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Summary 
 

Robotic technologies are becoming popular and almost essential nowadays in many 
industrial sectors and for the most disparate purposes. They provide huge benefits to 
companies and workers: carry out monotonous, unpredictable, and hazardous jobs in 
harsh environments, resulting in an increased safety and availability of personnel that can 
be differently deployed. Plant inspection and maintenance are generally human-intensive. 
Tedious and repetitive tasks may entail decreasing attention spans of employees, leading 
to errors that may have serious consequences. In that context, robots accomplish 
thoroughness, safeness, cost and time efficiencies.  

This thesis work is part of the project carried out by Sprint Reply from the group Reply 
S.P.A., a company hard experienced with Robotic Process Automation, OCR tools, 
Natural Language Processing as well as physical social robots. The project aims to 
develop a robotic-aided solution for a world leader company in the Oil & Gas industry, 
to detect gas or liquid leakages, monitor the conditions of working machines, check the 
availability of HSE equipment and create a digital representation of the sites using 3D 
LIDAR scans.  

Spot from Boston Dynamics is the robot used to perform the required tasks. It is an agile 
mobile robot that allows to automate routine inspection tasks of any area of interest, to 
monitor different scenarios, detecting and recognizing specific objects and capturing data 
safely, accurately, and frequently. Using the Software Development Kit, it is possible to 
create custom controls, program missions, and integrate sensor inputs into data analysis 
tools.  

In particular, the thesis activity focuses on visual data processing that consists in building 
image processing algorithms. During scheduled patrols in the facility plant, Spot 
recognizes target elements through a widely used neural network for object detection and 
takes photos that are processed using computer vision. The algorithms recognize peculiar 
characteristics in the acquired images and verify if they match with a set of given 
parameters. They collect information and produce as output numerical values or alert 
messages that are communicated to the operators, visible through a management console. 
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Chapter 1  

Introduction 
 
The work thesis that follows details a six-months project, from July to December 2022, 
carried out by the team of Sprint Reply S.p.A. and developed for a prominent company 
in the oil and gas industry. Although the project spanned two years, during the closeout 
phase, the group focused on delivering the final design to the client, reaping the benefits 
of common effort and showing that concrete outcomes were achieved. 

Sprint Reply S.p.A. is a company within the Reply Group, a global consulting, systems 
integration, and digital services company. It focuses on the development and 
implementation of innovative solutions, including robotics, IoT, artificial intelligence, 
and machine learning, and is involved in a wide range of projects in different industrial 
sectors. They work alongside their clients to create tailored solutions that address their 
specific business challenges and leverage the latest technologies to provide innovative 
and effective answers. 

In this case the project aimed to create autonomous visual inspections inside the plant of 
the client company, and this using Spot from Boston Dynamics. 

Spot is an agile quadrupedal robot that is able to navigate challenging environments and 
to complete different tasks. Spot can operate autonomously or be controlled remotely, 
allowing flexibility and versatility in different situations. Additionally, it can mount a 
variety of sensors to collect data and capture images, including the powerful Spot Cam+ 
camera, with an optical zoom, which can provide high-definition shots of hard-to-reach 
equipment and instruments. These features make Spot a valuable tool for optimizing plant 
inspection processes, reducing costs, and improving safety. 

The project focused on developing three distinct autonomous robotic inspection tours, 
each in a different area of the plant, with the purpose of reading values reported by meters 
located within the facility. During the inspections, Spot freely navigates along a 
prerecorded path and stops at every chosen target be read. The Spot Cam+ is employed 
to capture images of the devices, which are subjected to digital processing.  

The digital processing involves utilizing Yolo, a well-known object detection model, to 
identify the meter within the image and crop it around the precise area of interest for the 
numerical values extraction. Thereafter, a reading algorithm, specifically designed for 
each meter category, is applied.  

From a temporal point of view, the work was organized in two phases. In the first period, 
images of the meters were collected. These images were used to construct the dataset for 
training and validating Yolo and to design the reading algorithms. During the second 
phase, numerous tests were conducted within the plant to assess the overall autonomous 
inspection system. Simultaneously, the data gathered during these tests was used to fine-
tune the algorithms created at the beginning. 



To sum up, the goal of the thesis is to describe the design process of an automatic robotic 
inspection system. Autonomous robotic systems equipped with advanced sensing and 
perception capabilities have revolutionized the field of industrial inspection. These 
systems, combined with artificial intelligence and machine learning, offer numerous 
benefits over traditional inspection methods. In the first chapter of this thesis, we 
introduce some general aspects of these systems and the required theoretical background. 
Next, the methodology and the adopted solution are presented.  We specifically describe 
the architecture, the data management, the missions’ organization and two of the 
computer vision algorithms. Then, the results and the related analysis are presented. In 
the last chapter, we draw some conclusions and identify some key areas of focus for future 
works.



Chapter 2 

Overview 
 

2.1 Autonomous robotic plant inspection 
 

 
Figure 2.1: Spot robot from Boston Dynamics performing plant inspection. 

Robotic technologies have made tremendous progress in recent years, transforming 
entire industrial sectors, and revolutionizing the way we live and work. From 
manufacturing to healthcare, transportation to entertainment, robots are playing an 
increasingly important role in society [1]. Moreover, when robotics is combined with 
other technologies such as artificial intelligence, their use opportunities grow even 
more. AI allows robots to process vast amounts of data, make complex decisions, and 
adapt to changing environments in real-time. This has enabled robots to perform a wider 
range of tasks with greater precision and efficiency, from autonomous vehicles that 
navigate busy streets to drones that inspect infrastructures. Collaborative robots are also 
becoming more common in manufacturing and other industries. They work alongside 
human workers, performing repetitive or dangerous tasks while the humans focus on 
more complex or creative work. This not only improves efficiency but also increases 
safety for workers. 



Overall, automation continues to evolve at a rapid pace and opens new possibilities for 
many people. Even though there are countless applications for robotic technologies, 
autonomous or semi-autonomous robotic missions still stand out as a prime example of 
how these advancements can be utilized to their maximum potential. 

Plant inspections refer to the process of assessing and examining the physical condition 
and operational efficiency of a facility or industrial plant, with the aim of ensuring 
compliance with relevant regulations, identifying potential hazards or risks, and detecting 
any defects or malfunctions that could affect production or worker safety [2]. 

As matter of fact, site inspections still rely heavily on manpower. Typically, they involve 
an operator physically patrolling the plant, gathering information from IoT devices or 
taking photographs. They must use proper equipment, exercise caution, and remain 
constantly attentive when performing any action. Hence, collected data need to be 
transmitted to diverse databases and systems, where analysts employ data analysis 
solutions to investigate large volumes of information. If the identification of problematic 
areas occurs, they write reports that are dispensed among pertinent staff members, in order 
to make business decisions as where to direct their focus and resources. 

The whole process requires significant investments of money and time, especially in large 
industrial facilities, and the likelihood of human error and inefficiencies is high.  

Although inspections are routine, they must be accurate, consistent, and reliable to meet 
safety, environmental, and performance standards.  

The exclusive use of IoT sensors as solution may be too costly since it requires a 
sophisticated sensor technology, an IoT network infrastructure for energy supply and data 
transmission, as well as a reliable monitoring system. Many companies are beginning to 
use remote-controlled drones and robots, with the industry moving toward fully 
autonomous inspections.  

It is quite clear that robotic plant inspections are changing the way industrial plants are 
inspected and maintained. Advanced robots are themselves equipped with sophisticated 
sensors and cameras, and navigate through the complex terrain of industrial plants, collect 
data, and identify potential issues before they become serious problems. With the ability 
to operate in a controlled manner and efficiently, robots can improve safety, reduce 
downtime, and increase productivity. From oil refineries to chemical plants, these robots 
are being deployed to perform inspections that are too dangerous or difficult for human 
workers to undertake and, are a cost-efficient alternative, with respect to fully sensor-
based solutions, for consistent and reliable asset monitoring.  

For data collection to be fully automated, an autonomous robot needs to move freely into 
the field and employ computer vision and artificial intelligence to collect data. Data 
collection systems could be automatically linked to the data analysis systems, ensuring 
that relevant information is consistently gathered and translated into reports in real-time. 
Presently, most systems can analyze data instantaneously, but they are not always capable 
of identifying which analytics should be run on which data to gain the desired insights.  
 



Self-sufficient robots can monitor their battery level and return to the charging station as 
needed, eliminating the requirement for someone to retrieve it and prepare it for the next 
mission.  
 
Currently, semi-autonomous inspections are more common than autonomous ones. This 
is attributed to various factors, including the challenge of executing certain tasks without 
human involvement at all. Nevertheless, the advantages of autonomous technology over 
semi-autonomous technology are widely acknowledged, particularly in terms of safety 
and efficiency. Consequently, the trend is rapidly shifting, as investments in autonomous 
systems continue to rise and adoption improves alongside technological advancements 
[3]. 

2.2 Mobile robots   
 

Mobile robots are self-contained vehicles designed to move autonomously in a given 
environment. They have become increasingly popular in recent years due to technological 
advancements in sensors, computation, and communication, which have made them more 
intelligent and adaptable [4]. Mobile robots are used in a wide range of applications across 
various industries, spanning from manufactory to logistics, from healthcare to the military 
sector. They are used for tasks such as material handling, assembly, and quality control 
inspections.  

One of the key advantages of mobile robots is their ability to operate continuously without 
the need for breaks or rest periods. This makes them ideal for tasks that require long 
periods of operation. Additionally, mobile robots can work in hazardous environments 
without risking human safety, making them ideal for tasks such as inspections or 
maintenance in areas such as oil rigs, pipelines, or underground tunnels [5]. 

Mobile robots are equipped with a large range of technologies including actuators, 
sensors, navigation algorithms, and control systems. Actuators such as hydraulic systems 
and motors enable the physical movements, sensors make robots navigate the 
environment, avoid obstacles, and detect and interact with objects. Sensors include 
cameras, LIDAR, sonar, and GPS, among others. The information gathered from them is 
processed by the robot's onboard computer, which determines the robot's next actions 
based on the surrounding environment. Navigation algorithms, such as collision 
avoidance, mapping, and path planning, help the robot determine the most efficient way 
to navigate, while the control systems use the navigation algorithms to determine how to 
control the actuators [6]. 

In recent years, mobile robots have become increasingly intelligent and adaptable, thanks 
to advancements in artificial intelligence and machine learning. These technologies 
enable mobile robots to learn from their experiences and improve their performance over 
time, making them more efficient and effective in their tasks. 

Overall, mobile robots offer numerous advantages over traditional manual methods, 
including increased efficiency, accuracy, and safety. As such, they have become an 



increasingly important tool for businesses and industries looking to streamline their 
operations and improve their bottom line. 

There are several types of mobile robots that are particularly suitable for robotic 
inspections. The most common types are wheeled robots, tracked robots, legged robots, 
and aerial robots.  

   

 

Wheeled robots are the most widely used type of mobile robot due to their simplicity, 
reliability, and cost-effectiveness. They are suitable for flat surfaces and can move at high 
speeds.  

Tracked robots are similar to wheeled robots but have tracks instead of wheels. They are 
suitable for rough terrains, slopes, and uneven surfaces.  

Legged robots have legs that allow them to move like animals, climb stairs, and traverse 
obstacles. They are suitable for complex environments such as construction sites and 
disaster zones.  

(a) (b) (c) 

(d) 

Figure 2.2: Wheeled robot (a), tracked robot (b), legged robot (c), aerial robot (d).  



Aerial robots, also known as drones, are flying robots that can inspect assets from above. 
They are suitable for large-scale inspections, such as power lines and pipelines. 

When it comes to robotic inspections, the most suitable type of mobile robot depends on 
the specific application and the environment. For example, wheeled robots are ideal for 
inspecting flat surfaces such as floors and walls, while tracked robots are better for 
inspecting rough terrains such as construction sites and mines. Legged robots are suitable 
for inspecting complex environments such as power plants and disaster zones, while 
aerial robots are ideal for inspecting large-scale assets such as power lines and wind 
turbines. 

Another factor to consider when selecting a mobile robot for robotic inspections is the 
type of sensors it uses. Mobile robots can be equipped with various sensors as said before, 
such as cameras, laser scanners, and thermal sensors. Cameras are the most common type 
of sensor used in mobile robots, as they provide a visual representation of the 
environment. Laser scanners are used to create 3D maps of the environment and measure 
distances. Thermal sensors are used to detect temperature variations, which can indicate 
the presence of leaks or overheating. The choice of sensors depends on the specific 
application and the type of asset being inspected. For example, cameras are ideal for 
inspecting surfaces and detecting defects such as cracks and corrosion. Laser scanners are 
suitable for creating 3D maps of complex environments such as mines and construction 
sites. Thermal sensors are ideal for detecting temperature variations in pipelines and 
tanks, which can indicate the presence of leaks or overheating. 

In addition to sensors, mobile robots can also be equipped with various tools and 
accessories, such as grippers, manipulators, and cleaning tools. Grippers and 
manipulators are used to manipulate objects and perform tasks such as opening valves 
and turning knobs. 

Finally, the choice of mobile robot for robotic inspections also depends on the level of 
autonomy required. Mobile robots can be classified into three levels of autonomy: 
teleoperated, semi-autonomous, and fully autonomous. Teleoperated robots are 
controlled by a human operator who remotely operates the robot using a joystick or a 
computer interface. Semi-autonomous robots can operate autonomously but require 
human intervention for tasks such as obstacle avoidance and path planning. Fully 
autonomous robots can operate without human intervention and can perform tasks such 
as navigation, obstacle avoidance, and inspection. The level of autonomy required 
depends on the complexity of the environment and the tasks to be performed.  

When considering practical applications for these robots, their mobility system is a 
critical attribute that must be evaluated.  

In the context of plant inspections, the two main options for robot types are wheeled and 
legged robots. Tracked robots are typically reserved for use in other industries, such as 
military, construction, and mining, as they are specifically designed for rough terrain.  

Currently, wheeled mobile robots are more commonly used for plant inspections due to 
their ease of design, control, and manufacturing compared to legged robots. They are also 



generally more energy efficient, faster, and less expensive, making them a cost-effective 
option for inspecting large plants. However, their use is limited as they are only able to 
move on flat surfaces and are unable to overcome certain obstacles. Legged robots, on 
the other hand, have the ability to climb stairs and navigate almost any uneven ground, 
making them a more versatile option for inspections.  

The advantages of each system are outlined in table 2.1. 

 
As far as mobility and stability of movement are concerned, quadruped robots are superior 
to other legged robots [7]. The robot's four legs are readily manipulated, designed, and 
maintained and consequently, robotics companies such as Boston Dynamics, ANYbotics, 
Unitree Robotics, OR Ghost Robotics have developed quadruped robots that can navigate 
real-world environments with ease.  

Based on the above, while performing the project discussed in the thesis, we decided to 
use legged robots for conducting inspections within the facility in exam, and in particular 
Spot from Boston Dynamics. Specifically, the inspections carried out in the plant entailed 
several crucial elements that necessitated the use of this type of robot. These include 
traversing various types of terrain, such as asphalt roads, rough terrain, and grass, in order 
to reach the location where the robot would have carried out visual interpretation tasks. 
The path also had some unevenness, such as climbing sidewalks or overcoming obstacles. 
Additionally, some of the meters that needed to be read during the inspection tour were 
elevated and could only be accessed via stairs. Finally, the robot might encounter dynamic 
obstacles along its path, such as vehicles or pedestrians, requiring it to react quickly and 
with maximum stability. 

 

 

 

Table 2.1: Comparison between wheel robot with legged robot.   



 

2.3 SPOT from Boston Dynamics 
 

Spot, developed by Boston Dynamics, is probably 
the most sophisticated quadrupedal robot 
available for industrial and commercial purposes 
[8]. Boston Dynamics began investigating 
advanced robot solutions in the early 1990s, and 
in 2017 and 2021, they released models that 
quickly gained recognition in the industry. These models are Spot Enterprise and Spot 
Arm. While sharing the primary characteristics and operating principles, the key 
distinction between these models lies in the payloads they handle. Specifically, Spot 
Arm features a manipulator mounted on its body structure, which limits the payloads 
capacity if compared to the more versatile Spot Enterprise. Spot Arm is still a version on 
which developers are bringing patches and therefore is not that reliable yet. On the other 
hand, Spot Enterprise is a staple for autonomous patrols and robotic inspections. 
  

From a dimensional standpoint, Spot Enterprise measures 1100 mm in length and 500 
mm in width. Its height, indeed, is subject to variation based on the flexibility of the 
robot's leg joints. Specifically, it ranges between 520 and 700 mm while in motion, with 
a default walking height of 610 mm, and 191 mm while in a sitting position. Its net weight 
is 32.7 kg when the battery is mounted and can move with up to 14 kg payloads on the 
back. Additionally, it is worth noting that the robot possesses 12 degrees of freedom and 
can reach a speed of up to 1.6 m/s. 

When considering the environment in which Spot operates, it is crucial to account for 
several factors, such as ingress protection (IP), operating temperature, maximum step 
height, and the ability to traverse slopes. Specifically, the robot is rated as IP54, which 
may prove to be a limitation for certain outdoor applications as it can only withstand light 

Figure 2.3: Boston Dynamics 

(a) (b) 

Figure 2.4: Spot Enterprise (a) and Spot Arm (b). 



rain and is not suitable for use in adverse weather conditions such as heavy rain or snow. 
Additionally, the operating temperature range of Spot is between -20° C and +45° C, 
which enables a broad range of indoor and outdoor applications but may also be a 
limitation as it is not suitable for extremely cold or hot environments. A notable capability 
of Spot is its ability to navigate and traverse changes in terrain, including a maximum 
step height of 300mm and the capability to traverse slopes between -30 and +30 degrees. 

Spot is equipped with two plug-in batteries that can be inserted from below. Each battery 
has an approximate weight of 5 kg and can typically run for 90 minutes, although the 
actual runtime may vary depending on the tasks Spot performs.  

Throughout its body, the robot has cameras and sensors that serve various functions. 
These cameras include black and white, color fisheye, range (depth), and infrared 
functions. The sensors are used for robot perception and obstacle avoidance, and they 
have a range of 2 meters from the robot's position [9]. 

Spot Enterprise supports both payloads from Boston Dynamics itself and third-party 
companies. Among the ones from the robot’s mother company are worth mentioning Spot 

CAM+, Spot CAM+IR and Spot Core I/O. 

The Spot CAM+ [10]equips Spot with a specialized camera, transforming it into a potent 
inspection tool capable of surveying remote or hazardous environments with emphasis on 
key inspection details. Its primary features comprise of a spherical camera offering a 360 
x 170° view, a Pan-Tilt-Zoom (PTZ) camera with 30x optical zoom, and two-way audio 
speakers and microphones. Additionally, four pairs of LEDs provide illumination in dark 
environments, a roll cage protects the device from damage, and the device features 
protected cabling and sealed electronics. Configuration options are also available for front 
or rear mounting, and a USB port allows for the storage of image data. 

To the basic version of the Spot CAM+ a thermal camera can be added to enable detailed 
thermal and visual inspections (Spot CAM+IR). 

As regards the Spot Core I/O [11], it is used to enhance both the computation and 
communications available on the Spot platform. It connects sensors, cameras, and other 
devices to Spot, process the data collected into actionable insights, and relay those 
insights over 5G/LTE. Some main features are: 

- Compact CPU and GPU with customizable inputs and outputs 

-  5, 12 and 24V regulated power output 

- RJ45 standard ethernet adapter 

- Easy cable sealing to maintain IP54 rating 

- Built-in 5G/LTE modem with CBRS support for private networks and option to 
use AT&T’s public network 

- Option to add LIDAR for enhanced autonomy. 

 



 

 

There are two modes in which Spot can operate, teleoperation and autowalk, with the key 
difference being the need for human intervention. 

In teleoperation mode, Spot can be remotely controlled via a tablet. The tablet displays 
the robot's surroundings captured by its onboard cameras, and the operator can switch 
between different camera views. The operator can control Spot's movements, speed, body 
height, and issue commands like sitting, standing, or performing data gathering actions 
[12].  

On the other hand, autowalk mode enables the recording and replay of a series of 
movements and location-based actions with the robot, referred to as missions [13].  
The autowalk mode consists of two parts: 

- Recording a mission: this involves teleoperating Spot through a route and creating 
actions to be performed along the way. 

- Replaying missions: this involves Spot performing the same movements and 
actions as previously recorded, while adapting to minor changes in the 
environment. 

Spot automatically sets waypoints along the path when a mission is being recorded. 
During the replay of the mission, Spot walks from one waypoint to the next. The criteria 
for placing waypoints are as: 

• Waypoints are set at 2-meter intervals along straight paths. 

(a) (b) 

Figure 2.5: Spot Cam+ (a) and Spot I/O with LIDAR (b). 



• A waypoint is set within a 0.3-meter path segment if Spot turns more than 30 degrees 
or either its elevation changes by more than 0.3 meters. 

• A waypoint is set when an action is recorded. 

When replaying the mission Spot calculates its position by comparing features in its 
current sensor data with features in the data snapshots taken at each waypoint during 
mission recording. The base Spot platform tracks visual features within 2 m of the robot 
with its stereo cameras, but this range can be significantly enlarged with a LiDAR, thus 
improving Spot navigation capabilities. Spot automatically compensates for small 
changes in the environment adapting its route to avoid obstacles and attempting to 
complete the mission, but large discrepancies may require human intervention. 

 

2.4 Digital image processing  
 

Image processing is a field of computer science and engineering that deals with the 
analysis and manipulation of digital images. It involves a wide range of techniques for 
improving, restoring, and analyzing images, and has numerous applications [14]. The 
goal of image processing is to extract useful information from images, or to enhance them 
in some way that makes them easier to analyze or interpret. To achieve these goals, image 
processing typically involves a combination of mathematics and statistics. 

In computer vision, images are represented as 2-dimensional numerical grids, where each 
grid value corresponds to a pixel. Pixels are represented by a numerical value, which 
typically ranges from 0 to 255 and gives information on the brightness or intensity of the 
color at that pixel. In grayscale images, which use a single value per pixel to represent 
brightness and thus just a single image-matrix, a pixel with a value of 0 is completely 
black, while a pixel with a value of 255 is completely white. Colors, on the other hand, 
are represented using what are called color spaces, that are models employing typically 
three components to address colors as points in a coordinates system. There are several 
color spaces and all of them are commonly used in image processing and computer vision, 
to extract different features from the image. 

The most common color space is the RGB color space. It is the standard to represent 
colors on most computer displays and cameras and represents colors as combinations of 
red, green, and blue intensities. RGB color space can be visually represented as a cube. 
The primary colors of red, green, and blue are located at three corners of the cube, while 
the secondary colors, cyan, magenta, and yellow are located at the other three corners. 
The origin represents black, and the corner farthest from the origin represents white. 
Colors within the RGB model are defined by vectors originating from the origin and 
extending to points inside or on the surface of the cube. 

HSV is a color space designed to represent colors as we humans do. Its components are 
hue, saturation, and brightness, that are more intuitive to understand than the percentage 
composition of primary colors. HSV is often visualized as a cylinder, where the hue 



component, corresponding to what we perceive as pure color, is represented by the 
angular dimension around the cylinder. The primary colors of red, green, and blue are 
located at 0°, 120°, and 240°, respectively. Saturation, indeed, which corresponds to the 
intensity of a particular hue, varies along the radial dimension. Colors with high saturation 
appear more vibrant and intense, while those with lower saturation appear weaker and 
tend towards gray. Finally, he third component is represented along the vertical axis and 
only affects the brightness of the color. The central vertical axis of the cylinder represents 
achromatic grayscale colors, with white at the top and black at the bottom. 

 

  

We describe below some algorithms used in image processing that are relevant for our 
work. 

Spatial Filtering  

Spatial filtering is a technique that applies a transformation to all pixel values, where the 
output of the filter depends on the single pixel and  its neighborhood. Low-pass filters are 
a type of filter that is commonly used in image processing, essentially to blur an image 
for smoothing purposes. Spatial filters may utilize either linear or non-linear operations. 
Linear operations involve a 2D convolution between an image and a filter kernel across 
all color channels. The discrete 2D convolution of a kernel k with an image I(x,y), of size 
m × n, is defined as: 

(𝑘 ∗ 𝐼)(𝑥, 𝑦) =  ∑ ∑ 𝑘(𝑠, 𝑡) ∙ 𝐼(𝑥 − 𝑠, 𝑦 − 𝑡).

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

  

When performing spatial filtering on a multi-channel image, the convolution process is 
carried out independently on each channel, and then the resulting outputs are combined 
and concatenated. 

(a) (b) 

Figure 2.6: RGB color space (a) and HSV color space (b). 



The filtering action depends on the coefficient values and the size of the filter. 

Gaussian filter applies a smoothing effect to an image to eliminate high-frequency noise. 
This technique is frequently employed as a preliminary step before running edge detection 
algorithms, as these algorithms are particularly affected by noise. The filter is circular and 
symmetric. The values of the kernel are computed by sampling from the Gaussian 
distribution and the resulting matrix is then normalized such that the sum of its elements 
is equal to one [15]: 

𝑘(𝑠, 𝑡) = 𝐾 ∗ 𝑒(𝑠2+𝑡2)/(2∗σ^2) . 

 

Bilateral filter is a non-linear method that reduces noise while preserving edges in an 
image. It is characterized by the following equation: 

 

𝐵(𝐼, 𝑥) =  ∑ 𝐼(𝑋𝑖)𝑓𝑟𝐼(𝑋𝑖), 𝐼(𝑋))𝑔𝑠(𝑥𝑖, 𝑥),
𝑥𝑖∈𝛺

 

 

where I is a k-dimensional image, Ω is the set of pixels xi in an nk window, fr and gs are, 
respectively, the range attenuation and spatial attenuation weight functions [16]. 

For every pixel, the filter calculates a weighted average based on the spatial distance and 
the intensity difference between the pixel and its neighbors. To pixels with similar 
intensity values are given higher weights, while to those with large differences are given 
lower weights. 

Thresholding  

Thresholding is an image processing technique used for segmenting an image into 
regions, based on the intensity values of its pixels. This technique works by setting a 
threshold value and classifying each pixel in the image as either a foreground or 
background pixel depending on whether its intensity value is above or below the 
threshold, respectively [17]. This approach is typically employed when the intensity 
histogram of an image exhibits two dominant modes, and thus, by picking a certain 
threshold value T, is possible to separate them. The term global thresholding is used when 
the value T is constant. Conversely, variable thresholding refers to cases where the value 
of T varies across the image. In local thresholding, T at a given pixel is determined by the 
characteristics of the neighborhood surrounding the pixel. If T depends on the spatial 
domain, variable thresholding is referred to as adaptive thresholding. If the intensity 
distributions of object and background pixels are sufficiently distinct, a single threshold 
can be used for the entire image.  

The output of thresholding is a binary image. 

Otsu's method is a variance-based approach for determining a global threshold value. The 
algorithm performs an iterative search through all possible threshold values and selects 



the one that results in the minimum within-class variance. The within-class variance is 
defined as the weighted sum of the variances of the two classes background and 
foreground, as shown in the equation: 

𝜎2(𝑡) =  𝜔𝑏𝑔(𝑡) ∗  𝜎2
𝑏𝑔(𝑡) + 𝜔𝑓𝑔(𝑡) ∗  𝜎2

𝑓𝑔(𝑡), 

 

where t is threshold value considered, 𝜔𝑏𝑔(𝑡) and 𝜔𝑓𝑔(𝑡) are the portion of pixels of the 
image respectively categorized as background and foreground when considering t as 
threshold, and 𝜎2

𝑏𝑔(𝑡) and 𝜎2
𝑓𝑔(𝑡) are the variance of the two sets of pixels [18]. 

 

 
Figure 2.7: Example of a thresholding operation.   

Morphological transformation 

The fundamental concept of morphological transformation involves utilizing a structuring 
element, which resembles a kernel, to operate on specific parts of the input image 
[15][19]. Two basic operations are dilation and erosion. 

Erosion is a morphological technique used to contract or remove small foreground 
regions in a binary image. In this operation, the structuring element is superimposed on 
each foreground pixel of the image, with the center of the structuring element aligned 
with the input pixel position. The value of the input pixel is then replaced with the 
minimum pixel value in the region delineated by the structuring element. As a result, if 
any of the neighboring pixels are background pixels, the input pixel assumes their value, 
otherwise it retains its original value. If we consider a binary image I as a rectangular 
array of foreground A (1s) and background pixels Ac (0s), and B as a structuring element, 
we can define the erosion operation as: 

I ⊖ B = {z | (B)z ⊆ A & A ⊆ I} ∪ {Ac | Ac ⊆ I} 

where (B)z is the structuring element translated by z, defined as: 

(B)z = {c | c = b + z, ∀b ∈ B}. 



Dilation can be considered as the opposite of erosion and is typically used to fill gaps 
between sets of foreground pixels in a binary image, expanding the boundaries of white 
regions. In contrast to erosion, dilation superimposes the structuring element on each 
background pixel of the image. The value of the input pixel is then replaced by the 
maximum value of the pixels within the region defined by the structuring element. If at 
least one of these pixels is a foreground pixel, the input pixel receives that value. 
Otherwise, it remains a background pixel. The formal definition of dilation is given by:  

I ⊕ B = {z | [(B)z ∩ I] ⊆ I} 

Other common morphological transformations include opening and closing operations. 

 

The opening operator is used to smooth object contours, remove regions that can not 
contain the structuring element, break narrow bridges, and eliminate small protrusions in 
an image.  It is defined as: 

I ◦ B = (I ⊖ B) ⊕ B, 

which states that the opening of image I by structuring element B is the erosion of I by B 
followed by dilation of the result by B. 

 

(a) (b) (c) 

Figure 2.8: Effects of erosion (b) and dilation (c) on the original image (a). 

Figure 2.9: Example of the opening operation.  



In contrast, the closing operator generally fuses narrow breaks and long thin gulfs, fills 
gaps in the contour, and eliminates small holes. It also tends to smooth contours. The 

closing of image I by structuring element B is defined by:  

I • B = (I ⊕ B) ⊖ B, 

which states that the closing of I by B is the dilation of I by B followed by erosion of the 
result by the same structuring element. 

 

 

  Figure 2.10: Example of the closing operation. 

 

Opening and closing operations are dual to each other. 

 

Convex Hull 

The geometrical definition of convex hull says that it is the smallest convex set containing 
the shape in exam. Within the computer vision literature, there are numerous algorithms 
available for computing the convex hull of a cluster of points in an image. The one 
implemented in OpenCV uses an algorithm proposed by Sklansky [20], that has proven 
to be valid by the academics for the so called weakly externally visible polygons.  
 
Weakly externally visible polygons are a class of simple polygons.  A simple polygon is 
a two-dimensional shape that is bounded by a closed path, where no two edges intersect. 
An externally visible polygon, indeed, is one where any point inside the polygon can see 
at least one point on the boundary of the polygon. Finally, A weakly externally visible 
polygon is a special case of an externally visible polygon, where the visibility condition 
only applies to vertices and edges on the exterior boundary of the polygon. 
 
The author describes the algorithm starting from a simple polygon like the one in figure 
2.11(a), finding the extreme vertices in the horizontal and vertical directions, and dividing 
the plane in four triangular closed regions, where T, B, L, R refer to the top, bottom, left 
and right extremes, so that all points of the polygon are within the rectangle. The idea is 
to create four monotone chains within the regions Ri, in order to build the convex hull in 



steps. These steps are shown for region R1 and then simply repeated for the remaining 
three regions. Assuming that two vertices, I and I+1, have been added to the monotone 
chain starting at L, the plane is divided into three regions, as depicted in figure 2.11(b). 
The subsequent vertex, I+2, is handled in the following manner: 

1. If I+2 is not present in R1, it is rejected. 

2. If I+2 is located in A3, it is retained and the process is repeated. 

3. If I+2 is located in A2, or in A1 and positioned above I+1, and a vertex was 
discarded due to line 3 on the immediately preceding iteration, it is rejected. 

4. If I+2 is located in A1, vertex I+1 is discarded. 

Finally, if line 3 is executed, I+2 replaces I+1 in the next iteration, and if line 4 is 
executed, vertex I takes the place of I+1.  

 

Following what outlined above, a horizontal-vertical monotonic polygon can be obtained. 
However, any non-convex vertices must be still eliminated. Starting from one of the 
external vertices of the polygon and applying the following inequality, it is possible to 
determine whether a given vertex belongs to the polygon's convex hull or not. 

𝑆𝑖 ≜ (𝑥𝑖+1 −  𝑥𝑖−1)(𝑦𝑖−1 −  𝑦𝑖) + (𝑦𝑖+1 −  𝑦𝑖−1)(𝑥𝑖 −  𝑥𝑖−1), 

 
where, xi and yi are the cartesian coordinates of vertex Vi. 

Vi is a convex vertex if Si<0, while if Si>=0 Vi is removed and thus will not belong to the 
convex hull. Tracing the shape of the convex vertices, the convex hull of the starting 
polygon is obtained. 

This algorithm is simple from a complexity point of view and easy to implement. 
However, it is less efficient than other algorithms for computing the convex hull, such as 
the QuickHull and Graham Scan algorithms, which have a faster average-case 
performance. 

(a)  (b)  
Figure 2.11: Simple polygon (a) and plan divided into regions (b). 



 

 

2.5 Object detection with YOLO 
 

Object detection is a crucial research area within the 
field of computer vision. Its objective is to identify 
and locate objects in an image or video by creating 
bounding boxes around the detected objects, and 
determining their position in the scene. These 
bounding boxes are rectangular in shape and indicate 
the object's location in the image. Object detection 
is a subfield of object recognition, and, like many 
related problems, relies heavily on deep learning 
techniques, including neural networks. 

You Only Look Once (YOLO) [21] is a real-time object detection algorithm that relies 
on Convolutional Neural Network (CNN), a specific artificial neural network mainly 
designed for image classifications. It is widely known for its exceptional speed and 
accuracy in detecting objects. YOLO is a single-stage detector, it directly predicts the 
bounding boxes and class probabilities for each object in a single forward pass of the 
neural network. Traditional two-stage object detection methods, such as the R-CNN 
algorithms, first propose regions of interest using a Region Proposal Network (RPN) and 
then classify those regions. In short, YOLO divides the input image into a grid of cells 
and assigns each cell a set of bounding boxes. Each bounding box represents a potential 
object in the image and is associated with a class label and a confidence score. The 
confidence score reflects the probability that the bounding box contains an object and is 
computed based on the intersection-over-union (IoU) between the bounding box and the 
ground truth object. To classify objects in the image, YOLO adopts a multi-scale 
detection approach. It initially processes the input image at various scales and then merges 
the detections from each scale to generate the final set of bounding boxes. This allows 
YOLO to identify objects of different sizes and scales within the image. To improve the 
accuracy of object detection, YOLO integrates several techniques such as anchor boxes, 

Figure 2.11: Example of convex hulls in white of the green contours. 

Figure 2.12: Object detection. 



non-maximum suppression, and hard negative mining. These techniques enable YOLO 
to handle occlusions, overlaps, and other real-world image challenges. 

Currently a stable version of YOLO is YOLOv5 [22]. A schematic representation of the 
architecture is following in figure 2.13. 

 

2.6 Software and tools  
 

In this section we present a list of software and tools used for the design of the robotic 
missions. 

SPOT SDK 

Spot SDK, or Software Development Kit, is the toolkit that allows developers to create 
custom applications for Spot [23]. It offers a range of features that enable to design and 
control Spot in ways that are tailored to the specific use cases. These include tools for 
controlling Spot's movements or setting and using payloads. The SDK includes a range 
of documentation and tutorials, as well as sample code that developers can use as a 
starting point for their own applications. Client applications utilize the Spot API to 
communicate with Spot's services via a client-server model. The applications can run on 
various platforms, including tablets, laptops, cloud-based programs, or payloads 
connected to Spot, as long as a network connection to Spot can be established through an 
IP network like the Internet, or a direct WiFi or ethernet connection to the robot. The 
majority of the Spot API uses gRPC as its application-level protocol, which was chosen 
for its secure, fast protocol that supports multiple programming languages and 
environments. The gRPC specification lists the supported remote procedure calls (RPCs) 
for the service. The Python library included in the SDK simplifies the use of Protocol 
Buffers and gRPC by providing a more straightforward abstraction. Clearpath Robotics 

Figure 2.13: Yolov5 Network architecture. 



developed the Spot ROS driver, a powerful library built on top of the Spot SDK, which 
enables users to control and interact with the robot using ROS. The Spot ROS driver also 
allows for integration with other ROS-based systems and devices. 

 

OpenCv 

OpenCV (Open Source Computer Vision) is an open-source library of programming 
functions that specializes in real-time computer vision. It was initially developed by Intel 
in 1999 and later released under a BSD license in 2000. OpenCV has since become one 
of the most widely used computer vision libraries and is supported on various platforms. 
OpenCV provides over 2,500 optimized ready-to-use algorithms, both for low-level and 
high-level image processing. These algorithms can be implemented in C++, Python, and 
Java, among other programming languages [24].  

The key functions that were used for the development of the automatic reading algorithms 
were: 

❖ cvtColor: this function converts from one color space to another. It was mainly used 
for the conversion from the RGB color space to Grayscale and HSV. 

❖ threshold: it segments a grayscale image using a threshold value. We used both 
BINARY and OTSU thresholding. 

❖ HoughLines: this function detects straight lines inside a binary image using the Hough 
Transform. 

❖ GaussianBlur and bilateralFilter: these functions are used to smooth an Image. 
❖ morphologyEx 
❖ convexHull: computes the convex hull of a set of points.  

 

LabelImg 
 
LabelImg [25] was used for the data labeling. This is a very easy to use tool for visual 
image annotation with a very intuitive graphical user interface. You can draw bounding 
boxes around the objects and then select the classes from a manually defined 
configuration file. The annotations followed the PascalVOC format.  
 
ROS  
 
ROS is an open-source set of software frameworks for robot software development that 
allow hardware abstraction, low-level device control, implementation of commonly-used 
functionality, message-passing between processes, and package management [26]. It 
establishes a peer-to-peer network of processes that may be distributed across different 
machines or run on a single machine. The nodes are designed to function at a very small 
scale. A robot control system would often include a large number of nodes. A sensor, a 
motor, a processing algorithm or a monitoring algorithm can all be considered nodes in 
this network. The publisher-subscriber model is used to asynchronously pass messages 
between nodes via edges known as topics that connect them. Services that function 
similarly to remote procedure calls enable synchronous communication as well. A client 



requests a service from a providing ROS node by sending a request message and then 
waiting for a response. 
A ROS client library compiles srv files, which are used to define services, into source 
code. When a node is launched, it identifies itself to the ROS Master, whose main goal is 
to establish topic-based node-to-node communication and manage parameter server 
updates. Service requests and messages do not go through the master. The ROS Master 
is launched by running the roscore command. The Master also provides the Parameter 
Server which is used by nodes to store and retrieve parameters at runtime. This 
architecture brings some perks like fault tolerance due to node isolation, reduced code 
complexity compared to monolithic software and easy to use minimal APIs that hide 
implementation details. ROS currently supports TCP/IP-based and UDP-based message 
transport. The default transport layer used for ROS messages and services is called 
TCPROS. It uses standard TCP/IP sockets for streaming message data over persistent 
TCP/IP connections. Incoming messages are received over a TCP server socket with a 
header containing the message data type and its routing information. The ROS client 
library for Python is called rospy. Python programmers can use it to easily interact with 
ROS topics and services. Rospy’s architecture prioritizes implementation speed over 
runtime performance to enable speedy prototyping and testing of algorithms within ROS. 
 
AWS EC2  
 
Elastic Compute Cloud is a service provided by Amazon that allows you to launch as 
many virtual servers as you need, configure security and networking, and manage storage. 
EC2 has become almost a standard solution when it comes to quickly deploy some 
application on a server given the ease of use when it comes to scale up or down to handle 
changes in requirements or spikes in popularity. A user can configure, create, launch, and 
terminate as many virtual machines as needed, also called instances. The main component 
of an instance is a read-only filesystem image that includes an operating system and any 
additional software required to deliver a service [27]. 
 
Docker  
 
Docker was invented to solve the problem of dependency hell. Modern applications are 
built from existing libraries and frameworks and depend on other services and software. 
These components each have their own set of dependencies, some of which may be 
incompatible with those of other components. Docker addresses the issues of conflicting 
dependencies and missing dependencies by packaging all requirements with the program 
in a container. Docker makes use of some powerful kernel-level technology and makes it 
available to the developer like Linux Containers, cgroups, and a copy-on-write filesystem. 
Docker provides tools to make working with and building containers as simple as 
possible. Containers isolate processes from each other. They can be thought as a 
lightweight analogue of a virtual machine. The foundation of Docker is made up of Linux 
Containers and LXC, a user-space control package for Linux Containers. Kernel-level 
namespaces are used by LXC to separate the container from the host. The user namespace 
ensures that the root user of the container does not have root rights on the host by 
separating the user databases of the host and the container. Only processes running in the 
container, not those on the host, are to be displayed and managed by the process 
namespace. Moreover, the network namespace gives the container a virtual IP address 



and a dedicated network device. Virtual machines virtualize at the hardware level, 
whereas containers virtualize at the operating system level. Containers, on the other hand, 
allow to access protected portions of the operating system. Because each container has its 
own abstracted networking layer, processes, and other components, two containers 
running on the same operating system are unaware that they are sharing resources. An 
extension for creating and operating multi-container Docker applications is called Docker 
Compose. The services of the application are configured using a YAML file. Then they 
are created and started from this unique configuration with a single command. It has 
commands for controlling the application’s entire lifecycle: starting, stopping, and 

rebuilding services; checking the status of running services; streaming the log output; 
executing a command on a service [28].  
 
PyTorch  
 
PyTorch is a machine learning library that is both fast and easy to use. It supports an 
imperative and Pythonic programming style, allowing for models to be directly written 
as code, making debugging simpler. Defining layers, composing models, loading data, 
running optimizers, and parallelizing the training process are all expressed using the 
standard coding concepts of general-purpose programming. It is consistent with other 
scientific computing libraries. It is efficient and it supports hardware accelerators like 
GPUs and TPUs. The library is based on a dynamic computational graph, which allows 
users to change the graph’s structure on the fly and perform memory-efficient 
computations. PyTorch prioritizes interoperability, enabling users to easily exchange data 
with the many Python external libraries. It performs reverse-mode automatic 
differentiation, which computes the gradient of a scalar output with respect to a 
multivariate input. PyTorch is mostly written in C++ for high performance, with the core 
libtorch library implementing the tensor data structure, GPU and CPU operators, and 
basic parallel primitives, as well as providing the automatic differentiation system, 
including gradient formulas for most built-in functions [29]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 

Methodology and adopted solution 
 
The overall project presented in this thesis was very challenging to manage, because it 
required significant effort and resources, and often involved complex technical issues to 
be solved. The team of engineers worked collaboratively and systematically to explore 
possible solutions for implementing autonomous robotic inspections in industrial plants, 
their sustainability, and the potential expansion to similar scenarios to the one in exam. 

In the present case, during the patrol, at predetermined checkpoints, the chosen robot had 
to recognize and read pressure gauges, graduated scale ampoules containing liquid, and 
digital displays. Moreover, it had to show the collected information on a dashboard, that 
operators could access to. In short, inspection tasks that were previously carried out by 
humans are now asked to be performed by robots.    

The plant to be inspected was pretty wide, and the environmental conditions such as the 
presence of uneven terrain, steps and stairs to climb, led to the choice of a quadrupedal 
robot to perform the required tasks. The key requirements for the robot to be selected 
were to possess a technology that was already strong and secure, to be highly reliable and 
sturdy, the possibility to intervene as little as possible in automatic processes and 
organizing the work in a fluid manner. That resulted in choosing Spot Enterprise by 
Boston Dynamics. Spot allows to register an inspection mission once and repeat it as 
many times you want, with low degree of error and high adaptability to a dynamic 
environment.  

Finding and interpreting indicators and devices along the route is the main job to be 
accomplished during the missions. At every stop where the robot must examine a 
component, it is known in advance which kind and where approximately each component 
is located. Spot is still asked to detect targets through cameras. The detection is performed 
thanks to a pre-trained deep learning model that had been fine-tuned over a custom dataset 
gathered inside the plant. This step may be both necessary to get a better shot of the 
indicator by adjusting the camera position and to crop the image in its correspondence 
with a bounding box surrounding it. To extract the indicator values and perform the 
interpretation task, it was decided to develop a unique computer vision algorithm per class 
of component. 

Three missions with various checkpoints each were defined in order to segment the 
workload and recharge the robot battery.  

Despite the convenience offered by using automation, unexpected events still needed to 
be addressed. Due to accessibility or readability issues, for example, some of the 
indicators that a human operator typically check in a same patrol could not be considered. 
In addition, there were common challenges that arose when the robot paused to capture 



images, such as the likelihood of it being positioned slightly distant from the designated 
checkpoint and the photo having a different shooting angle. Moreover, all the images 
gathered and saved might or might not be processed by the corresponding image 
processing algorithm, according to the quality of the subject, varying for example with 
the weather conditions or the cleanliness of the lens crystal. 

 

3.1 Data 
 

An image dataset containing high-definition photos was built to train the reader 
detection algorithm of YOLO and to start developing the automatic reading algorithms. 
It was collected by means of 6 initial site inspections, and both phone cameras and Spot 
PTZ were used to gather the data to ensure a diverse range of quality and resolution. 
Most of the pictures that ended up being in the dataset were frames extracted from 
videos. A total of 14781 images were gathered. 

The dataset was manually labeled with LabelImg. The annotations containing 
information about the label were saved in the PASCAL VOC format as XML files.  

 

Figure 3.1: LabelImg usage example. 



 
Figure 3.2: Pascal VOC annotation example. 

 

As shown in figure 3.2, the annotation file contains information regarding the file path, 
the bounding boxes size and localization and the related classes. 

Ten classes of devices were identified and used to label the dataset: 

• “indicatore_analogico” 

• “contatore_acqua_meccanico” 

• “contatore_acqua_digitale_circle” 

• “contatore_acqua_digitale_square” 

• “contatore_acqua_generale” 

• “vaso_espansione” 

• “valvola_indicatore_di_stato” 

• “indicatore_digitale_circle” 



• “indicatore_digitale_rect” 

• “livello_olio”. 
 

Even if the class of the indicator was known before the shot was taken, based on the 
callbacks sequence during the missions, it was preferred to keep these classes for yet 
unknown future uses. 

 
3.2 Meters detection 
 

During any mission replay, the exact position of Spot when taking pictures was not the 
same from time to time, and so the shooting angle. To prevent some photos from being 
discarded because the target was not centered, the approach that was thought to be 
followed was to first take an initial shot that would surely contain a certain device and 
after that, a fine-tuned YOLOv5 model would be used to detect the exact position of the 
gauge inside the image. The coordinates of the device would then be used to point 
correctly the PTZ camera and take a better shot. The nature of the mission allowed to 
know which component was present in each shot, so that the only result of interest was 
the detection output, while the recognized class was discarded. 

 

3.2.1 Training 
 

The indicator detection model was fine tuned for a maximum number 
of 150 epochs starting from the Yolov5s weights using an image size of 512, batch 
size 32 and starting learning rate 0.01. The optimizer used was Stochastic Gradient 
Descent. Some data augmentation techniques were used like Gaussian Blurring 
and CLAHE. The dataset was split using a stratified strategy based on the classes 
keeping the following proportions 70%, 15% and 15% respectively. After 150 epochs 
the early stopping caused the training to stop and the weights from the last best 
epoch were restored. 

 
 



 
Figure 3.3: YOLO training and validation metrics for 150 epochs. 

 

3.3 Autonomous Missions 
 

Organizing the missions required a detailed on-site setup to deploy the intended solution 
with an in-field pilot. We configured the missions for three inspection tours within the 
plant and ran some on field integration tests. These initial on-site surveys proved highly 
beneficial in confirming the feasibility of the proposed solution and prompting a more 
comprehensive examination of all relevant components to be evaluated. Due to issues of 
inaccessibility or legibility, in fact, the number of items to be inspected had to be revised 
from the original plan. Moreover, we explored the potential of using the autonomous 
driving feature of Spot, and therefore the routes and points of interest on which to arrange 
the missions were revised. We thought for example how to avoid busy routs or how to 
make the robot climb stairs in maximum safety for the plant workers. 

The inspections were named with the following codes: MISS01, MISS02, MISS03. 

We kept carrying out autonomous missions with the goal of running at least eight 
autonomous inspections per day. In the initial phase of the pilot, MISS03 indoor 
environments were inaccessible due to ongoing maintenance, thus, we focused on 
registering and fine-tuning the first two missions.  

To register a mission with the tablet for the Spot robot, we adhered to the following steps, 
manually piloting the robot: 

❖ Power on Spot at the docking station; 

❖ Connect the tablet to the Spot network; 

❖ Open the Spot application on the tablet; 



❖ Select the "Mission" tab at the bottom of the screen; 

❖ Tap the "Create Mission" button; 

❖ Start registration. 

During the mission registration, at any point of interest, we performed the following 
actions: 

❖ Stop Spot; 
 

❖ Position it in such a manner that the photo from the PTZ camera was of high quality 
and aligned with the algorithm's requirements for all future mission repetitions; 
 

❖ Store the pose parameters; 
 

❖  Add a custom callback at the waypoint of interest. 
 
After the last callback, Spot was returned to the docking station by following the 
permitted path, docked, and finally, the mission was considered completed. 

Some of the major points of interest during the registration of the missions were related 
to the possible interactions between Spot and other agents like people or vehicles. During 
the mission Spot always walked along the pedestrian paths or sidewalks and crossed the 
road only when a crosswalk was available. The crossing of the crosswalks required some 
attention given the impossibility to signal in any human way its intention to cross the 
crosswalk.  

During the replay of the recorded missions, we had to deal with a certain number of faults 
due to the robot, its firmware, the payloads and the tablet: 

• During the mission replay, the robot had to walk near a wall and, even if the 
registration was rather smooth, it showed a rather strange behavior, as zig-zag 
walking. This was solved by replacing the robot with a newer one with an updated 
firmware. 

• The tablet often showed connection faults which led to a sudden stop of the 
mission when replayed in supervised mode. This issue was solved by replacing 
the tablet with a newer version. 

• The PTZ camera showed some random faults probably due to degraded 
connectivity to the robot. This was not solved during the in-site pilot but later on, 
replacing the camera with a newer model. 

 

In the initial phase, we gradually refined several callback PTZ parameters in order to take 
pictures that would be more suitable for the algorithms to well perform. As result, the 
data that we gathered was organized according to whether the parameters were finalized 
or not. 



Each mission came with a yaml file that defined the callbacks that needed to be executed 
during the replay. There was a one-to-one correspondence between the stop names 
defined during mission registration and the top level keys that were defined in the yaml 
file. For each callback could then be defined multiple spot wrapper operations that had to 
be considered. The naming of the operations to take followed the following structure: 
{optional_numerical_prefix}_python_method_name.  

The spot_cam_ptz method required at least three parameters: pan, tilt and zoom. 

The key environmental feature that determined the passage from a partial to a full 
autonomy was the need to open and close different types of manual doors that grant the 
access to indoor areas. Security requirements did not allow us to keep the doors open and 
thus the only possible ways to accomplish the task, were to replace the doors with 
automatic ones or to use a robot to open and close the doors. The first idea represented a 
deeply invasive approach that would cause a lasting impact on the environment and so 
the second one was the solution we decided to explore.  

The only commercially available robot capable of such a task was Boston Dynamics’ 

Spot Arm. The only pitfall was that this version of the Spot robot is capable of carrying 
only one big payload between the lidar and PTZ camera and provides much less space in 
terms of custom payloads that can be carried on its back. 

At the end of the project, it was still not possible to add an action involving the 
autonomous interaction with a door inside a mission, so the experimentation had to be 
partially autonomous with the intervention of an operator in the two points of interest who 
would manually open and close the doors. 

3.3.1 MISS01 
 

This inspection route was the first one registered. It was the most influenced by weather 
conditions and lighting interference, so it was the one with the shortest daily time window 
in which could be executed. This was the longest mission in terms of distance traveled, 
with 11 readers of interest. The presence of one door made it only partially autonomous, 
because it was necessary to physically intervene, opening the door.  



 

A total of 12 stops were planned: 11 to take a spot_cam_ptz callback, 1 for upload.  

 

Figure 3.4: Mission MISS01 representation. 

Figure 3.5: MISS01 components 



 

Checkpoint 1 was an analog gauge. The wear and the high exposure to sun caused it to 
turn orange. Furthermore, shadows were often present when there was a clear sky, for 
most of the day. No meter pointing was conducted because it could cause the inclusion 
of other close indicators. The original image was thus cropped just using the bounding 
box resulting from running the indicator detection model. 

The second stop was for an expansion vessel level indicator. It was the only occurrence 
of this class in any inspection route. No pointing refinement was possible because it was 
very close to another instance of the same component. This checkpoint required some 
additional work to position both the camera and robot as best as possible because of the 
high location of the tool and narrow tiled path in front of it where Spot could navigate. 
The possibility of interpretation by a human operator was highly influenced by 
environmental conditions and lighting given how similar the liquid color and its 
background are. It was easy to detect under good lighting and a small margin was added 
to the bounding box in order to keep the component fully intact.  

The next three checkpoints were round digital gauges. They were all located in the same 
spot outdoors. The first two required meter pointing to get a better shot, but the last one 
couldn’t because it was very close to other components belonging to the same class. Given 

that there were so many components too close to each other, these indicators and the few 
following ones required particular attention to position the PTZ camera to only include 
the one of interest for each checkpoint. This kind of component was very easy to detect, 
so a confidence threshold as low as 0.5 allowed to always find it inside the image. A small 
margin of five percent of the bounding box was added to the crop in order to keep the 
perimeter circle intact. 

The sixth checkpoint was a valve status indicator. Just as the liquid level indicator and 
the expansion vessel level indicator, this component only appears once across all 
inspection tours, and it could not be considered a gauge or display. The picture of this 
component did not require particularly high resolution given that there were few evident 
features that made it easy to interpret. The only point that required some attention was to 
avoid shadows over the plate in order to avoid confusion with the small black dots that 
indicate the extremes of the indicator. This component was not easy to detect for the 
indicator detection model mainly because the angle at which the picture was taken during 
the mission was rather different from the ones in the training dataset. With a very low 
confidence threshold we were still able to almost always detect it and then crop it with an 
additional five percent border in order to be sure to include the entire plate. 

The next checkpoint was a round digital gauge. This one was one of the hardest to position 
because a protruding edge surrounding the gauge generates a shadow over it for most of 
the day. No pointing refinement was used over this component. Detection with confidence 
threshold 0.5 was used to generate the bounding box for the crop. A small margin of five 
percent of the bounding box was added to the crop in order to keep the perimeter circle 
intact. 
 



Stops number eight and nine were analog gauges. The first was subject to major 
dirt which made it almost always impossible to read even by the human operator. 
The second was much more easily readable but it was located in a quite high position so 
the shot was taken at difficult angle. The configuration used was the same but for the 
algorithmic pointing which was missing for the first one. The detection was very easy in 
both cases so a threshold of 0.5 was good enough. 

Checkpoint ten was a round digital gauge. The one problem with this 
component was the reflexes that could appear over it, so the lightning conditions were 
the theme. The detection model was run with a confidence threshold of 0.5 and 
the crop was extracted with a 5% additional margin. 

The last stop was again a valve status indicator. Just as in the previous stop this shot 
did not require particularly high resolution. Here we had to be careful not to include 
shadows over the plate. The angle at which the shot was taken was not very centered 
so it required some additional work to make it as good as possible. No algorithmic 
pointing was executed here given the poor performance of the detection model. We 
had to set the confidence threshold very low in order to always detect the component. 
The found bounding box required to add a very big margin of 30% of the width to 
always crop the full plate. 

Finally in the last stop Spot uploads the result to the cloud, then back 
to the docking station following one of the two possible routes. 

3.3.2 MISS02 
 

This inspection route was the second registered because it required some further 
evaluation regarding the access to the indoor environment. It had 14 devices of interest 
and 15 shots had to be taken. Most of the components were located indoors. The presence 
of one door made it only partially autonomous, because again it was necessary to 
physically intervene, opening the door.  

 

Figure 3.6: Mission MISS02 representation. 



A total of fifteen stops were made: 14 to take a spot_cam_ptz callback (at stop 14 two 
callbacks with different PTZ parameters), 1 for upload.  

 

The first four stops were mechanical water meters. The first three were in an outdoors 
setting, but the fourth was indoor. They all required camera pointing refinement via 
detection except for the second. This was due to major reflexes and shadows over the 
reader that made it hard for YOLO to correctly detect all the times. Consequently, the 
detection confidence threshold was kept very low at 0.01. Even if the detection was not 
successful, the appropriate automatic reading algorithm was executed on the full original 
image. In all cases a small margin was added to the bounding box used for the crop in 
order to keep the perimeter of the reader intact. 

The next three items were square water meters stacked on top of each other with a very 
small gap to separate them from each other. In no case was used pointing refinement 
because an eventual zoom out could have include one of the other readers in the image 
and cause confusion in the correct reading to extract at each stop. The positioning of the 
PTZ parameters was carefully conducted to include one display at a time. This kind of 
display was very easy to detect so a high threshold was good enough to always detect all 
of them. A ten percent margin was added to the bounding box crop in order to help the 
automatic reading algorithm that expects some of the background around the display. 

Figure 3.7: MISS02 components. 



Stops 10 and 11 were round digital water meters. A 0.5 confidence threshold was good 
enough to always detect these displays. The former one required camera pointing 
refinement, while the latter did not because a zoom out could include other meters in the 
shot. A small margin of five percent of the image dimensions was added to the crop 
bounding box in order to keep the circle perimeter intact. 

The next two were square water meters. These were slightly different from the previous 
one both in character font and display content. Both of them did not require the 
application of the pointing routine because this could have caused the inclusion in the 
camera frame of additional surrounding meters. Just as before these were very easy to 
detect for the custom reader detection model and a small margin was added to the crop 
bounding box in agreement with the assumptions made by its automatic reading 
algorithm. 

Checkpoint 14 was an osmosis display. This was the only occurrence of the component 
in all inspection tours. The first approach that we tried to follow was to take one shot of 
the entire display and extract the three readings, but the numbers were almost always 
unreadable and out of focus. After some attempt we decided to switch to two shots of the 
region of interest corresponding to the upper left and lower right corners. No pointing 
refinement was possible here because the reader detection model was trained over the 
entire display. Therefore, the same went for the actual detection of the display. 
Consequently, the algorithms were applied over the original shot taken by the camera 
with no crop. 

Checkpoints 15 and 16 were out of scope. 

Checkpoint 17 was a mechanical water meter. No pointing refinement was not needed 
given that the quality of the first shot was already clear enough. Detection was rather easy 
for this component under this environment conditions, so a confidence threshold of 0.5 
guaranteed a correct cropping.  

The last stop was a rectangular digital display. This was initially out of scope because of 
its reachability by the robot, but once we started the infield pilot we were able to find a 
good position so we decided to include it back. At first, we thought we had to develop a 
new custom automatic reading algorithm but a few small adaptations to the rectangular 
digital display algorithm was enough to interpret this component as well. No pointing or 
detection was possible on this component given that it was not included in the data 
collection used for training the reader detection model. 

Finally in the last stop the robot uploaded the result to the cloud, than back to the docking 
station following the same route. 

3.3.3 MISS03 
 



This inspection route was the last one registered due to the presence of a construction site 
and scaffolding that prevented access to the premises. This was the shortest mission with 
only 4 gauges of interest and 5 shots taken. All the components were located indoors. The 
presence of two doors made it only partially autonomous. 

 

A total of six stops were made: 4 to take a spot_cam_ptz callback, 1 to wait for the 
opening of the second door, 1 for upload. In the first stop we made a 
spot_cam_set_led_brightness callback to set the led brightness to the maximum given the 
fact that the first shot is taken indoors with low environment light.  

Figure 3.10: Mission MISS03 representation. 



Checkpoint1 is an analogue gauge that required climbing some stairs to reach. It was 
behind a plastic glass and the only possible position was right below it. This caused the 
gauge to appear more like a very flattened ellipse rather than a circle. No detection for 
pointing refinement was made. A very low confidence threshold of 0.2 was required to 
detect and then crop the gauge from the taken picture. After taking the shot we lowered 
the led brightness to one sixth. After leaving the first indoor environment, Spot went 
outside and, after reaching the door of the second indoor space, waited for 10 seconds for 
the operator to manually open the door.  

The second stop included two shots to be taken both of the same digital display at an 
interval of one second. This reader periodically changed. Both shots required pointing 
refinement via detection. This was a component easy to identify, so a threshold of 0.5 was 
good enough to always detect it. A border corresponding to 5% of the bounding box was 
added in order to keep the round perimeter of the component intact.  

The third component was out of scope, so we moved on to the fourth one. It was a liquid 
level reader. No detection for pointing refinement was made. This was a component easy 
to identify, so a threshold of 0.5 was good enough to always detect it. A border 
corresponding to 5% of the bounding box was added in order to be sure to keep both 
endings inside the crop. 

Figure 3.11: MISS03 components. 



The fifth component was a rectangular digital display. No detection for pointing 
refinement was required. The shot for this component was taken at a few meters distance 
which did not make it easy to identify, so a threshold of 0.2 was necessary to always 
detect it. A border corresponding to 5% of the bounding box was added in order to be 
sure to keep some of the surrounding wall inside the crop. 

Finally in the last stop Spot uploaded the data to the cloud, then back to the docking 
station following the same route. 

 

 

3.4 Algorithms 
 

The creation of the computer vision algorithms required having the same general 
approach, following in particular this multi-stage pipeline starting from the shot of the 
robot: identification of the area of interest, focalization on a more limited area, and 
reading of the value. Hence, the target meters were organized into smaller groups, in order 
to create parameterized algorithms that could be modified through externalized 
parameters and could correctly work for different gauges and readers, and environmental 
conditions. 

The refinements and finalization of the algorithms were based on the increasing dataset 
collected during the robotic missions. This was an iterative process where the 
performances were improving from time to time, with continuous adjustments making up 
for unsatisfactory results. 

Text and non-text are the two main categories into which the collection of components 
could be divided into. Some of these show on a display alphanumeric values to be 
extracted, others do not and thus their reading is less immediate. Building algorithms that 
read text is not simple though, and it took time to figure out how to work around some 
problems that have arisen.  

The main operation we had to deal with can be broken down into two tasks: scene text 
detection and scene text recognition.  Scene text detection refers to the process of locating 
and identifying the regions of an image that contain text. The output of a scene text 
detection algorithm is usually a bounding box around each detected text region. Scene 
text recognition, on the other hand, involves recognizing the actual text within the 
detected regions. The output of a scene text recognition algorithm is the text string 
corresponding to the detected region. 

Text reading algorithms were initially approached as an OCR task, typically used for 
scanned documents, but given the numerous different situations in which they needed to 
be applied and the constantly changing font and format of the text that needed to be 
extracted, the tested tools' performances were not that good. For this reason, we used 
rather a scene text approach, which produced much better outcomes. 



The distinction between OCR and scene text recognition becomes apparent through the 
examples below.  

 

In non-text algorithms indeed, we used a case-by-case approach. This was very time 
consuming since the reading tasks were quite complex, even if the logic behind the scripts 
was standard, and reviewing similar case-studies in scientific literature helped a lot. We 
used classical computer vision techniques only and no tools but the OpenCv library.  

One of the key considerations we made when developing the algorithms was the 
reliability of the results under a variety of lighting conditions and image quality levels. In 
cases where this didn’t work, some parameters would be parametrized so that they could 
be defined a modified at convenience in a configuration file.  

Figure 3.12: OCR. 

Figure 3.13: Scene text recognition. 



Python was used to develop all the algorithms. This was primarily because it has many 
production-tested tools and frameworks and is a very suitable programming language for 
quick experiment iterations. We were able to deploy the algorithms using a dockerized 
structure that enabled us to use various Python versions in order to avoid compatibility 
issues.  

Two examples of computer vision algorithms developed are presented in the upcoming 
pages. 

 



3.4.1 Gray round water meter reader 
 

Gray round water meter reader is the algorithm used to read values from the display of 
indicators such as the one shown in the figure 3.14. 

This type of meter reads different types of quantities. In our case, a measurement of the 
height of a volume of liquid was indicated, which was expressed through two different 
values, once in an absolute manner, with mm as unit of measurement, then in percentage 
terms, with respect to the maximum value of the storable water height volume. The values 
were shown on the screen at regular time intervals, and that is what made the reading 
routine tricky. In fact, in the management of the robot missions, a second checkpoint was 
added only at a later stage, just to be sure that Spot could take a photo of the percentage 
value at least once. The designed algorithm can read each value correctly supplied, 
although it has been decided to accept as good only the readings of the percentage values, 
in order to have useful information about the working status of the machine to which the 
device was attached to. It was impossible to organize the checkpoints to the second, so 
sometimes, unfortunately, a photo of the absolute volume indication was collected two 
times out of two. 

 

 

 

 

 

 

  
 
  

The device was placed in a controlled room, indoors, in a not too bright space. Given the 
light conditions, although there were same indicators to be read during other missions, it 
was preferred to create a custom algorithm for this precise callback. Looking at an image 
shot during a mission, shown in figure 3.15, it is easy to notice the effects of 
environmental conditions when compared to a stock photo like the one above.  

Despite the darkness of the scene, Spot took good photos, with consistent quality results. 
It was immediate to think at creating an algorithm using features from the color space and 
not working on the shape of the device. 

Even if noisy, it was often well centered and readable. 

Figure 3.14: Indicator type in exam. 



. 

In general, the logic behind the algorithm consists of two main steps:  

- Extraction of the digital display from the indicator  
- Running an OCR tool on a cropped portion of the screen 

 

In particular, the procedure was the following: 

- Bilateral filter  
First of all the image was prepared to be processed through a strong intervention 
of noise removal through the bilateral filter function. Since the kernel of the 
function used is particularly large, the output image was almost blurry to naked 
eye (fig X). Usually less sophisticated tools work on the difference between pixels 
in the spatial domain. Thanks instead to the peculiarity of the bilateral filter of 
preserving information also on the pixels intensity domain, the result is 
particularly acceptable if considering having to use in few steps a color mask. 
 

- HSV convertion and color masking 
The image gets transformed from RGB to HSV. The HSV color space separates 
the color information (hue and saturation) from the brightness information 
(value), making it easier to manipulate the color and brightness of an image 
independently. HSV helps when performing color-based processing tasks such as 
segmentation, that means separating objects of a particular color from the 
background. An upper bound array and a lower bound array were selected through 
an algorithm posted by a user on Stackoverflow[30] and externalized to a 
configuration file. They correspond to those values that in RGB look like this sort 
of green/grey of the display. Using them to apply a color mask results in having a 
binary image showing the diplay, in white, on a dark background.   
 

Figure 3.15: Photo of the meter shot by Spot. 



 
 

- Morphology transformation 
Morphology transform is used to close small black holes in in the foreground. It 
is common that some pixels do not fall within the color space selected for the 
mask even if, at first glance, it would not appear to be the case.  
In this particular scenario, indeed, those to be removed were the shapes of the 
digits shown on the screen.  
 

- Find contour, sort the contour with the biggest area and obtain its convex hull 
The binary image of the previous step is now used to draw the convex hull of the 
extracted contour of the display. The step through which you choose the contour 
with the biggest area is only necessary in the cases where the image noise makes 
the mask not work on the display uniquely and small groups pixels gets separated 
from the background as well. 

-  
- Extracting the bounding box of the convex hull and cropping the photo 

The contour and its convex hull are stored in memory as a list of coordinates. It is 
therefore easy to extrapolate the bounding box of the convex hull by looking for 
the minor and major abscissa point and the major and minor ordinate point to 
obtain respectively the left and right extreme and the lower and upper extreme of 
the bounding box. then the image is cropped using these coordinates. 
 

- Further cropping the image 
The display presents digits and letters on two levels. Numbers are shown on the 
first line, units of measurement on the second one. Now the image is further 
cropped to obtain two distinct images, one for each line, containing a small text 
area only, to be then fed to the OCR tool. The parameters that regulate how much 
and how to crop the picture were found through a trial-and-error procedure and 
are stored in the configuration file, ready to be modified if needed. 
 

- OCR performing and eventual string manipulation 
The final step involves an OCR tool, Parseq in particular. The results are almost 
always acceptable, although errors may occur, and we need to fix them if possible. 
In percentage measurements, for example, Parseq sometimes does not read the 
comma, and a simple logic is ready to intervene. Other times, some numbers are 
mistaken for letters and vice versa, but since we know when to read numbers and 
when to read letters, an easy routine whitelists numbers when reading the first 
line, letters when reading the second line. Characters that are not alphanumerical, 
awkwardly read by the tool due to noise in the photo, are simply removed. 
 

All the images in figure 3.16 are outputs of the “Gray round water meter reader” algorithm 

that are interesting to show, and useful for debugging purposes. The images shown in this 
case are produced by the algorithm's processing of the image at the beginning of the 
paragraph. 



(c)  

 
 

 

 

 

 

 

 

 

(a) (b) 



 

Here it is the pseudocode of the algorithm and a prototype of the JSON file storing the 
externalized parameters. 

1. greyRoundMeterREader(image){ 
2.   
3.     image = bilateralFilter(image, 25, 75, 75) 
4.     imageHSV = convertColorSpace(image, RGB_2_HSV) 
5.     binaryImage = rangeMasking(imageHSV, 
6.                                [h_lower, s_lower, v_lower], 
7.                                [h_upper, s_uper, v_upper]) 
8.     binaryImage = closing(binaryImage, kernel=(9, 9), iterations=3) 
9.   

(d)  

(e) 
Figure 3.16: Outputs of the steps above described. 



10.     contours = findContours(binaryImage, RETR_EXTERNAL, 
11.                             CHAIN_APPROX_SIMPLE) 
12.     contourConvexHull = ConvexHull(largestAreaContour(contours)) 
13.   
14.     displayCrop = cropRectangleAroundTheContour(image, 

contourConvexHull) 
15.     measureCrop = CropUpperHalf(displayCrop, 

measureCorrectionFactorHeight, 
16.                                 measureCorrectionFactorWidth) 
17.     unitMeasureCrop = CropLowerHalf(displayCrop, 

unitMeasureCorrectionFactorHeight, 
18.                                     unitMeasureCorrectionFactorWidth) 
19.   
20.     measure = textExtraction(measureCrop) 
21.     unitMeasure = textExtraction(unitMeasureCrop) 
22.   
23.     if any(i in unitMeasure for i in unitMeasureCharacters): 
24.         if expectedDecimalDigits > 0 and "," not in measure: 
25.             result = InsertComma(measure, expectedDecimalDigits) 
26.   
27.     return result 
28. } 
29.   
30. textExtraction(image){ 
31.   
32.     image = image.resize((32, 128), BICUBIC.normalize(0.5, 0.5)) 
33.     text = parseqOCR(image) 
34.   
35.     return text 
36. } 

 
1. { 
2.     "h_lower": "42",  
3.     "s_lower": "15", 
4.     "v_lower": "133",  
5.     "h_upper": "92",  
6.     "s_upper": "255", 
7.     "v_upper": "225", 
8.       
9.     "measureCorrectionFactorHeight": 0.05, 
10.     "measureCorrectionFactorWidth": 0.45, 
11.   
12.     "unitMeasureCorrectionFactorHeight": 0.05, 
13.     "unitMeasureCorrectionFactorWidth": 0.45, 
14.   
15.     "unitMeasureCharacters": ["X", "%", "R", "G", "*"], 
16.     "expectedDecimalDigits": 2 
17.       
18. } 

 



 
3.4.2 Liquid level reader 

 
Liquid level detection is an algorithm used to read the level of the liquid in a graduated 
ampoule along a temperature scale as in figure 3.17.  

 
The ampoule is contained by a metal frame, the liquid is a 
yellowish oil, and the graduated scale reads values from -20 °C to 
100 °C.  The unit on the scale is 10 °C and therefore we do not 
expect to read the device too precisely. A rough reading still 
provides good indications on the working status of the machine at 
which the device is paired, whether it is working at operating 
temperatures or not, and hence failures are about to happen. 

The meter measures in particular the working conditions of a boiler 
set in a protected room. It is placed in a dark environment where 
the lighting conditions are poor. With correctly setting the robot 
while collecting the pictures, however, we had constant quality of 
images and thus the possibility to work on a precise set of photos 
in terms of colors and brightness, when running the algorithm. 
Moreover, this wasn’t the case of photos damaged by weather 

conditions or shooting time because they had 
been collected during indoor missions.   

Due not to being able to get too close with the 
robot to the device because of an obstacle, the 
ampoule was always photographed from afar 
and from a lateral perspective, as in the case 
of figure 3.18, forcing to work on lower 
quality photos than expected.  
Moreover, the liquid was shading the 
graduated scale and therefore reading the 
numbers was not helpful in getting results. 

The method used to perform the measure was purely graphical: 
having a priori information on the working principle of the device 
like the extremes of the graduated scale or the typical working 
temperatures, the meter was readable if working on specific 
features of the photo.  

The logic used was to compare the height of the liquid with 
respect to the total height of the ampoule, and at the end 
transform the ratio using a proportion to obtain the real value. The main tasks were: 

- Detection and extraction of the ampoule 

Figure 3.17: Indicator 

type in exam. 

Figure 3.18: Photo of the 

meter shot by Spot. 



- Detection and extraction of the liquid column 
- Temperature value calculation 

 
The algorithm is described in detail below: 

- Cropping of the input image  
Yolo almost always detects the instrument, but the bounding box that is really 
obtained is larger than what expected during the initial phase of the project, 
when we started building the algorithms.  
Since at the beginning we thought to use the same algorithm for two different 
devices, similar but not the same, the parameters regulating the cropping are 
externalized in a settings file. Later, however, only one graduated ampoule was 
included in the mission and therefore these parameters remained the same. 
 

- Conversion of the image into grayscale, Gaussian blur and Adaptive threshold 
The image undergoes a blurring operation to remove noise after being converted 
to grayscale. The grayscale image is then adaptively thresholded to produce an 
initial mask, with the best threshold value being chosen with a trial-and-error 
procedure. 
 

- Morphology operations  
With morphological transformation processes, the mask is cleaned up a little. 
The less dense white-pixels portions are removed keeping only the largest 
regions, while small holes or small black points are filled. 
 

- Finding contours and sorting the biggest one 
Contours in the binary image are found, extracted, and saved as a list of 
coordinates. We are interested just in the contour with the biggest area, resulting 
to be the outline of the ampoule.  
 

- Convex hull of the biggest contour extraction 
The convex hull of a contour is the smallest convex polygon that completely 
encloses the shape represented by the contour. We prefer working on a smooth 
shape rather than on the contour itself. 
 

- Extracting the upper and lower extremes of the bounding box of the ampoule 
and calculation of its length 
Among the list of coordinates of the contour of the ampoule we extract those 
with greater and lesser component along the y-axis. Their difference in absolute 
value corresponds to the length of the ampoule.  

 

- Converting the cropped image in HSV 
The cropped photo of the previous step this time is transformed into HSV 
because in this color space it is easier to distinguish the column of liquid from 



the rest of the photo. 
 

- Gaussian blur 
Again, Gaussian blur is applied to reduce the image noise. 
 

- Color masking 
Color masking is what was used to select the yellowish pixels in the image. 
Through an algorithm posted by a user on Stack Overflow [30], it was easy to 
find the upper and lower limits of the color mask. It must be said that in any case 
the result varies a lot according to brightness and contrast, and therefore once 
again the values have been collected in the file containing the externalized 
parameters. The output of this step is a binary image, where just the pixels in the 
selected color range are highlighted. 
 

- Morphological operations 
Cleaning the mask was necessary to maintain only the shape with the largest 
white-pixels area, which certainly corresponds to the liquid column. If not, most 
likely some isolated pixels still fall within the yellow range, even though it 
doesn’t look like that to the human eye. 
 

- Finding contours, sorting the biggest one and convex hull extraction 
The same procedure as before is repeated to extract the coordinates of the upper 
and lower extremes of the bounding box of the liquid column, corresponding to 
the points with lesser and greater y-axis value. Their difference in absolute value 
corresponds to the length of the liquid column. 
 

- Calculation the measured temperature value 
By utilizing an appropriate conversion, it is possible to determine the temperature 
measured by the thermometer by comparing the length of the liquid column to the 
length of the ampoule. Figure 3.19 can help in comprehending this concept. 

Figure 3.19: Graphic representation of the conversion scales. 



We imagined having two aligned scales: the one on the left represents the 
percentage ration between the liquid length and the ampoule length in a graphical 
manner, the scale on the right represents the real scale at which the temperature is 
measured. Suppose that A and B represent the minimum and maximum values on 
the fictitious scale, namely 0 and 100, while D and E represent the minimum and 
maximum values on the real scale, -20 and 100 respectively. It is possible to 
determine the value F using the given formula: 
 

𝐹 =
(𝐸 − 𝐷) ∗ (𝐶 − 𝐴)

𝐵 − 𝐴
+ 𝐷, 

 
where (B – A) is the length of the ampoule, (C - A) is the length of the liquid 
column, F is the real temperature value. 

 

All the images from figure 3.20 are outputs of liquid level reader algorithm. They are 
interesting to show, and useful for debugging purposes. These images are produced by 
the algorithm's processing of the image at the beginning of the paragraph. 

  

(a) (b) (c) 



 

Here it is the pseudocode of the algorithm and a prototype of the JSON file storing the 
externalized parameters. 

1. liquidLevelReader(image) { 
2.       
3.     image = image[(cropParameter_yBot*image.height):(image.height-

(cropParameter_yTop*image.height)), 0:image.width] 
4.   
5.     grayImage = convertColorColorSpace(image, RGB_2_GRAY) 
6.   
7.     blurredGrayImage = GaussianBlur(grayImage, (15, 15)) 
8.   
9.     thresholdedImage = adaptiveThreshold(blurredGrayImage, 255, 

ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY_INV, 41, 2) 
10.   
11.     thresholdedImage = opening(thresholdedImage, kernel=(3,3), 

iterations=3) 
12.   
13.     thresholdedImage = closing(thresholdedImage, kernel=(4,3), 

iterations=2) 
14.   
15.     contours = findContours(thresholdedImage, RETR_EXTERNAL, 

CHAIN_APPROX_NONE) 
16.       

(d)  (e) 
Figure 3.20: Outputs of the steps above described. 



17.     contourConvexHull = convexHull(largestAreaContour(contours)) 
18.   
19.     lenghtAmpoule = yBot_contourConvexHull-yTop_contourConvexHull 
20.   
21.     yBot_contourConvexHullNew = yBot_contourConvexHull + 

(yBot_correctionCoefficient*lenghtAmpoule) 
22.     yTop_contourConvexHullNew = yTop_contourConvexHull - 

(yTop_correctionCoefficient*lenghtAmpoule)  
23.   
24.     lenghtScale = yTop_contourConvexHullNew - 

yBot_contourConvexHullNew 
25.   
26.     imageHSV = convertColorSpace(image, RGB_2_HSV) 
27.   
28.     blurredImageHSV = GaussianBlur(imageHSV, (11,11)) 
29.       
30.     binaryImage = 255 - rangeMasking(blurredImageHSV, [h_lower, 

s_lower, v_lower], [h_upper, s_upper, v_upper]) 
31.       
32.     binaryImage = closing(binaryImage, kernel=(3,3), iterations=1) 
33.   
34.     contours = findContours(binaryImage, RETR_EXTERNAL, 

CHAIN_APPROX_SIMPLE) 
35.   
36.     contourConvexHull = convexHull(largestAreaContour(contours)) 
37.   
38.     y_liquid = yBot_contourConvexHull 
39.       
40.     y_liquidFictitious=(((yTop_contourConvexHullNew - 

y_liquid)*100)/lenghtScale) 
41.       
42.     y_liquidReal = y_liquidFictitious * ((maxValueScale - 

minValueScale)/100) + minValueScale 
43.   
44.     return y_liquidReal 
45. } 

 

1. { 
2.     "h_lower": "0",  
3.     "s_lower": "0", 
4.     "v_lower": "0",  
5.     "h_upper": "179",  
6.     "s_upper": "115", 
7.     "v_upper": "225",    
8.   
9.     "cropParameter_yTop":0.19, 
10.     "crop_parameter_yBot":0.3, 
11.   
12.     "minValueScale": "-20",  
13.     "maxValueScale": "100",  
14.     "units": "°C", 
15.   
16.     "yTop_correctionCoefficient": "0.355", 
17.     "yBot_correctionCoefficient": "0.125" 



18.       
19. } 

 

3.5 Proposed architecture 
 

 

 

The key component of the proposed architecture was Spot Enterprise robot as 
shown in figure 3.21. On its back it mounted the Spot EAP payload. A Docker 
container running on it acted as a client to the Spot GRPC API. This was used to 
send commands to the robot via custom controls developed using the Spot SDK, 
customizing a library called Spot ROS. Another container instead run a ROS node. 

The second key component was an EC2 instance that acted both as the ROS master 
and as a server for a Python Web App. It allowed to send commands to the 
ROS node running on the Spot EAP for the purpose of teleoperation, remote control, 
and telemetry. The latter was a custom web application that has been developed to 
display the results gathered during a mission, invoking the ROS Services, and to have 
the possibility to control a fleet of Spot robots in future. The web application could also 
be used to specify the type of callbacks and the associated parameters to be used during 
a mission. These specifications had been defined during the mission registration phase 
and stored in a configuration-file that had been deployed on the Spot on-board 
computer. 

Figure 3.21: Proposed architecture. 



The automatic reading algorithms were also deployed on a EC2 instance.  
Given the freedom granted during the development of the algorithms both in terms of 
Python version and libraries adopted, the solution that we decided to embrace involved 
the deployment of the scripts as docker containers. The docker-files of the different 
algorithms followed the same template. First, we specified the Python parent image 
from which we were building, then we installed the dependencies using a specified 
requirements-file and, to conclude, we obfuscate the script using PyArmor. The docker 
images were built using a basic Docker Compose, while the docker runs have been 
launched by a Python script which navigates the folder containing all the mission 
replays outputs. The naming of the folders determined which category the image 
belonged to, so we could run the appropriate docker image. The Python script were 
launched by a CRON job, which is executed periodically every 5 minutes via the 
crontab program. The mission came along with as many settings files as the number of 
callbacks that needed to be executed. The docker run was done through the docker SDK 
for Python. 

Consequently, every time new missions have been uploaded and the scripts have 
interpreted the gathered image, the results are displayed by the front end of the web 
application. 

  



Chapter 4  

Analysis and results 
 

In order to obtain satisfactory outcomes, we needed to focus on examining the actual 
behavior of Spot during the plant patrols, and on the success rates of the algorithms 
performing the computer vision tasks. Hence, we questioned and troubleshooted the 
methodologies employed and gathered evidence demonstrating the feasibility of the 
proposed solution as proof of concept. 

As soon as the on-site pilot started, it took some time to fix bugs and errors and thus, 
different experiments were conducted. Among these, the valid experiments accomplished 
both robotic and computer vision requirements, and in particular, the gauges' numerical 
values were correctly extracted. Spot had to be able to follow the predetermined path and 
take photos good enough to work on them. After completing the callbacks, it had to 
uploads these on the cloud, where the object detection model hat to narrow down the 
images around the area of interest satisfactory. Finally, the reading algorithm hat to 
precisely process the photos to obtain the numerical value. The image processing phase 
was automatically triggered once the photos were uploaded to the cloud.  

Initial valid repetitions performed for each mission were still utilized to refine specific 
parameters, which were working properly but we felt we could improve, such as the PTZ 
positioning during callbacks. For this reason, they were excluded from the outcome 
analysis of the computer vision algorithms. 

The data are presented in the form of charts and tables, to aid in the visualization and 
interpretation. 

Table 4.1 displays information on the experiments conducted across the various missions 
and the division of the robot's total kilometers traveled. It also outlines the number of 
components involved in each mission. The total number of experiments carried out was 
141. 

 

 

 
 

Table 4.1: Count of missions’ repetitions and kms travelled. 



MISS01 had the highest number of tests performed. This can be attributed to the fact that 
it was the first mission recorded, and thus the first robotic issues faced were fixed during 
this time. On the contrary, fewer experiments were conducted for MISS03. The area in 
which it was held was in undergoing maintenance work in the early testing stage, resulting 
in it being recorded later than the other two missions. 

Detailed information about the number of repetitions of the missions vs days is given 
below. 

 

 

 

 

Figure 4.1: Total number of tests per day. 

Figure 4.2: Daily mission repetitions of MISS01. 



 

 

 

 

Figure 4.1 illustrates how the number of experiments conducted per day increased over 
time. The first weeks involved 40 iterations with an average of 3.63 iterations per day. In 
contrast, the last weeks comprised 101 repetitions, with an average of 8.42 iterations per 
day. This discrepancy arose because the first period was spent fine-tuning the general 
aspects and improving the computer vision algorithms using the initial images captured 
by Spot. Days with minimum or no iterations, excluding non-working days, were likely 
due to unfavorable weather conditions that prevented the robot from walking outdoors. 

Figure 4.3: Daily mission repetitions of MISS02. 

Figure 4.4: Daily mission repetitions od MISS03. 



The majority of the last iterations concentrated on MISS03, as shown in figure 4.4, to 
ensure that the number of tests conducted was comparable to the other missions, while 
also generating significant statistics for this particular patrol route. 

An Excel performance sheet was used to collect results, tracking the outcome of every 
individual mission repetition's component reading. Three labels were utilized to denote 
the success or failure of the value-reading experiment for the gauges: OK, KO, and 
WORK IN PROGRESS. The WORK IN PROGRESS label was used when the AI reading 
was not available in the performance sheet during the test period. However, this label 
might still appear when there was no image to process at all, possibly due to camera 
malfunctions or the robot intentionally skipping the callback for components that were 
no longer in scope. To confirm the accuracy of a reading, the autonomously read value 
was compared with a human reading of the same. If the difference was less than a certain 
tolerance, the outcome was labeled as OK. Otherwise, it is labeled KO. The experiment 
was considered successful when:  

AIreading ∈ [0.8 ∗ true_reading, 1.2 ∗ true_reading] 

We agreed on this constraint primarily for the sake of simplicity; however, an optimal 
solution would have been to establish distinct criteria for each type of measuring 
instrument. 

While conducting the experiments, an accurate analysis was performed in parallel to 
identify the source of errors within the pipeline modules and explore potential 
enhancements. This was mainly done to obtain acceptable final statistics.  

For example, during MISS01, a certain instrument was consistently being read 
inaccurately. Upon a careful analysis, it was discovered that the object detection model 
was unable to recognize the class of that device, leading to error. To address this issue, a 
distinct object detection model, focusing solely on the indicator class, was created, and 
implemented in place of the generic model just for the according callbacks. As a result, 
the autonomous reading accuracy greatly improved without the need to modify the 
computer vision reading algorithm. In other instances, the computer vision algorithm 
itself was found to be at fault, and efforts were made to rectify it. 

When dealing with errors related to digital image processing, an option used was to 
attempt to rectify the issue retrospectively by updating the reading pipeline and re-
executing it on all instances of the affected indicator class, in order to improve 
performance. However, it was important to also consider the potential for adverse effects 
on previously accurate readings, which might complicate efforts to find an optimal 
solution in certain cases. 

Still different forms of experimental errors might arise, such those depending on robotic 
malfunctions or external factors, that could not be rectified retrospectively, but that could 
provide valuable insights to prevent similar issues in future iterations. For instance, 
robotic errors might include PTZ misdirection or autofocus malfunction, while external 
factors might involve interference with the reading caused by reflections on gauge glasses 



or dirty glass. Such problems often resulted in a source image that was not readable from 
human eye. 

The error analysis has been conducted in a systematic manner, utilizing two distinct 
categorization methods for classification purposes. One approach involved an in-depth 
internal KO classification, that served as an internal tool for improving the reading 
pipeline by identifying the specific module responsible for errors. The other approach, 
the KO type, was more general and categorizes errors based on their characteristics. This 
method was primarily utilized for direct communication between the team members of 
the test results and was assigned automatically based on the internal KO status, which 
was instead set manually after a human review of the algorithm execution. 

The different types of KO are grouped in the table 4.2. Their brief description is 
following. 

 

 

ROBOT STOP MISSING: The callback was not executed because the robot could not 
reach it, due to accidental reasons, such as the presence of construction sites or closed 
doors, or intentional reasons, temporary exclusion from the mission due to technical 
issues. 

AUTOFOCUS KO: The captured picture is blurry due to incorrect focusing of the PTZ 
on the target component. 

DETECTION KO: The target component is not centered in the image because of errors 
in the PTZ pointing algorithm. 

UNREADABLE KO: The presence of light reflections or inconsistent digits makes it 
difficult to read the value even with the naked eye. 

DARK KO: Inadequate brightness makes it challenging or impossible to read the value 
by eye or with the AI algorithm. 

DIRTY KO: The component is dirty and therefore not suitable for reading the value. 

Table 4.2: Errors classification labels. 



DECIMAL SEPARATOR KO: The AI algorithm reads the value correctly but 
misplaces the decimal separator. This is a common issue for digital indicators.  

AI READING KO: The reading algorithm fails despite the input image being taken 
correctly. 

ROBOT KO, POINT ENGINE KO, EXTERNAL KO, AI KO are simply macro groups 
of the above-described status. 

 

Throughout the 141 repetitions of the three patrol routes, a total of 1527 images were 
collected to supply the automatic reading algorithms, as shown in table 4.3. Out of these, 
1007 were classified as OK, indicating that the algorithms were able to accurately extract 
the reading based on the predefined success criteria. However, in 505 instances, the 
automatic reading pipeline failed due to one of the reasons outlined in table 4.2. 
Additionally, there were only 15 images that remained in WORK IN PROGRESS state, 
as the algorithms were unable to analyze them but still under investigation. Thus, the 
overall success rate of the proposed solution stands at 65.95%. 

Table 4.3: Count and percentage breakdown of the mission results. 

 

Applying various aggregations to the raw results, we were able to derive multiple insights 
regarding the performance of the computer vision algorithms and the behavior of the robot 
and its PTZ camera during the missions. In total, we obtained 1446 repetitions that 
involved capturing photos using the PTZ camera of points of interest during the mission. 
Of these, only 44 KOs were attributed to environmental conditions such as reflections on 
the screen, dirt on the indicator, and poor lighting. Besides the improvements in the 
software pointing routine of the camera and its parameters, 110 instances were still not 
interpretable by the algorithms, either because they required major changes in the 
proposed solution or because the image was not readable. In 58 cases, there was a fault 
in the robot. These were isolated incidents that should not affect the overall evaluation of 
the system's performance but could be used as an indication of adaptations that need to 
be made to the environment to avoid them in the future. If we exclude external or 
robotic/camera KOs, we are left with the actual outcome of the automatic reading 
algorithms. We have 227 algorithmic KOs and 1007 OKs, which represent 15.70% and 
69.64% of the total, respectively, as shown in table 4.4. The remaining KOs make up 
14.66% of the total. Therefore, we can conclude that both external and internal factors of 
the proposed computer vision-based solution had an equal impact on its feasibility. 
Consequently, improvements needed to be made in both directions, which may overlap 
sometimes.  



 

 

 

If we analyze the results by patrol route, we can observe that MISS01 achieved an OK 
rate of 74%, as illustrated in table 4.5. This is more than 5% higher than the other two 
tours, MISS02 and MISS03, which achieved OK rates of 67% and 68%, respectively. In 
the overall evaluations, the first two tours carry more weight since they have a greater 
number of checkpoints compared to the last tour, which accounts for only about 15% of 
the total collected data. Additionally, the experimentation for MISS03 started late in the 
pilot program and time constraints prevented us from balancing the three tours. 

 

By examining the KOs for each patrol route as reported in table 4.6, we found that 
MISS01 had a high number of environmental issues, which was mainly due to its outdoor 
setting and difficulty reading components under unfavorable lighting conditions. It is 
worth noting that the other two patrol routes had almost no environmental KOs. On the 
other hand, MISS02 had a significant issue with pointing and focus, which accounted for 
most of the KOs, excluding the ones related to AI. The team conducted several tests runs 
to analyze the robot's position, the number of shots required, and the parameters of the 
PTZ camera to ensure the best possible shots. They were mainly related to ensure good 
performances during MISS02, that was the most challenging from this point of view. 

Table 4.4: KOs count and percentage breakdown by type. 

Table 4.5: KOs count and percentage breakdown by mission. 



  
 

 

Sincerely, we had expected the pointing engine to perform better, but it fell short of our 
expectations when two components were very close on to the other, for example. We 
decided not to use the pointing engine in these cases and relied just on the well-configured 
PTZ camera parameters to capture shots that included only one component with high 
confidence. This kind of problem did not occur during MISS03, mostly thanks to two 
factors. Firstly, all the checkpoints were indoors, and secondly, the tour duration was 
relatively short compared to the other two missions, which allowed us to quickly make 
many repetitions and resolve environmental and pointing problems in a small fraction of 
the time. 

To evaluate the automatic reading algorithms' performance, we only considered the OK 
and KO - AI outcomes, which had a combined total of 1234. As previously mentioned, 
there were 1007 OKs, resulting in a success rate of 81.6%. The mission with the highest 
success rate was MISS01, where we achieved an OKs rate of 85%. On the other hand, the 
worst performance was on the MISS03 mission, where we obtained a success rate of 74%. 
What said is shown in table 4.7.  

 

 
 

Examining the individual checkpoints along the patrol routes allows us to gain a more 
profound insight into these numbers. Tables 4.8, 4.9, 4.1010 show those values. 
 

Table 4.6: KOs count and breakdown by mission and type. 

Table 4.7: Automatic reading algorithms performance breakdown by mission. 



 

 

Table4.8: MISS01 components results breakdown. 

Table 4.9: MISS03 components results breakdown. 



Table 4.10: MISS01 components results breakdown. 

 

 
 



The algorithms explained in detail in the previous chapter, “gray round water meter 
reader” and “liquid level reader”, showed in general good results. Both the algorithms 
belong to MISS03, that performed worse than the other two missions, probably just 
because of the “analog gauge” algorithm with a poor 5% of OKs. Liquid level reader 
scored a success rate of 94.7%, one of the highest, while the two callbacks involving gray 
round water meter reader scored 80% and 69.4% respectively. As previously said, those 
two readings were subject not only to the performance of the algorithm itself, but also on 
the value shown on the display. It is very probable that the statistics would have been 
higher if one had been sure to always photograph the correct value to be read. As a rule, 
algorithms that exploited pure computer vision logic have proven to be more effective 
than those that used an OCR tool. In fact, if the input photo was not optimal in terms of 
brightness, noise, or similar factors, it is highly likely that the output would have been a 
failure. By the way, ParseqOCR can be considered an excellent tool to use in applications 
such as the one under examination, and it was chosen because it has been tested and found 
to be superior to others. Considering that the errors for liquid level read were related to 
the pointing system, improvements can be made in that regard to increase the statistics. 
On the other hand, for gray round meter reader, it is necessary to improve the quality of 
the input data or adjust the algorithm to work in a wider range of brightness and noise 
conditions. 
 
  



 

Chapter 5  

Conclusion and further developments  
 

To summarize, the project concluded with satisfaction and acceptable outcomes thanks 
to the strong performance of the robot and the majority of the computer vision algorithms. 
The missions were replayed 141 times, averaging 5.875 replays per day, with a total of 
1527 photos captured and 69.95% successfully interpreted by the algorithms. Discarding 
those images that were uninterpretable due to robotic or camera malfunctions or 
environmental factors, 1234 photos remained, resulting in an 81.6% interpretation 
success rate. This pilot has demonstrated the potential of robotic autonomous systems for 
plant inspections, with the possibility of further improving the algorithms' performance 
and investigating the reason behind the failure of the Spot PTZ camera's auto-focus 
feature.  

An important topic of debate regarding potential improvements concerns the interest in 
making inspections fully autonomous. Currently, Spot is assisted by an operator while 
walking along the designated paths, and assistance is needed to open doors. To address 
this issue, the team suggested different ideas including utilizing Spot Arm, the twin robot 
of Spot Enterprise equipped with a manipulator on its back. Although Reply does have 
Spot Arm, Boston Dynamics is still improving certain routines to ensure smooth 
operations. While the open-door option is available, the success rate varies depending on 
factors such as the type of handle and the size and location of the door. By the way, the 
most limiting aspect is that Spot Arm opens doors only in teleoperation mode, for now, 
and thus an operator still controls its action through the tablet. This makes it impossible 
to fully automate processes, even if Boston Dynamics has acknowledged this limitation 
and is working on updates to address it. 

Figure 5.1 shows an example of how Spot Enterprise and Sport Arm may work together. 



 

In conclusion, continuing to invest in the developments of robotic technologies will lead to 
significant benefits in terms of accuracy and efficiency, safety, and cost-effectiveness, when 
comparing those new methods with respect to traditional inspections. The thesis meant to identify 
the key factors that are critical to successful similar implementations, and we hope that sharing 
the story of this project actually shed light on the aspects to be taken into account in future 
comparable activities. 

 
 

  

Figure 5.1: Spot Arm and Spot Enterprise 

collaborating. 
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