capella TMS model that is one of the core components of the tool that 

this work aims to create, now the logical architecture, created from the aircraft perspective, focuses 

on the TMS, and allows the allocation of all the information that characterizes the system design. 

Furthermore, the allocation is coherent with the simulation models provided by the company.   

After having completed this part of the project we realise that, since all the parameters, values, 

requirements were successfully allocated, there is no need to keep modelling also the physical 

architecture and EPBS layers. This is coherent with the fact that in the early stages of the system 

development there is not a definitive architecture at component level, therefore it makes sense to 

depict the TMS as a “black box”. Another reason to do that is that component requirements are not 

available, the TMS sizing result can be compared just with requirements that refer to the overall 

configuration and not to single components. 

 

Figure 5.18: Requirement allocation into the logical architecture diagram for TMS 

Figure 5.19: TMS requirements in the mass editing view 
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The decision is thus to stop the TMS modelling at the logical level and try to link the sizing model 

with this stage of the Capella model. For future works, when more component specific requirements 

and more detailed Matlab models will be developed, there will also be the need to create a more 

detailed TMS “solution” that will mean to develop the last Capella layers.   

 

5.3 Link Matlab/Simulink models – Logical architecture 

One of the main targets of this project is to create a digital interlink between the MBSE and MBD 

environments, therefore the goal is to implement a seamless way in which engineers could exploit 

simulation capabilities of an MBSE software. 

For the thermal management system use case the MBSE software is Capella, and the numerical 

model is built in Matlab/Simulink as previously presented. 

There are a few ways in which we could connect our TMS architecture with the simulation, at the 

end is chosen to attempt with the Python programming language. The are two reasons that drove 

this choice: 

• First, Capella could include inside its environment a Python interpreter thanks to the 

Python4Capella add-on, with this feature is possible to work on our TMS model with the 

code. We must mind that Capella and Python releases installed on the device must be 

compatible, for this project are use Capella 6.0.0 and Python 3.9. 

• Second, Python can include several different libraries and one of them regards the 

interaction with Matlab. The Matlab library for Python allows the two environments in a 

parallel way but requires compatible releases between them, for this work Python 3.9 and 

Matlab 2022a are used. 

This part of the project exploits the knowledge gained during the internship (30), and a further 

explanation about the connection can be found in that work, now the goal is to tailor this link on the 

TMS.  

Having said that, now we focus on the development of the code that shall manage this interlink. This 

connection, built in the P4C environment, must perform some determined steps to achieve the goal: 

• Retrieve from the Capella model the values needed for the simulation. 

• Send these values into the Matlab workspace. 

• Run the Matlab pre-processing script. 

• Run the Simulink model. 

• Run the Matlab post-processing script. 

• Retrieve results from the Matlab workspace. 

• Retrieve the requirements allocated in the model. 

• Compare simulation results with requirements. 

• Place the all the results in the Capella model. 

Following these steps the P4C code first gets the values regarding the heat load and the lower limit 

of the operating temperature range (most demanding condition) for the PS, ES and PT. 



60 
 

Then using the matlab.engine library these data are sent into the Matlab workspace, the pre-

processing scripts are slightly modified from the base version provided by the company as now the 

heat load and reference temperature are already defined through P4C and thus there is not the need 

to declare them in the Matlab script. 

To make the Simulink model run automatically we add at the beginning of the post-processing script 

the line of code that runs a Simulink file from Matlab (“sim” function), the same result could be 

obtained placing the run function at the end of the post processing script.  

In this way pre-processing and post-processing scripts run in sequence both launched from the P4C 

environment thanks to the proper matlab.engine function, once Matlab stops running the P4C code 

gets from the Matlab workspace the values for the overall mass, ram air consumption, power 

consumption just accessing their workspace variables. The post-processing script is slightly 

modified to output exactly the overall amount of the parameters of interest.  

In the previous paragraphs it was mentioned that for every cooled subsystem a different TMS option 

could be set, indeed the code is built to run the respective Matlab/Simulink model depending on the 

“configuration” input. Thus, the code runs three times (three cooled subsystems), and every run 

could use one of the four model options depending on the “configuration” number. 

If in the future other Matlab/Simulink models will be created there would be the possibility to link 

these new ones in the same way. 

While running the code retrieves the results of the three simulations, prints in the console the results 

of each iteration and at the end sums them, at this point stored in P4C there are the overall results 

of the TMS summing the TMS estimations for each subsystem. 

The script is written to run a simulation for every aircraft subsystem that at logical level has a 

configuration attribute different to “0”, this because in possible future works it could be interesting 

to consider also other segments to be cooled by the TMS, therefore for a preliminary evaluation of 

the impact on the cooling sizing it will be sufficient to give to the new considered subsystem the 

values of operating temperature, heat load produced and cooling option chosen different from “0”. 

Now the requirement values are retrieved from the model and compared with the results, in some 

cases a simple calculation is needed to obtain a certain parameter from the results available 

(requirements definitions in section 3). 

An interesting choice that is made at this point, according with the TMS engineers, is to create not 

just a variable that tells if the requirement is satisfied or not but also to output a percentage of how 

close the result is from the limit/target value. The percentage is calculated as: 

𝑟𝑒𝑠𝑢𝑙𝑡 (%) =  
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒
∗ 100                                                           (5.1) 

This procedure cannot be called a proper requirement verification because it is just a first 

comparison of a sizing model with a requirement developed in an early stage, anyway the 

comparison gives interesting information that could be useful to the engineers during the 

development activity, this is also why the static Matlab/Simulink model was developed by the 

company. 
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The last thing that the code must perform is to display the results of the simulation and the 

requirement check inside the Capella model in very easy-to-read way. In the previous paragraph, 

with the PVMT add-on was created a set of properties allocated in the TMS logical element, these 

values are set directly with P4C allocating the mass, ram air and power consumption results. The 

idea is to expand this set adding all the requirement comparison results, both the “boolean” and the 

percentage values, in the same way the PVMT view is filled from the P4C environment with the code.  

The resulting property value view of the TMS logical element is visible in figure 5.19. 

This table is filled entirely from the code, the idea is to make the results available all in a single place 

without having to check either the code or its output in the console. The code at the end modifies the 

model as it changes the description of the TMS element, to perform this operation with P4C we must 

state in the code that we are performing a “transaction”, in the other cases the code would not change 

the model allocating values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be observed the set is formed by: 

• Mass: mass result 

• Ram air consumption: ram air consumption result 

• Power consumption: power consumption result 

• Mass_req: percentage of mass compared to the requirement constrain 

• Mass_req_bool: boolean value for mass requirement verification 

Figure 5.19: Updated TMS property value data set 
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• Power_req: percentage of power consumption compared to the requirement constrain 

• Power_req_bool: boolean value for power consumption requirement verification 

• COP_req: percentage of COP compared to the requirement target 

• COP_req_bool: boolean value for COP requirement verification 

• SPD_req: percentage of SPD compared to the requirement target 

• SPD_req_bool: boolean value for SPD requirement verification 

There were other ways to report the result information into the model, but this choice was made 

basing on a trade-off between what was feasible with P4C and creating a clear result representation 

in the MBSE model.   

For developing purposes, the code also prints in the console some information, these are: updates 

on the run status, the summary of the characteristics of every subsystem cooled, and all the results 

that are also placed in the model. 

The full Python4Capella script is available in Appendix III, this paragraph has reported the 

explanation of what brought to that result. 

Similarly, to the internship to build the code were used the function provided by Python4Capella in 

the “simplified API” and “utilities” libraries. Many code issues were solved thanks to the discussion 

that took place at (31), when needed some new P4C function were created. This worked also helped 

the community to improve the add-on itself and some Capella features, since some aspects of the 

tool are not explored yet, this was also a reason that drove the activity of building the digital 

interlink: not everything in the Capella environment was accessible with P4C and some features are 

still under development. 

To create this code, it was frequently needed a learning phase regarding some Python and P4C 

features (32), (33), (34), this activity was not reported in this paragraph as it is not in the scope of 

the project, the information written here refer to the approach and the methodology used to write 

this digital connection. 

Note that, as said in the previous section, it is not a scope of this project to either discuss or modify 

the model provided by Ebraer Research and Technology Europe - Airholding S.A., therefore changes 

were made just to make the models compatible with the digital connection architecture. 

At this point of the project we could state that the digital “tool” is completed: the TMS Capella model 

was built from an aircraft perspective, the model was built with a level of detail that allows to allocate 

all interesting elements for this stage of the development, the Matlab/Simulink models are 

connected in a seamless way that requires just to run the P4C code, a preliminary requirement check 

is performed by the code and all results are available inside the available logical diagrams. 

 

5.4 Phase one results 

The aim of this section is to show how the tool could be exploited during engineering processes, a 

sort of tutorial will be crated explaining how to use it and who can benefit more from this structure. 

Also, a numerical example will be reported showing at the end how results could be interpreted and 

how the digital tool boosts the TMS project development. These two activities will be reported in 

parallel as the numerical example will be used to explain the tool functioning. 
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Before the tutorial it is useful to remark at which stage of the TMS development process this work is 

collocated, in section 3 the flowchart of the engineering activities was created, and this project wants 

to help during the first unconstrained iteration phase. Now there is a new tool that could be used in 

this phase thus changing some of the previous considered activities. 

The new flowchart representing the engineering workflow for the first unconstrained iteration is 

this (Figure 5.20): 

 

 

 

 

 

 

 

 

 

 

 

We must keep in mind that the TMS Capella model aims to be “shareable” between all the teams and 

engineers working on the system development.  

Now when the TMS design team has evaluated some constraints and condition and the static 

Matlab/Simulink models are available, the engineers could place all the values and requirements 

describing the model that allow to initialise the simulation. These are temperature ranges, heat 

loads, configuration option for all the three cooled subsystems. 

Temperature ranges are chosen from optimal operating temperature ranges presented in section 3, 

for the heat loads instead is considered the table in Appendix IV, the table reports the dissipated 

power for the cooled components considered in this use case, it assumed that all the dissipated 

power is formed by waste heat that the TMS must remove. 

As presented in the requirements table 3.7 there is a target value for the maximum dissipated power, 

this value is not really related to the sum of all the dissipated powers in a single flight phase that 

could be evaluated from the table in Appendix IV. The reason is that in Appendix IV the values come 

from statistical research on similar architectures and components, these values are constantly 

updated basing on the system development, so it does not make sense to rigidly consider just the 

values in the table. For instance, in Appendix IV the resulting most demanding condition is the take-

off phase, but after some weeks that this table was provided the TMS engineers stated that new 

estimations were saying that the most demanding phase was the end-of-climb segment since all the 

electrical thrust is required at high altitudes in climb condition. Also, the taxi phase is way more 

demanding then it could seem as the target is to perform a full electric-powered taxi phase, thus 

Figure 5.20: New engineering workflow flowchart 
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putting electrical components under pressure. It is then clear that the heat loads values depend on 

the most recent evaluations and expert opinions.  

Another assumption that was made to make the table in Appendix IV compatible with the model is 

that batteries are supposed to be the only energy storage component; converters, inverters and 

distribution refer to power transmission, electric motors and electric boosters are propulsive 

system components. Therefore, the sum of dissipated power for each group is allocated into its own 

logical component. 

Despite that it must be noted is the approach with which for every flight phase and more in general 

for every condition there must be considered a different heat load value given by a different 

behaviour of the cooled component.  

In this numerical example the PS, ES and PT thermal characteristics inserted in the model are shown 

in figures 5.21, 5.22, 5.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: PS data set 

Figure 5.22: ES data set 
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For this example, TMS option 1 is chosen for PS and ES while option 2 is selected for PT, the number 

of redundancies is always 1 as explained in section 3 and 4, the redundancy number in the future 

will multiply the result to obtain the overall configuration result. 

Requirements are the same shown in table 3.7 and in the requirement visualization (figure 5.19), 

the mass requirement value is a hypothetical value chosen based on previously performed 

simulations, realistically it will be set as soon as it will be available a certain percentage of the MTOM. 

It was chosen to set the heat loads in the way that their sum is 190 KW, this is exactly the maximum 

value in 3.7 table, this choice was made to verify that condition that is also coherent with a take-

off/climb condition in Appendix IV table.  

Once that this information is allocated in the TMS logical architecture diagram it is now possible to 

run the code that connects the simulation and crates the “digital bridge” between Capella and 

Matlab/Simulink. An interesting feature of the tool crated in chapter 5 is that the engineers do not 

have to read the code and understand how it is made, there is not almost the need to check what the 

console prints as all the main results are shown in the TMS data set. It is possible to run it directly 

from the Capella project explorer right-clicking on the matlab_connection script and running it as an 

EASE Script (figure 5.24):  

Figure 5.23: PT data set 

Figure 5.24: Running the code illustration 
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In this example for instance after having clicked the run button and waited for the run to complete 

the results in the TMS data set are shown in figure 5.25.  

The code could require about thirty seconds to run completely, depending on the device, because it 

could take some time to open the Matlab environment from Python. 

 

 

 

 

 

 

 

 

 

 

 

In this example for instance the evaluated mass and power consumption are under the requirement 

limit and how far they are from that is shown with the percentage, the Boolean value says “True” as 

the requirement constrain is respected. The COP result satisfy the target value in the requirements 

as we see a percentage slightly higher than 100%, coherently the Boolean verification value says 

“True”. Otherwise, the specific power dissipation reaches just 30% of the requirement target value, 

thus the requirement is not fulfilled and the Boolean value states “False”. 

Now the engineering workflow could easily keep going as the airframe design team engineers could 

freely access this model checking the results obtained by the preliminary TMS evaluation, the full 

process is very lean and fast because once the TMS team has performed its evaluation it has just to 

allocate some values, run the connection and the main results are immediately available to the 

airframe engineers and the discussion about integration issue could start. This is a sort of platform 

where all the key TMS information are allocated and are automatically placed after the simulation 

avoiding the risk of misunderstandings and data losses. 

For instance, speaking about this example, it could be stated that, given these requirements, the TMS 

configuration as evaluated does not weight too much and does not consume too much power. The 

coefficient of performance satisfies the requirement and so the proportion of electric power used to 

the thermal power removed is adequate with this TMS option set. On the other side the specific 

power dissipation is far from the target value, this means that the “density” of the thermal power 

removed is too low, the TMS in this configuration requires an excessive mass for a certain thermal 

power to absorb, this in the aircraft could translate into excessive masses and volumes if a high 

thermal power is expected to be removed.  

Figure 5.25: Simulation and requirement comparison results in the TMS logical element data set 
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Having said that the work can for instance be directed to searching for a solution that could absorb 

more thermal load with the same mass, attempts could be made changing the TMS configuration by 

selecting different cooling options. Another way is to look for a technology improvement in 

components and materials that could benefit the TMS layout, anyway this is the kind of discussion 

that could follow in the future design loops in which a solution will iteratively be found. 

For completeness it is reported also what the code prints in the console: 

Start 

 

Airframe 

 

Propulsive system 

  Configuration 1 

  N° 1 

  Heat load 50.0 KW 

  T max 473.0 K° 

  T min 273.0 K° 

  Energy Balance of Liquid cooling verified 

  Energy Balance of VCS verified 

  Mass = 339.46 kg, Ram air consumption = 1.68 kg/s, Power consumption =  21891.16 W 

 

Communication system 

 

Navigation system 

 

FCS 

 

Vehicle management system 

 

Landing gear 

EPS 

 

Electrical energy storage 

  Configuration 1 

  N° 1 

  Heat load 90.0 KW 

  T max 303.0 K° 

  T min 293.0 K° 

  Energy Balance of Liquid cooling verified 

  Energy Balance of VCS verified 

  Mass = 538.89 kg, Ram air consumption = 3.03 kg/s, Power consumption = 39460.46 W 

 

Power transmission 

  Configuration 2 

  N° 1 

  Heat load 50.0 KW 

  T max 393.0 K° 

  T min 353.0 K° 

  Energy Balance of Liquid cooling verified 

  Energy Balance of VCS verified 

  Mass = 354.62 kg, Ram air consumption = 0.48 kg/s, Power consumption = 6916.57 W 

 

Hydraulic system 

 

Pneumatic system 

 

Survellance and identification system 

 

Fuel system 

 

TMS 

 

TMS for Electrical drive train 

 

IPS 
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ECS 

 

---- 

 

Total mass = 1232.98 kg 

Total ram air consumption = 5.19 kg/s 

Total power consumption = 68.27 KW 

Total heat load dissipated = 190.0 KW 

Specific power dissipation = 0.154 KW/kg 

COP = 2.783 

 

Mass obtained is 82.199% to the Maximum Mass 

Power obtained is 94.817% to the Maximum Power 

Specific power dissipation obtained is 30.82% to the target Specific power dissipation 

COP obtained is 111.326% to the COP target 

 

End 

For every logical subsystem considered in the TMS cooling configuration there is a brief summary of 

thermal characteristics, then the Matlab output is printed with the result for the single 

Matlab/Simulink model run for that specific subsystem (hypothetical subsystem specifically 

evaluated for that case). 

In the last part the results that are also reported in the model are printed out. Since considering the 

result for the singles “modules” of the configuration seems not to be interesting to the TMS engineers 

at this early stage of the development that information was not reported in any PVMT variable, but 

if we want to check how every module affect the overall result it is possible to easily look at the 

results in the console. 

This section concludes the core of this project, starting from the problem definition the work came 

through the building process of the “digital tool” that includes the TMS MBSE model from an aircraft 

perspective, and the connection with the sizing Matlab/Simulink models. The goal seems to have 

been achieved as this tool could be a very useful framework that could help engineers throughout 

their activities boosting the discussion between design teams, furthermore this structure and 

approach could be translated for the other aircraft subsystems crating a full aircraft model where all 

the subsystems logical elements have a seamless connection with their own simulation models. 

The result at the end satisfies the engineers and gives useful insights about the ongoing project. 
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6 Building the digital tool – Phase two 

This chapter concerns about topics that were investigated after the creation of the digital link, there 

were two main research paths that could be followed at this point: 

• Capella physical architecture layer 

• Scenarios and system states description 

The first one aims to investigate if a hypothetical solution proposal for the TMS at component level 

could create in the Capella environment and eventually if it could be useful for the system 

development. 

The second research has the scope to identify a possible methodology that could associate flight 

phases with a certain TMS scenario or system state. 

 

6.1 TMS physical architecture layer 

Starting from the TMS model developed in the logical Capella level we want now to “open” the TMS 

logical block detailing how this system will be built. This is the main scope of this Capella layer, if the 

system analysis aims to define what the system has to do, in the physical architecture layer we want 

to propose a “solution” that specifies subsystem physical components and interfaces. 

The physical layer development process starts from the main diagram of the previous layer that is 

the logical architecture diagram in figure 5.18. At this point we exploit the “system to subsystem 

transition” Capella feature, this add-on allows to create a separate model in which the modelling 

process could follow, in this way for each TMS layout proposal we could create a different transition 

model, but all the transition would be related to the original main branch of the model that has 

stopped at logical level. 

For instance, a possible solution is the one that refers to figure 5.15, in that case we assumed that 

the energy storage components are cooled by an option 1 TMS and the propulsive system and power 

transmission are cooled by an option 3 TMS. 

In this example it is considered just the “absorbing and dissipating heat chain” and thus in the 

physical architecture are created just those physical nodes directly involved in the heat removal 

process. 

Figure 6.1 shows a possible physical architecture. 

Coherently with what said above the batteries are cooled through a liquid cycle combined with VCS, 

that means that the involved components are the liquid refrigerant that removes the heat in first 

place, the pump that drives the liquid, the evaporator that transfers the heat to the changing phase 

gas, the compressor that moves the gas and the condenser that transfers the heat to the final heat 

sink that is the air in the atmosphere.  

On the other hand, all the PS and PT components mentioned in section 5 are cooled just with a liquid 

cooling cycle that similarly has the liquid refrigerant and a pump but then the ram air heat exchanger 

passes the heat directly to the air. 
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In this framework it is assumed that the ducts are the components that connect every heat removal 

stage as through ducts both EGW and R314 move allowing the heat to be transferred from the source 

component to the heat sink, ducts also are a subcomponent of physical elements that transfer heat 

from one mean to another because they form an interface surface.  

The parts that allow the pump and the compressor to transfer the mechanical energy to the fluid are 

their blades, thus these elements are depicted as connections. 

On the functional side there is the need to make even more explicit those functions considered at 

logical level, this because we have now to specify the functional meaning for every existing node PC. 

The chain considered at logical level will be split into two different functional paths one for each 

TMS option (figure 6.2). 

Figure 6.1: TMS physical architecture diagram (only nodes PC and behaviour PC) 
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 The two different paths describe how the heat moves through the components and how every 

component participates to this process: 

• Liquid refrigerant 

o Absorb waste heat 

o Move the heat 

• Pump 

o Move the liquid 

• Evaporator 

o Transfer the heat from the liquid to the phase changing gas 

• Gas refrigerant 

o Absorb the heat 

o Move the heat 

• Compressor 

o Move the phase changing gas 

• Condenser 

o Transfer the heat to the air heat sink 

In the functional diagram it appears also the chain that functionally transfers the electrical energy 

from the storage to the user, namely the electrical motors. 

The resulting physical architecture diagram with function allocation is depicted in figure 6.3. 

This is just an example of how a hypothetical physical layer could result for this use case, if for some 

reasons we want to propose another solution, for instance implementing option 2 for batteries and 

option 4 for the other components, it is possible to create a new transition in which a new physical 

architecture will be developed, figure 6.4 shows the physical architecture diagram for this new 

example.  

In this second transition there are the skin heat exchangers components that carry the function to 

create an additional path that allow the heat to move into the atmosphere. 

We must consider that although we have created a more detailed architecture, we have also to assess 

the model utility from a system perspective. This model allows to describe the system to the 

component level since is possible to insert information about specific physical components, physical 

constraints, interfaces, component requirements. However, at this stage of the TMS development 

there are not yet this kind of details, also there is not a dynamic model that could simulate the system 

behaviour evaluating temperatures and components results, thus, even if component requirements 

were available, there would not be the possibility to verify them. 
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Figure 6.2: TMS physical functional dataflow diagram (transition 1) 
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All these reasons brought to the conclusion that the creating the physical architecture layer could be 

a good exercise to understand the system behaviour considering TMS subcomponents. 

Once that the system development will be at an advanced stage this physical framework could be 

used to allocate data and information as it was done with the logical level for this project. 

Furthermore, when a dynamic simulation model will be developed including component details it 

will be feasible to build a digital connection with these models that could link directly the physical 

layer, this would mean to create a framework and a digital connection tool identical to the once built 

for this work but transferred at component level as the system will be more detailed. 

 

 

 

Figure 6.3: TMS physical architecture diagram (transition 1) 
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6.2 TMS states and scenarios 

In chapter 5 was pointed out the need of specifying the TMS behaviour throughout the reference 

mission, as previously said we want to characterize the different behaviour of the system in different 

flight phases.  

The goal is to create a solid reference accessible on the model that could help the engineers to decide 

what critical phases of the system to simulate and to find the sizing condition. Indeed during the 

system development process there will not be a single run of the “digital tool” to evaluate the system, 

more realistically a set of different conditions, brought from statistical analysis on the available 

technology, would be tried to evaluate the system preliminary sizing. 

From the discussion with the engineers emerged that the TMS is needed mainly when high-level of 

electric thrust is required, these conditions can be found in different flight phases: 

Figure 6.4: TMS physical architecture diagram (transition 2) 
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• Taxi: for sustainability goals the target for the aircraft is to perform a full-electric taxi phase. 

• Take-off: maximum thrust required. 

• Climb: as the aircraft increases its altitude the air density lowers causing a decrease of thrust 

produced with turbo-engines that must be compensated with electrical motors. 

• Go-around: similarly to the climb phase the aircraft needs thrust to get again in a climb 

condition. 

Particular attention must be placed to the end-of-climb segment, this because all the electrical power 

train suffers of overheating when the electric thrust is required for a long time. Thus the longer is 

the mission segment then more heat will have to be removed at the end of that phase. 

If for instance, we consider figure 6.5 where batteries resistive losses are plotted along the mission 

profile with the total thrust required is possible to  

 

 

 

 

 

 

 

 

 

This graph does not consider the taxi and take-off phase where the electric thrust is required to 

propel the aircraft. The data used to create the chart were picked from the table in Appendix V, this 

table was available just at the end of the project and the data come from a first evaluation of a 

dynamic simulation model that considers technologies like the one that will be implemented in the 

FutPrint50 aircraft.  

Therefore, starting from the taxi phase to the end-of-climb the TMS is working to remove the heat, 

the heat load peak is reached at the end of this long period. During go-around is required again to 

have high-levels of thrust but since there is less operating time for the electrical drive train the 

amount of waste heat produced is smaller. 

This graph shows clearly when there is the need to implement a cooling system for the electrical 

drive train, this is the first step in the development of a control strategy. It could also be noted from 

the table in Appendix V that even if batteries are not providing power there is a small amount of heat 

produced also in a “stan-by” battery state. 

 

Figure 6.5: Batteries resistive losses and total thrust along the mission 
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6.2.1 TMS logical architecture states and modes 

Given the reported information is possible to create in the Capella model some diagrams depicting 

the different states of the considered subsystems. These are the mode and state machine diagrams 

(MSM) on which the system is considered from the initial “building” to the final “dismissed” states. 

In Capella is available the description of an element condition both in terms of states and modes, the 

main difference between these two is that a state is an internal condition that defines how the 

element is behaving, on the other hand a mode is a condition imposed by the external context and 

environment in which an element operates. 

The diagrams that will be created in the following work are defined basing on the internal behaviour 

and thus they are state diagrams.    

First are create the states diagrams for the cooled subsystems of the electrical drive train (figures 

6.6, 6.7, 6.8): 

 

 

 

 

 

 

Figure 6.6: Propulsive system MSM diagram 

Figure 6.7: Energy storage MSM diagram 
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These diagrams have blocks that represents a system state, the connections are basically triggers 

that make the system change state, in these diagrams triggers are also interpreted as a change in 

aircraft operations where it is assumed that the system would receive a signal from either the pilot 

or the flight computer to change its state since an action is required. Then, since every state blocks 

allows a description, the different flight phases are associated to each state. 

For the electric motors we consider that they are turned off during ground operations, an idle mode 

is created for all those flight phases in which the electrical drive train is in a stand-by state where it 

is turned on but not providing power, these phases are for instance cruise descent and hold. During 

all the other already mentioned phases the electric thrust is assumed to be required and so the 

electric motors are providing thrust. 

The diagram for batteries is coherent with the one for the propulsive system since this one is the 

system that commands when he needs the power, in these flight phases the batteries are providing 

the electrical power needed to produce thrust and dissipating heat. In the other phases the batteries 

could be in a stand-by state where, as said before, they still produce waste heat but in a smaller 

amount. It is also assumed that a possible recharge state could be representative of a descent 

condition where batteries could be recharged by the GT engines. During ground operations it is 

hypothesized that batteries are turned off, anyway it makes sense to expect that the aircraft will be 

connected to a GPU that would recharge the batteries, this process would certainly need to be cooled 

but it is not known yet if with an external cooling mean or with the TMS considered in this project, 

future aircraft developments will specify that. 

For the power transmission we just differentiate the two main conditions: the one where the electric 

line is not providing power and the one where the electric line is active, either providing power or 

recharging batteries. 

The states of the cooled subsystems were considered before because the TMs MSM diagram is a 

consequence of the thermal conditions of the cooled components, thus the diagram created for the 

TMS is shown in figure 6.9. 

Figure 6.8: Power transmission MSM diagram 

Figure 6.9: Thermal management system MSM diagram 
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Coherently with the data available at this stage of the process and with the MSM diagrams for the 

other subsystems, it is expected that the TMS would work during take-off, climb, go-around and taxi 

phases. The other flight phases require less cooling and so it is assumed for this system the existence 

of a “stand-by state”, namely where the TMS is “on” but not at full capacity, this different cooling 

need is certainly a condition that could characterize phases where the electrical drive train is on but 

not providing full electrical power. 

These models could be used as a reference where the engineers shall choose the heat loads and thus 

the condition that is going to be simulated. The goal of this part of the work is not to automate the 

heat load allocation, for instance linking an excel file with Capella, but to guide the engineers in the 

choice of the conditions to simulate.  

Note that MSM diagrams are part of the so called “transverse modelling” in Capella, that means that 

such a type of diagram could be created at every Capella layer. The MSM diagrams previously shown 

were all built in the logical architecture layer, and they are thus connected with their respective 

logical components present in the architecture. 

In the future it would certainly be interesting to add to this diagrams values that could describe each 

system state depicted, for example setting a heat load range for every state of every system. In this 

way there will be a set of diagrams that would make the engineers aware of the conditions that are 

going to be allocated in the model, inserting for instance the heat load values in the logical 

architecture diagram for the TMS there will be the possibility to check into the MSM diagrams in 

which range the selected value lies and which flight phases are connected to that state. 

A possible development of this work was hypothesized to be the scenario description of each flight 

phase, as considered in section 5 it is not possible as the functional analysis did not bring to functions 

that specifically differentiates the behaviour along the mission. To do that there would be the need 

to explicit TMS and subsystem functions at logical level in the way that a temporal chain could be 

created in scenario diagrams, however now is available just the chain referring to the “ general” 

cooling system process that takes place when heat removal is needed. 

Having said that it makes more sense at this stage to create the framework considered in this section 

that refers to different system states but without having to detail them. In a future development 

either this framework will be enough for describing the systems states, allocating values, or more 

detailed functions will allow a “sequence” description of all flight phases in a set of scenario 

diagrams. In this last case it will might make sense to create the scenario description of the flight 

phases at a physical architecture level as at that level information about the component behaviour 

will allow to detail more both functions and requirements. Anyway, now that could be a future 

development since, as already said in the previous chapter, it does not make sense to consider the 

physical layer as there is not yet information that could be placed at that model level, further 

developments will allow to go in that system detail. 

 

6.2.2 TMS physical architecture states and modes 

The research about system states and modes brought to the conclusion that would be interesting to 

have the possibility to chose directly from the MBSE what flight phase to simulate and therefore on 

which conditions to size the TMS. 
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As previously said the main information that characterizes a flight phase is the heat load produced 

by the cooled subsystems, namely energy storage, power transmission and propulsive system. It 

makes sense for the work purpose to have some diagrams where there is the description of different 

heat loads for each component for each flight phase. 

This means that an actual translation of the table in Appendix IV in the Capella environment needs 

to be made, that could be done through MSM diagrams. 

The flight phases are not an internal state of the considered subsystems, they are more a set of 

imposed conditions determined by the mission profile that the aircraft is following, thus win the 

diagrams we are going to consider system “modes” instead of system “states”.  

To be coherent with the architecture developed in this physical layer MSM diagrams are created for 

“Batteries”, “Distribution, inverters, converterts” and “eMotors and eBoosters” physical elements, 

these diagrams are shown in figures 6.10, 6.11, 6.12. 

As can be observed the mode sequences for the three considered physical elements are always the 

same as they follow the same mission profile, what changes is the heat load, allocated in the region 

of each mode, that is produced by these components throughout the mission. 

These diagrams are really the translation of the table in Appendix IV in the more readable MBSE 

environment, when more than one component is considered for a diagram, the respective heat loads 

in the Appendix IV are summed. 

The reason to develop these diagrams in the physical architecture Capella layer is that they could 

not be just a reference to look at when performing the system sizing, indeed it will be interesting 

that the code previously built could access those data picking the right heat load values for the 

simulation.  

In the physical architecture layer, more operations are allowed on the model with Python4Capella 

and indeed is possible to retrieve the information allocated in those diagrams, the following work 

will concern how to integrate this possibility exploiting the framework built in the physical layer, 

considered useless until this point, and the “modes” diagrams. 

Figure 6.10: eMotors and eBoosters MSM diagram 

Figure 6.11: Batteries MSM diagram 

Figure 6.12: Distribution, inverters, converters MSM diagram 



80 
 

6.3 Link Matlab/Simulink models – Physical architecture 

In this section it is explored the possibility to create another digital connection, like the one built in 

chapter 5, that could link the Matlab/Simulink models with the MBSE environment, this time it will 

be the Capella logical architecture layer.  

Having already the model physical architecture, shown in paragraph 6.1, we want to create for the 

PAB diagram the same framework that was previously created for the LAB diagram. This means that 

we want to allocate all the values needed from the simulation and to have those properties values 

where all the simulations results will be stored at the end of the process. 

This activity is really the same presented in paragraphs 5.2 and 5.3, now the main differences and 

peculiar aspects of this process in the physical layer will be shown. 

The first thing to note is that the simulation models have not changed, thus there is no added value 

in the results respect to what made before, there are not simulation outcomes that could be 

addressed to one of the new created physical elements. Therefore, it is chosen to allocate all the 

results in the overall “TMS for electrical drive train” NodePC, this element is directly derived from 

the logical architecture and has the very same system high-level meaning, this element then contains 

the detailed TMS physical architecture but as said before it does not make sense to consider the 

results at component level. 

The results considered are the same of the work done in section 5 and all the variable names have 

the same meaning, for this stage of the work the code was refined and thus now are added (figure 

6.13): 

• Run_result: output about the simulation run 

• Run_phase: flight phase simulated. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.13: TMS for electrical drive train data set (physical) 
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The information on the cooled components needed from the simulation are always the same, 

however this time it makes sense to allocate what possible into the new created physical elements 

as “Batteries”, “Distribution, inverters, converterts” and “eMotors and eBoosters”. This because the 

heat load values will be retrieved from the MSM diagrams associated with each of these specific 

physical elements, and so now there is no need to build a property for that value as done in the logical 

architecture. The other data needed are the cooling option that tells which model to run and the 

temperature range considered for a component, for simplicity in this stage they are created just a 

“Temperature” and a “Configuration” property values that will be allocate in each of those physical 

elements cooled. 

  

 

 

 

The last thing needed in this framework is the requirements allocation, also in this case the 

reasoning is the same of the one about the results allocation, since the requirements are not specific 

on some TMS subcomponents the most suitable thing is to allocate the requirements to the “TMS for 

electrical drive train” physical component that carries the same meaning that had in the logical 

architecture layer and that allows not to be to specify on a single component. Obviously, the 

requirements have not changed and are always the same previously presented. 

 

Figure 6.15: Requirements allocation in PAB diagram (zoom) 

As soon as this framework is built we can create the script that performs the digital connection, this 

is very similar to the one created for the connection on the logical layer and significant parts of it are 

really the same.  

What changes now is that the program gives the user the possibility to choose the flight phase to 

run, with a basic user interface the program allows the user to select the phase and then sends to the 

simulation the respective associated heat load value. 

This is a significant improvement in the work as the new-created flight phases reference, that is the 

set of MSM diagrams with heat load allocation, is now used actively to initialise the sizing simulation. 

The values in the MSM diagrams could be updated basing on studies, research, and other evaluations 

but with the same code the user can always select what to run having a fast understanding of how 

Figure 6.14: Data set example for "Batteries", "Distribution, inverters, converters", "eMotors and eBoosters" 
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the TMS estimation changes depending on the flight phases and furthermore he is kept aware of the 

heat load associated with the simulated condition. 

In this way MSM diagrams could result helpful on both the MBSE representation side, giving a faster 

readable way to look at heat loads in flight phases for each cooled subsystems, and the digital 

connection side as the simulation dynamically picks the values associated with the phases that the 

user, namely an engineer, is choosing to run. Furthermore the phase simulated is placed as a result 

in the “Phase” property value allocated in the “TMS for electrical drive train” element. 

A further improvement, that does not concern the simulation itself, is that now is given the 

possibility to choose the output that is printed in the console, anyway all the results are always 

allocated in the model as shown in chapter 5.  Now the user can choose to have either all results 

printed in the console, or to have just verification results, namely the ones that say whether the 

requirements are satisfied or not, or not to have results printed in the console.  

In any case the results are placed in the model and the summary about single subsystems is always 

printed out while running. 

Furthermore, an update in the P4C API allows now to modify from the code some requirement 

attributes, to make the requirements results as visible as possible they are also placed in the “Prefix” 

attribute of the requirement elements. 

The Matlab/Simulink models are built to manage in the best way those conditions that could be 

meaningful for the sizing evaluation, for instance conditions with a significant heat load. Now, since 

the simulation can receive as input low heat load values associated to phases like “Cruise” or phases 

where that value is zero like in “Descent” and “Cruise”, there is the need to also manage those results 

with the code. 

The issue is that the Simulink model cannot run and gives an error when the heat load value is zero, 

when the heat load is low another problem persist as the simulation could give, depending also on 

the temperature value and the configuration option, a negative power consumption and a negative 

ram air consumption. These results do not have a real physical meaning but are representative of a 

condition where cooling is not needed for that element, this is an assumption, but it could not affect 

that much the simulation results as such a thing happens when the heat load value is an order on 

magnitude lower than the value considered in those conditions supposed as sizing phases. 

Given this assumption the code manages these situations considering not necessary the TMS 

evaluation when the heat load is zero, thus not running the simulation. In the case of low heat load 

the code analyses the results and in the case of negative power consumption it supposes that a TMS 

is not necessary in that condition and imposes that for that evaluation, that could be for instance just 

for one of the cooled elements, that mass, power consumption and ram air consumption are all equal 

to zero, therefore a non-existent TMS. 

At the end of all three simulations, one for each cooled element, if the overall result is equal to zero 

then the TMS is supposed not to be necessary in that specific case and so all results are imposed as 

zero, the requirement comparison is not performed and at the end in the “Run_result” property value 

it would be printed “TMS not evaluated”. In all the other cases the results are compared with the 

requirements and all the results end in the model as it was in the logical architecture, furthermore 

in “Run_result” property is written now “TMS evaluated”., 
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The code now can manage all the conditions available in the MSM diagrams, anyway it must be 

considered that are the engineers that can choose what values to place in the diagram and what 

phase to run, and since the engineer will search for demanding and sizing conditions it would not be 

that interested in situation where there is no heat waste produced. However now the code would 

not give an error when in those cases and will allow the engineers to follow their work evaluating 

different conditions, and in the case that the data in the MSM diagrams would be updated the 

program will always be able to give useful results to the user.  

For example, if from other analysis it will be supposed that during “Descent” there will be needed 

some cooling in certain components, a value different from zero will be allocated there and there 

will be immediately the possibility to simulate it without changing anything in the program. 

This framework allows the engineers to simulate several conditions, namely all the phases of the 

mission profile, in a very fast way and having immediately meaningful results in terms also of 

requirements comparison. If the reference mission changes, or changes the behaviour of the 

components throughout it, the heat load values could be manually updated in the MSM diagrams and 

then there will be the possibility to check immediately the system sizing along the different phases 

of the new mission. 

The following paragraph will show how this new digital “bridge” can be used and especially what 

are the differences with the link created in chapter 5. 

 

6.4 Phase two results 

In this paragraph is reported a sort of tutorial that is ideally the extension of what explained in 

section 5.4. Now there is no more the need to show a numerical example or all the process that must 

be followed to use the digital tool, instead since the program was refined here are reported the 

differences and the significant improvements of the digital link. 

As previously said the new digital connection created for the physical architecture does not change 

the simulation models and therefore the results interpretation is actually the same, also the results 

allocation is made in the way to be as coherent as possible with the logical layer, this because the 

meaning of the simulation outcome is  more related to the “TMS for electrical drive train” logical 

element rather then any subcomponent considered in the physical architecture. 

Anyway a thing that we must note is that the TMS configuration option, that could be addressed to 

the three cooled subsystem is not a variable anymore. That property value describes which cooling 

option will be implemented but now in the physical architecture there is the actual representation 

of that option.  

For instance, if we consider the “Transition 1” physical model (figure 6.3), the architecture is relative 

to a TMS layout  where batteries are cooled with an option 1 configuration and all the other 

components are cooled with option 3. Thus, even though is possible to select another type of cooling 

option and to simulate it without having either errors or simulation issues, it does not really make 

sense to evaluate them, that would result in having simulation evaluation that does not correspond 

to the built architecture. That could certainly confuse and give wrong insights on the TMS sizing and 

thus the engineers must be aware of that. 
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Apart from that there are no other differences with what reported in chapter 5 about results. 

Even though being developed for the physical architecture layer the interaction between this tool 

and the engineering workflow does not change, it always aims to be a sharable tool that boosts the 

information exchange between engineers.  

Now the process described in section 5.4 is really the same, but it is based in the physical 

architecture, now the values to allocate in the cooled components are just the configuration, that will 

be fixed as previously explained, and the reference temperature for the physical element considered. 

There is no need to place the heat load as it is already present in the phase description for the cooled 

elements in those MSM diagrams. 

Then the user can immediately run the “digital connection tool” and what is interesting to show now 

is the interfaces that the program now creates to allow the user to interact with the simulation. 

First the user can select the output in the console writing the relative number in the dedicated space 

(figure 6.16), the program does not keep running until one of the options is selected. 

Then the user can select which flight phase to run always inserting the number associated with the 

desired phase (figure 6.17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: User console results choice 

Figure 6.17: User flight phase choice 
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At this point in the console is printed for instance: 

TMS sizing on "Parked" conditions 

 

Then the program works in the same way as shown in section 5.4, thus running for instance a phase 

where the heat load is significant, that means excluding just “Parked”, “Descent”, and “Cruise”, there 

are no changes in the program behaviour. 

However, is interesting to show the result section printed in the console when the option 

“Verification result” is chosen, in that case an example of output would be: 

---------RESULTS-------- 

 

Mass REQUIREMENT SATISFIED 

Power REQUIREMENT SATISFIED 

Specific power dissipation REQUIREMENT NOT SATISFIED 

COP REQUIREMENT SATISFIED 

Note that before the result section in the console are always printed the results of the single 

component simulations. 

Anyway, with this output the user has an immediate understanding of what is satisfied or not 

without having to check all the numbers. 

In the case of “All results” the output is the same shown is section 5.4, while in case of “No results” 

in the console is printed just: “All results allocated in the model”. 

Speaking about other differences, as said in the previous paragraph, there is now the possibility that 

for some of the cooled components the TMS could not be evaluated if the heat load is either to low 

or zero. In that case instead of the results shown for that specific element is printed for instance: 

Power transmission 

  Configuration 2 

  N° 1 

  Heat load 50.0 KW 

  T max 393.0 K° 

  T min 353.0 K° 

  Cooling not required for Power transmission in Cruise phase 

 

That could happen for more then one component and if it happens for all considered cooled elements 

the TMS results not to be necessary, for example running the “Parked” phase where the heat load is 

zero for all subsystems, the output in the console in the results section is: 

Parked does not require cooling, TMS not evaluated 

And in the results property values it is stated “TMS not evaluated”, in all the other cases there will 

always be at least one result and so those results will be placed in the model with the statement 

“TMS evaluated”. 

An example is shown in figure 6.18 where the simulation results are allocated in the property values 

associated with the “TMS for electrical drive train”. 
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In the case that the TMS is not evaluated all result values are imposed as either zero, for numerical 

values, or “…”, for Boolean and string values. 

As previously said the last updated of this refine code is that the requirements results are also 

showing the “Prefix” field that is visible clicking on the requirements blocks in the diagram: 

 

 

 

 

 

 

 

 

The script the performs this new digital connection on the physical architecture Capella layer is 

reported in Appendix VI, as explained some sections of it are the same of the previous script but the 

Figure 6.18: Result allocation in the property values set of TMS for electrical drive train NodePC 

Figure 6.19: Example of verification result placed in the "Prefix" field in the requirement block 
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changes implemented have allowed this more refined digital bridge with the user interaction 

capability.  

With this section the work on the “digital tool” is concluded, the refining work allowed by the Capella 

features available in the physical architecture layer, brought to this last version of the connection. 

Now the built framework is representative of the system that is being built and allows the allocation 

of several information and values inside it, also in the future the physical architecture could allow a 

further description of the system. The framework relates to the sizing Matlab and Simulink models 

whose results are compared with requirements and placed in the model, for this purpose the 

physical architecture is not the most suitable layer where to place these results, but its features are 

exploited to provide that consistent connection between the architecture and the flight phase 

description for the cooled components. This in the end allows the manipulation of all those data to 

give the user the possibility to dynamically select which phase to run and significantly boosting the 

engineering process. 

In terms of model meaning it will make more sense in the future to built this kind of connection in 

the physical layer but with dynamic simulation models that will allow to verify the component 

behaviour and thus allow the comparison with requirements at component level when they will be 

available. Now the result meaning is still on a higher “logical” level while the framework exploited is 

the physical one. This issue will be solved in the future with further developments on the system 

conceptual design side and on the simulation development side. 
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7 Conclusions 

The development of an MBSE model in Capella for a thermal management system (TMS) for a hybrid-

electric aircraft, and the link of this model with the sizing models developed in the Matlab/Simulink 

environment, is presented in this paper. The research was conducted in collaboration with Embraer 

Research and Technology Europe - Airholding S.A. company. The objective of this research was to 

develop a digital tool that enables a faster and more effective information exchange between all the 

engineering teams involved in the activities. 

The reference material provided by the company, including the aircraft, the thermal management 

system with some possible layouts, and respective available requirements for aircraft and TMS, was 

analysed in detail. Also, the sizing Matlab/Simulink models provided by the company were analysed 

to understand the engineering workflow that is going on to develop the TMS and the possible MBSE 

practices that could boost the process. 

The scope of this project was identified, which is the digital tool formed by an MBSE model linked 

with simulation models in Matlab/Simulink. The first phase of the project involved the development 

of the MBSE architecture for the TMS in Capella keeping an aircraft perspective, allocation of all 

requirements and values to characterize the model, and the development of the digital link between 

the Capella logical architecture layer and Matlab/Simulink model through Python4Capella. The 

simulation results and the results of the first comparison with requirements were made available in 

the model. 

The second phase regarded investigating the possible utility of developing the more detailed Capella 

physical architecture layer and trying to characterize the model with the description of cooled 

subsystems states and modes throughout the mission. The physical architecture layer and the modes 

diagrams for the cooled subsystems were exploited to create a refined digital connection that now 

uses the MSM diagrams as a reference. This allows the user to choose which flight phase to simulate, 

and the program can dynamically manage the simulation for all flight phases. This refined 

connection links now the Matlab/Simulink models with the physical architecture layer where now 

results are placed. 

The created framework and digital link in the end could boost the system development process, 

allowing a faster and more effective information exchange between all the engineering teams 

involved in the activities. The model is consistent with the material provided by the company and 

eventually allows also to bring a similar approach for the other subsystems. 

The work presented in this paper gives immediately helpful insights on the ongoing project and 

satisfies the initial goal and the needs that motivated it. The results of this research provide a proof-

of-concept for the development of an MBSE model in Capella for a thermal management system for 

a hybrid-electric aircraft. The use of MBSE practices in the development process has been shown to 

be effective in providing a digital tool that can significantly reduce the time associated with the 

design and development of the TMS. 

Future work can involve further development of the MBSE model to incorporate more subsystems 

and expand the scope of the digital tool. Moreover, a more detailed analysis of the use of MBSE 

practices in the development process can be carried out, to identify potential areas for further 

improvement. The proposed digital tool can be further refined and customized to meet specific 
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project requirements. The presented research can serve as a starting point for further research and 

development of MBSE models for complex systems such as the TMS for hybrid-electric aircraft. 

In conclusion, this paper provides a comprehensive account of the development of an MBSE model 

in Capella for a thermal management system for a hybrid-electric aircraft. The results of this 

research demonstrate the effectiveness of the proposed digital tool in improving the engineering 

workflow, reducing time and eventually costs, and providing a faster and more effective information 

exchange between all the engineering teams involved in the activities of developing the TMS starting 

from a conceptual outline of the system.  

The project result is coherent with what demanded from the work motivation, the solution proposed 

goes in the direction of solving the document-based engineering issues and enhancing the MBSE 

capabilities through the connection with Matlab/Simulink. The results improve our knowledge as 

now the single point of truth reference that the MBSE approach aims to create has branched in a new 

way towards the numerical environment, on the other hand this latter environment uses MBSE a 

communication mean to reach in a more consistent and effective way all the stakeholders involved 

in the design process.  
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8 Future developments 

In this chapter are mentioned those topics that were considered at the end of the work but that 

eventually had not been part of the main result of it. 

To make the model more understandable and the requirements comparison outcome immediately 

visible in the diagram where requirements are placed, namely the PAB diagram. An attempt was 

made to automatically highlight and differentiate those requirement element blocks basing on the 

whether the requirement was satisfied or not. This attempt regarded the research to make this 

model modification directly through the P4C code so that the information available from the 

requirement comparison, performed by the program, could be immediately exploited. 

Unfortunately, the Capella software and some of its features and add-ons are still under 

development, thus some operations were not available on the model especially with Python4Capella, 

the simplified API indeed presents some incomplete functions and methods that had not allowed to 

either change the colour or hide the elements in the diagrams. 

In conclusion it was not possible to create a visible distinction, in terms of element format, between 

requirements satisfied and not satisfied, either hiding the fulfilled requirements or changing their 

colours. Further updates on the software and on the add-on could in the future allow this kind of 

operation on the model diagrams. 

The last unclosed topic was about the type of connection that occurs between Matlab/Simulink with 

the logical architecture and Matlab/Simulink with the physical architecture. It was already explained 

how the physical architecture layer features were exploited to make the digital link refinement, but 

that the results of the simulation make more sense on the logical level of the conceptual system 

development. However, in the future, if further updates to the environment will allow it, it will be 

interesting to improve the digital link architecture sticking on the logical layer for these kind of sizing 

evaluations. The physical architecture could be exploited in a similar way but connecting a dynamic 

simulation model, that would verify the behaviour of the system in the mission time span, instead of 

the sizing model. 

This section concludes the work as no other elements were considered to complete the project, it is 

hoped these last considerations could be an interesting cue for future developments of this kind of 

framework in the MBS environment. 
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Appendix I 

• Air thermophysical properties (ISA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature [°C] Specific heat [J/(kg K)] Viscosity [Pa s] Kinematic viscosity [(J s)/kg] Thermal conductivity [W/(m K)] Thermal diffusivity [m^2/s] Pr

100 1.032 71.1 2.00 9.34 2.54 0.786

150 1.012 103.4 4.426 13.8 5.84 0.758

200 1.007 132.5 7.590 18.1 10.3 0.737

250 1.006 159.6 11.44 22.3 15.9 0.720

300 1.007 184.6 15.89 26.3 22.5 0.707

350 1.009 208.2 20.92 30.0 29.9 0.700

400 1.014 230.1 26.41 33.8 38.3 0.690

450 1.021 250.7 32.39 37.3 47.2 0.686

500 1.030 270.1 38.79 40.7 56.7 0.684

550 1.040 288.4 45.57 43.9 66.7 0.683

600 1.051 305.8 52.69 46.9 76.9 0.685

650 1.063 322.5 60.21 49.7 87.3 0.690

700 1.075 338.8 68.10 52.4 98.0 0.695

750 1.087 354.6 76.37 54.9 109 0.702

800 1.099 369.8 84.93 57.3 120 0.709

850 1.110 384.3 93.80 59.6 131 0.716

900 1.121 398.1 102.9 62.0 143 0.720

950 1.131 411.3 112.2 64.3 155 0.723

1000 1.141 424.4 121.9 66.7 168 0.726

1100 1.159 449.0 141.8 71.5 195 0.728

1200 1.175 473.0 162.9 76.3 224 0.728

1300 1.189 496.0 185.1 82 257 0.719

1400 1.207 530 213 91 303 0.703

1500 1.230 557 240 100 350 0.685

1600 1.248 584 268 106 390 0.688

1700 1.267 611 298 113 435 0.685

1800 1.286 637 329 120 482 0.683

1900 1.307 663 362 128 534 0.677

2000 1.337 689 396 137 589 0.672

2100 1.372 715 431 147 646 0.667

2200 1.417 740 468 160 714 0.655

2300 1.478 766 506 175 783 0.647

2400 1.558 792 547 196 869 0.630

2500 1.665 818 589 222 960 0.613

3000 2.726 955 841 486 1570 0.536
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• Ethylene-Glycol properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature [°C] Specific heat [J/(kg K)] Viscosity [Pa s] Thermal conductivity [W/(m K)]

238,2 2,844 0,09344 0,307

243,2 2,866 0,06525 0,312

248,2 2,888 0,04675 0,316

253,2 2,909 0,03428 0,321

258,1 2,931 0,02569 0,325

263,1 2,953 0,01962 0,329

268,1 2,975 0,01525 0,333

273,1 2,997 0,01205 0,336

278,1 3,018 0,00966 0,34

283,1 3,04 0,00785 0,343

288,1 3,062 0,00646 0,346

293,1 3,084 0,00538 0,349

298,1 3,106 0,00452 0,352

303,1 3,127 0,00384 0,355

308,1 3,149 0,00329 0,358

313,1 3,171 0,00284 0,36

318,1 3,193 0,00247 0,363

323,1 3,215 0,00216 0,365

328,1 3,236 0,00191 0,367

333,1 3,258 0,00169 0,369

338,1 3,28 0,00151 0,371

343,1 3,302 0,00135 0,372

348,1 3,324 0,00122 0,374

353,1 3,345 0,0011 0,375

358,1 3,367 0,001 0,376

363,1 3,389 0,00092 0,377

368,1 3,411 0,00084 0,378

373,1 3,433 0,00077 0,379

378,1 3,454 0,00071 0,379

383,1 3,476 0,00066 0,38

388,1 3,498 0,00061 0,38

393,1 3,52 0,00057 0,38

398,1 3,542 0,00053 0,38
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• Satured R314 properties 

 

• Superheated R314 properties (pressure=14 bar) 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature [°C]Pressure [bar]Specific volume f [m^3/kg] Specific volum g [m^3/kg] Internal energy f [KJ/kg] Internal energy g [KJ/kg] Enthalpy f [KJ/kg] Enthalphy gf [KJ/kg] Enthalpy g [KJ/kg] Entropy f [KJ/(kg K)] Entropy g [KJ/(kg K)]

-40 0,5164 0,7055 0,3569 -0,04 204,45 0 222,88 222,88 0 0,956

-36 0,6332 0,7113 0,2947 4,68 206,73 4,73 220,67 225,4 0,0201 0,9506

-32 0,7704 0,7172 0,2451 9,47 209,01 9,52 218,37 227,9 0,0401 0,9456

-28 0,9305 0,7233 0,2052 14,31 211,29 14,37 216,01 230,38 0,06 0,9411

-26 1,0199 0,7265 0,1882 16,75 212,43 16,82 214,8 231,62 0,0699 0,939

-24 1,116 0,7296 0,1728 19,21 213,57 19,29 213,57 232,85 0,0798 0,937

-22 1,2192 0,7328 0,159 21,68 214,7 21,77 212,32 234,08 0,0897 0,9351

-20 1,3299 0,7361 0,1464 24,17 215,84 24,26 211,05 235,31 0,0996 0,9332

-18 1,4483 0,7395 0,135 26,67 216,97 26,77 209,76 236,53 0,1094 0,9315

-16 1,5748 0,7428 0,1247 29,18 218,1 29,3 208,45 237,74 0,1192 0,9298

-12 1,854 0,7498 0,1068 34,25 220,36 34,39 205,77 240,15 0,1388 0,9267

-8 2,1704 0,7569 0,0919 39,38 222,6 39,54 203 242,54 0,1583 0,9239

-4 2,5274 0,7644 0,0794 44,56 224,84 44,75 200,15 244,9 0,1777 0,9213

0 2,9282 0,7721 0,0689 49,79 227,06 50,02 197,21 247,23 0,197 0,919

4 3,3765 0,7801 0,06 55,08 229,27 55,35 194,19 249,53 0,2162 0,9169

8 3,8756 0,7884 0,0525 60,43 231,46 60,73 191,07 251,8 0,2354 0,915

12 4,4294 0,7971 0,046 65,83 233,63 66,18 187,85 254,03 0,2545 0,9132

16 5,0416 0,8062 0,0405 71,29 235,78 71,69 184,52 256,22 0,2735 0,9116

20 5,716 0,8157 0,0358 76,8 237,91 77,26 181,09 258,36 0,2924 0,9102

24 6,4566 0,8257 0,0317 82,37 240,01 82,9 177,55 260,45 0,3113 0,9089

26 6,853 0,8309 0,0298 85,18 241,05 85,75 175,73 261,48 0,3208 0,9082

28 7,2675 0,8362 0,0281 88 242,08 88,61 173,89 262,5 0,3302 0,9076

30 7,7006 0,8417 0,0265 90,84 243,1 91,49 172 263,5 0,3396 0,907

32 8,1528 0,8473 0,025 93,7 244,12 94,39 170,09 264,48 0,349 0,9064

34 8,6247 0,853 0,0236 96,58 245,12 97,31 168,14 265,45 0,3584 0,9058

36 9,1168 0,859 0,0223 99,47 246,11 100,25 166,15 266,4 0,3678 0,9053

38 9,6298 0,8651 0,021 102,38 247,09 103,21 164,12 267,33 0,3772 0,9047

40 10,164 0,8714 0,0199 105,3 248,06 106,19 162,05 268,24 0,3866 0,9041

42 10,72 0,878 0,0188 108,25 249,02 109,19 159,94 269,14 0,396 0,9035

44 11,299 0,8847 0,0177 111,22 249,96 112,22 157,79 270,01 0,4054 0,903

48 12,526 0,8989 0,0159 117,22 251,79 118,35 153,33 271,68 0,4243 0,9017

52 13,851 0,9142 0,0142 123,31 253,55 124,58 148,66 273,24 0,4432 0,9004

56 15,278 0,9308 0,0127 129,51 255,23 130,93 143,75 274,68 0,4622 0,899

60 16,813 0,9488 0,0114 135,82 256,81 137,42 138,57 275,99 0,4814 0,8973

70 21,162 1,0027 0,0086 152,22 260,15 154,34 124,08 278,43 0,5302 0,8918

80 26,324 1,0766 0,0064 169,88 262,14 172,71 106,41 279,12 0,5814 0,8827

90 32,435 1,1949 0,0046 189,82 261,34 193,69 82,63 276,32 0,638 0,8655

100 39,742 1,5443 0,0027 218,6 248,49 224,74 34,4 259,13 0,7196 0,8117

Temperature [°C] Specific volume [m^3/kg] Internal energy [KJ/kg] Enthalpy [KJ/kg] Entropy [KJ/(kg K)]

52,43 0,01405 253,74 273,4 0,9003
60 0,01495 262,17 283,1 0,9297
70 0,01603 272,87 295,31 0,9658
80 0,01701 283,29 307,1 0,9997
90 0,01792 293,55 318,63 1,0319

100 0,01878 303,73 330,02 1,0628
110 0,0196 313,88 341,32 1,0927
120 0,02039 324,05 352,59 1,1218
130 0,02115 334,25 363,86 1,1501
140 0,02189 344,5 375,15 1,1777
150 0,02262 354,82 386,49 1,2048
160 0,02333 365,22 397,89 1,2315
170 0,02403 375,71 409,36 1,2576
180 0,02472 386,29 420,9 1,2834
190 0,02541 396,96 432,53 1,3088
200 0,02608 407,73 444,24 1,3338
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• Superheated R314 properties (pressure=12 bar) 

 

 

 

 

 

 

 

 

• Superheated R314 properties (pressure=4 bar) 

 

 

 

 

 

 

 

 

• Superheated R314 properties (pressure=3.2 bar) 

 

 

 

 

 

 

 

 

 

Temperature [°C] Specific volume [m^3/kg] Internal energy [KJ/kg] Enthalpy [KJ/kg] Entropy [KJ/(kg K)]

46,32 0,01663 251,03 270,99 0,9023
50 0,01712 254,98 275,52 0,9164
60 0,01835 265,42 287,44 0,9527
70 0,01947 275,59 298,96 0,9868
80 0,02051 285,62 310,24 1,0192
90 0,0215 295,59 321,39 1,0503

100 0,02244 305,54 332,47 1,0804
110 0,02335 315,5 343,52 1,1096
120 0,02423 325,51 354,58 1,1381
130 0,02508 335,58 365,68 1,166
140 0,02592 345,73 376,83 1,1933
150 0,02674 355,95 388,04 1,2201
160 0,02754 366,27 399,33 1,2465
170 0,02834 376,69 410,7 1,2724
180 0,02912 387,21 422,16 1,298

Temperature [°C] Specific volume [m^3/kg] Internal energy [KJ/kg] Enthalpy [KJ/kg] Entropy [KJ/(kg K)]

8,93 0,05089 231,97 252,32 0,9145
10 0,05119 232,87 253,35 0,9182
20 0,05397 241,37 262,96 0,9515
30 0,05662 249,89 272,54 0,9837
40 0,05917 258,47 282,14 1,0148
50 0,06164 267,13 291,79 1,0452
60 0,06405 275,89 301,51 1,0748
70 0,06641 284,75 311,32 1,1038
80 0,06873 293,73 321,23 1,1322
90 0,07102 302,84 331,25 1,1602

100 0,07327 312,07 341,38 1,1878
110 0,0755 321,44 351,64 1,2149
120 0,07771 330,94 362,03 1,2417
130 0,07991 340,58 372,54 1,2681
140 0,08208 350,35 383,18 1,2941

Temperature [°C] Specific volume [m^3/kg] Internal energy [KJ/kg] Enthalpy [KJ/kg] Entropy [KJ/(kg K)]

2,48 0,06322 228,43 248,66 0,9177
10 0,06576 234,61 255,65 0,9427
20 0,06901 242,87 264,95 0,9749
30 0,07214 251,19 274,28 1,0062
40 0,07518 259,61 283,67 1,0367
50 0,07815 268,14 293,15 1,0665
60 0,08106 276,79 302,72 1,0957
70 0,08392 285,56 312,41 1,1243
80 0,08674 294,46 322,22 1,1525
90 0,08953 303,5 332,15 1,1802

100 0,09229 312,68 342,21 1,2076
110 0,09503 322 352,4 1,2345
120 0,09774 331,45 362,73 1,2611
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Appendix II 

• Example of pre-processing Matlab script 

%Table data inputs 
% Air properties (ISA) 
 
thermophyscialpropertiesair2 = readtable('../Thermophysicalproperties_air.txt'); 
thermophyscialpropertiesair2.Properties.VariableNames = 
{'Temperature','Specificheat','Viscosity','Kinematicviscosity','Thermalconductivity','Thermal
diffusivity','Pr'}; 
T_air=thermophyscialpropertiesair2.Temperature; 
cp_air=thermophyscialpropertiesair2.Specificheat; 
Mi_air=thermophyscialpropertiesair2.Viscosity; 
Pr_air=thermophyscialpropertiesair2.Pr; 
 
 
 
% Thermal liquid properties (ehylene-glycol) 
 
thermophyscialpropertiesethywater = readtable('..\EGW60_40properties.xlsx'); 
thermophyscialpropertiesethywater.Properties.VariableNames = 
{'Temperature','Specificheat','Viscosity','Thermalconductivity'}; 
T_ethywat=thermophyscialpropertiesethywater.Temperature; 
cp_ethywat=thermophyscialpropertiesethywater.Specificheat; 
Mi_ethywat=thermophyscialpropertiesethywater.Viscosity; 
k_ethywat=thermophyscialpropertiesethywater.Thermalconductivity; 
 
 
%Satured R314 properties  
thermopropertiesR314a = readtable('..\R314_Temperaturetable.xlsx');  
'Pressure','Specificvolumef','Specificvolumeg','InternalEnergyf','InternalEnergyg','Enthalpyf
','Enthalpygf','Enthalpyg','Entropyf','Entropyg','Temp2'};  
T_R314a=thermopropertiesR314a.Temperature; 
p_R314a=thermopropertiesR314a.Pressure; 
vf_R314a=thermopropertiesR314a.Specificvolumef; 
vg_R314a=thermopropertiesR314a.Specificvolumeg; 
uf_R314a=thermopropertiesR314a.InternalEnergyf; 
ug_R314a=thermopropertiesR314a.InternalEnergyg; 
hf_R314a=thermopropertiesR314a.Enthalpyf; 
hgf_R314a=thermopropertiesR314a.Enthalpygf; 
hg_R314a=thermopropertiesR314a.Enthalpyg; 
sf_R314a=thermopropertiesR314a.Entropyf; 
sg_R314a=thermopropertiesR314a.Entropyg; 
 
 
 
%Superheated R314 properties p=12bar 
 
thermopropertiesR314ah_12 = readtable('..\SuperheateadR314a_12.xlsx'); 
thermopropertiesR314ah_12.Properties.VariableNames = {'Temperature', 
'Specificvolume','InternalEnergy','Enthalpy','Entropy'};  
T_R314ah_12=thermopropertiesR314ah_12.Temperature; 
v_R314ah_12=thermopropertiesR314ah_12.Specificvolume; 
u_R314ah_12=thermopropertiesR314ah_12.InternalEnergy; 
h_R314ah_12=thermopropertiesR314ah_12.Enthalpy; 
s_R314ah_12=thermopropertiesR314ah_12.Entropy; 
 
 
 
%Superheated R314 properties p=14bar 
 
thermopropertiesR314ah_14 = readtable('..\SuperheatedR314a_14.xlsx'); 
thermopropertiesR314ah_14.Properties.VariableNames = {'Temperature', 
'Specificvolume','InternalEnergy','Enthalpy','Entropy'}; 
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T_R314ah_14=thermopropertiesR314ah_14.Temperature; 
v_R314ah_14=thermopropertiesR314ah_14.Specificvolume; 
u_R314ah_14=thermopropertiesR314ah_14.InternalEnergy; 
h_R314ah_14=thermopropertiesR314ah_14.Enthalpy; 
s_R314ah_14=thermopropertiesR314ah_14.Entropy; 
 
%Superheated R314 properties p=3.2bar 
 
thermopropertiesR314ah3_2 = readtable('..\SuperheateadR314a_3_2.xlsx'); 
thermopropertiesR314ah3_2.Properties.VariableNames = {'Temperature', 
'Specificvolume','InternalEnergy','Enthalpy','Entropy'};  
T_R314ah3_2=thermopropertiesR314ah3_2.Temperature; 
v_R314ah3_2=thermopropertiesR314ah3_2.Specificvolume; 
u_R314ah3_2=thermopropertiesR314ah3_2.InternalEnergy; 
h_R314ah3_2=thermopropertiesR314ah3_2.Enthalpy; 
s_R314ah3_2=thermopropertiesR314ah3_2.Entropy; 
 
 
%Superheated R314 properties p=4bar 
 
thermopropertiesR314ah_4 = readtable('..\SuperheateadR314a_4.xlsx'); 
thermopropertiesR314ah_4.Properties.VariableNames = {'Temperature', 
'Specificvolume','InternalEnergy','Enthalpy','Entropy'};  
T_R314ah_4=thermopropertiesR314ah_4.Temperature; 
v_R314ah_4=thermopropertiesR314ah_4.Specificvolume; 
u_R314ah_4=thermopropertiesR314ah_4.InternalEnergy; 
h_R314ah_4=thermopropertiesR314ah_4.Enthalpy; 
s_R314ah_4=thermopropertiesR314ah_4.Entropy; 
 
%Input 
 
npoints=60; %Number of saing point during simulation 
T_InEquip=298; %T_equp required [K] (battery at 20 °C, controllers ESC converters inverters 
(power electronics) at 60 °C, motors at (115°C)  
Q_equip=500; %Heat load [kw] 
mdot_liquid=0.045*Q_equip; %Liquid mass flow [kg/s] (between 0.023*Q_equip and 0.045*Q_equip 
regulation)- regulate to an output of about 6 or 7 kg/s (+-) 
mdot_ref=0.9; %Refrigerant mass flow [kg/s] 
bypass=0; %By-pass ratio 
T_evap=278; %Evaporation Temperature (K) - 20°C de diferença 
T_cond=325.3; %Condensation Temperature (K) 
 
% prompt = input(['Enter 1 for reference case or ' ... 
%     '2 for varying the heat load:']); % ask 
%  
% choise = prompt; 
%     if choise==1 
%         Q_equip=100; 
%     elseif choise==2 
%         Q_equip=[100 150 200 250];   
%     end 
 
 
%Flight Conditions 
 
decol=120:60:900; 
cruise=(900+1000/3):(1000/3):1900; 
land=(1900+1700/9):(1700/9):3601; 
Time2=[0 decol cruise land]; 
 
R=287; %Universal gas constant (J/kgK) 
Mach=[0.2774 0.2798 0.2823 0.3046 0.3074 0.3102 0.3345 0.3376 0.3408 0.3671 0.3707 0.3744 
0.3913 0.3936 0.396 0.4613 0.4613 0.4613 0.4119 0.4053 0.3991 0.3512 0.3492 0.3472 0.3156 
0.3088 0.3024]; %Flight Mach variation 
gamma=1.4; 
H=[0 762 1524 1524 2286 3048 3048 3810 4572 4572 5334 6096 6096 6553 7010 7010 7010 7010 7010 
5791 4572 4572 4115 3658 3658 1829 0]; %Flight height variation (m) 
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[T_env, a_env, p_env, rho_env] = atmosisa(H); %Standard Atmosphere 
fp=length(H); %Number of flight points considerer 
 
%Geometric parameters 
 
L_duct_liquid=20; %Liquid Duct Length [m] 
t_duct_liquid = 0.0025; %Duct thickness [m] 
L_duct_vcs = 10; %Duct length [m] 
duct_roughness = 0.0025*0.001; %Duct roughness 
D_vcs = 0.0254; %VCS duct diameter [m] 
t_duct_vcs = 0.00117; %VCS duct thickness [m] 
h = 0.01; %Thermal boundary layer thickness [m] 
SHX_A=5; % SHX Area [m^2] 
A_cond = 2; %Condenser area [m^2] 
U_cond = 50; %Condenser heat transfer coeffient [W/m^2K] 
 
 
%Pressure losses  
 
DELTAP_evaporator = 5; %Pressure loss of evaporator [kPa] 
DELTAP_condenser = 1.013; %Pressure loss of condenser [kPa] 
DELTAP_equip = 5; %Pressure loss of heat load [kPa] 
N_90dgBend = 4; %Pressure loss on bends 
K_90dgBend = 0.83; 
N_expansion = 0; 
K_expansion = 0.3; 
N_contraction = 0; 
K_contraction = 0.03; 
N_branch_converg = 0;  
K_branch_converg = 0.05; 
N_branch_diverg = 0; 
K_branch_diverg = 0.05; 
 
 
%VCS Cycle Parameters  
DELTAT_subcool = 5; %[K] 
DELTAT_superheat = 5; %[K]  
   
%Efficiencies  
eta_isentropic_compression = 0.8;%Value based on results of BE3888 Issue 2 of Secan 
eta_compressor = 0.8; %Compression efficiency 
eta_pump = 0.5; %Pump efficiency 
eta_fan = 0.4; %Fan efficiency 
compress_ratio = 4; %Compressor ratio; 

 

• Example of post-processing Matlab script 

%% RESULTS 
%Liquid cooling 
fp=npoints+1; 
Q_evap=repelem(out.simoutevap,fp)'; %Heat load in evaporator (W) 
W_pump=out.simoutpump; %Pump work (W) 
 
%Interior flow 
Dh=repelem(out.simoutDh,fp)'; 
Re_int=repelem(out.simoutRint,fp)'; 
f_int=repelem(out.simoutfint,fp)'; 
k_int=repelem(out.simoutkint,fp)'; 
mi_int=repelem(out.simoutmiint,fp)'; 
cp_int=repelem(out.simoutcpint,fp)'; 
rho_int=repelem(out.simoutrhoint,fp)'; 
V_int=repelem(out.simoutvint,fp)'; 
flowrate_int=repelem(out.simoutflowrateint,fp)'; 
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%Exterior flow 
Taw= out.simoutTaw; 
Pr_ext=out.simoutPrext; 
mi_ext=out.simoutmiext; 
cp_ext=out.simoutcpext; 
r=out.simoutr; 
V_ext=out.simoutvext; 
Tenv=out.simouttenv; 
rhoenv=out.simoutrhoenv; 
 
%VCS 
Q_cond=repelem(out.simoutcond,fp)'; %Heat load in condenser (W) 
W_comp=repelem(out.simoutcomp,fp)'; %Compression work (W) 
 
psat_cond=repelem(out.simoutpsatcond,fp)';  
psat_evap=repelem(out.simoutpsatevap,fp)';  
m_dotref=repelem(out.simoutmdotref,fp)';  
T1_VCS=repelem(out.simoutT1VCS,fp)'; %Outlet evaporator temperature (K)/Inlet compressor 
temperature (K) 
T2s_VCS=repelem(out.simoutT2sVCS,fp)';%Outlet compressor temperature (K)/Inlet condenser 
temperature (K) -isentropic 
T2_VCS=repelem(out.simoutT2VCS,fp)'; %Outlet compressor temperature (K)/Inlet condenser 
temperature (K) -real 
T3_VCS=repelem(out.simoutT3VCS,fp)'; %Outlet condenser temperature (K)/Inlet expansion valve 
temperature (K) 
T4_VCS=repelem(out.simoutT4VCS,fp)';%Outlet expansion valve temperature (K)/Inlet evaporator 
temperature (K)  
s1_VCS=repelem(out.simouts1VCS,fp)'; 
s2s_VCS=repelem(out.simouts2sVCS,fp)'; 
s2_VCS=repelem(out.simouts2VCS,fp)'; 
s3_VCS=repelem(out.simouts3VCS,fp)'; 
s4_VCS=repelem(out.simouts4VCS,fp)'; 
h1_VCS=repelem(out.simouth1VCS,fp)'; 
h2s_VCS=repelem(out.simouth2sVCS,fp)'; 
h2_VCS=repelem(out.simouth2VCS,fp)'; 
h3_VCS=repelem(out.simouth3VCS,fp)'; 
h4_VCS=repelem(out.simouth4VCS,fp)'; 
v1_VCS=repelem(out.simoutv1VCS,fp); 
v2_VCS=repelem(out.simoutv2VCS,fp); 
v3_VCS=repelem(out.simoutv3VCS,fp); 
v4_VCS=repelem(out.simoutv4VCS,fp); 
%s_VCS=[s1_VCS,s2s_VCS,s2_VCS,s3_VCS,s4_VCS]; 
%T_VCS=[T1_VCS,T2s_VCS,T2_VCS,T3_VCS,T4_VCS]; 
 
Delta_TLMcond=out.simoutDELTATLMcond; 
Delta_T1cond=repelem(out.simoutDELTAT1cond,fp)'; 
Delta_T2cond=out.simoutDELTAT2cond; 
UA_cond=out.simoutUAcond; 
Delta_TLMevap=out.simoutDTMevap; 
Delta_T1evap=out.simoutDT1evap; 
Delta_T2evap=repelem(out.simoutDT2evap,fp)'; 
UA_evap=out.simoutUAevap; 
 
%Ram air inlet 
W_fan=[out.simoutfan(end,1),repelem(0,59),out.simoutfan(end,1)]'; %Hydraulic power of fan (W) 
m_dotramair=out.simoutmdotramair; %Ram air requires (kg/s) 
T_outramair=repelem(out.simouttoutramair,fp)'; 
T_inramair=out.simouttintramair; 
 
 
%Effiencies and Performance coeffients 
W_comp_elect=W_comp./eta_compressor; 
COP=Q_evap./W_comp_elect; %VCS coefficient of performance - COP (W) 
W_fan_elect=W_fan./eta_fan; %Electric power consumption of fan (W) 
Q_dot_fan=(1-eta_fan).*W_fan_elect; %Heat load fan (W) 
Wpump_elect=W_pump./eta_pump; 
Q_dot_pump=(1-eta_pump).*Wpump_elect; 
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%Energy balance of liquid cooling verification (tolerance due to due to floating points) 
B1_LIQUID=Q_equip*10^3; 
B2_LIQUID=Q_evap; 
if abs(B1_LIQUID-B2_LIQUID)<5*10^(-10) 
        disp ('Energy Balance of Liquid cooling verified') 
else 
    disp('Energy Balance of Liquid cooling NOT verified') 
end 
 
 
%Energy balance of VCS verification  
B1_VCS=W_comp+Q_evap; 
B2_VCS=Q_cond; 
if abs(B1_VCS-B2_VCS)<5*10^(-10) 
        disp ('Energy Balance of VCS verified') 
else 
    disp('Energy Balance of VCS NOT verified') 
end 
 
 
%% Heat Results 
 
Qequip=repelem(Q_equip*10^3,fp)'; 
figure 
subplot(2,2,1); 
plot(Qequip,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Heat Load (W)'); 
 
subplot(2,2,2); 
plot(Q_evap,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel (' Evaporator Heat Flux (W)'); 
 
subplot(2,2,3); 
plot(Q_cond,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Condenser Heat Flux (W)'); 
 
%% Work Results 
 
figure 
subplot(2,2,1); 
plot(W_comp_elect,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Compressor electric power consumption (W)'); 
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subplot(2,2,2); 
plot(W_fan_elect,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Fan electric power consumption (W)'); 
 
subplot(2,2,3); 
plot(Wpump_elect,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Pump electric power consumption (W)'); 
 
subplot(2,2,4); 
plot(m_dotramair,'-s',... 
    'LineWidth',2,... 
   'MarkerSize',7,... 
   'Color','b',... 
   'MarkerEdgeColor','b',... 
   'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Ram air mass flow (kg/s)'); 
 
%% Mission profiles 
H_60=out.simoutheight; 
Mach_60=out.simoutmach; 
figure 
subplot(1,2,1); 
plot(H_60,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Height (m)'); 
 
subplot(1,2,2); 
plot(Mach_60,'-s',... 
    'LineWidth',2,... 
    'MarkerSize',7,... 
    'Color','b',... 
    'MarkerEdgeColor','b',... 
    'MarkerFaceColor','b'); 
xlabel ('Flight Duration (min)');  
ylabel ('Mach number'); 
 
 
%% VCS Temperature vs Entropy 
%figure 
%plot(s_VCS,T_VCS,'s',... 
   % 'LineWidth',2,... 
    %'MarkerSize',7,... 
    %'Color','b',... 
    %'MarkerEdgeColor','b',... 
   % 'MarkerFaceColor','b'); 
%xlabel ('Flight Points');  
%ylabel ('W Comp (W)'); 
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%% Equipment mass 
%Data from Embraer  
 
flowrate_ramair=zeros(1,61); 
for i=1:61 
flowrate_ramair(i)=m_dotramair(i)/rhoenv(i); 
end 
 
flowrate_ramair_max=max(flowrate_ramair); 
 
 
m_pump=max(2*(1942.2*flowrate_int + 1.619)); %different expression 
m_condenser=max(0.0008*Q_cond - 0.2165); 
m_evaporator=max(0.0005*Q_evap + 2.629); 
m_compressor= max(0.001*W_comp + 8.6225); 
al_density = 2780; %Alluminum density - SHX material [kg/m³] 
cu_density=8960; %Copper density [kg/m^3] 
 
 
m_liquid_ducts=max(al_density*pi*Dh*L_duct_liquid*t_duct_liquid); 
m_liquid=max(rho_int.*pi.*Dh.^2.*L_duct_liquid)/4; 
 
m_ref_ducts=max(cu_density*pi*D_vcs*L_duct_vcs*t_duct_vcs);  
rho_R314amax=1/(min([v1_VCS,v2_VCS,v3_VCS,v4_VCS])); %Max density is on stage 3 (liquid) 
m_ref=rho_R314amax.*pi.*D_vcs.^2.*L_duct_vcs/4; %use of max density to calculate the 
refrigerant masS 
 
m_fan=10.542*flowrate_ramair_max + 0.9366; 
 
m_TMS=2*(m_pump+m_condenser+m_evaporator+m_compressor+m_liquid_ducts+m_liquid+m_ref_ducts+m_r
ef+m_fan); 
 
%% Save to Excel 
folder = 'C:\Users\Utente\Desktop\Laurea Magistrale\Thesis\Matlab_model\Technical & 
Architectures\Case 1'; 
baseFileName='Case1TMSResults.xlsx'; 
fileName = fullfile(baseFileName); 
 
 
T_in_Equi=repelem(T_InEquip,fp)'; 
 
 
INPUTS=table(Mach_60,H_60,T_in_Equi,Qequip); 
writetable(INPUTS,fileName,'Sheet',1) 
 
RESULTS_Liquid=table(Delta_T1evap,Delta_T2evap,Delta_TLMevap,UA_evap,Q_evap,W_pump,Wpump_elec
t,Q_dot_pump); 
writetable(RESULTS_Liquid,fileName,'Sheet',2) 
 
RESULTS_VCS=table(psat_evap,m_dotref,T1_VCS,T2_VCS,T2s_VCS,T3_VCS,T4_VCS,s1_VCS,s2_VCS,s2s_VC
S,s3_VCS,s4_VCS,h1_VCS,h2_VCS,h2s_VCS,h3_VCS,h4_VCS,Delta_TLMcond,Delta_T1cond,Delta_T2cond,U
A_cond,Q_cond,W_comp,W_comp_elect,COP,psat_cond); 
writetable(RESULTS_VCS,fileName,'Sheet',3) 
 
RESULTS_Ramair=table(m_dotramair,Taw,T_outramair,T_inramair,W_fan,W_fan_elect,Q_dot_fan); 
writetable(RESULTS_Ramair,fileName,'Sheet',4) 
 
RESULTS_Mass=table(m_pump,m_evaporator,m_liquid_ducts,m_liquid,m_condenser,m_compressor,m_ref
,m_ref_ducts,m_fan,m_TMS); 
writetable(RESULTS_Mass,fileName,'Sheet',5) 
 
%winopen(fileName) 
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Appendix III 

• Python4Capella script for the digital connection on logical architecture layer 

# include needed for the Capella modeller API 

include('workspace://Python4Capella/simplified_api/capella.py') 

if False: 

    from simplified_api.capella import * 

     

# include needed for the PVMT API 

include('workspace://Python4Capella/simplified_api/pvmt.py') 

if False: 

    from simplified_api.pvmt import * 

     

# include needed for utilities 

include('workspace://Python4Capella/utilities/CapellaPlatform.py') 

if False: 

    from utilities.CapellaPlatform import * 

 

# include needed for the requirement API 

include('workspace://Python4Capella/simplified_api/requirement.py') 

if False: 

    from simplified_api.requirement import * 

     

import matlab.engine 

eng = matlab.engine.start_matlab() 

 

aird_path = '/TMS_test_6/TMS_test_5.aird' 

 

model = CapellaModel() 

model.open(aird_path) 

 

se = model.get_system_engineering() 

 

allLC = se.get_all_contents_by_type(LogicalComponent) 

 

allPVs = [] 

 

print('start') 

 

def set_p_v_value(elem, PVName, value): 

    for group in elem.get_java_object().getOwnedPropertyValueGroups(): 

        for pv in group.getOwnedPropertyValues(): 

            if PVName == pv.getName(): 

                pv.setValue(value) 

                return 

 

for lc in allLC: 

    for pvName in PVMT.get_p_v_names(lc): 

        if pvName not in allPVs: 

            allPVs.append(pvName) 

  

  

thl=0                 

m=0 

rac=0 

pc=0 

config='None' 

 

for lc in allLC: 

    print(lc.get_name()) 

    for pvName in allPVs: 

        if str(PVMT.get_p_v_value(lc, pvName)) != 'None': 

            if pvName=='Configuration': 

                config=int(PVMT.get_p_v_value(lc, pvName)) 

                print('  '+pvName,config) 
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            if pvName=='N°': 

                n=int(PVMT.get_p_v_value(lc, pvName)) 

                print('  '+pvName,n) 

                 

            if pvName=='Heat load': 

                hl=float(PVMT.get_p_v_value(lc, pvName)) 

                print('  '+pvName,str(hl)+' KW') 

         

            if pvName=='T max': 

                T_max=float(PVMT.get_p_v_value(lc, pvName))+float(273) # C° -> K° 

                print('  '+pvName,str(T_max)+' K°') 

         

            if pvName=='T min': 

                T_min=float(PVMT.get_p_v_value(lc, pvName))+float(273) # C° -> K° 

                print('  '+pvName,str(T_min)+' K°') 

                 

    if str(config)!= 'None': 

        eng.workspace['T_InEquip']=T_min 

        eng.workspace['Q_equip']=hl 

                 

        if config==1: 

            #run simulation 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case1.m',nargout=0) 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case1Results.m',nargout=0) 

            mass=eng.workspace['m_TMS'] 

            ram_air_cons=eng.workspace['mdra'] 

            power_cons=eng.workspace['w_tot'] 

            print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' 

W, Configuration: '+str(config)) 

                 

                 

        elif config==2: 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case2.m',nargout=0) 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case2Results.m',nargout=0) 

            mass=eng.workspace['m_TMS'] 

            ram_air_cons=eng.workspace['mdra'] 

            power_cons=eng.workspace['w_tot'] 

            print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' 

W, Configuration: '+str(config)) 

                 

                 

        elif config==3: 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case4.m',nargout=0) 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case4Results.m',nargout=0) 

            mass=eng.workspace['m_TMS'] 

            ram_air_cons=eng.workspace['mdra'] 

            power_cons=eng.workspace['w_tot'] 

            print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' 

W, Configuration: '+str(config)) 

 

                 

                 

        elif config==: 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case6.m',nargout=0) 

            

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case6Results.m',nargout=0) 

            mass=eng.workspace['m_TMS'] 

            ram_air_cons=eng.workspace['mdra'] 

            power_cons=eng.workspace['w_tot'] 
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            print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' 

W, Configuration: '+str(config)) 

        thl=thl+hl         

        m=m+mass 

        rac=rac+ram_air_cons 

        pc=pc+power_cons 

         

    config='None' 

eng.quit() 

 

 

# checking reqirements 

for req in se.get_all_contents_by_type(Requirement): 

    #print(str(req.get_id())) 

    #print(req.get_long_name()) 

    incoming_req_names = [] 

    for res in req.get_incoming_linked_elems(): 

        incoming_req_names.append(res.get_name()) 

    outgoing_req_names = [] 

    for res in req.get_outgoing_linked_elems(): 

        outgoing_req_names.append(res.get_name()) 

         

    if ('TMS for Electrical drive train' in outgoing_req_names)==1: 

         

        if str(req.get_id())=='1': 

            # Extracts Requirements Attributes and Values 

            if req.get_java_object().getOwnedAttributes() != None: 

                for att in req.get_java_object().getOwnedAttributes(): 

                    #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", 

value: "+str(att.getValue())) 

                    if str(att.getDefinition().getReqIFLongName())=='Value': 

                        max_mass=float(att.getValue()) 

                        #print(max_mass) 

                         

        elif str(req.get_id())=='2': 

             

            # Extracts Requirements Attributes and Values 

            if req.get_java_object().getOwnedAttributes() != None: 

                for att in req.get_java_object().getOwnedAttributes(): 

                    #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", 

value: "+str(att.getValue())) 

                    if str(att.getDefinition().getReqIFLongName())=='Value': 

                        max_power=float(att.getValue()) 

                        #print(max_power) 

                         

        elif str(req.get_id())=='3': 

             

            # Extracts Requirements Attributes and Values 

            if req.get_java_object().getOwnedAttributes() != None: 

                for att in req.get_java_object().getOwnedAttributes(): 

                    #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", 

value: "+str(att.getValue())) 

                    if str(att.getDefinition().getReqIFLongName())=='Value': 

                        target_spec_pow_diss=float(att.getValue()) 

                        #print() 

     

        elif str(req.get_id())=='4': 

             

            # Extracts Requirements Attributes and Values 

            if req.get_java_object().getOwnedAttributes() != None: 

                for att in req.get_java_object().getOwnedAttributes(): 

                    #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", 

value: "+str(att.getValue())) 

                    if str(att.getDefinition().getReqIFLongName())=='Value': 

                        target_cop=float(att.getValue()) 

                        #print() 

                         

req_mass_perc= (m/max_mass)*100     



107 
 

req_power_perc= ((pc/1000)/max_power)*100 #KW 

spd=thl/m  

req_spec_pow_diss=(spd/target_spec_pow_diss)*100 

cop=thl/(pc/1000) 

req_cop_perc=(cop/target_cop)*100 

 

 

model.start_transaction() 

try:  

    for lc in allLC: 

        if lc.get_name() == 'TMS for Electrical drive train': 

            for pvName in allPVs: 

                if pvName=='Mass': 

                    set_p_v_value(lc,str(pvName),round(m,2)) 

                elif pvName=='Power consumption': 

                    set_p_v_value(lc,str(pvName),round(pc,2)) 

                elif pvName=='Ram air consumption': 

                    set_p_v_value(lc,str(pvName),round(rac,2)) 

                elif pvName=='Mass_req': 

                    set_p_v_value(lc,str(pvName),round(req_mass_perc,2)) 

                elif pvName=='Mass_req_bool': 

                    if req_cop_perc <= 100: 

                        set_p_v_value(lc,str(pvName),'True') 

                    else: 

                        set_p_v_value(lc,str(pvName),'False') 

                elif pvName=='Power_req': 

                    set_p_v_value(lc,str(pvName),round(req_power_perc,2)) 

                elif pvName=='Power_req_bool': 

                    if req_cop_perc <= 100: 

                        set_p_v_value(lc,str(pvName),'True') 

                    else: 

                        set_p_v_value(lc,str(pvName),'False') 

                elif pvName=='SPD_req': 

                    set_p_v_value(lc,str(pvName),round(req_spec_pow_diss,2)) 

                elif pvName=='SPD_req_bool': 

                    if req_cop_perc >= 100: 

                        set_p_v_value(lc,str(pvName),'True') 

                    else: 

                        set_p_v_value(lc,str(pvName),'False') 

                elif pvName=='COP_req': 

                    set_p_v_value(lc,str(pvName),round(req_cop_perc,2)) 

                elif pvName=='COP_req_bool': 

                    if req_cop_perc >= 100: 

                        set_p_v_value(lc,str(pvName),'True') 

                    else: 

                        set_p_v_value(lc,str(pvName),'False') 

except: 

    # if something went wrong we rollback the transaction 

    model.rollback_transaction() 

    raise 

else: 

    # if everything is ok we commit the transaction 

    model.commit_transaction()  

 

print('Total mass = '+str(round(m,2))+' kg, Total ram air consumption = 

'+str(round(rac,2))+' kg/s, Total power consumption = '+str(round(pc/1000,2))+' KW') 

print('Total heat load dissipated = '+str(round(thl,3))+' KW') 

print('Specific power dissipation = '+str(round(spd,3))+' KW/kg') 

print('COP = '+str(round(cop,3))) 

print('Mass obtained is '+str(round(req_mass_perc,3))+'% to the Maximum Mass') 

print('Power obtained is '+str(round(req_power_perc,3))+'% to the Maximum Power') 

print('Specific power dissipation obtained is '+str(round(req_spec_pow_diss,3))+'% to 

the target Specific power dissipation') 

print('COP obtained is '+str(round(req_cop_perc,3))+'% to the COP target') 

print('end') 
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Appendix IV 

• Heat load per flight phases table 

 

 

 
Appendix V 

• Batteries resistive losses and total thrust on the mission 

 
 

segment time [s] thrust_total [N] battery_resistive_losses [W] 

climb_1 0 35925,58358 39076,18875 
climb_1 14,32743424 35759,0983 39231,90381 
climb_1 42,98230273 35429,35888 39532,64344 
climb_1 57,30973697 35266,11089 39678,11508 
climb_2 57,30973697 34836,42796 39688,04557 
climb_2 80,9463142 34560,99275 39919,37959 
climb_2 128,2194686 34019,32382 40361,11925 
climb_2 151,8560459 33753,11331 40572,81653 
climb_3 151,8560459 32628,20612 40582,18344 
climb_3 182,4043025 32307,76659 40846,96152 
climb_3 243,5008158 31680,74158 41353,89834 
climb_3 274,0490725 31374,1979 41597,50737 

climb_4 274,0490725 30205,90921 41603,31162 
climb_4 296,0763469 30002,0109 41775,15561 
climb_4 340,1308956 29600,56898 42110,70321 
climb_4 362,1581699 29403,03976 42274,68631 
climb_5 362,1581699 28556,37683 42277,11399 
climb_5 385,7267594 28358,55422 42450,09055 
climb_5 432,8639384 27969,47772 42788,47105 
climb_5 456,4325279 27778,23931 42954,07077 
climb_6 456,4325279 26977,44867 42955,52163 
climb_6 481,795433 26785,52132 43131,49251 
climb_6 532,5212433 26408,4959 43475,88034 
climb_6 557,8841484 26223,41424 43644,43575 

climb_7 557,8841484 25455,5522 43645,26222 

Description Duration Unit

in out in out dissipated in out dissipated in out dissipated in out dissipated in out dissipated in out dissipated

Parked kW

Taxi out 00:02:00 kW 0 0 1.012 931 81 931 885 46 885 876 9 876 832 44 416 374 42 416 374 42

Take off 00:00:15 kW 9.318 3.261 1.889 1.738 151 1.738 1.651 87 1.651 1.635 16 1.635 1.553 82 777 699 78 777 699 78

Start of 

Climb 00:20:31 kW
9.259 3.241 949 873 76 873 829 44 829 821 8 821 780 41 390 351 39 390 351 39

End of 

Climb 00:00:00 kW
6.150 2.153 1.170 1.076 94 1.076 1.022 54 1.022 1.012 10 1.012 961 51 481 433 48 481 433 48

Cruise 01:09:44 kW 5.701 1.995 674 620 54 620 589 31 589 583 6 583 554 29 277 249 28 277 249 28

Descent 00:23:28 kW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Landing 00:00:12 kW 3.325 1.164 1.573 1.447 126 1.447 1.375 72 1.375 1.361 14 1.361 1.293 68 646 582 64 646 582 64

Taxi in 00:02:00 kW 0 0 1.012 931 81 931 885 46 885 876 9 876 832 44 416 374 42 416 374 42
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climb_7 585,3756912 25269,42701 43825,78715 

climb_7 640,3587769 24904,3179 44178,81881 
climb_7 667,8503197 24725,35116 44351,43104 
climb_8 667,8503197 24003,45849 44351,86864 
climb_8 697,8889036 23822,92157 44538,18249 
climb_8 757,9660713 23469,37881 44901,89757 
climb_8 788,0046552 23296,39039 45079,39494 
climb_9 788,0046552 22775,7504 45079,58569 
climb_9 804,1603901 22688,5356 45174,14021 
climb_9 836,4718598 22516,07675 45360,79648 
climb_9 852,6275947 22430,835 45452,91119 

climb_9_5 852,6275947 22094,50016 45452,95706 
climb_9_5 869,6535355 22008,66739 45549,37435 

climb_9_5 903,7054172 21839,04 45739,56178 
climb_9_5 920,731358 21755,24766 45833,3464 
climb_10 920,731358 21263,64173 45833,34109 
climb_10 957,8303684 21093,90923 46035,44007 
climb_10 1032,028389 20763,06997 46427,54871 
climb_10 1069,127399 20601,97816 46617,69466 
climb_11 1069,127399 19986,59165 46617,37604 
climb_11 1111,277826 19821,91386 46829,79672 
climb_11 1195,578678 19501,9956 47239,76871 
climb_11 1237,729104 19346,76496 47437,39241 
climb_12 1237,729104 18752,44223 47436,07071 
climb_12 1286,724774 18592,69046 47660,61702 

climb_12 1384,716113 18283,71061 48088,38135 
climb_12 1433,711782 18134,48176 48290,75261 

cruise 1433,711782 14248,3831 89,84216828 
cruise 2198,766462 14216,38417 90,08908953 
cruise 3728,87582 14152,74728 90,56609812 
cruise 4493,9305 14121,11127 90,79680335 

descent_1 4493,9305 1038,691195 0,293803118 
descent_1 4520,458848 1191,535126 0,293804236 
descent_1 4573,515544 1491,623417 0,293806471 
descent_1 4600,043892 1638,995653 0,293807589 
descent_2 4600,043892 1648,00291 0,293807589 
descent_2 4629,182091 1806,561825 0,293808816 

descent_2 4687,45849 2117,262451 0,293811271 
descent_2 4716,596689 2269,548839 0,293812499 
descent_3 4716,596689 264,7669992 0,293812499 
descent_3 4743,179398 428,4586417 0,293813618 
descent_3 4796,344815 749,7745348 0,293815858 
descent_3 4822,927524 907,5259038 0,293816978 
descent_4 4822,927524 892,6594881 0,293816978 
descent_4 4852,03411 1062,271823 0,293818204 
descent_4 4910,247281 1394,577046 0,293820656 
descent_4 4939,353867 1557,414011 0,293821882 
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descent_5 4939,353867 1564,331791 0,293821882 

descent_5 4971,444174 1739,972012 0,293823233 
descent_5 5035,624788 2083,322183 0,293825936 
descent_5 5067,715094 2251,197943 0,293827288 
descent_6 5067,715094 1440,56516 0,293827288 
descent_6 5100,515395 1622,060672 0,293828669 
descent_6 5166,115997 1976,643855 0,293831432 
descent_6 5198,916298 2149,903311 0,293832813 
descent_7 5198,916298 2176,244838 0,293832813 
descent_7 5235,452401 2364,185888 0,293834352 
descent_7 5308,524609 2730,329599 0,293837429 
descent_7 5345,060713 2908,735425 0,293838967 
descent_8 5345,060713 2958,586053 0,293838967 

descent_8 5386,211282 3153,199032 0,2938407 
descent_8 5468,512421 3531,028445 0,293844166 
descent_8 5509,66299 3714,491071 0,293845898 
descent_9 5509,66299 3789,488406 0,293845898 
descent_9 5556,700868 3991,168222 0,293847879 
descent_9 5650,776623 4380,97923 0,29385184 
descent_9 5697,814501 4569,418728 0,29385382 

descent_10 5697,814501 4701,933229 0,29385382 
descent_10 5783,920061 5025,986383 0,293857445 
descent_10 5956,13118 5634,349541 0,293864694 
descent_10 6042,23674 5920,112642 0,293868319 
descent_11 6042,23674 5800,363171 0,293868319 

descent_11 6086,60215 6055,340555 0,293870186 
descent_11 6175,332971 6556,620814 0,293873921 
descent_11 6219,698382 6803,203023 0,293875788 
descent_12 6219,698382 5441,526595 0,293875788 
descent_12 6246,231458 5507,260007 0,293876905 
descent_12 6299,29761 5644,122369 0,293879139 
descent_12 6325,830686 5715,237047 0,293880255 

reserve_climb_1 6325,830686 32483,43024 90,82878309 
reserve_climb_1 6341,317411 32311,75746 90,83339013 
reserve_climb_1 6372,29086 31972,32229 90,84259867 
reserve_climb_1 6387,777585 31804,56129 90,84720019 
reserve_climb_2 6387,777585 30526,21177 90,84719777 

reserve_climb_2 6415,510398 30249,93971 90,85543335 
reserve_climb_2 6470,976024 29708,27738 90,87188711 
reserve_climb_2 6498,708837 29442,89712 90,88010535 
reserve_climb_3 6498,708837 28467,4772 90,88010081 
reserve_climb_3 6535,117774 28145,66393 90,89088139 
reserve_climb_3 6607,935646 27518,65338 90,9124134 
reserve_climb_3 6644,344582 27213,46898 90,92316501 
reserve_climb_4 6644,344582 26206,98641 90,92315868 
reserve_climb_4 6671,0846 26002,39864 90,93104894 
reserve_climb_4 6724,564636 25600,96179 90,9468143 
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reserve_climb_4 6751,304654 25404,11696 90,95468947 

reserve_climb_5 6751,304654 24678,11119 90,95468461 
reserve_climb_5 6780,41441 24479,51482 90,96325201 
reserve_climb_5 6838,633924 24090,44447 90,98036943 
reserve_climb_5 6867,743681 23899,97367 90,98891957 
reserve_cruise 6867,743681 12013,50277 90,98891401 
reserve_cruise 6990,691175 12003,87341 91,02496444 
reserve_cruise 7236,586163 11984,65468 91,09678277 
reserve_cruise 7359,533657 11975,06506 91,1325616 

reserve_descent_3 7359,533657 1766,907746 0,294618769 
reserve_descent_3 7395,781626 1960,843083 0,294620292 
reserve_descent_3 7468,277563 2338,694389 0,29462334 
reserve_descent_3 7504,525532 2522,812764 0,294624863 

reserve_descent_4 7504,525532 2560,735663 0,294624863 
reserve_descent_4 7545,309664 2761,517551 0,294626578 
reserve_descent_4 7626,87793 3151,359741 0,294630007 
reserve_descent_4 7667,662063 3340,665984 0,294631721 
reserve_descent_5 7667,662063 3423,462166 0,294631721 
reserve_descent_5 7740,294559 3744,425072 0,294634774 
reserve_descent_5 7885,55955 4352,964241 0,294640882 
reserve_descent_5 7958,192046 4641,641579 0,294643935 
reserve_descent_6 7958,192046 4762,396704 0,294643935 
reserve_descent_6 8032,856808 5040,062634 0,294647075 
reserve_descent_6 8182,186333 5565,784534 0,294653354 
reserve_descent_6 8256,851096 5814,759511 0,294656493 

reserve_descent_7 8256,851096 5457,858048 0,294656493 
reserve_descent_7 8283,384172 5525,173773 0,294657609 
reserve_descent_7 8336,450324 5665,137885 0,294659841 
reserve_descent_7 8362,9834 5737,772697 0,294660956 

hold 8362,9834 11891,61422 91,14966114 
hold 8812,9834 11855,63484 91,27988386 
hold 9712,9834 11784,27528 91,53922358 
hold 10162,9834 11748,89312 91,66987021 
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Appendix VI 

• Python4Capella script for the digital connection on physical architecture layer 

 

# include needed for the Capella modeller API 

include('workspace://Python4Capella/simplified_api/capella.py') 

if False: 

    from simplified_api.capella import * 

     

# include needed for the PVMT API 

include('workspace://Python4Capella/simplified_api/pvmt.py') 

if False: 

    from simplified_api.pvmt import * 

     

# include needed for utilities 

include('workspace://Python4Capella/utilities/CapellaPlatform.py') 

if False: 

    from utilities.CapellaPlatform import * 

 

# include needed for the requirement API 

include('workspace://Python4Capella/simplified_api/requirement.py') 

if False: 

    from simplified_api.requirement import * 

     

import matlab.engine 

eng = matlab.engine.start_matlab() 

 

aird_path = '/Transition_test_2/Transition_test_2.aird' 

 

model = CapellaModel() 

model.open(aird_path) 

 

se = model.get_system_engineering() 

 

allPC = se.get_all_contents_by_type(NodePC) 

 

allPVs = [] 

 

print('start\n') 

 

def set_p_v_value(elem, PVName, value): 

    for group in elem.get_java_object().getOwnedPropertyValueGroups(): 

        for pv in group.getOwnedPropertyValues(): 

            if PVName == pv.getName(): 

                pv.setValue(value) 

                return 

 

for pc in allPC: 

    for pvName in PVMT.get_p_v_names(pc): 

        if pvName not in allPVs: 

            allPVs.append(pvName) 

  

ns='REQUIREMENT NOT SATISFIED' 

s='REQUIREMENT SATISFIED' 

thl=0                 

m=0 

rac=0 

pcs=0 

config=0 

hl=0 

flag=0 

n=0 

output=0 

req1=0 

req2=0 

req3=0 

req4=0 

 

while output < 1 or output > 3: 

    def showInputDialog(): 

        pass 
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    loadModule('/System/UI') 

     

     

    output = int(showInputDialog('Select console output type\n1 - All results\n2 - Verification 

results\n3 - No results\n\n(In any case all results will be placed in the model)', 'Results type 

number')) 

 

 

while n < 1 or n > 9: 

    def showInputDialog(): 

        pass 

     

    loadModule('/System/UI') 

     

     

    n = int(showInputDialog('Select flight phase number\nFlight phases:\n1 - Parked\n2 - Taxi 

out\n3 - Take-off\n4 - Start of climb\n5 - End of climb\n6 - Cruise\n7 - Descent\n8 - Landing\n9 

- Taxi in', 'Flight phase number')) 

         

 

if n==1: 

    phase='Parked' 

elif n==2: 

    phase='Taxi out'               

elif n==3: 

    phase='Take-off'  

elif n==4: 

    phase='Start of climb'  

elif n==5: 

    phase='End of climb'  

elif n==6: 

    phase='Cruise'  

elif n==7: 

    phase='Descent'  

elif n==8: 

    phase='Landing'  

elif n==9: 

    phase='Taxi in'  

 

print('TMS sizing on "'+str(phase)+'" conditions\n') 

 

 

for pc in allPC: 

     

    for pvName in allPVs: 

        if str(PVMT.get_p_v_value(pc, pvName)) != 'None': 

            if pvName=='Configuration': 

                config=int(PVMT.get_p_v_value(pc, pvName)) 

                 

                 

            if pvName=='T': 

                T=float(PVMT.get_p_v_value(pc, pvName))+float(273) # C° -> K° 

                                 

         

             

    if isinstance(config,int) and int(config) > 0: 

        print(pc.get_name()) 

        eng.workspace['T_InEquip']=T        

         

        sms=pc.get_owned_state_machines() 

        for sm in sms: 

            regions=sm.get_owned_regions() 

            for region in regions: 

                states = region.get_owned_states() 

                for state in states: 

                    rs=state.get_owned_regions() 

                    for r in rs: 

                        if state.get_name()==phase: 

                            hl=float(r.get_name()) 

                             

        print('  Configuration '+str(config)) 

        print('  T = '+str(T)+' °K')                     

        print('  Heat load = '+str(hl)+' KW') 

        eng.workspace['Q_equip']= float(hl) 

         

        if hl > 0: 

            flag=1 
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            if config==1: 

                #run simulation 

                eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case1.m',nargout=0) 

                

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case1Results.m',nargout=0) 

                mass=eng.workspace['m_TMS'] 

                ram_air_cons=eng.workspace['mdra'] 

                power_cons=eng.workspace['w_tot'] 

                if power_cons > 0: 

                    print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' W\n') 

                else: 

                    mass=0 

                    ram_air_cons=0 

                    power_cons=0 

                    print('  The evaluated power consumption is < 0, cooling not required for 

'+str(pc.get_name())+' in '+str(phase)+' phase')     

                     

            elif config==2: 

                eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case2.m',nargout=0) 

                

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case2Results.m',nargout=0) 

                mass=eng.workspace['m_TMS'] 

                ram_air_cons=eng.workspace['mdra'] 

                power_cons=eng.workspace['w_tot'] 

                if power_cons > 0: 

                    print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' W\n') 

                else: 

                    mass=0 

                    ram_air_cons=0 

                    power_cons=0 

                    print('  The evaluated power consumption is < 0, cooling not required for 

'+str(pc.get_name())+' in '+str(phase)+' phase')     

                        

                     

            elif config==3: 

                eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case4.m',nargout=0) 

                

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case4Results.m',nargout=0) 

                mass=eng.workspace['m_TMS'] 

                ram_air_cons=eng.workspace['mdra'] 

                power_cons=eng.workspace['w_tot'] 

                if power_cons > 0: 

                    print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' W\n') 

                else: 

                    mass=0 

                    ram_air_cons=0 

                    power_cons=0 

                    print('  The evaluated power consumption is < 0, cooling not required for 

'+str(pc.get_name())+' in '+str(phase)+' phase')     

                 

                     

                     

            elif config==4: 

                eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case6.m',nargout=0) 

                

eng.run('C:/Users/Utente/PycharmProjects/pythonProject7/Case6Results.m',nargout=0) 

                mass=eng.workspace['m_TMS'] 

                ram_air_cons=eng.workspace['mdra'] 

                power_cons=eng.workspace['w_tot'] 

                if power_cons > 0: 

                    print('  Mass = '+str(round(mass,2))+' kg, Ram air consumption = 

'+str(round(ram_air_cons,2))+' kg/s, Power consumption = '+str(round(power_cons,2))+' W\n') 

                else: 

                    mass=0 

                    ram_air_cons=0 

                    power_cons=0 

                    print('  The evaluated power consumption is < 0, cooling not required for 

'+str(pc.get_name())+' in '+str(phase)+' phase')     

                 

            thl=thl+hl         

            m=m+mass 

            rac=rac+ram_air_cons 

            pcs=pcs+power_cons 
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        else: 

            print('  Cooling not required for '+str(pc.get_name())+' in '+str(phase)+' phase, 

heat load = '+str(hl)) 

             

    config=0 

             

if pcs == 0: 

    flag=0  

            

eng.quit() 

 

if flag==1: 

    for req in se.get_all_contents_by_type(Requirement): 

        #print(str(req.get_id())) 

        #print(req.get_long_name()) 

        incoming_req_names = [] 

        for res in req.get_incoming_linked_elems(): 

            incoming_req_names.append(res.get_name()) 

        outgoing_req_names = [] 

        for res in req.get_outgoing_linked_elems(): 

            outgoing_req_names.append(res.get_name()) 

             

        if ('TMS for electrical drive train' in outgoing_req_names)==1: 

             

            if str(req.get_id())=='1': 

                # Extracts Requirements Attributes and Values 

                if req.get_java_object().getOwnedAttributes() != None: 

                    for att in req.get_java_object().getOwnedAttributes(): 

                        #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", value: 

"+str(att.getValue())) 

                        if str(att.getDefinition().getReqIFLongName())=='Value': 

                            max_mass=float(att.getValue()) 

                            #print(max_mass) 

                             

            elif str(req.get_id())=='2': 

                 

                # Extracts Requirements Attributes and Values 

                if req.get_java_object().getOwnedAttributes() != None: 

                    for att in req.get_java_object().getOwnedAttributes(): 

                        #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", value: 

"+str(att.getValue())) 

                        if str(att.getDefinition().getReqIFLongName())=='Value': 

                            max_power=float(att.getValue()) 

                            #print(max_power) 

                             

            elif str(req.get_id())=='3': 

                 

                # Extracts Requirements Attributes and Values 

                if req.get_java_object().getOwnedAttributes() != None: 

                    for att in req.get_java_object().getOwnedAttributes(): 

                        #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", value: 

"+str(att.getValue())) 

                        if str(att.getDefinition().getReqIFLongName())=='Value': 

                            target_spec_pow_diss=float(att.getValue()) 

                            #print(target_spec_pow_diss) 

         

            elif str(req.get_id())=='4': 

                 

                # Extracts Requirements Attributes and Values 

                if req.get_java_object().getOwnedAttributes() != None: 

                    for att in req.get_java_object().getOwnedAttributes(): 

                        #print("- Attribute: "+att.getDefinition().getReqIFLongName()+", value: 

"+str(att.getValue())) 

                        if str(att.getDefinition().getReqIFLongName())=='Value': 

                            target_cop=float(att.getValue()) 

                            #print(target_cop) 

                             

    req_mass_perc= (m/max_mass)*100     

    req_power_perc= ((pcs/1000)/max_power)*100 #KW 

    spd=thl/m  

    req_spec_pow_diss=(spd/target_spec_pow_diss)*100 

    cop=thl/(pcs/1000) 

    req_cop_perc=(cop/target_cop)*100 

     

     

    model.start_transaction() 

    try:  
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        for pc in allPC: 

            if pc.get_name() == 'TMS for electrical drive train': 

                for pvName in allPVs: 

                    if pvName=='Mass': 

                        set_p_v_value(pc,str(pvName),round(m,2)) 

                    elif pvName=='Power_consumption': 

                        set_p_v_value(pc,str(pvName),round(pcs,2)) 

                    elif pvName=='Ram_air_consumption': 

                        set_p_v_value(pc,str(pvName),round(rac,2)) 

                    elif pvName=='Mass_req': 

                        set_p_v_value(pc,str(pvName),round(req_mass_perc,2)) 

                    elif pvName=='Mass_req_bool': 

                        if req_mass_perc<= 100: 

                            set_p_v_value(pc,str(pvName),'True') 

                            req1=1 

                        else: 

                            set_p_v_value(pc,str(pvName),'False') 

                    elif pvName=='Power_req': 

                        set_p_v_value(pc,str(pvName),round(req_power_perc,2)) 

                    elif pvName=='Power_req_bool': 

                        if req_power_perc <= 100: 

                            set_p_v_value(pc,str(pvName),'True') 

                            req2=1 

                        else: 

                            set_p_v_value(pc,str(pvName),'False') 

                    elif pvName=='SPD_req': 

                        set_p_v_value(pc,str(pvName),round(req_spec_pow_diss,2)) 

                    elif pvName=='SPD_req_bool': 

                        if req_spec_pow_diss >= 100: 

                            set_p_v_value(pc,str(pvName),'True') 

                            req3=1 

                        else: 

                            set_p_v_value(pc,str(pvName),'False') 

                    elif pvName=='COP_req': 

                        set_p_v_value(pc,str(pvName),round(req_cop_perc,2)) 

                    elif pvName=='COP_req_bool': 

                        if req_cop_perc >= 100: 

                            set_p_v_value(pc,str(pvName),'True') 

                            req4=1 

                        else: 

                            set_p_v_value(pc,str(pvName),'False') 

                    elif pvName=='Run_result': 

                        set_p_v_value(pc, pvName,'TMS evaluated') 

                    elif pvName=='Run_phase': 

                        set_p_v_value(pc,pvName,phase) 

         

        for req in se.get_all_contents_by_type(Requirement): 

        #print(str(req.get_id())) 

        #print(req.get_long_name()) 

            incoming_req_names = [] 

            for res in req.get_incoming_linked_elems(): 

                incoming_req_names.append(res.get_name()) 

            outgoing_req_names = [] 

            for res in req.get_outgoing_linked_elems(): 

                outgoing_req_names.append(res.get_name()) 

                 

            if ('TMS for electrical drive train' in outgoing_req_names)==1: 

                 

                if str(req.get_id())=='1': 

                    if req1==0: 

                        req.set_prefix(ns) 

                         

                    else: 

                        req.set_prefix(s) 

                         

                if str(req.get_id())=='2': 

                    if req2==0: 

                        req.set_prefix(ns) 

                         

                    else: 

                        req.set_prefix(s) 

                         

                 

                if str(req.get_id())=='3': 

                    if req3==0: 

                        req.set_prefix(ns) 

                         

                    else: 
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                        req.set_prefix(s) 

                         

                         

                if str(req.get_id())=='4': 

                    if req4==0: 

                        req.set_prefix(ns) 

                         

                    else: 

                        req.set_prefix(s) 

                         

 

    except: 

        # if something went wrong we rollback the transaction 

        model.rollback_transaction() 

        raise 

    else: 

        # if everything is ok we commit the transaction 

        model.commit_transaction()  

     

    print('\n---------RESULTS--------\n') 

     

    if output==1: 

        print('Total mass = '+str(round(m,2))+' kg, Total ram air consumption = 

'+str(round(rac,2))+' kg/s, Total power consumption = '+str(round(pcs/1000,2))+' KW') 

        print('Total heat load dissipated = '+str(round(thl,3))+' KW') 

        print('Specific power dissipation = '+str(round(spd,3))+' KW/kg') 

        print('COP = '+str(round(cop,3))) 

        print('\n') 

        if req1==0: 

            print('Mass obtained is '+str(round(req_mass_perc,3))+'% to the Maximum Mass, '+ns) 

        else: 

            print('Mass obtained is '+str(round(req_mass_perc,3))+'% to the Maximum Mass, '+s) 

        if req2==0: 

            print('Power obtained is '+str(round(req_power_perc,3))+'% to the Maximum Power, 

'+ns) 

        else: 

            print('Power obtained is '+str(round(req_power_perc,3))+'% to the Maximum Power, 

'+s) 

        if req3==0: 

            print('Specific power dissipation obtained is '+str(round(req_spec_pow_diss,3))+'% 

to the target Specific power dissipation, '+ns) 

        else: 

            print('Specific power dissipation obtained is '+str(round(req_spec_pow_diss,3))+'% 

to the target Specific power dissipation, '+s) 

         

        if req4==0: 

            print('COP obtained is '+str(round(req_cop_perc,3))+'% to the COP target, '+ns) 

        else: 

            print('COP obtained is '+str(round(req_cop_perc,3))+'% to the COP target, '+s+'\n') 

     

    elif output==2: 

        if req1==0: 

            print('Mass '+ns) 

        else: 

            print('Mass '+s) 

        if req2==0: 

            print('Power '+ns) 

        else: 

            print('Power '+s) 

        if req3==0: 

            print('Specific power dissipation '+ns) 

        else: 

            print('Specific power dissipation '+s) 

         

        if req4==0: 

            print('COP '+ns) 

        else: 

            print('COP '+s+'\n') 

    elif output==3: 

        print('All results in the model\n') 

else: 

    print(str(phase)+' does not require cooling, TMS not evaluated') 

    model.start_transaction() 

    try:  

        for pc in allPC: 

            if pc.get_name() == 'TMS for electrical drive train': 

                for pvName in allPVs: 

                    if pvName=='Mass': 
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                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='Power_consumption': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='Ram_air_consumption': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='Mass_req': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='Mass_req_bool': 

                        set_p_v_value(pc,str(pvName),'-') 

 

                    elif pvName=='Power_req': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='Power_req_bool': 

                        set_p_v_value(pc,str(pvName),'-') 

                    elif pvName=='SPD_req': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='SPD_req_bool': 

                        set_p_v_value(pc,str(pvName),'-') 

                    elif pvName=='COP_req': 

                        set_p_v_value(pc,str(pvName),float(0)) 

                    elif pvName=='COP_req_bool': 

                        set_p_v_value(pc,str(pvName),'-') 

                    elif pvName=='Run_result': 

                        set_p_v_value(pc, pvName,'TMS not evaluated') 

                    elif pvName=='Run_phase': 

                        set_p_v_value(pc, pvName,phase) 

    except: 

        # if something went wrong we rollback the transaction 

        model.rollback_transaction() 

        raise 

    else: 

        # if everything is ok we commit the transaction 

        model.commit_transaction() 

         

print('end') 
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