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Sommario

Nell’analisi strutturale, diversi strumenti possono essere utilizzati per misurare la posizione, la
distanza o la vibrazione di un oggetto. Tali strumenti possono essere suddivisi in due categorie
fondamentali: strumenti di misura a contatto e strumenti di misura non a contatto.
Tra le numerose tipologie di misurazioni non a contatto, vi sono le tecniche di registrazione
dell’immagine e di flusso ottico. Con l’utilizzo di una fotocamera, è possibile calcolare il movi-
mento di tutti i punti della struttura da questa ripresi. Con queste tecniche, se da un lato è
possibile ottenere lo spostamento in numerosi punti della struttura senza la necessità di una
strumentazione complessa, dall’altro i dati ottenuti sono affetti da un elevato livello di rumore.
Tra i tipi di misura a contatto ci sono gli estensimetri, che forniscono i valori di deformazione
della struttura nei punti in cui sono installati. Con gli estensimetri, utilizzando tecniche di
shape-sensing, è possibile calcolare lo deformata della struttura in tempo reale. Ma se da un
lato i dati forniti dai sensori di deformazione sono molto precisi, dall’altro è necessario instal-
larne un gran numero per ricostruire la deformata della struttura con una certa accuratezza.

Lo scopo di questa tesi è quello di effettuare una fusione tra i dati forniti dalla registrazione
delle immagini e dati di deformazione, per migliorare il campo di spostamento che si otterrebbe
utilizzando le due tecniche in modo indipendente. La fusione dati sarà eseguita su due prove
sperimentali relative a due diverse travi, utilizzando una fotocamera e degli estensimetri.

In questa tesi verranno innanzitutto illustrate le tecniche di registrazione delle immagini e di
shape-sensing. Dopo una breve rassegna degli strumenti utilizzati per la misurazione delle de-
formazioni, seguiranno le descrizioni delle prove sperimentali e degli algoritmi sviluppati per
eseguire la fusione dati. Infine, verranno presentati i risultati delle analisi, con una valutazione
sull’efficacia dei metodi insieme alle conclusioni.
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Abstract

In structural analysis, different tools can be used to measure an object’s position, distance, or
vibration. Such instruments can be divided into two basic categories: contact and non-contact
instruments.
Among the types of non-contact measurements, there are image registration and optical flow
techniques. With a camera, it is possible to calculate the movement of all the points of the
structure taken up by the camera. With these techniques, while on the one hand, it is possible
to obtain the displacement in numerous points of the structure without the need for complex
instrumentation, on the other hand, the data obtained are affected by a high level of noise.

Among the types of contact measurements, there are strain gauges, which provide the strain
values of the structure at the points where they are installed. With strain gauges, using shape-
sensing techniques, it is possible to calculate the deformation of the structure in real time. But,
if on the one hand, the data provided by the strain sensors are very precise, on the other it is
necessary to install a large number of them in order to reconstruct the deformation of the struc-
ture with a certain accuracy.

The aim of this thesis is to perform a data fusion between image and strain data to improve
the displacement field that would be obtained using the two techniques independently. The data
fusion will be performed on two experimental tests regarding two different beams, using a cam-
era and strain gauges.

In this thesis, image registration and shape-sensing techniques will first be illustrated. After
a brief review of the instruments used for measuring strain, the descriptions of the experimental
tests and algorithms developed to perform the data fusion will follow. Finally, the results of the
analysis will be presented, with an evaluation of the effectiveness of the methods together with
the conclusions.
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1 State of the art

This chapter is divided into two main sections, in the first one shape sensing and its main
techniques are shown. In the second section image registration and two related techniques,
digital image correlation and Thirion’s diffusion process, are exposed.

1.1 Shape sensing
The strain gauges and the optical fiber are among the types of contact measurements. These
measuring instruments can be used to perform shape sensing: shape sensing is the real-time
reconstruction of the displacement field of the structure from discrete surface strain measure-
ments. Shape-sensing techniques have become increasingly popular in recent years. This is due
to the potential of the method, which is able to evaluate in real-time the displacement and the
tensional field of the structure. These characteristics make shape sensing especially suitable:

1. in the area of structural health monitoring systems (SHMS);

2. for the control and implementation of smart structures.

Using shape sensing for structural health monitoring purposes, not only allows for cheaper and
more efficient maintenance procedures but also makes the structure safer [1]. By knowing the
structure’s stresses or strains magnitude in real-time, it’s possible to make more efficient the
maintenance activity by intervening only when required.
The other reason that makes shape sensing attractive is that the knowledge of the loads applied
to the structure is not necessary. This is an important feature, especially in the aeronautical field
where load identification is a hard task. The information required to perform shape sensing
depends on the used methodologies, but every methodology needs to know:

• the discrete surface strain measurements and their locations on the structure;

• the structure boundary condition;

• the structure geometry.

Shape sensing methodologies can be grouped into the following four:

1. methods based on the numerical integration of experimental strains;

2. methods based on global or piecewise continuous basis functions;

3. methods based on Neural Networks (NN);

4. methods based on a finite-element discrete variational principle.

3



1 - State of the art 1.1 – Shape sensing

These methods will be illustrated individually in the order mentioned especially focusing on the
quarter, being the method that will be used in the thesis.

1.1.1 Methods based on the numerical integration of experimental strains
To this category of methods belongs the Ko displacement theory, which can be applied to beams,
wing boxes, and plates [2].
The basic formulation of Ko’s theory, which is valid for uniform cantilever beams (i.e. the beam
cross-section does not change), starts from the classical differential equation of the beam

d2y

dx2
=

M (x)

EI
(1.1)

where:

• y is the vertical displacement;

• x is the coordinate of the length of the beam;

• M (x) is the bending moment;

• E is the Young modulus of the beam;

• I is the inertia moment of the beam section.

By combining Hooke’s law and Navier’s law (written in a principal inertia reference system), it
can be written

M (x) = I
σ (x)

c
= EI

ε (x)

c
(1.2)

where:

• c is the distance from the considered point of the section and the center of gravity;

• ε (x) is the strain value of the bottom (or top) of the beam surface.

Substituting Equation 1.2 into Equation 1.1, lead to

d2y

dx2
=

ε (x)

c
(1.3)

The equation 1.3 is valid for uniform beam, but it can be also applied with adequate accuracy
to no uniform beams in which the cross-section gradually change. It is noted that with a strain
formulation, equation 1.3 contains only one geometric parameter of the beam (c), while the
flexural stiffness EI simplifies.
Assume now that there are strain sensors installed at n + 1 equally spaced stations along the
lower or upper surface of the cantilever beam. Even though the bending strain at the free end of
the beam is zero, a strain sensor (the n-th one) is there installed for mathematical convenience in
the derivation of the spar tip slope and deflection equations. Assume that the bending moment
M (x) is a piecewise-linear function along the axial coordinate x. In the region

4



1 - State of the art 1.1 – Shape sensing

xi−1 < x < xi between any two adjacent strain-sensing stations, {xi−1, xi}, M (x) is consid-
ered a linear function of (x− xi−1), as

M (x) = Mi−1 − (Mi−1 −Mi)
x− xi−1

∆l
; xi−1 < x < xi (1.4)

where:

• {Mi−1,Mi} are the bending moments in the two adjacent strain-sensing stations {xi−1, xi};

• ∆l
(
= xi − xi−1 =

l
n

)
is the axial distance between two adjacent strain-sensing stations

{xi−1, xi}.

In light of equation 1.2, the bending moment can be expressed in terms of the local bending
strain, ε (x), in the region xi−1 < x < xi as

ε (x) = εi−1 − (εi−1 − εi)
x− xi−1

∆l
; xi−1 < x < xi ; ∆l =

l

n
(1.5)

where {εi−1, εi} are the strains measured in two adjacent strain-sensing stations, {xi−1, xi},
respectively.

Slope Equations

The slope tan θ (x) of the uniform beam in the region xi−1 < x < xi between two adjacent
strain-sensing stations, {xi−1, xi}, can be obtained by integrating equation 1.3, with the de-
termination of the constant of integration by enforcing the continuity of slope at the inboard
adjacent strain-sensing station, xi−1

tan θ (x) =

∫ x

xi−1

d2y

dx2
dx︸ ︷︷ ︸

Slope increment

+ tan θi−1︸ ︷︷ ︸
Slope at xi−1

=

∫ x

xi−1

ε (x)

c
dx+ tan θi−1 ; xi−1 ≤ x ≤ xi (1.6)

where tan θi−1 (constant of integration) is the slope at the inboard adjacent strain-sensing station
xi−1. It’s possible to calculate the tan θi ≡ [tan θi (x)] expression at the strain-sensing station
xi by replacing the strain expression (equation 1.5) in equation 1.6 and integrating

tan θi =
∆l

2c
(εi−1 + εi) + tan θi−1 ; (i = 1, 2, 3, ..., n) (1.7)

Deflection Equations

The deflection y (x) of the uniform beam in the region xi−1 ≤ x ≤ xi, between two adjacent
strain-sensing stations, {xi−1, xi}, can be calculated by integrating equation 1.6, with the deter-
mination of the constant of integration by enforcing the continuity of deflection at the inboard
adjacent strain-sensing station, xi−1

5
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y (x) =

∫ x

xi−1

tan θ (x) dx︸ ︷︷ ︸
Integration of slope

+ yi−1︸︷︷︸
Deflection at xi−1

(1.8)

=

∫ x

xi−1

∫ x

xi−1

ε (x)

c
dxdx︸ ︷︷ ︸

Deflection increment

+

∫ x

xi−1

tan θi−1dx︸ ︷︷ ︸
Deflection at x due to tan θi−1

+ yi−1︸︷︷︸
Deflection at xi−1

; xi−1 ≤ x ≤ xi

where yi−1 (constant of integration) is the deflection at the inboard adjacent strain-sensing sta-
tion xi−1. It’s possible to calculate the yi ≡ [y (xi)] expression at the strain-sensing station xi

by replacing the strain expression (equation 1.5) in equation 1.8

yi =
(∆l)2

6c
(2εi−1 + εi) + yi−1 +∆l tan θi−1 ; (i = 1, 2, 3, ..., n) (1.9)

In order to calculate beam deflection it’s necessary to know c. What has been written so far is
applicable to cantilever beams subjected to bending, but Ko’s displacements theory also pro-
vides for the case where the beam is subjected to twisting and both bending and twisting. Ko’s
displacements theory provides the determination of structure deformation even in the case of the
tapered and lightly tapered beam. The above can be applied also to non-uniform cantilevered
beam [3], i.e. beams whose cross-section slowly changes along the beam axis. In [3] is pro-
vided a procedure to calculate the deflection of a non-uniform beam without constraints such as
a fuselage is. In the end, the deflection equations developed for the cantilevered beam can be
used to predict the deflection of other structures, such as wing boxes and plates.

1.1.2 Methods based on global or piecewise continuous basis functions
In these types of methods, continuous piecewise or global functions are assumed to approximate
the strain field. When the functions used are the structure’s own modes of vibration, these meth-
ods are called modal methods. These are particularly attractive due to the low computational
cost and the possibility to compute the structure modal characteristics with the finite element
method (FEM). The basic steps of the modal method are reported [4].
Consider that the structure under consideration, e.g. a beam, has been discretized in a finite
element domain, the displacement field and the strain field can be expressed as

{δ} = [ϕd] {q} (1.10)

{ε} = [ϕs] {q} (1.11)

where:

• {δ} is the nodal displacements vector;

• {ε} is the strains vector;

• [ϕd] is the modal displacements matrix;

6
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• [ϕs] is the modal strains matrix;

• {q} is the modal coordinates vector.

[ϕd] and [ϕs] can be computed with an eigenvalue analysis. The deformation of a structure can
be approximated by the modal shape when each mode is multiple for the appropriate gener-
alized coordinate. The approximation accuracy gets better with the increasing of considered
modes. Therefore, a modal cutoff criterion has to be determined in order to select the appropri-
ate number of modal shapes to reconstruct the displacement field accurately.
The calculation of {q} in equation 1.11 is facilitated by the introduction of strain modes. The
strain mode is typically defined as the set of strains associated with a given strain mode[4].
Referring to the equation 1.11, if the strains are known, the generalized coordinate can be cal-
culated as

{q} = [ϕs]
−1 {ε} (1.12)

Furthermore, by multiplying both members of equation 1.12 by [ϕs]
T and solving with respect

to {q} leads to

{q} =
[
[ϕs]

T [ϕs]
]−1

[ϕs]
T {ε} (1.13)

Thus, the displacement field can be obtained by substituting equation 1.13 into equation 1.10,

{δ} = [ϕd] [ϕs]
T [ϕs]

−1 [ϕs]
T {ε} (1.14)

1.1.3 Methods based on Neural Networks (NN)
Artificial neural networks consist of layers of nodes containing input layers, one or more hidden
layers, and output layers.

Figure 1.1: Example of a Neural Network [35]

7



1 - State of the art 1.1 – Shape sensing

In the neural network the information, in the form of patterns or signals, is transferred to neu-
rons in the input layer, where they are processed. Each neuron is assigned a weight so that the
neurons receive different importance. The weight, together with a transfer function, determines
the input, where the neuron is then forwarded. In the next step, an activation function and a
threshold value calculate and weigh the output value of the neuron. Depending on the informa-
tion evaluation and weighting, other neurons are connected and activated to a greater or lesser
extent. If the output of any individual node is above the specified threshold value, that node is
activated, sending data to the next network layer. Otherwise, no data is passed to the next layer
of the network. Neural networks rely on training data to learn and improve their accuracy over
time. It is precisely this aspect that is one of the limitations of NN methods: some work shows
that an NN model trained on the solutions of a wide range of possible disturbances is unable to
estimate the solutions of problems whose inputs deviate from those of the training set. Indeed,
among the main factors influencing the results are the type and quantity of training cases [5, 6].

1.1.4 Methods based on a finite-element discrete variational principle
These types of methods can be regarded as inverse finite element methods, based on the vari-
ational least-squares principle and finite element discretization [7]. The inverse finite element
method (iFEM) has been introduced for the first time by Tessler and Spangler [8]. The formu-
lation is based on the minimization of the least squares functional using the set of deformation
measurements consistent with First-order Shear Deformation Theory (FSDT). The main advan-
tage of the variational principle is that it is suitable for discretizations of continuous displace-
ment finite elements C0, thus enabling the development of robust algorithms for application to
complex civil and aircraft structures.
Among the shape-sensing methods mentioned above, the iFEM methodology is the most robust
and suitable approach for shape sensing because it allows the most critical challenges of general
shape-sensing procedures to be faced and overcome [7]. These challenges are:

• suitability for complex boundary conditions and structural topology;

• real-time displacement field calculation;

• independence from intrinsic noise in strain measurements;

• no needs for loading and materials information.

As said it’s confirmed by Gherlone et al. in [9]. In this paperwork, a wing-shaped aluminum
plate is let to deform under its own weight being submitted to bending and twisting. Using
experimental strain measurements as input, the deformation of the structure is reconstructed
with Ko’s displacements method, with the modal method, and with iFEM. The accuracy of
the three methods was evaluated by introducing the percent difference of the reconstructed
deflection, wrec (obtained using digital image correlation), with respect to the experimentally
measured one, wexp:

%Diff (w (j)) = 100 ·
[
wrec (j)− wexp (j)

max (wexp (j))

]
(1.15)

where max (wexp (j)) is the maximum experimental deflection evaluated at the tip of the trailing
edge, while (j) is an index ranging over the locations of the trailing edges where the deflection
is evaluated. At the end of the experiment, the measured percentage difference was lower than
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4% for all three methods, demonstrating that the 3 methods have comparable accuracy even
in the presence of unavoidable uncertainties related to the experimental activity. However, the
modal method accuracy was achieved through a preliminary FE modal analysis that required
knowledge of the material properties of the structure. Furthermore, even though Ko’s method
was able to provide the structure deflection in the same points where the strains are measured,
the iFEM was much more flexible (no limitations on boundary conditions and on the points
where the displacement is reconstructed) and it didn’t require any data about material properties
and applied loads.
In [10], Esposito and Gherlone apply Ko’s displacements method, the modal method, and the
iFEM to a composite wing box undergoing bending and twisting deformations. A detailed
investigation into the optimal configuration of the strain sensors for all three techniques was
carried out simultaneously, and the performance of the methods were compared in terms of
reconstruction accuracy and the number of sensors required. The iFEM showed to be the most
accurate in the wing-box vertical displacement reconstruction. Even though it was the most
accurate method it also required a higher number of strain sensors. The modal method was
able to compute the structure displacement with acceptable accuracy using fewer sensors. Ko’s
displacements theory was able to provide a rough estimate of the deformed shape by requiring
very few sensors. To complete the comparison, it was verified that the use of more sensors for
the Ko displacement theory and the modal method was ineffective or even detrimental to the
performance of the methods. Thus, it was shown that even with the same number of sensors,
the two methods could not reach the level of accuracy achieved by iFEM.

9
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1.2 Image registration
Although contact instruments are suitable for many applications, they have a limited frequency
response and can interfere with the dynamics of the measurement object. In addition, sensors
such as strain gauges and accelerometers, although very accurate, deliver data only at the lo-
cation where they have been positioned. Where these factors represent a problem, non-contact
methods have advantages. Among the non-contact methods, there is image registration.
Image registration is the process of overlaying images of the same scene taken at different times,
from different viewpoints, and/or by different sensors. One of the images is referred to as the
moving or source and the others are referred to as the target, fixed, or sensed images. It’s used
in many fields, such as computer vision, military automatic target recognition, medicine, and
remote sensing [11].
Depending on the imaging procedure, image registration methodology can be divided into four
categories:

• different viewpoints (multiview analysis) - images of the scene are quired from different
viewpoints.

• different times (multitemporal analysis) - images of the same scene are acquired at differ-
ent times, possibly under different conditions.

• different sensors (multimodal analysis) - images of the same scene are acquired by differ-
ent sensors.

• scene to model registration - images of a scene and a model of the scene are registered.

The development of one universal method applicable under all conditions is unrealistic due to
the variability of the image registration task. Nevertheless, image registration algorithms can be
classified into two categories:

• area-based methods (ABM);

• feature-based methods (FBM).

Area-based matching uses the gray value of the pixels to describe matching entities. In the
area-based matching algorithms, a small window of pixels in the sensed image is compared
statistically with windows of the same size as the reference image. Usually, the normalized
cross-correlation or least-squares technique is used to measure the degree of match. The pre-
requisite of ABM is that the gray level distribution of the sensed image and reference image
must be similar. Very good initial approximations are required to assure convergence. ABM
methods are not well adapted to the problem of multisensor image registration since the gray-
level characteristics of images to be matched can vary from sensor to sensor [12].
Feature-based matching techniques do not use gray values to describe matching entities but use
image features derived by a feature extraction algorithm. These features include edges, con-
tours, surfaces, corners, line intersections, points of high curvature, statistical features such as
moment invariants or centroids, and higher-level structural and syntactic descriptions [13]. The
form of the description as well as the type of features used for matching depends on the task to
be solved.
Area-based methods are preferably applied when the images do have not many prominent de-
tails and the distinctive information is provided by gray levels/colors rather than by local shapes
and structure [11]. On the other hand, feature-based matching methods are typically applied
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when the local structural information is more significant than the information carried by the
image intensities. They can handle complex between-image distortions. The crucial point of
all feature-based matching methods is to have discriminative and robust feature descriptors that
are invariant to all assumed differences between the images.
Compared with ABM, FBM is more robust and reliable. However, FBM often requires sophisti-
cated image processing for feature extraction and depends on the robustness of feature detection
for reliable matching. As a result, the image matching precision is not as high as that of ABM
[12].

In the next sections, the functioning of the Digital Image Correlation (DIC) technique and dif-
fusion process based on Thirion’s demons method will be presented. The DIC is an area-based
method and its use in the aerospace field is continuously growing. The diffusion-based registra-
tion methods belong to the non-rigid feature-based methods. Since the data fusion performed
in this work relies on one of his algorithms, its working functioning will be explained.

1.2.1 Digital image correlation
Digital image correlation algorithms are based on the tracking of information across a set of im-
ages, taken from cameras, from the reference image to pictures taken later in the test. Through
this information, it is possible to trace the displacement and/or strain undergone by the struc-
ture.
DIC is becoming a trusted instrument for measuring strain and deformation in aerospace test-
ing thanks to its accuracy and versatility. DIC can measure the behavior of a large structural
element, such as full-sized rocket sections, as well as microscopic structural elements, such as
microscopic fibers. Furthermore, it can be used for both rapid loads such as mechanical shocks,
and quasi-static loads lasting several hours. This can be achieved through a minimal experimen-
tal setup: one camera is sufficient to completely determine the 2D displacement field, while two
are needed to determine the 3D one. In the following section, the DIC’s operating principle for
2D displacement will be described.

Experimental setup

As mentioned before, the equipment required to perform DIC is minimal. In figures 1.2, the
experimental setup for the standard application of DIC for determining the 2D displacement
field is schematized,

Figure 1.2: DIC set up for 2D displacement [14]
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The surface of the specimen is illuminated by white light. The specimen surface must have
a random gray intensity distribution which deforms together with the specimen surface as a
carrier of deformation information. The speckle pattern can be the natural texture of the spec-
imen surface or artificially made by spraying black and/or white paints, or other techniques.
The camera is placed with its optical axis normal to the specimen surface. This implies that
the charge-coupled device (CCD) sensor and the object surface should be parallel. It is of
paramount importance that this condition remains verified throughout the acquisition so that
out-of-plane movements are small enough to be overlooked. These could produce apparent de-
formations that would be added to those actually present and would be difficult to compensate
for, with the effect of producing a measurement affected by an error [15]. The acquired images
are processed using a computer program to obtain the desired displacement information.

Basic principles

In the routine implementation of the 2D DIC method, the definition of the region of interest
(ROI) in the reference image should be specified first. The ROI is divided into evenly-spaced
virtual grids, as shown in figure 1.3

(a) Evenly-spaced virtual grids in yellow; the red
squares are the subset used to compute the dis-
placements of the grid nodes

(b) The blue arrow are the computed displace-
ments of the grid nodes

Figure 1.3: Example of an evenly-spaced virtual grid of the ROI [14]

The displacements are computed at each point of the virtual grids to obtain the full-field defor-
mation. The basic principle of 2D DIC is the matching of the same points (or pixels) between
the two images recorded before and after deformation. It is therefore of primary importance
to ensure a good correspondence between the points of the different images. It is immediately
apparent that the use of a single pixel cannot ensure this condition, as the same grey level from
which it is described in the reference image can be found several times within successive im-
ages, so unambiguousness is not guaranteed. For these reasons, the virtual subdivision of the
reference image into small square areas called ’subsets’ is introduced (red squares in figure 1.3).
The subsets contain several pixels and therefore they are characterized by more information. It
can be understood that if the surface whose displacement is to be calculated has no texture, each
subset will be identical to the others and the method will not be able to find an unambiguous
correspondence between a subset in the reference image and the corresponding one in the de-
formed one. But not only that, if ordered grids are applied to the surface, there remains the
problem of non-uniqueness of subsets (aperture problem). Although a surface may have some
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natural texture, such as the presence of edges, rivets, or other, this is not enough to bypass the
opening problem. The solution is to use a random pattern of points with sufficiently varied
plots (called speckle pattern) to present subsets with unique characteristics within the ROI. An
example of speckle patterns is shown in figure 1.4

Figure 1.4: Example of speckle patterns with different diameter sizes [16]

Optimal patterns and subsets

Since the determination of the displacement field results in the search for subsets of the refer-
ence image in the deformed image, the importance of the use of a suitable speckle pattern is
evident. As demonstrated in [17], the size of the subset (which is defined by the user), for a
given speckle pattern, influences the accuracy with which displacements are determined. The
main speckle pattern’s features are:

• the average size, in terms of pixels, of the average diameter of the points constituting the
speckle pattern; values recommended in the literature range from 5 px to 3 px [16, 18];

• the coverage factor, which is recommended to be between 40% and 70% [16];

• the subset entropy, for evaluating the differentiation of the intensity of the grey levels
within the same subset: higher values of this lead to a lower standard deviation of the
measurement [19].

In [19] it was shown how larger subsets characterized by a larger subset entropy reduce noise
and grey intensity quantization during photographic acquisition, contributing to a decrease in
the standard deviation of the displacements. On the other hand, deformation fields of small
subsets can be accurately approximated by first- or second-order shape functions, whereas large
subsets generally lead to large systematic approximation errors.
It follows from the above that the search for the optimal subset consists of a trade-off solution
aimed at minimizing random and systematic errors.

Correlation criterion

A cross-correlation (CC) criterion or sum-squared difference (SSD) correlation criterion must
be predefined to evaluate the similarity degree between the reference subset and the deformed
subset. The matching procedure is completed by searching the peak position of the distribu-
tion of the correlation coefficient. Once the correlation coefficient extremum is detected, the
position of the deformed subset is determined. The differences in the positions of the reference
subset center and the target subset center yield the in-plane displacement vector. Let f be the
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reference image and g the deformed one, while (xi, yi) and (x′
i, y

′
i) the coordinate in their refer-

ence system, the cross-correlation criterion and the sum-squared difference correlation criterion
are defined, respectively as

CCC =
M∑

i=−M

M∑
j=−M

[
f (xi, yj) g

(
x

′

i, y
′

j

)]
(1.16)

CSSD =
M∑

i=−M

M∑
j=−M

[
f (xi, yj)− g

(
x

′

i, y
′

j

)]2
(1.17)

for a given subset of size (2M + 1) · (2M + 1). The parameters presented are sensitive to
linear scaling and brightness variation, problems, especially the last one, which can easily arise
during a standard test [14]. Consequently, their normalized versions (ZNCC – zero normalized
cross-correlation and ZNSSD – zero normalized sum of squared differences) are preferred,

CZNCC =
M∑

i=−M

M∑
j=−M

{
[f (xi, yj)− fm]×

[
g
(
x′
i, y

′
j

)
− gm

]
∆f∆g

}
(1.18)

CZNSSD =
M∑

i=−M

M∑
j=−M

[
f (xi, yj)− fm

∆f
−

g
(
x′
i, y

′
j

)
− gm

∆g

]2

(1.19)

where

fm =
1

(2M + 1)2

M∑
i=−M

M∑
j=−M

f (xi, yi) ; gm =
1

(2M + 1)2

M∑
i=−M

M∑
j=−M

g (x′
i, y

′
i)

∆f =

√√√√ M∑
i=−M

M∑
j=−M

[f (xi, yi)− fm]
2; ∆g =

√√√√ M∑
i=−M

M∑
j=−M

[g (x′
i, y

′
i)− gm]

2

Lastly, it is worth pointing out that these approaches, although different, are related to each
other [20].

Shape functions

It must be considered that once the correspondence between the reference subset and the target
subset has been found, as a result of the deformations undergone by the body under analysis, the
reference subset may no longer be found to be undeformed (a condition that does not only occur
for rigid displacements). It is therefore necessary to virtually deform the reference subset in
order to find the best correspondence with the target subset. This induced deformation operation
is carried out by means of the shape functions.
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Figure 1.5: Reference subset before and after the deformation [14]

With reference to figure 1.5, the subset deformation induced by a shape function can be defined
as:

x′
i = xi + ξ (xi, yj)

y′j = yj + η (xi, yj) (1.20)

with i, j = −M : M . ξ and η are the analytical formulations of the shape functions [21].
The most used shape function that allows translation, rotation, shear, normal strains, and their
combinations of the subset is the first-order shape function:

ξ1 (xi, yj) = u+ ux∆x+ uy∆y; η1 (xi, yj) = v + vx∆x+ vy∆y (1.21)

where:

• ∆x = xi − x0;

• ∆y = yj − y0;

• u and v are are the x− and y− directional displacement components of the reference
subset center, P (x0, y0) (figure 1.5);

• ux, uy, vx, vy are the first-order displacement gradients of the reference subset.

Interpolation scheme

In general, after deformation, the reference subset may be located at non-integer pixel posi-
tions (i.e. subpixel positions). It is therefore necessary to apply the cross-correlation or error-
minimization operation to non-integer positions, but to do so first requires an interpolation of
the intensity of the subset is required. Several sub-pixel interpolation schemes have been used in
the literature. However, a high-order interpolation scheme (e.g. bicubic spline interpolation or
bicubic spline interpolation) is highly recommended as it provides higher registration accuracy
and better algorithm convergence than simple interpolation schemes [22].
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Displacement field calculation

While the calculation of displacement with 1-pixel accuracy is easily achievable due to the
discrete nature of digital images, obtaining displacement with sub-pixel accuracy requires ad-
hoc algorithms [23]. These algorithms need an accurate initial estimate of the displacement
in order to work. In the case of small displacements, the initial displacement estimate can be
determined with an accurate pixel-by-pixel search routine performed within the range speci-
fied in the deformed image. An alternative procedure consists of comparing the subsets of the
reference image and the deformed image in the Fourier domain: here the correlation is calcu-
lated by means of the complex product between the Fourier spectrum of the first subset and the
complex conjugate of the spectrum of the second subset. This method is particularly fast, but
unfortunately only suitable for small displacements [14].
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1.2.2 Image matching - Thirion Diffusion process
Thirion’s Demons algorithm estimates non-rigid deformations by successively estimating force
vectors that drive the deformation toward alignment, and then smoothing the force vectors by
convolution with a Gaussian kernel.
The main idea behind this method is to consider the contours of the reference image (fixed
image) as semi-permeable membranes. The other image (moving image), which is considered
a deformable grid pattern, is able to diffuse into these interfaces through the action of effectors
(demons) located within [24].
In order to be able to define Thirion’s method, the optical flow method is briefly presented.

Optical flow equation

The optical flow method allows the computation of pixels velocity/displacement by comparing
two temporal sequences images. In an image, each pixel has a brightness value associated with
it: let s and m be the intensity brightness values of image S and M respectively. One of the
widely used assumptions along the optical flow methods is to consider the intensity of the image
constant in time. For small displacements, this hypothesis leads to the following equation

v⃗ · ∇⃗s = m− s (1.22)

where v⃗ is the velocity. Since the velocity is expressed as pixel
frame , it is considered a displacement

in this application.

Figure 1.6: Instantaneous velocity from image M to image S [24]

Since there are two unknowns and one equation, another constraint is necessary. One possible
solution is to consider the end point of v⃗ as the closest point of the hypersurface m, with respect
to spatial (x, y, z) translations, which lead to equation

v⃗ =
(m− s) ∇⃗s(

∇⃗s
)2 (1.23)

Since small values of ∇⃗s lead to high number of v⃗, the equation 1.23 is multiplyed by (∇⃗s)
2(

(∇⃗s)
2
+(m−s)2

) ,

leading to
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v⃗ =
(m− s) ∇⃗s(

∇⃗s
)2

+ (m− s)2
(1.24)

or to

v⃗ = 0 if
(
∇⃗s

)2

+ (m− s)2 < ϵ

With this expression, the optical flow can be calculated in two steps:

1. compute the instantaneous optical flow for every point in S;

2. regularize the deformation field.

Matching methods using demons

Let M be the moving image, and S be the target image. It’s assumed that the contour O of the
scene image S is a membrane, and demons are scattered along O. It is assumed also that for
every point of the contour O, the vector perpendicular to it and oriented from the inside of the
object to the outside are determined.

Figure 1.7: Deformable model with demons (2D case) [25]

M contains a deformed version T−1 (O) of the contour O, and T is the transformation to be
recovered from M to S. Different permitted deformations T can be imposed, from totally rigid
to totally free.
It’s assumed to know how to determine, for each point P of M , if it is inside or outside the
shape T−1 (O). The demons, scattered along O, act locally to push the model M inside O if the
corresponding point of M is labeled inside, and outside O if it is labeled outside. To determine
if a point P is inside or outside the shape T−1 (O), the iso-contours are used. Through each
point P of S where a ∇⃗s ̸= 0 goes an iso-contour s = I , where I = s(P ) is constant. This
iso-contour is the interface between the inside regions s < I and the outside regions s > I . The
intensities comparison of the model M with I gives an automatic way to label the points of M
as inside or as outside. v⃗ (equation 1.24) is similar to an elementary force that pushes the point
P of M , along the same direction of ∇⃗s, toward the outside (orientation in agreement with ∇⃗s)
if m > I , and toward the inside (orientation in agreement with −∇⃗s) if m < I . This is due to
the assumption s = m.

In order to work, an iterative algorithm is necessary. The transformation T to be recovered from
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M to S is the final transformation of a series of successive transformations {T0, T1, ..., Ti, ...} ⊂
T. The space of deformations T can be rigid, affine, free form, etc. At each step, the deformed
version Ti(M) of the image M becomes Ti+1(M). This transformation is driven by the internal
forces fint created by the relationships between the model points, and the external forces fext
created by the interactions between M and T−1

i (S). The generic iterative scheme is illustrated
in figure 1.8.

Figure 1.8: Iterative scheme [24]

The first step is the determination of the set of demons DS from S: note that this selection
occurs only once (the demons are external to the loop). The next two steps constitute the
iterative scheme necessary to determine the final transformation T .

Demons DS extraction

The definition of the set of demons DS from S can be done in different ways. DS can be all
the points of the contour O, the whole grid (one demon per pixel) of S or DS can be defined
according to the segmentation of images M and S (in which case the nature of the problem
changes). Each demon carries a piece of information, which can be:

• its position P in S (possibly sub-pixel);

• its intensity s (P );

• its direction s (P ) oriented from inside to outside.

It is important to emphasize that the demon force is not limited to that provided by the optical
flow. Generally, the fewer demons in the image, the more sophisticated the definition of their
force can be.

Iterative part

The first step is to define an initial deformation T0, which can be the identity transformation.
After that, for each step, the internal and external forces have to be determined in order to
compute the next transformation T1. The generic iteration i consists of:

1. the determination of the elementary demon force f⃗i (P ) for each demon P ∈ DS;

2. the computation of the subsequent transformation Ti+1 from Ti and the elementary demons
forces.
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1 - State of the art 1.2 – Image registration

Pyramidal iteration scheme

In the case where each pixel is a demon, the computational cost may be too onerous. This is why
generally, a multi-scale scheme is adopted: a large number of iterations are performed at a low
scale (coarse scale) down to a few iterations when the scale is very fine. The total calculation
time will be equivalent to that of the finest scale. Gaussian smoothing is adopted to change
the resolution of the scale. The effect of the Gaussian filter is similar to the average filter, with
the difference that the average is not a ’net’ average, but a weighted average that gives more
importance to the central pixel and less and less importance as it moves away from it. For this
reason, this method provides a better smoothness and preserves the edges better.
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2 Formulation of the beam inverse finite
element

As there are different inverse finite element algorithms that differ not only according to the
developers but also according to the structure to be discretized, since the beam is the structural
element that is the subject of this thesis, the formulation of the inverse finite element beam is
presented. For the purpose of this thesis, iFEM formulations for the Timoshenko beam and the
Bernoulli-Euler beam are presented.

2.1 Timoshenko beam element
Consider a straight isotropic beam, with a circular cross-section, Young modulus E, shear mod-
ulus G e Poisson coefficient ν [26]. The used reference system 0 (x, y, z) is shown in figure
2.1.

Figure 2.1: Beam reference system 0 (x, y, z) [26]

Let ℓ be the frame member length, A the area of the beam cross section, Iy and Iz the moment
of inertia of the cross section along the y and z axes respectively, JT the torsion constant. The x
axis coincides with the center of gravity and the shear center, while y and z are the principal axes
of inertia. The following formulation neglects the axial warping due to torsion. The resulting
displacement field is
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2 - Formulation of the beam inverse finite element 2.1 – Timoshenko beam element

ux (x, y, z) = u (x) + zθy (x)− yθz (x)

uy (x, y, z) = v (x)− zθx (x)

uz (x, y, z) = w (x) + yθx (x) (2.1)

where:

• ux, uy and uz are the displacements along the axes x, y and z respectively;

• u, v e w are the shear center displacements;

• θx, θy and θz are the rotation along the tre axes.

The kinematic variables u ≡ [u, v, w, θx, θy, θz]
T and their positive guidelines are shown in the

figure 2.1. By using the geometric relationships the following linear deformations are obtained:

εx (x, y, z) = e1 (x) + ze2 (x) + ye3 (x)

γxz (x, y) = e4 (x) + ye6 (x)

γxy (x, z) = e5 (x)− ze6 (x) (2.2)

where the following notation has been used:

e1 (x) ≡ u,x (x)

e2 (x) ≡ θy,x (x)

e3 (x) ≡ −θz,x (x)

e4 (x) ≡ w,x (x) + θy (x)

e5 (x) ≡ v,x (x)− θz (x)

e6 (x) ≡ θx,x (x) (2.3)

The iFEM reconstructs the deformed structural shape by minimizing the weighted least squares
functional Φ containing the section strains obtained through in situ strain measurements, eε,
and e(u) defined by equations 2.3, i.e.,

Φ = ||e(u) − eε||2 (2.4)

The kinematic variables u are subsequently discretized with finite elements based on shape
functions N(x) with C0 continuity,

u (x) ≃ ue (x) = N(x)qe (2.5)

where qe denotes the nodal degree of freedom (DOF) of the element. Consequently, the func-
tional total is the sum of the N contributions of the individual elements:
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Φ =
N∑
e=1

Φe (2.6)

Taking into account the axial stretching, the bending, the twisting, and the transverse shear-
ing, the element functional Φe is given by the scalar product of the weighting coefficients vector
we ≡ {we

k} = {w0
1, w

0
2

(
Iey
Ae

)
, w0

3

(
Iez
Ae

)
, w0

4, w
0
5, w

0
6

(
Je
T

Ae

)
} and the vector of least-squares com-

ponents Φe ≡ {Φe
k}, (k = 1, ..., 6),

Φe (ue, eε) ≡
6∑

k=1

we
kΦ

e
k = wΦ (2.7)

where:

• w0
k (k = 1, ..., 6) denotes the adimensional weighting coefficients;

• Ae, Iey , I
e
z , and Je

T are, respectively, the cross-section area, the inertia moments along y
and z axis, and the torsion constant of the element cross-section.

Different values can be assigned to the coefficient w0
k in order to impose a stronger or weaker

correlation between the measured section-strain components and their analytical counterparts.
A higher value of w0

k imposes a stronger correlation and vice versa. The values w0
k are 1 for

all the inverse elements that have a strain sensor, while they are equal to 10−4 for the inverse
element without strain data.
The six element functional components are given in Euclidean norm

Φe
k ≡

ℓe

n

n∑
i=1

[
ek(i)(ue)− eεk(i)

]2
(k = 1, ..., 6) (2.8)

where ℓe is the element length, n is the number of positions where the section strains are eval-
uated; eεk(i) is the kth section strain computed from the strains measured at xi; ek(i) indicates
the kth section strain interpolated within the element and evaluated at the same location. By
combing the equations 2.3 and 2.5, the analytic element level section strains e(ue) are expressed
in matrix form as

e(ue) = B (x)qe (2.9)

where the B (x) matrix contains the derivatives of the shape functions N (x). By substituting
equation 2.9 into equation 2.8 and then in equation 2.7, the following quadratic form is obtained

Φe =
1

2
(qe)T keqe − (qe)T fe + ce (2.10)

where ce is a constant while ke and fe are defined as follows

ke =
6∑

k=1

wkke
k, fe =

6∑
k=1

wkfek (2.11)
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with

ke
k ≡

Le

n

n∑
i=1

[
BT

k (xi)Bk (xi)
]
, fek ≡

Le

n

n∑
i=1

[
BT

k (xi) e
εi
k

]
(k = 1, ..., 6) (2.12)

Note that ke resembles the stiffness matrix of an element in the direct finite element method
and that fe resembles the load’s vector. ke depends from the measure points locations, xi, and
their number n, while fe depends from the measured strain values [27]. By minimising the el-
ement functional Φe with respect to qe, the matrix element results in the equation keqe = fe.
Assembling the contributions of the finite elements, taking into account the appropriate coordi-
nate transformations, and specifying the problem-dependent displacement boundary conditions,
results in a system of non-singular algebraic equations of the form

Kq = F (2.13)

where K is a non-singular system matrix provided that at least a minimum number of strain
gauges, n = nmin, is used, i.e. nmin = 1 and 2, respectively, for constant and linearly dis-
tributed strains of the element section [26]. The solutions of the equation 2.13 for the displace-
ment degrees of freedom, q, are efficient. The matrix K is inverted only once because it remains
unchanged for a given distribution of strain sensors and is independent of the measured strain
values. The vector F, however, depends on the measured strain values; therefore, with each
update of the strain measurement during deformation, the matrix-vector multiplication, K−1F,
gives rise to the vector of unknown degrees of freedom, q.

For the structural elements of the frame loaded only by forces and moments at the free end,
it can be shown that the section strains show the following distribution: e1, e4, e5 and e6 are
constant, while e2 and e3 are linear [27]. It follows from the equation 2.3 that u and θx are
linear, θy and θz parabolic, v and w cubic. Thus, the following interpolations are adopted,

u (x) =
∑
i=1,2

L
(1)
i (x)ui

θx (x) =
∑
i=1,2

L
(1)
i (x) θxi

θy (x) =
∑

j=1,r,2

L
(2)
j (x) θyj

θz (x) =
∑

j=1,r,2

L
(2)
j (x) θzj

v (x) =
∑
i=1,2

L
(1)
i (x) vi −

∑
j=1,r,2

N
(3)
j (x) θzj

w (x) =
∑
i=1,2

L
(1)
i (x)wi +

∑
j=1,r,2

N
(3)
j (x) θyj (2.14)

where the subscripts 1, r and 2 denote, respectively, the positions along the length of the beam
at the left-end, middle, and right end of the node (see figure 2.2).

24



2 - Formulation of the beam inverse finite element 2.1 – Timoshenko beam element

Figure 2.2: Beam inverse finite element geometry and nodes [26]

L
(1)
i (x) (i = 1, 2) are linear Lagrange polynomials; L(2)

j (x) (j = 1, r, 2) are quadratic Lagrange
polynomials. The cubic polynomials N

(3)
j (x) (j = 1, r, 2) are obtained from standard cubic

Lagrange polynomials by forcing the transverse shear deformations of the section (e4 and e5)
to be constant along the element. The Li, Lj, Nj expression are reported in appendix A. The
inverse beam element has 14 degrees of freedom: 6 at each end node plus 2 rotations θyr and θzr
at the mid-span. By solving the equation system of the element keqe = fe exactly with respect
to the external DOFs, the two internal rotational degrees of freedom are condensed, resulting in
a topology of elements with two nodes/twelve degrees of freedom.

2.1.1 Estimating strain measures
In order to implement iFEM, it is necessary to calculate the six sectional strain measurements
of the beam (equation 2.3). These measures are calculated using the experimental linear strain
measurements made on the surface of the beam. The calculation of the strain measurements
depends on the beam cross-section: here, the procedure valid for any type of cross-section is
given [28]. To this end, consider a prismatic beam with a generic cross-section, subjected to
axial, transverse, and torsional loads at the free end. Figure 2.3 shows the generic airfoil-shaped
beam with its reference system (figure 2.3(a)), the coordinate c that originates at the trailing edge
of the profile (figure 2.3(b)), and a strain gauge measuring the generic strain, ε∗, placed on the
surface of the beam with orientation β with respect to the x longitudinal axis of the beam (figure
2.3(c)).
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Figure 2.3: (a) Beam geometry and kinematic variables, (b) beam cross
section with the parameter c indicating the distance along the perimeter, (c)
strain gauge placed on the surface of the beam, oriented at an angle β with
respect to the axis of the beam [28]

The strain intensity, ε∗, can be expressed in terms of the axial strain, εx, the tangential strain εc,
and the tangential shear strain, γxc, on the perimeter of the beam section. Using a compatible
strain-tensor transformation, this strain can be expressed as [27],

ε∗ (x, c, β) = εx (x, c) cos
2 β + εc (x, c) sin

2 β + γxc (x, c) cos β sin β (2.15)

Equation 2.15 can be further simplified [27],

ε∗ (x, c, β) = εx (x, c)
(
cos2 β − ν sin2 β

)
+ γxc (x, c) cos β sin β (2.16)

The axial strain, εx (x, c) and the tangential shear strain, γxc (x, c) shoul be rapresented in terms
of the strain measures. The axial strain, εx (x, c), can be expressed as,

εx (x, c) = e1 (x) + e2 (x) z (c) + e3 (x) y (c) (2.17)

The tangential shear strain γxc (x, c) can be expressed as the superposition of strains due to
transverse and torsional loads. If the beam is subjected to transverse or torsional loads, the
shear strain is not constant over the beam section, but changes depending on the coordinate
c. The variation of the tangential shear strain due to a transverse load acting along the z-axis
can be expressed by the product of the shear strain variation function, f1 (c), and the maximum
tangential shear strain, γz

xc,max, which represents the magnitude of the variation. Similarly, the
variation in tangential shear strain due to a transverse load acting along the y-axis can be ex-
pressed by the product of the shear strain variation function, f2 (c), and the maximum tangential
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2 - Formulation of the beam inverse finite element 2.1 – Timoshenko beam element

shear strain, γy
xc,max, representing the intensity of the variation.

In the case of torsional loads acting at the tip of the beam, the variation of the tangential shear
strain is expressed as the product of the torsional strain measure, e6, and the function f3 (c),
which represents the variation of the tangential shear strain associated with a unit degree of
torsion (e6 = 1).
Through the superposition of effects, the total change in tangential shear strain γxc can be ex-
pressed as,

γxc (x, c) = γz
xc,max (x) f1 (c) + γy

xc,max (x) f2 (c) + e6 (x) f3 (c) (2.18)

A very important aspect concerns the way in which it is possible to relate the maximum tan-
gential shear strains, {γy

xc,max, γ
z
xc,max}, which are measured experimentally, with the cross-

sectional strain measurements, {e4, e5}, which are based on the Timoshenko beam theory. In
fact, while the 3D beam predicts that transverse shear strains vary along the cross-section, the
Timoshenko beam assumes that these strains are constant for each cross-section. To relate these
strains, in the case of the cantilever beam loaded at the free end with a load directed towards
the z-axis, the shear strain energy per unit length in the mid-beam cross-section (to avoid end
effects) of the 3D beam is equated with a similar case for the Timoshenko beam. For the Tim-
oshenko beam, the shear strain energy per unit length, ϕT im

SE , is the same for each section of the
beam. In the present case, ϕT im

SE can be defined as,

ϕT im
SE =

F 2
z

2AG
(2.19)

The two shear strain energies can be equalized using a coefficient, ktz, the classical shear cor-
rection factor, defined as the ratio between the two quantities,

ktz =
ϕT im
SE

ϕFE
SE

=
F 2
z

2AGϕFE
SE

=
Fz/GA

e4
(2.20)

where ϕFE
SE is the shear strain energy calculated using a high-fidelity 3D finite element model.

The coefficient, kty, is calculated similarly in the case where the load is applied along the y axis,

kty =
ϕT im
SE

ϕFE
SE

=
F 2
y

2AGϕFE
SE

=
Fy/GA

e5
(2.21)

It is now possible to relate {e4, e5} with {γy
xc,max γ

z
xc,max}, using the coefficients {kεy, kεz},

defined as the ratio between the two,,

kεz =
e4

γz
xc,max

=
Fz/GA

ktzγz
xc,max

kεy =
e5

γy
xc,max

=
Fy/GA

ktyγ
y
xc,max

(2.22)
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The coefficients {kty, kεy, ktz, kεz} are a function only of the shape of the beam section. It is
now possible to express the tangential shear strain along the perimeter of the beam in terms of
the shear coefficients as,

γxc (x, c) =
1

kεz
e4 (x) f1 (c) +

1

kεy
e5 (x) f2 (c) + e6 (x) f3 (c) (2.23)

Finally, by substituting the equations 2.17 and 2.23 into the equation 2.16, it is possible to
express the experimental strain measurements as a function of the section strain measurements,

ε∗ (x, c, β) = (e1 (x) + e2 (x) z (c) + e3 (x) y (c))
[
cos2 β − ν sin2 β

]
+

+

(
1

kεz
e4 (x) f1 (c) +

1

kεy
e5 (x) f2 (c) + e6 (x) f3 (c)

)
cos β sin β (2.24)

The equation 2.24 constitutes an algebraic linear equation with six unknowns, so it requires six
experimental strain measurements referring to the same cross-section for its resolution.

2.2 Bernoulli-Euler beam element
Consider a straight isotropic beam with Young modulus E, shear modulus G e Poisson coeffi-
cient ν [29]. The beam has a rectangular cross-section and the used reference system (x, y, z)
is shown in figure 2.4.

Figure 2.4: Beam reference system (x, y, z) [29]

Let L be the frame member length, A the area of the beam cross section, Iy and Ix the moment
of inertia of the cross section along the y and x axes respectively. The x axis coincides with
the center of gravity and the shear center, while y and z are the principal axes of inertia. The
following formulation neglects the axial warping due to torsion. The resulting displacement
field is
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uz (x, y, z) = w (z) + yϕx (z)− xϕy (z)

uy (x, y, z) = v (z)

ux (x, y, z) = u (z) (2.25)

where:

• ux, uy and uz are the displacements along the axes x, y and z respectively;

• w, v e u are the shear center displacements;

• ϕx and ϕy are the rotation around the x and y axis, repsectively.

The kinematic variables u = [w, v, ϕx, u, ϕy]
T and their positive guidelines are shown in figure

2.4. By using the geometric relationships the following linear strains are obtained:

εz (x, y, z) = w,z (z) + yϕx,z (z)− xϕy,z (z)

γzx (z) = u,z (z)− ϕy (z) = 0

γzy (z) = v,z (z) + ϕx (z) = 0 (2.26)

The transverse shear strains are zero, in accordance with the Bernoulli-Euler theory which pre-
dicts that the deformed beam sections remain flat and orthogonal to the beam axis.
The axial strain, εz0, and the two curvatures χx and χy referring to the x and y axes respectively,
are introduced,

εz0 ≡ dw

dz

χx ≡ ϕx,z = −d2v

dz2

χy ≡ ϕy,z =
d2u

dz2
(2.27)

The axial strain component, εz (x, y, z), can be expressed as a function of sectional strains
e(u) = {εz0, χx, χy}T , as

εz (x, y, z) = εz0 (z) + yχz (z)− xχy (z) (2.28)

Similarly to the Timoshenko beam element, the iFEM reconstructs the deformed structural
shape by minimizing the weighted least squares functional Φ containing the section strains
obtained through in situ strain measurements, eε, and e(u), defined by equations 2.27 i.e.,

Φ(u) = ||e(u) − eε||2 (2.29)

The kinematic variables u are subsequently discretized with finite elements based on shape
functions N(x) of degree consistent with the behaviour of the beam,

29



2 - Formulation of the beam inverse finite element 2.2 – Bernoulli-Euler beam element

u (z) ≃ ue (z) = N(z)qe (2.30)

where qe denotes the nodal degree of freedom (DOF) of the element. Consequently, the func-
tional total is the sum of the N contributions of the individual elements:

Φ =
N∑
e=1

Φe (2.31)

Taking into account the axial stretching and the two curvatures, the element functional Φe to be
minimized is defined as,

Φe
εz ≡ le

n

n∑
i=1

(
εz0 (zi)− εεzoi

)2
Φe

χx ≡ Iexl
e

Aen

n∑
i=1

(
χx (zi)− χε

xi

)2
Φe

χy ≡
Iey l

e

Aen

n∑
i=1

(
χy (zi)− χε

yi

)2 (2.32)

where:

• n is the number of the axial locations where the section strains are evaluated, with coor-
dinates zi (0 ≤ zi ≤ le);

• le, Ae, Iex and Iey are, respectively, the length of the element, the area, and the inertia
moments with respect to the x and y axes of the section, respectively.

By combing the equations 2.27 and 2.30, the analytic element level section strains e(ue) are
expressed in matrix form as

e(ue) = B (z)qe (2.33)

where the B (z) matrix contains the derivatives of the shape functions N (z). By substituting
equation 2.33 into equation 2.32 and then adding all the contributions, the following form is
obtained

Φe

2
=

1

2
(qe)T keqe − (qe)T {fe}+ c (2.34)

where ke is the sum of

30



2 - Formulation of the beam inverse finite element 2.2 – Bernoulli-Euler beam element

ke
εz =

le

n

n∑
i=1

[
BT

εz (zi)Bεz (zi)
]

ke
χx =

Iexl
e

Aen

n∑
i=1

[
BT

χx (zi)Bχz (zi)
]

ke
χy =

Iey l
e

Aen

n∑
i=1

[
BT

χy (zi)Bχy (zi)
]

(2.35)

and fe is the sum of

feεz =
le

n

n∑
i=1

[
BT

εz (zi) ε
ε
zoi

]
feχz =

Iexl
e

Aen

n∑
i=1

[
BT

χx (zi)χ
ε
xi

]
feχy =

Iey l
e

Aen

n∑
i=1

[
BT

χy (zi)χ
ε
yi

]
(2.36)

The considerations on the matrices [ke] and [fe] are analogous to those in the treatment of the
Timoshenko beam element. Moreover, proceeding in a similar way as in the previous treatment
yields the same equation,

Kq = F (2.37)

2.2.1 Element shape functions
The element shape functions definition is based on the degree of interpolation required: conti-
nuity of order Cj−1 must be guaranteed on the element interface, where j is the maximum order
of derivation of the displacements in the variational formulation (equation 2.27). Being j = 1
for axial displacement and j = 2 for the two transverse displacements, C0 and C1−continuity
must be ensured for axial and transverse displacements, respectively. In this section, the inverse
element called 0th order element is defined. The interpolation has been realized through the use
of Hermite polynomials in terms of non-dimensional coordinates ξ = (z/le) ∈ [0, 1], where
z ∈ [0, le] and le indicates the element length.
In figure 2.5 is presented the configuration of the 0th order element. This one is characterized
by two nodes 1 (ξ = 0) and 2 (ξ = 1) with ten degrees of freedom.
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Figure 2.5: 0th order element [29]

The formulation presented is consistent with the equilibrium equations in the case of concen-
trated forces and moments applied to the end nodes. From the constitutive equations, the result-
ing forces and moments are,

N = EA εz0

Mx = EIx χx

My = EIy χy (2.38)

The equation 2.38 shows that the axial strain εz0 is constant, while the curvatures χ are linear.
It follows that w is linear, while u and v are cubic. Then, the shape functions of w are obtained
considering the Hermite polynomial defined on two nodes ensuring the continuity of the single
function, while the shape functions of u and v are obtained considering both the continuity of
the function and of the derivative. The following set of interpolation relations is obtained:

w (ξ) =
2∑

i=1

H
(0)
0i (ξ)wi

v (ξ) =
2∑

i=1

H
(1)
0i vi +H

(1)
1i (ξ)ϕxi

u (ξ) =
2∑

i=1

H
(1)
0i ui +H

(1)
1i (ξ)ϕyi (2.39)

where H(0)
0i (i = 1, 2) are the linear Lagrange polynomials, whereas H(1)

ki (i = 1, 2; k = 0, 1) are
the cubic Hermite polynomials.

2.2.2 Estimating strain measures
Similarly to the Timoshenko beam element, in order to implement iFEM, it is necessary to
calculate the sectional strain measurements of the beam. Unlike before, the sectional strains
are 3, not 6. This simplifies the problem because only 3 experimental strain measurements
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are required for each section to determine the sectional strains e(u). Consider a generic ax-
ial co-ordinate of the beam zi, at which 3 strain gauges are mounted at co-ordinates x1 and
yi (i = 1, 2, 3) (figure 2.6).

Figure 2.6: Strain gauge coordinate system [29]

The equation relating the axial strain εεz,i at the zi coordinate to the sectional strains, is

εεz,i = εεz0 + yiχ
ε
x − xiχ

ε
y (2.40)
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3 Strain measuring sensors

In this section, a description of the fiber Bragg grating and strain gauges is presented.

3.1 Fiber Bragg Grating
As already mentioned, the discrete surface strain measurements can be provided by strain
gauges and/or fiber Bragg grating. Even though only strain gauges have been used for the
experimental tests, here is briefly reported the fiber Bragg working principle since its use is
rapidly increasing in the aeronautic field.

Figure 3.1: Bragg fiber [36]

The optical strain gauges consist of optical fibers containing an internal Bragg grating. The
optical fiber is similar to the normal fiber used for telecommunications and can be very long
and have many measuring points distributed along its length. The fiber consists of two layers:
the core and the cladding. The fiber can be made of silica or polymeric material [30]. In the first
case, the core is drugged with germanium in order to increase the refractive index n1 while the
cladding is drugged with boron in order to decrease the refractive index n2. Due to the refractive
index discontinuity between the core and cladding, reflection phenomena occur.
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Snell's law: 

90°

Figure 3.2: Snell’s Law

For the Snell’s law, n1 sin θ1 = n2 sin θ2. If n1 > n2 and θ1 > θcr (where θcr = arcsin n2

n1
),

total internal reflection occurs. By exploiting this physical principle, the light remains within
the core. In the core of the optical fiber is installed the fiber Bragg grating (FBG), whose length
varies between 0.1 and 10mm. They are realized by means of appropriate local modulation
of the refractive index of the core of a photosensitive optical fiber, carried out by means of an
energy source such as UV radiation. When an incident spectrum of light propagates through the
grating, a specific wavelength named the Bragg wavelength is reflected back, while the rest of
the spectrum is transmitted unaffected (the attenuation is minimum at the wavelength 1.550 nm
and is equal to 0.2 dBkm−1) [31]. When an external axial strain is induced, the FBG reacts
accordingly causing a proportional shift in the reflected Bragg wavelength which takes a longer
or shorter time to complete the entire round trip: from this time, the strain can be traced.
The reasons why Bragg fiber is widely used for structural health monitoring of aircraft compos-
ites are:

• they are very well suited to be embedded into composite materials without altering their
mechanical performances, thanks to their lightweight and small dimensions;

• the possibility of inscribing hundreds of Bragg gratings in a single optical fiber, allowing
the measurement of the strains on many points of the structure or/and serial multiplex
ability;

• they are characterized by a long lifetime (more than 20 years).

• they are stable over time (no calibration required) and do not suffer from corrosion.

• immunity against electromagnetic radiation and insensitivity to radio frequency interfer-
ence.

Although difficulties remain associated with the process of embedding fibers into composites,
the above-mentioned characteristics make Bragg fiber excellent for monitoring the strain and/or
tensional state of composite materials whose non-homogenous nature leads to complex and not
yet perfectly understood degradation and failure processes [1].

35



3 - Strain measuring sensors 3.2 – Strain Gauge

3.2 Strain Gauge

Figure 3.3: An electric strain gauge [37]

The strain gauge consists of a grid of very thin metallic wire rigidly applied on a plastic ma-
terial support. The strain gauge is glued integrally on the structure surface. When the surface
experiments deform due to loads applied to it, the mechanic deformation induces a variation in
the dimensions of the grid which causes a change in the electrical resistance. Then the voltage
measurement is gathered using data acquisition thanks to the gauges lead welded to the sensitive
element of the base. The law that rules the change from mechanical strain to electrical variation
is the Ohm’law.

Figure 3.4: Mechanical principle [30]

Consider that the strain gauge is glued integrally to the structure, and let l0 be the grid length
[30]. When a force is applied to the structure, the strain gauge grid undergoes the same strain, ε,
as the structure. Ohm’s second law states that the resistance R of a conducting wire is directly
proportional to its length l0 and inversely proportional to its cross-sectional area A

R = ρ
l0
A

(3.1)

where ρ is a constant of proportionality known as resistivity. This depends on the material the
wire is made of and its temperature. The strain gauge resistance variation can be expressed as

∆R =
∆ρ

ρ0
+

∆l

l0
− ∆A

A0

(3.2)

The resistance variation can be related to the strain of the grid; in order to do this, it must be
ensured that the cross-section A and the resistivity of the material ρ vary as little as possible.
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This is why efforts are made to make a long and thin conductor: in this way, during mechanical
deformation, a large change in length and a small change in cross-sectional area are obtained.
Furthermore, in order to have an important and sufficient change in R for the measurement, a
certain length of the conductor is required: in fact, the grid is created by folding the conductor
to have a sufficiently large length. This allows for both a significant change in resistance and a
localized measurement of strain.
Let’s introduce the gauge factor SA: it is the ratio of the relative change in electrical resistance
R, to the mechanical strain ε

SA =
∆R
R
∆L
L

=
∆R
R

ε
= 1 + 2ν +

∆ρ
ρ

ε
(3.3)

The gauge factor value depends on the material used for the manufacture of the strain gauge;
for metal strain gauges its value is between 2 and 4.
To evaluate the strain ε, it’s necessary to compute the ratio ∆R

R
. In order to do this, it is necessary

to use an instrument known as an ohmmeter which allows for measuring the resistance of the
conductor. However, because it is a very imprecise measure it is preferred to measure the
voltage applied at the ends of the strain gauge, which is much more precise, easy, and simple to
measure. The strain gauge must be inserted into a circuit known as a Wheatstone bridge, which
allows the resistance variation to be measured indirectly by appreciating the voltage variations
at the ends of the circuit. A Wheatstone bridge scheme is reported in figure 3.5.

Figure 3.5: Wheatstone bridge

In the Wheatstone bridge there are 4 resistances connected in a rhomboid shape. The system is
supplied at terminals C and D with a known voltage Ve, while a voltage V0 is measured at the
terminals A and B. If the resistance values are all the same, the voltage V0 is zero and in this
case, the bridge is said to be balanced. More in general, the bridge is balanced if the following
equation is respected

R1R3 = R2R4 (3.4)

If one of these four resistances is replaced with the strain gauge grid, which is in fact a resis-
tance, as its resistance changes due to mechanical stress acting on the structure, an unbalancing
of the bridge is obtained. Knowing the applied voltage Ve and by reading the voltage V0, it’s pos-
sible to correlate the change in strain gauge resistance with its strain. The relationship between
the four resistance and the two voltages for the Wheatstone bridge is
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V0

Ve

=
R1R3 −R2R4

(R1 +R2) (R3 +R4)
(3.5)

By performing a differential variation of the V0

Ve
ratio, it is possible to obtain a direct proportion-

ality between the variations of the individual resistance in proportion to the voltage V0

V0

Ve

=
1

4

[
∆R1

R1

− ∆R2

R2

+
∆R3

R3

− ∆R4

R4

]
=

SA

4
[ε1 − ε2 + ε3 − ε4] (3.6)

where it has been used the equation 3.3 to express the relantioship between gauge factor SA,
strain ε and change in electrical resistance ∆R

R
. The equation 3.6 is valid in the case all four

resistances have been replaced with strain gauges.
Let’s consider the typically used configurations.

Figure 3.6: Full bridge configuration

In figure 3.6 is presented the full bridge configuration, which is the case where all the resistances
have been replaced by the strain gauges (the resistances replaced by strain gauges are colored
red in the Wheatstone Bridge). The concentrated load is applied in the free end of the beam in
its center of gravity, leading to the strain gauges 1-2-3-4 to measure the same strain (in absolute
value)

ε1 = ε3 = −ε2 = −ε4

Substuting the strain gauges strains in equation 3.6 leads to

V0

Ve

=
SA

4
[ε1 − ε2 + ε3 − ε4] =

SA

4
[ε1 − (−ε1) + ε1 − (−ε1)] =

SA

4
[4ε] = SAε (3.7)

where the following statment ε1 ≡ ε has been applied. The full bridge configuration enables
gaining the maximum ratio value V0

Ve
. Attention must be paid to the strain gauges placement in

order to get an unbalanced bridge. If strain gauges 2 and 3 were reversed, this would result in a
balanced bridge and no strain could be measured.
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Figure 3.7: Half bridge configuration (type II)

Use the half-bridge configuration (type II) (figure 3.7) leads to the following V0

Ve
ratio

V0

Ve

=
SA

4
[ε1 − ε2] =

SA

4
[ε1 − (−ε1)] =

SA

4
[2ε] =

SA

2
ε (3.8)

When strain gauges are used, another important factor to consider is temperature compensation.
Let’s consider the quarter bridge configuration in figure 3.8, assuming that only strain gauge 1
is connected to the Wheatstone bridge.

Figure 3.8: Quarter bridge configuration

In this case the strain gauge 1 measure both the mechanical (ε̄) and the thermal strain (εT )

ε1 = ε̄+ εT (3.9)

Using equation 3.6 adapted for the quarter-bridge configuration and substituting the equation
3.9, leads to

V0

Ve

=
SA

4
[ε1] =

SA

4

[
ε̄+ εT

]
(3.10)

With this kind of configuration both the thermal and the mechanical strain are measured. This
is why the used quarter-bridge configuration that provides the temperature compensation is the
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one illustrated in figure 3.8. Here the strain gauge 2 is called passive strain gauge since it’s
glued on an unloaded structure that is made of the same material as the structure whose strain
is to be calculated. The strains measured by the strain gauges 1 and 2 are

ε1 = ε̄+ εT ; ε2 = εT (3.11)

Substituting equation 3.11 in equation 3.6,

V0

Ve

=
SA

4
[ε1 − ε2] =

SA

4

[
ε̄+ εT − εT

]
=

SA

4
ε̄ (3.12)

The full-bridge and half-bridge configurations shown before already provide temperature com-
pensation. In figure 3.9 is reported the half-bridge configuration used for the first experimental
test.

Figure 3.9: Half bridge configuration (type I)

The strain gauges 1 and 2 are both active, with the difference that strain gauge 1 is mounted in
the direction of axial strain and strain gauge 2 acts as a Poisson gage and is mounted perpendic-
ular to the principal axis of strain. This configuration allows for temperature compensation and
for a V0

Ve
ratio greater than the quarter-bridge configuration but less than the half-bridge type II

configuration,

V0

Ve

=
SA

4
[ε1 − ε2] =

SA

4
[ε− (−νε)] =

SA

4
(1 + ν) ε (3.13)
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4 Experimental tests

Two different experimental tests have been carried out. First, the two experimental tests will
be described as their relative setups, subsequently, the data fusion methods will be presented
together with the developed algorithms.

4.1 Experiment 1
In the development of a new method, it is a good rule to start with very simple case studies and
then gradually increase their complexity. The easiest case study, which was actually applied,
is the loading of a beam with static loads. The first trial tests have been performed at George
Mason University, in the Advanced Infrastructure Monitoring (AIM) Lab. The beam used in
the test was made of architectural 6063 Aluminum, manufactured through the extrusion process
followed by artificial aging. The beam’s geometric dimensions and its material properties are
reported in table 4.1, while the beam and its principal reference system are reported in figure
4.1.

X

Z

Y

Figure 4.1: Beam geometric dimensions

b = 50.80mm
h = 18.50mm
t = 1.60mm
L = 2414.6mm
E = 68 900MPa
ν = 0.33

Table 4.1: Beam geometric properties and material characteristics
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Initially, the experiment was conceived as a test in which to perform a data fusion between
different techniques and measurements, these were:

• strains provided by strain gauges;

• local displacements provided by video and photogrammetric techniques;

• global displacements provided by photogrammetric techniques.

To the list above should be added also the laser sensor, but since only one sensor was available,
this was used to check whether the behavior of the experimental beam was in line with that
of the analytical beam. However, since the photogrammetric technique based on the Structure
from Motion (SfM) algorithm was very time-consuming for the 3D reconstruction of the beam’s
displacement field, it was decided downstream of the experiment to exclude it from the data
fusion.

4.1.1 Experimental setup
Six strain gauges were installed on the beam in the half-bridge type I configuration (figure 3.9),
for a total of 3 strain local values along the beam. The strain gauges were installed at the
beam locations L

4
, L
2

e 3L
4

and then they were connected to the acquisition system NI cDAQ-
9188 through a C module series. In figure 4.2 is reported the beam cross section in the inertial
reference system,

Figure 4.2: Beam cross-section in main inertia reference system

The type I half-bridge configuration was chosen because it was the best compromise between
the simplicity of strain gauge installation and high V0/Ve gain. In the case of the type II half-
bridge configuration, in order to record the highest V0

Ve
value, one strain gauge should have been

placed at the bottom of the beam (horizontal element) while the second strain gauge should
have been placed at the same distance from the neutral axis as the first strain gauge in order to
record the same strain (on the vertical element). To avoid errors caused by incorrect positioning
of the second strain gauge, it was decided to apply the Type I configuration. However, in order
to be able to use this type of configuration, it was also necessary to provide the data acquisition
system with the material’s Poisson coefficient (ν = 0.33).
Next, taking care to cover the strain gauges with tapes, the beam was painted. The paint was
applied to all surfaces of the beam by means of small drops of three different colors. The paint-
ing was performed in order to apply the global photogrammetry and the optical flow techniques,
which require texture presence to be able to work. Even though these two techniques were not
been used, the presence of texture improved and helped the image registration method.
After applying a stabilizer and allowing the paint to dry, the beam was placed on the support
system. Four holes were drilled on the beam, two at each end so that it could be mechanically
connected (via bolt) to the nub of a standard structural pivot (figure 4.3).
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Figure 4.3: Structural pivot [38]

The nub was connected to the support system through his arms. The structural pivot is the
element that allows the beam to be constrained as a hinge or as a clamp. Referring to the figure
4.4, depending on how tightly the screw was tightened, the pivot was made more or less able
to rotate. If the screw was loosely screwed in, the simulated constraint was close to that of the
hinge; if the screw was fully screwed in, the simulated constraint was that of the clamp.

Figure 4.4: Structural pivot - beam

To simulate the roller constraint, two rotating plastic elements were mounted on the vertical
support. These element are reported in figure 4.5
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Figure 4.5: Roller constraint

The other measuring sensor in the experiment, apart from strain gauges, was the laser sensor.
The laser sensor adopted was the optoNCDT 1420; it can measure a maximum displacement of
10mm, with a sampling frequency of up to 4 kHz. Only one laser sensor was available and it
was placed on a support system so that it was close enough to the beam.

Figure 4.6: Laser sensor on its support

Once the beam had been placed on the support system and the position of the latter had been
decided, the camera was positioned to video record the beam during the load application phase.
The camera, of the Ueye industrial family, was placed on a tripod which ensured the mainte-
nance of the position.
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Figure 4.7: Camera on its support

A whiteboard was placed behind the beam so as to increase the contrast between the background
and the beam, making it easier for the image-to-image matching (IIM) algorithms to calculate
the displacement. The final setup is reported in figure 4.8.

Figure 4.8: Experiment 1 setup
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4.1.2 Loads and boundary conditions
Once the set-up was completed, the tests could be carried out. Each test was performed with
the following procedure:

1. at time t = 0 sec, recording was started with the video camera, as the laser sensor and
strain gauges samplings;

2. at t = 3 sec the beam was loaded;

3. at t = 6 sec the beam was unloaded,

4. at t = 10 sec the recording and the samplings ended.

The reason why only 10 seconds were used to make the videos is due to the software used for
recording the strain data, which acted for a maximum of 10 seconds. It should be noted that the
procedure above described was repeated three times for each test. Since loading was done by
placing weights on the beam or on supports attached to it, there were the risks of:

• placing the weight in a position different from the agreed one;

• introducing undesired dynamic effects.

By performing this test only once, there would have been a risk of making such errors without
realizing it. Instead, by executing it three times, it was ensured that the measurements were
consistent with each other and that neither of the two errors mentioned above was committed.
Each load condition analyzed is shown in the table 4.2.
Note that for loads greater than 0.5 kg, the approximation symbol ’≃’ appears for the point of
load application and for the position of the roller. The reason is the following: for loads equal
to or less than 0.5 kg, weights were available that could simply be placed on the beam. In figure
4.9 is shown one of these weights caught on camera.

Figure 4.9: Kind of weight used for the test
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Case Study Load (F = mg) Load application points Constraints

1

1. m = 0.05 kg
L
2

F

L/2 L/2

2. m = 0.2 kg

3. m = 0.5 kg

2 m = 0.2 kg L
4
, 3L

4 FF

L/4 L/4L/2

3

1. m = 6kg ≃ L
4
, ≃ 3L

4

FF

L/4 L/4L/2

L/2

2. m = 6kg ≃ 3L
4

F

3L/4 L/4

L/2

3. m = 0.5 kg L
2 F

L/2 L/2

4

1. m = 6kg ≃ L
4
, ≃ 3L

4

FF

L/4L/2

L/2

L/4

2. m = 6kg ≃ 3L
4

Table 4.2: Case studies

In the case of higher loads, the loads were applied by means of disc weights placed on a support
that was attached with bands to a plastic element that was placed on the beam. To avoid placing
the plastic element over the electrical cables of the strain gauges, and thus to avoid compromis-
ing their connection to the data acquisition system, they were placed 2 centimeters away from
the indicated positions in table 4.2, precisely at z = 622.3mm and z = 1792.3mm, while the
roller was placed at z = 1187.45mm
Once the experiments had been performed, the videos were stored, while the strain gauge strains
and laser displacements were saved in Excel files.
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4.2 Experiment 2
The second test has been conducted at the LAQ-AERMEC laboratory of the Mechanical and
Aerospace Engineering Department of the Politecnico of Torino. The experiment was per-
formed on a C shaped beam, made of architectural 6063 Aluminum, clamped at one end, and
loaded in the free end. Loading the beam at a point other than the shear center (SC) would
cause the beam to twist. Wanting to investigate the case of pure bending, the beam was loaded
at the shear center. The beam’s geometric dimensions and material properties are reported in
table 4.3, while a beam sketch is reported in figure 4.10.

Z

Y

h
/2

9.383

SC

20.006

X

Figure 4.10: Beam geometric dimensions

b = 30.13mm
h = 45.20mm
t = 2.08mm
L = 1100mm
E = 68 030MPa
ν = 0.335

Table 4.3: Beam geometric properties and material characteristics

4.2.1 Experimental setup
The second experimental test was carried out after both the first test and the writing of the
algorithm. This is why the test was set up in such a way as to eliminate the criticalities that
occurred in the first experiment. These are given at the end of subsection 6.1.4 and are reported
here:

1. having only one accurate experimental measurement of beam displacement;

2. using an insufficient number of strain gauges to apply iFEM;

3. not having any strain gauges in the vicinity of the constraints;

4. constraints being far from the ideal ones;
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5. having taken only half of the beam with the video camera.

To compensate for the reduced number of strain gauges in the first experiment, 14 were installed
in the second. Two axial strain gauges were placed 12mm away from the clamp, one on the
upper horizontal flange and one on the lower, while the others were installed, along 45◦ direc-
tions, at the beam sections L

6
, L
3
, 2L

3
, 5L

6
. Three strain gauges were installed at each of the four

stations. The positions of the strain gauges along the beam and on the section are schematized
in figure 4.11, where red is used to mark the axial strain gauges and blue to mark the strain
gauges oriented at 45◦. All strain gauges were connected to the MGCplus HBM acquisition
system.

12

L/6

L/3

2L/3

5L/6 L

11

11

1
6

8

8

Figure 4.11: Strain gauges locations

With this number of strain gauges available, it was possible to apply iFEM and also correct
the zero strain to the clamp constraint, the latter resulting from the double derivation of the
displacement function v (z) obtained by smoothing spline.
Since the displacements had to be computed from the image-to-image matching (IIM) method,
the beam was painted to give texture. Different attempts were made to find the most suitable
texture: after the preliminary selection, the beam was first painted with a matt white color to
remove the reflective effect due to the aluminum metal surface, after a black color pattern was
applied using a spray can. Unlike the previous experiment, the beam was not painted in its
entirety. In fact, the speckle pattern suitable for the use of the DIC 3D was applied to a portion
of the free end of the beam.

Figure 4.12: Beam pattern for Thirion’s demons algorithm and 3D DIC

This choice was made in order to have more experimental measurements of the beam displace-
ment available, which are essential for evaluating the final accuracy of the beam shape recon-
struction methods.
In this experiment, to simulate the clamp constraint, the beam was placed between two very
heavy metal blocks, which can be seen in figure 4.13. In order to prevent these elements from
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crushing the beam, the beam section was reinforced with wooden pieces placed inside it, and
blunt aeronautical aluminum elements were placed adjacent to the beam.

Figure 4.13: Clamp constraint

In addition to the DIC, two Linear Variable Displacement Transducers (LVDTs), W1 and W2,
were mounted at the free end of the beam at two different locations of the section. In this way,
in addition to providing the tip displacement, the two LVDTs ensured that the beam was loaded
at the shear center.

Figure 4.14: LVDTs used in the test

As can be seen from figure 4.14, two more LVDTs were mounted on the beam, labeled as W3
and LVDT near tip. The LVDT W3 was placed at z = L

2
; the LVDT near tip was placed at

z = 1004mm. A marker was drawn below the latter: by monitoring the displacements of this
point with the DIC, it was possible to check whether the displacements calculated by the DIC
were correct and in line with those calculated by the LVDT.
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Figure 4.15: Image taken by DIC - Marker under the LVDT

The loading system used to load the beam is shown in figure 4.16,

Figure 4.16: Loading system
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Loading was achieved by placing metal discs on the base of a rod, with the latter being con-
nected to the beam via a crossbar. By translating the loading system onto the crossbar and
reading the displacement provided by the two LVDTs at the free end in real time, the position
of the shear center could be identified. Unfortunately, loading the beam exactly at the shear
center is very difficult, and failure to achieve this condition results in the beam twisting.
Once the beam was constrained, the loading system, and all the various sensors mounted, the
3 cameras were positioned: one camera was used to apply the image-to-image matching (IIM)
technique, and the other 2 to use the 3D DIC. The arrangement of the cameras, together with
that of the lights that illuminated the beam, is shown in figure 4.17

Figure 4.17: Cameras and lights for DIC and IIM techniques

While the two light sources of DIC mainly illuminated the ROI of DIC, the third light source
served to illuminate the remaining part of the beam that was not illuminated by the other two.
Furthermore, while the camera of the IIM was placed at a distance such that the entire beam
surface was taken up and parallel to the CCD sensor, the cameras of the DIC were slightly
inclined, since for the 3D DIC not only perpendicularity is not required, but it is recommended
that the two cameras have between them an angle between 15◦ and 30◦. In this experiment, a
relative angle of 18◦ was achieved.
Finally, to facilitate the IIM method to calculate displacements, a blackboard was placed behind
the beam to increase its contrast with the background (figures 4.18),
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Figure 4.18: Blackboard in the background

4.2.2 Loads and boundary conditions
In this second experiment, the cantilever beam condition was analyzed, being a type of problem
not analyzed in the previous experiment and presenting the clamp constraint, which constitutes
the main problem when using smoothing splines. Six tests were performed, loading from 0 kg
up to 5 kg. Pictures were taken each time the beam was loaded with 1 kg, and in the case
of the IIM camera, pictures with a different exposure value (EV) were taken for each loading
condition. In particular, negative exposure values (underexposure) were chosen as the light
sources illuminating the beam, especially in the ROI of the DIC, greatly increased the brightness
level.
All information from the individual tests is schematically presented in the table 4.4

Test Black Board Load range Camera exposure [EV ]
1 No [0; 4]Kg 0, -0.3, -1.0
2 Yes [0; 5]Kg 0, -0.3, -1.0
3 Yes [0; 5]Kg 0, -0.3, -1.0
4 Yes [0; 5]Kg 0, -0.3

5 Loading Yes [0; 5]Kg 0, -0.3
5 Unloading Yes [5; 0]Kg -0.7

Table 4.4: Case studies
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At the end of the first experimental activity, two data fusion typologies were developed. Both
data fusion methods were developed in such a way as to exploit the numerosity of the displace-
ment data provided by the image registration method and then mitigate the noise through strain
gauge measurements. Furthermore, with a view to data fusion with iFEM, the method was
made compatible by preserving two main characteristics of the former, i.e. the independence of
the loads acting on the structure and the material it is made of. The main steps of the two data
fusion methods are shown in figure 5.1.

Figure 5.1: Data fusion methods

The first method consists of the computation of beam displacement field v (z) from image-to-
image matching (IIM); then the beam longitudinal strain field ε (z) is computed via derivation
of v (z). Once ε (z) is calculated, its trend is improved thanks to the strains provided by strain
gauges. At this point, the new beam displacement field vfix (z) is computed through the inte-
gration of the εfix (z) function. The idea behind this method is that IIM data are noisy while the
strain gauge measurements are more accurate. Therefore, by integrating the strain field properly
corrected with the values measured by the strain gauges, less noise and more accurate results
can be obtained.
The second method is identical to the first one except for the last step. Instead of using integra-
tion to determine vfix (z), the strain field εfix (z) is used to perform shape sensing via iFEM.
This procedure works very well with iFEM. In equation 2.7 the weighting coefficients vector
w0

k has been introduced, and it was also said that for inverse finite elements without strain data,
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their value is imposed to be low (10−4). Back to the second method, even though the strain field
εfix (z) is affected by noise, its strain values can be used for elements that don’t have strain
measurements. For iFEM purposes is better to provide less precise values with the appropriate
weighting factor than not at all.
Due to the poor number of strain gauges present in the first experiment, shape sensing wasn’t
applicable. Therefore, the second and the third method have been applied only to the second
experimental test.
In the next sections, a detailed explanation of the functioning of the algorithms developed for
each of the two methods will be provided.

5.1 First method
To make it easier to understand the procedure adopted, as the algorithm is explained interme-
diate results of case study 3.3 of the first experiment (table 4.2) are shown. At the end of the
explanation, the changes made to the algorithm to perform the second experiment are shown.

5.1.1 Computation of v (z)
The computation of the displacement field v (z) is the same for all three methodologies.

Image pre-processing

The displacement function v (z) calculation starts from the video or images. Since the videos
contain the loading and unloading process of the beam, for each video 2 frames are selected:
one in which the beam is unloaded and the other in which it is loaded.

(a) Unloaded beam (b) Loaded beam

Figure 5.2: Frames taken from the video

As it can be seen in figure 5.2, due to the small size of the laboratory, the camera was only able
to frame half of the beam, from section L

2
to section 3L

4
. Calculating the displacement of the

beam by applying IIM functions would not be effective, or the data thus obtained would be too
noisy. This is why image pre-processing is necessary. Four main operations are performed:

1. image cutting;

2. selection of the ROI;
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3. black weight remotion;

4. correct illumination differences between the two images.

The purpose of the first and second operations is the same, i.e. to focus the displacement
calculation on the beam only. While image cutting is performed more roughly removing entire
portions of the image, ROI selection is performed more precisely and is carried out by a function
created specifically for each case study via the Image Segmenter App in Matlab [32]. It is at
this phase that any occlusions, such as the laser support system, are removed. It is specified that
although these operations are performed on both images, they are defined from the image of the
unloaded beam. Therefore, the only information needed to correctly perform the first two steps
of image pre-processing are the shape of the structure before loading and the intensity of the
expected displacement: if the cutting operation is too pronounced, there is a risk of cutting off
portions of the beam in the loaded image.
The third operation is only performed for cases where the load is applied with weights equal to
or less than 0.5 kg. These are removed to facilitate IIM, as the weights are only present in the
frame in which the beam is loaded.
The last step is a common pre-processing step in the IIM algorithms and it’s performed using
histogram matching.

(a) Unloaded beam

(b) Loaded beam

Figure 5.3: Post-processed frames

Calculation of punctual displacements

Having pre-processed the images, the pixel windows whose displacement is to be calculated
are selected. The reason for not selecting a single pixel is always data noise. In fact, it is
common practice to calculate the displacement of a window of pixels and to refer the calculated
displacement to the central pixel of the window. In this operation, the assumption made is that
neighboring pixels undergo the same displacement. There are three aspects to consider:

• select frame pixels of the unloaded beam;

• select an odd number of pixels constituting the window in both horizontal and vertical
directions;

• select the pixels that belong to the beam.

Each pixel window consists horizontally of 7 pixels, and vertically of a number of 15 or 17.

Figure 5.4: Pixel windows
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Once the image processing phase is complete, the displacements of all image points, in terms
of pixels, are calculated with the IIM algorithm using the Matlab function imregdemons. The
Matlab command provided is

D = imregdemons (loaded, unloaded, [500, 400, 200] , ′AccumulatedF ieldSmoothing′, 1.3)

where:

• loaded and unloaded are the loaded and unloaded processed images respectively;

• [500, 400, 200] are the number of pyramid iterations performed: 500 at low quality, 400
at medium quality, and 200 at high quality. Pyramid iteration substantially reduces calcu-
lation time;

• (′AccumulatedF ieldSmoothing′, 1.3) is the smoothing applied at each iteration. The
imregdemons function applies the standard deviation of the Gaussian smoothing to regu-
larize the accumulated field at each iteration; 1.3 is its value [32].

To work, input images must be converted to greyscale, which is done via the Matlab function
im2gray.
The imregdemons function is based on Thirion’s demons method: the function receives the two
images as input and estimates the displacement field D that aligns the loaded beam with the
unloaded beam. As output, the function provides the displacement matrix D; this matrix has a
number of rows and columns equal to the number of pixels of the input images, and a number
of dimensions equal to the displacement field to be calculated. In the present case, the matrix
D is two-dimensional, but the function can also be used to calculate displacements in space.
Let M be the number of pixels in the vertical direction and N the number of pixels in the
horizontal direction, the matrix:

• D (M,N, 1) contains the displacements of all pixels of the deformed beam image in the
z direction;

• D (M,N, 2) contains the displacements of all pixels of the deformed beam image in the
y direction;

Since one is only interested in the vertical displacements, only the D (M,N, 2) matrix was used.
Having selected the pixel windows and knowing the displacement of each pixel in the image,
the displacement of the pixel windows is calculated. The displacement of each pixel is referred
to as the central pixel of the window in terms of the median, as it provides better results than
other operators.
Since the calculated displacements are referred to in terms of pixels, a pixel-displacement con-
version in millimeters is performed using the following proportion

Displacementpixel : Npixel = y :
L

2

where Npixel is the number of pixels which corresponds to half beam length
(
L
2

)
, while y is the

displacement expressed in millimeters.
Since the displacement data in possession only refer to the section

[
L
4
; 3L

4

]
, it is assumed that at
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the ends of the beam (z = 0 and z = L), the displacements are zero. The assumption is that the
experimental hinge or clamp constraints are ideal. The calculated displacements are shown in
figure 5.5.

Figure 5.5: Displacement punctual data

Displacement interpolation

Having to calculate the function v (z), the data found have to be interpolated. The interpolating
function must fulfill the following characteristics:

• interpolation of data without a priori knowledge of the applied loads;

• noise removal.

With reference to image 5.5, it can be seen that the displacements obtained are very noisy,
which is why an exact interpolation would not be able to provide an accurate v (z) function.
The functions that are able to fulfill the mentioned conditions are the smoothing spline. The
smoothing splines are continuous piece-wise polynomials (of degree 3 or 5) in the defined
interval that do not perfectly interpolate the input data as the coefficients describing them are
determined by minimizing the sum of two terms,

p
n∑

i=0

wi (yi − s (zi))
2

︸ ︷︷ ︸
errore measure

+(1− p)

∫
λ (t)

(
d2s

dz2

)2

dz︸ ︷︷ ︸
roughness measure

(5.1)

where:

• zi e yi are respectively the z-coordinate and the displacement v of the ith element of the
image data vector;

• n+ 1 is the number of elements of the vector;

• s (zi) is the smoothing spline interpolating the data zi;

• wi are the weighting coefficient values;

• λ is the regulation parameter;

• p is the smoothing parameter.

The p parameter can assume values between 0 and 1 (0 ≤ p ≤ 1):

• if p = 0 one obtains a least-squares interpolation. The error due to the interpolation is the
highest and as a result the smoothest function there is, i.e. a straight line;
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• if p = 1 the cubic spline is obtained. The error due to the ’roughness’ of the function
disappears, and perfect interpolation is obtained [32].

A very important aspect is that the minimization of the two terms in equation 5.1 for a fixed
λ on the space of all continuously differentiable functions leads to a unique solution, and this
solution is a natural cubic spline with knots at the data points [33]. Recall that the natural spline
is a function whose second derivative cancels at the extremes of the interval. This aspect is
particularly disadvantageous for the analyses in question since by estimating the displacement
with smoothing splines and then deriving twice to obtain the strains, these will always be zero
at the extremes. The problem is due to the fact that if there are clamps, where one would expect
a maximum or at least high strain, this is actually zero. For this reason, countermeasures must
be taken to overcome this limit. More information on how smoothing splines are calculated can
be found in Appendix B.
The smoothing spline in Matlab are obtained using the fit function,

[curve,˜ , output] = fit (z, y, ′smoothingspline′)

where:

• z and y are the input data;

• curve is a cfit object;

• output is a structure array that contains the used smoothing parameter and the residuals.

Using the command coeffvals = coeffvalues(curve), the output coeffvals is a structure array
that contains the degree of the polynomials used for interpolation, the polynomial coefficients
for each interval, and the breakpoints of each interval. Since the degree of the polynomials
used for interpolation is known a priori (they are all third-degree polynomials), the polynomial
coefficients and the breakpoints allow the computation of v (z).
Applying smoothing spline to the displacement data results in the following interpolation,

Figure 5.6: First Interpolation

Since some data are so noisy that they worsen the interpolation, they are removed by evaluating
the residuals. The residual i − th, resi, is defined as the difference between the interpolating
function curve, s (zi), in the datum zi and the displacement of the datum y (zi),

resi = s (zi)− y (zi)

The residuals are used to perform an iterative interpolation by means of spline smoothing. The
steps of the algorithm are described in figure 5.7,
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Save the z(i) and y(i)

data in new vectors Z 

and Y

Figure 5.7: Displacement calculation flowchart

An initial interpolation is performed by querying the residuals in the output. Then all residuals
are reviewed: if they are greater than a certain tolerance (0.05mm) then the data associated
with the residuals are discarded, otherwise, they are kept. This cycle is executed until the
interpolation is such that there are no more residues greater than the set tolerance. This iterative
interpolation removes excessively noisy data that would worsen the interpolating function f (z).
It may happen that after each interpolation there is at least one residue until only one input data
remains. To avoid this happening, a minimum number of points for which interpolation is
performed is defined: 10 for both experiments. If the number of points available is less than
this threshold, then the tolerance is increased of 0.01mm. For this reason, the initial input data
are stored in variables before starting the interpolation so that the cycle can start again with a
higher tolerance and the starting data.
At the end of the interpolation, the smoothing parameter used is queried, reduced, and the
interpolation is performed with the new smoothing parameter, this time provided as input with
the following command,

[curve,˜ , output] = fit (z, y, ′smoothingspline′, ′SmoothingParam′, p)

This operation causes the error due to the fitting of the data (equation 5.1) slightly to increase,
while the error due to the roughness of the function is greatly reduced. The choice of losing
precision in the IIM data but obtaining a more smooth function allows the accuracy of the
strain field to be increased. Furthermore, this choice is also motivated by the fact that the
displacement of the beam will be improved with the information provided by the strain gauges,
so it is preferred to lose the accuracy of the displacements provided by the IIM if this results
in an improvement of the strain field. At the end of the iterations, the following interpolating
function v (z) is derived,
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Figure 5.8: v (z) displacement function

5.1.2 Computation of ε (z)
The output of the final interpolation is a data structure containing the coefficients of the poly-
nomials used for the interpolation, their degree, and the intervals in which they are defined. In
order to go from displacements to strains, it is necessary to derive these polynomials but to do
so, the law that links them must be defined. The strains can be expressed by combining Hooke’s
law with Navier’s law in the case of principal axes of inertia, these being known,

εz =
Nz (z)

EA
+

Mx (z)

EIx
Y − My (z)

EIy
X (5.2)

with:

• A the cross-sectional area;

• Ix and Iy respectively, the moments of inertia of the section about the x-axis and the
y-axis;

• Nz (z) the axial force;

• Mx (z) and My (z) the bending moments about the x and y axes;

• X and Y the distances from the origin of the principal reference system along the X and
Y axes, respectively.

Since the beam is only loaded with shear forces acting in the y direction, Nz (z) and My (z) are
zero. Hence Navier’s law reduces to

εz (z) =
Mx (z)

EIx
Y (5.3)

The displacements are introduced by means of the beam’s elastic line equation if the deflection
due to shear forces and normal stress is neglected. This assumption is valid because for slender
beams it is the bending moment that constitutes the major contribution. The equation of the
elastic line is

Mx (z) ≈ −EIx
d2v

dz2
(5.4)
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where the approximation symbol is due to the assumptions made. Substituting the bending
moment expression in the equation 5.4 into the equation 5.3 yields the displacement-strain
relationship sought

d2v

dz2
= −ε (z)

Y
(5.5)

Knowing the displacement-strain relationship and the functions describing the displacement,
the strain field εz (z) is obtained.

Figure 5.9: ε (z) strain function

It is observed that since the smoothing splines are continuous cubic polynomials at intervals, the
deformations are continuous straight lines at intervals. It is also noted that smoothing splines
always have zero-second derivatives at the extremes of the interval, which leads to high errors
in the case of clamp constraint.

5.1.3 Computation of εfix (z)
In order to correct the strain field ε (z) by means of the values provided by the strain gauges,
an interpolation by means of smoothing splines is again performed, but this time in a different
way. In figure 5.10 is shown the flowchart of the used algorithm.

Save the z(i) and y(i) data in 

new vectors Z and Y;

Giving weight 1 to new data 

Figure 5.10: Strain field correction flowchart
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The input data for the interpolation are extrapolated from the function ε (z). The values ε (z)
are chosen so that the abscissae z are spaced by a constant value equal to L

32
. In this way, 33

input values are obtained. At this point, the values of the function ε (z) at the abscissae L
4
, L
2

and
3L
4

are substituted with the corresponding values of the strain gauges. Before performing the
first interpolation, the vector of weights W is defined: this vector has the same dimension as the
data to be interpolated and is worth 1 everywhere except where there are strain gauge values,
where it is worth 10000. By interpolating with the smoothing splines and forcing them to pass
through the strain gauge value, the strain field improves and any ε (z) value that worsened the
trend is removed. To perform this interpolation, the following Matlab command has been used,

[curve,˜ , output] = fit (z, y, ′smoothingspline′, ′Weight′,W ) (5.6)

It should be specified that the purpose of this interpolation is to improve the strain field ε (z) by
removing values too far from the strain gauge values.

Figure 5.11: εfix (z): First interpolation

In figure 5.11:

• the yellow curve is the strain field ε (z) derived from the displacements function v (z);

• the red curve is the strain analytical solution;

• the green dots are the strain gauge values;

• the light-blue dots are the input data used for the first interpolation;

• the blue curve is the first smoothing spline that fits the data.

By the very way this procedure is constructed, the correction takes place mostly around the
strain gauges. Another important aspect is that the output of this operation is not the smoothing
spline but the final data z and y of the iterative interpolation. The latter is constructed identically
to that used to calculate the displacement field except for one aspect: the dimensions and values
of the vector of weights are also updated so that the strain gauges always weigh 10000, and the
others weigh 1.
At the end of the interpolation, the vectors z and εfix are obtained which define the corrected
strain field εfix (z). Since the final objective is to calculate the displacement field vfix (z), the
function εfix (z) is defined so that it is integrable. To this end, it is necessary to know the
individual functions constituting εfix (z) and the traits in which they are defined. Being given
the vectors z and εfix and knowing that εfix (z) has a linear trend at intervals, it is sufficient to
check in which points the slope change occurs at and memorize them. Then it is sufficient to
calculate the straight lines that pass between the points just calculated.
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The Matlab function ischange is used to recognize the points at which the data change their
slope. By calculating the straight lines passing through these points, the trend described in
figure 5.12 is obtained,

Figure 5.12: εfix (z) strain function

In figure 5.12 the yellow curve is the strain field ε (z) derived from the displacements function
v (z), while the blue curve is the corrected strain curve εfix (z). Even after calculating εfix (z),
the strains at the extremes continue to be zero.

5.1.4 Computation of vfix (z)
Once εfix (z) has been calculated, it is possible to integrate it to calculate the corrected displace-
ment function vfix (z). εfix (z) is a linear function in traits, so each trait εfix,i (z) is defined, in
the interval z ∈ [zi; zi+1], as follows:

εfix,i (z) = a′iz + b′i (5.7)

where:

• a′i is the angular coefficient;

• b′i is the known term.

By double integrating the equation 5.5 for the i-th trait, the following is written

vfix,i (z) = −εfix,i (z)

Y

z2

2
+ Ciz +Di (5.8)

This expression is valid for every subdomain of definition of εfix (z). Furthermore, by substi-
tuting the equation 5.7 in the equation 5.8

vfix,i (z) = ai
z3

6
+ bi

z2

2
+ Ciz +Di (5.9)

where:

• ai = −a′i
Y

is known;

• bi = − b′i
Y

is known.
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The double integration of the single trait εfix,i (z) leads to the appearance of the 2 constants Ci

and Di. Let N be the number of sections into which εfix (z) is constituted, then there are 2 ·N
unknowns over the entire interval, so 2 ·N conditions are required to solve the integration. The
conditions are:

1. 2 boundary conditions (vfix (z = 0) = 0 and vfix (z = L) = 0);

2. N − 1 continuity conditions of the displacement vfix (z);

3. N − 1 continuity conditions of the displacement derivative v′fix (z);

While condition 2 guarantees that the displacement is equal at each node connecting two straight
lines, condition 3 guarantees that the slope is also equal at that point. Therefore

2 + (N − 1) · 2 = 2 ·N

conditions are available.
Assume to be in the first section N = 1, at the point location z = z2. Conditions 2 and 3 are
written:

{
v1 (z = z2) = v2 (z = z2)

v′1 (z = z2) = v′2 (z = z2)
(5.10)

from which explicating:

{
a1

z32
6
+ b1

z22
2
+ C1z2 +D1 = a2

z32
6
+ b2

z22
2
+ C2z2 +D2

a1
z22
2
+ b1z2 + C1 = a2

z22
2
+ b2z2 + C2

(5.11)

Rearranging so that the unknowns (integration constants) are at the first member and the known
terms at the second, leads to

{
C1z2 +D1 − C2z2 −D2 = a2

z32
6
+ b2

z22
2
− a1

z32
6
− b1

z22
2

C1 − C2 = a2
z22
2
+ b2z2 − a1

z22
2
− b1z2

(5.12)

Since these conditions are written for every breakpoint (except z = 0 and z = L), a linear
system of the type [A] {x} = {s} is constructed, with:

• [A] matrix of the coefficients of the unknowns;

• {s} vector of known terms;

• {x} vector of unknowns.

Solving the system yields the integration constants of each section, and thus the displacement
field vfix (z) is obtained
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Figure 5.13: vfiz displacement function

In the case where the roller is also present, the problem has an internal hyperstaticity. Hyper-
staticity implies that an additional condition must be imposed in the location of the roller, which
can be either that the displacement is zero at z = zroller, or that the displacement is equal to
that provided by the interpolating function v (z) in z = zroller (chosen condition), where zroller
is the location of the roller. Consequently, the number of constants to be determined is always
2 · N , while the number of conditions becomes (2 ·N + 1). The resulting displacement field
vfix (z) will have 3 different types of errors depending on the (2 ·N + 1)th condition that is not
imposed. Let vroller−1 (z) and vroller (z) be the displacement functions in the sections before
and after the breakpoint zroller respectively, then the 3 conditions that can be imposed in zroller
are:

1. continuity of the displacement vroller−1 (zroller) = vroller (zroller);

2. continuity of rotation v′roller−1 (zroller) = v′roller (zroller);

3. displacement provided by the function v (z) → vroller−1 = v (zroller).

If condition 1 is not imposed, then there would be a discontinuity of the displacement, while
the slope of the sections vroller−1 (z) and vroller (z) would be respected.
If condition 2 is not imposed, the displacements would be continuous and equal to v (zroller),
but zroller would be an angular point.
If condition 3 is not imposed, the displacement and the rotation at zroller would be continuous,
but the value of the displacement at that point would be that resulting from the integration.
In the case where the strain field to be integrated εfix (z) is the correct one, the resulting dis-
placement field vfix (z) would be the correct one even if 2 · N conditions were used. In the
present case, the strains εfix (z) are not the exact ones, so it is necessary to remove one of the 3
conditions mentioned above. After testing the integration in all 3 ways, it was observed that the
best choice is to exclude condition number 2, as the errors made in the other two cases are far
greater.

A final observation concerns cases where the beam is clamped at both ends. In these cases,
the beam is twice hyperstatic (3 times, if the roller is also present). In these cases too, it was
decided to impose the condition of zero displacements and not zero rotations as boundary con-
ditions.

5.1.5 Changes for the second experiment
For the second experiment, some modifications due to the different kind of problem were made
to the algorithm.
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The first change concerned the choice of pixels whose displacement was to be calculated using
the IIM method. When the beam was painted, paper tapes were placed both on the strain gauges
to prevent the paint from getting on them and on some sections of the beam to collect the strain
gauge cables in order to limit their bulk. As some of the cables became disconnected during
this procedure, once the beam was tied down, the tapes were removed so that the connection
between the strain gauges and the electrical cables could be re-established. As a result, at the
root of the beam, there was a portion of the surface that was free of paint. In contrast, the free
end of the beam, despite being painted, is highly overexposed due to the light required for the
DIC technique. These two regions have been highlighted with red rectangles in figure 5.14.

Figure 5.14: Image took by the IIM camera from test 1

Calculating the displacement of the beam at z = 0mm would be very difficult, especially
because of the high pixel intensity due to reflection. For this reason, a zero displacement was
assumed at z = 0mm. On the other hand, excessive brightness in the ROI of DIC not only
makes it impossible to calculate the displacements in this region, which are out of scale, but
also worsens the entire correspondence between the undeformed and deformed image. For this
reason, this region was masked, as can be seen in figure 5.15.

Figure 5.15: Experiment 2 - Pre-processed image

By excluding this area with a mask, the IIM method improves with more precise calculated
displacements; however, the displacements are calculated on a lower domain of z ∈ [0;L]. In
order to overcome this problem, a zero strain has been assumed at the free end of the beam:
in this way, the integer domain of the beam (z ∈ [0;L]) is re-established. The algorithm pre-
sented was developed to reconstruct the deformation of the structure without any assumptions
about the loads. Instead, the above hypothesis presupposes knowledge of the loads acting on
the structure. Unfortunately, this choice was made necessary due to the presence of very bright
light, the latter being essential for the DIC to function correctly. On the other hand, if the DIC
had not been necessary, this problem would not have arisen. Furthermore, the imposition of
zero strain on the tip fits perfectly into the strain correction phase.
In this experiment, all strain gauges were oriented along ±45◦ directions, except for the root
strain gauges. The strain-displacement relationship (equation 5.5) allows to derive the axial
strain field ε (z) from the displacement field v (z). In order to improve the strain field, strain
measurements must be reported in terms of axial strains, and not along ±45◦ directions. This
conversion was done by solving the equation 2.24, which is given here, for each strain measure-
ment station,
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ε∗ (x, c, β) = (e1 (x) + e2 (x) z (c) + e3 (x) y (c))
[
cos2 β − ν sin2 β

]
+

+

(
1

kεz
e4 (x) f1 (c) +

1

kεy
e5 (x) f2 (c) + e6 (x) f3 (c)

)
cos β sin β

To solve the single equation, 6 strain measurements are required for each section, but only 3
are available in the experimental test. But, having loaded the beam in the shear center along the
x-axis, the terms e3 (x) , e5 (x) and e6 (x) are zero. Therefore the equation 2.24 is simplified
and becomes,

ε∗ (x, c, β) = (e1 (x) + e2 (x) z (c))
[
cos2 β − ν sin2 β

]
+

(
1

kεz
e4 (x) f1 (c)

)
cos β sin β

(5.13)

Since there are 3 strain gauges in each strain measurement section, it is possible to determine
e1 (x) , e2 (x) and e3 (x) by imposing a linear system. Once these are computed, it is possible
to determine ε∗ (x, c, β) for any value of β. Since one is interested in the axial strains, the
following is written,

ε∗ (x, c, 0◦) = e1 (x) + e2 (x) z (c) (5.14)

The equation 5.14 is written in the reference system of figure 2.1. By readjusting the equation
5.14 to the reference system of the problem under consideration (figure 4.10), it becomes

ε∗ (z, x, 0◦) = e1 (z)− e2 (z) y (x) (5.15)

Knowing the values of e1 and e2 for each section where the strain gauges are positioned(
L
6
; L
3
; 2L

3
; 5L

6

)
, and knowing the z-coordinate of the strain gauges, the strain gauge measure-

ments at 45◦ are converted to measurements at 0◦.

In the strain correction phase, the clamp strain was corrected: having available the strain mea-
surements ε1 and ε2 calculated at z1 = 12mm and z2 = L

6
, respectively, by extending the line

passing through the pairs of points (z1, ε1) − (z2, ε2), the strain in the clamped section was
computed. Finally, to make the strain correction effective, a weight of 10000, for the weighted
interpolation purpose, is also associated to the strains in the clamp section and the free end.
In this way, strain measurements at the clamped and free end are treated as if they were strain
gauge measurements. If this was not done in this way, on the one hand, the strain at the clamped
section could take on values halfway between the real value and the null value, thus committing
high errors; on the other hand, there would be the risk that the iterative correction could remove
the strain at the free end, with the consequence of obtaining a displacement and strain field
defined on a domain lower than that z ∈ [0;L].
The last modification made to the algorithm for the second experiment concerns the definition
of the linear system for the double integration of εfix (z). In this case, the boundary conditions
are no longer those of simple support but those of clamp, so the boundary conditions change
and become,
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vfix (z = 0) = vfix (z = L) = 0︸ ︷︷ ︸
simply supported beam

⇒ vfix (z = 0) = v′fix (z = 0) = 0︸ ︷︷ ︸
clamped beam
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5.2 Second method

The second method differs from the first after the calculation of the strain field εfix (z). Once
the latter has been calculated, it is possible to feed the iFEM not only with the values provided
by the strain gauges but also with other values provided by the function εfix (z). This type of
data fusion goes well with the iFEM for two reasons:

1. with the same number of strain gauges, with data fusion it is possible to provide the iFEM
with a larger number of sections providing more strain measurements;

2. even if the strain field εfix (z) is not as accurate as the strain gauges, through the appro-
priate choice of the error coefficients w0

k it is possible to assign to the strain gauges a unit
weight and to the measurements coming from the field εfix (z) a lower weight, to take
into account the different level of fidelity of the two types of strains.

5.2.1 Shape sensing (εfix (z))

Once the strain field εfix (z) has been calculated, multiple analyses using iFEM could be per-
formed by varying the type of inverse finite element, the number of mesh elements, the number
of sections along which the strains could be evaluated and the weight coefficient associated with
the sectional strains. The analyses were performed for Test 3 in the case of m = 5kg.

Bernoulli-Euler beam inverse element

In the case of the Bernoulli-Euler beam, the characteristics of the iFEM analysis are shown in
the table 5.1.

Case Bernoulli-Euler Element Sections zi Weight = 1 Weight = 0.5 Weight = 0.1

1 1 L/3, 2L/3 L/3, 2L/3 - -

2 1 L/6, 5L/6 L/6, 5L/6 - -

3 2 L/6, L/3, 2L/3, 5L/6 L/6, L/3, 2L/3, 5L/6 - -

4,5 2 L/12, L/4, L/3, 5L/12, 7L/12, 2L/3, 3L/4, 11L/12 L/3, 2L/3 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

6,7 2 L/12, L/6, L/4, 5L/12, 7L/12, 3L/4, 5L/6, 11L/12 L/6, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

8,9 2 L/12, L/6, L/3, L/4, 5L/12, 7L/12, 2L/3, 3L/4, 5L/6, 11L/12 L/6, L/3, 2L/3, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

10,11 3 L/12, L/6, L/3, L/4, 5L/12, 7L/12, 2L/3, 3L/4, 5L/6, 11L/12 L/6, L/3, 2L/3, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

Table 5.1: iFEM - Bernoulli-Euler beam

In cases 1 to 3, no data fusion was performed, but iFEM was applied with the measurements
provided by the strain gauges to the indicated sections. Furthermore, while in case 3 all strain
gauge measurements were used, in cases 1 and 2 the strain gauges on the innermost and out-
ermost sections were used, respectively. In these cases (1:3), all strain gauges were always
assigned a unit weight.
Cases 4 to 11 were performed using data fusion. In all cases, a unit weight was always asso-
ciated with the sectional strains at the strain gauges; at all other stations, a weight of 0.1 or
0.5 was associated. It should be noted that the sectional strains to which a lower weight was
associated are precisely those derived from the strain field εfix (z) at zi positions other than the
strain gauges. The difference between cases 4,5 and 6,7 are the sectional strains to which a unit
weight has been associated, where the inner sections have been chosen for cases 4,5 and the
outer sections for cases 6,7.
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In cases 8 to 11, the same sections are used, 2 more (z =
(
L
3
, 2L

3

)
) than in cases 4 to 7. The

difference between cases 8,9 and 10,11 is the number of beam elements utilized, 2 and 3 re-
spectively.

Timoshenko beam inverse element

To use the IFEM with the Timoshenko beam element, it is necessary to provide each section
zi with six strain values. Although only 3 strain gauge measurements were available on each
section, in section 5.1.5 it was seen how this problem can be bypassed. The cases analyzed with
the IFEM of Timoshenko beam elements are shown in table 5.2.

Timoshenko Elements Sections zi Weight = 1
1 L/3, 2L/3 L/3, 2L/3
2 L/6, L/3, 2L/3, 5L/6 L/6, L/3, 2L/3, 5L/6

Table 5.2: iFEM - Timoshenko beam

There are two cases analyzed. In the first, there is a single Timoshenko element with two
sections, which are the internal ones; in the second, there are two elements and four sections
are used.
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6 Results

Once the experiments were performed, the experimental measurements provided by the sensors
were processed and reported in the following sections.

6.1 Experiment 1
In the first experiment, strains were measured by strain gauges and local displacement by a
laser sensor. For each case study (refer to table 4.2), tables are provided showing the values
experimentally measured by the sensors, the theoretical values provided by beam theory, and
the relative percentage error between the experimental and theoretical measurements. The rel-
ative percentage error, err%, is calculated as follow: let Sexp and Sth be the experimental and
theoretical measurements respectively, then

err% =
Sexp − Sth

Sth

· 100 (6.1)

Before reporting the results provided by the experimental measurements, it is necessary to spec-
ify that the beam, even when not subjected to concentrated loads, was obviously subjected to
the weight force. Concerning the strain measurements, these were obtained by performing the
difference between the beam strain in the loaded condition εloaded (which accounted for the con-
centrated load and the weight force) and that in the unloaded condition εunloaded (weight force
only),

ε = εloaded − εunloaded = εconcentrated load + εforce weight − εweightforce = εconcentrated load (6.2)

In this way, only the strain due to the concentrated force is measured.
For displacements, the procedure is conceptually the same, with the difference that the mea-
surement provided by the laser sensor is its distance from the object on which the ray impinges.
Therefore, as the beam is loaded, the distance to the sensor is reduced. To record a positive
displacement was written,

y = yunloaded − yloaded = yconcentrated load (6.3)
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6.1.1 Experimental measurements
Each experiment of table 4.2 was repeated 3 times: this means that the reported measurements
are average values.

Measurement Location Experimental value Theoretical value err%
Strain L/4 2.27µm

m
2.37µm

m
-4.2%

Strain L/2 4.60µm
m

4.73µm
m

-2.7%
Strain 3L/4 2.23µm

m
2.37µm

m
-5.9%

Displacement L/2 0.53mm 0.51mm -3.9%

Table 6.1: Case study 01 - Subcase 1

Measurement Location Experimental value Theoretical value err%
Strain L/4 9.63µm

m
9.46µm

m
1.8%

Strain L/2 16.6µm
m

18.9µm
m

-12.2%
Strain 3L/4 9.73µm

m
9.46µm

m
2.8%

Displacement L/2 2.09mm 2.04mm 2.4%

Table 6.2: Case study 01 - Subcase 2

Measurement Location Experimental value Theoretical value err%
Strain L/4 24.3µm

m
23.7µm

m
2.5%

Strain L/2 42.7µm
m

47.3µm
m

-9.7%
Strain 3L/4 24.6µm

m
23.7µm

m
3.8%

Displacement L/2 5.16mm 5.11mm 1.0%

Table 6.3: Case study 01 - Subcase 3

Measurement Location Experimental value Theoretical value err%
Strain L/4 14.8µm

m
18.9µm

m
-21.7%

Strain L/2 19.9µm
m

18.9µm
m

5.3%
Strain 3L/4 18.5µm

m
18.9µm

m
-2.1%

Displacement L/2 2.85mm 2.81mm 1.4%

Table 6.4: Case study 02

Measurement Location Experimental value Theoretical value err%
Strain L/4 79.2µm

m
132µm

m
-40.0%

Strain L/2 −89.5µm
m

−138µm
m

-35.14%
Strain 3L/4 101µm

m
137µm

m
-26.3%

Displacement 1839.9mm 2.2mm 2mm 10.0%

Table 6.5: Case study 03 - Subcase 1
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Measurement Location Experimental value Theoretical value err%
Strain L/4 −32.9µm

m
−19.7µm

m
67.0%

Strain L/2 −36.8µm
m

−65.3µm
m

-43.5%
Strain 3L/4 126µm

m
154µm

m
-18.2%

Displacement 1839.9mm 3.23mm 2.71mm 19.2%

Table 6.6: Case study 03 - Subcase 2

Measurement Location Experimental value Theoretical value err%
Strain L/4 2.67µm

m
0.00µm

m
-

Strain L/2 19.7µm
m

23.7µm
m

-16.9%
Strain 3L/4 2.07µm

m
0.00µm

m
-

Displacement 1260.5mm 1.72mm 1.27mm 35.4%

Table 6.7: Case study 03 - Subcase 3

Measurement Location Experimental value Theoretical value err%
Strain L/4 71.5µm

m
162µm

m
-55.2%

Strain L/2 −104µm
m

−204µm
m

-49.0%
Strain 3L/4 173µm

m
176µm

m
-1.7%

Displacement 1839.9mm 3.24mm 3.65mm -11.2%

Table 6.8: Case study 04 - Subcase 1

Measurement Location Experimental value Theoretical value err%
Strain L/4 −48.5µm

m
−56.7µm

m
-14.5%

Strain L/2 −46.2µm
m

−100µm
m

-53.8%
Strain 3L/4 210µm

m
228µm

m
-7.9%

Displacement 1839.9mm 5.02mm 5.8mm -13.4%

Table 6.9: Case study 04 - Subcase 2

The experimentally measured strains for case study 1.1 (table 6.1) are shown for completeness.
In this test, due to a small load, the strains are very low, and consequently, the accuracy of
the strain gauges cannot be too precise. Nevertheless, comparing the measured values with the
theoretical values reveals that their measurements are correct.
Looking at the relative percentage errors, it can be seen that only for case studies 01 and 02
the experimental measurements are in agreement with the theoretical values: the largest error is
committed in case study 02 where there is an error of |21.7%| on only one strain gauge. In all
the other case studies, the errors committed on displacement and strain are both quite high.
The cause of the deviation from the theoretical behavior is the fact that it was not possible
to reproduce experimentally ideal clamp and roller constraints. Furthermore, having only one
displacement measurement which is provided by the laser sensor, it was decided not to consider
case studies 03 and 04 in the evaluation of the accuracy of method 1 as the displacements
measured by the laser sensor differ too much from the analytical ones.
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Another aspect to be highlighted is that in case studies 1, 2, and 3.1, due to the symmetry of
the boundary conditions and loads, one would have expected the lateral strain gauges placed at
z = L

4
and z = 3L

4
provided the same value. Indeed, in case 2, all 3 strain gauges should have

measured the same strain. The causes of these incorrect measurements may be due to:

• an incorrect alignment and/or positioning of the strain gauges;

• an incorrect positioning of weights on the beam.

The most plausible cause is the first.

6.1.2 Parametric smoothing parameter analysis
It has been said that the reduction of the smoothing parameter allows for a better strain field
reconstruction. In order to select the appropriate smoothing parameter p value, parametric anal-
yses were performed for case studies 01 and 02. In each of them, the smoothing parameter was
reduced by a factor, the smoothing parameter reduction factor (K), ranging from 1 to 500. The
best smoothing parameter p was selected as the one that allowed to compute a displacement
as close as possible to that provided by the laser sensor. Below are reported the displacements
computed at z = L

2
per study cases 01 and 02 as changes in K.

Figure 6.1: Case study 01 subcase 1: best K = 17
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Figure 6.2: Case study 01 subcase 2: best K = 88

Figure 6.3: Case study 01 subcase 3: best K = 7
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Figure 6.4: Case study 02: best K = 108

Unfortunately, the best K changes depending on the problem. Referring to the figures 6.1:6.4,
two main aspects can be observed:

• for low K (< 30), the trend is swinging and unpredictable;

• as K increases (and therefore as p decreases) the error committed tends to increase.

Therefore, the best K is to be found between these two regions. The idea is to select, for each
case study, all Ks for which the modulus of the absolute error committed with respect to the
laser measurement is less than an imposed tolerance (0.1mm). Once these Ks have been found,
the one common to all case studies is sought and used for the analyses. Carrying out the above,
the selected range is

51 ≤ K ≤ 87; k = 57 excluded

and K = 80 is the selected value.
The choice of the tolerance of 0.1mm is due to the following considerations. Table 6.10 shows
the errors made between the displacements provided by the IIM method and those provided by
the laser sensor,

Case Study Error Error [pixel]
1.1 −0.141mm -0.130
1.2 −0.254mm -0.234
1.3 −0.200mm -0.184
2 −0.053mm -0.049

Table 6.10: Errors between displacements provided by the IIM method and
those provided by the sensor laser

The average error committed is −0.162mm. Since interpolation by smoothing splines reduces
the noise of the data, the tolerance was set to a lower value.
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6.1.3 Method 1 results
Below are reported the corrected displacement function vfix (z) and the corrected strain function
εfix (z) for each case study. Even though case studies 03 and 04 were not used to evaluate
the developed method’s goodness, their results make it possible to qualitatively observe how
the algorithm acts for boundary conditions more complex than simple support. The functions
vfix (z) and εfix (z) are reported together with the analytical solution and the discrete data
derived from the IIM algorithm.

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.5: Case 01 - Subcase 1

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.6: Case 01 - Subcase 2
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(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.7: Case 01 - Subcase 3

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.8: Case 02
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(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.9: Case 03 - Subcase 1

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.10: Case 03 - Subcase 2
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(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.11: Case 03 - Subcase 3

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.12: Case 04 - Subcase 1
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(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.13: Case 04 - Subcase 2

Before assessing the accuracy of the method, some considerations are given. With regard to
case studies 01 and 02, it is easily observed that the largest errors occur in case 1.1 (figures
6.5). The reason is that the accuracy of the IIM algorithm is of the same order of magnitude as
the displacement measured by the laser, which leads to high errors. Another observation is that
while in the case of a simply supported beam the reconstruction of displacements is accurate
even in areas where no measurements are provided (z < L

4
∨ z > 3L

4
), as the complexity of the

boundary conditions increases, this accuracy decreases (figure 6.12). Finally, it is observed that
in the case of a doubly clamped beam (figure 6.9:6.11) the strains are zero at the extremes. Not
only the strain is zero where it should be maximum, but also the displacement field cannot be
properly reconstructed. This constitutes a limitation of smoothing splines which can, however,
be overcome by first measuring the strain of the beam in the vicinity of the constraint and then
improving the strain field (ε (z) ⇒ εfix (z)).

6.1.4 Accuracy of method 1
To estimate the accuracy in reconstructing the deformation of the structure, the relative percent-
age error err%(vfix) between the displacement provided by the function vfix (zlaser) and the
displacement provided by the laser sensor vlaser is calculated, whereby

err%(vfix) =
vfix (zlaser)− vlaser

vlaser
· 100 (6.4)

The relative percentage error err%(vfix) is compared with the relative percentage error err%(v)
of the function v (z), the one computed after the smoothing parameter reduction. The compar-
ison is carried out to see whether or not it is convenient to perform this method of data fusion.
The results are reported in table 6.11.
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Case study Sensor displacement vfix
(
L
2

)
[mm] v

(
L
2

)
[mm] err% (vfix) err% (v)

1.1 0.53mm 0.50mm 0.51mm -5.1% -4.2%
1.2 2.09mm 2.00mm 1.96mm -4.0% -6.2%
1.3 5.18mm 5.12mm 5.10mm -1.1% -1.5%
2 2.85mm 2.84mm 2.82mm -0.3% -1.2%

Table 6.11: Method 1 results

It can be seen that data fusion and data interpolation by means of smoothing splines are both
effective methods, with errors committed below 6%. The data fusion provides more accurate re-
sults, except for case 1.1. In the latter, the discrete displacement data are already very noisy and
their derivation and subsequent integration only increase this noise. Since the measurements
provided by the strain gauges are accurate in this case (table 6.1), the only way to increase the
accuracy of the displacement field is to use a camera with a higher resolution.
For the other cases, however, the estimation of discrete displacements is more accurate (see
Figures 6.6(b), 6.7(b) and 6.8(b)), leading to improved results.
In general, method 1 provides very accurate results, despite the imperfect alignment/positioning
of the strain gauges. It is very important that the values provided by these are accurate since it is
with these that the strain field ε (z) is corrected. If these provide incorrect results, the resulting
displacement field vfix(z) will be inaccurate. Referring to the figure 6.8(a), it can be seen that
the strain gauge set at z = L

2
deviates from the theoretical value (error of −21.7% table 6.4)

and this leads to a loss of accuracy in vfix(z): it can be observed in figure 6.8(b) how the first
part of the curve, about the first quarter, deviates from the theoretical trend. This observation
highlights another important aspect: having a single point of measurement to assess the accu-
racy of the displacement field is insufficient. In fact, it could happen, as in figure 6.5, that the
function vfix(z) deviates from the actual trend except for a few points as the midpoint. Evaluat-
ing the accuracy at that point alone would seem to yield positive results, although that is not true.

In view of these considerations, it emerges that using a single reference value to assess the
accuracy of the method is not sufficient. In spite of this, the first experiment made it possible to
point out what changes needed to be made to the second experimental test in order to apply the
3 methods and compare them. These are:

• the use of a sufficient number of strain gauges to be able to perform shape sensing via
iFEM;

• placing at least one strain gauge close to the constraints;

• shooting the entire beam with the camera;

• having several experimental measurement points of the beam displacement to be able to
estimate the accuracy of the methods;

• the use of experimental constraints that act like ideal ones.
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6.2 Experiment 2
As in the first experiment, tables are provided showing the values experimentally measured
by the sensors, the theoretical values provided by beam theory, and the relative percentage
error between the experimental and theoretical measurements. Since the purpose is to highlight
the correctness of the experimental test execution, reporting tables for each test and each load
condition would be redundant. For this reason, only the results obtained in the load case
m = 5kg are reported.

6.2.1 Experimental measurements
One aspect to mention is that while Tests 1, 2, and 3 were performed in succession, with the
load applied at the same position, Tests 4 and 5 were performed with a different point of load
application than Tests 1:3. During Test 3 when reading in real-time the displacements provided
by the LVDTs, it was realized that the displacement provided by the LVDTs at the tip was less
than that provided at z = 1004mm. The cause of this was due to the incorrect positioning of
the LVDTs at the TIP, which does not work well when working near the end of the range. After
changing the set-up, the load rod was repositioned, thus changing the point of load application
compared to the previous tests.
The results are reported in table 6.12. To give a more immediate idea of the goodness of mea-
surements, the following legend was used for relative percentage errors:

• green cell for |err%| ≤ 20%;

• blue cell for 20% < |err%| < 50%;

• red cell for |err%| ≥ 50%;

It is also specified that in order to perform a comparison between analytical and experimental
strains, the analytical strains were calculated in terms of axial strains, and the experimental
values measured by the strain gauges placed at ±45◦ were converted into axial strains.

Strain gauges - location Anal. Solut. [µm/m] T2 [µm/m] Err% T2 [%] T3 [µm/m] Err% T3 [%] T4 [µm/m] Err% T4 [%] T5 [µm/m] Err% T5 [%]
SG - Root Top 250.022 236.696 -5.3 240.382 -3.8 232.000 -7.2 234.473 -6.2
SG - Root Bottom -250.022 -249.808 -0.1 -247.999 -0.8 -257.681 3.1 -257.161 2.8
SG - L/6 Top 210.303 231.053 9.9 238.832 13.6 213.824 1.7 216.331 2.9
SG - L/6 Lateral -61.416 -57.966 -5.6 -51.917 -15.5 -71.915 17.1 -70.799 15.3
SG - L/6 Bottom -210.303 -216.333 2.9 -211.232 0.4 -228.484 8.6 -228.131 8.5
SG - L/3 Top 167.802 169.303 0.9 178.515 6.4 147.425 -12.1 149.797 -10.7
SG - L/3 Lateral -49.004 -47.220 -3.6 -40.556 -17.2 -63.984 30.6 -62.222 27.0
SG - L/3 Bottom -167.802 -165.863 -1.2 -160.595 -4.3 -179.825 7.2 -178.397 6.3
SG - 2L/3 Top 82.800 79.148 -4.4 90.445 9.2 51.621 -37.6 54.664 -34.0
SG - 2L/3 Lateral -24.181 -29.626 22.5 -21.788 -9.9 -48.797 101.8 -46.585 92.6
SG - 2L/3 Bottom -82.800 -89.228 7.8 -83.285 0.6 -103.821 25.4 -102.064 23.3
SG - 5L/6 Top 40.299 33.642 -16.5 46.134 14.5 8.490 -78.9 10.545 -73.8
SG - 5L/6 Lateral -11.769 -14.088 19.7 -5.423 -53.9 -32.842 179.0 -30.987 163.3
SG - 5L/6 Bottom -40.299 -40.242 -0.1 -33.674 -16.4 -55.490 37.7 -53.745 33.4
LVDTs/DIC - location Anal. Solut. [mm] T2 [mm] Err% T2 [%] T3 [mm] Err% T3 [%] T4 [mm] Err% T4 [%] T5 [mm] Err% T5 [%]
LVDT L/2 1.407 1.310 -6.9 1.540 9.4 1.614 14.7 1.607 14.1
LVDT near TIP 3.908 4.195 7.3 4.147 6.1 4.319 10.5 4.298 10.0
LVDT W1 4.434 4.087 -7.8 4.133 -6.8 4.763 7.4 4.762 7.4
LVDT W2 4.434 4.436 0.1 4.144 -6.5 5.199 17.2 5.144 16.0
LVDT - mean W1 W2 4.434 4.262 -3.9 4.138 -6.7 4.981 12.3 4.953 11.7
DIC near TIP 3.908 4.260 9.0 4.196 7.4 4.364 11.7 4.347 11.2
DIC TIP 4.434 4.841 9.2 4.778 7.8 4.960 11.9 4.940 11.4

Table 6.12: Experimental measurements and relative percentage errors for
5 kg
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Focusing initially on strains, the following considerations are made:

• Tests 2 and 3 are those with measurements more in line with the analytical ones. The
largest error is committed at the lateral strain gauge set at z = 5L

6
in Test 3.

• The deviation from the theoretical trend becomes more pronounced in Tests 4 and 5, both
for the lateral strain gauges and for the strain gauges at the bottom at the top. It is always
the lateral strain gauges that exhibit the highest errors, with the error increasing towards
the free end.

• In all tests, the experimental values tend to be in line with the analytical values up to the
stretch z = L

3
, after which the deviation from the theoretical trends occurs; in Tests 4 and

5, the deviation is even more pronounced than in Tests 2 and 3.

Focusing now on displacements, four main aspects can be observed:

• The measurements provided by DIC are always accurate, in line with the theoretical ones,
and, compared to the latter, always in excess. This is because the weight of the loading
system and the pressure, although small, exerted by the LVDTs were not taken into ac-
count in the theoretical solution. For this reason, it is safe to say that the displacements
calculated with DIC are accurate.

• For tests 2 and 3, the displacement recorded by the LVDTs at the tip is lower than that
recorded at z = 1004mm (LVDT near TIP) for the cause discussed above. Subsequently,
once their setting was changed, subsequent tests no longer found this anomaly.

• The measurements of the DIC coincide with those of the LVDTs (except with the LVDTs
at TIP in tests 2 and 3).

• The errors committed in Tests 4 and 5 are greater than those committed in Tests 2 and 3.

As a final result of the considerations concerning both strains and displacements, it appears that
the errors increase towards the free end of the beam, and are greater for cases 4 and 5. The
reason why this occurs is due to the fact that the analytical solution was calculated for the case
of pure bending; in the various tests, however, it was not possible to load the beam exactly in
the shear center. This results in the beam twisting, which becomes more and more pronounced
as the load increases and towards the free end.
The beam torsion is captured by the 3D DIC, and the out-of-the-plane displacements range
[umin (z) ;umax (z)] (direction x) are reported for each test (figure 6.14:6.15).
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(a) Test 2 (−0.294;−0.1995)mm

(b) Test 3 (−0.346;−0.137)mm

Figure 6.14: u (z) displacement
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(a) Test 4 (−0.420; 0.105)mm

(b) Test 5 (−0.378; 0.108)mm

Figure 6.15: u (z) displacement

Looking at the out-of-the-plane displacements range, it can be seen that the torsion is greater
in Tests 4 and 5, where the difference between the maximum displacement umax (z) and the
minimum displacement umin (z) is 0.525mm and 0.486mm, respectively, while in Tests 2 and
3, such differences are 0.0945mm and 0.209mm, respectively.
Following these considerations, it emerges that the experimental measurements are in line with
the theoretical ones, with the errors committed with respect to the pure bending solution being
greater or lesser depending on the intensity of the torsion. Finally, it can be stated that the
experimental measurements, except for the measurements of LVDTs W1 and W2 for tests 2 and
3, are correct. However, since the pure bending case is to be investigated and the contribution
of torsion to strain cannot be taken into account (there would have to be four strain gauges for
each section), it was decided to exclude Tests 4 and 5 from the analysis of results.
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6.2.2 Method 1 results
In this section, the corrected displacement function vfix (z) and the corrected strain function
εfix (z) are reported for tests 2 and 3 for the case m = 5kg. In addition, the lowest available
exposure value was used for each test, both -1.0 EV for tests 2 and 3. The following legend was
used in the graphs showing the strain trends:

• blue for the εfix (z) curve;

• red for the analytical strain solution curve computed for the case of pure bending;

• green dots for the strain gauges values.

For the displacements:

• blue for the vfix (z) curve;

• red for the analytical displacements solution computed for the case of pure bending;

• black dots for the discrete displacements computed with the IIM method;

• green dots for the LVDT measurements;

• green dots for the DIC measurements obtained at LVDT locations.

(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.16: Test 2
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(a) εfix (z) strain function

(b) vfix (z) displacement function

Figure 6.17: Test 3

Unlike the first experiment, a parametric analysis for the reduction of the smoothing parameter
was not performed since it has been used the same smoothing parameter reduction factor K.
Looking at the figures related to the displacement field, it can be seen that the discrete displace-
ments calculated using the IIM method are quite accurate. In fact, comparing the LVDT value
at the centreline with the displacement calculated by the IIM method at the same coordinate
z = L

2
, these are almost coincident. The displacements that deviate from the expected trend

are those in the region near the clamp constraint. That was to be expected: remember that the
adhesive tape has been removed in this area, making the surface reflective (figure 5.14) and
making it difficult for the IIM function to calculate displacements.
The strains calculated at the bottom of the beam were used to calculate the strain field εfix (z).
Strains at the top were not used because the strain gauge placed at z = 12mm provided
strains, in modulus, equal to or less than the strain gauge placed at z = L

6
. Comparing the

values εbottom (12mm) with those of εtop (12mm) in table 6.12, it is observed that the values
of εbottom (12mm) are greater; moreover, the errors committed with respect to the theoretical
solution of pure bending are lower. The lateral strains were not used because as there was no
lateral strain gauge available at z = 12mm, it would not have been possible to correct the strain
in the clamp section z = 0mm (without any additional assumptions being made).
Looking at the strains corrected field, εfix (z), it can be seen that the precautions taken to correct
the strain at the clamp worked. Furthermore, not having a zero strain at z = 0mm also guaran-
tees a displacement function that has the typical clamp deformation around the constraint.
Qualitatively, the reconstructions of the strain field varepsilonfix (z) and displacement vfix (z)
are accurate.

6.2.3 Accuracy of method 1
As observed in section 6.2.1, the DIC measurements are in line with those of the LVDTs, and
since the DIC provides a higher number of displacements, it was decided to compare the dis-

89



6 - Results 6.2 – Experiment 2

placements calculated by the displacement functions vfix (z) with the displacement measured
by the LVDT placed at the centreline and the displacements calculated by the DIC. The mea-
surement results are shown in table 6.13. In this case, for each test, the cells with the lowest
relative percentage error have been marked in green, and the cells with the highest relative error
in red. In addition, table 6.14 compares the relative percentage errors Err% committed with
respect to the LVDT placed in the centreline, between the displacement function before the data
fusion (v (z)) and after the fusion(vfix (z)). It was not possible to make a comparison with the
displacements provided by the DIC as this region was masked.

Test 2 LVDT locations [mm] DIC locations [mm] vfix value [mm] Sensor value [mm] Absolute error [mm] Relative percentage error [%]

555.000 - 1.370 1.310 0.060 4.6

- 949.004 3.526 3.906 -0.380 -9.7

- 972.766 3.668 4.060 -0.392 -9.6

- 1004.000 3.856 4.260 -0.403 -9.5

- 1030.300 4.015 4.431 -0.415 -9.4

- 1054.408 4.162 4.580 -0.419 -9.1

- 1071.114 4.263 4.688 -0.425 -9.1

- 1095.466 4.411 4.841 -0.430 -8.9

Test 3 LVDT locations [mm] DIC locations [mm] vfix value [mm] Sensor value [mm] Absolute error [mm] Relative percentage error [%]

555.000 - 1.398 1.540 -0.142 -9.2

- 948.992 3.536 3.846 -0.310 -8.0

- 972.767 3.676 3.995 -0.320 -8.0

- 1004.000 3.860 4.196 -0.336 -8.0

- 1029.887 4.016 4.363 -0.347 -8.0

- 1054.408 4.159 4.516 -0.357 -7.9

- 1071.115 4.259 4.623 -0.365 -7.9

- 1095.469 4.404 4.788 -0.384 -8.0

Table 6.13: Absolute and relative percentage errors - 5 kg

m = 5kg LVDT L/2 [mm] vfix(L/2) [mm] v(L/2) [mm] Err% vfix(z) Err% v(z)

Test 2 1.310 1.370 1.396 4.6 6.6

Test 3 1.540 1.398 1.438 -9.2 -6.7

Table 6.14: Comparison of centreline displacement before and after data
fusion

Analysing the results provided in table 6.13, it can be seen that the reconstruction of the de-
formed structure was effective. In fact, the largest error committed was −9.7%.
With reference to the table 6.14, it is observed that the data fusion leads to an improvement in
the calculation of the displacement only in Test 2. Although in Test 3 the displacements cal-
culated with data fusion are less accurate than that calculated without fusion, the difference is
very small.
However, it should be remembered that without data fusion, it would not have been possible to
calculate the displacements in the ROI of the DIC, where the IIM method failed due to excessive
brightness.
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6.2.4 Method 2 results
For ease of discussion, the tables schematizing the combinations analyzed with iFEM are shown
here.

Case BeamElement Sections zi Weight = 1 Weight = 0.5 Weight = 0.1

1 1 EB L/3, 2L/3 L/3, 2L/3 - -

2 1 EB L/6, 5L/6 L/6, 5L/6 - -

3 2 EB L/6, L/3, 2L/3, 5L/6 L/6, L/3, 2L/3, 5L/6 - -

4,5 2 EB L/12, L/4, L/3, 5L/12, 7L/12, 2L/3, 3L/4, 11L/12 L/3, 2L/3 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

6,7 2 EB L/12, L/6, L/4, 5L/12, 7L/12, 3L/4, 5L/6, 11L/12 L/6, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

8,9 2 EB L/12, L/6, L/3, L/4, 5L/12, 7L/12, 2L/3, 3L/4, 5L/6, 11L/12 L/6, L/3, 2L/3, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

10,11 3 EB L/12, L/6, L/3, L/4, 5L/12, 7L/12, 2L/3, 3L/4, 5L/6, 11L/12 L/6, L/3, 2L/3, 5L/6 L/12, L/4, 5L/12, 7L/12, 3L/4, 11L/12

12 1 T L/3, 2L/3 L/3, 2L/3 - -

13 2 T L/6, L/3, 2L/3, 5L/6 L/6, L/3, 2L/3, 5L/6 - -

Table 6.15: iFEM case study

In the table 6.15, the Bernoulli-Euler beam element is indicated by EB and the Timoshenko
beam element by T. Furthermore, the various cases will be referred to by the number indicated
in the appropriate column case; if there are 2 cases in the same row, the first will refer to
Weight = 0.5, the second to Weight = 0.1.
The results of the analysis are shown in table 6.16.

Test 3 Near tip Tip

Case DIC [mm] v [mm] Err% [%] DIC [mm] v [mm] Err% [%]

1 4.196 4.005 -4.5 4.788 4.610 -3.7

2 4.196 4.164 -0.8 4.788 4.782 -0.1

3 4.196 4.153 -1.0 4.788 4.767 -0.4

4 4.196 4.023 -4.1 4.788 4.623 -3.4

5 4.196 4.014 -4.3 4.788 4.613 -3.6

6 4.196 4.087 -2.6 4.788 4.693 -2.0

7 4.196 4.123 -1.7 4.788 4.734 -1.1

8 4.196 4.072 -3.0 4.788 4.677 -2.3

9 4.196 4.100 -2.3 4.788 4.707 -1.7

10 4.196 4.048 -3.5 4.788 4.649 -2.9

11 4.196 4.091 -2.5 4.788 4.695 -1.9

12 4.196 4.374 4.2 4.788 5.014 4.7

13 4.196 4.570 8.9 4.788 5.220 9.0

Table 6.16: iFEM results

Focusing on cases 1 to 3, 12, and 13, it is observed that the reconstruction of the deformation
of the structure is best in case 2, which is also the best case among all those analyzed, while the
worst results are those of case 13. Case 2 is the one in which only 1 EB element is used with
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sections z =
(
L
6
, 5L

6

)
, while case 13 is the one in which 2 Timoshenko finite elements are used

with sections z =
(
L
6
, 2L

3
, 5L

6

)
. Looking at case 12, the other case in which the Timoshenko

element is used, the error committed is always very high.
In Test 3, the relative errors committed without using iFEM were −8.0%, both for near-tip and
at-tip displacement. Comparing these errors with those committed with data fusion using iFEM,
it can be seen that the latters are better: the maximum errors committed are -4.3% and -3.6%
for near-tip and tip displacement respectively (Case 5). The best results of the data fusion are
obtained in case 7, where the only difference with case 5 lies in the sections to which a unit
weight has been associated, the outer ones being in case 5 and the inner ones in case 7. This
variability in error due to the chosen sections to be assigned unit weights, also occurs in the
case of iFEM without data fusion, in cases 1 and 2. Therefore, using the strains provided by the
outermost sensors leads to better results.
On the other hand, comparing case 2 and case 7, it can be seen that data fusion fails to provide
more accurate results than iFEM when used individually. Furthermore, the use of a weight of
0.1 associated with the sectional strains calculated from the strains provided by the function
εfix (z) leads to slightly lower errors than the weight of 0.5, except for cases 4 and 5 where this
does not occur.
These data show that the use of additional strain sections provided by the function εfix (z) does
not lead to an improvement in the reconstruction of the structure deformation obtained by using
iFEM alone (with Bernoulli-Euler), even if a lower weight is associated with them. On the
other hand, data fusion with the Bernoulli-Euler iFEM leads to an improved reconstruction of
the deformed structure, as well as providing more accurate results than the iFEM in the case of
Timoshenko.
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7 Conclusions

In this thesis, a method was developed to combine displacement measurements obtained by
utilizing an image registration technique based on Thirion’s demons method, with strain mea-
surements provided by strain gauges. The latter, by means of shape-sensing techniques, allows
the deformation of the structure to be reconstructed. The reason why this kind of data fusion
was inspected is due to the different characteristics of the data to be combined. In fact, while the
data provided by image registration are numerous, those provided by strain gauges are punctual
and depend on the number of them installed on the structure. To reconstruct the deformation
of the structure accurately, a certain number of sensors must be installed, which requires a cer-
tain amount of time. On the other hand, image registration allows a great amount of data to be
obtained with minimal instrumentation, as one or two cameras are sufficient depending on the
displacement to be reconstructed, 2D and 3D respectively. However, the data provided by im-
age registration are very noisy, unlike strain gauge data, which are very accurate. Therefore, the
data fusion performed in this thesis was aimed at exploiting the numerosity of the displacement
data provided by image registration by mitigating the noise through strain gauge measurements.
To combine the data fusion method with iFEM, the former was developed to be compatible with
the latter. The method designed allows the shape reconstruction of the beam from images of the
structure before and after deformation, the knowledge of its geometric properties, the boundary
conditions, and the position of the strain gauges. No assumptions are therefore made about the
loads acting on the structure and the material from which it is made.
This method was tested in two experiments, in which different types of boundary conditions
and loads were analyzed.
Two data fusion methods were carried out. The two methods have in common the first steps,
i.e. the calculation of the displacement function v (z) from the displacements calculated by the
image registration technique, the double derivation of the displacement field to derive the axial
strain field ε (z) and the correction of the latter by strain gauge measurements to obtain the
strain field εfix (z). While in method 1, the corrected strain field εfix (z) is integrated twice to
calculate the corrected displacement field vfix (z), in method 2, the corrected strain field εfix (z)
is used to provide the iFEM with additional strain sections.
One of the most complicated aspects to handle was the interpolation of the displacement data
provided by the image registration. The complexity was due to having to interpolate data that
was very noisy, without knowing the type of interpolating function. Therefore, a perfect fit of the
data would not have been useful for the reconstruction of the deformation, and a least-squares
interpolation, without knowing the degree of the interpolating polynomial, was an impractical
route. This obstacle was overcome by the use of smoothing splines, which effectively solved
this problem but created another. One property of smoothing splines is that the second deriva-
tive of the function cancels at the extremes. This constitutes a non-negligible problem if there
are clamp constraints at the ends; where one would expect a maximum strain, this is instead
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zero.
In the first experiment, only method 1 was applied due to the small number of strain gauges,
which were insufficient to perform iFEM. In this experiment, the displacements calculated by
the function vfix (z) for the case of a simply supported beam were compared with the measure-
ment of the laser sensor, placed at the point of maximum beam deflection, with relative errors
committed of less than 6%
In the second experiment, the case of a cantilever beam was analyzed, thus investigating the
most critical condition in the calculation of the strain field. By placing a strain gauge in the
vicinity of the clamp constraint, it was possible to correct the strain in and around the constraint
section, thus improving the resulting strain field εfix (z). Furthermore, this experiment was
carried out so that the two methods could be applied, and thus compared. In the case of the
first method, the results obtained were quite accurate with the absolute errors made with respect
to the sensor measurements not exceeding 10%. The best results, relative to method 1, were
obtained in the first experiment. However, in the first experiment, the condition investigated
was that of simple support, and the deformation of the structure to be reconstructed had a lower
complexity than that of the cantilever beam. Furthermore, while in the first experiment it was
possible to ensure homogenous brightness over the entire beam, in the second experiment this
was not possible due to the intense brightness required for the correct functioning of the DIC.
In the second experiment, a comparison was made between the displacements obtained with
method 1, method 2, and pure iFEM. The analysis showed that the best results are obtained in
the case of the pure Bernoulli-Euler iFEM, while the least accurate with the pure Timoshenko
iFEM. Furthermore, while the errors committed in method 1 were 8 %, these were halved in
method 2, where the maximum error did not exceed |4.3%|. Furthermore, in one of the cases
analyzed with method 2, an accuracy comparable to that of the pure Bernoulli-Euler iFEM is
obtained.

Overall, although certain precautions must be taken to ensure the proper functioning of data
fusion, such as homogeneous illumination over the entire structure and the presence of strain
gauges in the vicinity of the constraints in the case of clamp constraints, the data fusion de-
veloped turns out to be an effective method in reconstructing the deformation of the structure.
Further developments of this method can be focused on the calculation of displacements in the
case of 2D structures such as plates and out-of-plane displacements of slender beams.
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A Expression of Lagrange polynomials

The first- and second-order Lagrange shape functions are the following,

[
L
(1)
1 , L

(1)
2

]
≡ 1

2
[(1− ξ) , (1 + ξ)][

L
(2)
1 , L(2)

r , L
(2)
2

]
≡ 1

2

[
ξ (ξ − 1) , 2

(
1− ξ(2)

)
, ξ (ξ + 1)

]
(A.1)

where ξ ≡ 2x
le
− 1 ∈ [−1, 1] is a dimensionless axial coordinate; x ∈ [0, le] and le is the element

length. The subscripts 1 and 2 are labels representing the end nodes, while r denotes the central
node. Third-order shape functions have the form

[
N

(3)
1 , N (3)

r , N
(3)
2

]
≡ le

24

(
1− ξ(2)

)
[(2ξ − 3) ,−4ξ, (2ξ + 3)] (A.2)
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B Smoothing spline formulation

Let it be assumed that pairs of points xi, yi are given for i = 0, ..., n, with x0 < x1 < ... < xn,
although the discussion can be extended in the case of coincident abscissae [34]. The smoothing
function f (x) must be constructed so as to minimize the integral

∫ xn

x0

g′′ (x)2 dx (B.1)

between all functions g (x) so that

n∑
i=0

(
g (xi)− yi

δyi

)2

≤ S, g ∈ C2 [x0, xn] (B.2)

S is a constant and allows the quantity δyi which controls the amount of smoothing to be im-
plicitly scaled. If S = 0 it falls into the case of splines. The equation B.1 influences the form
of the function f (x) much more in the smoothing (S > 0) than in the interpolation (S = 0).
The solution of the equations B.1 and B.2 can be obtained by the standard methods of calculat-
ing variations. Introducing the auxiliary variable z and the Lagrangian parameter p, one must
search for the minimum of the functional

∫ xn

x0

g′′ (x)2 dx+ p

{ n∑
i=0

(
g (xi)− yi

δyi

)2

+ z2 − S

}
(B.3)

From the corresponding Euler-Lagrange equations, the optimal function f (x) is determined:

f ′′′′ (x) = 0, xi < x < xi+1, i = 0, ..., n− 1, (B.4)

f (k) (xi)− − f (k) (xi)+ =


0 if k = 0, 1 (i = 1, ..., n− 1)

0 if k = 2 (i = 0, ..., n)

2pf(xi)−yi
δy2i

if k = 3 (i = 0, ..., n) ,

(B.5)

with f (k) (xi)± = limk→x0 f
(k) (xi ± h).

The equations B.4 and B.5 prove that the extremal function f (x) is composed of cubic functions
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B - Smoothing spline formulation

f (x) = ai + bi (x− xi) + ci (x− xi)
2 + di (x− xi)

3 , xi ≤ x < xi+1 (B.6)

which unite at their common endpoints in such a way that f, f ′ e f ′′ are continuous. By
substituting the equation B.6 into B.5 and manipulating it, relationships between the coefficients
of the splines are derived

from k = 2 c0 = cn = 0, di =
ci+1 − ci

3hi

, i = 0, ..., n− 1 (B.7)

from k = 0 bi =
ai+1 − ai

hi

− cihi − dih
2
i , i = 0, ..., n− 1 (B.8)

from k = 1 Tc = QTa, (B.9)

from k = 3 Qc = pD−2 (y − a) (B.10)

where the following notation was used:

• hi = xi+1 − xi;

• c = (c1, ..., cn−1)
T ,

• y = (y0, y1, ..., yn)
T ,

• a = (a0, a1, ..., an)
T ,

• D = diag (δy0, ..., δyn),

• T is a positive definite tridiagonal matrix of order n− 1:

ti,i =
2 (hi−1 + hi)

3
, ti,i+1 = ti+1,i =

hi

3

• Q is a tridiagonal matrix with n+ 1 rows and n− 1 columns:

qi−1,i =
1

hi−1

, qi,i = − 1

hi−1

− 1

hi

, qi+1 =
1

hi

Multiplying the first member of the equation B.10 by QTD2 yields the variable c:

(
QTD2Q+ pT

)
c = pQTy, (B.11)

a = y − p−1D2Qc (B.12)

In this way, if p is given, the parameter c is obtained from the equation B.11, and then the
parameter a from B.12. Given a and c it is possible to calculate d and b from the equation B.7
and B.8 respectively.
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B.1 Lagrangian parameter minimisation
Equation B.3 has to be minimised even with respect to p and z, leading to the following condi-
tions:

pz = 0 (B.13)

n∑
i=0

(
f (xi)− yi

δyi

)2

= S − z2 (B.14)

Applying the equations B.11 and B.12, the first member of the equation B.14 can be expressed
as F (p)2 were

F (p) = ||DQ
(
QTD2Q+ pT

)−1
QTy||2 (B.15)

Observing the equation B.13 it is easy to see that it is fulfilled if p = 0 or if z = 0.
The first case is only possible if F (0) ≤ S

1
2 . This is true if the data points are such that the line

applied to them with the least squares principle satisfies the equation B.2. From equation B.11
c = 0 is obtained and from equation B.12 for a limiting process

a = y −D2Q
(
QTD2Q

)
− 1QTy

In this way, the cubic spline is reduced to a straight line.
If instead F (0) > S

1
2 then p ̸= 0 e z = 0. In this case in the equation B.2 equality holds and p

must be determined by the equation

F (p) = S
1
2 (B.16)

F (p) is a strictly decreasing convex function if p ≥ 0, where F (p) → 0 for p → +∞. There
is therefore one and only one positive root of the equation B.16. There is also at least one
negative root. However, it can be shown that the value of the equation B.1 is greater for any
negative root than for the positive root. Newton’s method is used to calculate the positive root.
Initialising p = 0, the F (p) convexity ensures global convergence. The following abbreviation
is introduced,

u = p−1c =
(
QTD2Q+ pT

)−1
QTy

This results in F (p)2 = uTQTD2Qu e

F
dF

dp
= uTQTD2Q

(
du

dp

)
= puTT

(
QTD2Q+ pT

)−1
Tu− uTTu (B.17)
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For the calculation of u the Cholesky decomposition RTR of the positive definite band matrix
QTD2Q+pT is required. This symmetric decomposition could also be used for the calculation
of the second member of the equation B.17. Thus, F is obtained from the triangular decompo-
sition of QTD2Q+ pT , by a forward substitution with RT and a backward substitution with R.
Multiplication with the tridiagonal matrix RT and a second forward substitution with RT yields
F dF

dp
.

Another way to determine the Lagrangian parameter is to apply Newton’s method to the func-
tion F

(
1
p̄
− S

1
2

)
starting with p̄ = 0 and producing the reciprocal value of p.
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