
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

QUIC performance monitoring:
implementation of Spin Bit in Chromium

Supervisors Candidate
Prof. Riccardo Sisto Massimo Di Natale
Prof. Guido Marchetto

Company Tutor
Telecom Italia LAB
Dott. Mauro Cociglio

April 2023

Summary

The objective of this thesis work is to implement a specific feature of the
QUIC protocol, called Spin Bit, in the Chromium open source browser. QUIC
Spin Bit feature allows network operators to perform QUIC traffic monitoring
techniques: an on-path network observer analyzes the value of this specific
bit and deduces the Round Trip Time RTT of the communication and the
presence of possible network impairments. In particular, the implementation
in Chromium will allow operators to perform this type of monitoring on real
user traffic and usual navigation.

The first phase of the work involved the study of Chromium as an open
source browser, with the analysis of the several tools that it provides to the
developers in order to carry out the work, from the versioning tools, to the
compiling and testing ones.

In a second phase, Chromium code architecture was explored, with a
particular attention to the network modules and the library that implements
the QUIC protocol, called Quiche. It is a Google developed library, written
in C++, that does not support the Spin Bit feature natively. The core of
the library was modified in order to implement the Spin Bit algorithm; more
specifically, a Spin Bit variable was added in the data structure representing
the QUIC Short Header, and the logic of the algorithm was implemented in
packet reception and packet delivery modules. The steps are the following:
after a packet is received, some checks are performed, as expressed in the
algorithm (IETF RFC 9000), and if passed, the Spin Bit value is read,
modified according to the algorithm and saved in the newly introduced field.
Later, when a packet is sent, the header is filled with the current value of
the Spin Bit.

A testing phase followed the implementation phase. The objectives of
the tests were the evaluation of the newly implemented Spin Bit feature,
together with the evaluation of the performance monitoring technique based
on in-path network observers. More specifically, firstly it was verified if the

3

tools were able to detect the Spin Bit feature and in a second moment the
RTT values produced, compared to Ping reference values. The tools used
as in-path network observers were Spindump and TIMQuic, for the Linux
and Android platform respectively. These tools allow to perform passive
performance monitoring: being in-path network observers they read the Spin
Bit value of the QUIC packets in the communication between client and
server and compute the end-to-end RTT as the sum of ’upstream’ or Left
RTT and ’downstream’ or Right RTT.

The first test aimed to verify if the on-path network observer Spindump
was able to detect the correct behavior of the Spin Bit feature in the modified
library Google Quiche. The setup was composed of two lightweight programs
of the Google Quiche library that simulated the behavior of a client and a
server on the same machine. The quic-client performed network requests to
the quic-server through the QUIC protocol, and the server was configured
to respond with static content. In the meanwhile, Spindump was running
on the same machine and recording every packet that was passing through
the loopback network interface. After the client requests and the server
responses, it recorded "Spinning" on the QUIC connection, meaning that
it was able to detect the support of the Spin Bit on both endpoints of the
communication.

The second test used the implementation of third-party libraries, different
from Google Quiche, as a server in order to test the interoperability of the
Spin Bit with other implementations. The client used was the same as the
first test. The remaining part of the setup was the same as the first test:
quic-client that performed requests and Spindump as network observer. Also
in this test, Spindump was able to detect "Spinning" events.

The third test involved Chromium browser, with the modified Google
Quiche library, acting as a client and the litespeedtech.com website acting
as a server. This was the first ’real-case’ test, since it consisted of two
production-ready products. The test was conducted both on the Android
and Linux platforms, using TIMQuic and Spindump respectively as in-path
network observers. Results showed that both tools successfully recorded
"Spinning" events.

The fourth test consisted in the deployment of an open-source web server
that implements the Spin Bit. The objective was to test the web server on
an AWS instance firstly to detect the ’Spinning’ events and then to obtain
network measurements from different places around the world. The web
server used was OpenLiteSpeed, the open-source version of LiteSpeed server,

4

that implements as well the Lsquic library with support of the Spin Bit.
Then RTT values produced by Spindump while downloading files of 20 MB,

100 MB and 200 MB were analyzed and compared with Ping measurements.
The tests showed that, in general, Ping measurements were lower than

the ones computed with Spin Bit. As mentioned in the IETF RFC 9312, the
measurements based on Spin Bit must be treated as indicative values, since
they reflect the latency perceived by the application layer, differently from
Ping. On the other hand, the IETF RFC 9312 states that the minimum
RTT computed on the basis of Spin Bit values should reflect the network
latency. In all tests, the reported minimum RTT was in the same range of
Ping values, as it was expected: the difference between Ping values and RTT
ones is of maximum 2 milliseconds, due to the application layer delay.

To conclude, in this thesis work it was implemented a passive on-path
measurement technique of QUIC traffic, based on the Spin Bit, in Chromium.
Then it was set up a testing environment, firstly to detect the correct behavior
of the Spin Bit algorithm on the same machine and then to analyze RTT
measurements from different locations around the world, by using AWS
EC2 instances in London and Frankfurt and comparing results with Ping
measurements.

The measurements obtained by the on-path network observer represented
the latency perceived by the application, with the exclusion of some outliers.
For this reason the average values based on the Spin Bit algorithm were
slightly higher than Ping measurements, as stated in the IETF RFC 9312.

5

Table of Contents

List of Figures 9

1 Introduction 11
1.1 Objectives . 11
1.2 Thesis structure . 12

2 Background 15
2.1 HTTP/3 . 15
2.2 QUIC protocol . 18

2.2.1 Quic Header . 22
2.2.2 Spin Bit . 23

2.3 Network performance measurement tools 25
2.3.1 Spindump . 25
2.3.2 TIMQuic . 27

3 Chromium open-source browser 29
3.1 Motivation . 29
3.2 Tools . 30

3.2.1 Versioning: Depot Tools 30
3.2.2 Chromium Code Search 30
3.2.3 Building tools: ninja and gn 31
3.2.4 Testing tools . 31

3.3 Network architecture . 32
3.3.1 Overview . 33
3.3.2 Google Quiche library 33

4 Spin Bit algorithm and implementation 35
4.1 Spin Bit algorithm . 35

7

4.1.1 Limitations . 37
4.2 Implementation . 38

5 Evaluation 43
5.1 Test 1: quiche library . 44

5.1.1 quic client and quic server 44
5.2 Test 2: quiche and other libraries 47

5.2.1 quic client and picoquic server 47
5.3 Test 3: Full Browser . 49

5.3.1 Chromium and litespeedtech.com 49
5.4 Test 4: Chromium and OpenLiteSpeed 52

5.4.1 Chromium and OLS - AWS 52
5.5 Test 5: Measurements . 54

6 Conclusions 61

Bibliography 63

8

List of Figures

2.1 HTTP versions and network stacks 18
2.2 Messages exchanged for a typical QUIC connection establishment 21
2.3 0-RTT Packet with Quic Long Header [1] 22
2.4 1-RTT Packet with Quic Short Header [1] 23
2.5 Computation of Left and Right RTT by the network observer 24
2.6 Spindump network observer [9] 26
2.7 Spindump report . 26

3.1 Chromium icon . 30

4.1 Representation of spin bit algorithm 37

5.1 Test 1: client and server on localhost 45
5.2 Test 1: Spindump report . 46
5.3 Test 2: quic client and picoquic server 48
5.4 Test 2: Spindump report . 49
5.5 Test 3: Chromium and litespeedtech.com (Linux) 50
5.6 Test 3: Spindump report . 50
5.7 Test 3: Chromium and litespeedtech.com (Android) 51
5.8 Test 4: Chromium and OLS (North Virginia) 53
5.9 Test 5: Chromium and OLS (London/Frankfurt) 55
5.10 Download of 20 MB (London) 57
5.11 Download of 100 MB (London) 57
5.12 Download of 200 MB (London) 58
5.13 Download of 20 MB (Frankfurt) 58
5.14 Download of 100 MB (Frankfurt) 59
5.15 Download of 200 MB (Frankfurt) 59

9

Chapter 1

Introduction

1.1 Objectives

This thesis aims to provide a network performance monitoring technique
implementation of QUIC traffic in the Chromium browser.

QUIC is a network transport protocol that was firstly introduced by
Google and then standardized in 2021 by the IETF, as decribed in IETF
RFC 9000 [1].

It is based on UDP and encrypts transport protocol information: for this
reason, network operators cannot use their standard techniques of network
traffic performance monitoring which are based on information that is no
longer available.

In the QUIC header, an unencrypted bit, called Spin Bit, has been reserved,
allowing the computation of the RTT measurements for QUIC connections
for network traffic analyses.

QUIC is nowadays widely supported by browsers and servers that establish
connections with the HTTP/3 protocol.

On the contrary, it is really difficult to find implementations of QUIC
protocol that support the Spin Bit feature. As described in the IETF RFC
9000, Spin Bit is an optional feature, and QUIC protocol implementations
rarely develop Spin Bit algorithm.

The objective of this thesis is to implement Spin Bit in an open-source
browser in order to make it possible to monitor QUIC traffic performances
and set up a testing environment that supports Spin Bit from both endpoints
of communication: client and server.

11

Introduction

1.2 Thesis structure
Chapter 2

The second chapter describes the QUIC protocol in terms of its features,
advantages, and disadvantages in contrast to the other network transport
protocols, TCP, and its relation with the HTTP/3 protocol.

Afterwards, I will introduce the Spin Bit feature as a technique to perform
passive network traffic performance monitoring, explaining its behavior and
the state-of-the-art adoption of browsers and servers.

Finally, I will present the software tools used to test Spin Bit behavior
and produce RTT measurements: Spindump and TIMQuic, for Linux and
Android platforms respectively.

Chapter 3

This chapter aims to explain the choice of Chromium as an open-source
browser where to implement the Spin Bit feature.

I will then provide an overview of the tools I used to work in the Chromium
environment in the different stages of development: versioning, implementa-
tion, compilation and testing.

Finally, I will describe the network architecture of Chromium, focusing
on the Google Quiche library, the Google implementation of the QUIC pro-
tocol, written in C++, not to be confused with Quiche library developed by
CloudFlare, mainly written in Rust.

Chapter 4

The fourth chapter describes in details the Spin Bit algorithm and the
differences in client and server behaviors.

Afterwards, I will present the modules of the Google Quiche library that
have been modified to implement the Spin Bit algorithm and the more
relevant parts of the code of my implementation.

Chapter 5

This chapter contains the evaluation methods used to test the Spin Bit
implementation for Linux and Android platforms.

12

1.2 – Thesis structure

The testing phase is divided in two main parts: the first one is focused on
the detection of the "Spinning" event by the network observers placed in the
same machine as client and server.

The second phase analyzes the measurements reported by Spindump
listening on network communication between client and server placed in
different AWS Regions. Results are then compared to Ping values, in order
to evaluate the proposed performance monitoring technique with respect to
Ping reference values, together with Spin Bit implementation.

Chapter 6

The final chapter focuses on the achievements and results of the thesis,
that paves the way to further works based on more than one bit of the QUIC
Header.

13

14

Chapter 2

Background

This chapter describes the state of the art network protocols used in current
connections - HTTP/3 and QUIC - through the anlysis of their features and
characteristics.

Firstly, I will present important steps in the evolution of HTTP and I will
make a comparison between the different protocol versions.

After that, the HTTP/3 will be described, in order to show the improve-
ments that it has achieved with respect to the previous implementations.

The second part of the chapter focuses on the QUIC protocol, explaining
its main features and peculiarities. In particular, a specific bit of the protocol
is described in detail: the Spin Bit. This bit allows the computation of
passive network performance measurements by means of on-path network
observers.

In the last section of the chapter, the tools used to perform QUIC traffic
analysis for Android and Linux platforms are introduced, with special regards
to the features that allowed me to carry out the evaluations of the Spin Bit
implementation.

2.1 HTTP/3
HTTP/3 is the current version of the Hypertext Transfer Protocol (HTTP),
which is the application-layer protocol designed for communication between
web browsers and web servers.

History The first version of the protocol, released in the 90s, allowed to
transfer multimedia content and hyper-textual documents over the Internet

15

Background

and became the underlying protocol of the World Wide Web, gaining extreme
popularity [2].

Although it was widely used, it presented many limitations: the greatest
disadvantage was the fact that it was a connectionless protocol without
support for pipelining. This had a major impact on performances, especially
over slow connections, since connections had to be opened multiple times to
display resources embedded in the single original document.

A few years later HTTP/1.1 was introduced. It deeply improved pro-
tocol performance thanks to the implementation of persistent connections,
pipelining support, and conditional requests. Specifically, pipelining permit-
ted requests to be sent before the answer to the previous ones was fully
transmitted, obtaining lower latency in the communication and improving
performance.

The introduction of the security layer between TCP and HTTP represented
one of the most relevant changes in the network protocol stack. Initially
called SSL, then standardized in TLS, it has satisfied the need of having
encrypted packets between client and server to guarantee the authenticity of
the messages.

The release of HTTP/2 furtherly improved the protocol, especially in
terms of performance optimization, to overcome the limitations caused by
web pages which started to become more and more complex and heavy.

The features of the protocol are the following:

• Binary encoding, which permitted to transmit data in a more efficient
way with respect to the text-based encoding used in the previous versions.

• The server push mechanism, which allows the server to send resources
before the client requests them, with a significant improvement in the
loading speed of websites.

• Multiplexing, that allowed multiple requests to be sent over the same
connection, resulting in faster page load time than in the past.

• Header compression and prioritization, which reduced the overhead of
data transmitted.

Finally, HTTP/3 revolutionized the protocol, since it completely changed
the protocol stack. In fact, it is based on UDP and QUIC at the transport
layer, differently form the previous versions.

16

2.1 – HTTP/3

This way, it overcomes the limitations of TCP, in particular TCP loss
detection and retransmission: in HTTP/2 they can block all streams since
multiplexed connections are bound to a single TCP connection.

Moreover, HTTP/3 improves the HTTP/2 multiplexing thanks to a better
flow control and congestion management, leading to faster and more reliable
data transfers. This version offers great improvements as far as performance,
efficiency and security are concerned.

More in detail, as described in IETF RFC 9114 [3], multiplexing of requests
is performed using the QUIC stream abstraction: each request-response pair
is bound to a single QUIC stream. Streams are independent from each other,
so one stream that is blocked or suffers packet loss does not prevent progress
on other streams.

To sum up the major improvements of HTTP/3 are:

• reduced latency thanks to QUIC and UDP as transport layers, that
allow requests to be sent in parallel over multiple streams.

• security: data in transit is all encrypted, based on TLS1.3 and use of
QUIC as transport layer.

• performance: HTTP/3 is designed to improve performance with the use
of multiplexing and parallel streams in the QUIC transport layer.

• interoperability: designed to be backward compatible with previous
versions of HTTP protocol.

The image shows how the protocol stack has changed in the different
versions.

17

Background

Figure 2.1: HTTP versions and network stacks

2.2 QUIC protocol
QUIC is a transport protocol that operates on top of UDP, and it is used as
an alternative to TCP in the transport layer of HTTP/3. Its main objective
is to provide faster setup times and reduced latency for HTTP connections.

Faster setup time is made possible thanks to the QUIC handshake
mechanism. As mentioned in IETF RFC 9000 [1], QUIC handshake is
structured to allow data exchange at the earliest: it combines negotiation of
cryptographic and transport parameters, by integrating the TLS handshake,
with an option that uses 0-RTT packets to send data immediately. 0-RTT is
achieved through protocol parameters negotiated in previous connections. A
client that attempts to send 0-RTT data has to know all transport parameters
that the server is able to process and the server uses transport parameters
to determine whether to accept 0-RTT data or not.

0-RTT allows application data to be sent by a client before receiving a
response from the server. On the other hand, 0-RTT provides no protection
against replay attacks. A server can also send application data to a client
before it receives the final cryptographic handshake messages that allow it
to confirm the identity and liveness of the client.

These capabilities allow an application protocol to offer the option of

18

2.2 – QUIC protocol

trading some security guarantees for reduced latency.
Application protocols exchange information over a QUIC connection via

streams, which are ordered sequence of bytes. Data is subject to flow control
constraints and stream limits. The correct prioritization of resources allocated
to stream leads to significant improvements in application performances,
thanks to the stream multiplexing.

A QUIC connection is a shared state between client and server. Each
connection is identified by a set of parameters that are independent from
lower protocol layers (IP, UDP): this allows to perform seamless network
path migration.

In order to improve user’s Quality of Experience, QUIC allows independent
retransmissions for sub-streams and decouples it from congestion control.
This provides a great improvement: also in scenarios with poor network
conditions it is possible to experience good website responsiveness.

As mentioned before, QUIC completely changes the network stack of the
HTTP protocol: it is the first time that an HTTP version is based on UDP
and embeds security in its own layer with TLS 1.3.

[4] states that the encryption of the majority of QUIC packets has a nega-
tive impact on network operators: it prevents them from performing passive
network measurements using the standard techniques based on transport
protocol information SEQ/ACK since it is no longer available.

For this reason, some bits of the QUIC Short Header packet were left
unencrypted, allowing on-path network observers to record its values during
the QUIC connection and estimate the Round Trip Time: among them, this
thesis focuses on the Spin Bit.

QUIC connection establishment As reported in [5], to setup a typical
QUIC connection the following messages are exchanged:

• Initial packet, sent from the client to the server, including a TLS 1.3
ClientHello.

• Initial packet, from the server to the client, if parameters of the previous
message are accepted by the server, together with the TLS ServerHello.

• Handshake packet, from the server to the client, with the remaining
TLS server messages.

• Handshake packet, from the client to the server, to terminate the QUIC
Handshake.

19

Background

• 1-RTT packets, from client to server and viceversa, where application
data is exchanged. Here the Spin Bit feature is evaluated, in particular
in QUIC packets having the Short Header.

20

2.2 – QUIC protocol

Figure 2.2: Messages exchanged for a typical QUIC connection establish-
ment

21

Background

2.2.1 Quic Header
IETF RFC 8999 [6] defines the two different headers for QUIC packets: Long
Header and Short Header. They are identified by the most significant bit of
the first byte being set (0 short, 1 long). The payload of QUIC packets is
version specific and of arbitrary length.

QUIC LONG HEADER Packets with long header are Initial, 0-RTT,
Handshake and Rerty. One of the purpose of using the Long Header is the
specification of the version to be used in the connection, placed in 4 bytes:
when a QUIC endpoint receives a packet with a Long Header, it is possible
that it does not support that version, so it sends back a Version Negotiation
Packet with a list of versions of QUIC that it supports.

Figure 2.3: 0-RTT Packet with Quic Long Header [1]

QUIC SHORT HEADER Packets using short header are designed for
minimal overhead and are used after a connection is established. It is used in

22

2.2 – QUIC protocol

packets after the connection has been established, for performances purposes.
Here is where Spin Bit is located.

Figure 2.4: 1-RTT Packet with Quic Short Header [1]

2.2.2 Spin Bit
Latency Spin Bit provides a method to compute passive latency moni-
toring measurements by on-path network observers: it makes it possible to
measure per-flow RTT throughout the duration of a connection.

Spin Bit resides in the QUIC Short Header packet, more specifically in
the reserved bits section, which is one of the few parts of the header that is
unencrypted in the QUIC protocol.

In a nutshell, the Spin Bit value handled by the client and server generates a
square wave that enables the performance measurements by on-path network
observers. The algorithm will be explained in detail later, in chapter 4.

It is essential to underline that Spin Bit is an optional feature of the QUIC
protocol, as defined in IETF RFC 9000 [1]: this means that an endpoint
that does not support this feature must disable it. The RFC also states that
QUIC implementations must allow administrators of client and servers to
disable the Spin Bit either globally or on a per-connection basis. In addition
to that, endpoints must disable their use of Spin Bit at least once every

23

Background

16 connections, in order to ensure that QUIC connections that disable the
Spin Bit are commonly observed in the network. As a result, since each
endpoint disables the Spin Bit independently, the Spin Bit signal is disabled
statistically on one in eight QUIC connections.

In IETF RFC 9312, [7] it is described how an on-path observer that can
see traffic in both directions (from client to server and from server to client)
can also use the Spin Bit to measure "upstream" and "downstream" RTTs.
Upstream and downstream refer to the part of the communication between
Client and observer, observer and Server respectively.

RTTs are computed by measuring the delay between the swapping of
Spin Bit values on both upstream and downstream directions: this way it is
possible to derive the end-to-end RTT of the communication.

Network observers then report RTT values that can be used to monitor
QUIC traffic and generate useful network performance metrics.

Figure 2.5: Computation of Left and Right RTT by the network observer

Passive monitoring techniques Passive monitoring techniques allow
to perform measurements of traffic on a large scale without introducing
additional packets in the network. As mentioned before, Spin Bit enables
passive measurements of QUIC traffic. In QUIC Short Header there are two
additional bits that are reserved for future use and can be used in monitoring
techniques, since they are unencrypted.

In [8] are presented two passive monitoring techniques of QUIC traffic
that are based on more than one bit (Spin Bit) of the QUIC header: Valid
Edge Counter (VEC) and Delay Bit.

• The VEC objective is to detect if an edge was valid when transmitted
by the endpoint. VEC logic is the same for both endpoints. An edge
is valid if it has a value greater than 0. VEC value is increased every

24

2.3 – Network performance measurement tools

time a valid edge is reflected by one of the two endpoints: it represents
the number of semi-paths (i.e., the path between client and server or
between server and client) crossed by the edge without incurring network
impairments. On the other hand, when an impairment is detected, the
endpoint sets the VEC to 1, to prevent the observer computing incorrect
measurements. Another case in which VEC is transmitted with value
equal to 1 is when a delay threshold is exceeded: this way the VEC
algorithm overcomes the Spin Bit limitation related to application delay.
The observer, based on the VEC value it reads, decides whether that
edge is used to start (VEC value equals to 1 or 2) or to complete (VEC
value equals to 3) the RTT measurement.

• The delay measurement is based on an additional bit of the header,
called delay bit. This measurement technique aims to overcome Spin Bit
limitations of unreliable produced RTTs as soon as there are network
impairments. Differently from Spin Bit, the Delay Bit is set once per
round trip period. This way one packet, called delay sample, allows in-
path network observers to measure the end-to-end RTT of the connection
as the difference between two delay samples in time. Differently from
VEC, this technique makes use only of one additional bit other than
Spin Bit, allowing the addition of further features in the QUIC protocol.

2.3 Network performance measurement tools
In this section I will introduce the on-path network observers tools used to
read the Spin Bit values throughout the communication between client and
server and compute QUIC traffic RTTs.

2.3.1 Spindump
Spindump [9] is an open-source software tool developed by Ericsson used
for latency monitoring for Linux operating systems. It performs passive
in-network monitoring, by looking at the transport protocol characteristics
and derives information about Round Trip Times for connections. It was
chosen in this thesis because it supports the QUIC protocol.

In particular, the tool is able to detect the Spin Bit algorithm and its
behavior. It points out the communication endpoints support of Spin Bit
feature. They can be both, called Initiator and Responder, just one or none.

25

Background

If both entities support the Spin Bit algorithm, the tool reports ’Spinning’,
together with the QUIC protocol version used in the communication; then it
computes the Left and Right RTTs (previously referred to as downstream
and upstream), based on Spin Bit values.

Figure 2.6: Spindump network observer [9]

Another important feature of the tool is its capability of reporting the
output in JSON format. This allows to easily manage the traffic reports,
which I used to compute more sophisticated analyses, as explained later in
chapter 5.

In order to launch the tool the following command can be executed:

spindump udp and port 443 --interface lo

With this command a Spindump process starts, by listening and reading
all packets passing through the loopback interface. In particular, it applies a
filter on UDP packets on the port 443 (i.e. QUIC packets), using the same
syntax of other PCAP-based tools.

The figure represents the output of the tool.

Figure 2.7: Spindump report

26

2.3 – Network performance measurement tools

2.3.2 TIMQuic
TIMQuic is an Android App based on Spindump open-source code.

In this thesis it was used to monitor QUIC traffic in communications
including Android applications client. In particular, it was used to detect
the support of Spin Bit algorithm in the Chromium application built for
Android.

Like Spindump, TIMQuic is able to detect whether the spin bit feature is
supported by both endpoints of communication or not and report the values
of Left and Right RTTs.

To use it, it is necessary to open the app and start the capture of the
packets. Then it is sufficient to navigate on the web and the application will
start to report the same statistics of Spindump.

27

28

Chapter 3

Chromium open-source
browser

Chromium is the open-source browser that is part of the Chromium projects
together with Chromium OS. These two are the open-source versions of
Google Chrome browser and Google Chrome OS.

3.1 Motivation
The choice of Chromium among the open source browsers for implementing
the QUIC traffic measurements was due to three main reasons:

1. it is mainly developed and maintained by Google, which also firstly
introduced the QUIC protocol.

2. its codebase is widely used by the most common browsers. For example,
Chromium codebase provides the majority of code for the Google Chrome
browser, which adds on top of it additional features that makes it
proprietary software. Other examples of browsers based on Chromium
are Microsoft Edge, Samsung Internet and Opera.

3. Quiche, the QUIC library implementation is the low level library common
to all platforms: the implementation of the Spin Bit feature inside the
library allows to have the feature available for the Chromium build of
Android, Linux and Windows operating systems.

29

Chromium open-source browser

Figure 3.1: Chromium icon

3.2 Tools

The Chromium project provides several tools that make the programmer’s
job more manageable in terms of getting the code, building and testing it.

3.2.1 Versioning: Depot Tools

Depot tools is a script package to manage checkouts and code reviews. The
suite contains many git workflow-enhancing tools that enable developers to
manage the Chromium codebase. Gclient is a Python script to manage a
workspace of modular dependencies that are each checked out independently
from different subversion or git repositories. Dependencies can be specified
on many levels: per-OS basis, relative to the parent, and variables to an
abstract concept.

3.2.2 Chromium Code Search

In a vast code base like the Chromium one (about 30 millions of lines of code),
it is beneficial to take advantage of this code browsing solution. It allows to
navigate the code correctly by exploiting the possibility of reconstructing the
call hierarchy of the functions, understanding the structure of the modules
in the code, finding dependencies among different code blocks, and retrieve
definitions and assignments, and intuitively viewing in the code all related
calls. This was really important when inspecting the code: it allowed me
to almost immediately find the network modules to be modified in order to
implement the Spin Bit algorithm.

30

3.2 – Tools

3.2.3 Building tools: ninja and gn
The project was built for both Android and Linux operating systems thanks
to the usage of gn and ninja that speeded up the compilation process.

• GN is a meta-build system that, together with Ninja, composes the
compilation process. It produces Ninja build files to be then compiled
to produce the executable. It is designated for large projects and teams
and scales efficiently to thousands of build files and tens of thousands of
source files. It is also designed for multi-platform projects, and supports
multiple parallel output directories, each with its configuration, in order
for a developer to maintain builds targeting debug, release, or different
platforms in parallel without being forced to rebuild when switching.

• Ninja is a small build system with a focus on speed. Unlike other build
systems, it requires the input of higher-level files generated by other
build systems, in this case gn.

3.2.4 Testing tools
Inside the Google Quiche library section, Chromium provides a client and
a server executables that simulate the behavior of a network request using
the QUIC protocol implementation of Chromium. In order to use them, it is
necessary to first check out the Chromium source code and then build them.

quic server This is the executable that listens by default on port 6121
and serves static content. In order to run it the following steps must be
performed:

• prepare static content to serve to clients;

• prepare the certificates needed to run the server. To do this it is possible
to leverage the script in the net/tools/quic/certs directory, that generates
server’s certificate and keys. Afterwards, it is necessary to generate a
CA certificate and add it to the OS’s root certificate store.

The generated server’s certificate will be valid for three days, so it is
suggested modifying it in order to make the certificate valid for a longer
period, without having to regenerate certificates frequently.

31

Chromium open-source browser

quic_server \
--quic_response_cache_dir=/tmp/quic-data/www.example.org \
--certificate_file=net/tools/quic/certs/out/leaf_cert.pem \
--key_file=net/tools/quic/certs/out/leaf_cert.pkcs8

This is an example of command that can be used to run the server. The
option –quic-response-cache-dir indicates the directory that contains the
index.html file to be served by the server, while –certificate-file and –key-file
contain the path to the previously generated certificate and key.

quic client This executable is used to perform requests to quic-server.
It can be launched using the following command, specifying IP address

and port of the server:

quic_client --host=127.0.0.1 --port=6121

There are two important options for the quic-client that allow to perform
tests in a quicker way:

• disable-certificate-verification, if the server has not valid certificate;

• allow-unknown-root-cert, if the certificate is valid, but is related to a
user installed CA, like the one generated by the script mentioned before

This setup offers two main benefits: on one hand it provides control of
both communication endpoints; on the other it allows to test the library
implementation without having to build the entire browser.

Together with a network observer, this setup allows to perform a first
QUIC traffic network performance monitoring test to detect the presence of
Spin Bit algorithm support.

3.3 Network architecture
Chromium network stack is a mostly single-threaded cross-platform library.
In this thesis work, I implemented the Spin Bit algorithm in the Google
Quiche library.

32

3.3 – Network architecture

3.3.1 Overview
Chromium supports many protocol implementations that can be found under
the net directory, located in the root of the source code. In addition to QUIC,
which is the subject of this thesis, it is possible to find other protocols: FTP,
HTTP, OCSP, SPDY.

3.3.2 Google Quiche library
Google Quiche [10] is an implementation of the QUIC protocol developed by
Google.

Written in C++, it is the library upon which HTTP/3 works in the
Chromium browser. Despite having the same name, it is important to
outline that Google Quiche is different from the Quiche library developed by
Cloudflare and written in Rust.

It supports all the core features of QUIC, including:

• connection establishment;

• packet construction and parsing, with a special focus on QUIC peculiar-
ities such as header compression, encryption, and integrity protection;

• flow and congestion control mechanism;

• stream management.

On the other hand, it does not support the Spin Bit feature.
In the Chromium project, the Quiche library, being a low level library, is

shared between all the builds for the different platforms. This means that a
new feature implemented in the library will be present in all platforms, as
I will describe in the next chapters, together with the implementation and
test of Spin Bit for the Android and Linux operating systems.

Google Quiche Call Chain In this section I report the main functions
of the Chromium code that are involved in the two phases of the Spin Bit
algorithm: packet reception and packet delivery.

The Chromium Code Search functionality described in Chapter 3 was
extremely useful to navigate the estimated 30 millions lines of code of
Chromium; it also allowed me to reconstruct the flow of incoming and
outgoing packets.

33

Chromium open-source browser

In the following lines the functions that represent the flow of incoming
and outgoing packets are listed, together with the file they are located in.

Incoming packets

• ProcessUDPPacket(session.cc)

• ProcessUDPPacket(connection.cc)

• ProcessPacket(framer.cc)

• ProcessPacketInternal(framer.cc)

• ProcessPublicHeader(framer.cc)

• ProcessPacketHeader(framer.cc)

• ProcessIETFPacketHeader(framer.cc)

Outgoing packets

• FillPacketHeader(packet-creator.cc)

• SerializePacket(packet-creator.cc)

• BuildDataPacket(packet-creator.cc)

• AppendPacketHeader(packet-creator.cc)

• AppendIETFPacketHeader(packet-creator.cc)

34

Chapter 4

Spin Bit algorithm and
implementation

In this chapter I will present the algorithm of the latency Spin Bit and my
implementation in Chromium from the perspective of the client and the
server.

The implementation resides in the Google Quiche library, the open source
library developed by Google which implements the QUIC protocol.

4.1 Spin Bit algorithm
As described in chapter 2, the Spin Bit enables passive latency monitoring
from on-path network observers during a QUIC connection.

The Spin Bit algorithm starts after the completion of version negotiation
and connection establishment, since Spin Bit is available in Short Header
packets only.

The algorithm involves two entities, the client and the server, which behave
in the following way:

1. The client sends QUIC packets having the Short Header, with Spin Bit
value equal to zero.

2. The server reflects the Spin Bit, meaning that it reads the value of the
Spin Bit of incoming packets and builds response packets having the
same Spin Bit value.

35

Spin Bit algorithm and implementation

3. The client, after receiving packets from the server, flips the Spin Bit: it
reads the incoming Spin Bit value and builds new packets with Spin Bit
value equal to the opposite received.

These steps are repeated for the duration of the entire QUIC connection.
In this way client and server generate a square wave that an on-path net-
work observer is able to intercept, and deduce RTT values of both sides of
communication.

This way, for each QUIC connection, client and server generate a square
wave of values, as reported in 4.1, where the the black lines represent packets
having spin bit value equal to 0, while the green ones represent packets with
spin bit set to 1. The square wave allows on-path network observers to
monitor QUIC traffic. More in detail, on-path network observers are able
to read the Spin Bit value throughout the duration of the connection and
compute the end-to-end Round Trip Time between client and server, by
looking at Spin Bit values that comes from the client and the server.

As described in IETF RFC 9000 [1], some checks must be performed
before flipping or reflecting the Spin Bit value, from the client and server
perspective respectively:

• Short-Header: the Spin Bit value is present only in packets having
Short Header, hence 1-RTT packets, after the version negotiation and
connection establishment are completed;

• Packet number: the logic of the Spin Bit is implemented in both cases
only if the received packet increases the highest packet number seen on
the network path;

If the checks are evaluated positively, the logic is implemented according
to the perspective of the client or the server; otherwise, the Spin Bit value of
next packets is not updated.

The Spin Bit algorithm, in this way, allows on-path network observers to
monitor and perform QUIC traffic measurements based on a single bit of the
QUIC Short Header left unencrypted for this purpose.

36

4.1 – Spin Bit algorithm

Figure 4.1: Representation of spin bit algorithm

4.1.1 Limitations
As explained before, Spin Bit represents a technique of QUIC performance
measurements and traffic monitoring.

IETF RFC 9312 [7] points out the major limitations that are subject to
this technique, in terms of produced measurements.

In particular, this measurement, being a passive measurement, includes
all transport protocol delay and application layer delay. RTT mea-
surements hence indicate to on-path network observers an instantaneous

37

Spin Bit algorithm and implementation

estimate of the RTT experienced by the application.
For this reason, application limited and flow-control limited senders can

have application and transport layer delay that are much greater than network
RTT.

Another issue to be considered in the RTT measurements is the reorder-
ing: the Spin Bit logic itself does not have problems with it, since it is
implemented only if packets increment the largest packet number received.
The problem touches the network on-path observers, causing spurious edge
detection and inaccurate RTT measurements, if reordering occurs across a
Spin Bit flip in the stream.

4.2 Implementation
The implementation of the Spin Bit algorithm followed these major steps:

• addition of Spin Bit variable in the QUIC Header data structure and
initialization in the constructor;

//[quic_packets.h]
struct QUIC_EXPORT_PRIVATE QuicPacketHeader {
...
bool spin_bit;
}

//[quic_packets.cc]
//default constructor
QuicPacketHeader::QuicPacketHeader()

: ...
spin_bit(false)

• addition of Macro SPIN BIT;

//[quic_types.h]
enum QuicPacketHeaderTypeFlags : uint8_t {

FLAGS_DEMULTIPLEXING_BIT = 1 << 3,
// Bits 4 and 5: Reserved bits for short header.
FLAGS_SHORT_HEADER_RESERVED_1 = 1 << 4,

38

4.2 – Implementation

SPIN_BIT = 1 << 5,
// Bit 6: the ’QUIC’ bit.
FLAGS_FIXED_BIT = 1 << 6,

• addition of spin bit variable in packet creator

[quic_packet_creator.h]
class QUIC_EXPORT_PRIVATE QuicPacketCreator {
...
void SetCurrentSpinBit(bool spin_bit) {current_spin_bit = spin_bit;}
bool GetCurrentSpinBit() const {return current_spin_bit;}
bool current_spin_bit = false;
};

• checks to be performed before evaluating the Spin Bit value received:
Short-Header and packet number.

• check on the perspective side: client and server

• read current value of spin bit and save in the corresponding variable;

bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) {

--stats_.packets_dropped;

//update current_spin_bit
if(header.form == IETF_QUIC_SHORT_HEADER_PACKET){

if(!GetLargestReceivedPacket().IsInitialized()
|| header.packet_number > GetLargestReceivedPacket()){

if(perspective_ == Perspective::IS_CLIENT) {
packet_creator_.SetCurrentSpinBit(!header.spin_bit);

}
else{

packet_creator_.SetCurrentSpinBit(header.spin_bit);
}

}
}

39

Spin Bit algorithm and implementation

[quic_framer.cc]
//read incoming spin_bit
bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader,

QuicPacketHeader* header)
...

if(header->form == IETF_QUIC_SHORT_HEADER_PACKET){
QUIC_DVLOG(1) << ENDPOINT << "Processing short packet header";

header->spin_bit = header->type_byte & SPIN_BIT;

...
}

• build the outgoing packet with the same value of current spin bit or
dual value, if server or client respectively. Note that header.version flag
tells whether the packet is a Short Header or Long Header.

//write spin_bit
bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header,

QuicDataWriter* writer) {
uint8_t type = 0;
if (header.version_flag) {

type = static_cast<uint8_t>(
FLAGS_LONG_HEADER | FLAGS_FIXED_BIT |
LongHeaderTypeToOnWireValue(header.long_packet_type, version_) |
PacketNumberLengthToOnWireValue(header.packet_number_length));

} else {
type = static_cast<uint8_t>(

FLAGS_FIXED_BIT | (header.spin_bit ? SPIN_BIT : 0) |
(current_key_phase_bit_ ? FLAGS_KEY_PHASE_BIT : 0) |
PacketNumberLengthToOnWireValue(header.packet_number_length));

}
return writer->WriteUInt8(type);

}

• Here the logic is implemented saving the correct value of spin bit in the
header data structure.

40

4.2 – Implementation

[quic_connection.cc]
// Called when the complete header of a packet has been parsed.
bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) {
...

//update current_spin_bit
if(header.form == IETF_QUIC_SHORT_HEADER_PACKET){

if(!GetLargestReceivedPacket().IsInitialized()
|| header.packet_number > GetLargestReceivedPacket()){
if(perspective_ == Perspective::IS_CLIENT) {

packet_creator_.SetCurrentSpinBit(!header.spin_bit);
}
else{

packet_creator_.SetCurrentSpinBit(header.spin_bit);

}
}

}

To sum up, in this chapter I presented the Spin Bit algorithm, pointing
out the measurements that it can provide together with the limitations that
are subject to passive measurement techniques.

I then provided my implementation of the Spin Bit feature in the Google
Quiche library, explaining the major steps that I followed throughout the
study of the code and the implementation itself.

41

42

Chapter 5

Evaluation

In this chapter I will present the methods I used to evaluate the Spin Bit
implementation in terms of reliability and performance, presenting for each
test:

• Environment

• Methodology and setup

• Results

The tests performed can be divided into two main categories: the first one
has the objective to check that the presented on-path network observer tools
are able to correctly detect the Spin Bit algorithm throughout the QUIC
connections. The expected results for these tests are the report of "Spinning"
notes by the two tools, both deployed on the same machine of the client.

The second types of test wants to verify if the RTT measurements reported
by Spindump are coherent with Ping measurements, considering the Spin
Bit limitations explained in Chapter 4.

Overview The tests were performed on both Android and Linux environ-
ment: on the Chromium application for Android it was verified the presence
of Spin Bit implementation by means of the TIMQuic network observer (Test
3, Android section). On Linux environment, on the other hand, different
executables were tested: first of all, the quic client and quic server implemen-
tations provided by the Google Quiche library (Test 1). In order to test the
interoperability of the Spin Bit implementation it was verified whether the

43

Evaluation

Spin Bit algorithm was detected by Spindump using quic client and a server
provided by a different QUIC implementation, called picoquic (Test 2). From
the Test 3 on, all tests involved the usage of the full Chromium browser as
client, by leveraging the Spindump feature to report measurements in JSON
format to compute statistics about the RTT values produced and compare
them to Ping reference values.

5.1 Test 1: quiche library

5.1.1 quic client and quic server
The first test has been performed by using the Linux executables provided by
the Google Quiche library used in Chromium, with my new implementation.
More in detail, after having checked out the source code of Chromium, it is
possible to build the binaries quic client and quic server. The two executables
are sample client and server implementations and allow to simulate the
behavior of a network request using the Google Quiche library, without
having to deal with the complexity of building the full browser.

Environment This first test aims to verify if the on-path network observer
Spindump is able to detect the Spinning notes throughout the communication
between client and server. The network communication uses the QUIC
protocol implemented in the Google Quiche library, modified with the new
Spin Bit feature. Both client and server have been placed in the same
machine, together with the network observer Spindump.

Setup In order to run the test it was necessary to perform the following
steps for each actor:

• Server

1. download a copy of a static website in order to serve its content
locally after a network request;

2. generate valid certificates for the TLS handshake;
3. run the server, specifying the directory with the content to be served,

the certificate file and the key file

44

5.1 – Test 1: quiche library

Figure 5.1: Test 1: client and server on localhost

quic_server \
--quic_response_cache_dir=/tmp/quic-data/www.example.org \

--certificate_file=net/tools/quic/certs/out/leaf_cert.pem \
--key_file=net/tools/quic/certs/out/leaf_cert.pkcs8

In this way we have the server listening on the default port (6121) of
the loopback interface.

• Spindump

1. Launch the on-path network observer tool in order to access packets
on the loopback interface, considering only packets using UDP
protocol and passing through port 6121

spindump udp and port 6121 --interface lo

• Client

1. Launch client specifying hostname port and URL

quic_client --host=127.0.0.1 --port=6121

After having set Spindump to listen on the loopback interface, the client
performs a request to the server, listening on a specific port (6121 by default).

45

Evaluation

Results The results of performing different network requests show that
Spindump is able to detect "Spinning" behavior of the Spin Bit. Values of
Left and Right RTTs are not relevant for this kind of tests since both client
and server are placed in the same machine.

Figure 5.2: Test 1: Spindump report

46

5.2 – Test 2: quiche and other libraries

5.2 Test 2: quiche and other libraries
After having tested the behavior of the Spin Bit implementation using client
and server implementing the same Google Quiche library, this test aims to
verify if Spindump is able to detect "Spinning" also in communications with
servers implementing other QUIC libraries. In this case the setup slightly
changes: while client and on-path network observer tool remain the same,
the server setup is different.

5.2.1 quic client and picoquic server
In order to find libraries implementing Spin Bit feature of QUIC protocol,
I referred to the QUIC Test Grid [11]. The Quic Test Grid is a test suit
for QUIC, written in Go, that reports the features found in each QUIC
implementation, including the Spin Bit. In particular, the test suits ex-
changes packets with IETF-QUIC implementations to verify whether an
implementation conforms with the IETF specification of QUIC.

The grid showed that the libraries that implemented Spin Bit are picoquic
and lsquic. The first library is tested in this phase, while the second is
tested later.

picoquic It is an implementation of QUIC protocol compliant with the
IETF standard description, developed in C. The project consist of a core li-
brary, picoquic, a test library, picoquictest, and a test program, picoquicdemo.
The latter is the one I used to simulate the QUIC communication between
Google Quiche client and picoquic server.

Environment Google Quiche client, picoquic server and Spindump are all
placed on the same machine.

Setup

• Server

1. run the server picoquicdemo, which is an executable that acts either
as a client or as a server based on the arguments passed when
launching it. By default, without specifying any argument, it acts
as a server listening on port 4434.

47

Evaluation

Figure 5.3: Test 2: quic client and picoquic server

./picoquicdemo

• Spindump

1. Launch the on-path network observer tool in order to access packets
on the loopback interface, considering only packets using UDP
protocol and passing through port 4434

spindump udp and port 4434 --interface lo

• Client

1. Launch client specifying IP address and port

quic_client 127.0.0.1 --port=4434

The setup changes from the previous test only regarding the server side.

Results Also in this case Spindump has been able to recognize Spinning
events, again with similar value of Left and Right RTT since both endpoints
of communication were on the same machine.

48

5.3 – Test 3: Full Browser

Figure 5.4: Test 2: Spindump report

5.3 Test 3: Full Browser
Starting from this test, the entire browser will be used to verify the correct
behavior of Spin Bit implementation.

5.3.1 Chromium and litespeedtech.com
This tests aims to verify the presence of Spinning events detected by Spin-
dump, using the entire browser as client of the communication and the
production ready website litespeedtech.com as a server. This server uses
lsquic library as implementation of QUIC protocol, which supports the Spin
Bit feature, as reported in the Test Grid mentioned before.

Environment
• Client: Chromium on localhost;

• Server: litespeedtech.com;

• On-path network observer: Spindump on localhost.

Setup
• Client: Chromium, build of the entire browser, with the modified Google

Quiche library implementing the Spin Bit feature.

• Server: litespeedtech.com web server.

• Spindump: listening on network interface:

spindump upd and port 443 --interface wlp1s0

49

Evaluation

Figure 5.5: Test 3: Chromium and litespeedtech.com (Linux)

Figure 5.6: Test 3: Spindump report

Results Here we can see a different behavior with respect to previous
tests: Chromium opens different connections while loading the web page.
Spinning is detected in the connection with the web server endpoint, which
implements the Spin Bit. By performing several requests it is possible to
notice that Spindump continues to detect Spinning and updates accordingly
the values related to Left and Right RTT.

Android platform The same test has been then conducted on the Android
platform: in this case the client is the full browser built for Android platform,
which implements the same Google Quiche library of the build for Linux,
hence with the Spin Bit feature. The on-path network observer in this case
is the previously described TIMQuic.

Results reported by TIMQuic are the same: it is possible to notice Spinning

50

5.3 – Test 3: Full Browser

events, meaning that also Chromium for Android correctly implements Spin
Bit feature.

Figure 5.7: Test 3: Chromium and litespeedtech.com (Android)

51

Evaluation

5.4 Test 4: Chromium and OpenLiteSpeed

In this test I want to verify the presence of Spin Bit feature in the lsquic
protocol implemented in OpenLiteSpeed.

OpenLiteSpeed (OLS) is the open-source web browser of the enterprise
LiteSpeed server (LSWS). OLS and LSWS have in common the LSCache
engine, HTTP/3 (and QUIC) and many other features, while they differ
in advanced ones, available only in the enterprise edition. In this context
the support of HTTP/3 and QUIC is granted, so it is sufficient to use the
open-source edition to test the Spin Bit behavior. In particular, the library
implementing QUIC is lsquic, that showed the support of the Spin Bit in
the previous test.

I installed the OLS web server on an EC2 instance of the AWS infrastruc-
ture, in order to have full control of both endpoints of communication. This
allowed me firstly to detect Spinning events and then to analyze produced
RTT measurements.

5.4.1 Chromium and OLS - AWS

Environment

• Chromium browser on localhost

• Spindump on loclahost

• OpenLiteSpeed web server on AWS EC2 instance in North Virgina

52

5.4 – Test 4: Chromium and OpenLiteSpeed

Figure 5.8: Test 4: Chromium and OLS (North Virginia)

Setup OLS web server was installed in an AWS EC2 instance in the North
Virginia region. In order to do so, it was necessary to carry out the following
steps:

• create a valid certificate with Let’s Encrypt, based on a valid domain
name. Notice that this step is necessary since Chromium does not accept
self-signed certificates, so it would not be possible to complete the QUIC
Handshake and establish the connection.

• setup the Route 53 service to point at the newly deployed instance with
the OLS web server, with related nameservers managed by Route 53.

• Launch an EC2 instance in North Virginia region with Security Groups
configured to accept inbound UDP traffic from port 443 from any IPv4
address.

Results Spindump is able to detect Spinning events: it is possible to
establish a connection with the QUIC protocol, after having completed the
QUIC handshake, using the certificates issued by Let’s Encrypt and a valid
domain. This way, I have proved that open-source version OLS uses the
lsquic library with the support of Spin Bit feature as well as the enterprise
LSWS edition, and it is possible to use the OLS web server in different AWS
Regions in order to analyze the RTT measurements produced and to compare
them with Ping reference values.

53

Evaluation

5.5 Test 5: Measurements
This is the second part of the tests, and the most important one, in which
I analyze the RTT values reported by Spindump in the communication
between Chromium and OLS web server.

The objective of these tests is to compare the RTT values recorded by
Spindump with Ping values, on different QUIC connections. In all tests
Spindump was placed on localhost, while OLS web server was installed in
AWS EC2 instances in London and Frankfurt regions.

For each region, the tests involved downloads of files of different sizes
(20MB, 100MB and 200MB) over QUIC connections.

Measurements This paragraph describes how I analyzed the QUIC con-
nections report produced by Spindump. I took advantage of Spindump
ability to export its output in JSON format.

spindump udp and port 443 --interface wlp1s0 --textual --format json

This way, it was possible to save the Spindump report in a log file, to be
analyzed in a second moment.

In order to analyze JSON files, I wrote a script in Python, leveraging
the Pandas and Plotly libraries for big data analysis and plotting graphs
respectively. More in detail, Pandas uses the concept of Data Frame to
represent tables and perform aggregated statistics on this specific data
structure.

The script performs the following high-level functions:

• reads the log file in JSON and save measurements in a DataFrame data
structure;

• filters the DataFrame by considering only "Spinning" events;

• computes statistics about Right and Left RTTs (min, avg, max, count).
Each row of the DataFrame represents a "Spinning" event, to which is
linked the corresponding Left or Right RTT. The Pandas library is used
to compute for the Left and Right RTTs the following measures:

– minimum: the minimum value present in the DataFrame;
– maximum: the maximum value present in the DataFrame;

54

5.5 – Test 5: Measurements

– count: the number of non-null values present in the DataFrame;
– average: the average value of the DataFrame, as the sum of the

values divided by the count.

All these values are reported for 50, 75, 80, 90 and 95 percentile, in
order to provide a more complete view on the measurements and not
to be affected by outliers in the statistics. More in detail, the quantile
function of Pandas library was used to find the corresponding value, and
later the DataFrame was filtered to consider only values lower or equal
to it.

• plots graphs with the obtained results;

• exports results in xlsx files.

Environment

• Client: Chromium browser

• Network observer: Spindump on localhost

• Server: OLS on AWS EC2 instances (London and Frankfurt)

Figure 5.9: Test 5: Chromium and OLS (London/Frankfurt)

55

Evaluation

Setup The setup of Chromium and Spindump is the same of the previous
tests.

In order to deploy the server on EC2 instances it has been necessary to:

• Create an EC2 instance in the given region (London or Frankfurt)

• Install OLS on the EC2 instance

• Configure the AWS Security Group in order to allow inbound and
outbound connections over the QUIC protocol (UDP port 443)

• Configure the AWS Route 53 service with the EC2 IP address and
correct nameservers

• Configure the index page of the server to download 20MB, 100MB and
200MB.

Spindump is then configured to export JSON files.
After the ’listening’ phase, the script computes the statistics and generates

graphs.
More in detail, the script generates a report with Right and Left RTT

values for every communication. These values are then compared to Ping
values generated over the relative EC2 instance, in order to evaluate the
differences. Ping values were obtained by increasing the default frequency
of the tool: instead of sending ICMP packets every 1 second, the ICMP
packets were sent every 100 milliseconds. This way it was easier to detect
small network impairments, which would not be detected otherwise. The
tool finally reports minimum, maximum and average values detected, based
on the number of ICMP packet sent in the test: this number was set to 100.

Results In the following graphs the results obtained in the different mea-
surements are presented.

• The y-axis represents the RTT values expressed in microseconds [1x10-6
s].

• The x-axis is divided in five groups, corresponding to the percentile values.
Each group represents the subset of the entire DataFrame related to the
percentile value. For each group three bars are plotted, representing
minimum (min), average (mean) and maximum (max) RTT.

56

5.5 – Test 5: Measurements

The horizontal lines represent the minimum, average and maximum Ping
reference values.

Figure 5.10: Download of 20 MB (London)

Figure 5.11: Download of 100 MB (London)

57

Evaluation

Figure 5.12: Download of 200 MB (London)

Figure 5.13: Download of 20 MB (Frankfurt)

58

5.5 – Test 5: Measurements

Figure 5.14: Download of 100 MB (Frankfurt)

Figure 5.15: Download of 200 MB (Frankfurt)

59

Evaluation

Results show that average Ping values are slightly lower than Left and
Right RTT measurements reported by Spindump based on Spin Bit values.
It is important to outline that Left RTT values are not relevant in this setup
since they represent the RTT between network observer and client, both
placed in the same machine. For this reason Left RTT values are negligible
with respect to end-to-end RTT, which is represented by the Right RTT.

The difference between Right RTT and Ping is on average of about few
milliseconds. This is due to the different protocol we are analyzing, ICMP
and QUIC, and the payload of the reqests: in the first case, with Ping, few
packets are sent, while on the other case with QUIC protocol are sent many
more packets, that can fill queues in the network path.

As mentioned before, another aspect to consider is the transport and
application layer delays that affect QUIC packets, differently from the ICMP
ones.

For these reasons results are the expected ones, since QUIC measurements
based on Spin Bit represent the instantaneous delay perceived by the ap-
plication. Analyzing the different percentile values, it is possible to notice
how the RTT values increase, even if they remain similar to Ping values
until 95 percentile. Beyond that point the differences in the values are more
relevant: this is caused by few inaccurate RTT values which strongly affect
the analysis when considering all the measurements.

Another piece of evidence of the reliability of the measurements is the
fact that the minimum RTT reported by Spindump, which represents the
network latency as mentioned in IETF RFC 9312 [7], is coherent with Ping
values.

60

Chapter 6

Conclusions

This thesis has provided a QUIC traffic performance measurement imple-
mentation, based on the Spin Bit value, in the Chromium browser for both
Android and Linux platforms.

After a general overview of QUIC and HTTP/3 protocols, I focused on
the analysis of Chromium codebase and tools in order to detect the right
components to modify for the implementation of the new feature.

With the purpose of evaluating the implementation, different tests were
conducted.

The first ones aimed to verify the correct behavior of Spin Bit algorithm,
with an on-path network observer. Here the focus was on the detection of
Spinning events reported by the tools, meaning that Spin Bit feature was
supported by both client and server.

The last tests aimed to analyze the RTT measurements produced by the
network observer. I installed the OLS web server which supported Spin Bit
feature in AWS EC2 instances in different regions in order to check if the
values produced by the tool were coherent with the values produced by Ping
measurements.

The tests involved the download of files of different sizes (20MB, 100MB,
200MB) from the AWS London and Frankfurt regions. Results showed that
the values obtained by Spindump, hence based on Spin Bit, were on average
slightly higher than the ones produced by Ping. This is an expected result,
since Spin Bit-based measurements are subject to network and application
layer delays, differently from ICMP values.

To conclude, this thesis has provided a first implementation of QUIC
traffic measurement for the Chromium browser, based on one of the few bits

61

Conclusions

available in the QUIC packet header.
Both the Spin Bit implementation and the testing environment pave the

way for further researches and development of new QUIC traffic measurement
techniques in Chromium, based on the combination of more than a single
bit, in order to overcome Spin Bit limitations.

62

Bibliography

[1] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000. May 2021. doi: 10.17487/RFC9000.
url: https://www.rfc-editor.org/info/rfc9000 (cit. on pp. 11,
18, 22, 23, 36).

[2] Mozilla Developer Network. Evolution of HTTP. url: https://de
veloper.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/
Evolution_of_HTTP (cit. on p. 16).

[3] Mike Bishop. HTTP/3. RFC 9114. June 2022. doi: 10.17487/RFC9114.
url: https://www.rfc-editor.org/info/rfc9114 (cit. on p. 17).

[4] Martino Trevisan, Danilo Giordano, Idilio Drago, and Ali Safari Kha-
touni. «Measuring HTTP/3: Adoption and Performance». In: 2021 19th
Mediterranean Communication and Computer Networking Conference
(MedComNet). 2021, pp. 1–8. doi: 10.1109/MedComNet52149.2021.
9501274 (cit. on p. 19).

[5] Eva Gagliardi and Olivier Levillain. «Analysis of QUIC session establish-
ment and its implementations». In: 13th IFIP International Conference
on Information Security Theory and Practice (WISTP). Paris, France,
Dec. 2019, pp. 169–184. doi: 10.1007/978-3-030-41702-4_11. url:
https://hal.archives-ouvertes.fr/hal-02468596 (cit. on p. 19).

[6] Martin Thomson. Version-Independent Properties of QUIC. RFC 8999.
May 2021. doi: 10.17487/RFC8999. url: https://www.rfc-editor.
org/info/rfc8999 (cit. on p. 22).

[7] Mirja Kühlewind and Brian Trammell. Manageability of the QUIC
Transport Protocol. RFC 9312. Sept. 2022. doi: 10.17487/RFC9312.
url: https://www.rfc-editor.org/info/rfc9312 (cit. on pp. 24,
37, 60).

63

https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://doi.org/10.17487/RFC9114
https://www.rfc-editor.org/info/rfc9114
https://doi.org/10.1109/MedComNet52149.2021.9501274
https://doi.org/10.1109/MedComNet52149.2021.9501274
https://doi.org/10.1007/978-3-030-41702-4_11
https://hal.archives-ouvertes.fr/hal-02468596
https://doi.org/10.17487/RFC8999
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc8999
https://doi.org/10.17487/RFC9312
https://www.rfc-editor.org/info/rfc9312

BIBLIOGRAPHY

[8] Fabio Bulgarella, Mauro Cociglio, Giuseppe Fioccola, G. Marchetto, and
Riccardo Sisto. «Performance measurements of QUIC communications».
In: July 2019, pp. 8–14. isbn: 978-1-4503-6848-3. doi: 10.1145/33403
01.3341127 (cit. on p. 24).

[9] url: https://github.com/EricssonResearch/spindump (cit. on
pp. 25, 26).

[10] Google. Quiche. https://quiche.googlesource.com/quiche. Ac-
cessed March 12, 2023. 2021 (cit. on p. 33).

[11] Université catholique de Louvain. QUIC Tracker. https : / / quic -
tracker.info.ucl.ac.be/grid. Accessed March 11, 2023 (cit. on
p. 47).

64

https://doi.org/10.1145/3340301.3341127
https://doi.org/10.1145/3340301.3341127
https://github.com/EricssonResearch/spindump
https://quiche.googlesource.com/quiche
https://quic-tracker.info.ucl.ac.be/grid
https://quic-tracker.info.ucl.ac.be/grid

	List of Figures
	Introduction
	Objectives
	Thesis structure

	Background
	HTTP/3
	QUIC protocol
	Quic Header
	Spin Bit

	Network performance measurement tools
	Spindump
	TIMQuic

	Chromium open-source browser
	Motivation
	Tools
	Versioning: Depot Tools
	Chromium Code Search
	Building tools: ninja and gn
	Testing tools

	Network architecture
	Overview
	Google Quiche library

	Spin Bit algorithm and implementation
	Spin Bit algorithm
	Limitations

	Implementation

	Evaluation
	Test 1: quiche library
	quic client and quic server

	Test 2: quiche and other libraries
	quic client and picoquic server

	Test 3: Full Browser
	Chromium and litespeedtech.com

	Test 4: Chromium and OpenLiteSpeed
	Chromium and OLS - AWS

	Test 5: Measurements

	Conclusions
	Bibliography

