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Summary

Automated approaches for network security management, based on formal methods,
are recently being proposed to take advantage of all the features of virtualized
networks, in particular the additional flexibility and dynamicity. These solutions
allow the creation and deployment of large and complex architectures with a lower
latency compared to traditional approaches, which are often based on trial-and-
error and human labor. These tools adopt a formal approach to the problem which
guarantees the correctness of the solution by construction and so allow avoiding
misconfigurations.

In this context, an interesting aspect that can be further developed is the possi-
bility to exploit the characteristics of virtual networks for the problem of reconfigur-
ing an already deployed network. The flexibility of an automated approach allows
creating solutions which are reactive to the network, capable of generating a new
configuration as an automatic response to external events. This thesis proposes
a possible approach for the generation of an updated version of the configuration
with the goal of achieving the result with the smallest possible computation time,
without losing the formal correctness of the result. The short computation time is a
feature which could be useful in different situations, especially in the field of cyber-
security, where the elapsed time from the beginning of an attack to the deployment
of a solution is crucial. Having a solution which prioritize the speed would permits
a rapid recovery from the event of an attack, while still being formally correct with
respect to all the other security policies in place for the network.

This thesis contributed to the development of one of this automated approaches,
VEREFOO (VErified REFinement and Optimized Orchestration). The framework
implementing this approach can automatically generate an optimal network con-
figuration starting from a high-level definition of desired Network Security Require-
ments (NSRs), using a problem solver and a series of clauses to model the different
NSRs and network elements. The computation time required by the framework
is small and its scalability over more complex networks has already been proven,
however an efficient reconfiguration process is not supported by the tool and the
configuration must be recomputed from scratch every time the set of NSRs is up-
dated. The contribution of this thesis was to redesign part of the tool for generating
a new formally correct configuration for an already configured network, avoiding
recomputing it from zero and achieving a relevant advantage in the computation
time. To achieve this result, I used traffic flows modeling solutions and adapted
them to my needs, checking which elements in the network must be reconfigured
based on the changes in the NSRs set. The implementation focuses, among the
many possible Network Security Functions (NSFs), only on packet filter, which is
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the most common firewall technology used to enforce security policies. To make the
solution really effective also the clauses considered by the solver have been updated.

Finally, the implemented solution has been extensively tested to assess the per-
formance improvement in different configurations, testing network of increasing
sizes and different reconfiguration scenarios. The results are demonstrating the
feasibility of the proposed approach and the possible advantages in terms of com-
putation time when compared to the previous version, based on a complete recon-
figuration of the whole network.
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Chapter 1

Introduction

1.1 Thesis introduction

One of the major networking trend in recent years has been Virtualized networks
and the ”softwarization” of all its different components thanks to the advent of
new technologies, the main one being Software-Defined Networking (SDN) [1] and
Network Functions Virtualization (NFV) [2][3]. In particular, NFV is a network
architecture paradigm that leverage virtualization technologies for the deployment
of network functions in a virtualized manner so that they could be placed on generic
hardware, whereas SDN is an emerging paradigm that promise the separation of
the network’s control logic from the underlying routers and switches, in favor of a
logical centralization of control and introducing the ability to program the network,
allowing to implement any desired network topology through software. Moreover,
they ease the process of network management allowing the implementation of a
centralized control point and the development of new solutions for handling large
distributed networks with more flexibility.

Automated approaches, that take advantage of all the above features, have al-
ready been proposed and published in the scientific literature. These automated
solutions benefit the most of the added flexibility and dynamicity of network soft-
warization, and they have been adopted in various scenarios such as IoT [4], Smart
Home [5], and industrial networks [6]. In this context, a relevant problem is the
design of the Service Graph(SG), a logical representation of the network including
communication endpoints and network functions, and the allocation and config-
uration of the needed Network Security Functions (NSFs), such as firewalls, IPS
and anti-spam filters, on the base of a given set of Network Security Requirements
(NSRs). The classical approach is to perform these tasks manually, but it is prone
to human errors and with a reaction time which is not negligible. Network Automa-
tion tools represent an alternative approach for automating the process of allocation
and configuration of the required NSFs starting from a set of high-level NSRs and
a logical representation of the network which is provided by the service designer [7].
Moreover, most of the proposed automated approaches are based on formal meth-
ods, so they can guarantee the correctness of the solution by construction avoiding
the possible misconfigurations due to human labor. The exploit of these forms of
automation is becoming essential today especially in the field of cybersecurity, like
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Introduction

it is expressed in [8] [9]. The complexity of modern networks can not be managed
with traditional methods, which result in wrong configurations not enforcing the
needed security policies and slow response time. Automated tools can help with
faster reconfigurations by providing a more efficient and reactive process that is
formally correct, and could improve network security management.

The scenario considered in this thesis work is indeed the one of a cybersecurity
attack. In this case the time required to react and actuate a mitigation for the attack
is crucial, since the period elapsed between the detection and the computation of
a solution corresponds to the interval in which the system is vulnerable, the longer
is this time and the higher could be the caused damage to the infrastructure.
Additionally, the misconfiguration of NSFs is one of the primary cybersecurity
risks nowadays, that is confirmed by recent surveys such as Verizon’s most recent
study [10] in which misconfiguration errors continue to be a prevailing cause of
breaches, responsible for 13% of breaches over the past year. As the complexity
of modern network increases, the unfeasibility of producing a correct configuration
manually is clear, due to the inability of a human being to have a general vision of
the whole problem. For all these reasons, Cybersecurity is one of the main area of
interest for the development of automatized solutions to manage network security
policy.

Even if many of these automated approaches have been proven effective and
with better performances than the manual configuration approach, they are not
specialized for the proposed scenario of a cybersecurity attack requiring a recon-
figuration of the network. One aspect that can be further developed is exactly
this, the possibility to exploit the characteristics of these automated solutions to
improve the reconfiguration performance of an already configured network. Even
if these solutions are already capable of reconfiguring the network in response to
external events [11], like a change in the policies or a cybersecurity attack, they are
not focused on the optimized resolution of this problem. The framework this thesis
contributed to is VEREFOO: considering its current implementation, the config-
uration has to be recomputed from scratch every time there is a change in the
set of requirements with an associated computational cost which is not negligible
(from hundreds of seconds to several minutes depending on the network complex-
ity). Instead, having a tool that can produce a reconfigured version of the actual
configuration with the smallest possible computation time could be very important
in the previously described scenario of a cybersecurity attack. Furthermore, the
computed solution should not break the system but maintain the validity of all the
other NSRs already in place. For this reason it has been important to maintain the
formal approach to the problem used by VEREFOO that allows to guarantee the
correctness of the configuration by construction.

After all these considerations, this thesis wants to study and propose a model
for the reconfiguration of a network with the goal of achieving the shortest possible
computation time without losing the formal correctness of the configuration, aiming
to solve many of the issues present in nowadays solutions. Then the proposed model
has been implemented as a part of the VEREFOO framework and it has been
extensively tested in different scenarios to compare the produced solution with the
original version, which is performing a complete configuration from zero every time
there is a change in the security policies.
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1.2 Thesis description

The remaining of the thesis is structured in the following way:

• Chapter 2 describes how we could represent network packets, or traffic,
and how we could use this representation to model the network, all its ele-
ments, and the network security requirements. Also the general behvaior of
the network is modeled using an unique representation based on traffic flows.
Then, this chapter describes two opposite approaches for traffic flow mod-
eling which have been implemented in VEREFOO and are called Maximal
Flows and Atomic Flows [12], describing their characteristics, advantages and
disadvantages.

• Chapter 3 describes briefly the structure and the approach of VEREFOO
(VErified REFinement and Optimized Orchestration), which is the project
this thesis is going to be a contribution and extension of. The focus would
be only on those aspects that are needed or have been modified in this thesis
work, these are in particular the two used logical representation of a network
(Service Graph and Allocation Graph), the connectivity requirements, and
parts of the constraints fed to the solver (only those related to the NSRs and
the optimality of the solution).

• Chapter 4 explains the objective of this thesis, introducing the general idea
about the approach and the main elements of the work done for reaching
the goal. Also a more detailed representation of the reconfiguration model is
explained in the end of this chapter.

• Chapter 5 contains all the contributions of this thesis. The core of the
approach is an algorithm for the selection of the area of the network which
needs to be updated for supporting the reconfiugration of the NSRs. Then,
also the formulation of the clauses in input to the solver has been updated in
this thesis for achieving a more efficient computation time. In this chapter it
will be also discussed the optimality of the presented solution compared to
what would be the product of a complete configuration from zero. Finally,
some other implementation details are discussed and a complete and clarifying
example of a reconfiguration scenario is presented.

• Chapter 7 provides an explanation of the testing environment which has
been developed and the conducted tests, presenting the achieved results with
a reflection about what goals have been achieved, in which magnitude, and
the further aspects that should be addressed in the future.

• Chapter 8 contains the conclusion, which summarize the achieved goals of
this thesis and some possible path that could be followed in future work to
improve the solution or enrich the capabilities of the framework.
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Chapter 2

Traffic Flows Modeling

The increasing trend towards network ”softwarization” allows to possibly create
and manage complex network environments in a few minutes or seconds, as already
explained in the introduction. This additional flexibility is used by automated
approaches based on formal methods, to help managing network security in a more
efficient and less error prone way. The idea is that the network designer provides
a set of high-level NSRs and then an automated tool is in charge of implementing
them correctly, possibly applying some optimizations. This area of research is
network security automation and some example in this sector are [13] [14]. One of
the main problems for the advent of these technologies is the selection of an efficient
and performing model for the network, or more specifically for the traffic exchanged
between its nodes, which is considered the base element for modeling NSRs. This is
fundamental because we should have a representation that is formally correct and
at the same time computationally efficient for the subsequent operations performed
by the solver. More specifically, the goal is to have an adequate formal model to
represent the packets that are originated in the source of a communication and
how these are forwarded or modified in a network until the destination is reached.
This objective could be seen as a series of distinct sub-goals: we should be able to
model a packet crossing a network, the paths that a packet can follow in a network,
and the transformations that each network function can operate on a packet that
traverse it. In this chapter we introduce a model for representing the network
and a subset of all the possible Network Functions (NFs) and Network Security
Functions (NSFs), describing the details only of those which are considered in
the work conducted in this thesis (i.e., NAT, Forwarder, Packet Filter). Then,
after the introduction of the Predicate model for representing network packets, two
possible traffic flow models are presented as they were introduced in VEREFOO
by a previous work [12]. These two optimized traffic flow representation models are
called Atomic Flows and Maximal Flows. They are used to represent, identify, and
aggregate classes of network packets (also called traffics) as required in the process
for formal and automatic security management. The model allows to compute how
a packet that enters the network is forwarded and transformed when crossing the
various nodes, as this is necessary to find the optimal placement and configuration
of NSFs, on the basis of user’s NSRs.
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2.1 Network Model

A representation commonly used for modeling a network is a graph, whose nodes
represent any possible function that could be present within the network (i.e., web
client, web server, firewall, NAT etc.) and whose edges represent links between any
two network nodes. In particular, according to VEREFOO, a network is modeled as
a directed graph, which means that each edge represent an unidirectional channel
and consequently we need two edges for a bidirectional communication channel.
An additional distinction done by VEREFOO is between the Service Graph (SG)
and Allocation Graph (AG), which are two possible logical representations of the
network that will be presented in chapter 3.

In the graph model of a network, each node has some related properties char-
acterizing the element which is allocated in that position. A node has a set of
input and a set of output ports, each one being controlled by an Access Control
List (ACL) that describes whether a packet with a certain header can pass through
that port or not. This is used to determine what is called the domain of the node,
represented as the combination of two sets: Ia corresponding to all packets that
are allowed to pass through that node, and Id representing those packets that are
instead blocked. If a node has no ACL, the first set would corresponds to the set
of all possible packets, while the second would be the empty set. Once a packet
has entered a node, it is subject to the switching operation and transmitted to
the corresponding output port accordingly to the rules present in the forwarding
table, which is another defining property of each node. Finally, another important
characterization is the transformation function T . As we said, inside a node a
packet could be possibly subject to a transformation, the most common ones being
header rewriting, encapsulation, de-encapsulation, and label switching. Therefore,
in addition to the forwarding table and the domains Ia and Id, each network node
has another data structure which is in charge of the decision whether a packet has
to be transformed or not, and if yes how it has to be transformed. This is modeled
with the transformation function T , that has one or more input domains to which
correspond one or more actions and output domains. Once a packet enters a node,
it is checked against the input domains of T and the corresponding function is
applied to the packet.

2.2 Models for Network Functions and Network

Security Functions

The abstract representation of a given network function which is presented here is
considering only the parameters which are required for the scope of the considered
problem, the design of an automated policy management system. In particular the
model should describe just the forwarding behavior of the network functions and
not all their details and implementation aspects. This allows to use an user-friendly
high-level language for the description of the Network Security Functions, which
is an important feature for this kind of approaches [15]. This section contains the
brief description of the previously described node characteristics for the Network
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Functions and Network Security Functions which are relevant for the work of this
thesis. Starting with the first set, we consider only the following Network Functions
with the explanation of their respective models.

• FORWARDER: it is a node whose action is to transmit all the packets without
applying any modification. In this case the transformation function T has a
single input domain D that includes all the packets and the function itself is
modeled as the identity function since the action is to maintain the packets
as they are.

• NAT : it has a more complicated representation. It is a network function
that could perform three different transformations and consequently it has
three different domains. In particular, there are domains D1, D2, and D3,
each matching with packets subject to one of the three different operations: a
packet matching D1 is affected by the Shadowing operation, one that matches
D2 by the Reconversion operation, and finally one matching D3 is forwarded
with no transformation applied. The function T will have three different
formulations matching with the three input domains, it corresponds to the
identity function for packets in the domain D3, to a translation of the source
address into one of the public addresses of the NAT for packets in D1, and
finally to a translation of the destination address into one of the shadowed
addresses for packets in D2 (in this case the destination address of received
packets corresponds to one of the NAT public addresses).

Instead, regarding the Network Security Functions, this thesis considers only
packet filter, being the most commonly adopted firewall technology.

• FIREWALL: it is a node whose forwarding domain corresponds to the sets
Ia of all the packets that are allowed to pass and the set Id of all the packets
which are blocked according to the filtering policy of the packet filter. In this
case the transformation function T corresponds to the identity function for
all the forwarded packets, so for the packets in Ia, and to the zero function
for all those that are blocked, so the packets in Id (i.e., T : Id → ∅, Ia → Ia).

Note that, even if the proposed approach consider only firewalls, it could be
extended to the other Network Security Functions as it has already been done
with VEREFOO and channel protection systems [16]. One important aspect to
understand is how we can determine if a packet matches with a certain set or not.
More precisely, the next aspect to consider is how we could identify a packet so
that it could be associated with one of the input domains and the corresponding
action to be performed. This is done on the base of some packet contents, usually
some of the header fields, which allows to identify single packets but also classes of
packets.

2.3 Predicates

A packet is modeled as a predicate computed over some of its fields, specifically
parts of the header. Packets that do not differ in these fields are belonging to the
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same class and are represented by the same predicate, consequently they are treated
in the same way by all nodes which are encountered in the network. Note that a
predicate represents what is called a network traffic. The choices for the forwarding
domains and transformation behavior of a packet are based exclusively on the
predicate that the packet belongs to. It is therefore necessary that also the rules
inserted in the ACL of the nodes, the rules defined in the forwarding tables, and the
domains of the transformation function, are represented using predicates, so using
the same model adopted for network traffic. In this way the predicate describing
the incoming packets can be compared with the predicates characterizing each
encountered nodes and take a decision about the forwarding and transformation
behavior based on the match with the rules or domains of the node. The comparison
of two predicates is a fundamental aspect which should be taken into consideration
when choosing a model for representing them, in particular a needed characteristic
of the selected predicate model should be the usability for different comparison
operations such as intersection, union and negation. The ultimate goal is to achieve
a full representation of the whole network, including all of its elements, as different
sets of predicates that fully characterize the forwarding and transformation behavior
of it.

There are different ways to model predicates (i.e., BDD, Tuple Representation
[17], Wildcards Expressions [18], FDD [19] etc.), the choice for the data structure
used to represent them is crucial and can affect both space and time efficiency of
the automated tools that are using them. For the work of this thesis, that aims
to be a contribution and extension of an existing approach, VEREFOO, the used
representation was introduced by [12] and consists in an implementation of BDD
in Java. BDD stands for Binary Decision Diagram, and it is an acyclic, direct and
rooted graph structure used to represent Boolean functions. The approach used
to represents predicates was introduced in [14]: ”a predicate is the conjunction of
sub-predicates, one for each packet field that is considered, and this conjunction
is denoted by the tuple of its sub-predicates”. This means that, considering IP
packets, we can represent them as predicates defined over the IP quintuple, i.e.
IP Source, IP Destination, port source, port destination, protocol type, and each
elements in this set is itself represented with a sub-predicate which describes the
single field. The final predicate representing an IP packet is the conjunction of
all these sub-predicates. It should be noted that each of the sub-predicate can
represent either a single value, a range of values, or even the full range which is
denoted with the wildcard symbol ”*”.

2.3.1 Predicate Model

In the considered implementation of the VEREFOO approach, a predicate is im-
plemented as a Java class with the same name that is used to describe a class of
packets. Since we consider IP packets, this class contains the useful information
included in the IP header of the packet, the so-called IP quintuple (i.e., {IP source,
IP destination, port source, port destination, protocol type}). As we mentioned
before, the Predicate class should be able to describe either a single packet or a set
of packets, in the first case the predicate fields will be filled with precise and unique
values (e.g., {10.0.0.1, 20.0.0.1, 200, 80, UDP}), whereas in the second case its

18



Traffic Flows Modeling

fields will be filled with ranges of values or using wildcards (e.g., {10.0.0.1, 20.0.0.*,
200, [80-100], TCP}). The Predicate class is briefly introduced in picture 2.1 and
in the following segment adopting a bottom-up approach, starting from the smaller
classes up to the main one.

Figure 2.1: UML class diagram describing Predicate

• IPAddress. This class is used to model IPv4 addresses, it has four fields, one
for each byte of the IP address. Each field can have a value between 0 and
255, or could use the wildcard (represented with value -1) which corresponds
to the full range [0− 255].

• PortInterval. It is used to model port numbers within an IP header, both for
source and destination port values. It can represent a range of ports using
two different values for the fields min and max. The possible ranges must
be between the interval [0− 65535]. Note that also in this case the wildcard
could be used, and that a single value can be represented setting min = max.

• L4ProtocolTypes. This is an enum class that represents all the possible values
for the IP protocol type field. VEREFOO considers just two of them, which
are TCP and UPD. All other possible protocols are expressed through the
value OTHER. Finally, the possibility to express all protocols is given by
value ANY, representing the disjunction of {TCP, UDP, OTHER} (there is
no wildcard in this case).

• Predicate. It is the main class, representing the combination of the five fields
to form the IP quintuple {source IP, destination IP, source port, destination
port, protocol type}. These fields are all modeled as lists of the sub-classes
introduced before. The two lists of IPAddress elements are representing the
IP source and IP destination. Each element inside the list is a single address
or a subnetwork, then the elements in the list are put in conjunction (i.e.,
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AND) one with the others, in this way we could efficiently reproduce all
possible intervals combining different sub-predicated. Also the two lists of
PortInterval elements are modeled in the same way for the port source and
destination attributes. The only change is for the list of L4ProtocolTypes
type, which is a list composed of elements that could be taken from an enum
class of just four possible values. Hence, the cardinality of the set is small
and the sub-predicates inside the list are put in disjunction (i.e., OR) with
the others.

Finally note that there is also another class, APUtils, which contains many
methods to manipulate and work with Predicate objects. Two notable methods are
those used to compare and compute the intersection between couple of predicates,
which are both frequently used operations.

2.4 Traffic Flow

As it was said before, a class of packets can also be called a traffic, t, and it could
be represented using a predicate which is defined over the IP quintuple. More
precisely, a traffic is, in the more general definition, the disjunction of one or more
predicates, i.e., t = qt,1 ∨ qt,2 ∨ ... ∨ qt,n where qt,i is a predicate defined over the
IP quintuple like qt,i = (IPSrc, IPDst, pSrc, pDst, tPrt). Traffic Flows are used
to represent the set of all the possible flows of packets that can cross a network,
and the set of all traffic flows is represented as F . Each traffic flow describes
the behavior of a certain packet class along a path, taking into consideration not
only how the packet class exits from the source node and how it is forwarded by
the intermediate ones, but also how it is transformed passing through the various
nodes encountered travelling from source to destination. Giving a definition, a
Traffic Flow f ∈ F is formally modelled as a list of alternating nodes and traffics,
[ns, tsa, na, tab, nb, ..., nk, tkd, nd]. Each node ni in the list represents a node belonging
to the path crossed by the flow, the list starts from the source node ns, that
generates traffic tsa, and reach the destination node nd, that receives traffic tkd. The
generic traffic tij is the class of packets transmitted from node ni to node nj in the
flow. The objective of using traffic flows is to exhaustively describe the behavior
of an entire network only by means of the set of traffic flows F . In particular,
since we want to model network traffic to refine some security properties, we are
interested in a subset of all traffic flows that are possible. These are referred as the
interesting flows and they can be selected by considering only certain sources and
destinations for the flows according to the defined security policies. The interesting
flows are computed by processing the given set of Network Security Requirements
and the configuration of the encountered nodes. It is important to adopt a flow
model that can describe in an efficient way the network behavior, in particular the
model should permits to compute how a packet that enters the network is forwarded
and transformed when crossing the various nodes (i.e., NAT, Load balancers, VPN
gateways, firewalls etc.). Two different and alternative models for describing traffic
flows have been already studied, implemented, and compared in [12]. The two
approaches have an opposite initial idea adequate for the considered problem but
each one of them has its advantages and disadvantages. With Maximal Flows we
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have a very short computation time for their generation but ah higher complexity
for their representation inside the solver, instead with Atomic Flows we have a high
computation time for their generation since we must perform a pre-computation
step but this approach allows to achieve a more efficent representation for the solver.
These will be presented in the following sections.

2.5 Network Security Requirements

Another needed element for the verification or refinement of security policies is
the model to use for the Network Security Requirements. Each requirement r is
expressed as a tuple (C, a), where C is a condition and a is an action that must be
performed on the traffic that satisfy the condition. The condition C is modeled as
a predicate representing the IP quintuple corresponding to the packet class which
is subject to that specific requirement, in other word the packets matching with
the predicate representing the condition are subject to the action, a, which is either
one of the two elements {ALLOW,DENY }. In particular, a traffic flow t satisfies
a condition C, and consequently the requirement r, if the three following properties
are satisfied:

1. its source and destination endpoints have IP addresses matching respectively
C.IPSrc and C.IPDst

2. its source traffic satisfies C.IPSrc and C.pSrc, which means that t matches
with the predicate {C.IPSrc, ∗, C.pSrc, ∗, ∗}

3. its destination traffic satisfies C.IPDst, C.pDst and C.tProto, which means
that t matches with the predicate {∗, C.IPDst, ∗, C.pDst, C.tProto}

2.6 Atomic Flows

The first approach that has been considered makes use of Atomic Predicates (APs),
an idea proposed in 2015 by some researchers as a model for the Network Reacha-
bility problem [20]. This idea has then been modified and adapted to the problem
of verifying satisfiability of NSRs and the refinement problem in the VEREFOO
framework by [12]. With this solution each complex predicate is split into a set
of simpler and minimal atomic predicates, and then this set is used for generating
the set of interesting flows of the network which could include only elements in the
computed set of Atomic Predicates as traffics between any two nodes. Given a set
of predicates, it is possible to compute a set of corresponding APs that is minimal,
unique, and fully representative of the initial set. In particular, given a predicate
P , the corresponding set of Atomic Predicates A({P}) are computed as follow:

A({P}) =

{︄
{true}, ifP = falseortrue

{P,¬P}, otherwise
(2.1)
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Given two sets of Atomic Predicates P1 = {b1, ..., bl} and P2 = {d1, ..., dm},
the set of Atomic Predicates corresponding to their union P3 = A(P1 ∪ P2) =
{a1, ..., , ak} is equal to:

{ai = bi1 ∧ di2|ai /= false, i1 ∈ {1, ..., l}, i2 ∈ {1, ...,m}} (2.2)

Then, having a generic set of predicates P , the corresponding set of Atomic
Predicates A(P ) is computed applying in an iterative way the formula 2.2 to the
sets of Atomic Predicates generated for each element in P using equation 5.1. The
resultant set of Atomic Predicate represents the smallest set of disjunct predicates
such that each predicate, of the set over which they are computed, can be expressed
as a disjunction of a subset of them (this is expressed in the following definition).

Definition 2.6.1 Given a set P of predicates, its set of Atomic Predicates {p1, p2, ...pk}
satisfies these five properties:

1. pi /= false,∀i ∈ {1, ..., k}

2. ∨ki=1pi = true

3. pi ∧ pj = false, if i /= j

4. each predicate P ∈ P , P /= false, is equal to the disjunction of a subset of
atomic predicates

P = ∪i∈S(P )pi, where S(P ) ⊆ {1, ..., k}

5. k is the minumum number such that the set {p1, ..., pk} satisfies the above four
properties

The Atomic Flows (AFs) approach make use of APs to describe each traffic that
can cross the network and to configure each firewall with rules expressed using only
atomic predicates, or more in general it is describing a network and its behavior
using only the predicates in the set of APs. The idea is to start from those that
we call ”interesting” predicates and then compute the corresponding set of Atomic
Predicates as described before. We consider as “interesting” all those predicates
linked to nodes which are related to one of the given NSRs, so the predicates
representing the source traffic (i.e., the traffic generated from the source node)
and the destination traffic (i.e., the traffic reaching the destination node) of each
requirement, but also predicates describing input traffic classes and transformation
behavior for transformers crossed on the paths. After having computed the set of
Atomic Predicates for all the “interesting” predicates of the network, we proceed
to generate for each user requirement all possible AFs. Then we use them as
input to the MaxSMT solver to allocate and configure the needed Network Security
Functions.

Definition 2.6.2 A flow f = [ns, tsa, na, ..., nh, thi, ni, ..., nk, tkd, nd] is defined atomic
if each traffic tij ∈ B, where B is the set of Atomic Predicates computed from the
set of interesting predicates.
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The main advantage is that the predicates are unique by definition, so each
one can be associated to a different integer identifier. In this way, the solver could
work using simple integers as representation of the traffics instead of more com-
plex representations like the Predicate class presented before. Consequently, the
resolution performances of the solver is greatly improved using this solution since
it allows to define a leaner model of the problem. Moreover, we already said that
many operations are based on intersections and unions, which are far less complex
if performed over sets of integer compared to sets of more complex predicate repre-
sentations. Using a complex Java class, as the one showed previously, would imply
giving the solver multiple variables corresponding to the different fields of the class
and so producing a more complex definition of the problem. Another advantage
of using APs it is the easier configuration of Network Security Functions. This is
important while configuring a firewall’s rule set, each configured rule is associated
to a given input traffic, but considering atomic predicates which are by definition
disjoint, we can be sure that each configured rule is blocking only an atomic por-
tion of the traffic and has no effect on the others, which would be totally disjunct
from the predicate used in the rule. On the opposite side, working with integers is
causing the inability of the solver to merge multiple configured rules into a single
one, and so it will generate a larger number of configured rules. This is because the
solver has no visibility on the IP addresses and other details of the predicates, in
fact it is working with opaque integer identifiers. It is however possible to apply a
post-processing task to aggregate the rules after reconverting the integer identifiers
to the IP-quintuple. In this sense an approach using AFs would not produce the
smallest possible number of configured rules in an absolute sense but it achieves
the smallest number of disjointed rules, hence not the absolute optimal solution.
Another disadvantage of this approach is the initial computation time required
for generating the set of Atomic Predicates from the set of interesting predicates.
This step is computationally intensive because it requires to process one interesting
predicate at the time and compute its intersection with all the others APs in the
set before adding it, so that the set contains only disjointed traffics.

2.6.1 Brief description of the computation of Atomic Flows

We briefly present the idea behind the algorithm for computing the set of atomic
flows. The starting point is the set of NSRs, as we have seen each requirement
r can be seen as the tuple (C, a) made of a condition and an action, where the
condition C is a predicate like {IPSrc, IPDst, pSrc, pDst, tProto}. For each re-
quirement we evaluate all the possible paths connecting C.IPSrc with C.IPDst.
Then, we compute the set of interesting predicates for the network considering the
requirements and all the transformer nodes encountered in at least one path, from
this set we generate the set of Atomic Predicates. Having completed this, which is
the most computational heavy phase, we consider one requirement and one path at
the time and generate the Atomic Flows for the selected combination. The traffic
generated by the source of the requirement is grouped in a set B0, this contains the
disjunction of all the Atomic Predicates whose source IP and port are equal to those
expressed in the condition of the requirement. Each single Atomic Predicate in B0

is propagated along the path and possibly modified by the middleboxes until the
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destination is reached. Note that with the term middleboxes we consider ”any in-
termediary device performing functions other than the normal, standard functions
of an IP router on the datagram path between a source host and a destination host”
[21]. In this way we obtain all the possible of Atomic Flows, associating to the set
of requirements all the possible flows from the paths and the traffics exchanged
between each couple of nodes. However some pruning is needed, not all flows are
part of the solution, either because they reach the destination with an incorrect
predicate (i.e., different from {∗, C.IPDst, ∗, C.pDst, C.tProto}) or because they
reached the destination without being the endpoint of the path (i.e., they arrive at
another endpoint or are dropped along the path). Remarkably, the most demand-
ing phase of this process is the computation of the Atomic Predicates, since the
generation of Atomic Flows could be easily executed in parallel and implies a simple
traversal of a graph. For the computation of this set we have to generates all the
interesting predicates and then process them one by one to compute the final set of
APs, this operation become very demanding as the number of interesting predicates
increases, which is correlated to the the number of NSRs and transformers.

2.7 Maximal Flows

The second and opposite model is calledMaximal Flows(MFs), which details can be
found in [22]. With the previous solution we were trying to split the traffic flows into
smaller ones, reaching the highest level of granularity but also an higher number of
traffic flows. Instead, with this second approach we try to do the opposite, reducing
the number of generated flows aggregating different sub-flows into a single Maximal
Flow, which is still representative for all the ones that have been joined. All traffic
flows which have been merged in the same Maximal Flow must behave in the same
way when crossing the various nodes of the network, in this way we reach a larger
granularity and a smaller number of flows representative of the network. Also in
this case the traffic flows are modeled as a list of alternating nodes and predicates,
however the used predicates are no longer atomic but express the disjunction of
several IP quintuples. The set FM

r of Maximal Flows is defined as a subset of Fr

containing only the flows that are not subflows of any other flow in Fr.

Definition 2.7.1 Called Fr the set of all possible flows of the network, the corre-
sponding set of Maximal Flows FM

r matches the following definition:

FM
r = {fM

r ∈ Fr|∄f ∈ Fr.(f /= fM
r ∧ fM

r ⊆ f}

We aggregate into the same Maximal Flow all the flows behaving in the same
way, that should be treated in the same manner by the network. Then, the design
and resolution of the MaxSMT problem is modeled using only the set FM

r which
has a smaller size than Fr but the same expressiveness. The main advantage of
this solution is that the algorithm for computing the set FM

r is much faster than
the one to compute the set of Atomic Flows, mostly because this algorithm, with
respect to the previous approach, does not require any initial computation time for
computing the traffic flows. The main disadvantage is that the traffics exchanged
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between nodes for each Maximal Flow are not disjointed and unique, and this
implies that they can not be associated with an integer identifier like it could be
done with Atomic Predicates. The solver has to work with a representation of
the predicate, in our case the Predicate Java class presented before. This solution
requires in total 13 fields: 4 integers representing the source IP address, 4 integers
representing the destination IP address, 2 integers for representing the range of
source ports, 2 integers for the range of destination ports, and finally a string for
the protocol type. There are many more variables given in input to the solver and
this has a significant impact in the final resolution performance.

2.7.1 Brief description of the computation of Maximal Flows

For the resolution of the MaxSMT problem, the necessary step is to compute all
the Maximal Flows for the given network security requirements. The set FM

r of
Maximal Flows is computed for each Network Security Requirement r on the basis
of an algorithm that consider one requirement at the time and compute the set
of paths in the allocation graph which satisfy the condition of the requirements.
Then, for each path, all the Maximal Flows f ∈ F r

M correlated to the selected path
are computed and added to the result set, this is conducted by an iterative process.
The starting point is the largest traffic that satisfies the source component of the
requirement’s condition, this is then propagated forward on the path and updated
accounting for the possible transformations performed on traffic by the encountered
network functions, and it is split into sub-traffics when needed. In particular the
flow is divided into smaller sub-flows only when it encounters a node which for-
warding domain and transformation behavior require this operation. Then, the set
of computed flows has to be restricted in order to select only those satisfying the
destination predicate of the requirement and this is done in a backward traversal of
the path, by propagating all the computed elements in F backwards. This process
is possibly repeated for several iterations until the final set of Maximal Flows is
found.
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Chapter 3

VEREFOO

In the context of security automation, new solutions have been recently proposed
for implementing an automated approach to policy-based network security man-
agement systems, an example of research in this field is [23]. These solutions
exploit emerging technologies like Network Functions Virtualization (NFV) and
Software-Defined Networking (SDN) to improve network management and access
to new degrees of networking flexibility. The configuration of security functions is
an operation commonly performed manually, making it likely to lead to incorrect
configurations and long timing required for the application of any change in the
configuration. As the complexity of modern network increases, the unlikelihood
of producing a correct, and possibly optimized, configuration manually is obvious.
Automated approaches would allow to compute a configuration more efficiently
and also avoiding human errors. The majority of these approaches are based on
formal methods which are guaranteeing the solution correctness by construction.
Additionally some of these tools allow other features, the main one being to seek
for optimality in the solution. This is for example used to produce a configu-
ration which is not only correct but also optimized to minimize resource usage.
The remaining part of this chapter will introduce one of these security automation
approaches based on formal method. The VEREFOO approach is based on the
design of a partial weighted Maximum Satisfiability Module Theories (maxSMT)
problem, which resolution would provide a formally correct configuration of the
input Network Security Requirements and also the minimization of the number of
used firewalls and configured firewall rules. The general structure of the tool with
all its modules will be presented in this chapter, with an emphasis on the aspects
this thesis has contributed to the development. Also an overview of some more
theoretical concepts are presented, in particular the distinction between Service
Graph and Allocation Graph, and a final overview of the most relevant constraints
defined for the MaxSMT problem.

3.1 VEREFOO

VEREFOO (VErified Refinement and Optimized Orchestration) is a framework
that manages the creation, configuration and orchestration of a complete end-
to-end network security service following an approach based on formal methods.
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VEREFOO manages the optimal allocation and configuration of the needed Net-
work Security Functions on a provided Service Graph in order to fulfill the input
Network Security Requirements expressed using a high-level language. The frame-
work uses the z3 solver for the resolution of a MaxSMT problem in order to find
the correct and optimized configuration.

The VEREFOO architecture is showed in figure 3.1 and a brief description of
all its modules is now presented.

• the user interact with the framework through the Policy GUI, which re-
ceives the definition of the Network Security Requirements which must be
enforced. The NSRs could be expressed either in an user-friendly language
with the High-Level Policies (HLP) or with a higher level of details using the
Medium-Level Policies (MLP). Note that policies expressed using HLP are
then translated automatically into MLP by the High-To-Medium (H2M)
module, so that they could be processed in the same way for the creation and
configuration of NSFs.

• the given requirements are subject to a first processing phase by the Policy
Analysis Module (PAN). This module has the goal of detecting errors and
possible conflicts in the input set of network security policy. It will return
the minimum set of requirements that must be satisfied or produce a report
if the conflicts were not possible to be solved automatically.

• Considering the given NSRs, the NF Selection Module (SE) is in charge
of deciding which are the NSFs necessary to satisfy them. Note that the
possible functions are selected from a pre-built catalogue of all the available
ones, this is represented by the NF catalogue element in the picture.

• the second input received by the framework comes through the Service GUI.
Using this component the user could define the Service Graph (or directly the
Allocation Graph) that is later adopted for enforcing the requirements. Note
that also this module is linked with the catalogue of all the NFs, so that the
user could select those to be included in the graph.

• the core element is theAllocation, Distribution and Placement Module
(ADP) which receives the set of conflict-free NSRs, the selected NFs, and
either the SG or the AG (if it receives the SG it will automatically generate
the corresponding AG). The scope of this module is to produce the final graph
with the allocated and configured NSFs. This is the central element, the one
using the z3 problem solver for computing the solution of a partial weighted
MaxSMT problem which would produce the optimized configuration. The
NSRs are introduces as hard constraints which must be always satisfied by the
solver, while other specifications and optimizations are introduced as weighted
and optional soft constraints. We will see later this step in more details.

• finally, the last module is the Medium-to-Low (M2L) module which takes
in input the list of medium-level policy rules produced by the solver and trans-
lates them into low-level language, depending on the actual implementation
of the network functions.
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Figure 3.1: VEREFOO Model

3.2 Service Graph

Service Graph (SG) is a logical topology of a virtual network. It represents an
interconnection of service functions and network nodes providing a complete end-
to-end network service. This is a generalization of the Service Function Chain
(SFC) concept, which instead is the representation of a linear and ordered set of
abstract service functions that must be applied on selected packets/flows [24]. The
difference is that in a Service Graph the functions do not need to be positioned
in a linear combination but they can be organized in a more complex architecture
with multiple paths from source to destination and also with loops, just like in
a generic network model. The Service Graph could exploit only a defined set of
services, the Network Functions (NFs), which include various functionalities such
as load balancing and web-caching, but also other simpler functions like NATs
and forwarders. Note that low level elements like routers and switches are not
represented in the Service Graph, they are implicit in the representation.

In the context of VEREFOO, the Service Graph could be represented as Gs =
(Ns, Ls) and it is characterized by just two sets: Ns which is the set of network
nodes including both the endpoints of the communications and the middleboxes,
and Ls which is the set of the links interconnecting pairs of nodes. The result is an
abstract view of the network including all the possible paths a packet could follow
and some functions that are uncorrelated with the security policies to be enforced.

3.2.1 XML schema of the Service Graph

The Service Graph is represented by the XML schema of a graph element. This
is characterized by an unique identifier, a boolean attribute named ServiceGraph,
and a sequence of node elements. The boolean attribute is used to specify if the
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XML schema represents a Service Graph (value true) or an Allocation Graph (value
false), since the same representation could be used for both.

Figure 3.2: Graphical example of a Service Graph

Listing 3.1: XML example of a Service Graph

<graph id="0" serviceGraph="true">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="20.0.0.3"/>

<configuration description="WebClient_description" name="WC_Conf">

<webclient nameWebServer="30.0.0.1"/>

</configuration>

</node>

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="20.0.0.3"/>

<configuration description="WebClient_description" name="WC_Conf">

<webclient nameWebServer="30.0.0.1"/>

</configuration>

</node>

<node functional_type="FORWARDER" name="20.0.0.3">

<neighbour name="10.0.0.1"/>

<neighbour name="10.0.0.2"/>

<neighbour name="30.0.0.1"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.0.1">

<neighbour name="20.0.0.3"/>

<configuration description="WebServer_description" name="WS_Conf">

<webserver>

<name>30.0.0.1</name>

<webserver/>

</configuration>

</node>

</graph>

As we see in the listing 3.1, that contains the XML representation of the net-
work in 3.2, each one of the node elements represent either a service function or a
communication endpoint and it is characterized by different elements:

• a name attribute representing the IP address of the node (or an unique string).
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• a functional type attribute which signals which is the function assigned to the
node.

• a list of neighbour elements, each one representing one linked node. Note that
the connection is unidirectional, the other node must have another neighbour
element with the specification of the current node in order to create a bidi-
rectional channel.

• a configuration attribute that represent the behavior of the selected network
function. Its content depends on the specific functional type selected for the
node.

3.3 Allocation Graph

The Service Graph model does not allow the allocation of new firewalls or other
network security functions, because every node is already characterized and occu-
pied by a specific function, for this reason we need a second model. The Allocation
Graph (AG) is a logical topology that could be either produced from zero or au-
tomatically generated starting from the Service Graph. AG and SG are internally
correlated since they are characterized by the same set of network functions, but
the difference is that the AG could be enriched with some additional nodes. Indeed,
the allocation graph representation adds to the previous one an extra placeholder
node type called Allocation Place (AP). An AP is considered as an empty spot
which could be used by the automated tool and either be filled with a Network
Security Function (i.e., firewall) if it is an optimal position, or left unused. In the
implementation, if an AP is left unused but it is part of the path of at least one
input requirement, its place would be occupied by a forwarder since its behavior
would be to forward each received packet.

The process implemented in VEREFOO to automatically generate an AG start-
ing from a SG consists in adding a new AP on ever link between any two nodes.
However, the service designer has the power to impose some constraints on the
generation process, either forcing the allocation of a NSF on a specific AP or pro-
hibiting the placement of a new AP in a specific location, and then no network
function will be possibly placed. This additional possibility allows to adapt the ap-
proach also to traditional networks in which the allocation for the security functions
is limited by the physical hardware.

3.3.1 XML schema of the Allocation Graph

The model is represented similarly to the previous one, GA = (NA, LA), with the
difference that the set of nodes NA contains all endpoints, all the service functions,
and additionally all allocation places. Considering the XML model, the starting
point is the same structure of the SG with the possibility to specify some node
elements without any functional type and configuration, these correspond to the
allocation places. Considering the network already used in 3.2 and the relative SG,
the automatically generated AG (without any additional constraint) is represented
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in listing 3.2 and the picture 3.3. Note also that the flag serviceGraph must be set
to false in this case.

Figure 3.3: Graphical example of an Allocation Graph

Listing 3.2: XML example of an Allocation Graph

<graph id="0" serviceGraph="false">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="40.0.0.1"/>

<configuration description="WebClient_description" name="WC_Conf">

<webclient nameWebServer="30.0.0.1"/>

</configuration>

</node>

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="40.0.0.2"/>

<configuration description="WebClient_description" name="WC_Conf">

<webclient nameWebServer="30.0.0.1"/>

</configuration>

</node>

<node functional_type="FORWARDER" name="20.0.0.3">

<neighbour name="40.0.0.1"/>

<neighbour name="40.0.0.2"/>

<neighbour name="40.0.0.3"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.0.1">

<neighbour name="40.0.0.3"/>

<configuration description="WebServer_description" name="WS_Conf">

<webserver>

<name>30.0.0.1</name>

<webserver/>

</configuration>

</node>

<node name="40.0.0.1">

<neighbour name="20.0.0.3"/>

<neighbour name="10.0.0.1"/>

</node>

<node name="40.0.0.2">

<neighbour name="20.0.0.3"/>

<neighbour name="10.0.0.2"/>
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</node>

<node name="40.0.0.3">

<neighbour name="30.0.0.1"/>

<neighbour name="20.0.0.3"/>

</node>

</graph>

3.4 Network Security Requirements

The second input that the service designer must provide to VEREFOO is the set
of Network Security Requirements. The focus of this thesis is just on connectivity
requirements between pairs of nodes, more specifically we consider reachability
and isolation requirements. These respectively represent the need of blocking or
allowing a communication between two endpoints or subnetworks. In this work
the NSRs are expressed with a medium-level language, i.e., each network security
requirement, independently from the type, is modelled specifying the IP 5-tuple of
the flows that are allowed or prohibited. This is not a limitation since it would still
be possible for an administrator to use an high-level language and delegating the
framework to their translation in medimum-level requirements using well-known
approaches [25]. Therefore, a NSR is modeled as the combination of six elements:

[ruleType, IPSrc, IPDst, portSrc, portDst, transportProto]

• ruleType express which kind of constraint should be satisfied, in our case the
possible values are ”reachability property” or ”isolation property”

• IPSrc is the source IP address of the communication

• IPDst is the destination IP address of the communication

• portSrc is the source port of the communication

• portDst is the destination port of the communication

• transportProto is the transport-level protocol of the communication

The IP addresses could use the wildcard symbol to represent a subnetwork, if the
wildcard is used for one or both of the port attributes it represents the full range
of ports from 0 to 65535.

Other than the set of input network security requirements, the approach pre-
sented in VEREFOO allows the service designer to specify one out of four possible
general behaviors. Each one is characterized by a default behavior describing how
the framework should manage all the traffic flows for which there is not an explicitly
formulated requirement. There are three main approaches and the third one has
two further characterizations:

1. whitelisting, if all the communications for which no specific requirement is
formulated should be blocked, in this case the default behavior is to block all
traffic flows and the user can only specify additional reachability requirements.
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2. blacklisting, if all the communications for which no specific requirement is
formulated should be allowed, the default behavior is set to allows all traffic
flows and the user can specify only isolation requirements.

3. specific, it the service designer does not care about how the communications
for which no specific requirement is formulated are handled. In this case the
user is interested only in enforcing the requirements which have been explicitly
provided, without caring about the behaviour of the other communications.
The user could specify both isolation and reachability requirements in this
case and the way in which the other traffic flows are handled is automatically
decided by the framework to achieve other goals, such as:

• rule-oriented specific, the goal is to minimize the number of configured
rules.

• security-oriented specific, the goal is to increase the security of the system
and consequently all communications that are not strictly necessary to
satisfy the requirements are blocked.

Note that using the third approach, in both variants, the requirements should be
conflict free, which is something that should be handled by the PAN module of
VEREFOO. In the other two approaches this is not needed since the requirements
would be all reachability or all isolation depending on the selected one. In this thesis
work we consider the approach specific, supposing that the service designer should
explicitly express which communications should be blocked and which should be
allowed. Moreover, since the PAN module is not the focus of this work and because
anomalies can be eliminated with well-known anomaly detection techniques [26]
[27], a second assumption is to have an input set of NSRs that is always conflict-
free.

3.4.1 XML model of the Network Security Requirements

The XML schema for the input NSRs is represented by the PropertyDefinition
element, which is internally made by a list of Property elements, each representing
a single requirement. Every requirement is characterized by an identifier for the
correlated Service Graph, or Allocation Graph, and the attributes presented before.

Listing 3.3: XML example of a Network Security Requirement

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.-1"

dst="20.0.0.2" dst_port="80" />

<Property graph="0" name="IsolationProperty" src="10.1.1.1"

dst="130.192.-1.-1" src_port="[2000-3000]" dst_port="80" />

</PropertyDefinition>

Note that the source and destination ports are optional fields, if they are not
specified the whole range of ports will be considered. Listing 3.3 represents two
requirements, one for each kind. The first one represent a reachability requirement
for communications starting from the subnet 10.0.0.0/24 (expressed using wildcard,
correspondent to value -1) to IP address 20.0.0.2 on port 80. Instead, the second one
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is an isolation requirement for the communications starting from node 10.1.1.1 with
a port ranging from 2000 to 3000, and with destination the subnet 130.192.0.0/16
listening on port 80.

3.5 Formulation of the MaxSMT problem

VEREFOO uses z3 [28], a state of the art solver, to resolve an instance of a par-
tially weighted Maximum Satisfiability Modulo Theories (MaxSMT) problem, which
is a generalization of the SMT problem (i.e., which consist in determining if it is
possible to satisfy at the same time all the given first-order logic constraints) that
introduce optimization by distinguishing two different sets of input clauses. The
solver uses hard constraints and soft constraints. The first ones are not relax-
able and must be satisfied in any case to get a correct solution for the problem,
they do not have an associated weight and for this reason we have a ”partially”
MaxSMT problem. By contrast, soft constraints are relaxable, which mean that
their satisfaction is not strictly required, and they have an assigned weight. Hard
constraints are used to model the input Network Security Requirements and all the
other constraints imposed by the service designer (i.e., the allocation of a firewall
in a specific location, prohibiting the allocation of any service function in a cer-
tain link). Instead, Soft constraints are used for the optimization objective, since
the solver will select among the many solutions the one which satisfy all the hard
constraints and produce the maximum value for the sum of the weights of the sat-
isfied soft constraints. In the case of VEREFOO, the problem is modeled with the
optimization objective of minimizing resource consumption, preferring the solution
with the minimum number of used firewalls and the minimum number of config-
ured rules for each one of them. The formulation of the MaxSMT problem is key
for achieving the objectives of VEREFOO, namely full automation, optimization,
and formal correctness. Specifically, the approach is fully automatic since it is the
solver which produces the correct configuration with minimum human intervention
(the user has to provide only the security policies), it is also optimized because
the soft constraints are expressing the optimization objectives, and finally it is for-
mally correct because the formal correctness requirements, i.e. the satisfaction of
the network security requirements, are expressed with the hard constraints.

This thesis worked mainly with the set of soft constraints for minimization of
resource consumption. These have been modified and for this reason they will be
now described in more details. In order to present them we need to introduce some
auxiliary functions:

allocated(n) : N → B. This Boolean function returns true if a firewall must be
allocated in allocation node n, or false otherwise.

deny(t) : T → B. Another Boolean function, it returns true if the ingress traffic
t is dropped by the node. It is a function used to model the forwarding behavior
of a node.

π(f) : F → (N)∗. This function maps a flow f to the ordered list of nodes
crossed by that flow, including the destination but not the source.
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τ(f, n) : F × N → T . It maps a flow and a node to the ingress traffic of that
node for that flow. In case the flow does not cross that node, the empty set is
returned.

enforces(dk, r) : A×R→ B. This Boolean function returns true if the default
action, dk, of a firewall (allocated in the allocation place k) enforces the requirement
r. Basically if the default action is aligned with the requirement, i.e., if default
action is ”ALLOW” and the requirements is of type reachability or if default action
is ”DENY” and requirement is isolation.

Optimality of Firewall Allocation

Moving to the soft constraints, the first one regards the minimization of allocated
firewalls. In this case, a constraint is defined for each allocation place to express
the preference that no firewall is allocated in that position.

∀aij ∈ A.Soft(allocated(aij) = false, ck) (3.1)

Optimality of Firewall Rules Configuration

The second optimality aspect is to minimize the number of configured rules inside
each allocated firewall. In this case we adopt the function enforces since a rule has
to be configured only if it is not already enforced by the default action. The idea is
to identify only the security requirements which could need an explicit rule in the
firewall (i.e., those rules producing false if used as input for enforces):

∀r ∈ R.∀f ∈ Fr.(ak ∈ π(f) ∧ ¬enforces(dk, r) =⇒ (∀q ∈ τ(f, ak).q ∈ Qk)) (3.2)

The generated set Qk corresponds to all possible Predicates describing the traffic
incoming to a potential firewall in node k for which a rule is needed. For each one
of them it should be created a rule, called placeholder rule p, that could potentially
become a configured rule for the firewall but this will be decided by the solver which
states if it is necessary or not. The solver will resolve the problem and decide which
placeholder rules will be configured. Another useful function is indeed the one that
maps each placeholder rule to a boolean value, true if it is configured and false
otherwise:

configured(p) : P → B. This function returns true if the placeholder rule needs
to be configured.

Finally, the actual soft constraint which implements this second optimization
goal is:

∀pi ∈ Pk.Soft(¬configured(pi), cki) (3.3)

Note that the constraint states that it is preferred to not configure any place-
holder rule. If the solver decides that a placeholder rule gets configured for an
allocation place k, then there is an additional hard constraint to force also the
allocation of a firewall in that position:

∃pi ∈ Pk.configured(pi)) =⇒ allocated(ak) (3.4)
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Finally, it is important to consider the relationship between the weights of the
two soft constraints. It is clearly evident that the second goal should have less
priority than the first one, since the non-allocation of a firewall must be always
preferred with respect to the non allocation of one of its rules. In general, the cost
of allocating a new firewall must be greater than the sum of the costs related to
all other soft constrains. If the solver establishes that an allocation place should
not be used, it does not make sense to consider the cost of satisfying all the other
constraints about the firewall configuration. As a consequence, the weight for the
second soft clause should be less than the weight for the first one.∑︂

i:pi∈Pk

(cki) < ck (3.5)

3.6 Reachability Requirements Hard Constraint

A Reachability requirement is used to request that a source node, or a source
subnetwork, can communicate with a destination node, or a destination subnetwork.
This implies that packets belonging to this communication are not discarded by any
middlebox, in particular the packet filters, along the path. For a correct satisfaction
of the reachability requirement, using the traffic flows concepts defined in chapter
2, there should be at least one traffic flow which is not blocked from source to
destination. In this case we consider as input the set of flows Fr ⊆ F which satisfy
C, the condition of the requirement r. The hard constraint which must be satisfied
for the reachability requirement r is then expressed in the following way:

∃f ∈ Fr.∀i.(ni ∈ π(f) ∧ allocated(ni) =⇒ ¬denyi(τ(f, ni))) (3.6)

The requirement r is satisfied if exists at least a traffic flow computed for r, for
which all nodes in the path of that flow do not block the ingress traffic for that
node for that flow.

3.7 Isolation Requirements Hard Constraint

An Isolation requirement is used to block any communication between a source
and a destination, each one being either a single node or a subnetwork. All packets
belonging to the communication should be discarded by some middlebox in the
path. Using traffic flows, an isolation requirement r is satisfied if all flows in the set
Fr ⊆ F , so all those satisfying the condition C, are blocked. The hard constraint
representation of the isolation requirement r is the following:

∀f ∈ Fr.∃i.(ni ∈ π(f) ∧ allocated(ni) ∧ denyi(τ(f, ni))) (3.7)

The requirement r is satisfied if, for each possible traffic flows computed for r,
exists on the path of that flow at least one firewall that is allocated and is configured
to block the ingress traffic for that flow.
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Chapter 4

Thesis objective

Stated how important is the development of automated approaches for network
security management, this chapter will present which is the objective of this thesis.
As mentioned in the introduction, one aspect which could be improved in current
automated solutions is the optimized resolution of the reconfiguration problem,
which has an impact especially in cybersecurity related scenarios. The situation
of a cyberattack would require a reconfiguration of the currently enforced Network
Security Requirements, potentially for isolating a malicious node or blocking some
undesired traffic, and this operation should be actuated in the shortest possible
time. The longer is the interval elapsed from the beginning of an attack to the
deployment of a solution, the higher is the risk for the system to be compromised.
Unfortunately current solutions for automated network security management are
not focused on producing an updated version of a current configuration but instead
they have to recompute the complete configuration starting from zero every time,
with a consequent impact on the final computation time. In chapter 3 it was
introduced the model and some general information about the automated approach
this thesis has contributed to, which is VEREFOO. The information introduced in
that chapter will be useful in the following ones to better understand which are
the novelties proposed by this thesis, in which context they are placed, and their
implementation inside the framework. Also the digression done in chapter 2 about
network and traffic flow models will be fundamental to understand the approach
which is illustrated in this thesis work.

The functioning procedure of VEREFOO starts with the definition of the re-
quirements by the user, who is also in charge of providing a Service Graph model
(or directly an Allocation Graph) for the considered network. Then, the framework
will perform some computations to generate all the possible traffic flows which are
affected by at least one requirement and then it uses this set as input to the solver.
The z3 solver is the core component for the formal and automated allocation and
configuration of the Network Security Functions. Considering the various Network
Functions already deployed in the network and the computed traffic flows associ-
ated to the set of Network Security Requirements, the solver could automatically
produce the optimized configuration by solving an instance of a partially weighted
MaxSMT problem. The optimality goals of VEREFOO are correlated to the min-
imization of resource consumption, the produced result should have the minimum
number of allocated firewalls and the minimum number of configured rules in each
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firewall.

The problem of the original approach used by VEREFOO is the absence of
a dedicated resolution of the reconfiguration problem, which was handled by re-
computing the whole configuration from zero even for the smallest change in the
set of requirements. The main goal of this thesis is to propose a new model for
optimizing the reconfiguration of an already configured network and implement
this as a contribution to the VEREFOO approach, possibly relaxing the optimality
constraints to improve the computation time. This goal has been subdivided into
different steps which had to be be achieved to reach the main objective. First, the
reconfiguration problem is studied in its characteristics and also modeled with two
sets of requirements, the Initial and Target sets. Secondly, the selected approach is
presented in depth. The notions of traffic flow modeling are adopted to introduce
an algorithm for detecting which network areas must be reconsidered by the solver
according to the changes in the set of requirements. In this step it has been im-
portant to study in more details the process adopted by VEREFOO that starting
from the requirements, proceeds generating the traffic flows and produces the con-
straints given to the solver. It has been important in this step to also reconsider
the constraints which are fed to the solver, introducing some changes to the Soft
Constraints to preferably maintain the state of the network, i.e., its current config-
uration, and consequently achieving a faster resolution of the problem. Finally, it
has been crucial to test and compare the implemented solution with the previous
approach, highlighting the advantages which this scenario could bring as well as its
limitations, describing also the possible further developments.

4.1 Introduction to the Reconfiguration Problem

Stated that this thesis wants to find a more efficient solution for the reconfiguration
of a network, the first step is to clearly identify the problem. As already said, the
presented solution is intended as a contribution to VEREFOO and represent an
alternative approach for the reconfiguration of an already configured network, con-
sequently the subject of this study is a network which has already been configured
by a previous run of VEREFOO and which needs to be modified as a response to a
change in the policy set which has been made necessary to contrast a cybersecurity
attack (situation that, as we said, would require a fast response and mitigation ac-
tion). However, this scenario is not strictly the only possible one since the proposed
solution works, and produce a relevant advantage, in general with any configured
network, even if the configuration was performed in a different way. This thesis
considers only a change in the set of Network Security Requirements as possible
reason for reconfiguration, instead a possible change in the connections or topology
is not yet considered in this work.

For the modeling of the problem, it is expected that the user (i.e., the network
designer) provides in input to the framework the partially configured virtual rep-
resentation of the network and two different sets of security policies: the Initial
Set containing all the NSRs which are already configured in the provided service
graph, and the Target Set containing the new set of NSRs which must be enforced
in the updated configuration. In particular, the second set could contains both new
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requirements and others which are already configured correctly in the provided net-
work, these should be maintained as they are also in the new configuration. This
situation is shown in the picture 4.1, representing the model of the general scenario
in which the Initial and Target sets are partially overlapped. In this situation we
can distinguish three different sets of requirements:

• the deleted NSRs which are no more needed in the final configuration. These
are the requirements present only in the Initial Set I and not in the Target
Set T

deleted = I \ T = {r ∈ I : r /∈ T}

• the added NSRs which are the requirements that should be added in the
updated configuration, these are not present in the Initial Set I but added in
the Target Set T

added = T \ I = {r ∈ T : r /∈ I}

• the kept NSRs are those already enforced in the given configured network and
should be still enforced in the final configuration. These are the requirements
belonging to both sets

kept = I ∩ T = {r ∈ T : r ∈ I}

Figure 4.1: Representation of Initial and Target Sets

Notice that this general case has two opposite extreme situations. The first one
is the case in which one of the two sets is completely included in the other, which
could imply either that all the configured requirements are maintained and some
are added (i.e., I ⊂ T ), or that only some requirements are kept from the initial
configuration and the others are no more needed and so deleted (i.e., T ⊂ I ). An
even more extreme case is the complete equality of the two sets (i.e., I = T ), which
has no meaning for the problem of reconfiguration since represent the absence of a
change in the set of network security requirements. The second extreme situation
is the one with no intersection between the two sets, which implies that the new
set of requirements has no elements in common with the original configuration (i.e.
I ∩T = ∅ ). However, in the validation and testing process these extreme cases are
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not considered since they are far from the common scenario we are considering. The
expected common case of a response to a cybersecurity attack is the one in which
only few requirements are added, many are kept, and a few others are possibly
deleted.

The idea for the new approach will be presented in the following chapters. The
proposed solution is to identify the changes between the Initial and Target sets of
Network Security Requirements and then, especially considering the security poli-
cies which must be added or deleted, select only the portions of the network whose
configuration has to be re-discussed in order to support these modified require-
ments. The approach aims to enable VEREFOO to detect and reconfigure only
the parts of the configuration which needs to be updated while maintaining some
other parts as static elements in the configuration.
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Approach for the Reconfiguration
problem

The approach elaborated in this thesis is mixing some heuristic techniques with
some reformulations of the constraints given to the solver with the final goal of
achieving a faster computation time for a reconfiguration while maintaining the
formal correctness of the solution. The general idea is to consider the different
regions resultant from the comparison of the Initial and Target sets, and then use
them for detecting the network nodes which must be put in discussion so that
their configuration, or even their allocation, could be re-evaluated by the solver
considering the modified set of Network Security Requirements, the Target set.
This would allows to maintain parts of the configuration unchanged and consider
only a subset of the network as subject to the reconfiguration. The number and
complexity of the constraints in the MaxSMT problem are determinant for the
performance of the solver, considering only a subset of the nodes in the service
graph permits to limit the number of constraints and achieve a faster resolution.
The first part of this discussion will include some considerations about the traffic
flow models presented in chapter 2 and the selection of the one which is more
suitable for the proposed reconfiguration approach. Then, the Refinement process
adopted by VEREFOO (i.e., the process of finding the optimal allocation and
configuration of security mechanisms on the basis of the requirements expressed
in a high-level language) will be briefly covered, following the steps which brings
from the Network Security Requirements to the hard and soft constraints which
are ultimately fed to the solver. Studying these aspects, the design of an algorithm
for the detection of network areas to be reconfigured is presented, as this aspect
constitutes the core of this work. This algorithm should select the elements in
the network which are effected by the reconfiguration, making their allocation and
configuration modifiable by the solver which could evaluate them accordingly to
the updated set of requirements. In the last part the changes introduced to the soft
constraints are presented, describing their idea and usage.
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5.1 Traffic Flow model

Chapter 2 introduced two opposite but equally valid models for traffic flows, which
are Maximal Flows and Atomic Flows. Now their differentiating factors are ana-
lyzed in more details in order to chose which would suit better for the presented
approach, as this is the first step toward the design of a solution. Summariz-
ing what has already been explained, using Maximal Flows we would obtain the
smallest number of generated flows because the basic idea is to group all possible
subflows into a larger one, so considering a subset of flows which is smaller but
equally representative. This approach would produce also the minimum number of
configured rules. The main disadvantage is that the traffics within a Maximal Flow
are the result of aggregating together multiple traffics, i.e., they are the disjunction
of different predicates, and they cannot be ”atomic”. For this reason the predicates
within Maximal Flows should be represented using the Predicate Java class pro-
posed in chapter 2, making it more complex and, as a result, creating a slower and
more difficult representation of the traffics in z3. Instead, using the Atomic Flows
model we would obtain an higher number of flows since the idea is the opposite one,
splitting each traffic flow into multiple minimal and disjoint ones. Consequently
using this approach would produce an higher number of configured firewall rules,
because it produces a larger number of traffic flows. The main disadvantage of this
approach is that it is necessary to execute a long pre-processing task to compute
the set of Atomic Predicates for the network, which are needed for computing the
set of traffic flows. The advantage is that, being the adopted traffics atomic and
disjunct, it is possible to represent each Atomic Predicate with an integer identifier
instead of a more complex representation. Consequently the solver could use these
integer values for modeling the constraints and the traffic flows, producing a much
simpler formulation of the MaxSMT problem.

In our situation, the objective is to use traffic modeling for detecting the network
area associated to specific sets of requirements, and then use the selected elements
for the reconfiguration steps. The goal is to minimize such area in order to achieve
the greatest improvement in the computation time. We must select the traffic
modeling solution which allows to identify the smallest set of nodes which need to
be reconfigured according to the changes in the Network Security Requirements.
This task involve considering the input requirements and the traffic flows associated
with them, then the algorithm should select the traffics involved with the added
or delete requirements and which portions of the actual configuration should be
recomputed because they are in conflict with the updated set of requirements.
Using the Maximal Flow approach, since it uses predicates that aggregate multiple
traffics, they may include larger portions of traffics and it would be more likely to
cause an enlargement of the network area which is selected as to be reconfigured,
not obtaining an optimal selection. For example, a configured rule in a firewall
that is associated to one Maximal Flow could cover at the same time multiple
traffics and it would be more difficult to distinguish the parts of the configuration
which are associated just to a single requirement. Instead, using the Atomic Flow
approach, each traffic is atomic and disjointed from the others, consequently this
modeling solution allows to work on a finer grain. In this way it would be possible to
identify for each added or deleted requirement the smallest portion of the network’s
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configuration which is correlated with the associated traffic flows of the requirement
and that should be reconfigured. Moreover, for the aforementioned properties of
Atomic Predicates, the firewall configuration results much easier to work with.
Each firewall’s rule that is blocking or allowing a traffic is specified only for one
specific Atomic Predicate, and thanks to the property of being totally disjunct,
the configured rule has no effect on any other traffic but only on the selected one.
Considering the same example of before, if there is a firewall rule configured on
the base of an Atomic Flow, this rule will be associated to only one atomic traffic.
After all these considerations, the solution which best fit the presented approach
for the reconfiguration problem is the Atomic Flows, which has been selected since
it is the one that best suit the purpose of this work allowing for a finer and more
precise selection of the area of the network which should be reconsidered, selecting
the optimal subset of nodes.

5.2 Definition of added, deleted, and kept sets

The approach presented in this thesis suppose that the service designer provides to
the framework two different sets of Network Security Requirements, the Initial set
containing all the already configured security policies, and the Final set contain-
ing the updated security policies which must be configured in the network. The
first necessary step is to determine from these two sets the different groups of re-
quirements relevant for the reconfiguration problem, the added, deleted and kept
ones. The used strategy is to compute the intersection of the two sets of NSRs,
corresponding to the kept group, and then derive the groups of added and deleted
requirements as:

added = Target \ kept = {r ∈ T : r /∈ kept}

deleted = Initial \ kept = {r ∈ I : r /∈ kept}
In this way we can compute in a simple and fast manner all the required categories.
The algorithm for computing the intersection is presented in algorithm 1. This is
considering two sets of input requirements R1 andR2, and each element is character-
ized by type (i.e., Isolation or Reachability), source IP, destination IP, source port,
destination port, and protocol type. i.e., [Type, IPSrc, IPDst, pSrc, pDst, tProto].
Note that each attribute is referenced with the dot notation, i.e, r.IPSrc returns
the IP source for the requirement r. The algorithm returns the set of requirements
which are present in both sets by comparing each element of R1 to all the elements
of R2 until a match is found. A match means that all the attributes are identical
between the pair of considered requirements.

5.3 Logical Formulation of the Connectivity Re-

quirements

It is important to understand the process which starting from the input set of
Network Security Requirements could ends up with the definition of the soft and
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Algorithm 1 Algorithm for computing the intersection of two sets of requirements

Input: two sets of requirements R1 an R2

Output: the intersection of the two sets Rres = R1 ∩R2

1: Rres ← ∅
2: for ri = [Type, IPSrc, IPDst, pSrc, pDst, tProto] ∈ R1 do
3: for rj ∈ R2 do
4: if Compare(ri, rj) then
5: Rres ← ri
6: break
7: end if
8: end for
9: end for
10: return Rres

11: function Compare(r1, r2)
12: if r1.T ype /= r2.T ype then
13: return false
14: end if
15: if r1.IPSrc /= r2.IPSrc then
16: return false
17: end if
18: if r1.IPDst /= r2.IPDst then
19: return false
20: end if
21: if r1.pSrc /= r2.pSrc then
22: return false
23: end if
24: if r1.pDst /= r2.pDst then
25: return false
26: end if
27: if r1.tProto /= r2.tProto then
28: return false
29: end if
30: return true
31: end function

hard constraints which are provided to the solver. Of course this whole process is
studied considering the Atomic Flow modeling solution for the traffic flows, for all
the reasons provided in the previous section. The process linking the NSRs to the
generated traffic flows is the following: (i) compute the interesting predicates of the
network starting from the requirements and from the configured transformers (in-
teresting predicates are the source and destination predicates for each requirement
and the domains of transformation of the middleboxes), (ii) from the previous set
calculate the corresponding set of Atomic Predicates and use this result to fill the
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transformation maps of all transformers with atomic traffics identified with inte-
gers, and (iii) for each NSR generate all the related Atomic Flows as described in 2,
by passing the atomic traffics through the paths and considering the transformation
behavior of each encountered node. After the computation of the associated flows,
the constraints that should be fed to the solver must be prepared. In particular we
should consider the allocation and configuration soft constraints as presented in 3,
which are the two main clauses relevant for this thesis.

As said, this work is limited to the reconfiguration of firewalls due to a change
in the Network Security Requirement set. In particular, the requirements which are
considered are the connectivity ones, so Isolation and Reachability requirements.
These are formulated with an hard requirements which must be satisfied and they
have respectively the following logical formulations:

∀f ∈ Fr.∃i.(ni ∈ π(f) ∧ allocated(ni) ∧ denyi(τ(f, ni)))

∃f ∈ Fr.∀i(ni ∈ π(f) ∧ allocated(ni) =⇒ ¬denyi(τ(f, ni)))

Considering Isolation requirement, the formula states that there must be an
allocated firewall for each Atomic Flow which is blocking the associated Atomic
Predicate received in input. In other word, for satisfying an isolation requirement
all the flows should be considered and for all of them there must be a node blocking
the traffic. Instead for a reachability requirement it is enough that at least one
Atomic Flow is not blocked (i.e., all nodes belonging to that flow do not block the
relative Atomic Predicate received in input for that flow). To satisfy a reachability
requirement all the flows must be considered and it must be checked that there is
at least one of them which is not interrupted from source to destination.

The new algorithm, which is now presented, is based on the model of the re-
configuration problem presented in chapter 5 and on the aforementioned logical
formulations of the connectivity requirements. The guiding principle is to distin-
guish between kept, added, and deleted Network Security Requirements, and for
each element in these groups detect which parts of the configuration should be
reconfigured, either because they are no more needed or because they must be
changed for allowing the addition of a new requirement. Note that for the Network
Security Requirements in the kept set no operation is necessary, since they are al-
ready configured in the provided network and so no nodes should be update for
permitting their satisfaction.

5.4 Added Network Security Requirements

The first and most important set is the one of the added Network Security Require-
ments, which are those belonging to the Target set but not to the Initial set. Each
requirement in this group, in principle, is not yet enforced in the actual configu-
ration of the network, however it could be that some of them are already satisfied
while others require some changes. The proposed approach consists in considering
each requirement in this group and check if it is already satisfied by the provided
configuration, and if this is not the case, the algorithm would detect which parts
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should be changed because in conflict. This operation has a different meaning de-
pending on the kind of requirement which is considered, for this reason we split the
presented reasoning in two separate parts.

5.4.1 Isolation Requirements

Considering an isolation requirement which belongs to the set of added NSRs, for
it to be satisfied there must be an already allocated firewall for each Atomic Flow
which is blocking the associated Atomic Predicate in input. If there is an Atomic
Flow which traffic is not blocked by any of the nodes, then the part of the network
configuration which is associated with this flow should be reconfigured. In this
case all the nodes crossed by the flow should be selected for reconfiguration since
the algorithm could not decide a priori which is the specific node among the many
possible ones which is the optimal choice for blocking the traffic. Considering a new
Isolation requirement r ∈ added and a given allocation graph AG, the procedure
to compute the network elements to be reconfigured is presented in algorithm 2.
The starting point is the set of Atomic Flows Fr correlated to r. We recall some
functions which are useful: π(f) returns the nodes belonging to the given flow
(excluding the source), allocated(n) returns true if there is a firewall allocated in
the given node, denyn(t) returns true if the node n is configured to block traffic t,
and finally τ(f, n) returns the traffic in input to node n for flow f .

Algorithm 2 Algorithm for selecting network area to reconfigure for each added
Isolation requirement

Input: an isolation requirement r, and an AG GA

Output: nodes to be reconfigured Nreconfigure

1: for f ∈ Fr do
2: found← False
3: for ni ∈ π(f) = [n1, n2, ..., nd] do
4: if allocated(ni) & denyni

(τ(f, ni)) then
5: found← True
6: break
7: end if
8: end for
9: if found == False then

10: Nreconfigure ← π(f) ▷ All nodes in the path should be reconfigured
11: end if
12: end for
13: return Nreconfigure

The algorithm would consider for each added Isolation requirement all the re-
lated flows, then checks (lines 3-7) if there is a node belonging to the flow’s path
which is blocking the traffic received in input. If there is no such node for a flow,
then all the nodes belonging to the path are selected as to be reconfigured since the
algorithm can not decide which among the many nodes would be the best selection
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for blocking the traffic. The decision is taken later by the solver. Note that only the
nodes which have already a configuration in the provided graph are added to the set
of nodes to be reconfigured Nreconfigure, in particular only firewalls and forwarders
since they the two possible outcome of an used allocation point (i.e., an allocation
point crossed by a traffic flows could become a firewall if the solver decides it is an
optimal position, or a forwarder otherwise).

Figure 5.1: Example of addition of an Isolation requirement

Considering as example the figure 5.1, the given inputs are the two sets of Initial
and Target requirements and the already configured network, which is composed
of a firewall and two forwarders. As depicted, the new requirement that should
be added is the Isolation from the client 10.0.0.1 to the server 20.0.0.1, with any
ports and protocol. The associated paths are just two and each one has an Atomic
Flow, called respectively A and B. The algorithm would check if there is a node
blocking the traffic for each one of the flows. In this case flow B crosses a firewall
which blocks all traffic as default action and so the condition is satisfied, instead
flow A does not include any network function which is blocking the traffic and so
the configured nodes belonging to its path must added to the set Nreconfigure (i.e.,
the two forwarders in this case).

5.4.2 Reachability Requirement

The other kind of connectivity requirement is Reachability. Considering a reacha-
bility requirement belonging to the set of added NSRs, for it to be satisfied there
must be at least one associated traffic flow which is not blocked from source to
destination. If such Atomic Flow is not found, the algorithm considers for all the
correlated flows all the nodes that are blocking the traffic in the provided con-
figuration, and adds them to the set of nodes which are possibly reconfigured,
Nreconfigure, for satisfying the requirement. Even in this case the algorithm could
not select which is the optimal Atomic Flow selected for the satisfaction of the
requirements, it is something under the responsibility of the solver. Considering a
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new Reachability requirement r ∈ added and a given allocation graph AG, the pro-
cedure for selecting the network elements to reconfigure is presented in algorithm
3. In this case the formulation is different because the condition to be verified is
the opposite of the previous one, and because we could possibly stop the algorithm
before having checked all flows if it finds one which is uninterrupted from source
to destination and that satisfies the requirement. This possibility is handled using
a temporary structure called tmpReconfigure which keeps track of all nodes that
could be possibly reconfigured if no such flow is found. In fact, if a flow that satisfy
this condition is found the structure is emptied (lines 9-10) and no nodes is selected
for reconfiguration, otherwise it is returned as the set of nodes to be reconfigured
Nreconfigured (line 16).

Algorithm 3 Algorithm for selecting network area to reconfigure for each added
Reachability requirement

Input: a reachability requirement r, and an AG GA

Output: nodes to be reconfigured Nreconfigure

1: tmpReconfigured← ∅
2: for f ∈ Fr do
3: tmpF low ← ∅
4: for ni ∈ π(f) = [n1, n2, ..., nd] do
5: if allocated(ni) & denyni

(τ(f, ni)) then
6: tmpF low ← ni

7: end if
8: end for
9: if tmpF low.isEmpty() then ▷ Found a flow satisfying the requirement

10: tmpReconfigured← ∅
11: break
12: else
13: tmpReconfigured← tmpF low
14: end if
15: end for
16: return Nreconfigured ← tmpReconfigured

Considering the example in picture 5.2, we have a similar situation as before
but with different inputs. In this case the network has two firewalls configured in
whitelisting mode and a forwarder. The new requirement that should be added is
the Reachability from node 10.0.0.1 to node 20.0.0.1, with any possible source and
destination ports and any protocol type. The requirement has two paths, each with
one associated flow, namely A and B. In this case the algorithm should checks if
there is at least one of them which does not block the traffic, and if this is not the
case, it should reconfigure, for each flow, the nodes that are blocking the traffic. In
this case both flows have a firewall that is blocking them, so the algorithm select the
nodes blocking both of them since the solution would be to reconfigure either FW1
or FW2 in order to have at least one Atomic Flow which reaches the destination.
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Figure 5.2: Example of addition of a Reachability requirement

Special Scenario with NATs

During the testing phase, using some synthetically generated networks, a critical
scenario which was not supported by the original version of the algorithm was de-
tected. This very specific error case would result in an unsat answer by the solver
because the algorithm was selecting a set of reconfigured nodes which was not large
enough for being compatible with a possible solution. This scenario required a
patch to the algorithm in order for it to be supported. The particular situation
could manifest if there are NATs in the network, in particular when working with
an added reachability requirement which source node is effected by the shadowing
operation of a nat. In this situation there could be cases of conflict between the
aforementioned reachability requirement and an isolation requirement already en-
forced by the configuration and which is also subject to the shadowed operation by
the same nat. This special conflict is caused by the action of the nat which converts
the two initially different source traffics into a single unified traffic if the sources are
both in the set of shadowed addresses. Note that the set of requirements causing
this problem is still conflict-free as supposed in the hypothesis. This scenario is
represented in minimal terms by the Allocation Graph in picture 5.3.

Figure 5.3: Example of Allocation Graph for special case

This situation is unsat using the previous algorithm because the the only node
selected for reconfiguration would be the one placed after the nat. In this case
the two opposite requirements can not be enforced in the same reconfigured node
because they require an opposite action to be applied on the same Atomic Predicate,

49



Approach for the Reconfiguration problem

since both requirements reach the node with the same input traffic. This situation
is explained more clearly in the reconfiguration example of picture 5.4. In the
example, the initial configuration of the network for satisfying the Initial Set or
Network Security Requirement is composed of: three endpoints (10.0.0.1, 10.0.0.2,
30.0.0.1), a nat (40.0.0.1) having as sources two of the endpoints, two forwarders
(20.0.0.1, 20.0.0.2) and a firewall (20.0.0.3) configured with whitelisting behavior.
The Target set would requires the modification of one Isolation into a Reachability
requirement, in particular the one from node 10.0.0.2 to node 30.0.0.1.

Figure 5.4: Example of special reconfiguration case

This requirement has only one associated flow which is represented in the pic-
ture, flow A. Considering the previous algorithm 3, the only selected node to be
reconfigured would be the firewall with address 20.0.0.3, being the only one block-
ing the flow associated with the reachability requirement. However node 20.0.0.3
has no possible configuration which satisfy both of the requirements in the Tar-
get set, because they require two opposite actions over the same traffic in input,
i.e., both the isolation and reachability requirements reach the node 20.0.0.3 with
Atomic Predicate {40.0.0.1, ∗, 30.0.0.1, ∗, ∗} because of the nat. The only correct
configuration could be achieved by placing a firewall before the nat on the path of
the isolation requirement.

Figure 5.5: Example of special reconfiguration case with new algorithm

Therefore, the algorithm has been slightly modified for supporting this edge
case. Note that only reachability requirements require this additional check, since
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Algorithm 4 Modified algorithm for selecting network area to reconfigure for each
added Reachability requirement

Input: a reachability requirement r, and an AG GA

Output: nodes to be reconfigured Nreconfigure

1: tmpReconfigured← ∅
2: for f ∈ Fr do
3: tmpF low ← ∅
4: NAT ← False
5: for ni ∈ π(f) = [n1, n2, ..., nd] do
6: if !NAT & ni.getFunctionalType().equals(NAT ) then
7: NAT ← True
8: end if
9: if allocated(ni) & denyni

(τ(f, ni)) then
10: tmpF low ← ni

11: if NAT then
12: for fp ∈ ni.getCrossingF lows() do
13: if fp.property == isolation & τ(f, ni) == τ(fp, ni) then
14: for nj ∈ π(fp) do
15: if nj.getFunctionalType().equals(NAT ) then
16: tmpF low ← nj−1

17: else if nj == ni then
18: break
19: end if
20: end for
21: end if
22: end for
23: end if
24: end if
25: end for
26: if tmpF low.isEmpty() then ▷ Found a flow satisfying the requirement
27: tmpReconfigured← ∅
28: break
29: else
30: tmpReconfigured← tmpF low
31: end if
32: end for
33: return Nreconfigured ← tmpReconfigured

they are the only ones which could cause this kind of conflicts. For each added re-
quirement we must consider an extra flag which is set as soon as a nat is encountered
in each traffic flow. If this flag is set and the algorithm finds a configured firewall
blocking the input traffic, an additional check must be performed to account for the
special conflicting scenario. This control consists in scanning all the traffic flows
crossing the firewall and search for another traffic flow in this .set corresponding
to an Isolation requirement and reaching the firewall with the same input traffic.
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When such a condition is found, the algorithm starts from the source of the selected
traffic flow for the found isolation requirement and marks as to be reconfigured all
the nodes which are placed before each encountered nat until the firewall, crossed
by the initial added reachability requirement, is reached. This is expressed in the
modified algorithm 4. Also, picture 5.5 is showing which are the nodes that would
be selected for reconfiguration with this updated version of the algorithm for the
same example seen before in picture 5.4. Note that using this new version of the
algorithm the reconfigured nodes are the firewall, as before, but also the forwarder
in node 20.0.0.1.

5.5 Deleted Network Security Requirements

The previous reasoning was all about the added NSRs, the other set which has been
considered is the set of deleted NSRs. This one includes all the requirements which
are belonging to the Initial set but that are no more present in the Target set, in
other word those requirements which are already configured in the initial network
but whose satisfaction is no more required in the reconfigured network. The idea for
this set of requirements is to find which are the parts of the configuration that are
currently guaranteeing their satisfaction and possibly reconfigure them, allowing
then the solver to choose to not allocate anymore a Network Security Function or
remove a configured rule. As in the previous case, the algorithm will be presented
separately for the two kinds of connectivity requirements.

Notably, one interesting aspect to consider is the cost of the pre-processing task
of generating the set of Atomic Predicates to be used for the generation of Atomic
Flows. These predicates are computed starting from the set of interesting predi-
cates of the network, which includes the source and destination for each NSRs, and
the transformation behavior of all the configured transformers, in our case firewalls
and nats. The reconfiguration approach would have in general an higher cost for
this phase. The first element which is responsible for the increase in the computa-
tion time is the presence of Network Security Functions already configured in the
provided network, which models are considered in the reconfiguration scenario but
not in a configuration starting from zero. The other interesting aspect is the set of
deleted NSRs, which represents a more relevant contribution in the increase of the
computation time. When we need to process the deleted requirements in the algo-
rithm, we must generate the set of Atomic Flows representative for them and also
the corresponding set of Atomic Predicates. The explicit delete operation requires
to consider also the interesting predicates generated for these deleted requirements,
instead of considering only the added or updated ones, causing an increased number
of Atomic Predicates and Flows. For this reason, the algorithm has been designed
in a parameterized manner for supporting different reconfiguration profiles:

• NoDelete. In this case the approach produce a faster but still formally
correct reconfiguration by avoiding the explicit deletion of the requirements
which are not needed but present in the initial configuration. In this way
the user could achieve a better computation time trading it for a possible
worst optimality, since the solution would not remove all the configurations
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which are not needed if this operation is not necessary for satisfying the
Target set of requirements. We could say that the approach in this profile
is ”don’t care”, the user is not interested in how the framework configures
all the communications that are not covered by an explicit requirement. For
example, if the user remove an isolation constraint from 10.0.0.1 to 20.0.0.1
and uses this profile, the framework implies that he does not necessarily wants
to remove the parts of the configuration enforcing the isolation and thus
having a reachability condition for the same traffic. If the user wants to
remove a possible configuration that cause the traffic to be blocked, he should
explicitly insert a new requirement from 10.0.0.1 to 20.0.0.1 expressing the
opposite action.

• Delete. In this case the framework will apply the reconfiguration algorithm
for all the sets of requirements, considering also the deleted ones. This will
cause a degradation of the performance (caused by the pre-processing task and
possibly by a larger reconfigured area resulting in a more complex model of the
problem) but possibly reaching a better optimality of the final configuration.
This profile could be further characterized using the profiles already present
in VEREFOO (i.e., whitelisting, blacklisting, security-oriented specific, rule-
oriented specific) for achieving other secondary goals, such as preferring a
solution that could be more security cautious blocking all communications if
it is not specified otherwise (i.e., the removal of a reachability requirement
would imply the enforcing of an isolation) or a solution that is prioritize
network reachability allowing all communications for which there is no specific
requirement (i.e., the deletion of an isolation requirement would imply the
enforcing of a reachability).

This thesis propose the idea and implementation of both profile but only the
NoDelete one has been tested more extensively, being the most interesting one in
terms of achieved performance compared to the complete reconfiguration. This is
also motivate by the results presented in chapter 6 which compares the scalability
of the pre-processing task for generating the Atomic Flows in the two different
profiles.

5.5.1 Isolation Requirement

An isolation requirement is satisfied if there is an allocated firewall for each Atomic
Flow which is blocking the associated Atomic Predicate in input. In this case the
idea is to find all the nodes that are satisfying the condition of the requirement
and reconfigure them. This implies considering all the correlated traffic flows of
each deleted isolation requirement and selecting all the nodes that are blocking the
traffic in input as to be reconfigured. This is what is expressed in algorithm 5. The
starting point is always the associated set of Atomic Flows Fr. For each Atomic
Flow f ∈ Fr the algorithm search for all the configured nodes that are blocking the
traffic in input for the considered flow f and adds them to the set of reconfigured
nodes (lines 3-5).

We also see the application of the algorithm in the example represented by
picture 5.6. In this case, the combination of Initial and Target set would let only
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Algorithm 5 Algorithm for selecting network area to reconfigure for each deleted
Isolation requirement

Input: an isolation requirement r, and an AG GA

Output: nodes to be reconfigured Nreconfigure

1: for f ∈ Fr do
2: for ni ∈ π(f) = [n1, n2, ..., nd] do
3: if allocated(ni) & denyni

(τ(f, ni)) then
4: Nreconfigure ← ni

5: end if
6: end for
7: end for
8: return Nreconfigure

Figure 5.6: Example of deletion of an Isolation requirement

one requirement in the deleted set, which is the Isolation from node 10.0.0.1 to the
subnetwork 30.0.0.0/24 (represented as 30.0.0.* using the wildcard symbol). The
generated Atomic Flows are two, A and B, one for each possible path. For both
flows there is only one node that could be possibly selected as to be reconfigured,
which is the firewall configured in whitelisting, i.e., the default action is to deny all
traffics. In this case the solver could then decide to not allocate the firewall in that
position if there is no requirement in the Target set needing it, like in this situation.

5.5.2 Reachability Requirement

The other kind of connectivity requirement is reachability. A reachability require-
ment is satisfied if there is at least one associated traffic flow which is not blocked
from source to destination. The algorithm, for each reachability requirement r in
the set of deleted NSRs, searches among all the associated Atomic Flows the ones
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(they could be more than one) which are not blocked by any node up to the desti-
nation. This is expressed in algorithm 6. The adopted approach is to check, for a
given flow f ∈ Fr, if there is a node blocking the traffic received in input for f (line
4) and if so a boolean variable found is set to false. Whenever the variable remains
true after scanning all the nodes this implies that an Atomic Flow satisfying the
reachability condition has been found. When such a flow is encountered, all its
nodes are added to the set of reconfigured ones Nreconfigure (lines 9-11) since all of
them could be potentially updated since the reachability requirement is no more
present in the Target set.

Algorithm 6 Algorithm for selecting network area to reconfigure for each deleted
Reachability requirement

Input: a requirement r, and an AG GA

Output: nodes to be reconfigured Nreconfigure

1: for f ∈ Fr do
2: found← True
3: for ni ∈ π(f) = [n1, n2, ..., nd] do
4: if allocated(ni) & denyni

τ(f, ni)) then
5: found← False
6: break
7: end if
8: end for
9: if found == True then ▷ Found a flow which satisfy the condition

10: Nreconfigure ← π(f)
11: end if
12: end for
13: return Nreconfigure

The figure 5.7 represents an example for the case of deletion of a reachability
requirement. In this case, the requirement which is no more needed in the Target
set is the reachability from node 20.0.0.1 to node 10.0.0.1, which was configured in
the network with a rule in the firewall to allows the corresponding traffic. In this
case, the generated flows A and B are both uninterrupted from source to destination
and consequently all nodes should be considered as to be reconfigured. The solver
could then reconsider the configuration of the firewall and remove the rule which
is not needed anymore.

5.6 Updated Network Security Requirements

This set is a subcategory of the added set. In fact it includes all those requirements
that were already present in the Initial set but have been changed partially in the
Target set. For this reason a requirement in this set could be seen as a combination
of the two previous actions, the removal of the old configured requirement that
belongs to the deleted set and the addition of the modified requirement belonging
to the added set. This can be seen in picture 5.8 with an example. For this reason
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Figure 5.7: Example of deletion of a Reachability requirement

Figure 5.8: Example of an updated requirement

this is considered just as a theoretical set of requirements but in practice it is treated
exactly as described for the other two sets.

5.7 Optimality of the Reconfiguration

It has been already discussed in chapter 3 that VEREFOO has one main goal,
which is to generate a formally correct allocation and configuration of the neces-
sary Network Security Functions provided a set of high-level security policies, but it
has also some secondary goals which are related to the optimality of the computed
configuration. In particular, the solution which is automatically computed by the
framework should be the optimal one in terms of minimization of the allocated
firewalls and minimization of the configured rules. The approach proposed in this
thesis instead could produce a solution which is optimal only with respect to the
network areas which are identified for reconfiguration, so as possibly modifiable
by VEREFOO, and not an optimal solution in a global sense. Using the algo-
rithm that has been presented in this chapter, only some locations are considered
as possible candidates for the placement of new Network Security Functions, and
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the tool could then analyze only a subset of all the possible solutions since it can
not modify the other nodes which are not selected for reconfiguration. We could
say that we are achieving a sub-optimal result using the reconfiguration approach
compared to a complete reconfiguration starting from zero. Nevertheless, this as-
pect is compensated by the improved computation time which represent a more
relevant parameter for the proposed scenario of a cybersecurity attack. This aspect
will be further developed in the testing phase, trying to estimate the entity of this
sub-optimality.

Figure 5.9: Example of the sub-optimality of the proposed reconfiguration approach

Considering the picture 5.9, we can see an example representative of the sub-
optimality achieved with this approach compared to the globally optimal one. In
the presented scenario the initial configuration should be updated to include the
additional Isolation requirement from source node 10.0.0.1 to source node 20.0.0.1.
For this situation the algorithm would select as node to be reconfigured only the
forwarder, maintaining unchanged the allocation and configuration of the firewall
FW1 since it is not crossed by any traffic flow correlated with the additional re-
quirement. The solver would then reconfigure just the node of the forwarder to
satisfy the requirement and so it will decides to allocate another firewall FW2 to
block the traffic. However, the computed solution is sub-optimal in a global sense
because the Target set of requirements could be satisfied with just only one firewall,
which would be the solution achieved if the configuration is recomputed from zero.
This globally optimal solution was discarded in the reconfiguration approach since
FW1 was considered as immutable, thus it was not one of possible solutions.
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5.8 Soft Constraints

With the proposed algorithm for detecting the network areas to be reconfigured
the space of the solutions for the solver has already been reduced, since only some
nodes are considered as mutable and which configuration has to be determined
by the solver, while others are fixed and their configuration must be maintained
unchanged. This approach by itself could be helpful in reducing the time for the
resolution of the MaxSMT problem and achieving a faster computation time for
the overall reconfiguration process, however this thesis contributed also to a re-
design of the soft constraints used for the problem definition in order to make the
solution even more effective. In particular, the idea which has been introduced in
the problem is that the current state of the network, and its configuration, should be
preferably maintained. The current formulation of the MaxSMT problem has been
modified according to this idea, in particular the soft constraints have been changed
so that the optimal solution would be still the one which minimize the number of
firewalls and rules (respecting in this way the optimality goals of VEREFOO) but
also the one which produces the smallest possible number of changes to the initial
configuration. The better formulate the reasoning behind this solution, the idea is
that an already allocated firewall should be preferred instead of a newly allocated
one, and similarly an already configured rule should be preferred instead of a new
one. In this way the resolution of the MaxSMT problem is simplified, since the
solver will search first for a solution which reuses as much as possible the initial
configuration. The solver is reaching the possible optimal solution in a shorter time
with respect to considering all configuration soft constraints with an equal weight.

This approach has been adopted mainly for the aforementioned reason of im-
proving the performance of the solver but it also has a cybersecurity related mo-
tivation. Indeed, another important problem in the area of automated network
security is the preservation of the security policies during the transient from the
initial configuration to the final one with the applied changes. By the distributed
nature of the security functions, the process of modifying the configuration could
present different insecure temporary states where the required protection is not
guaranteed. Considering the context of this thesis, so the configuration of dis-
tributed firewalls systems, the security policies are enforced by multiple security
functions and a change in the configuration requires the update of one or more el-
ements in the network. The approach should aim to a protocol for the application
of the updates which guarantees the satisfaction of the largest number of network
security policies in each transient state as described in [29]. For this reason, the
proposed change to the soft constraints also acts towards this principle, preferring
a solution which maintains the initial configuration and consequently requires less
temporary and transient insecure states.

The following soft constraint regulates the allocation of a firewall for each node
in the set of all allocation places A, it is formulated as:

∀ai ∈ A.Soft(allocated(ai) = false, ck)

This instructs the solver to prefer a solution that does not allocate any firewall
for each allocation place. Recall that in the MaxSMT problem the optimality of
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the solution is reached when all the hard constraints are satisfied and the sum
of the weights of all satisfied soft constraints reach its maximum value. In this
case, the soft clause is assigning a weight to the non allocation of each firewall
since the optimal solution will be the one allocating the minimum number of them.
Instead, the soft constraint regulating the configuration of a possible firewall rule
is formulated as:

∀pi ∈ Pk.Soft(¬configured(pi), cki)

For each firewall which is automatically configured by VEREFOO, the framework
calculates the set of rules that could be possibly needed for the specific firewall
considering the input Network Security Requirements and their associated traffic
flows. This set is Pk and contains all the placeholder rules for node k, representing
the rules which could be needed in the firewall configuration. The soft constraint
states that each one of the placeholder rules should be not configured. Of course
this clause has far less importance than the non-allocation of the firewall itself, for
this reason the weight associated to the non-allocation of a firewall is much greater
than the non-configuration of any of its rules:∑︂

i:pi∈Pk

(cki) < ck

This combination of soft constraints has been modified in this work for all the
firewalls which are selected as to be reconfigured. Indeed, once a firewall is marked
as to be reconfigured, it will be processed in a different way by the solver and the
weights associated to its soft constraints are modified. For each reconfigured firewall
the soft constraints are used to tell the solver to prefer it with respect to a new
one. The weight associated to the first soft constraints regulating the allocation
should be ckR, and it must be less than the weight associated to the allocation of an
empty allocation place, so ckR < ck. Note that the weight is associated to the non-
allocation, which means that a soft constraint for the non-allocation of an allocation
point is preferred to the non-allocation of a reconfigured firewall. The same principle
is applied for the configuration of each placeholder rule. If a reconfigured firewall
has a rule pi which was already configured in the initial configuration, this rule has
a corresponding soft constraints with an associated weight ckiR which is less than
the weight associated to a non configured placeholder rule. As before these weights
are assigned to the non-configuration, which means that maintaining a rule already
present in the initial configuration should be preferred with respect to configuring
a new one. If pi is an already configured placeholder rule for a firewall in node nk

and pj is a placeholder rule for an allocation point np, then the corresponding soft
constraints would be Soft(¬configured(pi), ckiR) and Soft(¬configured(pj), cpj),
with ckiR < cpj

5.9 Allocation Graph generator

Another contribution that has been done to VEREFOO for supporting the recon-
figuration process is the new generation of the Allocation Graph starting from the
Service Graph. As introduced in chapter 3, these two logical representations are
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very similar since they share most of the nodes and connection, but the Allocation
Graph has an additional kind of node, the Allocation Place. This new type is used
to represent an empty spot in the network that could be used for allocating a new
Network Security Function (i.e., firewall) if the solver decides it is the optimal place,
or can be left unused and a forwarder will be placed in its place if it is crossed by
an Atomic Flow associated to one of the requirements. In the original version the
allocation places are inserted automatically on any link of the service graph, with
the added options for the service designer to forbid the generation of on some links
or to force the allocation of a Network Security Function on certain positions.

First we gives a more formal view of the process for the automatic generation
of the Allocation Graph starting from the Service Graph. Recalling the models of
both network representations, a Service Graph could be seen as GS = (NS, LS):

• NS is the set of all network nodes for the service graph, could be further
described as NS = ES ∪ SS. Meaning that is the union of the set of network
endpoints (ES) and the set of service functions (SS).

• LS is the set of links interconnecting pairs of elements in NS, in particular
lij ∈ LS, i /= j implies that ni ∈ NS is directly connected with nj ∈ NS.

Instead, the Allocation Graph is GA = (NA, LA) and its characterized by the two
sets:

• NA is the set of all nodes in the Allocation Graph, this set is composed as
NA = EA∪SA∪PA. The sets of endpoints and service functions are the same
as those in the Service graph, i.e. EA = ES and SA = SS, but additionally
there is the set of all the Allocation Places.

• LA is the set of links interconnecting a pair of elements in NA, this sets will
have more connections than LS since there are additional nodes.

For every lij ∈ LS, i /= j, the service designer could perform two different actions:

• forbidden(lij) forbids the creation of an Allocation Place on the correspon-
dent link

• forced(lij) forces the allocation of a firewall in the correspondent link, a new
allocation place will be generated and it will be obligatory to allocate a firewall
in its place

According to these two possible choices, the rules adopted for generating the new
allocation places are the following:

∀lij ∈ LS.¬forbidden(lij) ∧ ¬forced(lij)
=⇒ pij ∈ PA ∧ lipij ∈ LA ∧ lpijj ∈ LA

(5.1)

∀lij ∈ LS.forbidden(lij) =⇒ lij ∈ LA (5.2)
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∀lij ∈ LS.forced(lij) =⇒ pij ∈ PA ∧ lipij ∈ LA

∧lpijj ∈ LA ∧ allocated(pij) = true
(5.3)

The three formulas 5.1, 5.2 and 5.3 are mutually exclusive, only one of them
can be used according to the choice made by the service designer. The typical
scenario, with no constraints imposed by the user, is the one of 5.1. Considering
this formula, for each link lij ∈ LS, i /= j, a new Allocation Place is created adding
it to the set PA and also the links are created, connecting the new node with the
nodes ni and nj.

Figure 5.10: Example of the new generator of an Allocation Graph starting from a
Service Graph

This procedure has been modified in the approach proposed by this thesis. In
the situation of a reconfiguration, the provided service graph already contains sev-
eral forwarders and firewalls which were produced during a previous configuration
through the configuration of some inserted allocation places. The idea is then to
reuse them for implementing the updated set of requirements instead of inserting
new allocation places. Since the approach is to reconfigure the network and possi-
bly reuse the already present Network Security Functions, it would not be correct
to allocate others allocation places near them. On the other hand, the allocation
places which are not crossed by any requirement are possibly removed and so it
is necessary to re-allocate them where it is needed. For this reason the generator
responsible of producing the Allocation Graph has been modified so that it avoids
placing a new allocation place near a firewall or a forwarder, which are the two out-
come of an allocation place which is crossed by an Atomic Flow. Note that in this

61



Approach for the Reconfiguration problem

work we consider the forwarder as the function placed on an allocation place which
has not been selected as the position of a firewall. This is not a limitation because
the user could use others service function with the same behavior for representing
an explicit node which works as a forwarder but could not be reconfigured as if it
was an allocation place (i.e., router, hub, etc.).

Picture 5.10 shows this approach applied to a possible network. In this situation
only two new allocation places are inserted in the graph, because only these two
positions are coherent with the proposed new allocation rule. Representing with
FWS and FS, respectively the sets of firewalls and forwarders configured in the
Service Graph, the only formula which is modified 5.1 that is transformed into 5.4

∀lij ∈ LS.¬forbidden(lij) ∧ ¬forced(lij).
ni /∈ FWS ∧ nj /∈ FWS ∧ ni /∈ FS ∧ nj /∈ FS

=⇒ pij ∈ PA ∧ lipij ∈ LA ∧ lpijj ∈ LA

(5.4)

5.10 Clarification example about reconfiguration

of firewalls

Figure 5.11: Input Allocation Graph with configured Initial Set of NSRs

The complete approach can be clarified by an example which is now proposed.
This is also useful to highlight the advantages of this methodology compared to
the reconfiguration from zero adopted by the previous versions of VEREFOO. Let
us consider the scenario of an already configured network with a satisfied set of
security policies which must be updated. The inputs given to the framework are
the allocation graph in picture 5.11 and the two sets of requirements, Initial and
Target. The inputs are given to VEREFOO using the XML representation, the
one for this example is in listing 5.1. The Initial Set includes all the requirements
which are configured in the provided network and these are listed in table 5.3. The
service designer should provide also the Target Set, which includes the requirements
that must be satisfied in the reconfigured network and these are listed in table 5.4.
Note that the IP addresses and the function type of each node in the graph are
showed in table 5.2. Moreover, the configuration of the firewalls already allocated
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is shown in table 5.1, other than being included in the picture. This shows that
the Initial set of Network Security Requirements requires three allocated firewalls
to be satisfied, one on node s3 with blacklisting policy (i.e., the default action is
allow) and one configured rule for blocking the predicate {40.0.0.1, ∗, 10.0.0.3, ∗, ∗},
another on node s5 with same blacklisting policy and a rule to block the predicate
{10.0.0.5, ∗, 10.0.0.4, ∗, ∗}, and finally a last firewall on node s6 with whitelisting
policy (i.e., default action is deny) and no configured rules.

Firewall s3
# Action IPSrc pSrc IPDst pDst tProto
1 Deny 40.0.0.1 * 10.0.0.3 * *
2 Allow * * * * *

Firewall s5
# Action IPSrc pSrc IPDst pDst tProto
1 Deny 10.0.0.5 * 10.0.0.4 * *
2 Allow * * * * *

Firewall s6
# Action IPSrc pSrc IPDst pDst tProto
1 Deny * * * * *

Table 5.1: Filtering Policy rules for the allocated firewalls

Identifier IP address Function type
e1 10.0.0.1 Endpoint
e2 10.0.0.2 Endpoint
e3 10.0.0.3 Endpoint
e4 10.0.0.4 Endpoint
e5 10.0.0.5 Endpoint
e6 10.0.0.6 Endpoint
s1 20.0.0.1 Forwarder
s2 20.0.0.2 Forwarder
s3 20.0.0.3 Firewall
s4 20.0.0.4 Forwarder
s5 20.0.0.5 Firewall
s6 20.0.0.6 Firewall
s7 20.0.0.7 Forwarder
s8 20.0.0.8 Forwarder
s9 40.0.0.1 NAT
s10 40.0.0.2 NAT
s11 50.0.0.1 Traffic Monitor

Table 5.2: IP addresses and function types

The first necessary step for the proposed approach is a pre-processing task for
computing the sets of added, deleted and kept Network Security Requirements from
the given input sets, Initial and Target. For the following parts, the requirements
are referred with the integer identifier associated to each one of them in the tables
5.3 and 5.4.
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ID Type IPSrc pSrc IPDst pDst tProto
1 Isol 10.0.0.1 * 10.0.0.3 * *
2 Isol 10.0.0.2 * 10.0.0.3 * *
3 Isol 10.0.0.6 * 10.0.0.4 * *
4 Isol 10.0.0.5 * 10.0.0.4 * *
5 Isol 10.0.0.6 * 10.0.0.3 * *
6 Reach 10.0.0.5 * 10.0.0.3 * *
7 Reach 10.0.0.1 * 10.0.0.4 * *
8 Reach 10.0.0.3 * 10.0.0.2 * *
9 Reach 10.0.0.5 * 10.0.0.1 * *
10 Reach 10.0.0.3 * 10.0.0.4 * *

Table 5.3: Initial Set of Network Security Requirements

ID Type IPSrc pSrc IPDst pDst tProto
1 Isol 10.0.0.1 * 10.0.0.3 * *
2 Isol 10.0.0.2 * 10.0.0.3 * *
3 Isol 10.0.0.6 * 10.0.0.4 * *
4 Isol 10.0.0.5 * 10.0.0.4 * *
5 Isol 10.0.0.6 * 10.0.0.3 * *
11 Isol 10.0.0.5 * 10.0.0.3 * *
12 Isol 10.0.0.4 * 10.0.0.3 * *
7 Reach 10.0.0.1 * 10.0.0.4 * *
8 Reach 10.0.0.3 * 10.0.0.2 * *
13 Reach 10.0.0.5 * 10.0.0.2 * *
10 Reach 10.0.0.3 * 10.0.0.4 * *

Table 5.4: Target Set of Network Security Requirements

According to these identifiers, the sets provided in input to VEREFOO are:

Initial Set = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Target Set = {1, 2, 3, 4, 5, 11, 12, 7, 8, 13, 10}

Using the algorithm 1 for computing the intersection of the previous two sets,
the identified groups are:

added = T \ I = {11, 12, 13}

deleted = I \ T = {6, 9}

kept = I ∩ T = {1, 2, 3, 4, 5, 7, 8, 10}

The proposed example follows the ”NoDelete” profile, therefore only the added
and kept requirements are considered in the reconfiguration process. Nevertheless
also a brief reasoning for the ”Delete” version of the solution will be detailed to
highlight the differences and the additional costs of this profile compared to the
first one. These two differs the most in the set of requirement considered in the al-
gorithm for computing the network areas to be reconfigured. Including the explicit
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reconfiguration of the deleted requirements it produces an higher computation time
as it was explained before. This increase has two main contributions, the first and
most obvious is the expansion of the network area which is reconfigured. Having
an increased set of requirements the algorithm processes more Atomic Flows and
ultimately marks more nodes to be reconfigured. The second contribution to the
higher computation time is instead associated to the pre-processing step to com-
pute the set of Atomic Predicates, which is mandatory if using Atomic Flows. As
described in chapter 2, to compute the set of Atomic Predicates we must start
from the set of ”interesting” predicates, which are the source and destination pred-
icates for each Network Security Requirement and the transformation function and
forwarding behavior of each transformer node. Consequently, the number of in-
teresting predicates depend on the set of requirements and considering also the
deleted set would increase this value. Note that the reconfiguration approach has
in general an higher number of interesting predicates compared to the complete
configuration from zero, because other than the source and destination predicates
for the requirements, which are in the same number for both approaches, in the re-
configuration we consider a partially configured graph with some allocated Network
Security Functions that contributes for some additional interesting predicates. Be-
ware that only after having generated this set of predicates we can compute the set
of Atomic Predicates. Notably, the ”NoDelete” profile applied to this example gen-
erates 54 Atomic Predicates, whereas in the ”Delete” version there are 63 Atomic
Predicates. After this necessary pre-computation, the next step is the computation
of the Atomic Flows associated with the added and kept NSRs (i.e., the Target
set).

The core process is the identification of the nodes which must be reconfig-
ured to achieve the satisfaction of the added requirements. In this case the ad-
ditional requirements are 11, 12 and 13. The first two are of type isolation
whereas the last one is of type reachability. The algorithm for the added iso-
lation requirements 2 consist in scanning all the correlated flows and ensure if
all of them are blocked by at least one of the encountered nodes. If an Atomic
Flow which is not satisfying this property is found, all the nodes in its path
are selected for reconfiguration, in particular the algorithm select only firewalls
or forwarders being the two possible outcome of an allocation place after a con-
figuration, thus representing a possible location which could be configured by
the framework. The requirement 11 has one associated Atomic Flow which is
[e5, 0, s5, 0, s10, 7, s8, 7, s11, 7, s3, 7, e3], with the included Atomic Predicates 0 =
{10.0.0.5, ∗,10.0.0.3, ∗, ∗} and 7 = {40.0.0.2, ∗,10.0.0.3, ∗, ∗}. Since this is not blocked
by any of the nodes, for this requirement the nodes to be reconfigured are {s5, s8, s3}.
The second isolation requirement, 12, has too only one associated Atomic Flow
which is [e4, 1, s4, 1, s11, 1, s3, 1, e3], with the single predicate 1 = {10.0.0.4, ∗,
10.0.0.3, ∗, ∗}. Also in this case there is no node blocking the traffic, consequently
also in this case all nodes are reconfigured, specifically {s4, s3}. Finally, the require-
ment 13 is of type reachability, in this case the algorithm 4 scans all the correlated
flows searching if at least one of them is not interrupted from source to destination,
and if such flow is not found all the nodes that are blocking the flows are selected
for reconfiguration. The added requirement has two associated flow which are:

af1 = [e5, 9, s5, 9, s10, 24, s8, 24, s11, 24, s7, 24, s9, 24, s2, 24, e2]
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af2 = [e5, 11, s5, 11, s10, 46, s8, 46, s11, 46, s7, 46, s9, 24, s2, 24, e2]

and the included predicates are 9 = {10.0.0.5, ∗,10.0.0.2, ∗, ∗}, 11 = {10.0.0.5, ∗,
40.0.0.1, ∗, ∗}, 24 = {40.0.0.2, ∗,10.0.0.2, ∗, ∗}, and 46 = {40.0.0.2, ∗,40.0.0.1, ∗, ∗}.
The only allocated Network Security Function for both flows is the firewall s5, but
it does not block any of the received traffics for the associated flows. Consequently
this requirement is already satisfied by the current configuration and does not
produce any additional nodes to be reconfigured. In total the identified nodes are
four {s3, s4, s5, s8} in this case, if instead we would have used the ”NoDelete”
profile the set of reconfigured nodes would include 6 of them {s1, s3, s4, s5, s7, s8},
the additional one being necessary for the deletion of requirement 9. This clearly
shows the higher computation time that could be cause by choosing this profile.

Figure 5.12: Resulting Reconfigured Network

Firewall s3
# Action IPSrc pSrc IPDst pDst tProto
1 Allow 10.0.0.3 * 40.0.0.1 * *
2 Allow 10.0.0.3 * 10.0.0.4 * *
3 Deny * * * * *

Firewall s5
# Action IPSrc pSrc IPDst pDst tProto
1 Allow 10.0.0.5 * 40.0.0.1 * *
2 Deny * * * * *

Firewall s6
# Action IPSrc pSrc IPDst pDst tProto
1 Deny * * * * *

Table 5.5: Filtering Policy rules for the Reconfigured firewalls

The successive step is the actual reconfiguration of these nodes. The firewalls
are modified such that their allocation and configuration would be completely re-
computed by the solver (i.e., flags autoallocated and autoconfigured are set to true),
instead the forwarders are converted into allocation places (i.e., the functional type
is set to null). Finally, the model for the MaxSMT problem is generated as de-
scribed briefly in chapter 3, with the only change being in the definition of the
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soft constraints. In particular the reconfigured nodes have a set of soft constraints
with a different associated weights, so that the allocation and configuration of these
nodes are possibly preferred with respect to new ones. The outputs of VEREFOO
are the allocation scheme of the distributed firewall instances in the service graph
5.12 and the filtering policy for each allocated firewall 5.5.

Listing 5.1: XML representation of VEREFOO input: AG and NSRs

<NFV>

<graphs>

<graph id="0" deleteOldProperties="false" serviceGraph="false">

<node name="10.0.0.1" functional_type="WEBCLIENT">

<neighbour name="20.0.0.1"/>

<configuration name="confA" description="A␣simple␣description">

<webclient nameWebServer="10.0.0.3"/>

</configuration>

</node>

<node name="10.0.0.2" functional_type="WEBCLIENT">

<neighbour name="20.0.0.2"/>

<configuration name="confA" description="A␣simple␣description">

<webclient nameWebServer="10.0.0.3"/>

</configuration>

</node>

<node name="10.0.0.3" functional_type="WEBSERVER">

<neighbour name="20.0.0.3"/>

<configuration name="confA" description="A␣simple␣description">

<webserver>

<name>10.0.0.3</name>

</webserver>

</configuration>

</node>

<node name="10.0.0.4" functional_type="WEBCLIENT">

<neighbour name="20.0.0.4"/>

<configuration name="confA" description="A␣simple␣description">

<webclient nameWebServer="10.0.0.3"/>

</configuration>

</node>

<node name="10.0.0.5" functional_type="WEBCLIENT">

<neighbour name="20.0.0.5"/>

<configuration name="confA" description="A␣simple␣description">

<webclient nameWebServer="10.0.0.3"/>

</configuration>

</node>

<node name="10.0.0.6" functional_type="WEBCLIENT">

<neighbour name="20.0.0.6"/>

<configuration name="confA" description="A␣simple␣description">

<webclient nameWebServer="10.0.0.3"/>

</configuration>

</node>

<node name="40.0.0.1" functional_type="NAT">

<neighbour name="20.0.0.1"/>

<neighbour name="20.0.0.2"/>

<neighbour name="20.0.0.7"/>

<configuration name="confAutoGen">

<nat>

<source>10.0.0.1</source>

<source>10.0.0.2</source>

</nat>
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</configuration>

</node>

<node name="40.0.0.2" functional_type="NAT">

<neighbour name="20.0.0.5"/>

<neighbour name="20.0.0.6"/>

<neighbour name="20.0.0.8"/>

<configuration name="confAutoGen">

<nat>

<source>10.0.0.5</source>

<source>10.0.0.6</source>

</nat>

</configuration>

</node>

<node name="50.0.0.1" functional_type="TRAFFIC_MONITOR">

<neighbour name="20.0.0.3"/>

<neighbour name="20.0.0.4"/>

<neighbour name="20.0.0.7"/>

<neighbour name="20.0.0.8"/>

<configuration name="50.0.0.1">

<forwarder>

<name>Traffic Monitor</name>

</forwarder>

</configuration>

</node>

<node name="20.0.0.1" functional_type="FORWARDER">

<neighbour name="40.0.0.1"/>

<neighbour name="10.0.0.1"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node name="20.0.0.2" functional_type="FORWARDER">

<neighbour name="40.0.0.1"/>

<neighbour name="10.0.0.2"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node name="20.0.0.3" functional_type="FIREWALL">

<neighbour name="50.0.0.1"/>

<neighbour name="10.0.0.3"/>

<configuration name="AutoConf">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>40.0.0.1</source>

<destination>10.0.0.3</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</firewall>

</configuration>
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</node>

<node name="20.0.0.4" functional_type="FORWARDER">

<neighbour name="50.0.0.1"/>

<neighbour name="10.0.0.4"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node name="20.0.0.5" functional_type="FIREWALL">

<neighbour name="40.0.0.2"/>

<neighbour name="10.0.0.5"/>

<configuration name="AutoConf">

<firewall defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>10.0.0.5</source>

<destination>10.0.0.4</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</firewall>

</configuration>

</node>

<node name="20.0.0.6" functional_type="FIREWALL">

<neighbour name="40.0.0.2"/>

<neighbour name="10.0.0.6"/>

<configuration name="AutoConf">

<firewall defaultAction="DENY"/>

</configuration>

</node>

<node name="20.0.0.7" functional_type="FORWARDER">

<neighbour name="50.0.0.1"/>

<neighbour name="40.0.0.1"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node name="20.0.0.8" functional_type="FORWARDER">

<neighbour name="50.0.0.1"/>

<neighbour name="40.0.0.2"/>

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

</graph>

</graphs>

<Constraints>

<NodeConstraints />

<LinkConstraints />

</Constraints>

69



Approach for the Reconfiguration problem

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="10.0.0.1"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.2"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.6"

dst="10.0.0.4" />

<Property graph="0" name="IsolationProperty" src="10.0.0.5"

dst="10.0.0.4" />

<Property graph="0" name="IsolationProperty" src="10.0.0.6"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.5"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.4"

dst="10.0.0.3" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="10.0.0.4" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.3"

dst="10.0.0.2" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.3"

dst="10.0.0.4" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.5"

dst="10.0.0.2" />

</PropertyDefinition>

<InitialProperty>

<Property graph="0" name="IsolationProperty" src="10.0.0.1"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.2"

dst="10.0.0.3" />

<Property graph="0" name="IsolationProperty" src="10.0.0.6"

dst="10.0.0.4" />

<Property graph="0" name="IsolationProperty" src="10.0.0.5"

dst="10.0.0.4" />

<Property graph="0" name="IsolationProperty" src="10.0.0.6"

dst="10.0.0.3" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.5"

dst="10.0.0.3" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="10.0.0.4" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.3"

dst="10.0.0.2" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.5"

dst="10.0.0.1" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.3"

dst="10.0.0.4" />

</InitialProperty>

</NFV>
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Implementation and Validation

This chapter presents the tests which have been conducted on the implementa-
tion of the proposed approach, to show which goals have been achieved and to
understand the limitations which should be overcome in the future. As described
in chapter 2, the work done by VEREFOO can be divided into two phases, the
first one consisting in the computation of all the traffic flows related to the input
requirements, and the second one consisting in the resolution of the formulated
MaxSMT problem in order to find the optimal allocation and configuration of the
security functions which are needed to satisfy the requirements. Having described
in chapter 5 the two possible profiles for the proposed reconfiguration approach,
”Delete” and ”NoDelete”, a first test which has been done is an analysis of the
impact of these possible profiles on the first phase of VEREFOO, the traffic flows
computation. This allowed to quantify with empirical results the advantage that a
less-complete but equally correct approach, the ”NoDelete” one, has compared to
the first profile which considers also the removal of the old configuration compo-
nents. Moreover, this test phase is using larger networks and this allowed to put
to stress the proposed algorithm, evaluating which is the impact of this additional
step over the total computation time. Then a second and more complete testing
phase has been conducted on the complete resolution of the Refinement problem, so
the whole process executed by VEREFOO. The main goal is to compare the pro-
posed approach with the previous implementation of the framework, which does
not include a specific resolution for a reconfiguration scenario but would perform
a reconfiguration starting from zero. This validation process has been useful for
determining the scalability of the new implementation with respect to the previous
one, comparing the total computation time but also the optimality of the obtained
configuration. Indeed, another interesting aspect which has been evaluated is the
impact of the reconfiguration approach on the optimization goals of VEREFOO,
the minimization of allocated firewalls and the minimization of the configured rules
for each firewall. Finally, the implementation has been briefly tested with even
larger networks, with an higher number of endpoints and requirements, to see its
scalability potential.
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6.1 Design of the synthetic network generators

All the tests were executed using some synthetically generated networks, but the
adopted generators are different on the base of the test scenario. In particular, the
first phase is concerning the pre-processing task for computing the set of traffic flows
and the comparison of the two different reconfiguration profiles. In this case the
generated networks are more complex and large, including a multitude of nats and
firewalls which are pre-configured with some random filtering policies. In this way
the number of generated traffic flows and Atomic Predicates become significant and
this would allow to better compare the two different profiles and the performance
of the implemented algorithm. For further stressing the algorithm used to compute
the network area to reconfigure, an additional parameter is adopted in this gen-
erator to allow the possibility to create a synthetic network capable of generating
an higher number of flows which, along with the different middleboxes, must be
considered while processing the requirements in the algorithm. Instead, the second
part of the validation process has been conducted over the complete execution of
VEREFOO, so including the resolution of the MaxSMT problem after the genera-
tion of the traffic flows for the input Network Security Requirements. This second
phase required a new generator for the synthetic networks and sets of requirements,
as well as a redesign of the test execution. In particular the comparison must be
done on the reconfiguration, which implies that the input should be a network that
has been previously configured by the framework. Furthermore, for highlighting
the improvement over the previous implementation, it has been important to mod-
ify the test so that it would be possible to compare the reconfiguration approach
with a reconfiguration starting from zero over the same network and input sets of
requirements. For this reasons the second generator does not allocate nor configure
any firewall, since these will be allocated and configured automatically by a pre-
liminary run of VEREFOO only in the optimal locations. Notably, there is also a
third generator which has been adopted for the final test on the scalability of the
algorithm usibng an increasing number of requirements and endpoints. In this case
the generated networks do not include firewalls or nats because the resolution of
the refinement problem gets more complex with their inclusion and the scalability
of the framework is limited for these larger networks.

6.2 Test parameters

The parameters that can be configured in the tests are slightly different between
the several generators which have been used, however there are some common ones
which are recurrent, such as the number of Network Security Requirements (REQ)
which have to be enforced on the network, the number of clients (WC) and the
number of servers (WS) which represent the set of endpoints in the network. Then,
there are other parameters which are relevant to the middleboxes that can be in-
cluded in the networks, such as the number of nats (NATs), the number of firewalls
(FWs), the number of sources present in each nat (NATSrcs) and the number of
rules configured in each firewall (FWRules). An additional parameter important
for the reconfiguration is the percentage of Network Security Requirements which
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are belonging to the kept group as described in chapter 4. This is representing the
extend of overlapping between the Target set of requirements and the Initial set, it
is defined using the parameter percReqKept. In the reconfiguration problem, one
aspect which has a big impact on the computation time is the number of added and
deleted requirements because these must be processed and enforced in the network,
whereas the kept ones are possibly already satisfied by the initial configuration.
For this reason an increase in the percentage of requirements kept cause a decrease
in the number of added and deleted requirements and a lower computation time
on average. The first test includes also some additional specific parameters. The
first and most important one being an additional variable for the specification of
the profile to be used for the parameterized version of the implementation, this
variable can take only values ”Delete/NoDelete”. Then, the second parameter
allows to modify the way in which the rules for each firewall are generated. This
is possible through a second flag (FWRulesRandom/FWRulesFromReq) that
specify whether the rules that are configured for the firewalls are generated using
the sources and destinations of the requirements or randomly from the set of end-
points in the network. In the first case there are only rules on firewalls which affect
nodes on which there is at least one requirement, whereas in the second case this is
not necessary. This second flag would vary in a significant way the number of ”in-
teresting” predicates and consequently the number of generated Atomic Predicates.
Because any configured rules for which source or destination are not taken from the
set of requirements would constitute a new ”interesting” predicate of the network.
Conversely, if the source or destination are belonging to the set of requirements,
these rules would not create any additional ”interesting” predicate.

6.3 Test on Atomic Predicate computation

This section will describe the results obtained with the first phase of the validation
process, the one regarding the comparison of the Atomic Predicate and traffic flow
computation time in the two different profiles of the parameterized algorithm, the
one considering the deleted requirements and the one ignoring them. The generated
networks are belonging to five different classes, each with a progressive increase
of all parameters at the same time. Note that the magnitude of the values for
the parameters is very large compared to the other tests that will be presented
afterwards because in this phase only the pre-processing phase is executed, not the
complete process with the resolution of the MaxSMT problem that is not feasible
for these complex networks. In particular the considered test cases are the following
ones

• Case A: 100 REQ, 200 WS, 200 WC, 50 NAT, 50 FW, 20 NATSrc, 20
FWRules

• Case B: 150 REQ, 300 WS, 300 WC, 75 NAT, 75 FW, 30 NATSrc, 30
FWRules

• Case C: 200 REQ, 400 WS, 400 WC, 100 NAT, 100 FW, 40 NATSrc, 40
FWRules
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• Case D: 250 REQ, 500 WS, 500 WC, 125 NAT, 125 FW, 50 NATSrc, 50
FWRules

• Case E: 300 REQ, 600 WS, 600 WC, 150 NAT, 150 FW, 60 NATSrc, 60
FWRules

The conducted test considered a complete combination for the other parameters.
The PercReqKept, which is the parameter characteristic of the reconfiguration
process, was used with the values 10%, 50% and 90% to cover a wide range of
scenarios. Instead, the binary parameters for the selection of the profile and the
generation of the rules for each firewall have also been used and all their combina-
tions have been tested. In total six different situations have been analyzed, using
the three different percentages of kept requirements for each one of the binary pa-
rameter for firewall rules generation and for each of these situations the ”Delete”
and ”NoDelete” profiles are compared.

Figure 6.1: AFs computation with 10% PercReqKept and FWRulesFromReq

Figure 6.2: AFs computation with 50% PercReqKept and FWRulesFromReq

We start seeing the three graphs produced with the FWRulesFromReq pa-
rameter. These are distinguished on the base of the PercReqKept, in particular
figure 6.1 is for the value 10%, figure 6.2 is for the value 50%, and finally 6.3 is for
the value 90%. Note that these graphs are grouping the results for each network
class and they are comparing the two profiles concerning the computation time,
considered as the sum of the Atomic Predicate computation time and the Atomic
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Figure 6.3: AFs computation with 90% PercReqKept and FWRulesFromReq

Flow computation time. As we can see, the experimental results confirm what was
expected from the theory. In particular, the smaller is the percentage of overlapping
between the Initial and Target sets and the higher is the difference in time between
the ”Delete” and ”NoDelete” profiles. This is evident from the reasoning already
done in chapter 5, because the number of deleted requirements, which is increased
as the percentage of kept requirements is decreased, has an impact over the num-
ber of interesting predicates for the network and consequently over the number of
generated Atomic Predicates. For this reason the ”Delete” profile has an increased
cost which gets more significant as the overlapping between the sets decreases. As
said in chapter 2, the majority of the pre-computation time is spent for the gener-
ation of the Atomic Predicates while the Atomic Flows generation requires a much
smaller time. However, even if with a different contribution, both of these steps
have an increased time for the ”Delete” profile compared to the ”NoDelete” one.

Figure 6.4: AFs computation with 10% PercReqKept and FWRulesRandom

Then, also the situation with the FWRulesRandom parameter has been ex-
tensively tested. In particular the same combination of PercReqKept has been
considered with the same three produced graphs, these are showed in picture 6.4,
6.5 and 6.6, and respectively correspond to the values of 10%, 50% and 90% for
the percentages of overlapping between Initial and Target sets. As it was explained
in the introduction of the chapter, using random endpoints for the source and des-
tination of each configured firewall’s rule is causing a steep increase in the total
computation time. This is correlated to the increase in the number of interesting
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Figure 6.5: AFs computation with 50% PercReqKept and FWRulesRandom

Figure 6.6: AFs computation with 90% PercReqKept and FWRulesRandom

predicates for the network because the rules configured for each firewall are possibly
not including nodes already present in the interesting predicates computed for the
requirements and so must be added. This second part of the test has been interest-
ing to further stress this pre-computation step and the behavior of the implemented
algorithm. First, we can conclude that there is a strong correlation between the
parameter perReqKept and the observed results, the difference between the two
profiles of the algorithms gets more relevant if the overlapping between the two sets
decreases because the deleted requirements contribute to the increase in the number
of new Atomic Predicates and Atomic Flows. Lastly, this has been fundamental for
validating the algorithm for the detection of network areas to reconfigure in a worst
case scenario. It was found that the impact of the algorithm could be considered
irrelevant when compared to the overall computation time since its contribution
always ranged between 0 to 100 ms, with most of the runs being under 10 ms.

6.4 Comparison with previous implementation

The second phase for the validation process has been conducted in a more extensive
way and wanted to highlight the advantages obtained with this approach compared
to the previous one. The two main parameters which are considered and evaluated
in this case are the total computation time, considered as the combination of the
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pre-processing time for Atomic Flows generation and the time needed to solve the
MaxSMT problem, and the optimality of the solution, in particular how the new ap-
proach behave with respect to the optimality goals of VEREFOO for minimization
of used resources, goals which have been relaxed in this scenario. This validation
phase includes an extra parameter that is correlated to the weight difference as-
signed to the updated soft constraint for maintaining the configured rules for each
firewall present in the initial configuration. This has been useful for choosing the
correct weight of this clause and to show with experimental results the effect that
the changes on the MaxSMT formulation have on the overall computation time.

Note that the previous approach was not suitable for testing the complete imple-
mentation of the framework for many reasons, in particular the firewall placement
and their configuration are chosen randomly and not coherent with the network
an the requirements. Moreover, also the objective of comparing the reconfigura-
tion approach and the complete configuration from zero required the design of a
new process for testing. The proposed solution uses a new test case generator that
does not place any firewalls and the idea is that they are allocated directly by the
framework only when needed. Then, the adopted process uses three steps: the
generation of a new service graph G1 and a first run of the framework performing
the first configuration which produces the graph G2, then a new set of Network
Security Requirement is generated and added to G2 as the Target set for executing
a second run which is in this case a reconfiguration, and finally the same set of new
requirements is used with G1 in order to simulate the reconfiguration from zero
that would have been done by the previous implementation of VEREFOO.

Also in this case we are using a progressive enlargement of the network, however
the magnitude of the parameters is not the same as the previous tests but include
smaller values. The largest tested network includes a little over one hundred end-
points and tens of transformers because the resolution of the MaxSMT problem
gets increasingly more complicated as the network complexity increases and we
have limited our analysis to situations which resolution required a reasonable time
to be completed. The used test cases are the following one:

• Case A: 10 REQ, 30 WS, 30 WC, 5 NAT, 5 NATSrc

• Case B: 15 REQ, 40 WS, 40 WC, 10 NAT, 10 NATSrc

• Case C: 20 REQ, 50 WS, 50 WC, 15 NAT, 15 NATSrc

• Case D: 25 REQ, 60 WS, 60 WC, 20 NAT, 20 NATSrc

• Case E: 30 REQ, 70 WS, 70 WC, 25 NAT, 25 NATSrc

Regarding the other parameters instead, all tests have been conducted considering
only the ”Delete” profile since it appears to be the most promising one in terms
of achieving the greatest performance advantage for the reconfiguration scenario.
Then, different values for perReqKept have been considered, in particular the
values 10%, 50%, 70% and 90%, and for the soft constraint about the maintaining
of the current configured rules three different scenarios have been tested:
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1. a difference in weight between an already configured rule and a new one equals
to a ratio of 2 (2X), i.e., the soft constraint for not using a new rule has a
weight k and the one for not using an already configured rule has weight k/2.

2. a difference in weight between an already configured rule and a new one equals
to a ratio of 10 (10X), i.e., the soft constraint for not using a new rule has
a weight k and the one for not using an already configured rule has weight
k/10.

3. not using the modified soft constraint (NoSoft), i.e. the constraint for not
using a new rule and the one for not using an already configured rule have
the same weight

6.4.1 Computation Time

The first results which have been found are considering the total computation time,
comparing the reconfiguration approach proposed in this thesis with the Complete
Reconfiguration, which is the one adopted in the previous implementation of VERE-
FOO. The presented results are divided by the chosen ratio between the soft con-
straints for the configuration of firewall’s rules, namely the NoSoft is represented
in picture 6.7, then the 2X is in picture 6.8, and finally picture 6.9 is for the 10x
case. The experimental results confirmed what was the theoretical hypothesis, in
particular that the implementation of the modified soft constraint has an opti-
mization effect on the formulation of the MaxSMT problem resulting in a faster
resolution by the solver. Moreover, the higher is the ratio between the weight asso-
ciated to the new rules compared to the already configured ones and the better is
the performance improvement (i.e., 10x produces better results than 2X, which is
respectively better than NoSoft). This because the solver is instructed to prefer
a solution which maintains most of the initial configuration, in this way the opti-
mization phase of the problem is simplified and the approach could achieve a better
computation time. The results show an advantage overall for the reconfiguration
approach with respect to the complete reconfiguration, which is the one performed
in the previous version of the framework. This is particularly evident for the larger
networks, whereas for case A and case B the results are computed very quickly and
the improvement could not be easily evaluated. Another interesting correlation is
between the computation time and the parameter of PercReqKept, the lower is
the percentage of requirements kept and the better is the improvement in perfor-
mance because it would imply a smaller set of new Network Security Requirements
which must be added in the new configuration, a smaller set of nodes which must
be reconfigured, and consequently a faster resolution of the problem. The general
trend is a faster average computation time if the overlapping of the Initial and
Target sets increases, as well as a faster average computation time if the difference
in weight for the soft constraint increases. Notably the gap between 6.7 and 6.8 is
not as evident as the one with 6.9, however we can see that the 2x case still shows
a performance improvement which becomes more evident as the complexity of the
network increases, and consequently the complexity of the MaxSMT problem, such
as for networks in case D and case E. This is explained by the newly introduced
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optimizations to the soft constraints which impact gets relevant only as the com-
plexity of the problem increases, instead it is limited for smaller network with lower
complexity. Beware that case 10x seems to have the best performance improve-
ment but this is correlated to an high degradation for the optimization goals of
minimizing the number of rules and firewalls, which is described later.

Figure 6.7: Comparison of computation Time for NoSoft scenario

Figure 6.8: Comparison of computation Time for 2X scenario
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Figure 6.9: Comparison of computation Time for 10X scenario

One aspect that should be noted is that all the above graphs are representing the
average values over more than 50 runs, however the set of results presents a large
variance which should be taken into consideration. This is showed with another
representation limited to the network class ”E” and the attribute 2X in picture
6.10. As we can see the results are sparse over a large interval but the majority is
closer to the mean value and the median value is always below it. For this reason
we could say that the performance of the reconfiguration approach are reasonably
represented by the mean value, and most of the runs are even lower than that (since
there are some outliers which are influencing its value).

Figure 6.10: Variance of the Computation time
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6.4.2 Optimality

The second aspect which has been analyzed in this second phase of the testing
process is the optimization results obtained with the reconfiguration approach com-
pared to the ones obtained by the previous implementation. The expected result
is that the implementation proposed in this thesis would produce a worst result
in terms of minimization of the number of allocated firewalls and configured rules
for each one of them. As it was explained in chapter 5, with this solution the set
of nodes which configuration is determined by the solver is limited with respect to
a configuration from zero because the idea is to maintain some parts of the con-
figuration as they are in order to gain an improvement in the computation time,
consequently the solution would be optimal only with respect to the subseto of re-
configured nodes. The presented results are for the same test scenarios used before
(i.e., three different cases for the ratio used for the soft constraint and for each one
four different values for PercReqKept) but are comparing the average number of
configured firewalls and firewalls’ rules.

Number of allocated Firewalls

Concerning the number of firewalls, the proposed solution modified the soft con-
straint associated to their non-allocation so that an already configured one would
be preferred with respect to a new one. However the difference in weight associated
to the clause has not been modified during the tests, consequently the same results
have been obtained for the three cases and are all represented by the graph 6.11.
With the proposed approach there is a slight increase of the average number of al-
located firewalls which gets more important as the percentage of kept requirements
is decreased and consequently the number of added requirements is increased. This
is explained by both the modified soft constraint to maintain the state and so
prefer the already allocated firewalls with respect to new ones, and also to the sub-
optimality of the proposed approach which includes only a subset of the possible
allocation places in the reconfiguration problem, as it was explained in 5.

Number of configured rules for each firewall

The second analysis has been conducted on the total number of configured rules in
each allocated firewall. In this case the results are different according to the adopted
ratio for the weight of the soft constraints used for reconfigured firewalls and for new
ones. The graph 6.13 compares the average total number of configured firewall’s
rules with the 10X scenario and comparing the previous approach (i.e., Complete
Reconfiguration) with the new one with different percentages of kept requirements.
Instead, graphs 6.13 and 6.14 are similarly representing the same situation but for
the 2X and NoSoft scenarios. As it was briefly introduced before, in the 10X case
we are using a more extreme ratio for the soft constraints and strongly preferring
the configuration of an already allocated rule with respect to a new one. The result
is that the computation time shows a great performance improvement but, as we
see in 6.12, there is an high price to pay in the optimality of the configuration.
This scenario results in a significant increase in the number of configured rules
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Figure 6.11: Comparison of the number of allocated firewalls

for each firewall and the difference with the previous implementation has been
evaluated up to almost one order of magnitude. A more significant result has been
obtained by reducing this ratio in the case 2X. In this scenario the average number
of configured rules is almost identical to the scenario where this modification has
not been used, i.e., NoSoft. This is important because shows that using this ratio
we have almost no degradation in terms of optimality but we can still gain some
relevant performance advantages during the resolution of the MaxSMT problem.

Figure 6.12: Comparison of the number of configured FW Rules for 10X scenario
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Figure 6.13: Comparison of the number of configured FW Rules for 2X scenario

Figure 6.14: Comparison of the number of configured FW Rules for NoSoft scenario

6.5 Stressing the Reconfiguration Approach

A final analysis which has been conducted has evaluated the feasibility and scalabil-
ity of the proposed approach with an higher number of endpoints and requirements
in order to further stress the framework. For this phase, only one combination of
parameters has been considered and chosen as the most plausible for a reconfigura-
tion: a value of 70% for PerReqKept, the ratio 2X for the rules, and finally the
NoDelete profile. Also the synthetic model for the networks has been updated
by excluding the allocation of nats and utilizing a chain topology. Specifically, the
tests have been executed on the following classes of networks:

• Case A: 200 REQ, 20 WS, 20 WC
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• Case B: 300 REQ, 30 WS, 30 WC

• Case C: 400 REQ, 40 WS, 40 WC

• Case D: 500 REQ, 50 WS, 50 WC

The graph 6.15 represents the resulting comparison of the achieved compuation
times. This graph shows that, even considering the high variability of the values,
the reconfiguration approach performs very well when compared to the previous
one also in terms of scalability.

Figure 6.15: Scalability test
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Conclusions

In this thesis work, a novel approach to the reconfiguration problem has been
designed and implemented as an extension of the VEREFOO framework, which
was lacking in the previous version of an optimized resolution of this scenario.
The old approach when confronted with the reconfiguration of a network would
not consider the pre-existent elements and just discard them recalculating a new
allocation scheme without considering where the previous functions were placed.
The goal of this thesis is to propose a more efficient process that reuse the elements
of the starting configuration and obtain a new and formally correct solution with a
faster computation time, detecting which network components are effected by the
changes and modifying only those.

Firstly, an analysis of the state-of-the art in traffic flows and network functions
modelling has been conducted, with special emphasis to the two solutions already
implemented in the framework, Atomic Flows and Maximal Flows. Then, also
a brief overview of VEREFOO has been performed in order to understand its
processing flow and for having a general understanding of its architecture. This
part was needed in order to understand which components should be modified or
are missing, to then introduce the novelties proposed by this thesis.

The reconfiguration problem has been abstracted as the interaction between
two different sets of Network Security Requirements, namely the Initial set con-
taining those which are already enforced in the given network and the Target set
including those which must be enforced on the final configuration. This model al-
lowed to distinguish the reconfiguration operations into the addition and deletion
of requirements, operations which have been described extensively for both type of
connectivity requirements, isolation and reachability. The central work has been
the design of a new algorithm which permits to select the minimum set of network
components that must be reconfigured because they are in conflict with the changes
wanted by the user. The algorithm design has been presented in a separate way
for each type of requirement and each type of action, the addition or deletion. In
this phase two different profiles for the reconfiguration have been studied, one more
focused on the performance and the second one more focused on the optimization.

Moreover, after having defined the algorithm and the model of the problem, also
the way in which the Allocation graph was automatically generated starting from
the Service graph has been modified. In particular the allocation graph generator
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has been changed to take into account the reconfiguration scenario and avoid placing
new Allocation Places near the nodes which could be reconfigured by the solver,
with the idea that these nodes should be used instead of placing additional ones.

Finally, this thesis also updated the formulation of the constraints for the
MaxSMT problem to optimize the performance of the solver for the considered
reconfiguration scenario. In particular the soft constraints have been modified so
that the state of the provided configuration is preferably maintained, which means
that the allocation of an already allocated firewall should be preferred with re-
spect to allocating a firewall in an empty Allocation Place, and the same for the
configured rules in each firewall.

After all these works have been concluded, the new approach has been imple-
mented and validated with a series of performance tests to compare it with the
previous version of the framework. The scope was to understand the differences
both in terms of computation time, and consequently the scalability of the ap-
proach, but also considering the optimality of the achieved solution. It has been
found that the reconfiguration solution proposed in this thesis achieves a relevant
improvement in the computation time in different scenarios with a very slight degra-
dation of the optimality goals, solution which is more than acceptable considering
the proposed application as a reaction to a cybersecurity attack. Future works
may extend the same approach to include a larger set of network functions and
new types of Network Security Requirements which could cover additional security
features. A longer-term possibility is also to exploit this solution as a starting point
for the design of a parallelized approach for the resolution of the problem, dividing
the network into independent areas that could be configured separately (and in
parallel), and consequently breaking one single and complex problem into multiple
smaller ones, each requiring a shorter computation time.
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