
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Policy as Code, how to
automate cloud compliance

verification with open-source
tools

Supervisor
Prof. Riccardo Sisto

Candidate
Mattia Caracciolo

Reply Liquid corporate tutors
Dr. Ivan Aimale
Dr. Francesco Borgogni
Dr. Luigi Casciaro

Accademic Year 2022-2023

Summary

Container infrastructures, along with the use of the cloud, represent a new
paradigm of application development and release that has become widespread
in recent years. Although, on the one hand, such infrastructures bring ben-
efits in scalability, management, and application compatibility, on the other
hand, they are not to be considered “secure-by-default.”

Security enforcement in these environments is a complex task if approached
with the “old” methodologies. Technologies are therefore evolving, and a new
approach was born: “Policy as Code.” This approach allows to abstract se-
curity policies into code that can then be executed to automate compliance
verification of cloud applications and infrastructure. Furthermore, it permits
the management of policies as normal source code, enabling the implementa-
tion of all proven software development best practices such as version control,
automated testing, and automated deployment.

This thesis work analyzes the state of the art of Policy as Code and in-
vestigates the different open-source solutions proposed in the market, their
effectiveness, and how they can be integrated into a continuous integration
continuous delivery pipeline. The work starts with an overview of cloud com-
pliance, why it is important, and what issues arise with its manual imple-
mentation. Subsequently, it investigates how the subject can be integrated
into the DevSecOps methodology by analyzing how and in which steps of
the development process it can be implemented in order to automate cloud
compliance.

Thereafter, there is an analysis of the implementation of a proof-of-concept
that has been developed specifically for this purpose. It is used to perform
a security assessment and test the effectiveness of the tools against proof-
of-concept behavior and default configuration. Specifically, tfsec and Regula
are the tools analyzed with regard to infrastructure as code security, Cloud
Custodian for cloud security posture management, and Gatekeeper for cloud
workload protection.

I

The thesis shows a description of their output and the results obtained by
testing compliance with policies against the proof-of-concept, as well as the
mitigation strategies that should be applied. The results show that tfsec
and Regula can be used inside a continuous integration continuous delivery
pipeline to prevent the deployment of resources that are not compliant with
the defined policies and also demonstrate that the default configuration of the
proof-of-concept infrastructure is quite insecure; for example, public cloud
storage containers are not encrypted by default. Also, it is shown how Cloud
Custodian and Gatekeeper are useful for security audits, as they allow for
the verification of the actual behavior of both the infrastructure and the
workload, notifying the presence of non-compliant resources. Finally, the
work analyzes the performance impact that infrastructure as code tools have
on pipeline execution and the resource consumption of cloud security posture
management and cloud workload protection tools.

II

Acknowledgements

I would like to thank my supervisor Professor Riccardo Sisto, for his valuable
advice and helpfulness. Thanks for providing me with key insights in the
writing of this thesis and for directing me in moments of indecision.

I would also like to thank my corporate tutors, Luigi Casciaro, Francesco
Borgogni, and Ivan Aimale for proposing the topic covered in this thesis and
giving me valuable guidance and suggestions. My acknowledgments also go
to all my colleagues for their essential support and also for the experience
they have allowed me to live within Reply Liquid, which has been a reason
for my personal and professional growth.

I cannot but thank my parents. Mom and Dad thank you for supporting
me and helping me through the most difficult times, mainly due to the dis-
tance that separated us in the past two years. Thank you for everything, I
love you all.

Finally, a huge thank you goes to all my friends for supporting and sus-
taining me over the years.

III

Contents

List of Tables VII

List of Figures VIII

Listings IX

1 Introduction 1
1.1 Objective . 2
1.2 Thesis structure . 2

2 Cloud Compliance 3
2.1 Cloud computing overview . 3
2.2 Cloud security overview . 5
2.3 Standards, guidelines, and regulations 6
2.4 Cloud compliance . 8
2.5 Shared Responsibility . 9

3 Theorical overview of Policy as Code 11
3.1 Definitions . 11

3.1.1 Policy . 11
3.1.2 Policy as code . 12
3.1.3 DevOps . 13
3.1.4 Pipeline CI/CD . 16
3.1.5 Infrastructure as Code 16
3.1.6 DevSecOps . 17

3.2 Infrastructure as Code Security 20
3.3 Cloud Security Posture Management 22
3.4 Cloud Workload Protection 23

IV

4 Implementation of Policy as Code 25
4.1 CI/CD pipeline: Jenkins . 25
4.2 Infrastructure As Code: Terraform 27

4.2.1 The Terraform language 28
4.2.2 Terraform State . 29

4.3 Policy as code: Open Policy Agent 30
4.3.1 The Rego query language 31

4.4 Infrastructure as Code Security: tfsec and Regula 32
4.4.1 tfsec . 32
4.4.2 Regula . 33

4.5 Cloud Security Posture Management:
Cloud Custodian . 33

4.6 Cloud Workload Protection: Gatekeeper 34
4.7 How to write custom policies 34

4.7.1 tfsec . 34
4.7.2 Regula . 35
4.7.3 Cloud custodian . 37
4.7.4 OPA Gatekeeper . 38

4.8 Strategy and methodology used to implement cloud compli-
ance automation . 40

5 Policy as Code: Case of study 41
5.1 Architectural overview of the target cloud infrastructure . . . 42
5.2 AWS Terraform resources . 44

5.2.1 Variables . 44
5.2.2 VPC Module . 45
5.2.3 EKS Module . 46
5.2.4 VPC endpoints module 48
5.2.5 RDS DB instance resource 49
5.2.6 Security groups . 50

5.3 Set up of the infrastructure in AWS 52
5.4 Policy code management . 53

5.4.1 IaCSec policies . 53
5.4.2 CSPM policies . 53
5.4.3 CWPP policies . 54

5.5 Compliance Automation and how it is implemented 54
5.5.1 Set up of the pipeline for IaC and IaCSec 55
5.5.2 Set up of the pipeline for CSPM 57

V

5.5.3 Set up of the pipeline for CWPP and the sample ap-
plication . 59

5.6 Custom policies . 62
5.6.1 IaCSec policy . 62
5.6.2 CSPM policies . 64
5.6.3 CWPP policy . 68

6 Wrap-Up model definition and Mitigation strategies 71
6.1 How information are gathered 71
6.2 How the wrap-up is structured 72
6.3 Wrap-up files structure . 73

6.3.1 Content of the file tfsec_audit.json 73
6.3.2 Content of the file regula_audit.json 74
6.3.3 Content of the file custodian_audit.json 76
6.3.4 Content of the file gatekeeper_audit.json 77

6.4 Mitigation strategies description 77
6.4.1 tfsec violations . 78
6.4.2 regula violations . 79
6.4.3 IaCSec mitigations . 80
6.4.4 Cloud Custodian violations 84
6.4.5 OPA Gatekeeper violations 84
6.4.6 CWPP mitigations . 85

7 Testing and results 87
7.1 Test environment . 87
7.2 IaCSec tools effectiveness evaluation 88
7.3 IaCSec tools overhead quantification 90
7.4 CSPM resource consumption 91
7.5 CWPP resource consumption 93

7.5.1 How the monitoring was performed 93
7.5.2 Results . 94

8 Conclusions and future works 97
8.1 Future works . 98

Bibliography 99

VI

List of Tables

2.1 Recommendation of security standard or regulation based on
security threat [3]. 7

6.1 Violations detected by tfsec. 78
6.2 Violations detected by Regula. 79
7.1 Result of the classification. 88
7.2 TPR and FPR values. 89

VII

List of Figures

2.1 Areas of responsibility between cloud provider and cloud con-
sumer [15]. 10

3.1 7Cs of DevOps [25]. 14
3.2 Typical CI/CD flow [27]. 16
3.3 Six benefits of the DevSecOps model [30]. 18
3.4 DevSecOps Adoption: Integrating Security into the CI/CD

Pipeline [30]. 20
4.1 Example of one CD scenario modeled in Jenkins Pipeline [39]. 26
4.2 How Terraform interacts with the Target API [40]. 27
4.3 The Terraform workflow [40]. 28
4.4 Interactions between services and OPA [46]. 30
5.1 The target infrastructure . 42
5.2 Stages of the pipeline for IaC and IaCSec. 55
5.3 Stages of the pipeline for CSPM. 57
5.4 Stages of the pipeline for CWPP. 59
5.5 CSPM Periodic/Event-Based policy operation. 65
6.1 Sample pipeline execution results. 72
6.2 Number of violations for each level of severity. 80
7.1 Graph representing the result of the evaluation. 89
7.2 Sample of the stage execution times shown by Jenkins. 90
7.3 Pipeline execution time histogram. 91
7.4 Lambda execution time histogram. 92
7.5 Lambda memory consumption histogram. 92
7.6 Cluster resource utilization graph. 94
7.7 Cluster network utilization and resource consumption of the

gatekeeper-system namespace. 95
7.8 Resource utilization of the gatekeeper-webhook-service. . . 96

VIII

Listings

4.1 Basic Terraform syntax. 29
4.2 Rego examples. 32
4.3 tfsec user-defined policy example. 34
4.4 Regula simple rule example. 35
4.5 Regula rule metadata example. 36
4.6 Regula rule metadata example. 36
4.7 Cloud Custodian policy example. 37
4.8 ConstraintTemplate example. 38
4.9 Constraint example. 39
5.1 The Terraform variables used inside the infrastructure config-

uration files. 45
5.2 The VPC module block. 46
5.3 The EKS module block. 47
5.4 VPC endpoints module. 48
5.5 RDS instance resource. 50
5.6 Security group resources. 50
5.7 Terraform backend. 52
5.8 IaCSec pipeline. 56
5.9 CSPM pipeline. 58
5.10 CWPP pipeline. 60
5.11 Hard-coded password detection policy. 62
5.12 Dry-run policy that verifies whether all Amazon RDS instances

are encrypted. 66
5.13 Periodic policy that verifies whether all Amazon RDS instances

are encrypted. 66
5.14 Run-time policy that stops all EC2 instances with an unen-

crypted EBS that switches from pending to running state. . . 67
5.15 Constraint template of the hard-coded environment variables

detection policy. 68

IX

5.16 Constraint of the hard-coded environment variables detection
policy. 69

6.1 An entry of the file: tfsec_audit.json. 73
6.2 An entry of the file: regula_audit.json. 74
6.3 The summary property the file: regula_audit.json. 75
6.4 An entry of the file: custodian_audit.json. 76
6.5 An entry of the file: gatekeeper_audit.json. 77
6.6 Adjustments made to the eks module. 81
6.7 Adjustments made to the vpc module. 81
6.8 Regula waived rules. 82
6.9 Adjustments performed to the aws_db_instance resource block. 83
6.10 Adjustments performed to the pipeline for IaC and IaCSec. . . 84
6.11 First definition of the sample application Pod. 85
6.12 Output of the kubectl apply command while passing to it

a Pod definition with sensitive environment variables hard-
coded in it. 85

6.13 Adjustments performed to the YAML file which contain the
Pod definition. 85

6.14 Adjustments performed to the CWPP pipeline. 86

X

Chapter 1

Introduction

Container infrastructures, along with the use of the cloud, represent a new
paradigm of application development and release that has become widespread
in recent years. Although, on the one hand, such infrastructures bring ben-
efits in scalability, management, and application compatibility, on the other
hand, they are not to be considered “secure-by-default.”

Compliance verification in these environments is a complex task if ap-
proached with the “old” methodologies. Policies controls can be enforced
manually or embedded into the code. However, these approaches can lead to
various disadvantages in policy development and enforcement. Manual en-
forcement is tedious, error-prone, and inefficient. On the other hand, policy
enforcement can occur automatically. However, in this case, the controls are
embedded into the code. As a result, policies turn out to be tightly bound
to the code itself, resulting in the inability to reuse the policy code in other
projects. Also, the rest of the code can be affected by changes and errors in
the policy code.

Technologies are therefore evolving, and a new approach was born: “Policy
as Code.” By following this methodology, security policies can be abstracted
into code that can then be executed by an external tool to automate compli-
ance verification of cloud applications and infrastructure without the prob-
lems noted above. Another advantage given by this approach is that policies
can be treated in the same way as normal source code hence enabling the
implementation of all proven software development best practices such as ver-
sion control, automated testing, and automated deployment. Since Policy as
Code encourages automation, this work also investigates how the approach
and tools can be integrated into the DevSecOps methodology.

1

1 – Introduction

1.1 Objective
The thesis explores the state of the art of Policy as Code as well as analyzes
the different open-source solutions proposed in the market. The objective of
this study is to show how cloud compliance can be automated by utilizing the
open-source solutions found during the first phase. This is done by analyzing
a proof-of-concept implemented by following the Policy as Code approach.
The study aims to demonstrate that the default configuration of the proof-of-
concept infrastructure is quite insecure as well as to analyze the performance
of the tools found in the first phase.

1.2 Thesis structure
The work is structured as follows:

• Chapter 2 contains some background about cloud computing and cloud
security and explains the concept of cloud compliance;

• Chapter 3 consists of a theoretical overview of the concepts akin to
Policy as Code and how Policy as Code can be integrated inside the
DevSecOps methodology;

• Chapter 4 shows an overview of the tools used for implementing the
proof-of-concept;

• Chapter 5 explains the structure of the proof-of-concept and describes
how the tools are operated within it;

• Chapter 6 illustrates the violations detected by the tools and the ac-
tions performed over the proof-of-concept for mitigating them;

• Chapter 7 describes the results of a performance evaluation conducted
on the tools utilized inside the proof-of-concept;

• Chapter 8 closes the thesis with the conclusions and possible future
works.

2

Chapter 2

Cloud Compliance

This chapter contains some background and explains the basics of cloud
computing and cloud security. Particular attention is given to the concepts
of compliance, guidelines, standards, regulations, and shared responsibility.

2.1 Cloud computing overview
The National Institute of Standards and Technology (NIST) defines cloud
computing as “a model for enabling convenient, on demand network access
to a shared pool of configurable computing resources (e.g., network, servers,
storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction” [1].

This computation paradigm has become increasingly popular during the
last few years, and it appears that this trend will continue in the years to
come. Indeed, according to Statista, the revenue in the Public Cloud market
is projected to reach USD 525.601 billion in 2023. It is expected to expand at
USD 881.80 billion by 2027, with a compound annual growth rate of 13.81%
from 2023 to 2027 [2].

Cloud computing has become very popular thanks to its great flexibility,
which is obtained by leveraging its essential characteristics and the different
service models offered to consumers.
According to NIST [1] there are five essential characteristics:

• On-demand self-service. Computing capabilities offered by service
providers can be provisioned automatically to consumers.

• Broad network access. Heterogeneous client platforms utilize stan-
dard mechanisms to access the capabilities available over the network.

3

2 – Cloud Compliance

• Resource pooling. The provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model. Both physical and
virtual resources are dynamically assigned and reassigned by following
consumer demand.

• Rapid elasticity. Capabilities can be elastically provisioned and re-
leased according to consumer demand.

• Measured service. Resource usage can be monitored, controlled, and
reported.

NIST [1] also lists three essential service models:

• Software-as-service. The consumer can use the provider’s applications
that are hosted on a cloud infrastructure.

• Platform-as-service. The consumer can deploy onto the cloud infras-
tructure applications supported by the provider. Also, it has control
over the deployed applications and possibly configuration settings for
the application-hosting environment.

• Infrastructure-as-service. The consumer has at his disposal: pro-
cessing, storage, networks, and other fundamental computing resources
provided by the cloud provider. The consumer can use them to deploy
and run arbitrary software. Also, it has control over operating systems,
storage, and deployed applications; and possibly limited control of select
networking components.

Note that in each service model, the consumer does not manage or control
the underlying cloud infrastructure. As the cloud provider is the entity in
charge of doing so. Finally, NIST [1] defines four deployment models:

• Private cloud. Only a single organization can use the cloud infras-
tructure. It may exist on or off premises and may be controlled by the
organization, a third party, or some combination of them.

• Community cloud. Only a community of consumers from organiza-
tions that have shared concerns can use the cloud infrastructure. It may
exist on or off premises and may be controlled by one or more of the
organizations in the community, a third party, or some combination of
them.

4

2.2 – Cloud security overview

• Public cloud. Anyone can use the cloud infrastructure. It may be
owned, managed, and operated by an organization. It exists on the
premises of the cloud provider.

• Hybrid cloud. The cloud infrastructure is composed of two or more
distinct cloud infrastructures. Despite each infrastructure remaining a
unique entity, they are linked by technologies that enable data and ap-
plication portability.

2.2 Cloud security overview
Just like traditional IT systems, Cloud Computing is not exempt from secu-
rity threats, vulnerabilities, and attacks. Additionally, some of the essential
characteristics, such as resource pooling and broad network access, can lead
to serious threats. For these reasons, despite its popularity, in the last years,
the concern/interest in cloud security has increased. A. Hendre and K. P.
Joshi [3], identified various cybersecurity threats which could affect a cloud
computing system:

• Data breaches. They are an incident in which data, which should
be protected, are accessed by an unauthorized individual. Hence, the
confidentiality of data, and eventually the organization, is compromised.

• Data loss. This threat could devastate an organization. Hardware
failure or malicious attacks on the system can both be the cause of this
threat.

• Account or service traffic hijacking. The confidentiality and in-
tegrity of the users are affected by this threat. Hackers can steal users’
personal data like bank credentials.

• Insecure interfaces and APIs. Interfaces and APIs are used by users
and providers to perform communications. Weak APIs and Interfaces
expose security vulnerabilities in the availability, confidentiality, and in-
tegrity of cloud environments.

• Denial of service. Valid users could not access their data or applica-
tions.

• Malicious Insiders. They are people within the organization who can
exploit their position to access and misuse the data.

5

2 – Cloud Compliance

• Abuse of cloud services. The multitenancy feature of the cloud can
be misused by attackers in order to hack into other organizational data.

• Insufficient due diligence. Cost savings represents one of the main
reasons why currently many organizations are adopting the cloud. How-
ever, they are not aware of the other threats.

• Shared Technology vulnerabilities. Resource sharing allows cloud
providers to deliver their services in a scalable way. However, attack-
ers access different resources by exploiting vulnerabilities present in the
technology which implements multi-tenancy.

The table 2.1 lists cybersecurity threats and the standard, or regulation,
which is best suited to address them. Despite some of them are well known
in the literature, there are some threats such as abuse of cloud services, insuf-
ficient due diligence, and shared technology vulnerabilities that are specific
to the cloud environment. They rely on some of its essential characteris-
tics. More precisely, the insufficient due diligence threat is caused, even if
indirectly, by the measured service. Instead, shared technology vulnerabili-
ties and abuse of cloud services are a direct consequence of resource pooling
characteristics.

2.3 Standards, guidelines, and regulations
During the last few years, due to the increasing relevance of cybersecurity
and privacy awareness, more and more regulations have been developed and
adopted around the world.

Adhering to standards, guidelines, and regulations can improve the “secu-
rity posture” of the organization. The NIST defines security posture [6] as
“the security status of an enterprise’s networks, information, and systems
based on information security resources (e.g., people, hardware, software,
policies) and capabilities in place to manage the defense of the enterprise
and to react as the situation changes.” Therefore, standards, guidelines, and
regulations can be used to produce policies that must be enforced in order
to be compliant with them.

Cybersecurity standards, and also guidelines, are designed to protect a
user or an organization’s cyber environment (or at least they try to do so).
More specifically, cybersecurity standards aim to minimize security risks that
may occur in the system, such as trying to prevent an attack or at least

6

2.3 – Standards, guidelines, and regulations

Type of threat Recommended Security Standard or
Regulation

Data breaches STIG, FedRAMP, DMTF-CADF,
ISO-27001, FIPS 140-2, PCI DSS, ISO
27002, HIPAA, SOX

Data loss STIG, FedRAMP, DMTF-CADF, FIPS
140-2, PCI DSS, ISO 27002, HIPAA,
SOX

Account or service
hijacking

STIG, FedRAMP, DMTF-OVF,
ISO-27002, FIPS 140-2, NIST 800-61,
ISO 17799

Insecure
interfaces/API

OASIS and OVF, DMTF-CADF, ISO
27002, FIPS 140-2

Denial of services PCI DSS, ISO 27001, HIPAA, SOX,
NIST 800-61, ISO 17799

Malicious insiders ISO 27002, FIPS 140-2, Vaultive,
FedRAMP

Abuse of cloud
services

NIST 800-61, ISO 17799, NIST 800-50

Insufficient due
diligence

EDRM, NIST 800-61

Shared technology
vulnerabilities

ISO 27001, FIPS 140-2, PCI DSS, ISO
27002, HIPAA, SOX, MPAA

Table 2.1. Recommendation of security standard or regulation
based on security threat [3].

mitigate it [7]. Instead, privacy standards have the purpose of integrating
privacy requirements into information processes, systems, and services in
order to protect the individuals’ “Personal Identifiable Information” (PII) [8].
In general, there are two ways [9] in which standards are regulated:

• Voluntary standards, their usage is optional, even though in some
cases a regulating agency may mandate their use;

• Mandatory standards, typically implement laws and regulations thus
their usage is compulsory.

7

2 – Cloud Compliance

Standards and guidelines are composed of a collection of rules and require-
ments for activities or their results. Note that despite their similarities, there
is a subtle difference: standards have a higher level of consensus and formality
if compared to guidelines. [9]

Furthermore, cybersecurity and privacy regulations are composed of di-
rectives issued by governments and implemented by laws. In some cases,
they may also be augmented by cybersecurity standards. Since they are im-
plemented by laws their enforcement is mandatory and organizations must
comply with them. Here are some examples of standards and regulations:

• NIST CSF

• NIST SP-800 series

• GDPR

• FISMA

• CIS Critical Security Controls

• PCI-DSS

• ISO/IEC 27000 family

• CSA Cloud Control Matrix

2.4 Cloud compliance
Nowadays compliance with regulations and standards has become one of the
most important aspects taken into account when designing an Information
Technology (IT) system. IT compliance can be defined as the accordance of
corporate IT systems with internal policies, processes, and regulatory stan-
dards as well as local, national, and international laws [4]. It has to not
be underestimated because being compliant with applicable regulations and
laws is compulsory for all companies.

Being non-compliant could lead to huge fines, e.g. infringements of the
General Data Protection Regulation (GDPR) provisions could lead to ad-
ministrative fines up to 20 million EUR or up to 4% of the total turnover of
the preceding financial year [5].

Cloud is not exempt from compliance. Cloud-based IT systems have also
to be compliant with regulations and laws to not fall into legal issues. Fur-
thermore, it is also highly desirable to be compliant with standards and

8

2.5 – Shared Responsibility

guidelines because they could make easier the development and maintenance
of the system.

Unfortunately, compliance checking is not an easy task and it could be-
come tedious if the checks are done manually. Hence, compliance automation
although not trivial is a highly desirable feature since it is less prone to er-
rors, and helps to speed up the checking phase. However, it is not possible
to perform all the controls automatically, so an analysis among them must
be performed with the aim of identifying which ones can be automated.

2.5 Shared Responsibility
Before the advent of cloud computing, organizations were the only entity
responsible for the security of their IT systems. Also, they were the only
subject in charge of ensuring an adequate level of security for the data, ap-
plications, network, and even physical building security. Things have changed
with cloud computing. According to NIST [12], there are two main actors in
a cloud-based IT system:

• Cloud Provider. It is the entity responsible for making a service avail-
able to interested parties;

• Cloud Consumer. It is a person or organization that maintains a
business relationship with and uses the service from a cloud provider.

In a cloud IT system both the cloud provider and cloud consumer have control
over the computing resources present in the system. Therefore, both entities
share security responsibilities. But how are they shared? Unfortunately,
there is no clear answer to this question. The problem is how to clearly
define who is responsible for what. There are various solutions, but they
depend on the provider itself and the offered service model [13].

The figure 2.1 underlines that cloud consumers’ responsibilities are about
the security “within” the cloud. Conversely, the cloud provider is responsible
for the security “of” the cloud. As an example, an organization (cloud con-
sumer) is responsible for protecting its data, but not for the physical security
of the data centers. The latter is the responsibility of the cloud provider.
Unfortunately, there are also some grey areas in which the division of re-
sponsibilities is not clear at all [15]. In this case they are shared among the
cloud consumer and the cloud provider and they are in charge of establishing
who is responsible for what.

9

2 – Cloud Compliance

Figure 2.1. Areas of responsibility between cloud provider and
cloud consumer [15].

As said before, the shared responsibility model explains that security re-
sponsibilities are shared between the cloud consumer and the cloud provider.
Therefore management, operation, and verification of IT controls can also be
divided among parties in a similar way. This leads to a not-inconsiderable
advantage for the cloud consumer because it can inherit, completely or par-
tially, IT controls already operated by the cloud provider [16]. In this way,
cloud consumers can focus only on their controls and try to implement them
as best as they can.

10

Chapter 3

Theorical overview of
Policy as Code

This chapter aims to give some background against some concepts behind
Policy as Code and DevSecOps and to show how Policy as Code can be
integrated into the DevSecOps methodology for implementing: Infrastructure
as Code Security, Cloud Security Posture Management, and Cloud Workload
Protection.

3.1 Definitions

3.1.1 Policy
The Cambridge Dictionary defines the word policy as “a set of ideas or a
plan of what to do in particular situations that have been agreed to officially
by a group of people, a business organization, a government, or a political
party” [18].

Policies are needed by organizations to ensure compliance with legal re-
quirements, work within technical constraints, and avoid mistakes. In the IT
scenario, the word policy acquires a specific meaning i.e. “a set of rules that
governs the behavior of a software service”. These rules describe an ideal
behavior that should be followed by the target of the policy [19]. Examples
of IT policies could be: the system’s databases must be encrypted, contain-
ers’ images must come from trusted repositories, and each component of the
system must send its log data to a defined number of different secure logs.

Traditionally, IT policies are manually enforced and composed of rules that

11

3 – Theorical overview of Policy as Code

are written in a document [17]. Unfortunately, this approach is tedious, error-
prone, inefficient, and does not scale well. Imagine a developer who is ready to
deploy his code, he must check compliance with policies before doing so. Since
they are manually enforced, he should await feedback from the policy team,
which is in charge of checking whether the code is compliant or not. This
procedure results in a slowdown of the whole development process because
the developer can not check autonomously and automatically compliance
with policies. Furthermore, since compliance is checked manually, there is a
likelihood that the decision made by the policy team could be wrong. That
is because humans are prone to make mistakes such as misunderstanding
policies or misimplementing them.

Another approach is to embed IT policy implementation directly into the
software service’s code. Although in this way the enforcement is automatic,
there are some drawbacks to following this approach. As an example, hard-
coded policies cannot be reused among different applications and they cannot
be shared between different teams. Finally, since policies and code are tightly
coupled, business functions could be affected by policy changes or errors, and
in some cases, they can also lead to an entire crash of the application [19].

3.1.2 Policy as code
As discussed before, the traditional policy enforcement methods present var-
ious problems which are incompatible with today’s business needs. As speci-
fied by Y. Matharu, T. Coulter [20]: “Policy as code is an approach to policy
management in which policies are defined, updated, shared, and enforced us-
ing code.” In this case, policies rather than being embedded into code, are
treated as separate entities. In this way, their code is decoupled from the ser-
vice’s business logic. In addition, since policies are treated as source code, it
is possible to implement proven software development best practices like ver-
sion control, automated testing, and automated deployment. This approach
leads to various benefits [21]:

• Sandboxing. Policies provide the guardrails for other automated sys-
tems. As the number of automated systems increases, so does the need
to protect these systems from performing dangerous actions.

• Codification. By representing policy logic as code, the information and
logic about a policy are directly represented in code. This representa-
tion can be further augmented with comments which can be used by
developers to explain the reason for policies.

12

3.1 – Definitions

• Version Control. Since policies are treated in the same way as code,
they can be stored in simple text files managed by a version control
system (VCS). For that reason, all the advantages of a modern VCS
such as history, diffs, pull requests, and more are therefore inherited.

• Testing. Policies’ syntax and behavior can be easily validated because
they are just code. This characteristic promotes automated testing.

• Automation. Since policies are written in machine-readable code, it is
possible to use various automation tools. As an example, policies can
be automatically deployed into a system by using specific tools created
for this purpose.

These advantages over the traditional approach are the key to better manage-
ment and enforcement of policies. Moreover, they also lead to a significant
acceleration of the development phase since policy compliance checks can be
done automatically by tools. Finally, Policy as Code greatly helps an orga-
nization to implement compliance automation, as this methodology makes it
possible for policies to be enforced automatically.

3.1.3 DevOps
Traditional (waterfall) and modern (agile) software development methods
both focus on software development teams, which are in charge of developing
and testing software. Conversely, the IT operations teams are in charge
of deploying, maintaining, and supporting the software developed by the
development team. Therefore, by following these methods, development,
and operation are treated as separate and independent concepts. As a result,
organizational issues such as a blame culture between both parties, issues in
communication, and also delays in producing software updates are arises due
to this choice. This problem could cause a decrease in software quality and
process productivity [24]. Hence, to avoid those drawbacks, the industry
has started to integrate both software development and IT operations by
following a new development methodology called DevOps [22].

The term “DevOps”, is born from the combination of the terms develop-
ment and operations. As usual for a novel concept, there isn’t yet a consensus
on what it includes. Consequently, the term is subject to misunderstandings.

R. Jabbari, N. Ali, K. Petersen, and B. Tanveer [23] characterized DevOps
by studying its definitions reported in the literature. As a result, they defined
DevOps as “a development methodology aimed at bridging the gap between

13

3 – Theorical overview of Policy as Code

Development (Dev) and Operations (Ops), emphasizing communication and
collaboration, continuous integration, quality assurance, and delivery with au-
tomated deployment utilizing a set of development practices.” This definition
underlines how important is the collaboration between the Development and
Operation teams. In order to figure out how to implement this methodol-
ogy into the software production process, it is important to understand the
DevOps life cycle. According to H. Dhaduk [25], the DevOps life cycle is a
continuous loop divided into seven phases:

Figure 3.1. 7Cs of DevOps [25].

• Continuous development. This phase is primarily focused on the
project’s planning and coding. It is a continuous process because any
requirement change or performance issue is embraced by developers and
turned into code.

• Continuous integration. During this phase, every code update is inte-
grated into existing code. The latter is tested at each commit with tests
planned during this phase. This process makes integration a continuous
approach that allows bugs to be detected or identified and source code
to be modified accordingly.

• Continuous testing. In this phase, the software is continuously tested
for bugs and errors. If a bug or an error is found, the code is sent back
to the integration phase for modifications.

14

3.1 – Definitions

• Continuous deployment. This is the most active phase in the DevOps
lifecycle. In continuous deployment, developers deploy the final code on
production servers, schedule their updates, and keep the configurations
consistent throughout the entire production process. Moreover, devel-
opment, testing, production, and staging environments are made consis-
tent by using containerization tools. This practice made the continuous
delivery of new features in production possible

• Continuous feedback. During this phase, customer behavior is eval-
uated regularly on each release with the aim to improve future releases
and deployments. Customers’ feedback can be either collected through
surveys and questionnaires or through social media platforms. Once
feedback is collected, it is used to improve the product.

• Continuous monitoring. At this stage, the application’s behavior
is monitored continuously. This process helps the IT team to identify
app performance issues, system errors, and the root cause behind them.
If any critical issue is found, the application goes through the entire
DevOps cycle again to find the solution.

• Continuous operations. This phase automates the process of launch-
ing the app and its updates by using container management systems.
This approach helps to minimize application downtime, allowing compa-
nies to reduce costs due to it. It also leads to another benefit, developers
save time that can be used to accelerate the application’s time-to-market.

Adopting this lifecycle during software development has some significant ad-
vantages. Adopting DevOps makes continuous delivery possible, so the com-
pany can respond quickly to market needs and fix critical bugs and vulner-
abilities in a timely manner. In addition, continuous testing and continuous
integration assure a better quality of the final product as code is continu-
ously tested. However, there are some drawbacks. Adopting DevOps requires
an integration of various tools and technology in the software development
process. That could increase the organization’s IT system complexity and in-
crement production costs. Finally, DevOps is a novel methodology thus there
is a lack of standardization, experienced developers, and engineers. These
issues can lead to problems with the quality of the software produced with
this methodology [26].

15

3 – Theorical overview of Policy as Code

3.1.4 Pipeline CI/CD
A Continuous Integration/Continuous Deployment (CI/CD) pipeline con-
sists of a series of steps that must be performed in order to deliver a new
version of the software. It takes advantage of automation throughout the
development, testing, production, and monitoring phases of the software de-
velopment life-cycle aiming to develop higher quality code, faster, minimize
human error, and maintain a consistent process for how software is released.
The pipeline could include tools that perform: compiling code, unit tests,
code analysis, security controls, and binaries creation. CI/CD can be con-
sidered the backbone of a DevOps methodology because it brings developers
and IT operations teams together to deploy software [27].

Figure 3.2. Typical CI/CD flow [27].

3.1.5 Infrastructure as Code
Historically, system administrators had the burden of configuring the hard-
ware and software used by applications to run. Nonetheless, manual man-
agement inevitably leads to human errors and higher costs. Just like other
manual processes, this one is considerably slower with respect to the auto-
mated version, and on top of that, this process does not scale well. Nowa-
days with Cloud Computing the number of infrastructure components has
increased considerably. Therefore, it is nearly impossible to manage them
with the traditional approach. Based on these considerations, a new method
was needed to better control the IT infrastructure.

Infrastructure as Code (IaC) is one of the possible solutions to the previous
problems. Red Hat [28] defines Infrastructure as Code as “the managing
and provisioning of infrastructure through code instead of through manual
processes.”

With IaC infrastructure specifications are written into configuration files.
This approach ensures that the provisioned infrastructure is always the same

16

3.1 – Definitions

unless changes are made to the configuration files. This is not the only
benefit acquired. IaC, also makes easier the editing and distribution of the
configurations as well as allows the division of the infrastructure into modular
components. Furthermore, since the infrastructure is treated as code, it
allows the use of software development methods and best practices such as
version control, automated testing, and automated deployment can be used
to develop the infrastructure. This is a significant advantage given by the
fact that IaC allows infrastructure configuration files to be treated as if they
were source code [28].

On top of that, Iac fits well with DevOps methodology, due to the automa-
tion introduced by using this approach and the possibility of integrating it
into CI/CD pipelines. Moreover, it also helps to align development and op-
erations, because the same description of the application deployment can be
used by both teams. Since IaC generates the same environment each time
it is used, it allows the same deployment process to be used for develop-
ment, test, stage, and production environments [28]. There are two ways to
approach IaC:

• Declarative. This approach is based on defining the desired state of
the system, including what resources are needed and any properties they
should have. Once defined, an IaC tool takes over the task of configuring
the system. It also helps to make it easier to take down infrastructure,
because it maintains a list of the current state of system objects.

• Imperative. With this approach, the specific commands needed to
achieve the desired configuration are defined, and to do that they have
to be executed in the correct order.

Although IaC tools are often able to operate in both approaches, they tend to
prefer one approach over the other. Imperative tools will require developers
to figure out how changes should be applied to the state of the infrastructure.
Therefore, many IaC tools use instead a declarative approach. In this way,
developers should define only what changes should be made to the desired
state, and the declarative IaC tool will apply those changes [28].

3.1.6 DevSecOps
IT security plays a crucial role in the full life cycle of software. In the past, its
role was isolated to the final stages of development and operated by a specific
team. To take full advantage of the agility and responsiveness of the DevOps

17

3 – Theorical overview of Policy as Code

approach, security must be considered throughout the whole development
process. That is because, in contrast with the past, DevOps ensures rapid and
frequent development cycles and even the most efficient DevOps initiatives
can be nullified by outdated security. The term “DevSecOps” was created
to highlight the importance of application and infrastructure security during
the whole application life-cycle [29].

DevSecOps promotes collaboration between development, security, and
operation teams. In this way, application and infrastructure security can
be applied from the start and also integrated into the whole software devel-
opment life-cycle. Automation is a distinctive feature of DevOps, it allows
to implementation of rapid and frequent development cycles. DevSecOps is
no different, it also encourages automation, especially for security controls,
intending to not slow down the development process. Moreover, security
automation is welcome to protect the Continuous Integration/Continuous
Delivery (CI/CD) process as well as the overall environment and data [29].

The pipeline is an excellent basis from which a series of automated security
tests and validation can be performed, in order to integrate security objectives
early on in the development of an application.

Figure 3.3. Six benefits of the DevSecOps model [30].

18

3.1 – Definitions

According to Snyk, the DevSecOps model has six main benefits [30]:

• Faster delivery. DevSecOps allows to identify and fix bugs before
deployment by integrating security controls into the CI/CD pipeline.

• Improved security posture. Security is integrated into the early
phases of the development process, this feature together with the shared
responsibility model help to tightly integrate security, from building to
deployment to the protection of production workloads.

• Reduced costs. Risk and operational costs are significantly reduced
By identifying vulnerabilities and bugs before the deployment phase.

• Enhancing the value of DevOps. Integration of security practices
into DevOps results in an improvement of overall security posture as
well as the creation of a culture of shared responsibility.

• Improving security integration and pace. There is no more need to
retrofit security controls in post-development, as was done in the past.
This results in a reduction of cost and time of secure software delivery.

• Enabling greater overall business success. Increased revenue and
expanded business offerings are the results of embracing new technologies
and higher confidence in the security of developed software.

Static analysis, linters, and policy engines can be run any time a developer
checks the code, software composition analysis be performed to verify that
any open-source dependencies have compatible licenses and are free of vul-
nerabilities. Then, the code runs in an isolated container sandbox. It allows
for automated testing of things such as network calls, input validation, and
authorization. If something goes wrong, the tests fail, and the pipeline gen-
erates a report and notifies the teams concerned.

Once the first battery of tests is passed, the artifact is deployed to a wider
sandbox, a limited copy of the eventual production environment. This is done
with the purpose of verifying the application’s behavior, by testing correct
logging and access controls. Finally, the application is deployed into the
production environment. To ensure that it is always running the most secure
versions of software dependencies, automated patching, and configuration
management is used.

Utilizing a DevSecOps CI/CD pipeline helps integrate security objectives
at each phase without impacting the rapid delivery of business value to be
maintained.

19

3 – Theorical overview of Policy as Code

Figure 3.4. DevSecOps Adoption: Integrating Security into the
CI/CD Pipeline [30].

3.2 Infrastructure as Code Security
As said before, DevOps and IaC have been adopted by more and more organi-
zations due to the advantages offered by them. Also, DevSecOps has gained
popularity since the growing concerns over information security and data
privacy. Now the question is: how to ensure that security best practices and
compliance requirements are built into the IaC template files? Ignoring this
aspect could lead to severe consequences such as: exposure of sensitive data
to unauthorized users, data leakage, unauthorized access to business-critical
assets and resources, and increased attack surface [31].

Furthermore, Palo Alto Networks Unit 42 report states that: “199,000
potential vulnerabilities have been discovered in IaC templates. Also, more
than 43% of cloud databases are currently unencrypted, and only 60% of
cloud storage services have logging enabled which in itself is a serious con-
cern” [32].

Snyk defines Infrastructure as Code Security (IaCSec) as “the practice of
securing cloud, infrastructure, and app configurations by scanning IaC files
and the cloud deployment for compliance against a codified ruleset” [33]. IaC-
Sec aligns DevOps, Security, and Compliance for Infrastructure Management

20

3.2 – Infrastructure as Code Security

processes. Treating infrastructure as code makes it possible to test for secu-
rity and compliance of the IaC templates before they are deployed.

Applying IaCSec helps to reduce the drift of the security posture, and also
can prevent security risks, non-compliance, policy violations, and misconfig-
urations before infrastructure deployment. Some aspects must be taken into
account while implementing Infrastructure as Code security in an organiza-
tion [31]:

• IaC Templates. Errors during the development of IaC templates could
threaten the entire environment. Developers may use components with
known vulnerabilities, insecure default configurations, and operating sys-
tems or container images from unknown sources.

• Secrets. In most cases, secrets are not managed properly. It has been
observed that secrets such as authentication keys, passwords, access
keys, SSH secrets, and access tokens are often hard-coded, left in plain
text, or base63 encoded.

• The Communication Channels. Infrastructure as Code configura-
tion management tools mostly rely on a master-node architecture. Since
it contains all specifications and configuration files, if the master node
and its communications with other nodes are not protected enough, the
security risks are considerable.

• User Access Management. Credential sharing should be avoided.
Also, the principle of least privilege and Role Based Access Controls
(RBAC) must be implemented correctly otherwise security access man-
agement issues may arise.

• Drifts in Configuration. Configurations can be changed directly in
the production environment, this practice is risky and leads to a config-
uration drift from the defined security posture.

• Ghost Resources. All resources must be correctly tagged. Otherwise,
once created, they can not be properly monitored and tracked.

• Risks related to Data Transmissions. An improperly protected
communication channel can significantly rise security risks. Securing
data in the transmission is just as important as securing data at rest.

• Audit Logs. Infrastructural components which perform logging and
monitoring must be included in the IaC templates. They are essential
for monitoring as well as auditing the environment.

21

3 – Theorical overview of Policy as Code

These aspects must be also considered during the design and development
of security policies. The latter can be managed and enforced by following a
Policy as Code approach, making it possible to take advantage of the benefits
offered by this methodology. Finally, the Policy as Code tools for IaCSec can
be integrated into the CI/CD pipelines used for infrastructure deployment.
In this way, the IaC template files can be analyzed by them before the de-
ployment. This allows the organization to maintain security and compliance
over time by avoiding the deployment of non-compliant infrastructures in
case of compliance issues reported by the tools [31].

3.3 Cloud Security Posture Management
When an organization moves to the cloud, it is often unaware of the shared
responsibility model and thinks that the cloud provider is completely re-
sponsible for cloud security. However, all cloud breaches that we are aware
of have been caused by cloud configuration errors that can be traced back
to cloud customers and not cloud providers [34]. Therefore, they need a
solution to detect and possibly avoid these issues automatically. A possible
solution to the previous issues is applying Cloud Security Posture Manage-
ment (CSPM) which, according to Snyk, consists of the automatic detection
and mitigation of security and compliance risks across cloud infrastructure.
Cloud consumers can use this solution in multiple use cases such as [34]:

• Threat detection. CSPM enables proactive threat detection, and cen-
tralized visibility of misconfigurations and suspicious activities so that
organizations can assess and minimize risk exposure.

• Incident response. CSPM allows cloud consumers to detect indicators
of compromise and mitigate any related threat.

• Compliance. CSPM can provide continuous compliance monitoring
and reporting for regulations. In this way, organizations can avoid com-
pliance violations and enforce internal security policies.

• Securing infrastructure. CSPM promotes the use of IaCSec to help
organizations detect misconfigurations in infrastructure configuration
files. CSPM also makes it possible to verify the infrastructure configu-
ration when it is in operation.

Since CSPM promotes automation, a PaC approach can be followed to imple-
ment CSPM controls for a target cloud infrastructure, thereby automatically

22

3.4 – Cloud Workload Protection

inheriting all the benefits of PaC. PaC CSPM tools can be operated inside in-
frastructure deployment CI/CD pipelines for deploying those checks together
with the infrastructure itself.

3.4 Cloud Workload Protection
The migration from legacy to cloud-native applications is not a trivial task.
Cloud-native applications need additional processes and resources that sup-
port the applications and their interactions. The set of these extra com-
ponents is called “workload” and allows cloud-native applications to behave
properly. They should behave correctly as well to decrease any security risk
introduced through their use. The process of keeping workloads that move
across different cloud environments secure is known as Cloud Workload Pro-
tection (CWP) [35].

Cloud Workload Protection Platform (CWPP) solutions can discover work-
loads and perform a vulnerability assessment. In this way, they can identify
any potentially exploitable security issues with the workload based on defined
security policies and known vulnerabilities [36]. Organizations have various
advantages by using them to secure their applications:

• Agility. CWPPs can be integrated into CI/CD pipelines to automati-
cally secure applications developed using workloads.

• Security. CWPP solutions can be used by an organization to imple-
ment customized security controls for cloud workloads, protecting them
accordingly from common security threats.

• Compliance. CWPPs, by implementing security controls to meet com-
pliance requirements, can automatically scan for vulnerabilities and com-
pliance violations.

A PaC approach can be followed to implement policies and controls in a way
that makes it possible to automate security and compliance controls, as well
as inherit all the other benefits this approach offers.

23

24

Chapter 4

Implementation of Policy
as Code

The following chapter contains an overview of the several tools used for im-
plementing a proof-of-concept of a system that implements Policy as Code
to automate cloud compliance.

4.1 CI/CD pipeline: Jenkins
Jenkins is a self-contained, open-source automation server that can be used
as a simple CI server or turned into a continuous delivery hub. This tool is
written in Java and can be installed through native system packages, Docker,
or simply run on any machine with a Java Runtime Environment (JRE)
installed.

All sorts of tasks related to building, testing, and delivering or deploying
software can be automated with Jenkins [37]. Finally, it is extensible via
plugins and can be easily configured through its web interface. These char-
acteristics make it an excellent candidate for implementing CI/CD pipelines.
In fact, it is the favorite tool among DevOps developers holding 47.45% of
the continuous integration software market [38].

Implementation and integration of continuous delivery pipelines into Jenk-
ins are supported by a suite of plugins with the name Jenkins Pipeline. The
definition of the pipeline is written via the groovy-based Pipeline domain-
specific language (DSL) [39].

Jenkins Pipeline’s code is used to define the build process, which typically
includes stages for building, testing, and delivering an application. Pipelines

25

4 – Implementation of Policy as Code

Figure 4.1. Example of one CD scenario modeled in Jenkins Pipeline [39].

can be defined via the web UI or inside a file called Jenkinsfile. Both ways use
the same syntax, but the definition through the Jenkins file is the preferred
one. That is because it can be put inside the repository which contains the
source code and take advantage of these benefits:

• Automatic creation of a Pipeline build process for all branches and pull
requests.

• Code review/iteration on the Pipeline (along with the remaining source
code).

• Audit trail for the Pipeline.

• There is a single source of truth for the Pipeline, which can be viewed
and edited by multiple members of the project.

Pipelines are writable with two different types of syntax: Declarative and
Scripted (imperative).

• Declarative Pipeline syntax. All the work done throughout the entire
pipeline is defined by the pipeline block. And the code contained inside
that block defines the entire build process.

• Scripted Pipeline syntax. The core work throughout the entire
pipeline is done by one or more node blocks.

26

4.2 – Infrastructure As Code: Terraform

Note that besides declarative and scripted pipelines are constructed differ-
ently, they have in common many of the individual syntactical components
written into a Jenkinsfile. A possible example is the stage block, which is
used for describing a stage of the pipeline. Each stage consists of a subset of
steps performed by Jenkins through the entire Pipeline [39].

4.2 Infrastructure As Code: Terraform
HashiCorp Terraform is an Infrastructure as Code tool used for defining cloud
and on-premise resources in human-readable configuration files. By using this
tool, enterprises can take advantage of the various benefits inherited from an
Infrastructure as Code approach.

Figure 4.2. How Terraform interacts with the Target API [40].

Terraform creates and manages resources for cloud platforms and services
through Providers. They can be defined as components that enable Ter-
raform to work with virtually any platform or service with an accessible appli-
cation programming interface. A lot of providers for various cloud providers
such as Amazon Web Services [41], Microsoft Azure [42], and Google Cloud
[43]. They have been written and made publicly available in the Terraform
Registry [40].
As depicted by the figure 4.3 the core Terraform workflow consists of three
stages:

• Write. Resources, which are part of the infrastructure, are described
inside configuration files by using the Terraform language(HCL).

27

4 – Implementation of Policy as Code

• Plan. The configuration files are provided to Terraform and used to-
gether with the existing infrastructure for creating a plan which describes
the infrastructure that Terraform will create, update, or destroy.

• Apply. Once the plan is approved, Terraform performs the proposed
operations in the correct order, respecting any resource dependencies.

Figure 4.3. The Terraform workflow [40].

4.2.1 The Terraform language
The Terraform language is primarily used for declaring resources, which rep-
resent infrastructure objects, within configuration files. These files can be
collected and organized in directories. This collection is called Terraform
configuration and is used by Terraform for managing a given collection of
infrastructure.

28

4.2 – Infrastructure As Code: Terraform

The syntax of the Terraform language consists of only a few basic elements
as shown by the listing 4.1:

1 resource " aws_vpc " "main" {
2 cidr_block = var. base_cidr_block
3 }
4 <BLOCK_TYPE > "< BLOCK_LABEL >" "< BLOCK_LABEL >" {
5 <IDENTIFIER > = <EXPRESSION > # Argument
6 }

Listing 4.1. Basic Terraform syntax.

Blocks. They are usually used for representing the configuration of some
kind of object. Blocks have a block type, can have zero or more labels,
and have a body that contains any number of arguments and nested
blocks.

Arguments. They are used for assigning a value to a particular name
within blocks.

Expressions. They appear as values for arguments, or within other ex-
pressions. The value represented can be either literal or a combination
of other values.

The Terraform language is declarative, and it requires only the description of
the expected result. Then, the way the files are organized and the ordering
of the blocks are not significant in general. As a result, while determining an
order of operations, only implicit and explicit relationships between resources
are considered by Terraform [44].

4.2.2 Terraform State

Terraform stores the state of the managed infrastructure and configuration.
It is used in order to keep track of the mapping between objects in a remote
system and resource instances declared in the configuration. This state can
be stored either in a local file named “terraform.tfstate” or remotely.

Terraform state is essential for creating plans and making changes to the
infrastructure. Therefore, Terraform performs a refresh to update the state
with the actual infrastructure before performing any operation [45].

29

4 – Implementation of Policy as Code

4.3 Policy as code: Open Policy Agent
The Open Policy Agent (OPA) is an open-source, general-purpose policy
engine that can be used to enforce policies in microservices, Kubernetes,
CI/CD pipelines, API gateways, and more [46].

OPA Policies are expressed via a declarative query language designed for
defining queries over complex hierarchical data structures. This language
was inspired by Datalog, a quite old query language, and it is called Rego.
Since Rego queries are assertions on data stored in OPA, they can be used for
enumerating instances of data that violate the expected state of the system.
This feature explains why the engine uses Rego queries for making policy
decisions [47].

When a software service needs to make this operation, it supplies struc-
tured data (e.g. JSON) as input and queries the engine. Then, policies and
data are evaluated against the query input supplied by the service, and as a
result, OPA generates a policy decision (the result of the query). Note that
because those decisions are the result of a query, then they are not limited
to simple “yes/no” or “allow/deny” answers [47].

Figure 4.4. Interactions between services and OPA [46].

30

4.3 – Policy as code: Open Policy Agent

Since policies are written in machine-readable code, OPA is a very useful
tool that can be used as a base for implementing a policy as code approach
for an IT system. If OPA-like tools did not exist, an organization would
have to implement policy management for its software from scratch. Finally,
it is a quite flexible tool because both the engine and the policy language
are domain-agnostic [46]. OPA-based tools took advantage of this feature
by integrating the engine into them, although they have done so in different
ways and for different purposes.

Unfortunately, there is no official policy pack, but often OPA-based tools
offer their own packs which are often based on standards and best practices.
In this way, they partially relieve organizations of the burden of developing
policies from scratch.

4.3.1 The Rego query language
As said before, Rego [47] is a declarative query language used for writing
OPA policies. Therefore, policy authors do not have to define how queries
are executed, thus being able to focus only on what they should return.

OPA policies are expressed through Rego rules. These rules define the
content of a document that is generated by OPA when it evaluates them.
This document is the result of the query and represents the result of the
policy evaluation. Rules can be defined in terms of both scalar and composite
values.

Scalar values can be strings, numbers, booleans, or null. Documents can
take advantage of this value type to define composite or constant values
within queries. Composite values define collections. There are two main
types of composite values in Rego: Objects and Sets. Objects are collections
composed of unordered key-value pairs while Sets are collections that contain
unordered unique values. Two scalar or composite values can be compared
using operators such as “==” and “!=”. The comparison is executed over
the JSON representation of the value. Obviously, numeric values can be
compared employing the other comparison operators such as “>”, “>=”,
“<”, and “<=”.

Finally, documents can be embedded in other documents. Rego offers
a way to access these nested documents through a mechanism called “ref-
erence”. References are typically expressed via the “dot-access” style (e.g.
sites[0].servers[1].hostname), but is also possible to use the “square-
bracket” style (e.g. sites[0]["servers"][1]["hostname"]). Note that ref-
erences can include variables as keys. By doing so, they can be used to select a

31

4 – Implementation of Policy as Code

value from every element in a collection (e.g. sites[i].servers[j].hostname).
The listing 4.2 some examples of rules that can be written in Rego using
both scalar and composite values and some comparisons.

1 #rule defined in terms of scalar values
2 e := 2.71828
3

4 #rule defined in terms of composite values
5 rect := {" width ": e, " height ": 4}
6

7 # comparison between two objects
8 rect == {" width ": 2.71828 , " height ": 4}
9

10 # comparison between two scalars
11 rect.width == e

Listing 4.2. Rego examples.

4.4 Infrastructure as Code Security: tfsec and
Regula

Regarding Infrastructure as Code Security, two tools were chosen because
they are not based on the same policy repository. Therefore, one tool may
detect misconfiguration not detected by the other and vice versa.

4.4.1 tfsec
The first Infrastructure as Code Security tool analyzed is tfsec. It is an
OPA-based open-source static analysis security scanner for Terraform code
developed by Aqua Security [48]. This tool is built in Go and since it is
OPA-based, it uses Rego as the language for defining policies. Finally, it
also includes a library of predefined policies that contains rules for resources
provided by major cloud providers.

The tool is operated via a command-line interface (CLI) and is designed to
run locally or within a CI pipeline. Regardless of where it runs, is intended
to analyze Terraform code and find misconfigurations within it before its
deployment.

The input infrastructure configuration file can be checked for compliance
with the policies written in its library [49] and, eventually, with those that
are user-defined. In case security issues or misconfigurations are found, the
tool generates an output containing various information about all the checks
which have failed [48].

32

4.5 – Cloud Security Posture Management: Cloud Custodian

4.4.2 Regula
The second Infrastructure as Code Security tool analyzed is Regula. This
open-source tool developed by Fugue evaluates Infrastructure as Code files
for potential AWS, Azure, Google Cloud, and Kubernetes security and com-
pliance violations before deployment.
Regula, differently from tfsec, supports the following file types:

• CloudFormation JSON/YAML templates;

• Terraform source code;

• Terraform JSON plans;

• Kubernetes YAML manifests;

• Azure Resource Manager (ARM) JSON templates.

Regula is written in Go and can work locally as well as inside CI/CD pipeline.
Similarly to tfsec, Regula default checks come from its library. Although
there is this similarity, Regula’s library is based on the relevant parts of the
CIS AWS, Azure, Google Cloud, and Kubernetes Foundations Benchmarks.

The tool reads Infrastructure as Code files passed as input via its command-
line interface and it uses OPA to evaluate them against Regula’s library of
rules and custom ones, generating a report as output [50].

4.5 Cloud Security Posture Management:
Cloud Custodian

Cloud Custodian is an open-source tool written in Python that organizations
can use for managing their public cloud accounts for ensuring compliance
with security policies, tag policies, garbage collection of unused resources, and
cost management for their cloud environments. Policies are written by using a
YAML-based DSL. In this way, they can be validated, dry-run, and reviewed.
Cloud Custodian is compatible with the major cloud providers and uses a
stateless rules engine for policy definition and enforcement. Furthermore, it
is tightly integrated with serverless runtimes, and therefore it can be bound
to serverless event streams across multiple cloud providers. Last but not
least, relevant information such as metrics, structured outputs, and detailed
reporting for cloud infrastructure, are also generated by the tool [52]. They
can be stored locally as well as in public cloud storage containers.

33

4 – Implementation of Policy as Code

4.6 Cloud Workload Protection: Gatekeeper
Gatekeeper is an open-source project that provides integration between OPA
and Kubernetes. Through the use of admission controller webhooks, which
are HTTP callbacks triggered anytime a resource is created, changed, or
destroyed. Kubernetes enables the decoupling of policy decisions from the
inner workings of the API Server. Mutating webhooks are called by the
mutating admission controller and can patch objects contained inside the
admission request, on the contrary validating webhooks, are called by the
validating admission controller and can only reject admission requests. More
precisely, Gatekeeper is a validating and mutating webhook that enforces
Custom Resource Definition based policies (CRD-based policies) executed
by the OPA policy engine.

Finally, Gatekeeper also provides audit functionality, which allows admin-
istrators to see what resources are currently violating any given policy, and
allows them to detect and reject the deployment of non-compliant Kuber-
netes resources [51].

4.7 How to write custom policies
4.7.1 tfsec
As said previously, tfsec is able to apply user-defined Rego policies. To en-
force them, the --rego-policy-dir flag must be utilized for specifying the
directory containing the custom controls. By doing so, policies are loaded
recursively starting from the specified directory, and the input infrastruc-
ture configuration will be checked against them as well. Note that, if the
--rego-policy-dir flag is not specified then no local directories will be
scanned.

This is a very helpful feature for all organizations that need to implement
custom security policies along with those specified by the library.

1 package custom .aws.s3. no_insecure_buckets
2 import data.lib. result
3

4 deny[res] {
5 bucket := input.aws.s3. buckets [_]
6 bucket .name.value == "insecure - bucket "
7 msg := " Bucket name should not be ’insecure -bucket ’"
8 res := result .new(msg , bucket .name)
9 }

Listing 4.3. tfsec user-defined policy example.

34

4.7 – How to write custom policies

This code represents a policy whereby an s3 bucket can not be named as
“insecure-bucket”. As shown in the example, the package name can take any
value, but it must always begin with the “custom” namespace, and the rule
name must either be “deny” or start with “deny_”. Also, the input variable
contains cloud resources organized by providers (e.g AWS) and services (e.g.
s3).

Note, the policy instead of checking the “bucket.name,” property checks
the “bucket.name.value”. That happens because the “bucket.name” property
also contains various metadata about where its value was defined.

Finally, the “result.new()” function is used for creating the object that
will be returned. The function takes two parameters, the msg parameter is
a string used to explain the detected issue, while the source parameter is the
object or property where the problem occurred [53].

4.7.2 Regula
Analogously to tfsec, also Regula can enforce user-defined policies. However,
Regula custom rule management is more structured because it defines two
types of custom rules:

• Simple rules

• Advanced rules

Simple rules are used when the policy applies to a single resource type only,
and it makes a simple allow/deny decision. Simple rules can be augmented
by defining a custom error message within them. This is done by writing the
rule in this way:

1 package rules. my_simple_rule
2

3 resource_type = " aws_ebs_volume "
4

5 deny[msg] {
6 not input. encrypted
7 msg = "EBS volumes should be encrypted "
8 }

Listing 4.4. Regula simple rule example.

Simple rules must specify “allow” or “deny” rego rules. For this example, this
“deny” rule has been used for checking that the EBS volume is encrypted.
Note that the rules package name can take any value, but it must always

35

4 – Implementation of Policy as Code

begin with the “rules” namespace. Also, with this type of rule, the target re-
source type should be indicated as well. Finally, the “msg” variable contains
the custom error message.

Advanced rules are more powerful, but also more complex to write. Unlike
simple rules, they allow to observe different kinds of resource types and decide
which specific resources are valid or invalid. Also, these rules can leverage
additional functions which come from the Fugue API library [54].

1 package rules. user_attached_policy
2

3 import data.fugue
4

5 resource_type = " MULTIPLE "
6 ebs_volumes = fugue. resources (" aws_ebs_volume ")
7

8 is_encrypted (resource) {
9 resource . encrypted == true

10 }
11

12 policy [p] {
13 resource = ebs_volumes [_]
14 is_encrypted (resource)
15 p = fugue. allow_resource (resource)
16 } {
17 resource = ebs_volumes [_]
18 not is_encrypted (resource)
19 p = fugue. deny_resource (resource)
20 }

Listing 4.5. Regula rule metadata example.

The structure depicted in the listing 4.5 is pretty similar to the simple rules
one but with some differences. As an example, instead of specifying a deny or
allow rego rule advanced rules must specify a rule called “policy” as the main
rule. Another difference concerns the “resource_type” variable which must
contain the “MULTIPLE” value. Furthermore, the resources that should be
analyzed should be requested by using the “fugue.resources(resource_type)”
function [54].

Finally, metadata can be added to a rule to enhance Regula’s report as
shown in the listing 4.6.

1 __rego__metadoc__ := {
2 "id": " CUSTOM_0001 ",
3 "title ": "IAM policies must have a description of at

least 25 characters ",

36

4.7 – How to write custom policies

4 " description ": "Per company policy , it is required for
all IAM policies to have a description of at least 25
characters .",

5 " custom ": {
6 " controls ": {
7 "CORPORATE - POLICY ": [
8 "CORPORATE - POLICY_1 .1"
9]

10 },
11 " severity ": "Low",
12 " rule_remediation_doc ": "https :// example .com"
13 }
14 }

Listing 4.6. Regula rule metadata example.

4.7.3 Cloud custodian
In contrast to all the other tools analyzed so far, Cloud Custodian is not
based on OPA. This means that policies are not written using the Rego
language. Instead, the tool uses a YAML-based DSL for defining controls.
Unfortunately, the tool does not own a default controls library, therefore
policies must be manually defined by the end user.

As an example, the policy shown by the listing 4.7 will automatically stop
all EC2 instances that are tagged with the key “Custodian”.

1 policies :
2 - name: my -first - policy
3 mode:
4 type: pull
5 resource : aws.ec2
6 filters :
7 - "tag: Custodian ": present
8 actions :
9 - stop

Listing 4.7. Cloud Custodian policy example.

Cloud Custodian policies can refer to different types of resources. Depending
on that is possible to use specific filters to narrow down the set of resources
or specific actions to be taken on the filtered resources. The resource type is
specified by the resource property. Conversely, filters and actions are indi-
cated by their respective fields. Finally, it is also possible to define multiple
actions and multiple filters can be specified in the same policy [57].

37

4 – Implementation of Policy as Code

Policy enforcement can be triggered in different ways which are defined by
using the mode property. The specific triggers depend on the target cloud
provider, however, it is possible to group them into three main categories:

• Pull

• Periodic

• Event-Based

With the “Pull” execution mode, policy compliance checks, and the eventual
actions, are triggered by using the CLI. Whereas, those marked with the
“Periodic” execution modes are executed periodically with a period defined
within the policy itself. Finally, policies defined using the “Event-Based”
execution mode are enforced only when an event specified within the policy
happens.

4.7.4 OPA Gatekeeper
Gatekeeper uses the OPA Constraint Framework [55] which leverages the
concepts of Constraint and ConstraintTemplate to describe and enforce poli-
cies [56]. ConstraintTemplate resources are used for describing both the Rego
that enforces the constraint and the schema of the constraint. Constraint re-
sources are an instantiation of a ConstraintTemplate. Their purpose is to
inform Gatekeeper that a ConstraintTemplate must be enforced, and how.

The listing 4.8 represents an example of the structure of a Constraint-
Template that, analogously to other Kubernetes resources, can be defined by
using YAML.

1 apiVersion : templates . gatekeeper .sh/ v1beta1
2 kind: ConstraintTemplate
3 metadata :
4 name: k8srequiredlabels
5 spec:
6 crd:
7 spec:
8 names:
9 kind: K8sRequiredLabels

10 validation :
11 # Schema for the ‘parameters ‘ field
12 openAPIV3Schema :
13 properties :
14 labels :
15 type: array
16 items:
17 type: string

38

4.7 – How to write custom policies

18 targets :
19 - target : admission .k8s. gatekeeper .sh
20 rego: |
21 package k8srequiredlabels
22 violation [{" msg ": msg ,
23 " details ": {" missing_labels ": missing }}] {
24 provided := {label |
25 input. review . object . metadata . labels [label]}
26 required := {label |
27 label := input. parameters . labels [_]}
28 missing := required - provided
29 count(missing) > 0
30 msg := sprintf (" you must provide labels : %v",
31 [missing])
32 }

Listing 4.8. ConstraintTemplate example.

This example represents a policy used for enforcing the presence of a specific
set of labels on an arbitrary object. The labels and the target resources will
be then specified by the Constraint resource. By doing so, the Constraint-
Template definition can be reused since it is independent of the target labels
and resources.

1 apiVersion : constraints . gatekeeper .sh/ v1beta1
2 kind: K8sRequiredLabels
3 metadata :
4 name: ns -must -have -gk
5 spec:
6 match:
7 kinds:
8 - apiGroups : [""]
9 kinds: [" Namespace "]

10 parameters :
11 labels : [" gatekeeper "]

Listing 4.9. Constraint example.

The listing 4.9 represents an example of the possible constraints that can
be created based on the previous ConstraintTemplate. To indicate that the
Cosntarint shown in the example is an instance of the ConstraintTemplate de-
fined previously, the “spec.crd.spec.names.kind” property of the Constraint-
Template and the “kind” property of the Constraint must contain the same
value. In addition to that, the “parameters” property must respect the ope-
nAPIV3Schema specified in the ConstraintTemplate.

In this example, the property specifies which labels must be present inside
the target resources. The values specified inside the “parameters” property
can be accessed inside the Rego code by using the parameters field of the
input object. Finally is also required to specify which is the scope of objects

39

4 – Implementation of Policy as Code

that have to respect the Constraint. Those are specified inside the “match”
property. The Rego code can access those objects as well by using the review
field of the input object [56].

4.8 Strategy and methodology used to imple-
ment cloud compliance automation

A common characteristic of all the tools discussed so far is that each of
them exposes a command line interface (CLI). Since Jenkins pipelines can
execute shell scripts, this feature is crucial for integrating them into the
CI/CD pipelines developed for automating cloud compliance verification.

These tools were chosen not only because they are open-source, but also
because they allow policies to be written declaratively. In this way, controls
can be defined with a higher level of abstraction since it is necessary to
describe what they are supposed to do rather than how.

The tools mentioned before are utilized via three Jenkins CI/CD pipelines
to demonstrate how Policy as Code can be employed for automating cloud
compliance verification. For this purpose, the approach is applied to a sample
cloud infrastructure, defined with Terraform, that will run a Kubernetes [58]
cluster.
The three pipelines are executed according to the following order:

1. The first pipeline performs the deployment of the infrastructure only
if the IaCSec compliance verification performed by tfsec and Regula is
successful.

2. The second pipeline is responsible for deploying periodic and event-based
CSPM controls using Cloud Custodian.

3. The last Jenkins pipeline deploys a sample application together with the
related CWP controls and OPA Gatekeeper into the Kubernetes cluster.

Although the first two operations can be executed in any order, this order
was defined since it seems to be simple to understand. However, note that
regardless of the order chosen, the deployment of the example application
and CWP controls must necessarily be performed after the infrastructure
deployment. Otherwise, there will be no cluster on which to perform the
deployment. The sample infrastructure has been developed to simulate a
production-like environment, hence the tools utilized inside these pipelines
can be used in this kind of environment.

40

Chapter 5

Policy as Code: Case of
study

This chapter contains an explanation of a possible implementation of the
Policy as Code methodology during the development and operation of a Ku-
bernetes cluster inside a cloud infrastructure. To accomplish that, a proof-
of-concept (PoC) was developed to explain how the methodology can be
integrated into the software development life-cycle.
The PoC is composed by:

• IaC files that describe the target infrastructure and IaCSec policy files
are stored within a remote version control repository;

• CSPM policy files stored inside another remote version control reposi-
tory;

• an additional version control repository is used for storing CWPP policy
files and other files needed for deploying the sample application and the
CWPP tool;

• a CI/CD pipeline that is used for checking the infrastructure against the
IaCSec tools and deploying the infrastructure;

• a CI/CD pipeline whose task is to deploy the CSPM policies;

• a CI/CD pipeline which is in charge of deploying OPA Gatekeeper, the
related policies, and a sample application inside a Kubernetes cluster.

41

5 – Policy as Code: Case of study

5.1 Architectural overview of the target cloud
infrastructure

The target infrastructure was developed by following an IaC approach by
using Terraform. It has been deployed inside an Amazon Web Services [41]
(AWS) environment to emulate a possible cloud infrastructure development
use case. This platform was chosen because AWS is currently the most
desired cloud platform among developers [59].

The infrastructure’s first version was developed using the default config-
urations of the related Terraform resources. This was done to demonstrate
that their default configuration is not always secure by default. Indeed, the
IaCSec tools used to scan the infrastructure reported several failed checks
during the first scan.

Therefore, another version of the infrastructure was developed taking into
account the feedback provided by those tools.

Figure 5.1. The target infrastructure

42

5.1 – Architectural overview of the target cloud infrastructure

The target infrastructure aims to simulate a production-like environment.
To accomplish this, several components and their characteristics were used.
The infrastructure is based on the following services offered by AWS [60]:

• Amazon Virtual Private Cloud (Amazon VPC)

• Amazon Elastic Kubernetes Service (Amazon EKS)

• Amazon Simple Storage Service (Amazon S3)

• Amazon Relational Database Service (Amazon RDS)

• Amazon Elastic Container Registry (Amazon ECR)

• Amazon Elastic Compute Cloud (Amazon EC2)

A VPC is a virtual network that resembles a traditional network operated
within a data center. Therefore, it is possible to assign a range of IP addresses
to the entire VPC (both IPv4 and IPv6 addressing are supported) and further
subdivide this range to create subnets.

Once created, AWS resources such as EC2 and RDS instances can be
deployed within it. The developed infrastructure relies on this concept for
the implementation of an EKS cluster. The latter is used to emulate a
production environment in which a simple containerized application runs.

An EKS cluster consists of a Kubernetes cluster in which control plane or
nodes are directly managed by AWS rather than by the customer.

In this case, the worker node role for the cluster is assumed by EC2 in-
stances inside the VPC. Each instance is a virtual computing environment
offered by AWS, and various types of configurations can be chosen, which
differ in CPU, memory, storage, and network capacity. The images of the
containers that will run inside the cluster are stored inside a private reposi-
tory inside the Amazon ECR.

Finally, is important to note that the cluster should be deployed inside
a VPC which spans over at least two Availability Zones. This requirement
was defined to improve the overall availability of the cluster since Availabil-
ity Zones consist of one or more discrete data centers hosted in separate
facilities [61].

AWS allows instantiating DB instances within the VPC by using Amazon
RDS. Also, in this case, the VPC must span over at least two Availability
Zones. A DB instance represents an isolated database environment running
in the cloud. Just like EC2 resources, each DB instance belongs to a class
that determines its computational and memory capacity. In this case, a

43

5 – Policy as Code: Case of study

simple instance is used for running a PostgreSQL DBMS inside the VPC of
the target infrastructure. Note that the DB instance does not run inside the
EKS cluster. However, it can be used by the sample application for saving
and reading data.

Finally, the last main components of the target infrastructure are two
S3 buckets. One was created via the AWS Management Console. This was
done because it is used for storing the Terraform state file, hence the creation
cannot be done via Terraform. The other one, is a preexisting bucket utilized
for storing the logs produced by Cloud Custodian’s controls.

5.2 AWS Terraform resources
As mentioned previously, the target infrastructure was developed by following
an IaC approach by using Terraform. To speed up the development, the VPC,
the VPC endpoints, and the EKS cluster were defined using the relative
Terraform modules [62]. A Terraform module is a container for multiple
resources that are used together and can be called in the configuration code
by using the module block. This block is used by compiling its input values
to configure the resources contained inside the module.

The last operation is done to include modules’ contents within the con-
figuration itself. The remaining components such as security groups and
availability zones were defined in a classical way using Resources and Data
Sources respectively.

Resource blocks are used for declaring the configuration of a particular
infrastructure object [63], while data sources allow Terraform to query infor-
mation defined by an external source [64].

5.2.1 Variables

Input Variables have been defined to allow the reuse of frequently requested
values in the code. They work like function arguments and can be used
across all the Terraform configuration files. Each input variable is defined
via a “variable” block. Each block has a name, which is the label after the
variable keyword. Furthermore, variable blocks can be augmented by adding
a default value and a type that specifies what value types are accepted for
the variable [65]. The listing 5.1 illustrates the variables used inside the
configuration files which define the target infrastructure.

44

5.2 – AWS Terraform resources

1 variable " region " {
2 type = string
3 default = "eu -west -3"
4 }
5

6 variable " vpc_name " {
7 type = string
8 default = "eks -lab -vpc"
9 }

10

11 variable " eks_cluster_name " {
12 type = string
13 default = "eks -lab -cluster - module "
14 }
15

16 variable " private_subnets_num " {
17 type = number
18 default = 2
19 }
20

21 variable " db_subnets_num " {
22 type = number
23 default = 2
24 }

Listing 5.1. The Terraform variables used inside the infrastructure
configuration files.

5.2.2 VPC Module
The Amazon VPC is created using the “vpc” module [66] as shown in the
listing 5.2.

As stated before, each VPC must have an IP address range, hence the IPv4
Classless Inter-domain Routing (CIDR) block assigned for the VPC of the
developed architecture, is defined inside the cidr_block variable. Further-
more, it has been further subdivided to create subnets_num private subnets
used for deploying the worker nodes of the EKS cluster and db_subnets_num
subnets used for deploying the DB instances. Each subnet IPv4 CIDR is
generated by the cidrsubnet function starting from the IPv4 CIDR block
assigned for the VPC. The lists for the private subnets and the DB subnets
are generated by taking advantage of the list comprehension functionality
offered by the Terraform language. The definition of the availability zones
where the VPC spans are contained inside the azs variable. Finally, there is
the definition of the tags needed by the EKS cluster to work properly [67].

45

5 – Policy as Code: Case of study

1 module "vpc" {
2 source = " registry . terraform .io/terraform -aws - modules /vpc/

aws"
3 version = "3.18.1"
4

5 cidr = var. cidr_block
6 azs = data. aws_availability_zones .avzs.names
7

8 enable_dns_support = true
9 enable_dns_hostnames = true

10

11 private_subnets = [for i in range(var.
private_subnets_num) : cidrsubnet (var.cidr_block , 8, i)]

12 private_subnet_names = [for i in range(var.
private_subnets_num) : "private -subnet -${i}"]

13 private_subnet_tags = {
14 " kubernetes .io/ cluster /${var. eks_cluster_name }" = "owned"
15 }
16

17 database_subnets = [for i in range(var.
db_subnets_num) : cidrsubnet (var.cidr_block , 8, var.
private_subnets_num + i)]

18 database_subnet_names = [for i in range(var.
db_subnets_num) : "db -subnet -${i}"]

19 database_subnet_group_name = "rds -db"
20

21 vpc_tags = {
22 Name = var. vpc_name
23 " kubernetes .io/ cluster /${var. eks_cluster_name }" = "owned"
24 }
25

26 tags = {
27 LAB = " tesi_mattia "
28 infra = " terraform "
29 }
30 }

Listing 5.2. The VPC module block.

5.2.3 EKS Module
The Amazon EKS cluster is created using the “eks” module [68] as shown in
the listing 5.3.

Each EKS cluster is identified by its name, therefore the cluster_name
property is used for defining it inside the module block. For the sample infras-
tructure, the name of the cluster is contained inside the eks_cluster_name
variable and assigned to the cluster_name property. Furthermore, the VPC
in which the cluster will be deployed must be specified as well, and in this

46

5.2 – AWS Terraform resources

case, the ID of the VPC previously defined is extracted from its module and
entered into the vpc_id field. The same thing happens with the list of worker
nodes subnet IDs, also this value is extracted from the relative VPC module
and entered into the subnet_ids field. The module creates also three secu-
rity groups needed for controlling the traffic that is allowed to reach and leave
the resources that they are associated with [69]. In this case, there are two
groups of resources: the control-plane and the data-plane (worker nodes).

The security groups are created by the module for controlling the traffic
between:

• control-plane and data-plane

• data-plane and data-plane

• control-plane and control-plane

Finally, the field iam_role_name specifies the name of the IAM role [70]
created to provide permissions for the Kubernetes control plane to make
calls to AWS API operations.

1 module "eks" {
2 source = " registry . terraform .io/terraform -aws - modules /eks/

aws"
3 version = "19.0.4"
4
5 cluster_name = var. eks_cluster_name
6
7 iam_role_name = "${var. eks_cluster_name }- cluster "
8 iam_role_tags = {
9 Name = "${var. eks_cluster_name }- cluster "

10 }
11
12 vpc_id = module .vpc. vpc_id
13 subnet_ids = module .vpc. private_subnets
14
15 eks_managed_node_groups = {
16 private -nodes = {
17 create = true
18 capacity_type = " ON_DEMAND "
19 instance_types = [" t3a. medium "]
20 desired_size = 2
21 max_size = 4
22 min_size = 1
23 iam_role_additional_policies = {
24 "arn:aws:iam :: aws: policy / AmazonSSMManagedInstanceCore

" = "arn:aws:iam :: aws: policy / AmazonSSMManagedInstanceCore "
25 }
26 }
27 }
28

47

5 – Policy as Code: Case of study

29 tags = {
30 LAB = " tesi_mattia "
31 infra = " terraform "
32 }
33 }

Listing 5.3. The EKS module block.

Finally, this cluster uses managed node groups to automatically provision
or register the EC2 instances utilized as worker nodes. The parameters
used for configuring the node group are directly specified as values for the
private-nodes key. Note that EC2 instances are also configured for being
contacted through the Amazon Session Manager [71].

5.2.4 VPC endpoints module
Since the target infrastructure’s VPC is composed only of private subnets
there must be a way to connect the EC2 instances with the other services
offered by AWS. This is done by using AWS PrivateLink service, which en-
ables to privately connect VPC to external services as if they were inside the
VPC itself. This service provides two different types of endpoint [72]:

• Interface Endpoint. It is composed of a collection of one or more
elastic network interfaces (ENIs) with a private IP address that serves
as an entry point for traffic destined for a supported service.

• Gateway Endpoint. It targets specific IP routes in an Amazon VPC
route table, in the form of a prefix-list, used for traffic destined for
Amazon S3.

These components are necessary to enable the creation of the EKS cluster, as
it requires some AWS-managed services to be properly configured. The list-
ing 5.4 shows how to define the two types of the endpoint with the Terraform
“vpc_vpc-endpoints” module [73].

1 module "vpc_vpc - endpoints " {
2 source = " registry . terraform .io/terraform -aws - modules /vpc/

aws // modules /vpc - endpoints "
3 version = "3.18.1"
4

5 vpc_id = module .vpc. vpc_id
6 security_group_ids = [aws_security_group .

node_security_group_id]
7 subnet_ids = module .vpc. private_subnets
8

48

5.2 – AWS Terraform resources

9 endpoints = {
10 s3 = {
11 service = "s3"
12 route_table_ids = module .vpc. private_route_table_ids
13 service_type = " Gateway "
14 tags = { Name = "s3" }
15 },
16 ec2 = {
17 service = "ec2"
18 private_dns_enabled = true
19 tags = { Name = "ec2" }
20 },
21 ...
22 }
23

24 tags = {
25 LAB = " tesi_mattia "
26 infra = " terraform "
27 }
28 }

Listing 5.4. VPC endpoints module.

The vpc_id property contains the ID of the VPC in which the endpoints will
be deployed, while the subnet_ids one contains the default list of subnet IDs
that will be associated with the interface endpoints. The security_group_ids
field is used to specify a list containing the default security groups that will
be associated with the interface endpoints.

Finally, the complete definition of the module block contains also the fol-
lowing endpoints: sts, ecr_api, ecr_dkr, logs, ssmmessages, ec2messages,
and ssm. The first three, along with those defined in the listing, are required
to properly configure the EKS cluster. The logs endpoint provides the abil-
ity to send logs to the CloudWatch Logs service [74] in order to centralize
the log management. Finally, the others must be enabled to use the AWS
Systems Manager Session Manager [71] in case it is necessary to manage the
EC2 instances created by the cluster.

5.2.5 RDS DB instance resource
The RDS DB instance is defined as shown by the listing 5.5 by using the
“aws_db_instance” resource. It permits to define the name of the database
via the db_name field. The resource block allows also to define the allo-
cated storage for the instance and its class via the allocated_storage
and instance_class fields respectively. As regards networking, the field

49

5 – Policy as Code: Case of study

db_subnet_group_name contains the name of the group of subnets utilized
for instantiating the DB instances, while the vpc_security_group_ids prop-
erty contains the security groups that will be associated with the DB in-
stances’ network interfaces. Finally, there is the definition of the database’s
master username and password which were defined in plain text on pur-
pose [75].

1 resource " aws_db_instance " " rds_db " {
2 db_name = " tracking "
3 allocated_storage = 20
4 engine = " postgres "
5 instance_class = "db.t3.micro"
6 username = " mattia "
7 password = " terraform "
8 db_subnet_group_name = module .vpc.

database_subnet_group_name
9 vpc_security_group_ids = [aws_security_group . db_plane_sg .id

]
10 tags = {
11 LAB = " tesi_mattia "
12 infra = " terraform "
13 db_name = " rds_db "
14 }
15 }

Listing 5.5. RDS instance resource.

5.2.6 Security groups
As mentioned before, security groups are used for controlling the traffic
among the resources that they are associated with. Each security group
allows to specify inbound or outbound rules based on protocols, port num-
bers, CIDR blocks, or other security group IDs [69]. To make worker nodes
able to interact with the DB instances and the VPC interface endpoints two
security groups are created. Both of them are shown by the listing 5.6 along
with the corresponding security group rules.

1 resource " aws_security_group " " endpoints " {
2 name = "endpoints - ingress "
3 vpc_id = module .vpc. vpc_id
4 description = " Security group for interface endpoints "
5

6 tags = {
7 Name = "endpoints - ingress "
8 LAB = " tesi_mattia "
9 infra = " terraform "

50

5.2 – AWS Terraform resources

10 }
11 }
12 resource " aws_security_group_rule " "endpoint - ingress " {
13 description = " Endpoint ingress rule"
14 type = " ingress "
15 security_group_id = aws_security_group . endpoints .id
16 from_port = 1025
17 to_port = 65535
18 protocol = -1
19 source_security_group_id = module .eks.

node_security_group_id
20 }
21

22 resource " aws_security_group " " db_plane_sg " {
23 name = "db -plane -sg"
24 vpc_id = module .vpc. vpc_id
25 description = " Security group for dbs"
26

27 tags = {
28 Name = "db -plane -sg"
29 LAB = " tesi_mattia "
30 infra = " terraform "
31 }
32 }
33 resource " aws_security_group_rule " " node_ingress " {
34 description = "DB ingress rule"
35 type = " ingress "
36 security_group_id = aws_security_group . db_plane_sg .

id
37 from_port = 5432
38 to_port = 5432
39 protocol = "tcp"
40 source_security_group_id = module .eks.

node_security_group_id
41 }

Listing 5.6. Security group resources.

Security groups are defined using an aws_security_group [76] resource.
Each one has a name used as an identifier and contained inside the name
property, and the VPC in which the security group will be utilized is specified
inside the vpc_id field.

The rules of each group are specified inside the aws_security_group_rule
resources [77], while the security_group_id allows referring the rule to its
security group. The type property can assume either the value ingress or
egress and it defines the type of the rule. Finally, the properties, from_port,
to_port, protocol, and source_security_group_id are needed to control
the incoming or outgoing traffic of resources that belong to the security group.

The first security group contains only one rule. The latter allows all traffic

51

5 – Policy as Code: Case of study

from worker nodes not destined for a well-known port of a resource that is
part of the security group (VPC interface endpoints). Similarly, the rule
defined for the security group for DB instances allows only the traffic from
worker nodes that is directed to port 5432 of the resources which belong to
the security group.

5.3 Set up of the infrastructure in AWS
The first thing to do for deploying the target infrastructure consists in defin-
ing a backend block [78] and a provider block [79]. A backend defines where
Terraform stores its state data files, while a provider is a plugin that allows
Terraform to interact with cloud providers, SaaS providers, and other APIs.

By default, the state file is stored locally, but as shown in the listing 5.7
in this case it is stored inside an S3 Bucket.

1 terraform {
2 required_providers {
3 aws = {
4 source = " hashicorp /aws"
5 version = "~> 4.44"
6 }
7 }
8 backend "s3" {
9 bucket = "tesi -mattia -terraform -state - bucket "

10 key = " terraform /mattia -tesi -eks - module / tfstate .json"
11 region = "eu -west -3"
12 encrypt = true
13 }
14 }

Listing 5.7. Terraform backend.

The effective deployment of the target infrastructure is performed via the
Terraform CLI [80]. The procedure starts with the initialization of the work-
ing directory. This directory contains the Terraform configuration files and
other files used for provisioning the infrastructure such as modules and plu-
gins. It must be initialized before performing any other operation, and this
initialization is done by invoking the terraform init [81] command inside
the working directory. The invocation of the command starts with the ini-
tialization of the chosen backend, as well as downloading and installing the
defined modules and plugins.

Once the initialization phase is terminated, the terraform plan [82] com-
mand can be invoked for defining an execution plan. This plan is produced

52

5.4 – Policy code management

by analyzing the difference between the current state of any already-existing
remote objects and the desired state. The plan presents a description of the
changes necessary to achieve the desired state and can be saved as an artifact.
The latter can be used for provisioning the infrastructure.

The provisioning of the infrastructure is done by executing the terraform
apply [82] command and passing the plan file, then the command executes
the actions provisioned by the plan. Note that if a plan file is not passed,
the command generates one and uses it for provisioning the infrastructure.

Finally, Terraform also permits the destruction of all remote objects man-
aged by a Terraform configuration by executing the terraform destroy [82]
command inside the working directory of the configuration.

5.4 Policy code management
Following a Policy as Code approach implies that policies can be treated in
the same way as normal source code. This allows policy code to be stored and
managed within a remote version control repository, in this case, GitHub.
Furthermore, CI/CD pipelines can be executed over those repositories in
order to enforce policies and eventually deploy the infrastructure and the
sample application.

5.4.1 IaCSec policies
IaCSec policies are stored inside the same repository that contains the infras-
tructure configuration files for simplifying the infrastructure code scanning
phase. Regula and tfsec make it possible to apply custom policies in ad-
dition to those contained in their library. Those policies must be specified
inside folders dedicated to this purpose. For this reason, the tfsec additional
policies are contained inside a folder called .tfsec_rules and analogously the
Regula custom policies are stored in the .regula_rules folder.

5.4.2 CSPM policies
A dedicated repository is reserved for the CSPM policies code. This reposi-
tory contains a folder called pack. This folder is the place where the policies
are stored. The pack folder is further subdivided into other folders since
CSPM policies are grouped by execution mode i.e. there is a folder for each
group. Pull execution mode-based policies are contained inside the dry-run

53

5 – Policy as Code: Case of study

folder, Event-Based policies are stored inside the event-based folder, and fi-
nally, Periodic policies are defined inside a folder called periodic.

5.4.3 CWPP policies

CWPP policies code and the files needed for deploying the sample application
and OPA Gatekeeper are stored inside the same repository. That simplifies
the deployment procedure of the Kubernetes objects into the cluster con-
tained inside the target infrastructure.

CWPP policies are defined inside a sub-folder of the policies folder. Each
sub-folder contains the definition of the Kubernetes objects that encode the
policy and a kustomization.yaml file required by Kustomize [85] for producing
two main YAML files. One contains all constraint definitions, the other
contains all defined constraint templates. These two files are deployed inside
the cluster for enforcing the relative policies.

5.5 Compliance Automation and how it is im-
plemented

The implementation of the Policy as Code approach for compliance automa-
tion is done by defining three CI/CD pipelines using Jenkins.

• The first one is in charge of scanning the target infrastructure using
Regula and tfsec, deploying it into the cloud environment if no errors
occur.

• The second pipeline is used to deploy periodic and event-based Cloud
Custodian policies into the cloud environment and to obtain a report on
compliance violations against dry-run, event-based and periodic policies.

• The third one permits the deployment of Gatekeeper and the relative
policies together with the sample application. Also, it allows obtaining
a compliance violation report against the defined policies.

All the defined pipelines contain a section that is always executed which is
used for saving the output produced by the tools.

54

5.5 – Compliance Automation and how it is implemented

5.5.1 Set up of the pipeline for IaC and IaCSec
The listing 5.8 contains the definition of the pipeline for IaC and IaCSec.
Since it is a declarative Jenkins pipeline, it is composed of a pipeline block
containing the various phases of the pipeline.

Figure 5.2. Stages of the pipeline for IaC and IaCSec.

The “Planning” stage initializes the Terraform working directory and pro-
duces the Terraform plan. This plan is further converted into JSON format
by the terraform show command in order to be checked by Regula. Note
that two Terraform operations are encapsulated inside a withCredentials
block. This block is offered by the Credentials Binding plugin [83] and has
the purpose of binding credentials [84] with variables. In this way, the creden-
tials are not written in plain text in the pipeline, but retrieved directly from
Jenkins where they are stored in an encrypted form. These variables are used
by Terraform commands for authenticating with AWS. The terraform init
command needs these credentials for initializing the S3 backend, while the
terraform plan command requires them since it has to read the Terraform
state for defining the execution plan.

Once the “Planning” phase is over, the “Infrastructure Scanning” phase
begins. During this phase, the target infrastructure is scanned against tf-
sec and Regula. The parallel block allows performing the scanning with
both tools concurrently. If at least one of them reports a failing check, the
whole pipeline fails, and the next stages are not executed. The checks are
performed by executing the tfsec and regula run commands. The output
of the scansion is collected inside the tfsec_audit.json and regula_audit.json
files respectively. The directory containing the custom policies is specified
via the --rego-policy-dir parameter for tfsec and --include parameter
for Regula. If the previous phase ends correctly, then there is the execution

55

5 – Policy as Code: Case of study

of the “Deploy” phase. It has the purpose of deploying the infrastructure into
the cloud environment by applying the terraform apply command over the
plan produced in the first phase. Note that also this command is encapsu-
lated inside a withCredentials block because it needs to perform operations
described in the plan for deploying the infrastructure in AWS.

The last phase saves the output of the tools and the Terraform plan as
build artifacts. In this way, developers can analyze them in case a miscon-
figuration in the infrastructure code occurs.

1 pipeline {
2 agent any
3 stages {
4 stage (" Planning ") {
5 steps {
6 withCredentials ([usernamePassword (credentialsId : "aws -

terraform - credentials ", usernameVariable : "
AWS_ACCESS_KEY_ID ", passwordVariable : "
AWS_SECRET_ACCESS_KEY ")]) {

7 sh " terraform init -no -color"
8 sh " terraform plan -out plan. tfplan -refresh =false -no -

color"
9 }

10 sh " terraform show -json plan. tfplan > plan.json"
11 }
12 }
13 stage (" Infrastructure Scanning ") {
14 parallel {
15 stage (" tfsec ") {
16 steps {
17 sh "tfsec . --no - colour --no -code --include - passed --

format json --rego -policy -dir . tfsec_rules > tfsec_audit .
json"

18 }
19 }
20 stage (" Regula ") {
21 steps {
22 sh " regula run plan.json --input -type tf -plan --include

. regula_rules --format json > regula_audit .json"
23 }
24 }
25 }
26 }
27 stage (" Deploy ") {
28 steps {
29 withCredentials (...) {
30 sh " terraform apply tfplan -no -color"
31 }
32 }
33 }
34 }

56

5.5 – Compliance Automation and how it is implemented

35 post {
36 always {
37 archiveArtifacts "* audit.json"
38 archiveArtifacts "plan. tfplan "
39 }
40 }
41 }

Listing 5.8. IaCSec pipeline.

5.5.2 Set up of the pipeline for CSPM
The listing 5.9 shows how the CSPM pipeline is implemented. This pipeline
is designed for deploying CSPM policies and obtaining a compliance violation
report. To accomplish this, the Docker image provided by Cloud Custodian
is chosen as the execution environment to show this feature of Jenkins. The
agent block is used for this purpose, it allows specifying the default execution
environment for the entire pipeline or a specific one for a single stage. In this
case, only the image and some additional arguments are specified. Those
arguments are the entry point of the container and an environment variable
containing the default AWS region used for deploying policies and getting
reports.

This Pipeline specifies two parameters: deploy_policies and get_report.
The first is utilized for specifying whether execute the stage in charge of de-
ploying policies, while the second specifies whether to perform the stage
defined for obtaining reports.

Figure 5.3. Stages of the pipeline for CSPM.

The first phase involves the deployment of Periodic and Event-Based poli-
cies within the cloud environment. This is made possible by executing the
custodian run command over the folders which contain the policies. The
command also defines where to write the output of the policies evaluation.

57

5 – Policy as Code: Case of study

In this case, the destination is an S3 bucket specified via the --output-dir
parameter. Note that Cloud Custodian, in order to function, needs to au-
thenticate with AWS and, analogously to the previous pipeline, this is ac-
complished using the withCredentials block.

The last stage is designed for producing the policy compliance violation
report. The latter is obtained by executing the custodian report com-
mand. To obtain a comprehensive report regarding each defined policy, the
first operation that is performed is a compliance check against dry-run poli-
cies, i.e. those defined with a Pull execution mode. Once the check is done,
information about eventual compliance violations are gathered from the S3
bucket to compose and store the final report.

1 pipeline {
2 agent{
3 docker {
4 args ’--entrypoint ="" -e AWS_DEFAULT_REGION =eu -west -3’
5 image " cloudcustodian /c7n :0.9.23.0"
6 }
7 }
8 parameters {
9 booleanParam defaultValue : true , name: " deploy_policies "

10 booleanParam defaultValue : true , name: " get_report "
11 }
12 stages {
13 stage (" Deploy policies ") {
14 when {
15 expression {
16 return params . deploy_policies
17 }
18 }
19 steps {
20 withCredentials (...) {
21 sh " custodian run --output -dir s3:<URI >/ periodic pack/

periodic /"
22 sh " custodian run --output -dir s3:<URI >/ event -based

pack/event -based/ "
23 }
24 }
25 }
26 stage (" Get results ") {
27 when {
28 expression {
29 return params . get_report
30 }
31 }

58

5.5 – Compliance Automation and how it is implemented

32 steps {
33 withCredentials (...) {
34 sh " custodian run --output -dir s3:<URI >/dry -run pack/dry

-run"
35 sh ’’’
36 echo "[" > custodian_audit .json
37 for dir in $(ls pack); do
38 for file in $(ls pack/$dir); do
39 custodian report -s s3 :// custodian -log - bucket /

custodian - policies /$dir pack/$dir/$file --format =json
40 echo ,
41 done
42 done >> custodian_audit .json
43 truncate -s -2 custodian_audit .json
44 echo "]" >> custodian_audit .json
45 ’’’
46 archiveArtifacts " custodian_audit .json"
47 }
48 }
49 }
50 }

Listing 5.9. CSPM pipeline.

5.5.3 Set up of the pipeline for CWPP and the sample
application

The listing 5.10 contains the implementation of the pipeline in charge of
deploying the CWPP tools and policies together with a sample application.

Also, this Pipeline is parametric and two parameters are specified within
it: deploy_gatekeeper and DB_URI. The first specifies whether execute the
stage in charge of deploying OPA gatekeeper, while the second one is em-
ployed for specifying the uri of the RDS DB instance utilized by the sample
application.

Figure 5.4. Stages of the pipeline for CWPP.

59

5 – Policy as Code: Case of study

The first stage is in charge of configuring the kubeconfig file required for
connecting to the EKS cluster. This stage leverages the aws eks update
-kubeconfig command. The name of the cluster that will be configured is
specified by the parameter --name. This command is encapsulated inside a
withCredentials block since it requires the credentials for authenticating
to AWS to operate.

The second stage has the duty to deploy OPA gatekeeper into the cluster.
This is done through the kubectl apply command [86] by passing to it
the configuration file containing the definition needed for deploying the tool.
Also, this command and its other occurrences need to be contained inside a
withCredentials block. This is because AWS authentication is required for
operating with EKSs clusters

The third stage deploys the CWPP policies. It firstly creates two config-
uration files: templates-manifest.yml and constraints-manifest.yml.
Those files contain the definitions for constraint templates and constraints
respectively, and they are generated via the kustomize build command.
Once generated, they are deployed inside the cluster by using the kubectl
apply [86] command.

The fourth stage defines how to deploy the application. The procedure is
analogous to the one performed during the second step. The only difference
is the sed command executed before the kubectl apply for inserting the
value contained inside the DB_URI parameter into the app.yaml file.

The last phase utilizes the kubectl log command for capturing the log
entries emitted by OPA Gatekeeper in the form of JSON objects. Those
entries are filtered by the jq command to keep only those entries that refer
to a policy violation detected during a periodic audit performed by OPA
Gatekeeper.

1 pipeline {
2 agent any
3 parameters {
4 booleanParam defaultValue : true , name: " deploy_gatekeeper "
5 string name: ’DB_URI ’
6 }
7 stages {
8 stage (" Configure EKS cluster ") {
9 steps {

10 withCredentials (...){
11 sh "aws eks --region eu -west -3 update - kubeconfig --name

eks -lab - cluster "
12 }
13 }
14 }

60

5.5 – Compliance Automation and how it is implemented

15 stage (" Deploy gatekeeper ") {
16 when {
17 expression {
18 return params . deploy_gatekeeper
19 }
20 }
21 steps {
22 withCredentials (...){
23 sh " kubectl apply -f target / gatekeeper .yaml
24 }
25 }
26 }
27 stage (" Deploy rules ") {
28 steps {
29 sh " customize build overlays / templates / > templates -

manifest .yml"
30 sh " customize build overlays / constraints / > constraints -

manifest .yml"
31 withCredentials (...){
32 sh " kubectl apply -f templates - manifest .yml"
33 sh " kubectl apply -f constraints - manifest .yml"
34 }
35 }
36 }
37 stage (" Deploy app ") {
38 steps {
39 sh "sed \"s/<DB_URI >/${ params . DB_URI }/\" target /app.

yaml > target /pod.yaml"
40 withCredentials (...){
41 sh " kubectl apply -f target /app.yaml
42 }
43 }
44 }
45 }
46 post {
47 always {
48 sh " kubectl logs -n gatekeeper - system deployments /

gatekeeper -audit | sed ’1d’ | jq -s ’. | map (. | select (.
event_type ==" violation_audited ") | del (.ts) | del (.
audit_id)) | unique | .[]’ > gatekeeper_audit .json"

49 archiveArtifacts " gatekeeper_audit .json"
50 }
51 }
52 }

Listing 5.10. CWPP pipeline.

61

5 – Policy as Code: Case of study

5.6 Custom policies
The PoC contains some custom policies that are developed and deployed if
needed, to show how an organization can define and employ them.

5.6.1 IaCSec policy
Unfortunately, the default policy package of tfsec and Regula does not rec-
ognize a serious vulnerability present within the Terraform infrastructure
code.

The listing 5.5 shows how the RDS DB instance is defined. This config-
uration requires the specification of a master password directly inside the
Terraform code, the problem is that this password could be hard-coded.

To show this problem, the first version of the architecture defines the
RDS instance password with a value hard-coded in the file. At the moment
of the first scan with the IaCSec tools, neither tfsec nor Regula recognized it.
However, this happens because recognizing whether or not a value is hard-
coded within an argument is not a trivial task. The only way for doing so
is to scan the Terraform plan code because it contains all the information
about the source of each value that will be assigned to an argument.

Unfortunately, by default Regula and tfsec scan the directory containing
Terraform configurations but, as said before, in this way it is not possible to
recognize the provenance of a value inserted into an argument. This happens
because both tools take as input only the JSON representation of the final
infrastructure.

The listing 5.11 shows the policy code developed for mitigating this prob-
lem.

1 package rules. user_attached_policy
2

3 import data.fugue
4

5 __rego__metadoc__ := {
6 " custom ": {" severity ": "High "},
7 " description ": "RDS DB instance password must not be

neither hard -coded nor specified inside a variable marked
as not sensitive or with a default value",

8 "id": " CUS_R00001 ",
9 "title ": "RDS DB instance password must not be hard -coded"

10 }
11

12 resource_type := " MULTIPLE "

62

5.6 – Custom policies

13 configuration_resources := [res | input._plan. configuration .
root_module . resources [i]. type == " aws_db_instance "; res =
input._plan. configuration . root_module . resources [i]]

14 variables := input._plan. configuration . root_module . variables
15

16 uncompliant_rds [p] {
17 variables [var][" default "]
18 sprintf (" var .%v", [var]) == configuration_resources [i].

expressions . password . references [_]
19 p = {"id": configuration_resources [i]. address , "msg ":

sprintf (" the variable \"%v\" used for specifying the DB
instance password has a default value", [var])}

20 }{
21 variables [var]
22 not variables [var]. sensitive
23 sprintf (" var .%v", [var]) == configuration_resources [i].

expressions . password . references [_]
24 p = {"id": configuration_resources [i]. address , "msg ":

sprintf (" the variable \"%v\" used for specifying the DB
instance password is not sensitive ", [var])}

25 }{
26 not configuration_resources [i]. expressions . password .

references
27 p = {"id": configuration_resources [i]. address , "msg ": "the

DB instance password is hard coded "}
28 }
29

30 policy [p] {
31 single_resource := fugue. resources (" aws_db_instance ")[_]
32 single_resource .id == uncompliant_rds [i].id
33 p = fugue. deny_resource_with_message (single_resource ,

sprintf ("%v", [uncompliant_rds [i]. msg]))
34 }{
35 single_resource := fugue. resources (" aws_db_instance ")[_]
36 startswith (single_resource .id , sprintf ("%v[", [

uncompliant_rds [i].id]))
37 p = fugue. deny_resource_with_message (single_resource ,

sprintf ("%v", [uncompliant_rds [i]. msg]))
38 }

Listing 5.11. Hard-coded password detection policy.

This policy was developed for Regula since tfsec is not able to scan the Ter-
raform plan. The policy helps to mitigate the problem discussed previously
since it does not allow the deployment of an infrastructure that presents an
aws_db_instance resource block which contains a password hard-coded or
defined inside a variable that is not sensitive or with a default value.

63

5 – Policy as Code: Case of study

The policy lays on four rules. The configuration_resources rule queries a
list of all the resources of type aws_db_instance inside the Terraform plan
configuration field. This field contains a list of all resources that should be
deployed, and for each resource property, the origin of the values assumed
by their properties is defined.

The variables rule defines a list of all the defined variables, while the
uncompliant_rds rule verifies the effective compliance of the policy. This
rule has three definitions:

• the first definition queries all the DB instance resources which own a
password whose value comes from a variable with a default value;

• the second definition queries all the DB instance resources which own a
password whose value is not marked as sensitive;

• the third definition checks that the password of a DB instance is not
hard-coded.

The rule produces a collection of documents, and each document contains
the ID of the non-compliant resources and a message that will be printed
out by the tool. The policy rule is used by Regula to obtain evalua-
tion results. In this case, it relies on the id field document produced by
the uncompliant_rds rule to identify non-compliant resources among those
returned by the fugue.resources function. These resources are provided
to the fugue.deny_resource_with_message function along with the corre-
sponding messages to indicate that they are not compliant.

5.6.2 CSPM policies
The CSPM policies developed are taken directly from the CIS Amazon Web
Services Benchmarks [87].

The listings 5.12, 5.13, and 5.14 show an example of how policies written
inside a regulation can be translated into code and enforced automatically.
Furthermore, they are also useful for showing an example of the various
execution modes provided by Cloud Custodian.

The figure 5.5 depicts how periodic and event-based policies, deployed by
the pipeline for CSPM, operate in AWS. In order to execute these kinds of
controls, Cloud Custodian leverage on AWS Lambda, a computing service
that permits running code without provisioning or managing servers [88].

64

5.6 – Custom policies

Lambda functions can be triggered by EventBridge rules managed by Ama-
zon EventBridge [89] a serverless service that uses events to link the com-
ponents of an application together. An EventBridge rule simply listens for
incoming events and sends them to targets for processing.

Figure 5.5. CSPM Periodic/Event-Based policy operation.

In the proof-of-concept that was developed, the flow is:

1. the execution of the pipeline for CSPM creates an EventBridge rule and
the corresponding lambda that will be triggered by the rule;

2. when the event specified inside the rule occurs, it will trigger the execu-
tion of the lambda;

3. the execution of the lambda checks that all the resources whose type
corresponds to the one specified in the policy code are compliant with
the policy itself;

4. the result of the evaluation is written into the custodian-logs S3 bucket.

The listing 5.12 contains a definition of a policy that will be executed in
pull mode. This policy is used to spot Amazon RDS instances that are
unencrypted. This is accomplished by filtering the resources of type aws.rds
that have the StorageEncrypted property set to false.

65

5 – Policy as Code: Case of study

1 policies :
2 - name: cis -rds -encryption -not -enabled -at -rest
3 resource : aws.rds
4 comment : |
5 CIS AWS Foundations v1 .5.0 (2.3.1) . Databases are likely

to hold sensitive and critical data , it is highly
recommended to implement encryption to protect your data
from unauthorized access or disclosure . With RDS
encryption enabled , the data stored on the instance ’s
underlying storage , the automated backups , read replicas ,
and snapshots , are all encrypted .

6 filters :
7 - type: value
8 key: StorageEncrypted
9 op: ne

10 value: true
Listing 5.12. Dry-run policy that verifies whether all Amazon RDS
instances are encrypted.

The listing 5.13 contains the definition of a policy that will be executed in
periodic mode. This policy has the same purpose as the one mentioned in
the listing 5.12. The only thing that changes is the execution mode. In this
case, the policy is executed once a day.

1 policies :
2 - name: cis -rds -encryption -not -enabled -at -rest
3 resource : aws.rds
4 comment : |
5 CIS AWS Foundations v1 .5.0 (2.3.1) . Databases are likely

to hold sensitive and critical data , it is highly
recommended to implement encryption in order to protect
your data from unauthorized access or disclosure . With RDS

encryption enabled , the data stored on the instance ’s
underlying storage , the automated backups , read replicas ,
and snapshots , are all encrypted .

6 mode:
7 schedule : "rate (24 hours)"
8 type: periodic
9 tags:

10 custoidan -test: "test -2"
11 role: arn:aws:iam ::< ACCOUNT_ID >: role/

CustodianLambdaTestRole1
12 filters :
13 - type: value
14 key: StorageEncrypted
15 op: ne
16 value: true

Listing 5.13. Periodic policy that verifies whether all Amazon RDS
instances are encrypted.

66

5.6 – Custom policies

To perform this periodic evaluation, Cloud Custodian deploys an AWS Lambda
function triggered once a day by a periodic EventBridge rule. This allows
the execution of the evaluation using the IAM role specified by the role
property and redirects the output to the destination.

1 policies :
2 - name: terminate - unencrypted -ebs
3 comment : |
4 CIS Amazon Web Services Foundations v1 .5.0. (2.2.1)

Elastic Compute Cloud (EC2) supports encryption at rest
when using the Elastic Block Store (EBS) service . While
disabled by default , forcing encryption at EBS volume
creation is supported .

5 resource : aws.ec2
6 mode:
7 type: ec2 -instance -state
8 events :
9 - running

10 tags:
11 custoidan -test: "test -2"
12 role: arn:aws:iam ::< ACCOUNT_ID >: role/

CustodianLambdaTestRole2
13 filters :
14 - type: ebs
15 key: Encrypted
16 value: false
17 actions :
18 - type: stop

Listing 5.14. Run-time policy that stops all EC2 instances with an
unencrypted EBS that switches from pending to running state.

Finally, the listing 5.14 shows an example of a policy that will be evaluated
each time an event happens and performs a remediation. This policy has
the purpose to stop all EC2 instances connected to an unencrypted Amazon
Elastic Block Store (EBS) volume [90] that switches from pending to running
state. For doing so, Cloud Custodian deploys an AWS Lambda function
triggered by an Amazon EventBridge event generated each time an EC2
instance that violates the policy, switches from pending to running state.
This behavior is described by the mode property of the policy. The actions
property describes the actions that should be performed over the filtered
resources. The evaluation and the auto-remediation actions are executed
using the IAM role specified by the role property.

67

5 – Policy as Code: Case of study

5.6.3 CWPP policy
The listings 5.15 and 5.16 show the policy code developed to avoid a partic-
ular set of environment variables utilized by a container being defined with
hard-coded values. The listings contain the definition of the policy constraint
template and constraint, respectively.

1 apiVersion : templates . gatekeeper .sh/ v1beta1
2 kind: ConstraintTemplate
3 metadata :
4 creationTimestamp : null
5 name: no -hardcoded -env - variables
6 spec:
7 crd:
8 spec:
9 names:

10 kind: no -hardcoded -env - variables
11 validation :
12 openAPIV3Schema :
13 properties :
14 container_name :
15 type: string
16 description : The name of the container to which apply

the policy
17 env_vars :
18 type: array
19 minItems : 1
20 items:
21 type: string
22 description : The environment variables that should not

be hard -coded
23 targets :
24 - target : admission .k8s. gatekeeper .sh
25 rego: |
26 package k8srequiredlabels
27 violation [{" msg ": msg }] {
28 container = input. review . object .spec. containers [_]
29 container .name == input. parameters . container_name
30 container_envs := {
31 name |
32 container .env[i]. value
33 name = container .env[i]. name
34 }
35 input_envs = {env | env = input. parameters . env_vars [_]}
36 res_envs = input_envs & container_envs
37 count(res_envs) > 0
38 msg = sprintf (" The following environment variables for

the container %v are hardcoded : %v",[container .name ,
res_envs])

39 }
Listing 5.15. Constraint template of the hard-coded environment
variables detection policy.

68

5.6 – Custom policies

The set of variables and the name of the target container are defined in the
parameters field of the constraint. The contents of this property are accessi-
ble to the rule specified in the constraint template via the input.parameters
reference. This allows the constraint template to be reused by specifying
other container names or other sets of variables.

The violation rule creates a set containing the hard-coded environment
variables and performs the intersection between it and the set defined within
parameters. This operation is performed for each container with a name equal
to the value specified in the parameters. If the resulting set is not empty, the
policy is violated and a message is printed with the relevant information.

1 apiVersion : constraints . gatekeeper .sh/ v1beta1
2 kind: no -hardcoded -env - variables
3 metadata :
4 name: demo -app -test
5 spec:
6 match:
7 kinds:
8 - kinds: [" Pod "]
9 parameters :

10 container_name : demo -app
11 env_vars :
12 - DB_USR
13 - DB_PWD

Listing 5.16. Constraint of the hard-coded environment variables
detection policy.

In this case, the constraint is enforced on resources of kind “Pod” and specifies
“demo-app” as the name of the target container. This is the name of the
container that contains the target application. The constraint also specifies
that the “DB_USR” and “DB_PWD” environment variables must not be hard-
coded since they are employed by the target application for authenticating
it to the DB.

69

70

Chapter 6

Wrap-Up model definition
and Mitigation strategies

The following chapter describes the structure of the results of the evaluation
carried out on the proof-of-concept. Also, it explains the detected violations
and the actions taken to bring the system into compliance with the defined
policies.

6.1 How information are gathered
The input information needed for performing the assessment are gathered
directly by the tools.

Regula and tfsec analyze a JSON representation of the target infrastruc-
ture by scanning the infrastructure code’s directory. Also, Regula can scan
a JSON representation of the Terraform Plan which contains various useful
metadata, however is not generated by Regula and must be passed directly
as input to the tool.

Cloud Custodian obtains the information in a different way. It authen-
ticates with the cloud provider to query a structured representation of the
cloud infrastructure resources described in the policies. Once obtained, it
verifies them against the corresponding policy.

Finally, OPA Gatekeeper performs policy evaluation both periodically and
at the time of deployment of a resource subject to a policy. It scans only
the Kubernetes objects which kind corresponds to the one defined inside
the policies. These objects can be already deployed inside the cluster or
intercepted from a request directed to the Kubernetes API Server.

71

6 – Wrap-Up model definition and Mitigation strategies

In case of a violation, if it is spotted by a periodic evaluation the result is
emitted as JSON object by the gatekeeper-audit Pod, while if it is detected
during the deployment of a resource, the result is directly shown as a result
of the kubectl apply command.

The output of the tools is collected by Jenkins during the execution of the
developed CI/CD pipelines. Regula and tfsec produce directly the output
once the scan is terminated. Conversely, the output of Cloud Custodian
and OPA gatekeeper is not obtained in this way. Cloud Custodian output
is collected by executing the custodian report command, while the OPA
Gatekeeper one is obtained via the logs of the gatekeeper-audit Pod.

6.2 How the wrap-up is structured

Information about the output of the tools is collected by Jenkins in the form
of artifacts. By following this approach, each time a pipeline is executed the
tool output remains tied to the single execution.

As shown in figure 6.1, Jenkins keeps track of each execution of each
pipeline, hence is possible to access artifacts produced during different exe-
cution of the same pipeline by hovering over the download circle.

Figure 6.1. Sample pipeline execution results.

72

6.3 – Wrap-up files structure

The artifact saved by Jenkins are:

• tfsec_audit.json and regula_audit.json inside the pipeline for IaC
and IaCSec;

• custodian_audit.json inside the pipeline for CSPM;

• gatekeeper_audit.json inside the pipeline for CWPP.

Each file is saved in a JSON format with its own structure and contains policy
violations detected by the relative tool. Also, Regula and tfsec audits give
information about the severity of the violations, while the Cloud Custodian
and OPA Gatekeeper do not. Finally, because OPA gatekeeper performs
periodic policy scans on the cluster, the gatekeeper-audit Pod may emit
the same violation multiple times. This problem is avoided by aggregating
entries that refer to the same violation.

6.3 Wrap-up files structure
6.3.1 Content of the file tfsec_audit.json
This file contains a single JSON object with only one property called results
and contains a list of other JSON objects. Each object in the list represents
the result of an evaluation (either passed or not) and some other information
as shown by the listing 6.1.

1 {
2 " rule_id ": "AVD -AWS -0038" ,
3 " long_id ": "aws -eks -enable -control -plane - logging ",
4 " rule_description ": "EKS Clusters should have cluster

control plane logging turned on",
5 " rule_provider ": "aws",
6 " rule_service ": "eks",
7 " impact ": " Logging provides valuable information about

access and usage",
8 " resolution ": " Enable logging for the EKS control plane",
9 "links ": [

10 "https :// aquasecurity . github .io/tfsec/v1 .28.1/ checks /aws/
eks/enable -control -plane - logging /", "https :// registry .
terraform .io/ providers / hashicorp /aws/ latest /docs/ resources
/ eks_cluster # enabled_cluster_log_types "

11],
12 " description ": " Control plane scheduler logging is not

enabled .",

73

6 – Wrap-Up model definition and Mitigation strategies

13 " severity ": " MEDIUM ",
14 " warning ": false ,
15 " status ": 0,
16 " resource ": " module .eks",
17 " location ": {
18 " filename ": " registry . terraform .io/terraform -aws - modules /

eks/aws/home/ mattia /tesi -terraform -iacsec -final /. terraform
/ modules /eks/main.tf",

19 " start_line ": 17,
20 " end_line ": 82
21 }
22 }

Listing 6.1. An entry of the file: tfsec_audit.json.

The additional information are represented by the values assumed by the
object properties. Although most of them are self-explanatory, the meaning
of the property status is not very clear. It represents the result of the
evaluation and assumes the value 0 in case of violation and 1 otherwise.

6.3.2 Content of the file regula_audit.json
The structure of the file is quite similar to the tfsec_audit.json one. Also
in this case the file contains a single JSON object but this one has two
properties: rule_results and summary.

The rule_result property is analogous to the results property discussed
earlier. Although both contain an array of JSON objects and each represents
the result of an evaluation, the objects contained in one list have a different
structure than those contained in the other.

1 {
2 " controls ": [
3 "CIS - AWS_v1 .2.0 _4.3",
4 "CIS - AWS_v1 .3.0 _5.3",
5 "CIS - AWS_v1 .4.0 _5 .3"
6],
7 " families ": [
8 "CIS - AWS_v1 .2.0" ,
9 "CIS - AWS_v1 .3.0" ,

10 "CIS - AWS_v1 .4.0"
11],
12 " filepath ": "plan.json",
13 " input_type ": " tf_plan ",
14 " provider ": "aws",
15 " resource_id ": " module .vpc. aws_vpc .this [0]" ,
16 " resource_type ": " aws_vpc ",

74

6.3 – Wrap-up files structure

17 " resource_tags ": {
18 "LAB ": " tesi_mattia ",
19 "Name ": "eks -lab -vpc - module ",
20 "infra ": " terraform ",
21 " kubernetes .io/ cluster /eks -lab -cluster - module ": "owned"
22 },
23 " rule_description ": "VPC default security group should

restrict all traffic . Configuring all VPC default security
groups to restrict all traffic encourages least privilege
security group development and mindful placement of AWS

resources into security groups which in turn reduces the
exposure of those resources .",

24 " rule_id ": " FG_R00089 ",
25 " rule_message ": "",
26 " rule_name ": " tf_aws_vpc_default_security_group ",
27 " rule_raw_result ": false ,
28 " rule_remediation_doc ": "https :// docs.fugue.co/ FG_R00089 .

html",
29 " rule_result ": "FAIL",
30 " rule_severity ": " Medium ",
31 " rule_summary ": "VPC default security group should restrict

all traffic "
32 }

Listing 6.2. An entry of the file: regula_audit.json.
The listing 6.2 contains a sample object contained inside the list defined by
the rule_result property. Differently from the previous case, the object
properties are quite self-explanatory.

1 " summary ": {
2 " filepaths ": [
3 "plan.json"
4],
5 " rule_results ": {
6 "FAIL ": 8,
7 "PASS ": 175,
8 " WAIVED ": 0
9 },

10 " severities ": {
11 " Critical ": 0,
12 "High ": 2,
13 " Informational ": 0,
14 "Low ": 0,
15 " Medium ": 6,
16 " Unknown ": 0
17 }
18 }

Listing 6.3. The summary property the file: regula_audit.json.

Finally, the listing 6.3 contains an example of the summary property, which
contains an object that summarizes the information collected by the scan.

75

6 – Wrap-Up model definition and Mitigation strategies

6.3.3 Content of the file custodian_audit.json

The file contains an array object whose elements are other array objects.
Each second level array represents the result of a policy evaluation and lists
the resource instances that violate the policy itself.

1 {
2 " DBInstanceIdentifier ": "database -1- instance -1",
3 " DBInstanceClass ": "db.t2.small",
4 " Engine ": " PostgreSQL ",
5 " DBInstanceStatus ": " configuring -enhanced - monitoring ",
6 " MasterUsername ": "admin",
7 " Endpoint ": {
8 " Address ": "database -1- instance -1. cznghtt5w6mg .eu -west -3.

rds. amazonaws .com",
9 "Port ": 5432 ,

10 " HostedZoneId ": " ZABCDEFGHIJKLM783 "
11 },
12 " AllocatedStorage ": 1,
13 " InstanceCreateTime ": "2023 -03 -24 T09 :38:27.114000+00:00" ,
14 " PreferredBackupWindow ": "12:37 -13:07" ,
15 " BackupRetentionPeriod ": 35,
16 " DBSecurityGroups ": [],
17 ...
18 " AvailabilityZone ": "eu -west -3b",
19 " DBSubnetGroup ": {
20 " DBSubnetGroupName ": "default -vpc -123" ,
21 " DBSubnetGroupDescription ": " Created from the RDS

Management Console ",
22 "c7n: MatchedFilters ": [
23 " StorageEncrypted "
24],
25 " CustodianDate ": "2023 -03 -24 T10 :39:59.443198" ,
26 " policy ": "cis -rds -encryption -not -enabled -at -rest",
27 " region ": "eu -west -3"
28 }

Listing 6.4. An entry of the file: custodian_audit.json.

The listing 6.4 shows an example of the result of an evaluation. Note also
that each object that represents an uncompliant resource, contains also three
additional properties. These are added directly by Cloud Custodian and
are utilized for specifying the policy violated, the date-time on which the
compliance check has been performed, and the matched filters of a policy.

76

6.4 – Mitigation strategies description

6.3.4 Content of the file gatekeeper_audit.json
This file collects the history of the results of each periodic evaluation per-
formed by OPA Gatekeeper so far. The file consists of an array in which each
element represents the result of a periodic policy evaluation. The listing 6.5
shows a sample object coming from this array.

1 {
2 "level ": "info",
3 " logger ": " controller ",
4 "msg ": "The following environment variables for the

container demo -app are hardcoded : {\" DB_PWD \", \" DB_USR
\"}" ,

5 " process ": "audit",
6 " details ": {},
7 " event_type ": " violation_audited ",
8 " constraint_group ": " constraints . gatekeeper .sh",
9 " constraint_api_version ": " v1beta1 ",

10 " constraint_kind ": "no -hardcoded -env - variables ",
11 " constraint_name ": "demo -app -test",
12 " constraint_namespace ": "",
13 " constraint_action ": "deny",
14 " constraint_annotations ": {},
15 " resource_group ": "",
16 " resource_api_version ": "v1",
17 " resource_kind ": "Pod",
18 " resource_namespace ": " default ",
19 " resource_name ": "demo -app",
20 " resource_labels ": {
21 " purpose ": " demonstrate - envars "
22 }

Listing 6.5. An entry of the file: gatekeeper_audit.json.

Similarly to the previous cases, the fields are quite self-explanatory. However,
is important to note that fields constraint_kind, constraint_name, and
resource_name are the most useful properties contained inside this object.
The first two represent the kind and the name of the violated constraint,
while the last represents the name of the resource that violates the policy.

6.4 Mitigation strategies description
As explained earlier, the target infrastructure, the CSPM policies, the CWPP
policies, and the sample application are deployed using different CI/CD
pipelines. Here are explained the policy violations detected and the rela-
tive mitigation actions.

77

6 – Wrap-Up model definition and Mitigation strategies

6.4.1 tfsec violations

The violations detected by tfsec during the first execution of the pipeline are
listed in the table 6.1.

Description Severity Resource
Security group rule
allows egress to
multiple public internet
addresses.

CRITICAL module.eks

Subnet associates
public IP address.

HIGH module.vpc

Instance does not have
storage encryption
enabled.

HIGH aws_db_instance.rds_db[0]

VPC Flow Logging is
not enabled for VPC

MEDIUM module.vpc

Control plane controller
manager logging is not
enabled.

MEDIUM module.eks

Control plane scheduler
logging is not enabled.

MEDIUM module.eks

Instance does not have
Deletion Protection
enabled.

MEDIUM aws_db_instance.rds_db[0]

Instance does not have
IAM Authentication
enabled.

MEDIUM aws_db_instance.rds_db[0]

Instance has very low
backup retention
period.

MEDIUM aws_db_instance.rds_db[0]

Instance does not have
performance insights
enabled

LOW aws_db_instance.rds_db[0]

Table 6.1. Violations detected by tfsec.

78

6.4 – Mitigation strategies description

Each row in the table is derived from a JSON object present in the ac-
tual evaluation. In this case, only the values derived from the properties
description, severity, and resource are reported.

6.4.2 regula violations
The violations detected by Regula during the first execution of the pipeline
are listed in the table 6.2.

Rule summary Severity Resource
RDS instances should
be encrypted.

HIGH aws_db_instance.rds_db[0]

RDS DB instance
password must not be
hard-coded.

HIGH aws_db_instance.rds_db[0]

VPC Flow Logging is
not enabled for VPC.

MEDIUM module.vpc

CloudWatch log groups
should be encrypted
with customer managed
KMS keys.

MEDIUM module.eks

VPC default security
group should restrict all
traffic

MEDIUM module.vpc

RDS instances should
have backup retention
periods configured.

MEDIUM aws_db_instance.rds_db[0]

Require Multi
Availability Zones
turned on for RDS
Instances.

MEDIUM aws_db_instance.rds_db[0]

RDS instance “Deletion
Protection” should be
enabled.

MEDIUM aws_db_instance.rds_db[0]

Table 6.2. Violations detected by Regula.

79

6 – Wrap-Up model definition and Mitigation strategies

Each row in the table is derived from a JSON object present in the ac-
tual evaluation. In this case, only the values derived from the properties
rule_summary, rule_severity, and resource_id are reported.

As expected, the default configuration presents some violations concerning
the custom rule and the rules defined within the default packages of the tools.
The figure 6.2 summarizes the number of violations found for each level of
severity. Note that violations with a similar description have been counted
only once.

Figure 6.2. Number of violations for each level of severity.

6.4.3 IaCSec mitigations

The discovered misconfigurations can be easily fixed by following the instruc-
tions provided by the pages indicated by the links in each violation message.
Also, it is interesting to note that the two scans do not provide the same
results. Indeed, some violations are reported by both tools, some are not. To
mitigate them, some actions over the architecture code must be performed.

The listing 6.6 shows the changes performed to the eks module for solving
the relative misconfigurations.

80

6.4 – Mitigation strategies description

1 #tfsec: ignore :aws -ec2 -no -public -egress -sgr
2 module "eks" {
3 ...
4 node_security_group_additional_rules = {
5 egress_all = {
6 description = "Allow egress only inside the vpc and to

other AWS IPs"
7 protocol = "-1"
8 from_port = 0
9 to_port = 65535

10 type = " egress "
11 cidr_blocks = [module .vpc. vpc_cidr_block ,
12 "16.12.18.0/23" ,
13 "16.12.20.0/24" ,
14 "3.5.224.0/22" ,
15 "52.95.154.0/23" ,
16 "52.95.156.0/24"
17]
18 }
19 create_cloudwatch_log_group = false
20 cluster_enabled_log_types = [" api", " authenticator ", "

audit", " scheduler ", " controllerManager "]
21 ...
22 }

Listing 6.6. Adjustments made to the eks module.

The modified block presents an additional node_security_group_rule which
avoids the egress traffic from the worker nodes to multiple public inter-
net addresses, except those required for cluster operation. Additionally, it
also presents a list of the log types that must be recorded. Finally, the
create_cloudwatch_log_group field is set to false for delegating the cre-
ation of the CloudWatch log group to AWS.

Also, the vpc module definition must be changed according to the result of
the evaluation. These changes concern the definition of the default security
group and the VPC flow log configuration as shown by the listing 6.7

1 #tfsec: ignore :aws -ec2 -require -vpc -flow -logs -for -all -vpcs
2 module "vpc" {
3 ...
4 manage_default_security_group = true
5 default_security_group_egress = []
6 default_security_group_ingress = []
7 default_security_group_name = "${var. vpc_name }-default -

sg"
8 map_public_ip_on_launch = false
9 enable_flow_log = true

81

6 – Wrap-Up model definition and Mitigation strategies

10 create_flow_log_cloudwatch_log_group = true
11 create_flow_log_cloudwatch_iam_role = true
12 flow_log_cloudwatch_log_group_name_prefix = "/ aws/${var.

vpc_name }-logs /"
13 flow_log_cloudwatch_log_group_name_suffix = "test"
14 flow_log_cloudwatch_log_group_kms_key_id = aws_kms_key .

vpc_key .arn
15 ...
16 }
17

18 resource " aws_kms_key " " vpc_key " {
19 enable_key_rotation = true
20 policy = data. aws_iam_policy_document . cloudwatch .json
21 }

Listing 6.7. Adjustments made to the vpc module.

Unfortunately, some controls continue to be violated even after mitigation
strategies are implemented. To remedy this, it is necessary to use the features
of tfsec and Regula that allow violations to be ignored.

As shown by the listings 6.6 and 6.7, tfsec [91] allows a violation to be
ignored by adding a special comment at the location where it occurs. In this
case two violations are ignored. One is related to the activation of VPC flow
logs, and the other is related to egress to multiple public IPs by a security
group.

Instead, Regula [92] uses another mechanism to ignore violations which
requires the implementation of some special custom rules that must be called
waivers.A waiver rule is used to define a special object whose fields specify
the controls to be ignored, specific resources to which no controls should be
applied, or specific ones for a specific resource.

The waiver rules produced in this case are illustrated by the listing 6.8.
By doing so is possible to ignore the controls relative to the activation of
VPC flow logs and to the encryption of hte relative CloudWatch log groups.
This is done by indicating the Terraform resource_id of the resource for
which the control should be ignored and the rule_id of the control itself.

1 package fugue. regula . config
2

3 waivers [waiver] {
4 waiver := {
5 " resource_id ": " module .vpc. aws_vpc .this [0]" ,
6 " rule_id ": " FG_R00054 ",
7 }
8 }
9

82

6.4 – Mitigation strategies description

10 waivers [waiver] {
11 waiver := {
12 " resource_id ": " module .vpc. aws_cloudwatch_log_group .

flow_log [0]" ,
13 " rule_id ": " FG_R00068 ",
14 }
15 }

Listing 6.8. Regula waived rules.

The changes performed to the aws_db_instance resource are illustrated by
the listing 6.9. It shows the resources and the variables that should be added
to apply correctly the changes performed to the aws_db_instance resource
definition.

1 resource " aws_db_instance " " rds_db " {
2 ...
3 password = var. db_pwd
4 backup_retention_period = 5
5 iam_database_authentication_enabled = true
6 storage_encrypted = true
7 deletion_protection = true
8 performance_insights_enabled = true
9 performance_insights_kms_key_id = aws_kms_key .

rds_performance_insights .arn
10 multi_az = true
11 ...
12 }
13

14 resource " aws_kms_key " " rds_performance_insights " {
15 enable_key_rotation = true
16 policy = data. aws_iam_policy_document . insight .json
17 }
18

19 variable " db_pwd " {
20 type = string
21 sensitive = true
22 }

Listing 6.9. Adjustments performed to the aws_db_instance resource block.

The changes performed are quite self-explanatory, notice that in this version
the password of the DB is no more hard-coded but is specified inside the
db_pwd Terraform variable. As shown by the listing this variable has the field
sensitive set to true and is not defined with a default value. The sensitive
flag should be set to true because it prevents Terraform from showing the
variable value in the output produced during the plan or apply operations.

83

6 – Wrap-Up model definition and Mitigation strategies

Since the variable does not own a default value, the actual value must be
passed via the terraform plan command using the -var parameter. The
listing 6.10 lists the changes performed to the “Build” stage of the pipeline
for IaC and IaCSec.

1 ...
2 stage (" Build ") {
3 steps {
4 echo " Building "
5 withCredentials ([... ,
6 usernamePassword (credentialsId : "terraform -db - credentials

", usernameVariable : " DB_USR ", passwordVariable : " DB_PWD ")
]) {

7 sh " terraform init -no -color"
8 sh " terraform plan -out plan. tfplan -refresh =false -no -

color -var= db_pwd =\ $DB_PWD "
9 }

10 sh " terraform show -json plan. tfplan > plan.json"
11 }
12 }
13 ...

Listing 6.10. Adjustments performed to the pipeline for IaC and IaCSec.

In this new version of the pipeline, the password of the database is stored
inside as credentials inside Jenkins. The value is retrieved using the function
withCredentials and put inside the DB_PWD environment variable. The
latter is assigned to the db_pwd variable using the -var parameter of the
terraform plan command.

6.4.4 Cloud Custodian violations
In this case, there are no violations. This is because the custom policies
produced for Cloud Custodian are already enforced during the infrastructure
deployment phase by the IaCSec tools. However, this does not make the
CSPM controls useless since is still possible to elude the IaCSec controls by
changing the infrastructure configuration after the deployment.

6.4.5 OPA Gatekeeper violations
The listing 6.11 presents the first definition of the sample application Pod.
Note that it contains some hard-coded sensitive environment variables and
therefore it is not compliant with the custom policy developed in the PoC.

84

6.4 – Mitigation strategies description

1 apiVersion : v1
2 kind: Pod
3 metadata :
4 name: demo -app
5 labels :
6 purpose : demonstrate - envars
7 spec:
8 containers :
9 - name: demo -app

10 image: 122333444455555. dkr.ecr.eu -west -3. amazonaws .com/
demo -pac:tag

11 env:
12 - name: DB_URI
13 value: <DB_URI >
14 - name: DB_USR
15 value: user
16 - name: DB_PWD
17 value: password
18 restartPolicy : Never

Listing 6.11. First definition of the sample application Pod.

The values of the DB_USR and DB_PWD environment variables are sensible
since they are employed by the sample application for authenticating with
the RDS DB instance. Therefore, they should not be hard-coded.

1 Error from server (Forbidden): error when creating " target /
app.yaml ": admission webhook " validation . gatekeeper .sh"
denied the request : [demo -app] The following environment
variables for the container demo -app are hardcoded : {"
DB_PWD ", " DB_USR "}

Listing 6.12. Output of the kubectl apply command while passing to it a
Pod definition with sensitive environment variables hard-coded in it.

6.4.6 CWPP mitigations
Since the custom CWPP policy prevents the DB credentials from being hard-
coded into the Pod definition, the first action that has to be performed is to
modify the file which contains it.

The listing 6.13 contains the changes performed for making the Pod com-
pliant with the custom policy.

1 ...
2 env:
3 - name: DB_URI
4 value: <DB_URI >

85

6 – Wrap-Up model definition and Mitigation strategies

5 - name: DB_USR
6 valueFrom :
7 secretKeyRef :
8 name: db -user -pass
9 key: user

10 - name: DB_PWD
11 valueFrom :
12 secretKeyRef :
13 name: db -user -pass
14 key: password
15 ...

Listing 6.13. Adjustments performed to the YAML file which
contain the Pod definition.

This new definition gathers the values for the DB_USR and DB_PWD environ-
ment variables directly from a Kubernetes secret [93] called db-user-pass.
A Kubernetes Secret is an object that contains a sensitive value associated
with a key. This secret is created by a new step inserted inside the Deploy
app stage of the Jenkins pipeline in charge of deploying the sample applica-
tion. The new step is shown by the listing 6.14

1 withCredentials ([... , usernamePassword (credentialsId : "
terraform -db - credentials ", usernameVariable : " DB_USR ",
passwordVariable : " DB_PWD ")]){

2 sh " kubectl delete secret db -user -pass"
3 sh " kubectl create secret generic db -user -pass --from -

literal =user =\ $DB_USR --from - literal = password =\ $DB_PWD "
4 }

Listing 6.14. Adjustments performed to the CWPP pipeline.

The credentials are retrieved from the credentials stored inside Jenkins using
the block withCredentials and put inside the DB_USR and DB_PWD environ-
ment variables. These variables are passed as values for the --from-literal
parameter of the command kubectl create secret.

The parameter allows the definition of a key-value binding. In this case,
the keys are called “user” and “password” while the values are the content
of the DB_USR and DB_PWD environment variables. Note that before the se-
cret creation, eventual previous definitions of it are deleted by the kubectl
delete secret command.

86

Chapter 7

Testing and results

The objective of this chapter is to analyze and test the PaC tools utilized
inside the PoC. This analysis is conducted for testing the performance impact
and the effectiveness of the various PaC tools over the target infrastructure.
More specifically the analysis starts with an evaluation of the effectiveness
of the IaCSec tools. Then, there is an evaluation of their impact on the
execution of the CI/CD pipeline used for deploying the infrastructure. As
regards CSPM and CWPP tools, the objective is to analyze the resource
consumption of the respective controls.

7.1 Test environment
All tests are conducted on a Lenovo Ideapad 530S-15IBK using a Linux
virtual machine (VM). The VM is configured with 8 GB of ram, 2 CPU
cores, and 50 GB of disk space. The OS used is Ubuntu 22.04.1 (Kernel
version 5.19.0-35-generic). Tests on the IaCSec tools are performed using a
CI/CD pipeline executed by Jenkins 2.375.2. The IaCSec tools posed un-
der evaluation are Regula 2.10.0 and tfsec 1.28.1. The CSPM performance
and resource consumption evaluation is performed directly on AWS by de-
ploying an AWS Lambda function using Cloud Custodian 0.9.19. The per-
formance impact of the CWPP is evaluated by monitoring an EKS cluster
(Kubernetes 1.25) with a node instance of type “t3a.medium” (2 CPU cores
and 4GB of ram). The cluster is employed for executing OPA Gatekeeper
3.11.0 and the sample application. The tools used to perform the mon-
itoring are fluentd-kubernetes-daemonset 1.7.3 and cloudwatch-agent
1.247358.0b252413.

87

7 – Testing and results

7.2 IaCSec tools effectiveness evaluation
This evaluation is performed on the first version of the target infrastructure.
It aims to measure the effectiveness resulting from the combination of the
tools used within the pipeline for IaC and IaCSec. Data are gathered from
the reports produced by the corresponding CI/CD pipeline and inserted into
an Excel file for being analyzed. Each control result is manually checked
to determine whether it is a: true positive, true negative, false positive, or
false negative. Also, if there are controls from different tools having the same
purpose, their results are associated and classified only once.

A control result is a true positive when it identifies a misconfiguration that
effectively exists, otherwise, the result is a false positive. Similarly, a result
is a true negative when it indicates the absence of a misconfiguration that
is not present, or else the control result is a false negative. Moreover, only
the controls coming from the default policy pack of the tools are considered
in this evaluation. Hence, the misconfiguration relative to the hard-coded
password of the DB instance is classified as a false negative even if there is a
custom policy that detects it.
The table 7.1 shows the result of the classification.

Class Number of results
True positives (TP) 10
False negatives (FN) 3
False positives (FP) 3
True negatives (TN) 208

Table 7.1. Result of the classification.

The cardinality of each class is employed to calculate two metrics used for
measuring the actual effectiveness derived from the combination of the tools.
These parameters are called: “True Positive Rate” (TPR) 7.1 and “False
Positive Rate” (FPR) 7.2. These metrics represent the probability that a
control result is a true positive or a false positive, respectively. They are
defined as follows:

TPR = TP

TP + FN
(7.1) FPR = FP

FP + TN
(7.2)

88

7.2 – IaCSec tools effectiveness evaluation

The table 6.2 shows the actual value of these metrics.

Metric Value

TP rate 0.769
FP rate 0.014

Table 7.2. TPR and FPR values.

To better understand the results of this evaluation, a graphical representation
of the result is constructed. This representation is based on the fact that the
couple (FPR, TPR) can be interpreted as a point of a two-dimensional space.
Is interesting to note that since both components represent a probability
their value is limited between 0 and 1. Therefore, the axis values can be also
limited to this range.

Figure 7.1. Graph representing the result of the evaluation.

89

7 – Testing and results

A tool aims to maximize the TPR and minimize the FPR; this means that
its couple (FPR, TPR) must be as close as possible to the point (0,1). The
graph has a diagonal line from the bottom left to the top right corners. If
a tool detects misconfigurations randomly, then the point that represents its
(FPR, TPR) couple will belong to this line. If a point is above the line, it
means that the corresponding tool detects misconfigurations better than ran-
domly. Conversely, if it is below the line, the tool detects misconfigurations
worse than randomly.

The graph depicted by the figure 7.1 shows a pretty good result since
the point (0.014, 0.769) is above the line and very close to the point with
coordinates (0,1).

7.3 IaCSec tools overhead quantification
The quantification is performed by analyzing the data about the overhead
caused by the IaCSec tools inside the pipeline. The analysis considers only
the execution time of the stage in charge of verifying the infrastructure code.
Note that during the multiple executions of the pipeline, the step relative
to the infrastructure deployment is not executed since it takes at least ten
minutes to terminate and the data about its execution time does not give
any additional information.

The overhead is caused by the additional execution time needed for ex-
ecuting the “Verify Iac-sec” stage. These times are gathered by analyzing
the results of 126 successful executions of the pipeline for IaC and IaCSec
tools. As shown by the figure 7.2 Jenkins output the execution time of each
sub-stage of the “Verify Iac-sec” stage, even if they are executed in parallel.

Figure 7.2. Sample of the stage execution times shown by Jenkins.

90

7.4 – CSPM resource consumption

Hence, for obtaining the effective execution of the “Verify Iac-sec” stage,
the execution time recorded by Jenkins for this stage is summed with the
maximum between the execution time of the stages “Regula” and “tfsec”.
The analysis carried out that the average additional execution time needed
for performing the stage in charge of performing the IaCSec check is about
4.322s.

Figure 7.3. Pipeline execution time histogram.

Finally, the histogram represented by the figure 7.3 summarizes the result of
the evaluation. Each bar represents the number of executions whose duration
falls into the corresponding time interval. The diagram shows that most
executions take less than six seconds, a negligible overhead time for a pipeline
that is not executed very frequently and whose duration is of several minutes.

7.4 CSPM resource consumption
This analysis aims to quantify the average duration and memory consump-
tion of a sample CSPM control deployed by Cloud Custodian. The control
under examination is the periodic custom policy developed for the proof-of-
concept. The data about the relevant metric are collected using the Amazon
CloudWatch service [94]. This service allows getting and querying informa-
tion from the logs produced by the execution of the lambda function in charge
of enforcing the control. In this analysis, the data collected from the logs are
for the duration and memory consumption of 101 lambda executions.

91

7 – Testing and results

Figure 7.4. Lambda execution time histogram.

The histogram shown by the figure 7.4 is the result of the analysis over the
duration of the lambda function invocations and represents the distribution
of the execution times of each invocation. Note that more than half of the
executions fall in the interval between 175 ms and 200 ms although the
average duration is 205.73 ms.

Figure 7.5. Lambda memory consumption histogram.

92

7.5 – CWPP resource consumption

Finally, the diagram illustrated by the figure 7.5 derives from the evaluation
of the memory consumption of each invocation. In this case, the average
memory consumption is 95.052 MB and more than half of the executions fall
into the interval between 95 MB and 100 MB.

7.5 CWPP resource consumption
The purpose of this analysis is to verify the effective resource consumption of
OPA Gatekeeper and identify its impact on the overall performance. Also,
in this case, the data for this investigation are gathered using the Amazon
CloudvWatch service. Unfortunately, is not possible to monitor the clus-
ter directly with CloudWatch. Hence, the monitoring is performed via the
deployment of some Kubernetes resources whose job is to collect and send
metrics to CloudWatch. These metrics are collected using Fluentd [95] and
sent to CloudWatch by the CloudWatch agent [96].

7.5.1 How the monitoring was performed
The monitoring covers the cluster’s network utilization and the CPU and
memory utilization by the cluster, namespaces, and services. The analysis
lasted about two hours and thirty minutes during which two versions of the
sample application and OPA Gatekeeper were run within the cluster. The
two versions of the sample applications were deployed using two different
configuration files. One complaint with the custom CWPP policy developed
for the proof-of-concept and one not.

To create a base reference, the cluster has been run for forty minutes
without OPA Gatekeeper. In this way is possible to compare the resource
consumption before and after the deployment of the tool.

Finally, during the last thirty minutes, some tests were performed to verify
the behavior of OPA Gatekeeper and the cluster when multiple deployment
requests are sent for one or more non-compliant resources. More specifically,
three groups of requests were sent at three different times. Each group con-
sisted of ten requests sent in parallel. What differentiates the various groups
is the number of non-compliant resources contained within the requests. In
the first group, each request contains only one non-compliant resource. The
second contains a series of requests with exponentially increasing numbers of
non-compliant resources. The first request contains one resource, the second
two, and so on until the last one contains 1024 resources. The last group is
composed of requests with 1024 non-compliant resources each.

93

7 – Testing and results

7.5.2 Results

The graph shown by figure 7.6 illustrates the trend over time of CPU and
memory utilization by the cluster. From this point of view, the CPU uti-
lization seems to be unaffected by OPA Gatekeeper, unlike the memory con-
sumption which seems to have increased slightly after the deployment of the
tool.

Figure 7.6. Cluster resource utilization graph.

Analyses performed on the data resulting from monitoring show that resource
consumption of OPA Gatekeeper appears to be practically negligible. Indeed,
the “Namespace memory utilization” graph depicted in the figure 7.7 high-
lights that the memory consumption of resources belonging to the namespace
gatekeeper-system is always below 1%. Moreover, the graph referring to
the CPU consumption shows a quite similar result except for some peaks.

These phenomena seem to be related to the ones shown by the “Cluster
network utilization” graph, whose peaks are generated by the submission of
the groups of requests defined previously. Note that memory consumption
also has peaks at request forwarding, but they appear to be much lower and
smoother than those shown by the “Namespace CPU utilization” graph.

94

7.5 – CWPP resource consumption

Figure 7.7. Cluster network utilization and resource consumption of the
gatekeeper-system namespace.

95

7 – Testing and results

The graphs depicted by the figure 7.8 show the resource consumption of the
gatekeeper-webhook-service. As expected they follow the trend described
by the “Cluster network utilization” graph, since this service is in charge
of intercepting and analyzing the request directed to the Kubernetes API
Server.

Finally, it is interesting to note that the line plotted on this graph is prac-
tically overlapping with the line shown by the graph on CPU consumption.
From this, it can be deduced that the gatekeeper-webhook-service turns
out to be the resource with the greatest impact on OPA Gatekeeper’s total
resource consumption.

Figure 7.8. Resource utilization of the gatekeeper-webhook-service.

96

Chapter 8

Conclusions and future
works

This thesis has shown how compliance automation can be implemented in a
cloud environment using Policy as Code approach.

It began by defining basic concepts such as cloud computing, cloud com-
pliance, and policy. This work has explored the state of the art of Policy
as Code and how it is useful for implementing Infrastructure as Code Secu-
rity, Cloud Workload Protection and Cloud Security Posture Management.
Moreover, some other concepts akin to DevOps such as infrastructure as code
and CI/CD pipelines were discussed. The work investigated the open-source
solution available for deploying a proof-of-concept utilized for demonstrating
the potentialities of the selected tools.

The set of tools employed during the development of the proof-of-concept
demonstrated that Policy as Code approach works and can be integrated
inside a DevSecOps methodology.

The CI/CD pipelines developed during this study permitted the identifi-
cation of various policy violations in the default configuration of the proof-
of-concept’s cloud infrastructure and sample application. These policy vio-
lations are already present and are not inserted on purpose but detected by
the tools. Therefore, the execution of the pipeline was helpful in identifying
these misconfigurations.

The pipeline in charge of deploying the proof-of-concept’s cloud infrastruc-
ture discovered various misconfigurations in the infrastructure code. These
misconfigurations were identified by the Infrastructure as Code Security tools
used directly within the pipeline.

The one produced to deploy the sample proof-of-concept application and

97

8 – Conclusions and future works

Cloud Workload Protection checks within the Kubernetes cluster, identified
a policy violation in the resource definition used to deploy the application.

The pipeline responsible for the implementation of Cloud Security Posture
Management controls made it possible to monitor the compliance status of
the cloud infrastructure.

Finally, some performance evaluations were carried out. The one for In-
frastructure as Code Security tools proved their quite good effectiveness as
well as their negligible impact on the pipeline execution time. The evaluation
against a sample Cloud Security Posture Management control showed a low
memory consumption and execution time. This is a good result given that
periodic and event-based controls are performed within Amazon Lambda
functions that are billed based on memory consumption and execution time.
The last evaluation was performed on the Kubernetes cluster and demon-
strated the low impact on the cluster resource consumption of the Cloud
Workload Protection tool.

8.1 Future works
Some aspects dealt with in this thesis can be further analyzed and used as
hints for future works.

First, the Policy as Code tools presented in this study were tested only on
an AWS environment. Since they are also compatible with Microsoft Azure
[42] and Google Cloud [43], it would be interesting to understand how the
tools behave when they operate in these cloud environments.

Also, the proof-of-concept can be further refined to emulate a real pro-
duction environment. In this way is possible to analyze more accurately the
impact of Policy as Code in the cloud compliance automation. Moreover,
this study only covered the discovery of policy violations, but not how they
can be notified once detected.

Furthermore, both Cloud Security Posture Management policies and the
Infrastructure as Code Security ones are related to the cloud infrastructure
but enforced at different moments. It might make sense to find a way to
verify that each Infrastructure as Code Security policy has a corresponding
Cloud Security Posture Management policy.

Finally, this thesis has only addressed open-source solutions; it might be
interesting to explore proprietary ones and compare them with the solutions
discussed in this work.

98

Bibliography

[1] Mell, P. and Grance, T. (2011), “The NIST Definition of Cloud
Computing, Special Publication (NIST SP),” National Institute of
Standards and Technology, Gaithersburg, MD, 2011, DOI:
10.6028/NIST.SP.800-145

[2] “Public Cloud - Worldwide”, Statista. [Online]. Available: https:
//www.statista.com/outlook/tmo/public-cloud/worldwide

[3] A. Hendre and K. P. Joshi, “2015 IEEE 8th International Conference
on Cloud Computing,” New York, NY, USA, 2015, pp. 1081-1084,
DOI: 10.1109/CLOUD.2015.157

[4] Sangkyun Kim, “IT compliance of industrial information systems:
Technology management and industrial engineering perspective,”
Journal of Systems and Software, Volume 80, Issue 10, 2007, Pages
1590-1593, ISSN 0164-1212, DOI: 10.1016/j.jss.2007.01.016

[5] EU, “EU General Data Protection Regulation (GDPR),” 2017.
[Online]. Available: https://gdpr.eu/
article-83-conditions-for-imposing-administrative-fines/

[6] L. Johnson (NIST), Kelley Dempsey (NIST), Ron Ross (NIST),
Sarbari Gupta (Electrosoft Services), Dennis Bailey (Electrosoft
Services) “Guide for Security-Focused Configuration Management of
Information Systems,” Special Publication (NIST SP), National
Institute of Standards and Technology, Gaithersburg, MD, 2011 DOI:
10.6028/NIST.SP.800-128

[7] Jangirala Srinivas, Ashok Kumar Das, Neeraj Kumar, “Government
regulations in cyber security: Framework, standards and
recommendations,” Future Generation Computer Systems, Volume
92, 2019, Pages 178-188, ISSN 0167-739X, DOI:
10.1016/j.future.2018.09.063

[8] European Union Agency for Cybersecurity, Drogkaris, P., Bourka, A.,
“Guidance and gaps analysis for European standardisation : privacy

99

https://doi.org/10.6028/NIST.SP.800-145
https://www.statista.com/outlook/tmo/public-cloud/worldwide
https://www.statista.com/outlook/tmo/public-cloud/worldwide
https://doi.org/10.1109/CLOUD.2015.157
https://doi.org/10.1016/j.jss.2007.01.016
https://gdpr.eu/article-83-conditions-for-imposing-administrative-fines/
https://gdpr.eu/article-83-conditions-for-imposing-administrative-fines/
https://doi.org/10.6028/NIST.SP.800-128
https://doi.org/10.1016/j.future.2018.09.063

Bibliography

standards in the information security context,” Drogkaris, P. (editor),
Bourka, A. (editor), European Network and Information Security
Agency, 2019, DOI: 10.2824/698562

[9] Scarfone, K. , Benigni, D. and Grance, T. (2009), “Cyber Security
Standards” Wiley Handbook of Science and Technology for Homeland
Security, John Wiley & Sons, Inc., Hoboken, NJ, [online]. Available:
https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153

[10] Grance, T. and Jansen, W. (2011), “Guidelines on Security and
Privacy in Public Cloud Computing,” Special Publication (NIST SP),
National Institute of Standards and Technology, Gaithersburg, MD,
2011 DOI: 10.6028/NIST.SP.800-144

[11] Robert Amor, Johannes Dimyadi, “The promise of automated
compliance checking,” Developments in the Built Environment,
Volume 5, 2021, 100039, ISSN 2666-1659, DOI:
10.1016/j.dibe.2020.100039

[12] Liu, F. , Tong, J. , Mao, J. , Bohn, R. , Messina, J. , Badger, M. and
Leaf, D. (2011), “NIST Cloud Computing Reference Architecture,”
Special Publication (NIST SP), National Institute of Standards and
Technology, Gaithersburg, MD, 2011, DOI: 10.6028/NIST.SP.500-292

[13] “Shared Responsibility Model Explained,” Cloud Security Alliance,
2020. [Online]. Available: https://cloudsecurityalliance.org/
blog/2020/08/26/shared-responsibility-model-explained/

[14] H. Tianfield, “Security issues in cloud computing,” 2012 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Seoul, Korea (South), 2012, pp. 1082-1089, DOI:
10.1109/ICSMC.2012.6377874

[15] “Shared Responsibility for Cloud Security: What You Need to
Know,” Center for Internet Security. [Online]. Available:
https://www.cisecurity.org/insights/blog/
shared-responsibility-cloud-security-what-you-need-to-know

[16] “Shared Responsibility Model,” Amazon Web Services. [Online].
Available: https:
//aws.amazon.com/compliance/shared-responsibility-model

[17] “Philosophy,” Open Policy Agent, [Online]. Available:
https://www.openpolicyagent.org/docs/latest/philosophy/

[18] “policy,” Cambridge Dictionary, [Online]. Available:
https://dictionary.cambridge.org/dictionary/english/policy

[19] W. Seaton, “What is Policy as Code,” Styra [Online]. Available:

100

https://doi.org/10.2824/698562
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152153
https://doi.org/10.6028/NIST.SP.800-144
https://doi.org/10.1016/j.dibe.2020.100039
https://doi.org/10.6028/NIST.SP.500-292
https://cloudsecurityalliance.org/blog/2020/08/26/shared-responsibility-model-explained/
https://cloudsecurityalliance.org/blog/2020/08/26/shared-responsibility-model-explained/
https://doi.org/10.1109/ICSMC.2012.6377874
https://www.cisecurity.org/insights/blog/shared-responsibility-cloud-security-what-you-need-to-know
https://www.cisecurity.org/insights/blog/shared-responsibility-cloud-security-what-you-need-to-know
https://aws.amazon.com/compliance/shared-responsibility-model
https://aws.amazon.com/compliance/shared-responsibility-model
https://www.openpolicyagent.org/docs/latest/philosophy/
https://dictionary.cambridge.org/dictionary/english/policy

Bibliography

https://www.styra.com/blog/
what-is-policy-as-code-definition-and-benefits/

[20] Y. Matharu, T. Coulter, “Introduction to policy as code with
automation,” Red Hat [Online]. Available:
https://www.redhat.com/sysadmin/policy-as-code-automation

[21] “Policy as Code,” HashiCorp [Online]. Available: https:
//docs.hashicorp.com/sentinel/concepts/policy-as-code

[22] S. Jones, J. Noppen, and F. Lettice, “Management challenges for
DevOps adoption within UK SMEs,” In Proceedings of the 2nd
International Workshop on Quality-Aware DevOps (QUDOS 2016),
Association for Computing Machinery, New York, NY, USA, 7–11,
2016, DOI: 10.1145/2945408.2945410

[23] R. Jabbari, N. Ali, K. Petersen, and B. Tanveer, “What is DevOps?
A Systematic Mapping Study on Definitions and Practices,” In
Proceedings of the Scientific Workshop Proceedings of XP2016 (XP
’16 Workshops). Association for Computing Machinery, New York,
NY, USA, Article 12, 1–11, 2016, DOI: 10.1145/2962695.2962707

[24] C. A. Cois, J. Yankel and A. Connell, “Modern DevOps: Optimizing
software development through effective system interactions,” 2014
IEEE International Professional Communication Conference (IPCC),
Pittsburgh, PA, USA, 2014, pp. 1-7, DOI:
10.1109/IPCC.2014.7020388

[25] H. Dhaduk, “DevOps Lifecycle: 7 Phases Explained in Detail with
Examples,” Simform, [Online]. Available:
https://www.simform.com/blog/devops-lifecycle/

[26] T. Tran, “Disadvantages of DevOps? Why Is It Challenging?,” Orient
Software Development Corp, [Online]. Available:
https://www.orientsoftware.com/blog/
advantages-and-disadvantages-of-devops/

[27] “What is a CI/CD pipeline?,” Red Hat [Online]. Available:
https://www.redhat.com/en/topics/devops/
what-cicd-pipeline?cicd=32h281b

[28] “What is Infrastructure as Code (IaC)?,” Red Hat [Online]. Available:
https://www.redhat.com/en/topics/automation/
what-is-infrastructure-as-code-iac

[29] “What is DevSecOps?,” Red Hat [Online]. Available:
https://www.redhat.com/en/topics/devops/what-is-devsecops

[30] “DevSecOps Overview,” Snyk [Online]. Available:
https://snyk.io/series/devsecops/

101

https://www.styra.com/blog/what-is-policy-as-code-definition-and-benefits/
https://www.styra.com/blog/what-is-policy-as-code-definition-and-benefits/
https://www.redhat.com/sysadmin/policy-as-code-automation
https://docs.hashicorp.com/sentinel/concepts/policy-as-code
https://docs.hashicorp.com/sentinel/concepts/policy-as-code
https://doi.org/10.1145/2945408.2945410
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/IPCC.2014.7020388
https://www.simform.com/blog/devops-lifecycle/
https://www.orientsoftware.com/blog/advantages-and-disadvantages-of-devops/
https://www.orientsoftware.com/blog/advantages-and-disadvantages-of-devops/
https://www.redhat.com/en/topics/devops/what-cicd-pipeline?cicd=32h281b
https://www.redhat.com/en/topics/devops/what-cicd-pipeline?cicd=32h281b
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://snyk.io/series/devsecops/

Bibliography

[31] P. Bhandari “Infrastructure as Code Security and Best Practices | A
Quick Guide,” XENONSTACK [Online]. Available: https://www.
xenonstack.com/insights/infrastructure-as-code-security

[32] “Unit 42 Cloud Threat Report, Vol. 2,” Palo Alto Networks [Online].
Available: https://www.paloaltonetworks.com/resources/
research/cloud-threat-report-spring-2020

[33] “Infrastructure as Code in a DevSecOps World” Snyk [Online].
Available: https://snyk.io/learn/infrastructure-as-code-iac/

[34] “Cloud security posture management explained,” Snyk [Online].
Available: https:
//snyk.io/series/cloud-security/posture-management-cspm/

[35] “What is Cloud Workload Protection?,” VMware [Online]. Available:
https://www.vmware.com/topics/glossary/content/
workload-protection.html

[36] “What is a Cloud Workload Protection Platform (CWPP)?,” Check
Point Software Technologies [Online]. Available:
https://www.checkpoint.com/cyber-hub/cloud-security/
what-is-a-cloud-workload-protection-platform-cwpp/

[37] “Jenkins User Documentation,” Jenkins [Online]. Available:
https://www.jenkins.io/doc/

[38] “Continuous Integration Software Market Share,” Datanyze, Last
visit: 19/02/2023, [Online]. Available:
https://www.datanyze.com/market-share/ci--319

[39] “Pipeline,” Jenkins [Online]. Available:
https://www.jenkins.io/doc/book/pipeline/

[40] “What is Terraform?,” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/intro

[41] “Amazon Web Services,” Amazon Web Services [Online]. Available:
https://aws.amazon.com/

[42] “Azure,” Microsoft [Online]. Available:
https://azure.microsoft.com/en-us/

[43] “Google Cloud,” Google [Online]. Available:
https://cloud.google.com/

[44] “Terraform Language Documentation,” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/language

[45] “State,” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/language/state

[46] “Introduction,” Open Policy Agent [Online]. Available:
https://www.openpolicyagent.org/docs/latest/

102

https://www.xenonstack.com/insights/infrastructure-as-code-security
https://www.xenonstack.com/insights/infrastructure-as-code-security
https://www.paloaltonetworks.com/resources/research/cloud-threat-report-spring-2020
https://www.paloaltonetworks.com/resources/research/cloud-threat-report-spring-2020
https://snyk.io/learn/infrastructure-as-code-iac/
https://snyk.io/series/cloud-security/posture-management-cspm/
https://snyk.io/series/cloud-security/posture-management-cspm/
https://www.vmware.com/topics/glossary/content/workload-protection.html
https://www.vmware.com/topics/glossary/content/workload-protection.html
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-a-cloud-workload-protection-platform-cwpp/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-a-cloud-workload-protection-platform-cwpp/
https://www.jenkins.io/doc/
https://www.datanyze.com/market-share/ci--319
https://www.jenkins.io/doc/book/pipeline/
https://developer.hashicorp.com/terraform/intro
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/language/state
https://www.openpolicyagent.org/docs/latest/

Bibliography

[47] “Policy Language,” Open Policy Agent [Online]. Available: https:
//www.openpolicyagent.org/docs/latest/policy-language/

[48] “Home,” Aqua Security [Online]. Available:
https://aquasecurity.github.io/tfsec/v1.28.1/

[49] “Checks,” Aqua Security [Online]. Available:
https://aquasecurity.github.io/tfsec/v1.28.1/checks/aws/
api-gateway/enable-access-logging/

[50] “Welcome to the Regula Docs!,” Fugue [Online]. Available:
https://regula.dev/index.html

[51] “Introduction,” Gatekeeper [Online]. Available: https:
//open-policy-agent.github.io/gatekeeper/website/docs/

[52] “Cloud Custodian Documentation,” Cloud Custodian [Online].
Available: https://cloudcustodian.io/docs/index.html

[53] “Writing Custom Rego Policies,” Aqua Security [Online]. Available:
https:
//aquasecurity.github.io/tfsec/v1.28.1/guides/rego/rego/

[54] “Writing Rules,” Fugue [Online]. Available:
https://regula.dev/development/writing-rules.html

[55] “OPA Constraint Framework,” Open Policy Agent [Online]
https://github.com/open-policy-agent/frameworks/tree/
master/constraint

[56] “How to use Gatekeeper,” Gatekeeper [Online]. Available: https://
open-policy-agent.github.io/gatekeeper/website/docs/howto

[57] “Getting Started,” Cloud Custodian [Online]. Available:
https://cloudcustodian.io/docs/aws/gettingstarted.html#
write-your-first-policy

[58] “Overview,” Kubernetes [Online]. Available:
https://kubernetes.io/docs/concepts/overview/

[59] “Most wanted cloud platform among developers worldwide as of
2022,” Statista. [Online]. Available:
https://www.statista.com/statistics/793884/
worldwide-developer-survey-most-wanted-platform/

[60] “AWS Documentation,” Amazon Web Services [Online]. Available:
https://docs.aws.amazon.com/

[61] “AWS Regions and Availability Zones,” Amazon Web Services
[Online]. Available: https://docs.aws.amazon.com/whitepapers/
latest/get-started-documentdb/
aws-regions-and-availability-zones.html

103

https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://aquasecurity.github.io/tfsec/v1.28.1/
https://aquasecurity.github.io/tfsec/v1.28.1/checks/aws/api-gateway/enable-access-logging/
https://aquasecurity.github.io/tfsec/v1.28.1/checks/aws/api-gateway/enable-access-logging/
https://regula.dev/index.html
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://cloudcustodian.io/docs/index.html
https://aquasecurity.github.io/tfsec/v1.28.1/guides/rego/rego/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/rego/rego/
https://regula.dev/development/writing-rules.html
https://github.com/open-policy-agent/frameworks/tree/master/constraint
https://github.com/open-policy-agent/frameworks/tree/master/constraint
https://open-policy-agent.github.io/gatekeeper/website/docs/howto
https://open-policy-agent.github.io/gatekeeper/website/docs/howto
https://cloudcustodian.io/docs/aws/gettingstarted.html#write-your-first-policy
https://cloudcustodian.io/docs/aws/gettingstarted.html#write-your-first-policy
https://kubernetes.io/docs/concepts/overview/
https://www.statista.com/statistics/793884/worldwide-developer-survey-most-wanted-platform/
https://www.statista.com/statistics/793884/worldwide-developer-survey-most-wanted-platform/
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/whitepapers/latest/get-started-documentdb/aws-regions-and-availability-zones.html
https://docs.aws.amazon.com/whitepapers/latest/get-started-documentdb/aws-regions-and-availability-zones.html
https://docs.aws.amazon.com/whitepapers/latest/get-started-documentdb/aws-regions-and-availability-zones.html

Bibliography

[62] “Module Blocks,” HashiCorp [Online]. Available: https://
developer.hashicorp.com/terraform/language/modules/syntax

[63] HashiCorp [Online]. Available: https:
//developer.hashicorp.com/terraform/language/resources

[64] HashiCorp [Online]. Available: https:
//developer.hashicorp.com/terraform/language/data-sources

[65] HashiCorp [Online]. Available: https://developer.hashicorp.com/
terraform/language/values/variables

[66] “AWS VPC Terraform module,” HashiCorp [Online]. Available:
https://registry.terraform.io/modules/
terraform-aws-modules/vpc/aws/latest

[67] “Amazon EKS VPC and subnet requirements and considerations,”
Amazon Web Services [Online]. Available: https://docs.aws.
amazon.com/eks/latest/userguide/network_reqs.html

[68] “AWS EKS Terraform module,” HashiCorp [Online]. Available:
https://registry.terraform.io/modules/
terraform-aws-modules/eks/aws/latest

[69] “Control traffic to resources using security groups,” Amazon Web
Services [Online]. Available: https://docs.aws.amazon.com/vpc/
latest/userguide/VPC_SecurityGroups.html

[70] “IAM roles,” Amazon Web Services [Online]. Available: https:
//docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

[71] “AWS Systems Manager Session Manager,” Amazon Web Services
[Online]. Available: https://docs.aws.amazon.com/
systems-manager/latest/userguide/session-manager.html

[72] “What are VPC endpoints?,” Amazon Web Services [Online].
Available: https://docs.aws.amazon.com/whitepapers/latest/
aws-privatelink/what-are-vpc-endpoints.html

[73] “AWS VPC Endpoints Terraform sub-module,” HashiCorp [Online].
Available: https:
//registry.terraform.io/modules/terraform-aws-modules/vpc/
aws/latest/submodules/vpc-endpoints

[74] “What is Amazon CloudWatch Logs?” Amazon Web Services
[Online]. Available: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

[75] “Resource: aws_db_instance,” HashiCorp [Online]. Available:
https://registry.terraform.io/providers/hashicorp/aws/
latest/docs/resources/db_instance

[76] “Resource: aws_security_group” HashiCorp [Online]. Available:

104

https://developer.hashicorp.com/terraform/language/modules/syntax
https://developer.hashicorp.com/terraform/language/modules/syntax
https://developer.hashicorp.com/terraform/language/resources
https://developer.hashicorp.com/terraform/language/resources
https://developer.hashicorp.com/terraform/language/data-sources
https://developer.hashicorp.com/terraform/language/data-sources
https://developer.hashicorp.com/terraform/language/values/variables
https://developer.hashicorp.com/terraform/language/values/variables
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/whitepapers/latest/aws-privatelink/what-are-vpc-endpoints.html
https://docs.aws.amazon.com/whitepapers/latest/aws-privatelink/what-are-vpc-endpoints.html
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest/submodules/vpc-endpoints
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest/submodules/vpc-endpoints
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws/latest/submodules/vpc-endpoints
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instance
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/db_instance

Bibliography

https://registry.terraform.io/providers/hashicorp/aws/
latest/docs/resources/security_group

[77] “Resource: aws_security_group_rule” HashiCorp [Online]. Available:
https://registry.terraform.io/providers/hashicorp/aws/
latest/docs/resources/security_group_rule

[78] “Backend Configuration” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/language/
settings/backends/configuration

[79] “Provider Configuration,” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/language/
providers/configuration

[80] “Basic CLI Features,” HashiCorp [Online]. Available:
https://developer.hashicorp.com/terraform/cli/commands

[81] “Command: init,” HashiCorp [Online]. Available: https:
//developer.hashicorp.com/terraform/cli/commands/init

[82] “Provisioning Infrastructure with Terraform,” HashiCorp [Online].
Available: https://developer.hashicorp.com/terraform/cli/run

[83] “Credentials Binding,” Jenkins [Online]. Available:
https://plugins.jenkins.io/credentials-binding/

[84] “Using credentials,” Jenkins [Online]. Available:
https://www.jenkins.io/doc/book/using/using-credentials/

[85] “kustomize,” GitHub [Online]. Available:
https://github.com/kubernetes-sigs/kustomize

[86] “Apply,” Kubernetes [Online]. Available: https://kubernetes.io/
docs/reference/generated/kubectl/kubectl-commands#apply

[87] “Amazon Web Services,” Center for Internet Security [Online].
Available:
https://www.cisecurity.org/benchmark/amazon_web_services

[88] “What is AWS Lambda?,” Amazon Web Services [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

[89] “What Is Amazon EventBridge?,” Amazon Web Services [Online].
Available: https://docs.aws.amazon.com/eventbridge/latest/
userguide/eb-what-is.html

[90] “Amazon Elastic Block Store (Amazon EBS)” Amazon Web Services
[Online]. Available: https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/AmazonEBS.html

[91] “Ignoring Checks,” Aqua Security [Online]. Available:
https://aquasecurity.github.io/tfsec/v1.28.1/guides/
configuration/ignores/

105

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/security_group
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/security_group
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/security_group_rule
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/security_group_rule
https://developer.hashicorp.com/terraform/language/settings/backends/configuration
https://developer.hashicorp.com/terraform/language/settings/backends/configuration
https://developer.hashicorp.com/terraform/language/providers/configuration
https://developer.hashicorp.com/terraform/language/providers/configuration
https://developer.hashicorp.com/terraform/cli/commands
https://developer.hashicorp.com/terraform/cli/commands/init
https://developer.hashicorp.com/terraform/cli/commands/init
https://developer.hashicorp.com/terraform/cli/run
https://plugins.jenkins.io/credentials-binding/
https://www.jenkins.io/doc/book/using/using-credentials/
https://github.com/kubernetes-sigs/kustomize
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#apply
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#apply
https://www.cisecurity.org/benchmark/amazon_web_services
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/ignores/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/ignores/

Bibliography

[92] “Configuring Regula,” Fugue [Online]. Available:
https://regula.dev/configuration.html

[93] “Secrets,” Kubernetes [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/secret/

[94] “What is Amazon CloudWatch?” Amazon Web Services [Online].
Available: https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/WhatIsCloudWatch.html

[95] “What is Fluentd?,” FLuentd [Online]. Available:
https://www.fluentd.org/architecture

[96] “Quick Start setup for Container Insights on Amazon EKS and
Kubernetes,” Amazon Web Services [Online]. Available:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/
monitoring/WhatIsCloudWatch.html

106

https://regula.dev/configuration.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://www.fluentd.org/architecture
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

	List of Tables
	List of Figures
	Listings
	Introduction
	Objective
	Thesis structure

	Cloud Compliance
	Cloud computing overview
	Cloud security overview
	Standards, guidelines, and regulations
	Cloud compliance
	Shared Responsibility

	Theorical overview of Policy as Code
	Definitions
	Policy
	Policy as code
	DevOps
	Pipeline CI/CD
	Infrastructure as Code
	DevSecOps

	Infrastructure as Code Security
	Cloud Security Posture Management
	Cloud Workload Protection

	Implementation of Policy as Code
	CI/CD pipeline: Jenkins
	Infrastructure As Code: Terraform
	The Terraform language
	Terraform State

	Policy as code: Open Policy Agent
	The Rego query language

	Infrastructure as Code Security: tfsec and Regula
	tfsec
	Regula

	Cloud Security Posture Management: Cloud Custodian
	Cloud Workload Protection: Gatekeeper
	How to write custom policies
	tfsec
	Regula
	Cloud custodian
	OPA Gatekeeper

	Strategy and methodology used to implement cloud compliance automation

	Policy as Code: Case of study
	Architectural overview of the target cloud infrastructure
	AWS Terraform resources
	Variables
	VPC Module
	EKS Module
	VPC endpoints module
	RDS DB instance resource
	Security groups

	Set up of the infrastructure in AWS
	Policy code management
	IaCSec policies
	CSPM policies
	CWPP policies

	Compliance Automation and how it is implemented
	Set up of the pipeline for IaC and IaCSec
	Set up of the pipeline for CSPM
	Set up of the pipeline for CWPP and the sample application

	Custom policies
	IaCSec policy
	CSPM policies
	CWPP policy

	Wrap-Up model definition and Mitigation strategies
	How information are gathered
	How the wrap-up is structured
	Wrap-up files structure
	Content of the file tfsec_audit.json
	Content of the file regula_audit.json
	Content of the file custodian_audit.json
	Content of the file gatekeeper_audit.json

	Mitigation strategies description
	tfsec violations
	regula violations
	IaCSec mitigations
	Cloud Custodian violations
	OPA Gatekeeper violations
	CWPP mitigations

	Testing and results
	Test environment
	IaCSec tools effectiveness evaluation
	IaCSec tools overhead quantification
	CSPM resource consumption
	CWPP resource consumption
	How the monitoring was performed
	Results

	Conclusions and future works
	Future works

	Bibliography

