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Summary 
 
 

There are many indoor personnel tracking and localization applications using 
infrared thermal sensors, such as health monitoring and indoor security surveillance. 
This method is the best suitable for tagless localization of human bodies, adapting to 
different users and different scenarios. Since Infrared sensors are more affordable than 
other sensors used to detect and track people and their activities, infrared sensors are 
currently widely used in the Internet of Things. 

This thesis evaluates the long short-term memory neural networks for predicting 
data from a low-resolution 16-pixel thermopile sensor data for indoor localization and 
tracking, improving robustness and reliability by adding unrelated noise to the sensor 
data. This noise addition is a type of data augmentation that results in the production of 
more data. Currently, the long short-term memory neural networks have been proposed 
for their excellent performance in a variety of tasks such as speech recognition and 
machine translation. By training neural network models on significantly more data, data 
augmentation improves the ability of the models to generalize what have learned to the 
new data and the unseen data.  

In this thesis, the model results obtained with augmented data are compared to the 
model baseline initially generated without augmentation techniques. Data 
augmentation noise is then added in varying amounts compared to the infrared sensor 
signal variance between human presence and absence. There are four independent 
datasets, one of which was used mainly for training and partly for testing, and the other 
three only for testing. The average mean square error across all sets is used to calculate 
the generalization quality, while the learning curves are used to determine the learning 
quality. The noise amplitude is varied, trying to find the optimal improvement over the 
baseline for generalization and learning quality. The inference performance and 
learning quality change differently for each set with the noise amplitude such as one set 
shows a noticeable improvement while the others do not. To avoid false conclusions, 
the regions of interest with lower mean square error values would be examined in detail. 
If the overall performance of the model improves for some noise amplitudes, the refined 
ranges would be examined to see if the model has better generalization for all sets. 

To test the generalization ability of the model's inference. Initially, the data was 
augmented by solely adding white noise which is frequently obtained from various 
sources, followed by augmenting the data with only brown noise which is characteristic 
of low-frequency variations. The amplitude of each noise comprised 0.01 % to 163.84 % 
of the signal variance between person presence and person absence. The performance 
of the model is found to be improved best in the range [11.6 %; 36.1 %] of the white 
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noise range and [0.1 %; 0.59 %] of the brown noise amplitude. Then, when two types 
of noises are augmented together by combination, the best improvement can be found 
when the white noise amplitude is 1.28 % and the brown noise amplitude is 0.29 %. 
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Chapter 1 

Introduction 

 

1.1 Neural Network 
Artificial intelligence is playing an increasingly important role in modern life. 

Whether it is a connected car on the street or a smartphone that people use every day, 
sophisticated artificial intelligence is behind it all. And the underlying logic of such 
powerful artificial intelligence is the Neural Network (NN). 

In an NN, a neuron is its most basic structure. The most basic neuron model is one 
that contains input, output and computational functions. The input can be likened to the 
dendrites of a human brain neuron, and the output can be likened to the axon of a human 
brain neuron. Figure 1.1 below shows a typical neuron model of a neural network. The 
connection lines are the main components of the neurons, and each line has a 
corresponding weight. The ultimate goal of training a NN is to use an algorithm to 
adjust the value of the weights in the NN so that the prediction effect can be optimal. 
 
 

 
Figure 1.1: Basic neuron model contains input, output and computational functions. 
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During training, the input is a data set that has been collected or created. In the field 
of artificial intelligence, datasets can be images, audio, or even text. The datasets used 
in this thesis were collected from experiments conducted in the laboratory. There are 
also some open source datasets, such as MNIST and MS-COCO, that researchers can 
use to improve the performance of their models. In general, the more data, the better 
the predictions. However, if the number of training samples is significant, too few 
network layers and insufficient feature training will lead to inadequate training. 
Therefore, a very important premise is that the feature extraction ability of the network 
cannot be too low, which depends on the capacity of the NN. 

To help the NN learn the rules hidden behind the data, it is necessary to improve 
the generalization ability of the NN, so that the trained NN can also give correct output 
for data other than the dataset with the same rules. In order to improve the quality of 
the generalization ability, the phenomena of overfitting and underfitting have to be 
avoided. Underfitting occurs when the NN cannot achieve enough low error on the 
training set. In other words, the model complexity is low, the model performs poorly 
on the training set and cannot learn the rules behind the data. Overfitting occurs when 
the gap between the training error and the test error is too large. This means the model 
complexity is higher than it needs to be and the model performs well on the training set 
but poorly on the test set. The model mistakenly learns the properties or characteristics 
of the training set that are not relevant to the test set. The model does not understand 
the rules behind the data and has a poor ability to generalize. To solve these phenomena, 
data augmentation and control of model complexity can be attempted. Or reduce the 
number of eigenvalues, delete redundant eigenvalues, and manually select to retain 
specific eigenvalues. In machine learning, eigenvalues can be used in several ways to 
analyze and transform data. A common technique that uses eigenvalues is Principal 
Component Analysis, which is a method of reducing the dimensionality of a dataset by 
finding the eigenvalues of the covariance matrix of the dataset. Eigenvalues and data 
augmentation techniques are complementary techniques that can be used to improve 
the performance of NN models. Eigenvalues can help to extract useful features from 
the data, while data augmentation techniques can help to increase the diversity of the 
training data. Depending on the specific problem and available resources, one or both 
of these techniques may be applicable and useful in a given machine learning task. 
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Figure 1.2: Diagram of gradient descent [1]. 

The gradient based learning method is an optimization algorithm that is used to 
minimize the function result by iteratively shifting in the direction of the steepest 
descent as indicated by the negative of the gradient. Such as the cost function, which 
quantifies the error between the predicted value and the expected value and expresses 
it as a single actual number to measure the performance of the NN model on given data. 
In machine learning, gradient descent is commonly used to update the parameters of 
the model. Parameters usually refer to coefficients in linear regression and weights in 
NN. Gradient descent is an iterative optimization algorithm that efficiently solves for 
the local minima of a function. To achieve this, the algorithm iteratively performs a 
simple procedure. First compute the gradient, which is the current slope, and then 
update the parameters by moving in the direction of the negative gradient. The size of 
the moving step is determined by the learning rate, which controls how much moving 
in the direction. If the learning rate is too small, the algorithm may take a long time to 
converge. While if the learning rate is too large, the algorithm may overshoot the goal. 

In an artificial neural network (ANN), the activation function of a neuron node is 
responsible for transforming the summed weighted input of the node into the activation 
of the node or output for that input. It is particularly important for nonlinear functions. 
If the activation function is not used, the output of each layer is a linear function of the 
input of the upper layer. No matter how many layers there are in the NN, the output is 
still a linear combination of the input. This is the most basic case of a perceptron. When 
the activation function is used, the NN can approach any nonlinear function, so the NN 
can be applied to many nonlinear models. This makes it easy for the model to generalize 
or adapt to different types of data and to discriminate the output. 

As shown in below Table 1.1, here are some commonly used activation functions. 
In ANN, the sigmoid function is often used as the threshold function of the NN since 
its single increase, which maps variables between 0 and 1. The hyperbolic tangent (tanh) 
is one of the hyperbolic functions. In mathematics, the tanh is derived from the basic 
hyperbolic sine and hyperbolic cosine. The rectified linear activation function (ReLU) 
is a piecewise linear function that will output the input directly if it is positive, otherwise, 
it will output zero. 
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Table 1.1: Examples of activation functions. 

sigmoid 𝑓𝑓(𝑥𝑥) =
1

(1 + 𝑒𝑒−𝑥𝑥) 

tanh 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) =
(𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥) 

ReLU 𝑓𝑓(𝑥𝑥) = �𝑥𝑥    for 𝑥𝑥 > 0
0    for 𝑥𝑥 ≤ 0 

 
 

1.2 Indoor Person Localization 
Indoor person localization and activity detection are used in a growing number of 

smart space applications for ongoing support and safety monitoring. Assisted living 
applications, for example, can reduce the cost of assistance while improving the safety 
and quality of care that is becoming increasingly important as the proportion of elderly 
people grows. 

The IEEE 802.11, Bluetooth, radio frequency identification, ultra-wideband radio, 
visible light communication, audible and ultrasound acoustic signals, wearable or 
portable devices. These techniques mentioned above can all be used in indoor person 
localization [2]. 

However, indoor localization is needed in situations where people may not be 
carrying or wearing a device that the localization system can detect, such as in some 
smart home applications or assisted living for the elderly. It should also protect 
individual privacy, be inexpensive, unobtrusive, easy to install and require little or no 
maintenance to increase the acceptance and value of the localization system. 

Infrared (IR) sensors can be self-contained, simple to install, unobtrusive, privacy-
aware, and reasonably priced. IR sensors can detect, recognize, and locate people indoor. 
But when the room's temperature and humidity change, their sensitivity can be affected 
sharply. Thermopile sensors usually consist of series-connected thermocouples, which 
are mainly used to sense IR radiation and are widely used as automatic lighting and 
motion detectors for security alarms. They are designed to measure the total amount of 
incident IR flux, not its change. Therefore, they can be used to detect stationary targets. 
This type of sensors are commonly used for non-contact temperature measurement in 
household appliances. And because they are very low-resolution thermal cameras, they 
cannot contain identifiable information, which can protect privacy well [3]. 
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Figure 1.3: Illustration of a virtual room that trace the position of a moving person 
[2]. 
 

The use of different monitoring solutions could improve response times or improve 
the prediction of dangerous events indoors. Traditional high-resolution cameras offer 
good image quality and the ability to cover large areas, but their acceptance in 
residential environments is not so good due to privacy concerns. Therefore, multiple 
unobtrusive IR sensors distributed throughout the house are an alternative to regular 
cameras, providing valuable information for predicting or detecting common dangerous 
events. However, the classification accuracy is limited and machine learning is needed 
as an aid to improve the classification accuracy of the sensors. [4]. Data augmentation 
can further improve machine learning performance and accuracy. 

In this thesis, how data augmentation processing can improve the accuracy of NN 
is researched. Relatively simple IR sensors, which are known to be more susceptible to 
environmental noise, were tested to better compare the effectiveness of the data 
processing on the overall accuracy. The long short-term memory (LSTM) neural 
networks are optimized through design space exploration (DSE). The IR sensor is used 
to gather data while a person walks arbitrarily in a 3m × 3m experimental room, then 
compare the predicted position and trajectory line by NN with the ground truth location 
acquired using an accurate ultrasound localization device. The main contribution of this 
thesis is neural network-based data augmentation for indoor person localization and 
tracking using small IR sensors. 
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Chapter 2 

Tools and Methodology 
 

2.1 Long Short-Term Memory Neural Network 
The data processing paradigm modeled after the biological human brain is known 

as an ANN. An ANN is trained for a specific task, such as pattern recognition or data 
classification, which used a learning process. Although there are different NN 
topologies, this thesis focuses on LSTM NN. LSTM is a novel recurrent neural network 
(RNN) architecture combined with an appropriate gradient-based learning methodology. 
The LSTM aims to overcome the error backflow problem. It can bridge time intervals 
even in the presence of noisy or incompressible input sequences, without losing short-
time capability [5]. 

An RNN is a type of ANN which connections between nodes form a graph along a 
temporal sequence. This enables it to display temporal dynamic behavior. So RNN 
allows knowledge to be kept in the network, it can use reasoning from previous training 
to generate better, more educated predictions about upcoming events. However, RNN 
has significant short-term memory issues. When the data to be processed is too lengthy, 
the impact of the input data at the early stage on the ultimate judgment result is 
extremely little, even if the information is critical. Since RNN contain memory, 
parameter sharing, and Turing completeness, it has some advantages in learning 
nonlinear sequence characteristics. Natural language processing (NLP) applications in 
RNN include speech recognition, language modeling, and machine translation. 

 

  
Figure 2.1: Illustration of recurrent neural network [6]. 

 
RNN research began in the 1980s and evolved into one of the deep learning 

algorithms in the early 2000s. The typical RNN are bidirectional RNN (Bi-RNN) and 
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LSTM NN. All RNNs have the structure of several repeating modules. Although the 
repeating module of LSTM also has a chain-like topology, however it is structured 
differently. There are multiple functional layers, and these layers interact in very 
different ways. It is designed to be used to record additional information, which means 
the memory mentioned above. 
 

 

Figure 2.2: Illustration of the LSTM NN [6]. 
 

The continuous line that runs through the top of the Figure 2.2 and represents the cell 
state is the core trick of LSTM. The cell state resembles a factory line in certain ways. 
With only a few tiny linear interactions, it proceeds directly down the entire chain which 
makes information can very simply continue to flow along. The LSTM NN can modify 
the cell state by removing or adding information, which is carefully controlled by gates. 
The gates in an LSTM NN allow the network to selectively forget or remember 
information over time, which is particularly useful for modeling sequential data. There 
are three gates, input gate, output gate and forget gate. By using these gates, the LSTM 
network can learn to selectively store and retrieve information over long sequences. 
Information can pass through gates on an entirely optional basis. This consist of the 
pointwise computations and a layer of sigmoid or tanh. These three gates serve to secure 
and manage the cell state in an LSTM NN. 

Choosing what information from the previous cell state to discard is the first phase 
in the standard LSTM NN procedure. The forget gate, a sigmoid layer with the 
concatenation of input and previous output, can make this happen. To every number in 
the previous cell state, it outputs a number between 0 and 1 after considering the 
module's input. In the output, 1 denotes total retention of the information, while the 
notes complete deletion of the information. The next step is to select the new 
information that will be kept in the cell state. Two components make up this, first one 
is called the input gate that has the content as same as the forget gate while another one 
is a tanh layer. The input gate determines which values would be updated. The tanh 
layer provides a vector of potential new values by concatenation of input and previous 
output to be added to the cell state. The following procedure is to update the cell state. 
The module only needs to perform pointwise computations since the preceding phases 
have already decided what to do. The module pointwise multiplies the previous cell 
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state value by the output of the forget gate. This procedure can drop the information 
which previously determined to forget. Then, pointwise multiply the output of the input 
gate with the previous new candidate values that produced by the tanh layer. This will 
produce the new candidate values that scaling by the amount we chose to update each 
state value. The updated cell state can be obtained by pointwise addition of the new 
candidate values and the previously obtained result of the previous cell state with output 
by forget gate. Lastly, the module must choose what will be output by the output gate. 
This output will be based on the cell state and concatenation of input and previous 
output, but will be filtered by a tanh layer. The sigmoid layer is used to determine which 
parts of the cell state will be output. The module put the cell state through the tanh layer 
to transform the values to be between −1 and 1 then pointwise multiply it by the output 
of the sigmoid gate, so that the module only output the parts that decided to. The 
repetition of the above steps is the main operation of LSTM NN. 
 
 

2.2 Data Augmentation 
Data augmentation is an invaluable technique utilized in machine learning to 

address the issue of limited training datasets by generating additional equivalent data. 
This approach is highly effective in overcoming the challenge of insufficient data, and 
it has become a popular tool across a variety of fields in machine learning. Specifically, 
in computational vision, data augmentation algorithms can be broadly categorized into 
two distinct categories. The first category pertains to data augmentation techniques that 
leverage fundamental image processing methods, including but not limited to flipping, 
rotation, and noise injection. These techniques have proven to be quite successful, as 
they allow models to accurately classify data even when noise is introduced or certain 
parts of an image are cropped. The second category of data augmentation algorithms is 
based on deep learning and includes techniques such as kernel filters and random 
erasing. These approaches leverage the power of deep learning to generate new, high-
quality data points that can be added to a limited training dataset. By utilizing both 
traditional image processing techniques and deep learning algorithms, data 
augmentation has emerged as a crucial tool for any machine learning practitioner 
looking to optimize their model's performance. 

NN performs well in many scenarios, but these models often require large amounts 
of data to avoid overfitting. Unfortunately, enormous amounts of data are not available 
for many scenarios, such as medical image analysis. The existence of data augmentation 
technology can solve this problem brilliantly. Data augmentation techniques increase 
the size and quality of training datasets so that can be used to build learning models. In 
the field of computer vision, generating augmented images is easier than other methods. 

By introducing noise to inputs during training can smooth out the input space and 
make it simpler to learn. Expanding noise increases the size of the training dataset. 
Random noise is added to the input variables each time while the training sample is 
exposed to the model, making them distinctive each time. This makes it as a simple 
data augmentation method.  
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Since training samples are constantly changing due to the addition of noise, the 
network is less able to memorize them. This leads to smaller network weights and a 
more robust network with lower generalization error. The noise means that it is as 
though new samples are being drawn from the domain in the vicinity of known samples, 
smoothing the structure of the input space. This smoothing could make it easier for the 
network to learn the mapping function, resulting in better and faster learning [7].  

The addition of Gaussian noise to input variables is the most typical form of noise 
used during training of the NN model. Only during training, the noise is introduced. 
When the model is evaluated or used to make predictions based on the dataset, no noise 
is added. In this thesis, gaussian white noise and brown noise are mainly discussed. 

A type of signal noise with a probability density function (PDF) equal to that of the 
normal distribution, also known as the Gaussian distribution, is referred to as Gaussian 
White Noise in the theory of signal processing. The range of values that the noise can 
take is followed by Gaussian-distributed, with a mean of zero and a standard deviation 
of 1. Wideband Gaussian noise from various natural sources can interfere with 
communication channels in telecommunications and computer networks. 
 

 
Figure 2.3: Plot of normal distribution with different parameters [8]. 

 
Brown noise is a type of signal produced by Brownian motion. It is used to simulate 

certain physical phenomena, such as turbulence or the behavior of a chaotic system, 
and can be used to study the properties of these phenomena. The power spectral density 
of white noise is flat. And since Brownian motion is obtained as the integral of a white 
noise signal, it can be derived that the power spectral density of brown noise is inversely 
proportional to the square of the frequency. Meaning that brown noise has greater 
energy at lower frequencies.  
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Figure 2.4: Plot of brown noise and power spectrum of brown noise. 

 
In this thesis, the order of data should be maintained since the data collected are 

time-series data. Time-series data is a sequence of data that is taken over a period of 
time. It is used in machine learning to make predictions about future values, identify 
patterns and trends, and detect anomalies. Time-series data can be used to develop 
predictive models and to better understand the underlying causes of a system's behavior. 
In short, time-series data can provide valuable insights into the future that can be used 
to make a better prediction. RNN is ideal for processing sequential data due to its 
properties. 

Determining the noise amplitude level is crucial for improving model 
generalization. The signal variations of the sensor detecting either a person or no person 
could be related to a reasonable range of noise. Inside the sensor, 16 pixels are 
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transformed into temperature values representing a person's presence. Firstly, start by 
analyzing the sensor single-pixel variations. The highest point denotes the presence of 
a person, whereas the lowest point denotes their absence. The difference between these 
two magnitudes will be the foundation for searching noise amounts. In order to 
determine the noise amplitude, the same method was implemented on both white noise 
and brown noise. An insight into combining noises to produce augmented sets comes 
from the independent exploration of two noises to enhance model generalization quality. 
All systems naturally experience various perturbations. Using a combination of white 
and brown noises is the next method of augmented data generation in this thesis. 
Without explicitly mentioning noise levels, this section mainly focused on the various 
augmentation techniques used to solve the problem. After many training sessions, 
reasonable noise levels will be established. In the section that follows, acceptable noise 
levels will be discussed. 

Once the noise amplitude level is determined, data augmentation can be achieved 
by adding noise to the corresponding training set to create a new training set. For each 
of the noise amplitudes, the noise was applied only to the training segment and the 
random generator was initialized with a different value each time. The augmented 
training set would then be stored as a batch, preserving the original order of the 
segment's samples. A total of 10 augmented data were generated, increasing the original 
training data by ten times. The final training data for each amplitude should contain ten 
training batches with noise and one original training segment without augmentation, 
and the samples within a batch should not be randomized to avoid destroying continuity. 
Test and validation batches are unchanged. During training, only one of the eleven 
batches was randomly selected per epoch. 
 
 

2.3 Experimental Setup 
 

 
Figure 2.5: Conceptual illustration of the experimental space. α show the view angles 
for X and Y directions respectively, while Height is the height the sensor was placed. 
A show the area covered by the FOV [2]. 
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A 4 × 4 pixels Omron D6T-44L-06 thermopile infrared sensor [9] with a 

temperature resolution of 0.06 ℃ and accuracy ± 1.5 ℃ was used to monitor the 3 × 3 
m experiment space. It is installed on the ceiling, 3.05 m above the floor, with a 2.48 × 
2.57 m field of view (FOV) at floor level. The person's ground truth location with an 
ultrasound-based tag of the Marvelmind Starter Set HW v4.9 [10], with ± 2 cm accuracy, 
15 measurements per second was collected. Determining experimentally that the 
average accuracy of the ground truth system in the environment is ± 3.9 cm by 
measuring the localization accuracy acquiring four times per second for 5 s the location 
of a person standing on each of 16 central predefined locations inside the 3 × 3 m 
experiment room space. 

During the actual location tracking experiment, a person walked for 30 minutes 
along an arbitrary and irregular path in the space, with variable speed, and collected 
synchronous readings at 5 Hz from both the IR sensor and the ground truth system. 
Four sets of 9000 tuples were collected, each made of 16 thermal sensor readings and 
two coordinates from the ground truth system relative to the room space [11], the 
ground truth trajectory plot of all sets is shown in below Figure 2.6. These four sets 
were named as set A, set B. set C and set D. These datasets are collected on different 
days, according to different movement patterns and in different environmental 
conditions. These datasets not only simulate the trajectories of random walking in the 
room but also simulate the trajectories of people walking around in the room with 
furniture. 

 
Figure 2.6: Ground truth trajectory plot of all sets. 
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Since the IR sensor takes 16-pixel, dynamic images, the LSTM NN architecture is 
considered in this thesis. General data is the time series organization of each frame. The 
next step is to work on the model input data after the appropriate architecture for the 
model has been chosen. The NN can be considered a function that receives input and 
produces an appropriate response. Just like all other functions, it has a domain. The 
values must be normalized before supplying them to the NN to ensure the values are 
within the domain. As with all functions, the outcome is not guaranteed to be 
appropriate if the arguments are beyond the domain. All input data are rescaled in the 
range [0; 1]. The initial IR sensor datasets have been normalized and fitted to the model 
input domain. 

The NN architecture does not always ensure the correct model fit. A regularization 
technique named dropout was incorporated into our model to prevent overfitting. 
Dropout is a training method in which some neurons are ignored at random, and it is a 
straightforward and effective regularization technique for machine learning. This 
means that randomly chosen weight updates are not applied to the neuron on the 
backward pass, and their contribution to the activation of downstream neurons is 
temporally removed on the forward pass. Neuron weights within a NN find their way 
in the network as it learns. Neuronal weights are customized for particular 
characteristics, resulting in some specialization. This specialization is necessary for 
neighboring neurons. But if it goes too far, it could create a fragile model that is overly 
specialized on the training set. A neuron's dependence on the context during training is 
a complex co-adaptation [12]. 

As described previously, one drawback of gradient descent is that it only uses one 
step size for all input variables. Extensions to gradient descent, such as the adaptive 
movement estimation (Adam) algorithm, use a different step size for each input variable, 
but this may cause the step size to drop quickly to extremely low values. Gradient 
descent with a generalization to the infinite norm known as AdaMax may produce a 
more effective optimization on some problems than Adam. It is an expansion of the 
gradient descent optimization algorithm in a broader sense. For each parameter in the 
optimization problem, AdaMax typically automatically adapts a different step size [13]. 
The optimizer of LSTM NN used in this thesis is AdaMax, and its algorithm is shown 
in Figure 2.7 below. 
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Figure 2.7: AdaMax optimizer algorithm procedure [13]. 
 

 Before performing data augmentation, a baseline needs to be established, and then 
the final optimization effect can be known. As the experimental dataset used in this 
thesis is derived from previous research [11], the step before optimization on the 
baseline is to rebuild the results of the previous research. This previous work varies the 
LSTM layers (1, 2, and 3) and LSTM units from range 2 to 64, in powers of two, and 
the input window width (1 s and 3 s). Then 36 types of combination parameters and 
144 different situations finally can be gathered. Training using a continuous series of 
samples from 60 % data of the dataset. Then followed by validation on another 
contiguous sequence from 20 % of the dataset. Finally testing on the remaining 
contiguous 20 % data of the dataset, processing on all datasets. The LSTM NN model 
was trained 30 times for each parameter because the training procedure is stochastic. 
1000 is chosen as the epoch number, and the sampling frequency of NN is 5 which 
means the model will process 5 data in 1 second, and 15 data in 3 seconds. Since 60 % 
contiguous sequence data is used, so here are 6 permutations for each set. The training 
set can be at the beginning, middle or end of the set. All permutation is considered and 
tested for avoiding unrepresentative validation problem and getting improved accuracy. 
Set A, set B and set C share the same order of dataset. These three datasets used the first 
20 % data as validation dataset, the next 60 % of the data as training dataset when last 
20 % data as testing dataset. Set D used the first 60 % data as the training dataset, the 
next 20 % data as testing dataset when last 20 % data as the validation dataset. Here are 
the resulting values from the NN model without data augmented for each parameter 
corresponding mean square error (MSE) metrics for set A, set B, set C and set D are 
given in the Table 2.1. 
 In this thesis, MSE value and learning efficiency are used to judge the performance 
of the model as researchers usually do. In this metric, a lower value indicates better 
model performance. As can be discovered from the MSE value in Table 2.1, the value 
results of set B and set D are more obvious similar while the value results of set A and 
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set C are slightly similar. Meanwhile. This may be due to the similarity of the trajectory, 
as shown in Figure 2.6 above. The trajectories of set A and set C are slightly similar. 
Meanwhile, the trajectories of set B and set D are more random and chaotic. It also can 
be observed that when the value of LSTM units is 2 or 4, the MSE value of the model 
is higher. There is also a very good result when the input window width is 3 seconds. 
The optimal result of set B happens when the number of LSTM units is equal to 32. 
Else happens when the number of LSTM units is 64. The main optimal results are 
concentrated on 2 layers. At the same time, as the number of LSTM units increases, the 
average value of MSE decreases, which means that the prediction of the NN is getting 
better. However, the overall trend is getting smoother, and the increase in the number 
of LSTM units has less impact on MSE. It can observe in Figure 2.8 that is shown the 
inference of the trajectory coordinates for the chosen combination of parameters 
compare to the ground truth when the input window width is 3 seconds with 2 LSTM 
layers. The left side is results for 64 units when there is 2 units result on right. As 
expected from MSE value results, the predicted trajectories shown left side which 
represent the best result of 64 units are much better than the right part that represent the 
result of 2 units, and this result is shown on all sets. 

In the learning curve which is shown in Figure 2.9 below, it can be seen that as the 
number of LSTM units increases, the effect of model underfitting decreases and the 
result of prediction is better. In the first 200 epochs, the training loss is decreasing 
rapidly and continues to decrease slowly at the end of the plot. Through the analysis, it 
can be obtained that the model is capable of further learning and possible further 
improvements which is the main exploration in the next step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 
 

Table 2.1: Model training results of different combination parameters. For each 
parameter corresponding MSE metrics for set A, set B, set C and set D are shown.  
 

best result of each combination parameters in set A 

input window 

width 

LSTM 

layer 

LSTM units 

2 4 8 16 32 64 

1 s 

1 0.0761 0.0353 0.0159 0.0083 0.0054 0.0041 

2 0.1075 0.0483 0.0248 0.0105 0.0048 0.0032 

3 0.1435 0.0808 0.0290 0.0141 0.0060 0.0036 

3 s 

1 0.0760 0.0337 0.0136 0.0062 0.0036 0.0024 

2 0.1040 0.0447 0.0202 0.0067 0.0025 0.0018 

3 0.1273 0.0761 0.0232 0.0079 0.0029 0.0020 

 

best result of each combination parameters in set B 

input window 

width 

LSTM 

layer 

LSTM units 

2 4 8 16 32 64 

1 s 

1 0.1186 0.0718 0.0486 0.0409 0.0393 0.0387 

2 0.1578 0.0919 0.0598 0.0429 0.0345 0.0366 

3 0.2437 0.1402 0.0643 0.0476 0.0366 0.0338 

3 s 

1 0.1199 0.0727 0.0479 0.0394 0.0368 0.0350 

2 0.1627 0.0851 0.0551 0.0386 0.0320 0.0339 

3 0.2414 0.0610 0.0610 0.0445 0.0335 0.0338 

 

best result of each combination parameters in set C 

input window 

width 

LSTM 

layer 

LSTM units 

2 4 8 16 32 64 

1 s 

1 0.0803 0.0421 0.0214 0.0158 0.0128 0.0136 

2 0.1172 0.0553 0.0326 0.0181 0.0105 0.0089 

3 0.1513 0.0807 0.0366 0.0210 0.0133 0.0093 

3 s 

1 0.0866 0.0433 0.0227 0.0144 0.0113 0.0133 

2 0.1087 0.0544 0.0281 0.0163 0.0108 0.0070 

3 0.1476 0.0824 0.0333 0.0184 0.0100 0.0070 

 

best result of each combination parameters in set D 

input window 

width 

LSTM 

layer 

LSTM units 

2 4 8 16 32 64 

1 s 

1 0.0970 0.0643 0.0491 0.0444 0.0416 0.0409 

2 0.1121 0.0669 0.0512 0.0431 0.0403 0.0396 

3 0.1402 0.0834 0.0535 0.0457 0.0403 0.0396 

3 s 

1 0.0978 0.0645 0.0494 0.0438 0.0411 0.0408 

2 0.1154 0.0676 0.0504 0.0412 0.0392 0.0400 

3 0.1356 0.0816 0.0537 0.0433 0.0396 0.0398 
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Figure 2.8: Ground truth compare with prediction in all sets, results of 64 units on 
left while results of 2 units on right. The input window width is 3 seconds with 2 
LSTM layers. 



18 
 

 
Figure 2.9: The learning curve of set A in the different number of units when the 
input window width is 3 seconds with 2 LSTM layers. 
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Chapter 3 

Experimental Results 

 

3.1 Baseline 
After the discussion in the previous section, it is necessary to select a model with 

a stable learning efficiency as a baseline to proceed the next step which is adding noise. 
The selected model should have the highest possible learning efficiency and the best 
possible ability to avoid overfitting interference. The number of epochs was tried to 
increase to 2000 epochs and 3000 epochs when the number of LSTM units was 
expanded to 40 units or 48 units.  

Relevant rules can be found after testing the model with different parameters. 
Compared to the results of 2000 epochs, the results of 1000 epochs show that the model 
cannot produce results that satisfy the learning efficiency, while the results of 3000 
epochs are more likely to be overfitting. After comparing the results of different 
numbers of LSTM units, it can be concluded that a more fitting learning curve result 
can be obtained under the condition of 40 units, which can be verified by Figure 2.9 
and Figure 3.1. Finally, after filtering the results from the different parameters of each 
set, the set B was chosen since other sets are easier to obtain unrepresentative validation 
problem or cannot be improved. Training using a continuous series of samples from the 
mid 60 % data of set B. Then followed by validation on another contiguous sequence 
from the first 20 % data of set B. Finally testing on the remaining contiguous 20 % data 
of set B, then testing by the entire other datasets. Using 40 LSTM units with 3 seconds 
window width and 2000 epochs. Repeat training 10 times instead of 30 times and pick 
the best result. And here are the baseline MSE value results and learning curve plot as 
shown below. 
 

Table 3.1: Test MSE results of baseline. 
dataset set A set B set C set D 

test MSE 0.0589 0.0332 0.1962 0.1828 
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Figure 3.1: Learning curve plot of baseline. Using 2 LSTM layers with 40 LSTM 
units when 3 seconds window width and 2000 epochs in set B. Using the first 20 % 
data as validation dataset, the mid 60 % data as training dataset, the last 20 % data as 
testing dataset. 
 
 

3.2 White Noise Augmentation 
The goal of creating augmented datasets is to achieve better generalization than 

model training without augmentation and look for the regularization effect of noise on 
the training. As previously stated, noise amplitude is linked to signal amplitude. The 
variance of the sensor pixel outputs is used to estimate the signal change. 

In the training data of set B, the temperature signal amplitude is equal to 4.9 ℃. 
The model's behavior is analyzed with a fraction of the noise amplitudes ranging from 
0.01 % to 163.84 %. The noise level increases geometrically, with powers of 2, the main 
goal is to extend the DSE till an increasing trend for the losses can be observed then 
may need to refine the search around the possible inflection point. For each of the white 
noise amplitudes, random white noise was applied only to the training segment of set 
B and the random generator was initialized with a different value each time. Then the 
augmented training set would save as a batch that maintaining the original order of the 
samples of the segment. This step would repeat 10 times. The final training data for 
each amplitude should contain 10 training batches with noise and one original training 
segment without augmented, and the samples within one batch should not be 
randomized. Through the training, only one batch was selected randomly per epoch out 
of the 11 batches. Train the model the same as the previous baseline procedure that 



21 
 

2000 epochs and pick the training with the best validation result. The next step is to test 
the model for sets A, B, C, and D and compare the results with the baselines numerically 
in the table and plots. As shown in the Table 3.2 and the Figure 3.2 below. 
 
Table 3.2: Augmented results of different white noise amplitudes that compared 
with the baseline in the amplitude range [0.01 %; 163.84 %].  

 
white noise amplitude set A set B set C set D average 

baseline 0.0589 0.0332 0.1962 0.1828 0.1178 

0.01 % 0.0568 0.0372 0.2101 0.2005 0.1262 

0.02 % 0.0390 0.0385 0.1780 0.1346 0.0975 

0.04 % 0.0478 0.0373 0.2084 0.2413 0.1337 

0.08 % 0.0419 0.0398 0.1983 0.1425 0.1056 

0.16 % 0.0424 0.0390 0.1558 0.1213 0.0896 

0.32 % 0.0488 0.0378 0.1785 0.1499 0.1038 

0.64 % 0.0339 0.0382 0.1800 0.1773 0.1074 

1.28 % 0.0360 0.0389 0.1498 0.1170 0.0854 

2.56 % 0.0341 0.0411 0.1427 0.1019 0.0800 

5.12 % 0.0225 0.0411 0.1210 0.0887 0.0683 

10.24 % 0.0190 0.0419 0.0723 0.0508 0.0460 

20.48 % 0.0102  0.0439  0.0460  0.0628  0.0407  

40.96 % 0.0136 0.0477 0.0738 0.0702 0.0513 

81.92 % 0.0141 0.0471 0.0518 0.0560 0.0423 

163.84 % 0.0145 0.0448 0.1272 0.0910 0.0694 
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Figure 3.2: Learning curve results of augmented results by different white noise 
amplitudes in amplitude range [0.01 %; 163.84 %]. 
 

The MSE value of the four sets were calculated as a measure of generalization 
capability. General performance equals to average of augmented results. Main purpose 
is to find out the objective laws of optimization and the best optimization results. Thus, 
the most critical norm in the Table 3.2 is the comparison of the average MSE values of 
the model results obtained by augmented with the baseline average. Each set's results 
need to be further examined separately. The model would have enhanced generalization 
for all sets if at least the average value shows improvements in these amplitudes.  
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Through the numerical analysis of the MSE of the Table 3.2, the average value 
shows a downward trend as the amplitude increases which can prove the model was 
optimized. When analyzing the obtained learning curves in Figure 3.2, it can be seen 
that an increasing trend for the loss is observed at the result of 40.96 % white noise 
amplitude. So this part for the second exploration which is shown in the Table 3.3 and 
the Figure 3.3 below need to be focused on. In the second exploration, the model with 
the same previous procedure but in 10 additional subdivided amplitude in a geometric 
series was processed. The related plot of model performance that can visually assess 
the model output to identify the most promising parameter is also listed below. 
 
Table 3.3: Augmented results of different white noise amplitudes compared 
with the baseline in the refined amplitude range [11.6 %; 36.1 %]. 

white noise amplitude set A set B set C set D average 

baseline 0.0589 0.0332 0.1962 0.1828 0.1178 

11.60 % 0.0191  0.0425  0.0613  0.0495  0.0431  

13.20 % 0.0178  0.0420  0.0619  0.0846  0.0516  

14.90 % 0.0123  0.0431  0.0612  0.0426  0.0398  

17.00 % 0.0124  0.0438  0.0458  0.0499  0.0380  

19.20 % 0.0088  0.0434  0.0591  0.0555  0.0417  

20.48 % 0.0102  0.0439  0.0460  0.0628  0.0407  

21.80 % 0.0092  0.0434  0.0635  0.0472  0.0408  

24.70 % 0.0104  0.0444  0.0598  0.0501  0.0412  

28.10 % 0.0118  0.0457  0.0626  0.0789  0.0498  

31.80 % 0.0118  0.0456  0.0577  0.0825  0.0494  

36.10 % 0.0118  0.0459  0.0850  0.0599  0.0507  
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Figure 3.3: Learning curve results of augmented results by different white noise 
amplitudes in refined amplitude range [11.6 %; 40.96 %]. 
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Figure 3.4: Plot of the training results obtained by augmentation with white noise 
amplitude range [0.01 %; 163.84 %] for all sets. 
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From Figure 3.4 above, the results of each set compared with the baseline can be 
observed conveniently. For set A, improvement has been obtained at all white noise 
amplitudes. The results before 1.28 % white noise amplitude are smoother, and then it 
will be improved faster. Smooth stabilization is obtained after 24.7 % white noise 
amplitude. By examining the plot of set B, all the results are not optimized. This trend 
is contrary to the decreasing trends of the MSE for all the other sets. But it also can be 
seen that the increase of the MSE of the set B with the increase of the noise is relatively 
small compared to the large reductions of the MSE with the increase of the noise for 
the other sets. Comparing the results of 25 % white noise amplitude, the optimization 
results of other sets are several times that of set B. Set C and set D can be bundled 
concurrently to discuss since the plot of these two sets acquired a similar trend. Less 
than ideal results would be acquired before 0.08 % white noise amplitude. But similar 
to the results of set A, these two sets can also be optimized after 1.28 % white noise 
amplitude. 

Now that conclusion can be made based on the Figure 3.5 below and the related 
information above, a plot is created to evaluate the overall improvement of the model. 
The Figure 3.5 shows the noise amplitudes on the horizontal axis and the average of the 
MSE values for all sets on the vertical axis. The red line represents the model MSE 
baseline without augmented data. The overall behavior of the model exhibits a 
progressive reduction in MSE as the noise amplitude is increased. Beginning with few 
MSE results higher than the baseline, the model has made general progress after 0.08 % 
white noise amplitude. The model is actually optimized can be inferred. The improved 
average MSE across all sets serves as a measure of the generalization quality of the 
model. The most important white noise amplitude range is [11.6 %; 36.1 %] when white 
noise has a regularization effect in the learning curves starting at 10 % amplitude or so. 
In the last process, the white noise and brown noise would add together to the dataset. 
Since there is an optimum around 17 % white noise amplitude, so the 17 % white noise 
amplitude is chosen as the composite amplitude. Unable to locate a suitable amplitude 
range as a possible option for optimization for set B. However, given sets A, C, and D 
are at least operating satisfactorily, this can be accepted as a credible result providing 
greater model generalization quality. 

To simplify the visual analysis of the results. Here is the relative optimize value 
figure of the loss function compared to the baseline in each set shown in Figure 3.6. It 
can be observed that the best optimization improvement occurs in set A when 19.2 % 
white noise amplitude, an increase of 85 %. In contrast, the least optimization occurs in 
set D when 13.2 % white noise amplitude, an improvement of 54 %. 
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Figure 3.5: Plot of the model average generalization results with white noise 
augmentation. 
 

 
Figure 3.6: Relative optimize ratio in each optimized set by refined amplitude range 
of white noise. 
 
 

3.3 Brown Noise Augmentation 
The model was trained using augmented data produced by white noise in the 

previous section and is characterized by appropriate input data and architecture. As a 
second way to produce augmented training sets, the brown noise amplitude would be 
investigated. As discussed about white noise. By adding brown noise to augmented sets, 
the improvement of the model's generalization is the desired result. As mentioned in 
the previous section, the first idea regarding noise parameters relates to the signal 
variation between person detection and without detection. The maximum and minimum 
sensor pixel output variance values acquired from the sensor are used to calculate the 
signal deviation. The IR sensor's 16 pixels are all converted to the temperature inside 
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the sensor.  
Since the training NN model is a stochastic process. For the objective experimental 

procedure, the model's behavior was examined as same as Section 3.2’s procedure. The 
same amplitude range and model frame will be used, the only difference is that the 
added noise was switched from white noise to brown noise. 

The model is trained with 11 batches for each noise amplitude in the range, and the 
best model is selected based on the minimum loss average of all trainings. The best 
training outcomes are presented in the Table 3.4 below, also as the plot in the Figure 
3.7.  
 
Table 3.4: Augmented results of different brown noise amplitudes that compared 
with the baseline in the amplitude range [0.01 %; 163.84 %]. 

brown noise amplitude set A set B set C set D average 

baseline 0.0589 0.0332 0.1962 0.1828 0.1178 

0.01 % 0.0368  0.0378  0.1909  0.1620  0.1068  

0.02 % 0.0435  0.0374  0.1457  0.1573  0.0960  

0.04 % 0.0277  0.0391  0.0926  0.1020  0.0654  

0.08 % 0.0196  0.0414  0.0855  0.0668  0.0534  

0.16 % 0.0149  0.0431  0.0495  0.0479  0.0389  

0.32 % 0.0117  0.0444  0.0568  0.0415  0.0386  

0.64 % 0.0168  0.0477  0.0660  0.0493  0.0449  

1.28 % 0.0254  0.0574  0.0565  0.0681  0.0519  

2.56 % 0.0319  0.0567  0.0891  0.0827  0.0651  

5.12 % 0.0354  0.0539  0.0962  0.0816  0.0668  

10.24 % 0.0271  0.0490  0.2562  0.1286  0.1152  

20.48 % 0.0268  0.0493  0.1649  0.0973  0.0846  

40.96 % 0.0234  0.0483  0.1196  0.0949  0.0715  

81.92 % 0.0302  0.0488  0.1509  0.1010  0.0827  

163.84 % 0.0222  0.0490  0.1708  0.1123  0.0886  
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Figure 3.7: Learning curve results of augmented results by different brown noise 
amplitudes in amplitude range [0.01 %; 163.84 %]. 
 

Discuss the results from Table 3.4 and Figure 3.7 together, the resulting trend of 
brown noise is similar to that of white noise. Except for set B, different levels of 
optimization can be observed. The training regularization effect is clear from 0.08 % 
noise. Also from the learning curves can be observed that higher noise levels reduce the 
training accuracy but leave the validation accuracy largely unchanged, especially up to 
[0.16 %; 0.32 %] noise. In order to try to get better results, it is necessary to accomplish 
further subdivision experiments on the brown noise amplitude in the range [0.08 %; 
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0.64 %]. The related results are shown below. 
 
Table 3.5: Augmented results of different brown noise amplitudes that compared 
with the baseline in the refined amplitude range [0.1 %; 0.59 %]. 

brown noise amplitude set A set B set C set D average 

baseline 0.0589 0.0332 0.1962 0.1828 0.1178 

0.10 % 0.0260  0.0412  0.1153  0.0701  0.0632  

0.12 % 0.0226  0.0420  0.0296  0.0428  0.0343  

0.14 % 0.0240  0.0421  0.0766  0.0484  0.0478  

0.16 % 0.0149  0.0431  0.0495  0.0479  0.0389  

0.17 % 0.0118  0.0425  0.0435  0.0450  0.0357  

0.20 % 0.0201  0.0434  0.0589  0.0474  0.0424  

0.24 % 0.0111  0.0441  0.1183  0.0456  0.0548  

0.29 % 0.0109  0.0432  0.0246  0.0416  0.0301  

0.32 % 0.0117  0.0444  0.0568  0.0415  0.0386  

0.34 % 0.0108  0.0447  0.0409  0.0426  0.0347  

0.41 % 0.0144  0.0460  0.0166  0.0464  0.0309  

0.50 % 0.0129  0.0455  0.0200  0.0445  0.0307  

0.59 % 0.0195  0.0498  0.0296  0.0461  0.0363  
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Figure 3.8: Learning curve results of augmented results by different brown noise 
amplitudes in refined amplitude range [0.1 %; 0.59 %]. 
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Figure 3.9: Plot of the training results obtained by augmentation with brown noise 
amplitude range [0.01 %; 163.84 %] for all sets. 
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From Figure 3.9 above, the results of each set compared with the baseline can be 
observed conveniently. Through observation, a similar trend to those obtained in section 
3.1 can be obtained. The accuracy plots of the refined analysis for sets A, C, and D 
show an optimum around [0.3 %; 0.5 %]. Compared to those, set B is basically 
unchanged. For set A, improvement has been obtained at all brown noise amplitudes. 
Compared with other sets, the result of set A is smoother. By examining the plot of set 
B, all the results are still not optimized. This trend is contrary to the decreasing trends 
of the MSE for all the other sets. This is similar to the result of Section 3.2. Set C and 
set D can be bundled concurrently to discuss since the plot of these two sets acquired a 
similar trend. For example, both can be seen there is a sudden increase occurs at 10.24 % 
brown noise amplitude. The result of set C on 10.24 % is even worse than the baseline, 
but only this one unsatisfactory value. Generally, these two sets can also be optimized 
on all brown amplitudes. From Figure 3.8, the loss curves show the regularization 
effects of higher noise levels as happened for the white noise. Also showed that for 
noise levels beyond 0.35 % or so training for more than 2000 epochs would improve 
the accuracy since both training and validation curves are clearly improving at the end 
of the 2000 epochs. 

Now that conclusion can be made based on the Figure 3.10 below and the related 
information above, a plot is created to evaluate the overall improvement of the model. 
Before the 0.64 % brown noise amplitude, the model is properly optimized as the 
amplitude increases. The value of MSE decreases accordingly. But after the result of 
1.28 % brown noise amplitude, the overall MSE value of the model began to climb but 
was still lower than the baseline. The strange point occurred at the result of 10.24 % 
brown noise amplitude, the MSE value was the closest to the baseline of the average 
result but still below it. The model is actually optimized that can be inferred as same as 
white noise. The best improve brown noise amplitude range is [0.1 %; 0.59 %] when 
brown noise has a regularization effect in the learning curves starting at 0.32 % 
amplitude or so. Since there is an optimum around 0.29 % brown noise amplitude, so 
the 0.29 % brown noise amplitude is chosen as the composite amplitude. 

To simplify the visual analysis of the results. Here is the relative optimize value 
figure of the loss function compared to the baseline in each set shown in Figure 3.11. It 
can be observed that the best optimization improvement occurs in set C when 0.41 % 
brown noise amplitude, an increase of 92 %. In contrast, the least optimization occurs 
also in set C when 0.24 % brown noise amplitude, an improvement of 40 %. 
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Figure 3.10: Plot of the model average generalization results with brown noise 
augmentation. 
 

 
Figure 3.11: Relative optimize ratio in each optimized set by refined amplitude range 
of brown noise. 

 
 
 

3.2 Combined Noise Augmentation 
Various noises have an impact on all systems at once. White noise and brown noise 

effects on model behavior are discussed individually in the previous section. The 
impacts of brown and white noise fusions were investigated to optimize the NN model. 
By the outcomes of previous sections. For white noise, the model MSE is described 
shown in figures and plots that as same as previous sections using two parameters. The 
white noise amplitude and the brown noise amplitude. Firstly, the white and brown 
noise amplitude are divided as follows: white noise amplitude was chosen to be 17 %, 
which was the maximum noise quantity improving the generalization of the model as 



35 
 

all, and brown noise amplitudes are considered to be between 0.08 % and 163.84 %. 
The model is trained with 11 batches in each combined parameter, and the best epoch 
result is selected after 2000 epochs. 

Overall, The optimization results are not as good as the previous sections, but there 
are still a few optimization results worth discussing. In the results of set A, the ideal 
value is reached when the brown noise amplitude is 0.16 %, and MSE optimized by 
16 %. After 0.16 % brown noise, there is no observable optimization. Except for the 
range mentioned, other brown noise amplitudes have worse MSE. In the previous 
sections, there is not any optimized result in set B. This characteristic has been retained, 
there has been no optimization in this section. The number of optimization results 
obtained by set C is only two that happened on 0.08 % and 0.32 % brown noise 
amplitude. Moreover, the result of 0.32 % brown noise amplitude in set C has the 
highest relative optimization ratio among all sets, reaching 63 %. This also makes this 
result the best on average. The trend of set D is similar to set C which the optimized 
results are concentrated before 0.64 % brown noise amplitude. The best relative ratio 
of optimization is 16 % occurred at 0.16 % brown noise amplitude. It can be seen in the 
Table 3.6 below that the model average performance has few improved throughout the 
range before 0.64 % by the impacts of set A, set C and set D. The best relative 
optimization ratio of average MSE value is 19 % occurred at 0.32 % brown noise 
amplitude by the impact by the result of set C. Figure 3.12 and Figure 3.13 below show 
the more intuitive way of visualizing the overall trend of the results. It can be seen that 
the trends of set A and set B are slightly similar, while the trends of set C and set D are 
slightly similar. 
 
Table 3.6: Training results obtained by augmentation of fixed 17 % white noise 
amplitude with brown noise in amplitude range [0.08 %; 163.84 %] for all sets. 

brown noise amplitude set A set B set C set D average 

17 % white noise amplitude 0.0124  0.0438  0.0458  0.0499  0.0380  

0.08 % 0.0109  0.0443  0.0456  0.0453  0.0365  

0.16 % 0.0104  0.0442  0.0525  0.0415  0.0372  

0.32 % 0.0164  0.0466  0.0170  0.0426  0.0307  

0.64 % 0.0183  0.0514  0.0655  0.0530  0.0470  

1.28 % 0.0249  0.0548  0.0684  0.0645  0.0532  

2.56 % 0.0337  0.0570  0.0911  0.0780  0.0650  

5.12 % 0.0300  0.0552  0.1089  0.0988  0.0732  

10.24 % 0.0268  0.0518  0.2635  0.1589  0.1253  

20.48 % 0.0296  0.0464  0.1320  0.0836  0.0729  

40.96 % 0.0188  0.0478  0.1306  0.1047  0.0755  

81.92 % 0.0246  0.0470  0.1656  0.1046  0.0854  

163.84 % 0.0217  0.0490  0.1694  0.1177  0.0895  
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Figure 3.12: Plot of the training results obtained by combined noise augmentation of 
fixed 17 % white noise amplitude with brown noise in amplitude range [0.08 %; 
163.84 %] for all sets. 
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Second, the white and brown noise amplitude are divided as follows: brown noise 

amplitude is chosen to be 0.29 %, which is the best in the DSE for brown noise, and 
white noise amplitudes are between 0.08 % and 163.84 %. 

The result of fixed 0.29 % with different levels of white noise amplitude is worse 
than the result of the previous combination noise. There is no optimization in set A. 
Only one in set B, set C and average results. Moreover, the best relative optimization 
ratio also occurs at 1.28 % white noise in set C, reaching 17 %. A relatively 
acceptable result occurs in set D, there is observable optimization in the white noise 
amplitude range [0.08 %; 1.28 %] but with really small improvement. 
 
Table 3.7: Training results obtained by augmentation of fixed 0.29 % brown noise 
amplitude with white noise in amplitude range [0.08 %; 163.84 %] for all sets. 

white noise amplitude set A set B set C set D average 

 0.29 % brown noise amplitude 0.0109  0.0432  0.0246  0.0416  0.0301  

0.08 % 0.0121  0.0439  0.0248  0.0404  0.0303  

0.16 % 0.0113  0.0440  0.0429  0.0403  0.0346  

0.32 % 0.0111  0.0432  0.0306  0.0399  0.0312  

0.64 % 0.0114  0.0434  0.0312  0.0395  0.0314  

1.28 % 0.0114  0.0436  0.0204  0.0404  0.0289  

2.56 % 0.0112  0.0437  0.0362  0.0404  0.0328  

5.12 % 0.0121  0.0438  0.0932  0.0611  0.0525  

10.24 % 0.0122  0.0444  0.0728  0.0501  0.0449  

20.48 % 0.0144  0.0476  0.0447  0.0473  0.0385  

40.96 % 0.0194  0.0504  0.0317  0.0548  0.0391  

81.92 % 0.0147  0.0482  0.0368  0.0559  0.0389  

163.84 % 0.0146  0.0470  0.0565  0.0790  0.0493  
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Figure 3.13: Plot of the training results obtained by combined noise augmentation of 
fixed 0.29 % brown noise amplitude with white noise in amplitude range [0.08 %; 
163.84 %] for all sets. 
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Finally, the individual results from previous Table 3.6 and Table 3.7 can be 
discussed to evaluate the model's overall generalization performance in combination 
results. The baseline is set as the results of each best result in all set's MSEs in 
previous Section 3.2 and Section 3.3, and overall results are acquired as the average 
of all four sets. All the NN model procedure in Chapter 3 is basically similar. 

Most MSE values are worse than the baseline in Section 3.3, various from the 
results of other Sections in Chapter 3. It demonstrates that, generally speaking, after 
the combination of brown noise and white noise as the procedure used in this thesis, 
the result only has a few positive effects on the model. The model's best 
generalization of the overall average is found at the fixed 0.29 % brown noise 
amplitude with 1.28 % white noise amplitude, where the lowest MSE value in average 
of four sets occurs. The MSE value for this parameter is 0.0289.  

In comparison, only adding white noise or brown noise to the original data as the 
procedure used in this thesis can get the more ideal generalization performance. From 
the average value of relative optimization ratio in refined range's optimization. 62 % 
in white noise and 66 % in brown noise can be observed, a little bit close but brown 
noise is slightly better. 
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Chapter 4 

Conclusion 
 
The implementation of machine learning techniques in numerous fields is simplifying 
the resolution of complicated issues. Numerous industries, including those in 
healthcare, transportation, security, and industry, use various machine learning 
algorithms. While NN typically produces satisfactory results, augmentation may be 
used in some circumstances to improve the model's poor regularization. In this thesis, 
data augmentation strategies were investigated as a means of enhancing model 
performance by actually increasing the quantity of the input data by noise. The 
majority of augmentation methods used in computer vision are used on images. The 
most common approaches include random rotation, zooming, cropping, and flipping.  
The resolution of each frame produced by the sensor is relatively low since a 16 pixel 
IR sensor is used to study human indoor localization in a constrained 3x3m area. Per 
each sensor frame, the corresponding person location's X and Y coordinates are also 
gathered. A total of 30 minutes of person tracking at 5 Hz results in approximately 
9000 tuples of experimental results, each of the original data is made up of the outputs 
of 16 IR sensor values and their related X and Y positions. Four independent sets of 
experimental data produced under various circumstances and at various room 
temperatures have been gathered. The NN is trained using the second set of 
experiments, and the remaining three sets are employed to evaluate the model 
regularization and generalization. Because sensor data could be impacted by 
environmental noise, data augmentation by noise is used to enhance the overall model 
inference. 
The first sort of noise is white noise, which is a typical noise that affects everything 
around us. The second type of noise, brown noise, is a more stochastic noise. In order 
to get successful outcomes, various white and brown noise levels were investigated. 
Both noise amplitude ranges between [0.01 %; 163.84 %], the noise level increases 
geometrically with powers of 2, are examined to verify the generalization of the 
model inference. Figures in the Section 3.2 shows that the range [11.6 %; 36.1 %] 
with at least three sets of improvements is corresponds to the model behaving overall 
the best. Considering overall performance, the 17 % white noise amplitude can be 
seen as the best choice to investigate further. The same amplitudes range and the same 
model procedure for brown noise are used. As illustrated in the Section 3.3, the 
refined and most promising amplitude range is [0.1 %; 0.59 %]. The generalization 
and regularization of the model can be improved in general. In order to illustrate the 
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model properties for white and brown noise amplitudes in combination, the 
investigation of two noise combinations is completed in the Section 3.4. First is fixed 
17 % white noise amplitude with the brown noise amplitude range [0.08 %; 
163.84 %] when the next one is fixed 0.29 % brown noise amplitude with the white 
noise amplitude range [0.08 %; 163.84 %]. Compared with adding only one kind of 
noise, the result of combination noise in the Section 3.4 has only been optimized by a 
few. 
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