
POLITECNICO DI TORINO

College of Computer Engineering, Cinema and
Mechatronics

Master’s Degree Thesis

A data-driven approach for
modeling a digital twin of a wind
turbine under ideal conditions

Supervisors
prof. Bartolomeo Montrucchio
dr. Antonio Costantino Marceddu

Candidate

Matteo Ferrenti

April 2023

Summary

Wind turbine generators (WTGs) are one of the most widely used sources of renew-
able energy currently available. To accurately predict their production and quickly
notice any anomalies, it is important to analyze the data produced by these tur-
bines to understand their behavior and patterns. The purpose of this thesis is to
create a data-driven digital twin of a wind turbine generator capable of simulating
its ideal behavior.

To carry out this task, the model receives input data of environmental variables,
including wind speed and ambient temperature, and produces output values of pa-
rameters that a turbine should have under ideal conditions, including produced
power, rotor speed, and more.
The digital twin serves as a reference model that can be used as a comparison
metric for the real turbines to evaluate their real-time performance and verify that
the turbine is working properly by comparing the parameters of the internal com-
ponents.
The work was carried out in collaboration with the Turin-based company Sirius
s.r.l. and exploits data provided by the company itself and collected at some wind
farms in southern Italy. The data is acquired through Supervisory Control And
Data Acquisition (SCADA) systems installed on the turbines with the aim of mon-
itoring and collecting data both on the environment and on the internal components
of the turbine.

The work is structured in several parts: the initial part is characterized by data
extraction and dataset creation. The data is in the form of a ten-minute average
and is taken from turbines of the same model belonging to the same wind farm.
Subsequently, a significant work was done on filtering the data with the goal of
keeping only the data related to moments in which the behavior of the turbine can
be defined as ideal. In this way, the algorithms can be trained only with ideal data
and can adequately learn its trends without being misled by other non-ideal data.
To obtain this result, multiple filters have been used considering both environmental
and turbine variables, also using algorithms such as the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) for outlier removal.

Finally, several models have been created with the filtered data using different
algorithms from both machine learning and deep learning, trying many combina-
tions of inputs and outputs. Specifically, the Feedforward Neural Network (FNN),
Support Vector Regression (SVR), and Gated Recurrent Unit (GRU) were tested.
The tests can be divided into two parts: the first part is characterized by the fact
that the algorithms are trained on multiple turbines and tested on others never
previously seen by the algorithm. Instead, the second part concerns some variables

i

representing the temperature of the internal components of the turbine, whose be-
havior is highly variable from turbine to turbine, even if they belong to the same
model. In these cases, further studies were needed, leading to alternative solutions.
In both cases, satisfactory results were achieved.

ii

Contents

List of Figures vi

List of Tables x

1 Introduction 1

2 Background 4

2.1 Thermodynamics effects on atmospheric air: wind 4

2.1.1 Weibull Distribution . 5

2.1.2 Energy Contained in the Wind 6

2.2 Wind Turbine Generator . 7

2.2.1 Wind Turbine Components 9

2.3 Statistics . 11

2.3.1 Moving Average . 11

2.3.2 Standardization . 12

2.3.3 Correlation Matrix . 13

2.4 Outlier Detection . 13

2.5 Digital Twin . 15

2.6 Interpolation . 15

2.7 Machine Learning . 16

2.7.1 Density-Based Spatial Clustering of Applications with Noise
DBSCAN . 17

2.7.2 Support Vector Regression (SVR) 18

2.7.3 Feedforward Neural Networks (FNN) 20

2.7.4 Recurrent Neural Networks (RNN) 23

2.7.5 Gated Recurrent Unit (GRU) 25

2.7.6 Other useful notions . 26

iii

3 Dataset and Data Preprocessing 28

3.1 Dataset . 28

3.1.1 Measures . 30

3.1.2 Correlation Matrix . 31

3.2 Preprocessing . 33

3.2.1 Generic Filters . 34

3.2.2 Power curve filters . 37

3.2.3 Standardization . 38

3.3 Temperature Preprocessing . 40

3.3.1 Time Series Model . 40

3.3.2 Temperature filters . 40

3.3.3 Features Expansion . 43

4 Methods and Experiments 46

4.1 Algorithms and Configurations . 47

4.1.1 Support Vector Regression 47

4.1.2 Feedforward Neural Networks 49

4.1.3 Gated Recurrent Unit . 54

4.2 Active Power and Rotor RPM Model 60

4.2.1 Support Vector Regression 60

4.2.2 Feedforward Neural Networks 62

4.2.3 Gated Recurrent Unit . 63

4.3 Temperatures Model . 65

4.3.1 Support Vector Regression 66

4.3.2 Feedforward Neural Network 67

4.3.3 Gated Recurrent Unit . 69

4.4 Further Temperatures Tests . 71

4.4.1 Introduction of Additional Information into the Dataset . . 72

4.4.2 Single Turbine Models . 73

5 Discussion 79

5.1 Active Power and Rotor RPM . 79

5.1.1 Active Power . 80

5.1.2 Rotor RPM . 81

5.2 Temperatures . 83

5.2.1 Gearbox Bearing Temperature 83

5.2.2 Generator Bearing Temperature 91

5.2.3 Gearbox Oil Temperature 97

iv

6 Conclusions 98

6.1 Future works . 99

v

List of Figures

1.0.1 World total energy supply divided by source, from 1971 to 2019
[1]. The chart already contains which the three main sources are,
while the other sources in order from bottom to top are: nuclear,
hydro, biofuels and waste, other. Other includes the geothermal,
solar, wind, tide/wave/ocean, heat and other sources. 2

2.1.1 The cycle bottom part, which is depicted in the illustration, is the
wind that blows over the earth surface; the cycle higher component
takes place at high altitudes and is irrelevant to our needs [5]. . . . 5

2.1.2 Comparison between a Weibull distribution and real wind data in
Col de Touahar Taza, as shown in [6]. 6

2.1.3 How the section of a constant-energy air flow changes in passing
through a turbine [8]. 7

2.2.1 Horizotal axis wind turbine [10]. 8

2.2.2 Vertical axis wind turbine [11]. 9

2.2.3 Blade shape and sections at different distances from the hub [13]. . 10

2.2.4 Arrangement of components in a horizontal-axis wind turbine with
asynchronous motor and gearbox [14]. 12

2.3.1 Example of correlation matrix taken from [19]. It is commonly used
to color the boxes according to the correlation, attributing two dis-
tinct colors for positive and negative correlation and blending them
according to the degree of correlation, until reaching a correlation
of 0 represented by white. In this way, even without reading the
individual values (which are not shown in this example matrix) it is
possible to understand how the dataset is structured very quickly. . 14

2.4.1 A graph from [22] that provides a visual example of what outliers
look like. The set of green dots represents the samples of the dataset
that are similar to each other and respect a certain distribution,
while the two circled red dots are outliers, and as can be seen they
are detached from the rest of the points and do not respect their
distribution. 14

2.6.1 Interpolation example taken from [25], with two different smoothing
factors. 16

vi

2.7.1 A basic idea of the structural difference between regular program
and machine learning. 17

2.7.2 This graph [31] displays the outcome of using the DBSCAN algo-
rithm on a set of data. As can be seen, the data are clearly split into
three distinct groups, and there are some outliers within each group.
The algorithm successfully distinguished between the three clusters
and gave each one a distinct color. It also correctly identified the
outliers, which can be distinguished from other points because they
are not colored. 19

2.7.3 Example graph of SVR, taken from [35]. In this case a Linear SVR
has been used, but it is also possible to use the kernel trick [36] as
in the SVM to obtain non-linear results. 21

2.7.4 Structure of a FNN with 3 hidden layer of 5 neurons each: the
neurons related to the input layer are colored in green and are as
many as the inputs. The hidden layers are hued in gray, and can be
in variable quantities. Not only the number of hidden layers can be
chosen, but also the number of neurons of each hidden layer, without
necessarily having to keep the same number for each hidden layer.
In this example, there are 3 hidden layers of 5 neurons each. Finally,
in red, the output layer with the number of neurons equal to the
number of outputs. Each of the arcs that connect the neurons has
its own weight and each neuron ha its own bias. 22

2.7.5 Graphical example of what happens for each single neuron (except
the input ones that receive the value from the outside) during for-
warding. 23

2.7.6 Structure of a many-to-many RNN with the same number of inputs
and outputs [42]. 24

2.7.7 Structure of DRNN [42]. 24

2.7.8 RNN memory cell architecture(on left) vs GRU memory cell archi-
tecture (on right) [45]. 26

3.1.1 Dataset division in train, validation, and test datasets. 29

3.1.2 Correlation Matrix of the dataset. 32

3.2.1 Raw data. 34

3.2.2 In this example, a transition from state A to state B can be seen
at the instant of time T1 and the reverse transition at the instant
of time T2. The state before T1 and after T2 is A, while the state
between T1 and T2 is B. So in this case the pair of time instants T1
and T2 indicate the beginning and the end of state B. 35

3.2.3 Filters over status and Terna limitations. 36

3.2.4 Basic wind and power filters. 38

3.2.5 Final results of filtering after curve clean. 39

vii

3.3.1 Image taken from [51]. 41

3.3.2 Gearbox bearing temperature of different WTGs. 42

3.3.3 Effects of DBSCAN on gearbox bearing temp. 43

3.3.4 Interpolation of gearbox bearing temperature. 45

4.1.1 In the image taken from [57], it can be seen that more different values
are tried for each of the two parameters in the random search than in
the grid search. In this example, one of the two parameters has much
influence on the final results, while the other parameter does not
have much influence. The influence of each parameter on the results
is shown on the relative axis with a graph, where the higher the
value, the greater the influence. By trying several different values,
random search succeeds in obtaining better results than grid search
for a low number of attempts. 48

4.1.2 FNN 1 layer. 51

4.1.3 FNN 3 layers. 52

4.1.4 GRU with 1 GRU layer and 1 linear layer. The difference in data
size between the output of the GRU layer and the input of the linear
layer is due to the fact that only the last of the hidden states is used,
as explained above. 56

4.1.5 GRU with 3 GRU layers and 3 linear layers. The difference in data
size between the output of the GRU layer and the input of the linear
layer is due to the fact that only the last of the hidden states is used,
as explained above. 59

4.4.1 The data split for a generic turbine. The data starts from January
1, 2022 and goes to March 20, 2023. 75

4.4.2 WTG 10 wind - gearbox bearing temp boxplot. 78

4.4.3 WTG 14 wind - gearbox bearing temp boxplot. 78

5.1.1 Active power prediction over test set. 80

5.1.2 Active power error distribution over test set. 81

5.1.3 Rotor RPM prediction over test set. 82

5.1.4 Rotor RPM error distribution over test set. 82

5.2.1 Gearbox bearing temp interpolation and shift model prediction over
test set. 84

5.2.2 Gearbox bearing temperature interpolation and shift model error
distribution over test set. 86

5.2.3 Gearbox bearing temperature interpolation model prediction over
test set. 87

5.2.4 Gearbox bearing temp interpolation model error distribution over
test set. 88

viii

5.2.5 Gearbox bearing temperature single device model prediction over
test set. 90

5.2.6 Gearbox bearing temperature single device model error distribution
over test set. 90

5.2.7 Generator bearing temp interpolation and shift model prediction
over test set. 92

5.2.8 Generator bearing temperature interpolation and shift model error
distribution over test set. 92

5.2.9 Generator bearing temperature interpolation model prediction over
test set. 94

5.2.10Generator bearing temp interpolation model error distribution over
test set. 94

5.2.11Generator bearing temperature single device model prediction over
test set. 96

5.2.12Generator bearing temperature single device model error distribution
over test set. 97

ix

List of Tables

3.1 Mean and Standard Deviation for each measure. 31

3.2 Set of filter used for the curve cleaning. 39

3.3 Example of how temperature shift works. 45

4.1 Possible values of C and epsilon. 49

4.2 Hyperparameters tuning for active power in terms of R2. 61

4.3 Hyperparameters tuning for rotor RPM in terms of R2. 61

4.4 Architecture tests for FNN active power and rotor RPM model in
terms of R2. 62

4.5 Learning Rate tests for FNN active power and rotor RPM model in
terms of R2. 63

4.6 Dropout tests for FNN active power and rotor RPM model in terms
of R2. 63

4.7 Final test over single outputs in terms of R2. 64

4.8 Architecture tests for GRU active power and rotor RPM model in
terms of R2. 64

4.9 Learning Rate tests for GRU active power and rotor RPM model in
terms of R2. 65

4.10 Final test over single outputs in terms of R2. 65

4.11 Hyperparameters tuning for gearbox bearing temperature in terms
of R2. 66

4.12 Hyperparameters tuning for gearbox bearing temperature in terms
of R2. 67

4.13 Hyperparameters tuning for gearbox bearing temperature in terms
of R2. 67

4.14 Architecture tests for FNN temperature model in terms of R2. . . . 68

4.15 Learning Rate tests for FNN temperature model in terms of R2. . . 68

4.16 Dropout tests for FNN temperature model in terms of R2. 69

4.17 Final test over single outputs in terms of R2. 69

4.18 Architecture tests for GRU temperature model in terms of R2. . . . 70

x

4.19 Learning Rate tests for GRU temperature model in terms of R2. . . 70

4.20 Dropout tests for GRU temperature model in terms of R2. 71

4.21 Final test over single outputs in terms of R2. 71

4.22 Interpolation tests in terms of R2. 72

4.23 Shift tests in terms of R2. 73

4.24 Interpolation and shift tests in terms of R2. 73

4.25 Tests on single devices in terms of R2 for SVR models. 76

4.26 Tests on single devices in terms of R2 for FNN models. 77

4.27 Tests on single devices in terms of R2 for GRU models. 77

5.1 Results of the FNN active power model on the test set in terms of R2. 80

5.2 Results of the FNN rotor RPM model on the test set in terms of R2. 81

5.3 Results of the GRU model using interpolation and shift on the test
set in terms of R2. 84

5.4 Results of the GRU model using interpolation on the test set in terms
of R2. 86

5.5 Results of the GRU model using the single device model on the test
set in terms of R2. The results are divided by turbine. 89

5.6 Results of the GRU model using interpolation and shift on the test
set in terms of R2. 91

5.7 Results of the GRU model using interpolation on the test set in terms
of R2. 93

5.8 Results of the GRU model using the single device model on the test
set in terms of R2. The results are divided by turbine. 95

xi

Chapter 1

Introduction

In recent decades, the total amount of energy produced has been steadily increasing
as a result of the continuous increase in its demand. From 1971 to 2019, global
production increased from 230 EJ (Exajoule) to 606 EJ [1], an increase of more
than 250%. Figure 1.0.1 shows a graph of the trend of energy production divided
by source from 1971 to 2019. More than 75% of energy production comes from coal,
oil or natural gas, which are resources present in large quantities on the planet and
are easy to use. However, they do not regenerate over time, not in human-scale
times. This leads to the fact that sooner or later these resources are bound to run
out, and given their very large use in a context of continuously increasing energy
demand they are being depleted rapidly. Furthermore, they provide energy through
combustion, which produces very high amounts of pollution and greenhouse gases,
adding to the problems associated with the current climate crisis.

Given this background, it is easy to see how important it is to find alternative
solutions to produce energy as soon as possible. These solutions consist of the use of
renewable energy, which is that set of energy sources that are derived from the use of
renewable sources. A renewable source is defined as a source that regenerates itself,
either naturally or as a result of production processes, fast enough to always replace
the amount used in a human-scale amount of time. Some of these sources are called
perpetual resources because they are unlikely to ever run out given their speed of
regeneration. Sources such as solar energy, wind, water movement and geothermal
heat are perpetual sources of energy. Moreover, many of the renewable resources
are also sustainable resources, meaning that their use does not compromise the
environment or increase the climate crisis.

To avoid the complete depletion of resources and for greater sustainability of
energy production in recent decades, the use of renewable sources, especially wind
and solar energy, has been growing greatly. Like all high-growth sectors, many
studies are being carried out on the subject in the renewables sector. And it
is precisely in this context that this work was born, the purpose of which is to
build a digital twin capable of simulating the behavior of a wind turbine generator
in ideal conditions. This is done in collaboration with the Turin-based company
Sirius s.r.l., which provides all the data needed for the study, collected from several
wind farms in southern Italy. The data is collected through the use of Supervisory
Control and Data Acquisition (SCADA) sensors placed directly on the individual

1

Introduction

Figure 1.0.1. World total energy supply divided by source, from 1971 to 2019
[1]. The chart already contains which the three main sources are, while the
other sources in order from bottom to top are: nuclear, hydro, biofuels and
waste, other. Other includes the geothermal, solar, wind, tide/wave/ocean,
heat and other sources.

turbines in order to collect data from each of them. The data collected concern
both environmental conditions such as wind speed or ambient temperature and
data concerning the turbine itself, such as power production, rotor rotation speed
or temperature of the various internal components.

Simulating the operation of a Wind Turbine Generator (WTG) means being
able to predict fairly accurately how the turbine will behave, using only what a real
turbine has at its disposal, i.e., current and eventually previous atmospheric con-
ditions. The behavior of the turbine is represented by the data values collected by
the sensors concerning the turbine and its components, while the data concerning
the conditions of the surrounding environment provide the information about the
atmospheric conditions.
This simulation should be carried out under ideal operating conditions, which means
that the model should always represent the turbine in a situation where no malfunc-
tions or problems of any kind are present. The constraint ”under ideal conditions”
does not refer to atmospheric conditions but to the fact that for each situation that
comes up the model is able to provide what the correct operation of the turbine

2

Introduction

should be. This involves a great deal of cleaning of the dataset to remove all sam-
ples that do not meet ideal conditions so that the training phase is carried out in
an environment as ideal as possible.

The development of this work is structured in several distinct parts, each with
its own objective and different methods of resolution.
The first phase consists of developing through the use of the Application Program-
ming Interface (API) provided by the company a program capable of downloading
the required data and transforming it in such a way as to make it easily usable in
the next steps. Immediately after the first phase takes place the second one, which
consists of data preprocessing. It includes several sets of filters that are intended to
eliminate sets of samples that are invalid or do not meet the requirement of ideal
conditions. This part is very important because not filtering properly will result
in training the model on non-ideal data, risking creating a model that does not
always return the correct operation of a turbine. Samples are removed in which
the amount of power produced does not match (with a margin of error) that of the
theoretical curves, or samples in which the temperature of an internal component
is markedly different from what the temperature of the same component is in sim-
ilar situations. In addition, studies are also done on the data to calculate and add
information not originally present to try to improve the learning process when it
does not achieve the desired results. This was especially necessary in the phase of
studying internal component temperatures.

Once the data has been properly processed and divided into the train, evaluation
and test sets these are used to train the different algorithms and models that have
been chosen for the creation of the digital twin. One machine learning model,
namely Support Vector Regression (SVR), and two deep learning models, namely
Feedforward Neural Network (FNN) and Gated Recurrent Unit (GRU), were chosen
as models. In this way, three very different models are tested that operate following
different logics. SVRs are an adaptation of Support Vector Machines (SVM) which
are able to perform regression and work very similarly to them. FNNs are one of
the most classical and basic of the deep learning models, while GRUs are recurrent
models that can process sequential data by generating internal memory states that
take into account what is contained in the previous data in the sequence.
All of these models require a tuning phase in which, for each of them, many tests
must be performed with different hyperparameters in order to choose the ones
that obtain better results. In this phase, the results obtained with each test are
reported and an attempt is made to motivate the results obtained and choose the
most appropriate ones. In addition, tests are also carried out with the additional
data produced in the previous stage. The evaluation set is used to perform these
tests and make the decisions.

In the final part of the work, once all the models have been tested and the
ideal hyperparameters have been chosen, the best ones are used on the test set to
perform a more detailed final analysis of their results, providing considerations of
their performance and examples of how they work.

3

Chapter 2

Background

2.1 Thermodynamics effects on atmospheric air:

wind

The natural movement of air in relation to the surface of the earth is referred to
as wind. When two places have different atmospheric pressures, the air is forced
to travel from the high-pressure area to the low-pressure area, which is the major
source of wind production [2]. The temperature difference between two geographic
regions is what determines the pressure difference; this variation may be either
large-scale or small-scale. The intensity of the wind is given by the speed with
which the wind makes this movement, in meters per second (m/s).

An example of a large-scale difference is that between the poles and the equator.
Due to the varied inclination between the sun rays and the planet surface, the heat
that travels to the earth via solar radiation is not uniform, which results in this
type of discrepancy. As a result of the sun beams low inclination near the equator,
almost perpendicular to the surface of the planet, a lot of heat is produced there,
whereas the poles high inclination causes less heat. This is mainly due to the fact
that the same irradiation covers an area inversely proportional to the inclination:
the area at the equator will be smaller and the heat will therefore be concentrated
in that area, whereas the area at the poles will be larger and the heat will therefore
be spread over the entire area [3].

The breezes are an illustration of a small-scale variation; these are weak local
winds with daily regularity. They are brought on by particular local geography,
such as the coastal areas. Earth and seawater have extremely different specific
heat capacity; while land warms and cools more quickly, water does so more slowly.
These differences in capacities affect the air masses above. As a result, the land
quickly warms up throughout the day and produces regions of low-pressure hot
air, while the sea produces regions of high-pressure cold air. Due to this reason,
air coming from the water moves towards the land. The converse occurs at night,
though: the earth rapidly cools, creating high-pressure, while the water maintains
its warmth from the day heat, creating low-pressure. Because of this, air moves
from the land to the sea in the opposite direction from how it does during the day
[4].

4

Background

Figure 2.1.1 shows an example of how a pressure difference, and consequently a
wind, can be generated.

Finally, there are other sources of wind not related to the pressure difference,
such as those due to the Coriolis effect caused by the Earth rotation.

Figure 2.1.1. The cycle bottom part, which is depicted in the illustration, is the
wind that blows over the earth surface; the cycle higher component takes place at
high altitudes and is irrelevant to our needs [5].

2.1.1 Weibull Distribution

The Weibull distribution, which is a probability density function, can be used to
statistically represent the distribution of wind speeds at a given location. Although
there are several distributions that can be used to simulate wind dispersion, this
one is the most popular in the industry because it most closely approximates it [6].
An integral of this distribution over an interval returns the probability that the
wind will be within that interval.
The following formula defines it [7]:

f(V) = k(
V k−1

Ck
)e−(V

C
)k

where V is the wind speed and k is the Weibull form parameter, which determines
the distribution shape and has a range of values from 1 to 3. Higher values indicate
constant winds, while smaller values indicate variable winds. Scale parameter C is
equal to mean wind speed.
An example with real data is shown in Figure 2.1.2.

5

Background

Figure 2.1.2. Comparison between a Weibull distribution and real wind data in
Col de Touahar Taza, as shown in [6].

2.1.2 Energy Contained in the Wind

The wind has a finite amount of energy, and its value can easily be calculated. It
is needed to know the speed and density of the wind, and decide on the size of the
area in which this quantity needs to be computed.
Given a circular area of section Sr, density ρ and velocity V0, the energy contained
in the flow is [8]:

E =
1

2
ρSrV

3
0 [J]

In this formula, it is important to note that the energy contained in the wind
is directly proportional to the density of the air. This means that the ambient
temperature influences the amount of energy since the density in turn depends on
the air temperature.
This formula is especially important when applied to the section of area covered
by the blades of a wind turbine: Figure 2.1.3 shows the shape of the flux tube
tangential to the tip of the blades. Refer to the next section for more information
on the names of the components of a turbine.

The flow tube has the same energy at every point; this means that where the
section is smaller than the section of the area covered by the blades, the air contains
more energy for the same section (it is faster and/or denser) while where the section
is greater the air contains less energy section parity (it is slower and/or less dense).
As can be seen, the flow has a smaller section than the blade area before reaching
the turbine. In the vicinity of the turbine, the flow widens; once it has passed the
turbine it has a larger cross-section than the area of the blades. This behavior

6

Background

occurs because the turbine subtracts energy from the wind, which therefore has a
lower speed and/or density than before crossing it.

Figure 2.1.3. How the section of a constant-energy air flow changes in
passing through a turbine [8].

Since the turbine subtracts energy from the wind, a constant Cp can be defined
which determines the amount of energy that the turbine subtracts from the wind:

P = CpE

where P is the power absorbed by the turbine and E the energy contained in the
wind.
It is possible to obtain the maximum theoretical value of Cp, which represents the
theoretical limit of energy that can be extracted from the wind with a wind turbine
[8]. This limit is known as the Betz limit, and is equivalent to:

Cpmax = 0.593

Modern turbines are capable of reaching 70-80% of this theoretical limit [8].

2.2 Wind Turbine Generator

Wind turbines are devices specifically designed to convert the energy contained in
the wind into electricity. The basic functioning is the opposite of that of a fan:
instead of using electricity to spin a motor to which blades that move the air are
connected, it is the air that spins the blades which are however connected to a
generator, which produces electricity.

There are mainly two types of turbines, which differ in the direction in which
their axis of rotation is oriented [9]:

7

Background

• Horizontal axis: These are the most common ones, they have the axis of
rotation parallel to the ground and the direction of the blades perpendicular
to it. The direction of the axis of rotation must be facing that of the wind
to obtain maximum productivity. It is necessary to place the generator and
gearbox at the height of the rotor, which is placed on the top of the tower.
Being large and heavy components, placing them at the top involves higher
costs. The shape, material, and number of blades is variable and there are
many types, but the modern wind turbine model is the most efficient and
reliable due to its three-bladed shape and is what is considered in this study.
An example of a modern wind turbine is shown in Figure 2.2.1.

Figure 2.2.1. Horizotal axis wind turbine [10].

• Vertical axis: Vertical axis turbines, on the other hand, have the rotation
axis perpendicular to the ground, which brings a series of advantages such as
not needing to be oriented according to the wind and being able to position
the generator and gearbox on the ground, being possible to carry the rotation
from the top directly to the bottom. The biggest disadvantage, however, is
the reduced efficiency, which is why they are not used in large wind farms
in favor of their horizontal axis counterpart. An example of a vertical wind
turbine is shown in Figure 2.2.2

Modern horizontal-axis turbines provide the best performance [12], and are
therefore the ones used in large wind farms such as those considered in this study.
For this reason, they are the type of turbine that will be analyzed in the most
detail.

8

Background

Figure 2.2.2. Vertical axis wind turbine [11].

2.2.1 Wind Turbine Components

All the most important components that make up a horizontal-axis turbine and
what their functionalities is are explained below [8]:

• Tower: The tower is a circular metal structure with variable height, generally
one and a half times the length of the blade. Its job is to stably and safely
support all components resting on it, which need to be placed at high heights
because the farther we are from the ground, the faster the wind. It must
be able to withstand continuous oscillation due to the rotation of the system
above and the pressure generated by the wind, even in the case of windstorms.

• Rotor: The rotor is the rotating part of the turbine. It is located at the front
of the nacelle. The rotor includes the hub and the blades.

• Hub: The hub is the rotating component at the tip of the nacelle, whose job
is to keep the blades attached.

• Blades: The rotor blades are the components of the wind turbine that are
most noticeable. Typically, they are constructed of a lightweight material

9

Background

resistant to the bending stress caused by the angle of incidence between the
wind direction and the blade cross section. Materials with these characteris-
tics are for example carbon fiber or fiberglass.
The wind is captured by the rotor blades, which then transform its kinetic
energy into rotary energy. Modern turbine blades are shaped to maximize
aerodynamic efficiency; close to the hub, the blade section is circular, and
the further away the blade is from the hub, the more the thickness decreases.
It is necessary to have a shape that ensures good lift and low resistance, es-
pecially towards the ends because as the distance from the center increases,
the relative speed increases quickly. The blade also wraps around itself at
an angle of about 25 degrees. It is possible to see the shape of the blade
and its individual sections in Figure 2.2.3. Through a system for adjusting

Figure 2.2.3. Blade shape and sections at different distances from the hub [13].

blade pitch, the blades can also rotate around themselves. The angle created
between the plane of the blade segment and the plane of the rotor is known as
the blade pitch angle. In order to control the rotor rotational speed and the
amount of energy stored, this angle is adjusted in accordance with the wind
speed. In situations where wind speeds are too high, the angle is adjusted so
that the leading edge faces the wind, reducing the aerodynamic load on the
blades and the force applied to the tower.

• Nacelle: The gearbox, generator, and other mechanical and electrical parts
of the wind rotor are accommodated in the nacelle. It is built to turn and
face the wind and stands atop the tower.

• Shaft: The shaft is the part that transmits the rotation of the component in
which it is generated, i.e. the rotor, up to the generator. The shaft can be
divided into two distinct parts: the first is the one that goes from the rotor to
the gearbox and is the one that spins at low speed, i.e. the rotational speed of
the rotor. The second is the one that goes from the gearbox to the generator
and runs at high speed.

10

Background

• Gearbox: The gearbox is a vital component for the turbine, which allows
converting the low rotation speed of the shaft produced by the rotor to a high
rotation speed, required by the generator.

• Generator: The generator, which performs the task of converting rotational
mechanical energy into electrical energy, is a crucial component of the tur-
bine. Generators come in two varieties: synchronous and asynchronous. The
primary distinction between the two is that asynchronous generators produce
energy at a constant rotational speed; in order to maintain this constant
speed, a gearbox is required. On the other hand, the synchronous ones can
still generate power despite variable shaft rotation speed because they gen-
erate energy at variable frequency, directly proportional to rotation speed,
which is then converted into fixed frequency by an electronic rectifier. Al-
though larger and more expensive, these generators do not require a gearbox.
The asynchronous generator with gearbox is a feature of the turbine models
used in this study.

• Brake: The turbine brake is the component that serves to stop the rotation
of the rotor and blades in case of need, or when the turbine does not have to
produce. This situation can arise for various reasons, such as wind speeds that
are too low to produce energy or too high and therefore dangerous, or due
to breakdowns or repairs, or due to limitations in energy production imposed
from outside.

• Yaw: The yaw system is the device that allows the turbine to turn and follow
the direction of the wind so that the rotor can always face the direction of
the wind. The rotation includes the entire upper part of the turbine, i.e. the
nacelle. The tower remains fixed. The system consists of two components,
the yaw motor which generates the mechanical energy required for rotation
and the yaw drive which applies rotation to the nacelle.

• Anemometer: The anemometer is the instrument placed above the nacelle
which has the purpose of measuring the speed of the wind.

• Wind Vane: The wind vane is the instrument placed above the nacelle
which has the purpose of measuring the direction of the wind. Knowing the
direction of the wind is useful for orienting the turbine using the yaw system.

2.3 Statistics

In the following Subsections, all the notions of statistics necessary to fully under-
stand what is done during this work are provided.

2.3.1 Moving Average

A particular kind of mean used for data series is the moving average. It is deter-
mined by creating a series of averages, one for each point in the dataset. In order

11

Background

Figure 2.2.4. Arrangement of components in a horizontal-axis wind turbine with
asynchronous motor and gearbox [14].

to provide information on the local average, each average is only calculated on a
subset of the points, i.e. on the k points closest to the point where the average is
calculated.
A variation of the moving average that uses the k points prior to the point where the
average is computed is called simple moving average. The simple moving average
can be determined as follows for the nth point pn in the dataset [15]:

SMAk =
pn−k+1 + pn−k+2 + ...+ pn

k
=

1

k

n∑︂
i=n−k+1

pi

2.3.2 Standardization

The standard score, also referred to as the z-score, shows how much the observed
value is above or below the average of the dataset. Standard scores are positive
for values above the mean and negative for values below the mean. The standard
score value reveals how many standard deviations from the mean the observed value
deviates. It is determined as follows [16]:

z =
x− µ

σ

Determining the standard score for each sample is the same thing as standardizing
a dataset. This produces a new dataset with some peculiar properties, including

12

Background

zero mean and unitary variance. The new mean is zero because the dataset mean
has been subtracted from each sample, and the new variance is one because each
sample has been divided by the dataset variance.

2.3.3 Correlation Matrix

Given a group of variables, a matrix known as a correlation matrix is used to find
out the relationships between each of them. When two variables are linearly corre-
lated, they are said to be related to one another.
The most popular method for determining correlation is the Pearson correlation
coefficient, which is a normalized measure of correlation with a range from -1 to
1. This metric ignores all other forms of correlation and only considers the linear
correlation between variables. A correlation value of 1 corresponds to a perfect
linear relationship, i.e. the two variables have exactly the same increasing trend.
Conversely, a correlation of -1 indicates the opposite, ie that they have exactly the
opposite trend. A correlation of 0 means that there is no relationship whatsoever
between the two variables and that they are independent of each other. Numbers
between 0 and 1 indicate a partial positive correlation, increasing as the correlation
increases. The same is true for values between 0 and -1, but with partial negative
correlation [17].
The correlation between two random variables X and Y must be calculated by
dividing the covariance of the two variables by the product of their standard devi-
ations as follows [18]:

ρX,Y =
cov(X, Y)

σXσY

=
E [(X − µX)(Y − µY)]

σXσY

The correlation matrix contains the variables to be analyzed on both the columns
and the rows, and each element corresponds to the correlation between the vari-
ables of the row and of the column. This implies that each element of the diagonal
of the matrix is compared with itself and therefore has a maximum correlation, i.e.
1. The part above the diagonal mirrors the one below, thus leading to an exclusion
of the pairs on the diagonal in double copy. An example of correlation matrix is
shown in Figure 2.3.1.

2.4 Outlier Detection

According to the science of statistics, an outlier is a point in a dataset that differs
significantly from all other observations and only occasionally occurs [20]. Figure
2.4.1 shows an example of outliers.
In the field of data analysis and machine learning, these samples are frequently
taken out of the dataset because anomalies are likely to cause issues, such as inac-
curate mean and standard deviation values or a reduction in the accuracy of the
final results in the case of supervised learning in case the dataset goal is to train
an algorithm for a specific purpose [21].
For the purpose of removing outliers from the dataset, particular automatic tech-
niques have been created. The ideal approach would be to examine every single

13

Background

Figure 2.3.1. Example of correlation matrix taken from [19]. It is commonly used
to color the boxes according to the correlation, attributing two distinct colors for
positive and negative correlation and blending them according to the degree of
correlation, until reaching a correlation of 0 represented by white. In this way,
even without reading the individual values (which are not shown in this example
matrix) it is possible to understand how the dataset is structured very quickly.

point to determine whether it should be classified as an outlier or not, but this is
not practically feasible, so algorithms are used instead. These algorithms generally
work well for most samples, but they may also eliminate some high-quality samples
or leave some outliers in the dataset.

Figure 2.4.1. A graph from [22] that provides a visual example of what outliers
look like. The set of green dots represents the samples of the dataset that are
similar to each other and respect a certain distribution, while the two circled red
dots are outliers, and as can be seen they are detached from the rest of the points
and do not respect their distribution.

14

Background

2.5 Digital Twin

A digital twin is a representation of a complex system, process, or actual item in
the digital domain. The items or systems that are duplicated might be quite di-
verse, with various sizes and levels of complexity. A full system, a section of it, or a
component of it may all be duplicated. It replicates the real object behavior and
performance by using a virtual, interactive version of it [23].
A wide range of industries, including manufacturing, building, wind energy, agri-
culture, healthcare, and many more, may employ the digital twin. The digital twin
may assist discover any issues or inefficiencies, forecast future behavior, improve
performance, and determine the time for routine maintenance since it can offer a
real-time digital version of the physical thing. Moreover, the digital twin may be
utilized to try out situations and solutions in a virtual setting, lowering the costs
and dangers of in-person testing and making it useful for design.

The digital twin often adopts a data-driven methodology, where data is contin-
uously gathered through sensors, sensing equipment, and other data sources. The
behavior of the model under study is then determined using this data, which is
subsequently analyzed using artificial intelligence and machine learning techniques.
Although it doesn’t require much system expertise, creating an accurate model does
demand a lot of data and cleaning effort.
This strategy contrasts with the model-based strategy, which creates a model of the
system under examination using theoretical, mathematical, physical, or statistical
information. The model, which is predicated on a number of presumptions, explains
how the actual system works. The biggest drawback is that in order to effectively
characterize a system that is being modeled, one must have a very thorough grasp
of it [24].

2.6 Interpolation

Interpolation is an estimation method developed in mathematics called numerical
analysis. It consists in finding new data starting from the ones we already have,
which are generally data obtained experimentally. To do this, it is necessary to find
the values that the original function assumes among the known points, in order to be
able to estimate new points. The interpolation can be calculated on one dimension
(univariate interpolation) or on several dimensions (multivariate interpolation).

The most common methods for calculating univariate interpolation are:

• Linear: it consists of connecting each point with the next with a straight
segment.

• Polinomial: it consists in finding a polynomial of high degree that adequately
approximates the trend of all points

• Spline: also in this case polynomials are used, but instead of using a single
one of high degree to approximate all the points in one go, multiple ones of
low degree are used to approximate subsets of points.

An example of spline univariate interpolation is shown in Figure 2.6.1.

15

Background

Figure 2.6.1. Interpolation example taken from [25], with two different
smoothing factors.

2.7 Machine Learning

Machine learning (ML) is a branch of artificial intelligence that deals with creating
models and algorithms that let computers learn from data without having to be
explicitly programmed to carry out every action [26]. In other words, machine
learning enables computers to examine vast volumes of data, find patterns, and
identify relationships within them, then use that understanding to forecast or decide
on fresh data.

In conventional programming, inputs and outputs are handled explicitly by the
programmer, who must write the code to develop the input data and produce accu-
rate output data. The software must be designed to execute a specific operation on
a single input and cannot generalize the solution to other inputs without changing
the code. Machine learning, on the other hand, trains the model on a collection
of labeled input and output data in order to learn to generalize the relationship
between the input and output data.
In this manner, the model may be utilized to automatically process new input
data and provide accurate output data without the need for further source code
alterations 2.7.1.

Machine learning comes in several forms, and they may be identified by the
nature of the input and output data as well as the learning techniques applied.
Machine learning may be divided into three primary categories [27]:

• Supervised Learning: In this type of machine learning, the model is trained
on a dataset of pre-labeled inputs and outputs in order to learn a mathemat-
ical function that maps the inputs to the correct outputs. Once trained, the

16

Background

Figure 2.7.1. A basic idea of the structural difference between regular
program and machine learning.

model can be used to make predictions on new input data.

• Unsupervised learning: In this type of machine learning, the model is
trained on a set of unlabeled input data in order to find patterns or clusters
within the data. It is often used for data analysis and data clustering.

• Reinforcement Learning: In this type of machine learning, the model
learns through interaction with its surroundings. The model receives feedback
based on the actions it takes and learns how to maximize a certain reward or
goal. It is often used for creating intelligent agents and for robotics.

Furthermore, deep learning should be mentioned since it is a well-known sub-
class of machine learning. Deep learning uses artificial neural networks with numer-
ous hidden layers and is capable of learning intricate patterns from unstructured
input data.
The complexity of the models that can be learned is the primary distinction between
deep learning and machine learning. While deep learning allows to build compli-
cated models and learn from unstructured data much more effectively, machine
learning focuses on creating comparatively simple models [28].

2.7.1 Density-Based Spatial Clustering of Applications with
Noise DBSCAN

The goal of the clustering analysis is to divide a set of data into various groups
(referred to as clusters), each of which comprises samples that are similar to one
another and distinct from the samples of the other groups for the same feature.
There are numerous definitions of clusters and clustering algorithms [29], and one
of the best known and most used algorithms is known as DBSCAN, with its density-
based cluster definition.

DBSCAN is a density-based unsupervised clustering technique that may divide
data into groups according to density. A point neighborhood is defined as a circle
with a radius of ε and a center at the point. For each point p, we count the number
of points (also counting p) that are present in its neighborhood. The point p is

17

Background

considered as a core point if there are at least minPts points in its neighborhood.
The parameters ε and minPts are hyperparameters and can be adjusted as needed.
All points that aren’t designated as core points can be:

• Directly reachable from a point q if q is a core point and they’re at most
ε away from q.

• Reachable from a point q if a path of directly reachable points runs between
them. By this definition, the point q and all connecting points are required
to be core points.

• Unreachable from a point q if they are neither directly reachable nor reach-
able from that point.

The clusters are created immediately after all the points have been classified:
each core point creates a cluster with any non-core or core points that can be
reached from it. Different clusters are made up of groups of distinct core points
that are not linked to one another. Outliers are any points that cannot be reached
from any other point and are not a part of any cluster [30]. Figure 2.7.2 shows an
example of a DBSCAN result.

The main benefit of DBSCAN is that it can identify clusters regardless of their
shape, which is something that many other clustering algorithms cannot do. This
is because the clusters are assigned based on the density of the points, which elim-
inates the need to specify the number of clusters to search for, which is frequently
unknown beforehand. Another benefit is that the algorithm ability to recognize
and distinguish outliers makes the DBSCAN robust since it is not impacted by any
outliers.

However, assigning clusters based on density has a certain number of drawbacks.
For example, due to the curse of dimensionality, which makes it extremely chal-
lenging to find suitable ε and minPts values in datasets with high dimensionality,
the distance metric used for distance calculation, the Euclidean distance, becomes
useless in these situations. Furthermore, it is challenging to distinguish between
clusters if they have drastically different densities since not all clusters can have an
adequate selection of hyperparameters [32].

Although it is not its primary function, DBSCAN can be used as an outlier
detection algorithm in addition to clustering. This can be achieved by eliminating
the outliers that the algorithm discovers automatically or, in some circumstances,
by classifying specific clusters as outliers that the algorithm recognizes but that, in
the given case study, need to be removed. The method for deciding which clusters
to keep and which to discard differs from standard practice because it is only an
alternative application of the algorithm and must be defined in on the basis of each
unique case study.

2.7.2 Support Vector Regression (SVR)

Support vector regression (SVR) [33] is a machine learning technique used for re-
gression, that is, to predict a continuous numeric value rather than a class or cate-
gory. It aims to find a function that approximates the input data while minimizing

18

Background

Figure 2.7.2. This graph [31] displays the outcome of using the DBSCAN algo-
rithm on a set of data. As can be seen, the data are clearly split into three distinct
groups, and there are some outliers within each group. The algorithm successfully
distinguished between the three clusters and gave each one a distinct color. It
also correctly identified the outliers, which can be distinguished from other points
because they are not colored.

the prediction error and maximizing distance between the function and the nearest
points.

The SVR functions similarly to the support vector machine (SVM) [34], but
rather than classifying the data into two groups, it seeks a function that both fits
the data and doesn’t fit it too much. This means that the function must be adapt-
able enough to change in response to inputs while not being overly adaptable to
noise.
The SVR evaluates the function included in the input data before making a judg-
ment. The prediction is deemed accurate if the function delivers a result that is
reasonably near to what was anticipated given an input. Among other benefits,
SVR has the ability to handle both linear and nonlinear data, is resilient against
noise in input data, and is adaptable to the data.
To obtain such results, the objective function is minimized while subject to certain
constraints [35]:

• Objective Function:

minimize
w

1

2
∥w∥2

19

Background

• Contraints:
|yi − wixi| ≤ ε

The constraint dictates that each point must have a maximum absolute error
ε, which can be adjusted. This creates a distance ε from the hyperplane, and the
points residing on it are called support vectors.
However, this condition cannot always be respected and for this reason a further
term ξ is introduced, called slack variable, with the function of adding a weight
to all those points that do not fall within the constraint. For all points that are
already inside the margin, this variable is 0, reverting the problem for those points
to the one that has already been seen. Instead, the value of ξ at points outside the
margin is greater than 0, inversely proportional to the distance from the margin.
Since the goal is to have the least possible number of points that do not respect the
constraints, this weight must be minimized together with the function. For those
points that do not respect the constraints, their distance from the margin must be
minimized.
Using the slack variable and the new constraints, the new objective function is as
follows [35]:

• Objective Function:

minimize
w

1

2
∥w∥2 + C

n∑︂
i=1

|ξi|

• Contraints:
|yi − wixi| ≤ ε+ |ξi|

The constant C, which stands for how much importance is given to the points
outside the margin, controls the new variable. A problem known as overfitting
occurs when the algorithm learns to predict only the input dataset and does not
generalize well to other datasets. This prevents the algorithm from making accurate
predictions on other datasets.
The example in Figure 2.7.3 illustrates the outcome of using the SVR; the regression
line is indicated in red, and the top and lower borders are indicated in gray, both
at eps distance. The slack variable is bigger than 0 at points outside the margin.

2.7.3 Feedforward Neural Networks (FNN)

Artificial intelligence algorithms, also known as neural networks, were influenced
by the design and operation of the human brain. Similar to it, an artificial neural
network is made up of several interconnected neurons, which process information
via their connections and activation functions. They are modeled in an artificial
neural network as interconnected nodes that receive input from external sources
and produce output through activation functions [37].
Neural networks have the capacity to learn from data and form conclusions and
predictions on their own. They are utilized in a variety of fields, such as banking,
marketing, speech recognition, machine vision, picture categorization, and many

20

Background

Figure 2.7.3. Example graph of SVR, taken from [35]. In this case a Linear
SVR has been used, but it is also possible to use the kernel trick [36] as in the
SVM to obtain non-linear results.

more. When compared to other machine learning or statistical analysis techniques,
neural networks have demonstrated a unique ability to address issues that would
otherwise be challenging or impossible to do so. They have grown more potent
and adaptable with the introduction of new deep learning techniques, creating new
possibilities for artificial intelligence and its use in a variety of industries [28].

The term feedforward neural network (FNN) refers to a specific type of artificial
neural network in which signals are fed forward from input to output through one
or more hidden layers of neurons that do not use feedback or recursion. This
kind of neural network is utilized for continuous value classification, regression,
and prediction. The number of hidden layers in a feedforward neural network
determines its internal structure. Three different layer types make up a typical
feedforward neural network [38]:

• Input layer: The network first layer, known as the input layer, is where data
enters the system. In this layer, each neuron corresponds to a certain aspect
of the input. For instance, each neuron of this layer represents one pixel of
the image if the network has been trained to identify photos of animals.

• Hidden layers: Between the input and output layers of a neural network
are what are known as the hidden layers. The number of neurons that make
up each buried layer varies depending on how difficult the problem is. Each
neuron in a hidden layer is linked to every other neuron in the layer above and
below it. The nonlinear interactions between the input features are captured
by hidden layers.

• Output layer: The output of the network is represented by the output layer,
which is the final layer of the network. In this layer, each neuron stands for
a class or an output value. For instance, if the neural network was taught to
recognize photos of animals (dog, cat, horse, etc.). they could indicates the
likelihood that an image belongs to one of the aforementioned classes.

21

Background

In a feedforward neural network, every neuron is linked to every other neuron of
the previous and following layers. A synaptic weight, which reflects the significance
of a connection for calculating output, is linked to each neuronal connection [39].
A structure of a FNN with 3 hidden layer of 5 neurons each is shown in Figure
2.7.4.

Figure 2.7.4. Structure of a FNN with 3 hidden layer of 5 neurons each: the
neurons related to the input layer are colored in green and are as many as the
inputs. The hidden layers are hued in gray, and can be in variable quantities. Not
only the number of hidden layers can be chosen, but also the number of neurons
of each hidden layer, without necessarily having to keep the same number for
each hidden layer. In this example, there are 3 hidden layers of 5 neurons each.
Finally, in red, the output layer with the number of neurons equal to the number
of outputs. Each of the arcs that connect the neurons has its own weight and
each neuron ha its own bias.

A feedforward neural network bases its computation on the mathematical func-
tion feedforward, in which a neuron output is determined depending on its inputs
and associated synaptic weights. The input is first provided to the network first
layer of neurons, where the feedforward process starts. These neurons generate an
output by activating their inputs, which is subsequently sent to the network next
layer by these neurons. The feedforward process keeps on until the final output is
generated by the last layer of neurons of the network.
Mathematically, this is what happens during the forward step for each neuron and
for each hidden layer [38], as is also shown in Figure 2.7.5:

yn = f(
m∑︂
i=0

(hn−1,iw) + b)

where n is the number of the layer on which the forward is being made, m is the
number of neurons of the previous hidden layer, w is the synaptic weight that
connects the neurons of layer n-1 to those of the nth layer (a different weight for
each single connection), b is the bias (a bias for each neuron of the nth hidden
layer), and f is the activation function.

22

Background

Figure 2.7.5. Graphical example of what happens for each single neuron (except
the input ones that receive the value from the outside) during forwarding.

The activation function is a non-linear function through which the data are
passed, having the purpose of introducing non-linearity in the network. This allows
to respect the universal approximation theorem, which says that any continuous
function can be approximated by a suitable set of combinations of linear and non-
linear functions.
The backpropagation algorithm is used by FNNs to learn from the data. It involves
calculating the discrepancy between the desired output and the actual output pro-
duced by the network, using this error to modify the weights of the connections
between neurons in order to minimize the error going forward [40].

The advantages of FNNs include their propensity to process massive amounts
of data, discover intricate patterns, be applied to a variety of problems, and gener-
alize from training data to fresh data. Nevertheless, drawbacks include the require-
ment for a lot of training data to prevent overfitting, the computational complexity
needed for training, and the challenge of deciphering the neural network inner
workings.

2.7.4 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a class of artificial neural networks that
are created to handle data in sequences, such as time series, natural language, etc.
RNNs, in contrast to conventional neural networks, feature one or more layers of
memory units that enable the network to keep some type of memory of prior data.
This indicates that the RNN can analyze each element in a sequence based on its
prior values as well as its relationship to the overall context of the sequence, in
addition to the current value of the element [41].
The RNNs have a clear structure that allows them to achieve this outcome. Each
layer is made up of a memory cell that stores the current state of the sequence,
which is determined by the state of the previous element of the sequence and the
current element as input. Once the current state has been determined, an output
can be made and the state can be sent to the following layer. A graphical overview
is shown in Figure 2.7.6.

23

Background

Figure 2.7.6. Structure of a many-to-many RNN with the same num-
ber of inputs and outputs [42].

Furthermore, it is possible to create RNNs composed of several layers stacked
vertically as shown in Figure 2.7.7, thus having several internal states to repre-
sent each element of the sequence. This type of architecture is called Deep-RNN
(DRNN).

Figure 2.7.7. Structure of DRNN [42].

RNNs may also be built in a variety of ways, depending on what they will be
used for. These include ”one-to-one” RNNs, which process non-sequential data,
”one-to-many” RNNs, which process a single input to produce a series of outputs,
”many-to-one” RNNs, which process a series of inputs to produce a single output,
and ”many-to-many” RNNs, which process a series of inputs to produce a series of
outputs [42].

The fundamental issue with RNNs is caused by the vanishing gradient and ex-
ploding gradient problems, two related issues that frequently arise in RNNs that

24

Background

might impair the network capacity to train and generate reliable results.
The vanishing gradient happens when the gradient calculated during the backprop-
agation phase significantly decreases as it moves farther away into the network,
getting smaller and smaller until it is almost zero. As a result, the network is
unable to understand the long-term associations between the input data since the
learning algorithm cannot properly update the connection weights [43].
On the other side, an exploding gradient happens when the gradient increases too
quickly as it moves away into the network, growing larger and larger until it be-
comes unstable. As a result, the network may become unstable during learning
as the connection weights may grow too large.

The RNN design, which allows for error propagation over connections at each
time step during the backpropagation phase, may be the root source of both of
these issues. This means that the gradient of the present storage unit is influenced
by the gradients of the storage units from earlier steps. As a result, the gradient
may swiftly increase or rapidly fall.

2.7.5 Gated Recurrent Unit (GRU)

The GRU is a variation of the RNN architecture that was created to overcome the
problem of vanishing gradients in conventional RNNs and is extensively employed
in numerous speech recognition and natural language processing tasks [44].

The primary distinction between a GRU and a conventional RNN is that a
GRU contains two internal gates, an update gate and a reset gate, which control
the information flow within the network. Whereas the reset gate decides how much
of the previous hidden state to forget, the update gate governs how much of the
previous hidden state is mixed with the current input [45].
Hence, the internal structure of the memory units differs between RNN and GRU,
but the exterior structure of RNNs and GRUs is the same. Figure ?? illustrates
the internal structure of an RNN and a GRU memory cell. As can be observed,
the GRU now includes the aforementioned ports.
As can be seen from Figure 2.7.8, the GRU has a much more complex internal

structure. The hidden state ht in an RNN is calculated as [46]:

ht = tanh (Wht−1 + Uxt)

where W is the weight that is applied to the previous input state and U the weight
that is applied to the input x. Once the state ht is produced, an output y can be
generated by applying another weight V , and then using the softmax function.

Instead, the hidden state in a GRU is compured as [47]:

ht = zt ⊙ ht−1 + (1− zt)⊙ tanh (Uxt + rt ⊙Wht − 1)

The notations are the same as the previous formula, with the addition of z which
is the update gate, and r which is the reset gate, whose formulas are:

zt = σ(U (z)xt +W (z)ht−1)

rt = σ(U (r)xt +W (r)ht−1)

25

Background

Figure 2.7.8. RNN memory cell architecture(on left) vs GRU memory cell
architecture (on right) [45].

Also in this case it is then possible to produce the output y by applying a further
weight V to the state and the softmax function.
It is important to note that the notation does not include the biases, which are
added at the same time as the weights.
In calculating the state of the GRU, it can be seen that the formula is divided
in two by a sum: the part on the left represents how much to keep from the
previous state, while the one on the right how much to keep from the current state
(already influenced by input x), which is in turn obtained through the reset gate
which decides how much to delete from the previous state. To decide how much to
maintain of each of the two parts the update gate is used, which being the result
of a sigmoid is a number between 0 and 1, and is interpreted as the fraction of the
previous state to maintain, while the remainder (1− zt) is taken from the current
state.

2.7.6 Other useful notions

Mean Squared Error

Mean Squared Error (MSE) is a metric used in machine learning to measure the
severity of errors made in predictions. To calculate it, it is necessary to calculate,
as the name implies, the mean squared error, that is [48]:

MSE =
1

N

N∑︂
i

(yi − yî)
2

where yi is the observed value and yî is the predicted value

Coefficient of determination R2

The coefficient of determination, better known as R2 (R squared) is a metric used
to measure the goodness of predictions made by a predictor. It indicates how good

26

Background

the model is at replicating observed values, and to do so it relates the predictions
of the predictor under analysis to those of a dumb predictor that always predicts
the mean value of the measure under analysis.
It is calculated as follows [49]:

R2 = 1− SSres

SStot

where

SSres =
N∑︂
i

(yi − yî)
2

is the residual sum of squares, with yi observed value and yî predicted value.
And

SStot =
N∑︂
i

(yi − ȳ)2

is the total sum of squares, with yi observed value and ȳ mean value for the observed
data.

R2 values can range from minus infinity to 1. The value of 0 is an important
value, as it indicates that the predictions have the same level of accuracy of the
dumb predictor just mentioned.
Values greater than 0 indicate that the predictor performs better than the dumb
predictor, up to an upper limit in 1 indicating that the predictions are identical to
the observed values.
Finally, negative values thus indicate worse performance than the dumb predictor,
with virtually no lower bound.

27

Chapter 3

Dataset and Data Preprocessing

This chapter provides a brief introduction of the dataset that is used for the de-
velopment of this thesis, going to explain what the different features represent and
how they are collected, how the data is selected and used, and all the process they
undergo before being used for training, also known as preprocessing.

3.1 Dataset

The Turin-based company Sirius s.r.l. provided the dataset used for this thesis.
It offers a substantial amount of information about numerous wind farms located
throughout southern Italy. These wind farms contain different models of turbines;
from the data it is possible to see that some of them behave quite similarly, while
others diverge visibly. The dimensions of the turbine, from which all the other
various characteristics are derived, are the primary distinction.

Since it is very difficult to create a single digital twin that generalizes multiple
turbine models at once, especially if the models are not similar to each other, it
has been decided to use data that only refers to one turbine model. Additionally,
only the turbines from the same wind farm were chosen in order to ensure greater
data coherence since they are all in the same location, are exposed to similar envi-
ronmental conditions, and likely were installed at the same time.

The data is gathered directly through SCADA systems with sensors that are
physically installed on the turbines. These sensors gather pertinent information like
wind speed, power generated, internal component temperature, and more. They
are able to produce data at a rate of seconds, but this data is saved as a ten-minute
average, which is calculated every ten minutes from the data for that period. This
allows for the storage of long and complex data for numerous turbines without
taking up excessive amounts of space, and it also allows for a broader perspective of
the trend of the variables. However, the detailed view of what actually happens is
lost, leaving out important details.

The dataset as a whole consists of data that was provided by 18 turbines over
the course of a full year. This provides data for all seasons and avoids to make it
biased.

28

Dataset and Data Preprocessing

As shown in Figure 3.1.1, it was divided into 3 smaller datasets for model training
purposes : train, validation and test.

Figure 3.1.1. Dataset division in train, validation, and test datasets.

The samples are not divided completely randomly, but those belonging to a
turbine remain in the same dataset, so that in each dataset only data relating to
turbines that are not present in the other two are available. Their dimensions are
not equal: that of train is larger as it is the one on which the network is trained,
and is composed of 10 of the total 18 turbines. The other two datasets consist of
4 turbines each, and are used for different purposes. Validation dataset is used to
test and evaluate models, to choose which parameters are best, and generally make
any necessary choices. Test dataset instead is used to carry out the final tests. It is
not used for any other purpose and no choices are made based on the test results,
so as not to have a model with bias towards the data present in the dataset on
which the final results are calculated. This is because test formally represents real
data in a real use scenario, so they must be data that has never been seen before
and that it is not possible to use for anything except to carry out the final tests.

29

Dataset and Data Preprocessing

3.1.1 Measures

This Subsection explains which are the main measures present in the dataset and
what they refer to. In the original dataset there were measures that were not
considered useful for carrying out this work and for this reason they were omitted.
Here are the measures used:

• Timestamp: Indicates the instant of time all other values refer to. It is
saved as a Unix timestamp, which is the amount of milliseconds that have
passed since 00:00:00 on January 1, 1970.

• Wind Speed [m/s]: Wind speed at the top of the turbine, regardless of its
direction.

• Wind Vane [°]: Direction of the wind with respect to the orientation of the
turbine, calculated in degrees.

• Wind Standard Deviation: Since there are only data in the form of ten-
minute averages, it is not possible to know how the data vary, if they are
always close to the average or if they fluctuate a lot. This information is
particularly important for wind speed as it represents its turbulence. The
reason that the standard deviation of the wind represents its turbulence is
that the latter is defined as a rapid fluctuation in wind speed, whereas the
standard deviation indicates for the measurement on which it is calculated
by how much it deviates from its mean. This means that the higher the
standard deviation of the wind speed is, the further its values are from the
sample mean, which consequently implies that the wind speed is not stable
and therefore turbulence is present. For this reason, it is averaged over a ten
minute period in order to have a measure of its turbulence.

• Ambient Temperature [°C]: Temperature of the environment where the
turbine is placed.

• Blade Pitch Angle [°]: Inclination of the blades with respect to their own
axis, as explained in Subsection 2.2.1.

• Active Power [W]: Power generated by the turbine.

• Rotor RPM [RPM]: Number of rotations per minute made by the hub.

• Gearbox Bearing Temp [°C]: Temperature of the bearings inside the gear-
box. The reason why the temperature of the bearings is recorded is that they
are very important for the operation of the gearbox and their role leads them
to generate a lot of heat. Due to this reason, they are the main source of
failure for this component [50]. Consequently monitoring these temperatures
makes it possible to quickly notice when they exceed a minimum or maximum
temperature threshold and issue alarm signals and possibly stop the turbine,
or to notice when there are suboptimal conditions even if the temperatures
meet the alarm thresholds.

30

Dataset and Data Preprocessing

• Gearbox Oil Temp [°C]: Temperature of the gearbox oil, used for lubrication
and friction heat displacement. It is closely linked to the previous measure
as the two components are in direct contact.

• Generator Bearing Temp [°C]: Temperature of the generator bearings.
As in the case of the gearbox, they are a source of heat and therefore it is
advisable to control their temperature.

For what regards the digital twin, it is critical to distinguish between features that
will be input and those that will be output. The distinction is quite intuitive:
all input variables are regarded as environmental variables, i.e., those that report
information obtained from the environment and are independent of the turbine.
All other variables that are directly related to the turbine are used as output since
the digital twin main function is to forecast these values.

There are two exceptions: the first are the timestamps, which are neither inputs
nor outputs but only serve to link the other variables to the same instant. The other
exception is the blade pitch angle which, despite being a turbine variable, is still
regarded as an input because it is directly related to wind speed in a known and
predictable manner: the higher it is, the more the blades of the turbine will rotate.

Before starting to work with a dataset, it is always advisable to do some study
on it to obtain useful information. The first thing to do is calculate the mean and
variance of each feature, which are given in Table 3.1, to see how the dataset is
distributed. In the later stages of the study, knowing these values can be helpful to

Feature Name Mean Standard Deviation

Wind Speed [m/s] 4.62 3.59

Wind Vane [°] 0.08 40.4

Wind Standard Deviation [m/s] 0.8 0.53

Ambient Temperature [°C] 15.02 7.6

Blade Pitch Angle [°] 20.56 27.84

Active Power [W] 315.94 538.92

Rotor RPM [rpm] 8.18 5.95

Gearbox Bearing Temp [°C] 56.6 11.64

Gearbox Oil Temp [°C] 54.15 8.66

Generator Bearing Temp [°C] 47.31 13.16

Table 3.1. Mean and Standard Deviation for each measure.

better understand why certain things happen in order to look for possible solutions.

3.1.2 Correlation Matrix

Another important measure to monitor is correlation between all pairs of variables.
This can be made by calculating the correlation matrix.

31

Dataset and Data Preprocessing

From it, shown in Figure 3.1.2 it can be observed that many of the variables are pos-
itively correlated with each other, which makes sense: as the wind speed increases,
the rotor RPM, generator RPM and consequently the energy produced increase.
The increase in the rotation speed leads to a greater internal heat production, and
consequently the temperatures also rise.

Wind
 Sp

ee
d

Wind
 Sp

ee
d s

td

Wind
 Va

ne

Ambie
nt

Tem
p

Blad
e P

itc
h A

ng
le

Ac
tiv

e P
ow

er

Ro
tor

 RPM

Gen
era

tor
 RPM

 Fil
ter

ed

Gea
rbo

x B
ea

rin
g T

em
p

Gea
rbo

x O
il T

em
p

Gen
era

tor
 Bea

rin
g N

DE T
em

p

Wind Speed

Wind Speed std

Wind Vane

Ambient Temp

Blade Pitch Angle

Active Power

Rotor RPM

Generator RPM Filtered

Gearbox Bearing Temp

Gearbox Oil Temp

Generator Bearing NDE Temp

1 0.73 -0.12 -0.16 -0.41 0.87 0.76 0.76 0.6 0.49 0.53

0.73 1 -0.11 -0.082 -0.34 0.59 0.56 0.56 0.47 0.4 0.44

-0.12 -0.11 1 0.019 0.18 -0.086 -0.16 -0.16 -0.13 -0.11 -0.078

-0.16 -0.082 0.019 1 0.025 -0.19 -0.095 -0.095 0.11 0.15 0.42

-0.41 -0.34 0.18 0.025 1 -0.33 -0.83 -0.83 -0.67 -0.59 -0.4

0.87 0.59 -0.086 -0.19 -0.33 1 0.69 0.69 0.56 0.45 0.52

0.76 0.56 -0.16 -0.095 -0.83 0.69 1 1 0.78 0.66 0.55

0.76 0.56 -0.16 -0.095 -0.83 0.69 1 1 0.78 0.66 0.55

0.6 0.47 -0.13 0.11 -0.67 0.56 0.78 0.78 1 0.92 0.71

0.49 0.4 -0.11 0.15 -0.59 0.45 0.66 0.66 0.92 1 0.73

0.53 0.44 -0.078 0.42 -0.4 0.52 0.55 0.55 0.71 0.73 1

Dataset Correlation Matrix

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.1.2. Correlation Matrix of the dataset.

However, there are some obvious exceptions: ambient temperature has almost
no correlation with many of the variables and low with others. This is because it
has no influence on the rotor and generator RPM which depend on the wind speed.

32

Dataset and Data Preprocessing

It has a low influence on energy production since, as seen previously, wind energy
depends on its density, which in turn depends on temperature. The only correlation
of note is with generator bearing temperature.

Another interesting exception is that of the blade pitch angle, which has negative
correlations with the other variables. This is because the blades rotate (inwards,
therefore increasing the blade pitch angle) as wind speed decreases in order to
reduce the load on the turbine tower, which with too high wind speeds could lead
to problems.
However, this involves a slowdown in the rotation speed of the rotor, as the amount
of energy absorbed by the wind is decreasing; this explains the negative correlation
with the turbine-related variables. Finally, it should be noted that the rotation
speeds of the generator and of the rotor have a correlation of 1: this means that they
have exactly the same trend and that there are redundant data. For this reason, in
subsequent studies only one of the two variables will be taken into consideration,
specifically the rotor RPM.

Finally, the wind vane has virtually zero correlation with all other variables,
which is why it will be ignored as well.

3.2 Preprocessing

Data preprocessing consists of applying a series of transformations and manipula-
tions to data with the aim of improving the performance of the models that must
be built using this data.
The operations carried out allow unnecessary data to be removed through a pro-
cess called data cleaning: using statistical and heuristic methods it is possible to
remove all those points that can be considered incorrect, inconsistent, irrelevant or
misleading due to some of their characteristics.
In this phase, it is important to keep in mind that the final aim of this thesis is the
construction of a model under ideal conditions: this implies that the data cleaning
process will also include the removal of data acceptable for a generic purpose but
not belonging to ideal conditions.

This section will show the filters and transformations applied to the dataset,
divided by category.
There are many measures in the dataset and displaying them all is difficult and
can be confusing. One of the most important measurements to take into account,
especially in this preprocessing section, is active power. If observed in relation to
the wind speed, it provides an excellent indicator of the level of cleanliness of the
data since generally the amount of energy produced based on the wind speed is
quite stable and it is therefore easy to observe samples that do not respect this
ratio.

In addition, the manufacturers of wind turbines provide the theoretical wind-
power curve that the turbine should respect, so there are theoretical values to
refer to. For this reason, after each filtering step, this scatter will be displayed
accompanied by the number of total points represented, in order to be able to
understand how much and how each filter affects the dataset.

33

Dataset and Data Preprocessing

Figure 3.2.1 shows what the data looks like before applying filters. The red curve
is the theoretical curve provided by the manufacturer for the turbine model under
analysis.

Figure 3.2.1. Raw data.

3.2.1 Generic Filters

The first set of filters used is the broadest one possible and is applied to all studies.
These filters simply discard a set of invalid samples because they contain missing
values or originate from situations where the turbine was not correctly active, unlike
other filters that will be presented later.
It is very easy to remove samples with missing values because regardless of the
cause, if the data is missing it is replaced with a null value (nan). As a result,
eliminating samples that have at least one null value is sufficient.

There are two factors to take into account when determining when the tur-
bine is not functioning properly: the Transmission System Operator (TSO) limita-
tions and the status of the turbine.

The former relates to moments when the turbine is working correctly but is un-
able to produce due to some restrictions set by Terna, the organization responsible
for managing the electricity networks in Italy. These restrictions are typically put

34

Dataset and Data Preprocessing

in place because production must be reduced or stopped due to an energy surplus.
Since the production is much lower than it should be but the turbine is formally
active, it is better to remove these moments from the data.

Instead, the latter, based on the value it assumes, indicates the state in which
the turbine is operating. Based on this value, it is possible to determine whether
the turbine is operational or not and possibly discard the values. The values of the
state can be divided into three groups:

• Ready: turbine correctly functioning and ready, but it is not producing
because the conditions are not respected, as in the case of no or too weak
wind.

• Active: The turbine is working properly and is producing.

• Error: All the other status refer to different reasons why the turbine is
stopped, they can include malfunctions of various kinds, communication er-
rors, ordinary and extraordinary maintenance operations and more.

Unlike the measurement values, the values of TSO limitations and the status
are not collected with ten-minute frequency: the limitations are saved as pairs of
instants in time that represent the start and end of the limitation, while the exact
moment is saved for each change in the status each time it takes place. Then,
a conversion must be performed in order to make these values work with the 10
minute steps. In order to achieve this, each state change should be interpreted as
the conclusion of the previous state and the start of a new one, and each pair of
state changes should be viewed as the duration of an active state. This concept is
illustrated in Figure 3.2.2.

Time

Status

A

B

T2T1

Figure 3.2.2. In this example, a transition from state A to state B can be
seen at the instant of time T1 and the reverse transition at the instant of
time T2. The state before T1 and after T2 is A, while the state between T1
and T2 is B. So in this case the pair of time instants T1 and T2 indicate the
beginning and the end of state B.

35

Dataset and Data Preprocessing

Once the pairs of state changes have been obtained, it is necessary to remove
those having an error state. These pairs and those related to TSO limitations can
be treated in the same way: all 10-minute timesteps contained in the period of any
one of those pairs must be removed, even if they are only partially contained.

The results of the two filters are shown in Figure 3.2.3. The filter for removing
missing values removes fewer samples than the filter applied on the status of the
turbine and TSO limitations (about 14,000 against 40,000). This is because usually,
even in the event of malfunctions or stops, the sensors positioned on the turbines
continue to supply values even if they relate to the stopped turbine. There can be
missing values only for some faults or in the event of communication errors.

Figure 3.2.3. Filters over status and Terna limitations.

Furthermore, the samples removed based on the missing values do not help to
clean up the curve, unlike those on the status and TSO, which instead remove
many values among the misleading ones. This is because the missing values are
not connected to the turbine production but are random moments, and being that
the points close to the theoretical curve have an extremely higher density than the
noise points, if random points are taken, they will likely belong to that area.

Status-based filters only remove error status, leaving ready status. If ready
status were also removed, it would be possible to clean up the curve better, however
losing a lot of data especially for low wind speeds. For this reason, they are not
removed in this step but other filters will be used to adequately clean up the wind-
power curve.

36

Dataset and Data Preprocessing

3.2.2 Power curve filters

After using the first set of generic filters, it is easy to realize that these help remove
inappropriate samples but on their own they are not sufficient. For this reason,
it is necessary to develop a second set that work more directly on the wind-power
curve.

The first two filters of this new set are conceptually very simple, but also very
effective. What they do is remove all samples with values below a certain threshold,
which in the first filter concerns the active power while in the second the wind speed.
In details:

• Samples that have an active power lower than or equal to 0 W are removed
as this indicates that the turbine is completely stopped and is not producing.

Active Power > 0 W

• Samples that have a wind speed lower than or equal to 3 m/s are removed
because the turbine model under analysis is activated with a minimum wind
speed of 3 m/s, and therefore lower speeds indicate a lack of production.

Wind Speed < 3 m/s

The reason why the data relating to the periods in which the turbine is not
producing is discarded is that the purpose of this work is to study the operation of
the turbine during its operation, and therefore these data are considered superfluous
and misleading.
The results of this pair of filters is shown in Figure 3.2.4.

They helps to remove the samples relating to useless periods, but do not improve
the situation of the wind-power curves: for this purpose, a more complex filter has
been developed.

It is based directly on the ideal value of the theoretical curve provided by the
manufacturer, and was made to remove any samples that stray too far from it.
The definition of how far is too far is defined as follows: two values called ratio
and offset need to be chosen, both of which represent the upper limit of acceptable
error.
Ratio is a value generally between 0 and 1 representing the fraction of how many
ideal values the current value can deviate from the ideal. Mathematically:

(1− ratio) ∗ ideal value ≤ actual value ≤ (1 + ratio) ∗ ideal value

Offset instead represents how many Watts from the theoretical circle it is possible
to move away from the ideal, imposing a limit not in relation to the ideal value:

ideal value− offset ≤ actual value ≤ ideal value + offset

These two thresholds must both be respected, otherwise the value is discarded.
In this way, it is possible to create a dynamic filter with which the curve can be

37

Dataset and Data Preprocessing

Figure 3.2.4. Basic wind and power filters.

cleaned properly.
Since the power values vary a lot, even using the double filtering parameter it is
advisable to use this filter several times with different parameters on different wind
speed ranges.
This is because by choosing a single pair of parameters to be used on the whole
curve, for low power values the ratio parameter is too limiting as it depends on
the ideal value, while for high powers the threshold is exaggerated. Conversely, the
offset parameter imposes a threshold that is too high for low power values and too
low for high values.

The set of filters used is shown in Table 3.2, and the results are shown in Figure
3.2.5.

This filter correctly removes all misleading samples without affecting the correct
samples close to the ideal curve.

3.2.3 Standardization

The last step of the preprocessing is to apply standardization: this step is extremely
important because it allows features that generally have very different values to be
made comparable. As described in Chapter 2, this is done by making the mean of
each feature 0 and the variance 1.

38

Dataset and Data Preprocessing

Wind
Speed Start

Wind
Speed End

Ratio Offset

0 m/s 8 m/s 0.6 350 kW

8 m/s 13 m/s 0.35 350 kW

13 m/s 15 m/s 0.35 300 kW

15 m/s 22 m/s 0.1 150 kW

22 m/s 25 m/s 0.25 200 kW

Table 3.2. Set of filter used for the curve cleaning.

Figure 3.2.5. Final results of filtering after curve clean.

These features allow algorithms to perform better and/or achieve convergence
faster.

When applying standardization, it is crucial to take into account the division
of the dataset: to apply it, the mean and variance of the dataset must first be cal-
culated, and this must be done strictly on the train dataset. Once this information
is obtained, standardization can be applied to the train dataset itself and also to
the val and test datasets, using mean and variance obtained on the train dataset.
Recalculating mean and variance on the other two parts of the dataset is not correct
and would lead to worse results since the digital twin is trained with standardized
data using mean and variance from the train dataset, and using different ones would

39

Dataset and Data Preprocessing

compromise the proper functioning of the model. It would also be incorrect from a
logical point of view, since each dataset has its own functionality and neither the
evaluation dataset nor the test dataset should be used for training.

3.3 Temperature Preprocessing

During the temperature study phase, it became necessary to study additional pre-
processing methods specifically for temperatures because the previous ones were not
sufficient. This section of preprocessing is applied only when referring to models
that have to do with temperatures, while for models that do not include tempera-
tures the preprocessing previously presented is sufficient.

3.3.1 Time Series Model

The first thing realized during the study of temperature is that it is not only the
data for the present instant that are important, but it is also important to know the
past trend of the features. This is because the temperature of any heat-producing
object depends not only on the heat produced at the current moment but also on
the heat produced and accumulated previously.

Although the data are divided into samples of 10 minutes each, the components
involved are very large and the temperature changes slow, so a fairly wide time
range should be taken into account. For this study it was decided to use a range
of two hours (twelve samples) as it is a good compromise between a not too long
sequence and a good amount of information.
This method of using the data as a time series is a concept called rolling window,
in which for each sample the previous n samples are also taken, and the prediction
is made on the next sample, as is shown in Figure 3.3.1. The length of the sequence
for this work is kept fixed at two hours, namely twelve samples: this is because it is
a good compromise between a sequence long enough to contain relevant information
on the temporal trend and one short enough not to create difficulties in finding all
within the dataset a sufficient number of consecutive samples to form the sequences.

The previously applied filters remain almost unchanged, but at the end of the
filtering phase it is necessary to check for each sample whether the eleven samples
in the previous eleven timesteps are present in order to declare that sample valid.
The only other difference is in the wind-power curve cleaning filter, which is slightly
changed to make it more flexible: instead of directly removing samples that do not
meet the parameters for a given measure, it calculates the moving average over the
twelve samples in the time sequence for that measure. Only if the average does not
meet the parameters then the sequence is considered not valid.

3.3.2 Temperature filters

With the filters introduced so far it is possible to obtain excellent results on the
wind-power curve; it is therefore possible to state that the remaining samples are

40

Dataset and Data Preprocessing

Figure 3.3.1. Image taken from [51].

all correct and respect the ideal conditions regarding active power.

As for the other measurements, the filters applied may not be sufficient to clean
the relative wind-measure curves, therefore it is necessary to check each measure-
ment independently.
As regards the rotor RPM, the filters applied for the power are sufficient to obtain
excellent results, producing a clean curve without outliers.

The same cannot be said for temperature measurements: power filters correctly
remove many inadequate samples, but cannot remove them all. This is due to the
fact that, although power and temperature are related, not all moments in which
temperature is non-ideal correspond to moments in which also power is non-ideal.
This reasoning is particularly valid regarding too high temperatures that often occur
during intense production, while too low temperatures are removed quite well by
the power filters since they usually occur when the turbine underperforms.
For this reason, it is necessary to develop additional special filters for temperatures,
which are applied only during their study. These filters are used in conjunction with
those for cleaning the wind-power curve, as well as with the generic filters that are
always applied.

By carefully observing the graphs of the wind-temperature curves for different
turbines of the same model shown in Figure 3.3.2, it is possible to notice that the
shapes that the points create are different from one turbine to another: in some
cases the difference is large, while in other cases it is smaller. The reason why the
turbines do not all behave in the same way is not well defined, but it is probably
caused by a set of factors: first of all, they do not have a theoretical curve to re-
spect as in the case of power, therefore already in the production phase it is not
so important to obtain aligned values between different turbines. Furthermore, the
turbines have years of life behind them, which involve wear, maintenance, break-
downs and repairs. These events do not depend on the model of the turbine but
on the life of the turbine itself, therefore over time they can lead to the creation of

41

Dataset and Data Preprocessing

Figure 3.3.2. Gearbox bearing temperature of different WTGs.

differences between turbines of the same model. Finally, even if they are all located
in the same geographical area, each is located in a precise point which may have
slightly different characteristics from the others (exposure to the sun, wind speed
and turbulence) and these differences may contribute over time to having different
probabilities of breakdowns, which, as already mentioned, lead the turbines to dif-
fer from each other.
This difference between the graphs creates a great difficulty for the data cleaning
work, as it is very difficult to heuristically determine methods to remove unwanted
samples since what is correct and an ideal behavior for a turbine is completely
wrong for another. This implies that it is not possible to apply filters to the entire
dataset, but filters must be built to be applied separately to each turbine, so as to
be able to analyze the behavior of each turbine and remove those samples which
are not adequate for it.

To determine which samples must be removed, different filters are needed from
those applied to the power as in this case there is no theoretical curve, therefore
it is not possible to know in advance what the ideal values are but they must be
deduced based on what is the standard behavior of the turbine and then remove
the points that deviate from it. To carry out this task, the DBSCAN algorithm is
used to divide the points into clusters (groups of points) and outliers.
In this way, the outliers are separated immediately and it is also possible to identify
groups of points which deviate from normal operation but which are close to each
other, thus not appearing as outliers at the beginning. To also remove all these

42

Dataset and Data Preprocessing

point clusters, only the cluster with the highest number of points is kept, while all
points from all other minor clusters are discarded.

It is necessary to choose the hyperparameters such that the dataset is not par-
titioned into a multitude of small clusters, but that the larger set of points is not
broken up. To obtain these results, the values used are minsamples = 25 and
eps = 0.6 for gearbox temperatures and minsamples = 30 and eps = 1 for gen-
erator temperatures; for different datasets it may be necessary to choose different
ones, since the DBSCAN is based on density and therefore the number of samples
in the dataset influences the choice.

Figure 3.3.3. Effects of DBSCAN on gearbox bearing temp.

Figure 3.3.3 shows the results of the DBSCAN applied on a turbine. For the
sake of brevity, the results coming from other turbines are missing. However, the
filters were applied on all of them and the obtained results are almost the same.

3.3.3 Features Expansion

The diversity of the wind-temperature curve between different turbines makes it
very difficult to predict results on turbines never seen before, even by analyzing
multiple turbines belonging to the same model during the training phase. To rem-
edy this difficulty, the dataset is expanded in order to provide the algorithms used
with more information. Specifically, two columns (features) are added for each

43

Dataset and Data Preprocessing

temperature taken into consideration, one connected to the interpolation of the
wind-temperature curve of the single turbine and one connected to the tempera-
ture in question but in the previous time step. This Section explains how the two
added features are formed and why they were chosen.

Interpolation

The first of the two added features concerns the interpolation of the wind-temperature
curve. The feature value for each sample corresponds to that of the interpolation
of the wind-temperature curve for the sample wind speed, given the interpolation
of the turbine from which the sample was taken.

To obtain this value, it is therefore necessary to calculate the interpolation of
each individual turbine, even in the case of a turbine never seen before. This leads
to one of the main disadvantages of this strategy, namely the fact that in order to
use the digital twin on new turbines, it is required to have enough data available to
be able to calculate the interpolations even before starting. If this requirement is
satisfied, the problem is solved as there is no need to do new training or anything,
but simply calculate the value of the interpolation for each sample and add the new
feature to the dataset before having it analyzed by the digital twin.
The motivation behind this choice is simple: since different turbines of the same
model have different behaviors, this new feature tries to introduce knowledge about
each wind-temperature curve directly into the data, something previously not con-
tained in the inputs (but only derivable from the outputs). In this way, even without
having previously seen a turbine, it is possible to have information on what is the
standard value for that specific turbine for that wind speed. An example of inter-
polation is given in Figure 3.3.4

Temperature Shift

The second feature added concerns the temperature in the previous time step. The
value assumed by this column for each sample corresponds to the temperature value
assumed by the turbine itself in the previous ten minutes, therefore the one of the
previous sample.

Unlike the previous feature, this is not connected to the single turbine and
therefore does not require having a fair amount of data available before being able
to calculate the values of the new column, as the value is measured directly in the
turbine. On the other hand, by including among the inputs what was an output
up to ten minutes before, it is no longer possible to state that only environmental
variables are used as inputs. This feature can be generated through real-time use
or by having a dataset available.
In the case of real-time use, it is sufficient to save the recorded temperature value
and insert it in the next sample, in the field of the new feature. As for the dataset
already created, to add the feature it is needed to duplicate the temperature column
and shift it one step forward in time, so that each sample at instant t has the

44

Dataset and Data Preprocessing

Figure 3.3.4. Interpolation of gearbox bearing temperature.

Timestep Original
Temperature

Shifted
Temperature

0 T0 /

1 T1 T0

...

t Tt Tt−1

...

n Tn Tn−1

Table 3.3. Example of how temperature shift works.

temperature of instant t (to be used as output) plus the temperature at instant t-1
(column added, to be used as input).

As can be seen from Table 3.3, which shows the result of the operation described
above, the value of the temperature shifted in the first timestep is null as there is
no previous temperature data. This implies that it is necessary to remove the first
timestep for each continuous sequence of data, since it contains a null value. This is
not a problem because this operation is performed before all other filters, therefore
the sequences are few and long since they have not already been broken up by the
filters themselves by removing the values.

45

Chapter 4

Methods and Experiments

This chapter discusses in detail all the methods used to carry out this study and
what results are obtained for each method. Therefore, all the models and algorithms
used to create the digital twin and the various parameter sets tried are analyzed,
and the results obtained for each are reported and discussed.

All work and development is written in Python [52], relying on libraries known
and renowned in their field. For data handling and manipulation NumPy [53] and
Pandas [54] are used, for machine learning Scikit-Learn [55] is used, and for deep
learning PyTorch [56], which also allows the GPU to be leveraged to dramatically
speed up execution times.
The development phase of the models takes place in several steps, following the trial
and error scheme: starting with a basic set of tests chosen at the beginning of the
work as the starting point of testing, subsequent modifications and attempts are
chosen based on the results obtained previously. This pattern is repeated multiple
times until satisfactory goals are achieved, performing numerous tests designed to
modify various aspects of the digital twin, from the data to the algorithms tried.
For the sake of clarity of exposition and brevity, not all the tests performed are
analyzed in detail, studying the results. Only those with the best results or some
significant ones are reported, while the others are only mentioned or omitted.

The task that the digital twin has to perform is regression, and the metric used
for evaluating and comparing all the results obtained from the various models is
R2, one of the most well-known and widely used metrics for regression. It has an
upper bound in 1, where R2 equal to 1 indicates predictions that are equal and
identical to the original data, and it has no lower bound, so it can take values up
to minus infinity. An important value, however, is 0: an R2 of 0 indicates that the
predictions have the same level of accuracy as would be obtained using a model that
always chooses as the value to be predicted only the mean of the measure on which
the predictions are being made. Negative values thus indicate worse performance
than the model that predicts only the mean of the measure, while values greater
than 0 indicate better performance.

The chapter is divided into sections and is developed as follows: the first section
details the models and algorithms used, going on to analyze the different configu-
rations tried. In each of the following sections, the algorithms shown in the first

46

Methods and Experiments

section are tested, applied to a specific topic with different values of their hyperpa-
rameters, in order to chose the best ones. They include a recap of inputs, outputs,
preprocessing, models, parameters and configurations used followed by the related
results obtained and a brief discussion of them.

4.1 Algorithms and Configurations

This section shows in detail the algorithms and models that are used to create the
digital twin, discussing the reasons why they were chosen. The configurations that
are tested are also shown, including the hyperparameters chosen and for neural
networks the number and size of layers.

4.1.1 Support Vector Regression

SVR (Support Vector Regression) is an algorithm derived from SVM (Support Vec-
tor Machine), which is adapted to perform regression tasks instead of classification.
The reason this algorithm was chosen is that it is considered good because it is
derived from the SVM, which is one of the best algorithms for classification. Also,
this is a model that does not use deep learning, so a wider variety of models are
tested. Models that make use of deep learning are known for its excellent results,
but they are also uninterpretable. It is always a good idea to try at least one model
that does not require the use of deep learning, so as to try different approaches and
possibly have more easily interpretable models.
One of the major disadvantages of the SVR is that it is not very suitable for overly
large datasets, as it is not very scalable. For this reason following trials it was
decided that only 20000 randomly selected samples from the training set are used
for all tests that make use of SVRs.
Details on the structure and functioning of an SVR are given in Chapter 2.

There are two parameters to be optimized for SVR: C and ε.
ε dictates what the maximum absolute error threshold is, going to form a fixed
distance space within which samples have a zero penalty in the training phase.
Samples with distance greater than ε have a penalty dependent on their distance
from the threshold.
C is a regularization term that is used to choose how much importance to give
to the samples outside the threshold. Its strength of regularization is inversely
proportional to its value. Values of C that are too high can lead to the phenomenon
of underfitting in that samples that do not meet the constraints are almost ignored,
and for this reason the algorithm does not learn adequately. Conversely, C values
that are too low can impose too strong an adjustment that leads to the phenomenon
of overfitting, in which too much importance is given to samples that do not meet
the constraints and the model learns by relying too much on the training dataset,
losing the ability to generalize to data that have never been seen.

When it is necessary to choose hyperparameters, two different strategies can be
followed to perform the tests [57]: the first is called the grid search, in which a
set of values is chosen for each parameter and all possible combinations of values

47

Methods and Experiments

are tried, thus forming an n-dimensional grid, with n the number of parameters.
This method is exhaustive but requires a great many tries, thus becoming very
time-consuming to perform.
The second possible strategy is random search, whose main difference from grid
search is that the search is not exhaustive, but stops when the chosen number of
attempts is reached, regardless of the number of possible parameter combinations to
be tried. For each attempt, parameter values are randomly drawn from a previously
provided set of values or distribution.

Using random search allows for a more diverse set of parameters to be tested
because it is not necessary to try every single combination, which requires using
each parameter value multiple times, but different values for all parameters are
tried on each attempt.
This can be particularly advantageous in cases where one of the parameters to be
tested is particularly more relevant than the others, so that more values can be
tried and a larger space explored, as shown in Figure 4.1.1.
In contrast, grid search requires trying all possible combinations of values, thus
requiring many more attempts, or for the same number of attempts testing many
fewer different values. If the parameters tested, however, are all equally important
and/or influence each other, then it is especially important to try all combinations,
even at the cost of trying fewer different values.

Figure 4.1.1. In the image taken from [57], it can be seen that more different
values are tried for each of the two parameters in the random search than in the
grid search. In this example, one of the two parameters has much influence on
the final results, while the other parameter does not have much influence. The
influence of each parameter on the results is shown on the relative axis with a
graph, where the higher the value, the greater the influence. By trying several
different values, random search succeeds in obtaining better results than grid search
for a low number of attempts.

Since the main SVR parameters both play an important role and it is not easy
to understand how they influence each other, it is best to use a grid search type
approach so as to have an exhaustive analysis.

48

Methods and Experiments

Table 4.1 provides all the values that are given to the grid search for each
hyperparameter.
For the implementation of the SVR is provided by Scikit-Learn [58].

C ε

0.1 0.001

0.5 0.005

1 0.01

5 0.05

10 0.1

50 0.5

100 1

Table 4.1. Possible values of C and epsilon.

4.1.2 Feedforward Neural Networks

A typical form of artificial neural network utilized in deep learning and machine
learning applications is the Feedforward Neural Network (FNN). These networks
are made up of linked neurons that process and transfer data across layers. The
output of one layer in a FNN, as opposed to a recurrent neural network, is only
dependent on the inputs and weights of the preceding layer since feedforward neural
networks lack loops.
An input layer, one or more hidden layers, and an output layer make up the funda-
mental components of a FNN. The input layer accepts data and transmits it to the
hidden levels for processing and transformation. The output layer then generates
the final outcome, such as a prediction or classification.
More technical and detailed information on the functioning of FNNs is provided in
Chapter 2.

FNNs are well known because they can be used to solve a wide range of complex
problems. They can be trained to spot intricate patterns in data, which is helpful
for jobs that need for sophisticated analysis and prediction abilities. Moreover,
FNNs are built using supervised learning techniques and for this reason are often
simple to train. They may thus be used to train on enormous volumes of data
and increase their accuracy over time, making them a popular choice for many
applications.
The reason for choosing to use FNNs is therefore because they are a simple model,
quick to train but also very high-performance and customisable. Depending on the
type of loss used, it is possible to train them for both classification and regression
purposes. Since regression work is required in this study, the loss used is the Mean
Squared Error (MSE), which is the most commonly used for this purpose.

In FNNs, there are many parameters to be configured, and the structure of the
network itself can be modified by changing the number and size of hidden layers.

49

Methods and Experiments

It would therefore be possible to carry out many different tests, but as time and re-
sources are limited, it is necessary to restrict the field to a few models to be tested.
For this reason, instead of testing all possible combinations of hyperparameters,
they are tested one at a time, since having several parameters to tune the total
number of combinations is not sustainable. Therefore, starting with those that are
the most relevant parameters, they are tested one at a time while keeping all others
fixed. Standard values are used for the initial parameter values, and as tests are
carried out these standard values are replaced with the best ones obtained during
the tuning.
Before testing the parameters, however, it is necessary to choose the model architec-
ture, i.e., the size and number of layers. This is the first test that is performed, and
thereafter all the tests regarding the various hyperparameters will be performed.

They are chosen so as to try to create some variety in testing but at the same
time so as to understand trends for improvement: grid search is used to do this,
unlike SVR where random search is used. Specifically, two different numbers of
layers are tested, each with four different dimensions. The two architectures with
different numbers of layers are shown in Figures 4.1.2 and 4.1.3 without showing
the precise layer size, but showing ”hidden size” instead. The latter corresponds
to the number of neurons in the layer, and is specified below, along with all the
other information of the eight architectures tested. For each architecture, the list
of individual layers and their size is given, in the order in which they are arranged
in the network.

FNN 1, shown in Figure 4.1.2:

• Input layer

• Hidden layer 1: 4 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 2, shown in Figure 4.1.2:

• Input layer

• Hidden layer 1: 16 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 3, shown in Figure 4.1.2:

• Input layer

• Hidden layer 1: 64 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 4, shown in Figure 4.1.2:

• Input layer

50

Methods and Experiments

Figure 4.1.2. FNN 1 layer.

• Hidden layer 1: 256 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 5, shown in Figure 4.1.3:

• Input layer

• Hidden layer 1: 4 neurons

• Hidden layer 2: 4 neurons

• Hidden layer 3: 4 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 6, shown in Figure 4.1.3:

• Input layer

• Hidden layer 1: 16 neurons

• Hidden layer 2: 16 neurons

• Hidden layer 3: 16 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 7, shown in Figure 4.1.3:

• Input layer

• Hidden layer 1: 64 neurons

• Hidden layer 2: 64 neurons

51

Methods and Experiments

• Hidden layer 3: 64 neurons

• Output layer: number of neurons equal to the number of outputs

FNN 8, shown in Figure 4.1.3:

• Input layer

• Hidden layer 1: 256 neurons

• Hidden layer 2: 256 neurons

• Hidden layer 3: 256 neurons

• Output layer: number of neurons equal to the number of outputs

Figure 4.1.3. FNN 3 layers.

Each hidden layer is internally made up of three elements in sequence:

• Linear layer: It is the set of neurons of the layer, with their weights and
biases

• ReLU: It applies the activation function to the outputs of the layer’s neurons,
so as to introduce non-linearity

52

Methods and Experiments

• Dropout Layer: It is a regularisation function, each output of the layer has
a given probability of being taken to 0. The probability is a hyperparameter
that in this work is kept fixed

It should also be noted that the input layer is depicted for clarity of presentation,
but in practice has no neurons as the input values are fed directly to the first Hidden
layer. The output layer is composed only of the linear part that includes neurons,
and has neither ReLU nor dropout.

The following are the various hyperparameters used in the order in which they
are tested, giving for each the list of values to be tested and which is the default
one used before testing that parameter.

• Learning Rate:

– Default: 0.001

– 1

– 0.1

– 0.01

– 0.0001

– 0.00001

• Dropout:

– Default: 0.2

– 0

– 0.4

– 0.6

– 0.8

Finally, the following are other useful parameters and values, but they are not
tested.

• Loss Type: MSE

• Epochs: 30

• Batch Size: 256

• Evaluation Metric: R2

• Optimizer: Adam

– Weight Decay: 0.001

• ReduceLROnPlateau:

– Patience: 5

– Factor: 0.1

53

Methods and Experiments

4.1.3 Gated Recurrent Unit

In the area of deep learning, a particular kind of Recurrent Neural Network (RNN)
called Gated Recurrent Unit (GRU), has become well-known for its capacity to
simulate long-term relationships in sequential data.
In order to analyze sequential data, such as time series or natural language, RNNs
were developed. They have the capacity to maintain a hidden state that encodes
knowledge about previous inputs, in contrast to FNNs that operate on fixed-size
inputs and have no memory of previous inputs, allowing them to model temporal
dependencies and learn to make predictions based on context. A new hidden state
is created by iteratively applying a set of weights to the current input and the
previous hidden state. This new hidden state is then sent through an output layer
to provide a prediction. The network can gather data about the whole sequence
and use it to create a prediction since this procedure is repeated for each input in
the sequence.

GRUs modify the core design of RNNs by adding gating mechanisms that control
the information flow across the network, enabling it to selectively remember or
forget the past depending on the input at hand. Two gates are used to do this:
the reset gate, which chooses how much of the prior data to erase, and the update
gate, which chooses how much of the fresh data to retain. GRUs can efficiently
capture both short-term and long-term relationships, making them a valuable tool
for modeling sequential data. Further technical information on the operation of a
GRU can be found in Chapter 2.
The main reason for using GRUs is because of their ability to analyze sequential
data. This is important since in this way it is possible to do tests that are very
different from those done with the other models previously described that work with
nonsequential inputs. Studying the data sequentially can be very important in this
study, because the data to be analyzed include temperatures, which therefore have
a dependence on the previous state and not just the current inputs.

In order to build a GRU-based model, there are a number of parameters to tune
and it is necessary to choose how to compose the architecture. The basic structure
of a single GRU is that it receives inputs in the form of a sequence of data, analyzes
each data item in the sequence by creating for each one an internal representation
called a hidden state, and finally returns as output the set of hidden states. The
last hidden state is fed to a set of linear layers that produce the final output of the
model. It is also possible to feed directly the whole output into the linear layers,
but this introduces a lot of data. Tests were carried out in this regard, the results
of which are not reported to avoid showing an exaggerated amount of evidence and
making the study confusing. Those tests always led to worse results, which is why
in the tests that are carried out in the following sections only the last hidden state
in the sequence is always used.

The hidden states produced by the GRU can be fed to another GRU as inputs
before they are fed to the linear layers. This process can be repeated multiple times
by using each time the output of the last GRU as input for a new one, creating
an architecture that is called a stacked GRU. The number of stacked GRUs is
an important parameter to choose, as is the size of the hidden state, which can be
chosen as desired and represents the number of features used to describe the hidden

54

Methods and Experiments

state.

The size and number of linear layers can also be chosen as desired. In GRUs, as
in the case of FNNs, there are many parameters to be configured besides the struc-
ture of the network itself. It would therefore be possible to carry out many different
tests, but as time and resources are limited, it is necessary to restrict the field to a
few models to be tested. For this reason, instead of testing all possible combinations
of hyperparameters, they are tested one at a time, since having several parameters
to tune the total number of combinations is not sustainable. Therefore, starting
with those that are the most relevant parameters, they are tested one at a time
while keeping all others fixed. Standard values are used for the initial parameter
values, and as tests are carried out these standard values are replaced with the best
ones obtained during the tuning.
Before testing the parameters, however, it is necessary to choose the model architec-
ture, i.e., the size and number of layers. This is the first test that is performed, and
thereafter all the tests regarding the various hyperparameters will be performed.

They are chosen so as to try to create some variety in testing but at the same
time so as to understand trends for improvement: grid search is used to do this,
unlike SVR where random search is used. Specifically, two different numbers of
layers are tested, each with five different dimensions. The two architectures with
different numbers of layers are shown in Figures 4.1.4 and 4.1.5 without showing the
precise layer size, but showing ”hidden size” instead. The latter corresponds both
to the hidden state dimension and to the number of neurons in the linear layer,
and is specified below, along with all the other information of the ten architectures
tested. For each architecture, the list of individual layers and their size is given, in
the order in which they are arranged in the network.

GRU 1, shown in Figure 4.1.4:

• Input layer

• GRU layer 1: Hidden state dimension of 1

• Linear layer 1: 1 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 2, shown in Figure 4.1.4:

• Input layer

• GRU layer 1: Hidden state dimension of 4

• Linear layer 1: 4 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 3, shown in Figure 4.1.4:

• Input layer

55

Methods and Experiments

• GRU layer 1: Hidden state dimension of 16

• Linear layer 1: 16 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 4, shown in Figure 4.1.4:

• Input layer

• GRU layer 1: Hidden state dimension of 64

• Linear layer 1: 64 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 5, shown in Figure 4.1.4:

• Input layer

• GRU layer 1: Hidden state dimension of 256

• Linear layer 1: 256 neurons

• Output layer: number of neurons equal to the number of outputs

Figure 4.1.4. GRU with 1 GRU layer and 1 linear layer. The difference in data
size between the output of the GRU layer and the input of the linear layer is due
to the fact that only the last of the hidden states is used, as explained above.

GRU 6, shown in Figure 4.1.5:

• Input layer

• GRU layer 1: Hidden state dimension of 1

56

Methods and Experiments

• GRU layer 2: Hidden state dimension of 1

• GRU layer 3: Hidden state dimension of 1

• Linear layer 1: 1 neurons

• Linear layer 2: 1 neurons

• Linear layer 3: 1 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 7, shown in Figure 4.1.5:

• Input layer

• GRU layer 1: Hidden state dimension of 4

• GRU layer 2: Hidden state dimension of 4

• GRU layer 3: Hidden state dimension of 4

• Linear layer 1: 4 neurons

• Linear layer 2: 4 neurons

• Linear layer 3: 4 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 8, shown in Figure 4.1.5:

• Input layer

• GRU layer 1: Hidden state dimension of 16

• GRU layer 2: Hidden state dimension of 16

• GRU layer 3: Hidden state dimension of 16

• Linear layer 1: 16 neurons

• Linear layer 2: 16 neurons

• Linear layer 3: 16 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 9, shown in Figure 4.1.5:

• Input layer

• GRU layer 1: Hidden state dimension of 64

• GRU layer 2: Hidden state dimension of 64

57

Methods and Experiments

• GRU layer 3: Hidden state dimension of 64

• Linear layer 1: 64 neurons

• Linear layer 2: 64 neurons

• Linear layer 3: 64 neurons

• Output layer: number of neurons equal to the number of outputs

GRU 10, shown in Figure 4.1.5:

• Input layer

• GRU layer 1: Hidden state dimension of 256

• GRU layer 2: Hidden state dimension of 256

• GRU layer 3: Hidden state dimension of 256

• Linear layer 1: 256 neurons

• Linear layer 2: 256 neurons

• Linear layer 3: 256 neurons

• Output layer: number of neurons equal to the number of outputs

The input layer is not a true layer, but represents only the inputs that are
introduced into the network.
Regarding dropout in GRUs, this is applied on the output of the various GRU
layers except the last one: this means that dropout can only be used when there
are multiple stacked GRUs.
The following are the various hyperparameters used in the order in which they are
tested, giving for each the list of values to be tested and which is the default one
used before testing that parameter.

• Learning Rate:

– Default: 0.001

– 1

– 0.1

– 0.01

– 0.0001

– 0.00001

• Dropout:

– Default: 0.2 if there is more than one GRU layer, 0 otherwise

– 0

58

Methods and Experiments

Figure 4.1.5. GRU with 3 GRU layers and 3 linear layers. The difference in data
size between the output of the GRU layer and the input of the linear layer is due
to the fact that only the last of the hidden states is used, as explained above.

– 0.4

– 0.6

– 0.8

Finally, the following are other useful parameters and values, but they are not
tested.

• Loss Type: MSE

• Epochs: 30

59

Methods and Experiments

• Batch Size: 256

• Evaluation Metric: R2

• Optimizer: Adam

– Weight Decay: 0.001

• ReduceLROnPlateau:

– Patience: 5

– Factor: 0.1

4.2 Active Power and Rotor RPM Model

In this section, a model is tested with the purpose of simultaneously predicting
active power and rotor RPM, since these are two closely related measures with the
same trend and the same dependencies. Therefore, the model receives environmen-
tal data as input and produces two outputs.
Once all the tests for the choice of hyperparameters have been performed, a final
training will be carried out for each output. In this way the tuning is made jointly
but the final model can focus on a single output at a time.
It is worth mentioning that because of their structure SVRs cannot make predic-
tions on multiple outputs at once, so each output will have a training of its own
from the beginning.

The set of inputs includes the environmental variables, namely:

• Wind Speed

• Wind Speed standard deviation

• Ambient Temperature

• Blade Pitch Angle

While that of outputs includes:

• Active Power

• Rotor RPM

4.2.1 Support Vector Regression

Tests of the hyperparameters of SVRs occur all at once, trying the different possible
combinations. Table 4.2 shows the active power results, and Table 4.3 those of rotor
RPM.

The values obtained as a result of the tests report slightly different results
between active power and rotor RPM: active power is easier to predict and for this

60

Methods and Experiments

C

ε
0.001 0.005 0.01 0.05 0.1 0.5 1

0.1 0.99 0.99 0.99 0.99 0.989 0.928 0.426

0.5 0.991 0.991 0.991 0.991 0.99 0.952 0.432

1 0.991 0.991 0.991 0.991 0.991 0.952 0.444

5 0.991 0.991 0.991 0.991 0.991 0.959 0.444

10 0.991 0.991 0.991 0.991 0.991 0.959 0.444

50 0.991 0.991 0.991 0.991 0.99 0.959 0.444

100 0.991 0.991 0.991 0.99 0.99 0.959 0.444

Table 4.2. Hyperparameters tuning for active power in terms of R2.

C

ε
0.001 0.005 0.01 0.05 0.1 0.5 1

0.1 0.972 0.972 0.972 0.971 0.97 0.93 0.596

0.5 0.979 0.979 0.979 0.976 0.972 0.95 0.647

1 0.98 0.98 0.979 0.976 0.971 0.954 0.672

5 0.98 0.98 0.979 0.975 0.969 0.959 0.713

10 0.979 0.979 0.979 0.974 0.968 0.959 0.713

50 0.977 0.977 0.977 0.97 0.967 0.96 0.713

100 0.976 0.975 0.975 0.968 0.966 0.959 0.713

Table 4.3. Hyperparameters tuning for rotor RPM in terms of R2.

reason the results obtained are all very similar and no real trend of improvement
or deterioration can be seen except for too high values of ε leading to significantly
worse results. In contrast for rotor RPM the results obtained are equally good but
it is possible to see a small trend of improvement as C increases up to a peak at
C = 1 and then worsening.
In both cases, at the same C the first ε values obtain virtually identical results,
and then worsen at it exceeds the threshold of 0.01. The reason the results with
low ε values are all similar is that this parameter imposes an error threshold below
which predictions are considered correct. Predictions considered to be outside the
threshold have a cost penalty in the loss function used during training. When this
threshold is too low, no or very few predictions meet it. By using different values of
very low ε, the tests get similar results because most of the samples do not meet the
threshold and therefore all of them are considered in the same way among different
instances of SVR, which is as incorrects. A cost is then applied to all of them,
which will be very similar as it depends on the magnitude of the prediction error.
The results with ε = 1 are in all cases very bad compared to the others.

The parameters selected as best, as there are many equal results, are chosen by
considering not only the pair of values in question, but also the results that each

61

Methods and Experiments

value obtained in its entire row or column, giving priority to low C values as they
decrease training time. According to these criteria, the best values for active power
are C = 5 ε = 0.01, and for rotor RPM are C = 1 and ε = 0.001

4.2.2 Feedforward Neural Networks

Architecture

The first test is done on the architecture, the results in terms of R2 can be found
in Table 4.4.

Architecture Active Power Rotor RPM

FNN 1 0.951 0.915

FNN 2 0.965 0.949

FNN 3 0.982 0.963

FNN 4 0.989 0.972

FNN 5 0.899 0.904

FNN 6 0.979 0.972

FNN 7 0.99 0.98

FNN 8 0.989 0.979

Table 4.4. Architecture tests for FNN active power and rotor RPM
model in terms of R2.

The tested architectures achieved similar results, showing generally improved
results as the size of the layers increased. The number of layers also leads to an
improvement in results, but less obvious. In both cases, a stalemate point is reached
where the improvement stops. Overall, the network that performs best is FNN 7,
which is the one that is chosen to continue testing.

Learning Rate

Table 4.5 shows the results of training with different learning rates.

The results obtained from the learning rate tests show how important it is to
find the right value, which in this case is 0.001. Both by increasing and decreasing
the learning rate starting from this heat, progressively worse results are obtained.

Dropout

Table 4.6 shows the results of training with different dropouts.

Dropout tests show that values that are too high spoil the results, as using very
high probabilities leads to having most of the neurons shut down during training.

62

Methods and Experiments

Learning Rate Active Power Rotor RPM

1 -0.0 -0.0

0.1 0.981 0.969

0.01 0.984 0.976

0.001 0.99 0.98

0.0001 0.989 0.979

0.00001 0.981 0.958

Table 4.5. Learning Rate tests for FNN active power and rotor
RPM model in terms of R2.

Dropout Active Power Rotor RPM

0 0.993 0.978

0.2 0.99 0.98

0.4 0.988 0.979

0.6 0.973 0.965

0.8 0.932 0.931

Table 4.6. Dropout tests for FNN active power and rotor RPM model in terms of R2.

This means that it is difficult for the network to learn anything, since neurons are
often turned off. Lower values, on the other hand, help the network to generalize
better, adding some difficulty in the training phase. The results with Dropout at
0 and at 0.2 are virtually identical, in the former case we have better results on
active power and worse results on rotor RPM, in the latter case we have the opposite
situation. Since it is always appropriate to have a minimum of regularization, the
model with Dropout at 0.2 is retained.

Single output

Now that the best values for the hyperparameters have been found, a final training
is carried out for each output, to see if training on only one measure at a time yields
better results. The results are in Table 4.7.

Test results with single outputs yielded identical results for active power but
higher results for rotor RPM.

4.2.3 Gated Recurrent Unit

Architecture

The first test is done on the architecture and the results in terms of R2 can be
found in Table 4.8.

63

Methods and Experiments

Active Power Rotor RPM

0.993 0.988

Table 4.7. Final test over single outputs in terms of R2.

Architecture Active Power Rotor RPM

GRU 1 0.962 0.937

GRU 2 0.99 0.983

GRU 3 0.991 0.984

GRU 4 0.991 0.985

GRU 5 0.991 0.984

GRU 6 0.924 0.884

GRU 7 0.987 0.979

GRU 8 0.99 0.983

GRU 9 0.991 0.984

GRU 10 0.991 0.983

Table 4.8. Architecture tests for GRU active power and rotor RPM
model in terms of R2.

Unlike FNNs which show a clear trend of improvement, GRUs are much more
stable, and apart from GRU 1 and GRU 6 which have hidden size to 1, the others
all perform very well. When it is needed to choose between multiple networks with
similar results, choosing a smaller network is advantageous if the performance is
equal compared to a larger one, as it is faster and lighter by having fewer param-
eters, and for the same reason it is also easier to train. GRU 4 performs slightly
better than the other and its dimension is quite small, so it is the one used in the
following tests.

Learning Rate

Table 4.9 shows the results of training with different learning rates.

The results obtained from the learning rate tests show how important it is to
find the right value, which in this case is 0.001. Both by increasing and decreasing
the learning rate starting from this heat, progressively worse results are obtained.
In this case the task is quite easy so the results are still good.

Dropout

Since the chosen architecture is GRU 4 and it is composed of a single GRU layer,
it is not possible by the very definition of GRU to have Dropout greater than 0.

64

Methods and Experiments

Learning Rate Active Power Rotor RPM

1 0.908 0.707

0.1 0.99 0.982

0.01 0.991 0.984

0.001 0.991 0.985

0.0001 0.99 0.981

0.00001 0.975 0.941

Table 4.9. Learning Rate tests for GRU active power and rotor
RPM model in terms of R2.

Single output

Now that the best values for the hyperparameters have been found, a final training
is carried out for each output, to see if training on only one measure at a time yields
better results. The results are in Table 4.10.

Active Power Rotor RPM

0.991 0.984

Table 4.10. Final test over single outputs in terms of R2.

Test results with single outputs yielded identical results for active power and
very slightly lower for rotor RPM.

4.3 Temperatures Model

After testing active power and rotor RPM, temperatures are tested simultaneously,
following the same principle as before: they have similar trends and dependencies,
so it makes sense to train them together.
Once all the tests for the choice of hyperparameters have been performed, a final
training will be carried out for each output. In this way the tuning is made jointly
but the final model can focus on a single output at a time.
Again, because of the structure of SVR, it is not possible to produce the outputs
simultaneously, so separate models will be trained for each output from the begin-
ning.

The set of inputs includes the environmental variables, namely:

• Wind Speed

• Wind Speed standard deviation

• Ambient Temperature

65

Methods and Experiments

• Blade Pitch Angle

While that of outputs includes:

• Gearbox Bearing Temperature

• Gearbox Oil Temperature

• Generator Bearing Temperature

It is important to note that for completeness all three temperatures in the dataset
have been included, but little importance will be given to the Gearbox Oil Temper-
ature as this is the temperature of an oil that is specially cooled to keep it within
certain temperature ranges, which is why it is very difficult to predict as well as
not very useful.

4.3.1 Support Vector Regression

Tests of the hyperparameters of SVRs occur all at once, trying the different possible
combinations. Table 4.11 shows the gearbox bearing temperature results, Table
4.12 those of gearbox oil temperature and Table 4.13 those of generator bearing
temperature.

C

ε
0.001 0.005 0.01 0.05 0.1 0.5 1

0.1 0.568 0.567 0.568 0.569 0.573 0.626 0.536

0.5 0.57 0.57 0.571 0.572 0.576 0.626 0.54

1 0.57 0.57 0.57 0.572 0.574 0.621 0.539

5 0.56 0.56 0.56 0.561 0.564 0.605 0.531

10 0.555 0.555 0.555 0.554 0.561 0.599 0.529

50 0.543 0.543 0.543 0.546 0.551 0.583 0.51

100 0.533 0.533 0.533 0.539 0.541 0.569 0.5

Table 4.11. Hyperparameters tuning for gearbox bearing temperature in terms of R2.

What was said during the analysis of active power and rotor RPM also applies
to temperatures: for ε values that are too low, the results are very similar for the
same reason. Unlike the previous case, however, temperatures get slightly better
results for higher ε values, and even with ε = 1 no drastically worse values are
obtained as is the case in the other tests.
The trend that is observed for C values is similar to the previous one, in which
the best results are obtained for low C values, although in this case there is not a
trend of initial improvement in all tests. However, the ε trend is different in that
instead of having a worsening of the results as the parameter increases, there is an

66

Methods and Experiments

C

ε
0.001 0.005 0.01 0.05 0.1 0.5 1

0.1 0.273 0.272 0.272 0.273 0.278 0.319 0.301

0.5 0.279 0.278 0.278 0.28 0.286 0.324 0.302

1 0.28 0.28 0.28 0.282 0.287 0.324 0.301

5 0.28 0.28 0.28 0.281 0.287 0.324 0.296

10 0.28 0.28 0.28 0.281 0.286 0.322 0.297

50 0.28 0.28 0.279 0.281 0.285 0.318 0.285

100 0.277 0.277 0.278 0.278 0.282 0.311 0.282

Table 4.12. Hyperparameters tuning for gearbox bearing temperature in terms of R2.

C

ε
0.001 0.005 0.01 0.05 0.1 0.5 1

0.1 0.62 0.62 0.62 0.621 0.621 0.628 0.622

0.5 0.611 0.611 0.611 0.611 0.612 0.625 0.625

1 0.607 0.607 0.607 0.607 0.607 0.622 0.624

5 0.595 0.595 0.595 0.594 0.597 0.614 0.617

10 0.59 0.59 0.59 0.59 0.593 0.612 0.612

50 0.585 0.585 0.584 0.584 0.584 0.604 0.606

100 0.579 0.58 0.58 0.579 0.579 0.601 0.603

Table 4.13. Hyperparameters tuning for gearbox bearing temperature in terms of R2.

improvement as it increases until almost ε = 0.5, beyond which the results begin
to worsen.

The best results are all obtained for values of ε = 0.5, while for the choice of
C since more equal results are present other results obtained in the same row are
also considered by prioritizing low C values since they have shorter training times.
The values of C selected are 0.5 for gearbox bearing temperature, 1 for gearbox oil
temperature and finally 0.1 for generator bearing temperature.

4.3.2 Feedforward Neural Network

Architecture

For FNNs, the first test is done on the architecture, the results in terms of R2 can
be found in Table 4.14. The tested architectures achieved similar results, showing
generally improved results as the size of the layers increased. The number of layers
also leads to an improvement in results, but less obvious. In both cases, a stalemate
point is reached where the improvement stops. Overall, the network that performs
best is FNN 8, which is the one that is chosen to continue testing.

67

Methods and Experiments

Architecture Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

FNN 1 0.577 0.331 0.584

FNN 2 0.614 0.344 0.617

FNN 3 0.631 0.354 0.628

FNN 4 0.632 0.364 0.628

FNN 5 0.465 0.278 0.456

FNN 6 0.616 0.345 0.613

FNN 7 0.639 0.362 0.623

FNN 8 0.638 0.367 0.628

Table 4.14. Architecture tests for FNN temperature model in terms of R2.

Learning Rate

Table 4.15 shows the results of training with different learning rates.

Learning
Rate

Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

1 -0.0 -0.0 -0.0

0.1 0.601 0.338 0.601

0.01 0.636 0.366 0.628

0.001 0.638 0.367 0.628

0.0001 0.63 0.366 0.631

0.00001 0.628 0.355 0.631

Table 4.15. Learning Rate tests for FNN temperature model in terms of R2.

The results obtained from the learning rate tests show how important it is to
find the right value, which in this case is 0.001. Both by increasing and decreasing
the learning rate starting from this heat, progressively worse results are obtained.

Dropout

Table 4.16 shows the results of training with different dropouts.
Dropout tests show that values that are too high spoil the results, as using very

high probabilities leads to having most of the neurons shut down during training.
This means that it is difficult for the network to learn anything, since neurons are
often turned off. Lower values, on the other hand, help the network to generalize

68

Methods and Experiments

Dropout Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

0 0.638 0.369 0.629

0.2 0.638 0.367 0.628

0.4 0.636 0.359 0.629

0.6 0.623 0.36 0.632

0.8 0.602 0.352 0.61

Table 4.16. Dropout tests for FNN temperature model in terms of R2.

better, adding some difficulty in the training phase. In this case, however, the
model with dropout at 0 performs better on all three temperatures, albeit by a
very small amount. For this reason, it is the one that is selected as best.

Single output

Now that the best values for the hyperparameters have been found, a final training
is carried out for each output, to see if training on only one measure at a time yields
better results. The results are in Table 4.17.

Gearbox
Bearing Temp

Gearbox
Oil Temp

Generator
Bearing Temp

0.662 0.371 0.665

Table 4.17. Final test over single outputs in terms of R2.

Test results with individual outputs led to better results in all three cases. This
indicates that it is more advantageous for FNNs to have a small number of outputs.

4.3.3 Gated Recurrent Unit

Architecture

For GRUs, the first test is done on the architecture, the results in terms of R2 can
be found in Table 4.18.

In this case GRUs show a clear trend of improved results as the size of the
layers increases, while increasing the number of GRU and linear layers brings very
marginal improvements. The model that performs best is GRU 9, which is used in
subsequent tests.

69

Methods and Experiments

Architecture Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

GRU 1 0.544 0.341 0.683

GRU 2 0.685 0.405 0.777

GRU 3 0.713 0.439 0.778

GRU 4 0.719 0.438 0.779

GRU 5 0.727 0.436 0.777

GRU 6 0.511 0.329 0.682

GRU 7 0.691 0.39 0.775

GRU 8 0.714 0.441 0.785

GRU 9 0.73 0.454 0.779

GRU 10 0.728 0.451 0.777

Table 4.18. Architecture tests for GRU temperature model in terms of R2.

Learning Rate

Table 4.19 shows the results of training with different learning rates.

Learning
Rate

Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

1 -29676.576 -50608.435 -14962.218

0.1 0.702 0.38 0.761

0.01 0.733 0.444 0.766

0.001 0.731 0.456 0.78

0.0001 0.698 0.442 0.775

0.00001 0.663 0.379 0.769

Table 4.19. Learning Rate tests for GRU temperature model in terms of R2.

The results obtained from the learning rate tests show how important it is to
find the right value, which in this case is 0.001. Both by increasing and decreasing
the learning rate starting from this heat, progressively worse results are obtained.

Dropout

Table 4.20 shows the results of training with different dropouts.
In this case, the best results are obtained with a dropout of 0.4.

70

Methods and Experiments

Dropout Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

0 0.729 0.451 0.777

0.2 0.711 0.45 0.778

0.4 0.73 0.456 0.774

0.6 0.721 0.45 0.779

0.8 0.705 0.434 0.78

Table 4.20. Dropout tests for GRU temperature model in terms of R2.

Single output

Now that the best values for the hyperparameters have been found, a final training
is carried out for each output, to see if training on only one measure at a time yields
better results. The results are in Table 4.21.

Gearbox
Bearing Temp

Gearbox
Oil Temp

Generator
Bearing Temp

0.708 0.435 0.783

Table 4.21. Final test over single outputs in terms of R2.

Test results with single outputs resulted in worse results in two out of three
cases and slightly better results in the third case. This indicates that GRUs unlike
FNNs are not disadvantaged in having multiple outputs to compute simultaneously.

4.4 Further Temperatures Tests

As can be seen from the test results, while temperature prediction can produce
good results, these are not as good as those for active power or rotor RPM. For
this reason, more tests need to be conducted to try to obtain more reliable results.
These tests do not focus on the choice of parameters or architecture since they have
already been extensively tested, but look for alternative ways. Then for each test
the architecture and the best parameters found in previous temperature tests will
be used.

All tests in this section study one temperature at a time, thus training one
model for each temperature. This is for two reasons: the first is that in this way
the algorithm performs one task at a time and this may help in obtaining better
results, and the second is that some of the following tests increase the dimensionality
of the dataset and the inputs in particular, and in this way it is possible not to
provide too many inputs to the models at once.

71

Methods and Experiments

4.4.1 Introduction of Additional Information into the Dataset

The two methods presented below are based on expanding the dataset with addi-
tional columns that aim to add data useful for learning and prediction purposes.
Details on these data are given in Chapter 3.

Temperature Interpolation

Interpolation is a curve that approximates the trend of a data distribution. By
calculating the interpolation of the distribution between each temperature and wind
speed, it is possible to obtain a curve that provides information about the trend of
the distribution. This comes in particularly handy in view of the fact that different
turbines have different distributions, as shown in Chapter 3. So what is done is to
calculate the interpolation of the temperatures for each turbine and add a column
for each temperature to the dataset that reports the value of the interpolation
based on the wind speed present in each sample. This adds information about the
individual turbine that is not otherwise present in the data. The results are shown
in Table 4.22.

Architecture Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

SVR 0.77 0.403 0.722

FNN 0.786 0.432 0.732

GRU 0.889 0.558 0.877

Table 4.22. Interpolation tests in terms of R2.

The results of adding interpolation bring obvious improvements in the results
on all models, while still maintaining performance differences between models. The
GRU-based model is thus confirmed as the one that performs best on temperatures.

Temperature Shift

Shifting temperatures involves adding a column for each temperature. It contains
the temperature value being analyzed but from the previous timestep, that is,
from ten minutes earlier. It is called a temperature shift because to obtain this
new column it is sufficient to copy the temperature column and translate (shift) it
forward in time by one timestep, so that at each timestamp t in the new column
there is the temperature of timestamp t− 1.

In this way, an attempt is made to provide information regarding the previous
temperature situation, so that the starting value is a real value since it is not
estimated but is measured ten minutes earlier. In this way, it should be easier to
estimate the current temperature because it is no longer necessary to calculate it

72

Methods and Experiments

from scratch but only to figure out how much it may have varied since the last
timestep. The results are shown in Table 4.23.

Architecture Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

SVR 0.938 0.917 0.971

FNN 0.97 0.976 0.996

GRU 0.976 0.948 0.996

Table 4.23. Shift tests in terms of R2.

Adding the previous timestep temperature leads to even greater improvements
than adding the interpolation, achieving results comparable to those obtained for
active power and rotor RPM. Even differences previously present between the dif-
ferent models become irrelevant, making them comparable.

Interpolation and Shift

After trying the two methods individually, they are tested together. The results
are shown in Table 4.24.

Architecture Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

SVR 0.948 0.92 0.965

FNN 0.981 0.976 0.997

GRU 0.979 0.949 0.996

Table 4.24. Interpolation and shift tests in terms of R2.

Using interpolation and previous timestep temperature simultaneously does not
bring particularly better results than using temperature shift alone. This is because
the two columns provide very similar data, the difference being that the interpo-
lation is a generic value that approximates a distribution, while the shift is more
precise in that it is the temperature of the component ten minutes earlier, so it is
certainly much more accurate for that particular situation.

4.4.2 Single Turbine Models

Since different turbines have very different trends, another approach that is com-
pletely different from the previous ones is to study each turbine individually: this

73

Methods and Experiments

does not require introducing additional non-environmental data into the dataset
however on the other hand requires training for each turbine individually. The
purpose of this test is simple: since it is difficult to generalize to multiple turbines,
in this test can be found out if it is possible to do so on at least one at a time.

In order to do this it is necessary to create a new dataset from scratch, since
the old one doesn’t work for this purpose because each turbine that is present in
one of the three partitions of the dataset, is not in the other two. For this test, it
is necessary to create a different dataset for each turbine, dividing into the three
partitions of train, val, and test the data available in each dataset. For this new
dataset, all data for a period of just under one year and four months are used, and
are divided as follows:

• Train: almost 10 months

• Val: two and a half months

• Test: two and a half months

Figure 4.4.1 shows a diagram of the division for an example turbine.

This implies that the trained models will have much less data available, since
in the previous dataset the train partition included data from a full year of ten
turbines, whereas in this new dataset the training will be done on less than a year
of data from a single turbine. The results obtaind from the test on single devices
are in Table 4.25 for the SVR-based model, in Table 4.26 for the FNN-based model
and in Table 4.27 for the GRU-based model, in which each lines shows the results
over a different Wind Turbine Generator.

In this part of the tests there are no additional input dimensions so it might be
considered to use for the GRU-based model a single model that makes predictions
on all three temperatures at the same time, since it worked best in the tests in the
previous section. For brevity, numerical results are not reported, but due to the
smaller amount of data in the datasets on the individual turbines the single model
in this case performs worse than the three separate models for all WTGs. For this
reason, the single output models are used in this training as well.

Results from all three models show that on average the results obtained on
individual devices are better than those obtained on the general dataset.

The fact that all models perform better when trained on a single turbine con-
firms the theory that part of the difficulty of the task is hidden in the difference
between Wind Speed-Temperature curve distributions of different turbines. At the
same time, however, it can be seen that the accuracy of the results is not constant
across all turbines, but rather is highly variable. On some it is very high, on others
it is good, and finally there are some that get poor results. This indicates that the
difference in behavior is not the only difficulty in this task, but it certainly has a
great significance.

It is important to try to understand the reasons for these differences, and to do
so, further studies have been conducted trying to find what the turbines with poor

74

Methods and Experiments

Figure 4.4.1. The data split for a generic turbine. The data starts from January
1, 2022 and goes to March 20, 2023.

performance have in common and how they differ from the others. To do this, the
distributions of the Wind Speed-Temperature curve are analyzed through the use
of the boxplot graphs shown in Figures 4.4.2 and 4.4.3, belonging to WTG 10 and
WTG 14, which are the worst and the best performing ones in terms of gearbox
bearing temp, respectively. What can be seen is that a general trend is present
whereby the best performing turbines often have a curve that sweeps a lot over
the temperatures, thus taking on very different values for different wind speeds.
In contrast, the worst performing turbines have the same curve much flatter, thus
taking on more similar values for different wind speeds. This is just a general
trend and is not always observed, however, it is a very good help in understanding
whether a turbine can be more or less easy to predict.

75

Methods and Experiments

Wind
Turbine

Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

WTG 1 0.633 0.234 0.533

WTG 2 0.654 0.131 0.097

WTG 3 0.773 0.212 0.333

WTG 4 0.728 0.424 0.593

WTG 5 0.778 0.275 0.441

WTG 6 0.807 0.376 0.711

WTG 7 0.7 0.278 0.523

WTG 8 0.626 0.617 0.548

WTG 9 0.802 0.489 0.441

WTG 10 0.448 0.291 0.638

WTG 11 0.744 0.203 0.541

WTG 12 0.776 0.262 0.445

WTG 13 0.703 0.283 0.557

WTG 14 0.821 0.321 0.599

Table 4.25. Tests on single devices in terms of R2 for SVR models.

This trend is particularly valid for Gearbox Bearing Temperature, which has
a more compact, curve-like distribution. As for Generator Bearing Temperature,
the problem is more complex since the distribution is very broad, not forming a
real curve but simply going over an area of varying shape. This is confirmed by
the fact that the improvements for this measure are smaller than for the others.
Finally, Gearbox Oil Temperature is not given particular importance for the rea-
sons explained above, but in general it respects what was said for Gearbox Bearing
Temperature.

76

Methods and Experiments

Wind
Turbine

Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

WTG 1 0.66 0.299 0.541

WTG 2 0.689 0.129 0.142

WTG 3 0.792 0.266 0.363

WTG 4 0.73 0.424 0.597

WTG 5 0.792 0.302 0.437

WTG 6 0.819 0.415 0.731

WTG 7 0.701 0.274 0.453

WTG 8 0.661 0.637 0.518

WTG 9 0.809 0.474 0.42

WTG 10 0.495 0.362 0.645

WTG 11 0.752 0.209 0.563

WTG 12 0.794 0.301 0.469

WTG 13 0.734 0.323 0.544

WTG 14 0.835 0.343 0.595

Table 4.26. Tests on single devices in terms of R2 for FNN models.

Wind
Turbine

Gearbox
Bearing
Temp

Gearbox
Oil Temp

Generator
Bearing
Temp

WTG 1 0.816 0.522 0.737

WTG 2 0.879 0.201 0.24

WTG 3 0.93 0.218 0.332

WTG 4 0.81 0.629 0.835

WTG 5 0.925 0.279 0.726

WTG 6 0.939 0.538 0.893

WTG 7 0.848 0.473 0.715

WTG 8 0.793 0.772 0.76

WTG 9 0.924 0.743 0.672

WTG 10 0.672 0.42 0.833

WTG 11 0.848 0.216 0.824

WTG 12 0.854 0.338 0.367

WTG 13 0.823 0.427 0.783

WTG 14 0.935 0.372 0.838

Table 4.27. Tests on single devices in terms of R2 for GRU models.

77

Methods and Experiments

Figure 4.4.2. WTG 10 wind - gearbox bearing temp boxplot.

Figure 4.4.3. WTG 14 wind - gearbox bearing temp boxplot.

78

Chapter 5

Discussion

In this chapter, the models that performed best in the tests of the previous chapter
are analyzed in more detail on the test dataset. For each model there are running
examples comparing predicted values with observed values showing the magnitude
of prediction errors, and other problems more specific to individual models are
analyzed.
The chapter is divided into sections, and each section reports the results for a set
of measures obtained with the model that performed best for them. Each section is
internally divided into subsections, one for each measure analyzed. For the sections
referring to temperatures, several models are considered without choosing only the
best one since different solutions were used among them that are worth analyzing.

5.1 Active Power and Rotor RPM

The first set of measures studied is that of active power and rotor RPM. They are
quite similar to each other, which is why the tests for tuning the hyperparameters
were conducted together. This affinity comes from the fact that active power repre-
sents the output of the turbine while rotor RPM represents the rotational speed of
the rotor. The turbine generator converts rotational energy into electrical energy,
and from this comes the fact that they are closely related in that as the rotor RPM
increases, the power production also increases and vice versa.

Although all models performed well and similarly, the one that performed best
of all is the one based on FNNs. Specifically, the parameters chosen for this FNN
are:

• Hidden layers: 3

• Neurons per hidden layer: 64

• Learning rate: 0.001

• Dropout: 0.2

Since in the final tuning test the FNNs towed on a single output performed
better, again the models will be trained on one output at a time.

79

Discussion

5.1.1 Active Power

Active power is the first measure under analysis and is also the easiest to model,
as could be seen from the excellent results obtained in almost all the tests in the
previous chapter.

The results that the model obtains on the test dataset are shown in Table 5.1.

Active Power

0.993

Table 5.1. Results of the FNN active power model on the test set in terms of R2.

The results obtained on the test dataset are consistent with those obtained
during training. Figure 5.1.1 shows a comparison between the predictions made by
the digital twin and the actual data produced by the turbine over the course of any
given day. As can be seen, the predictions are extremely accurate, deviating very
little from the actual data.

Figure 5.1.1. Active power prediction over test set.

Figure 5.1.2, shows a histogram showing what the error distribution is, obtained
by calculating the difference between the actual and predicted value for each sample.
Most of the errors are within -40 kW and +60 kW from zero, and considering that

80

Discussion

the power goes up to 2000 kW they are very small. Only a small part reaches
higher magnitudes, thus committing more significant errors.

Figure 5.1.2. Active power error distribution over test set.

5.1.2 Rotor RPM

The second measure under analysis is Rotor RPM, and it too performed excellently
in most tests.

The results that the model obtains on the test dataset are shown in Table 5.2.

Rotor RPM

0.984

Table 5.2. Results of the FNN rotor RPM model on the test set in terms of R2.

Also in this case the results obtained on the test dataset are consistent with those
obtained during training. Figure 5.1.3 shows a comparison between the predictions
made by the digital twin and the actual data produced by the turbine over the
course of any given day. As can be seen, the predictions are extremely accurate,
deviating very little from the actual data.

Figure 5.1.4, shows a histogram showing what the error distribution is, obtained
by calculating the difference between the actual and predicted value for each sample.
Most of the errors are within -0.3 rpm and +0.3 rpm from zero, and considering
that the rotor RPM goes up to 17 rpm they are very small. Only a small part
reaches higher magnitudes, thus committing more significant errors.

81

Discussion

Figure 5.1.3. Rotor RPM prediction over test set.

Figure 5.1.4. Rotor RPM error distribution over test set.

82

Discussion

5.2 Temperatures

In contrast to active power and rotor RPM in which all models had obtained very
good and similar results, for temperatures there were important differences: models
based on GRU obtained significantly better results than models based on SVR and
FNN. This is because temperatures have an important time dependence that other
measurements do not. The temperature of an object depends not only on the
heat that is supplied during the last time period under analysis, but also on the
temperature it has at the beginning of that period. To get an estimate of the
initial temperature, it is therefore important to know the heat previously supplied,
something that only GRU-based models can take into account. Specifically, the
parameters chosen for the best of these models are:

• Hidden layers: 3

• Neurons per hidden layer: 64

• Learning rate: 0.001

• Dropout: 0.4

Since very different models have been tried for temperatures, it is not possible to
define one as the best, because each has advantages and disadvantages. Therefore
three different ones are analyzed and compared.

The models that obtained the best results of all are those that use interpolation
and temperature shift together, so they are the first to be taken into analysis.
As can be deduced from the test results in the previous chapter, what makes the
results so good is the shift. This can be understood by looking at the models
trained with interpolation only and shift only, respectively: the former obtained
significantly lower results than the latter. Moreover, while in the models that
do not use shift the gap in performance between the GRU-based models and the
others is maintained, in those that do use shift this gap is lost and similar results
are obtained between them due to the predominance of the information contained
in shift. And it is precisely because of this predominance that it makes no sense
to analyze the model that uses only the shift, since it has very similar but slightly
worse results to the one that uses shift and interpolation together.
Instead, the model that makes use of interpolation alone is analyzed since it has
results that are still good although not as good as the model that also uses the
shift, but by not introducing among the inputs the output of the previous sample
is a very different model and is able to generalize better.
Finally, the model trained on single turbines is analyzed as it also obtained good
results and is the only one that does not introduce in any form among the inputs
the temperatures to be predicted.

5.2.1 Gearbox Bearing Temperature

The gearbox bearing temperature is the first temperature taken in the analysis and
is also the most important to study, because as mentioned in Chapter 3 the gearbox
is the component most prone to high temperature and failures.

83

Discussion

Interpolation and Shift

The first type of model taken into analysis is one that introduces interpolation
of the wind-temperature distribution and temperature shift between inputs. This
model is the one that obtained the best results in terms of R2. The results that
the model obtains on the test dataset are shown in Table 5.3.

Gearbox
Bearing Temp

0.968

Table 5.3. Results of the GRU model using interpolation and shift on
the test set in terms of R2.

Figure 5.2.1 shows a comparison between the predictions made by the digital
twin and the actual data produced by the turbine over the course of any given day.
Although the predictions may appear to be quite accurate, close observation shows

Figure 5.2.1. Gearbox bearing temp interpolation and shift model
prediction over test set.

that accuracy of the prediction depends greatly on the trend of the data at the
time being analyzed. If the data has a constant trend, whether it is increasing or
decreasing, the prediction is accurate. Conversely, if the trend is not constant but

84

Discussion

has many unexpected variations, the predictions often turn out to be inaccurate.
This is due to the fact that by providing previous temperatures as input, the model
tends to focus mainly on them, learning to estimate the trend and predict how it
continues. For this reason, in highly unstable situations where the current tempera-
ture takes values that cause the local trend to change (as in the case of local maxima
and minima) frequently, the predictions are not accurate, and tend to re-establish
themselves after the trend changes, once a constancy is re-established. When this
happens, the prediction graph takes the shape of the real one but slightly out of
phase, due precisely to the fact that it cannot predict these changes and therefore
notices them with a delay, when they appear among the inputs in the form of the
temperature of previous samples. Therefore, the prediction error remains small,
and that is why the R2 values are high, but this is because a value close to that of
the temperature of the previous sample is predicted, which, however, never strays
too far from the next one. In contrast, when temperatures are stable or do not
have too many sudden changes, predictions are very accurate.

The main problem with relying primarily on previous temperatures and learning
to predict the trend is that if non-ideal conditions such as temperatures that are
too high or too low are among the previous data, the predictions will continue the
trend of the previous temperatures by predicting temperatures that do not deviate
too much from the previous one, actually producing non-ideal data and thus going
against the basic purpose of the digital twin.
This is the main reason why using previous temperatures as input is not recom-
mended.

Figure 5.2.2, shows a histogram showing the error distribution, obtained by
calculating the difference between the actual and predicted value for each sample.
Most of the errors are within -1 °C and +1 °C from zero, which is a very small error.
Only a small part reaches higher magnitudes, thus committing more significant
errors.

85

Discussion

Figure 5.2.2. Gearbox bearing temperature interpolation and shift model
error distribution over test set.

Interpolation

The second model analyzed is the one without the temperature shift, so as to
see if the interpolation is sufficient to build a single model that can predict the
temperatures of several different WTGs. The results that the model obtains on the
test dataset are shown in Table 5.4.

Gearbox
Bearing Temp

0.861

Table 5.4. Results of the GRU model using interpolation on the
test set in terms of R2.

It is already clear from R2 that this model is less accurate than the previous one,
as is confirmed in Figure 5.2.3, which shows a comparison between the predictions
made by the digital twin and the actual data produced by the turbine over the
course of any given day.

Although the predictions are worse than those in the previous model, it can be
seen that the type of errors is different. They are not only concomitant with trend
changes, which indeed are predicted correctly when not too frequent, but most are
temperature prediction errors: that is, the trend is understood and predicted cor-
rectly, but perhaps the predicted temperature is incorrect and thus the predictions
are shifted up or down. In addition, the predictions tend not to be too far away
from the interpolation value. This sometimes leads to prediction errors like the shift

86

Discussion

Figure 5.2.3. Gearbox bearing temperature interpolation model pre-
diction over test set.

just mentioned, but at the same time it prevents the prediction of temperatures
that are too far out of the standard and thus would not be ideal.

Figure 5.2.4, shows a histogram showing the error distribution, obtained by
calculating the difference between the actual and predicted value for each sample.
Most of the errors are within -2 °C and +2 °C from zero, which is a quite small error.
Only a small part reaches higher magnitudes, thus committing more significant
errors.

87

Discussion

Figure 5.2.4. Gearbox bearing temp interpolation model error distri-
bution over test set.

Single devices

The last model analyzed is the one trained individually on each turbine, designed
to learn to understand and predict the temperature trend of the individual turbine
since it is different for each one. The results that the model obtains on the test
dataset are shown in Table 5.5.

The first thing that can be noticed is that the results are not constant among
all turbines but rather vary quite a bit. The reasons are related to the distribution
of the wind-temperature curve and are explained in Chapter 4. However, most of
the turbines obtained satisfactory results and only a minority obtained results that
were not very good.
Figure 5.2.5, which shows a comparison between the predictions made by the digital
twin and the actual data produced by one of the turbines with good results over
the course of any given day.

The predictions are not as accurate as in the shift model, however, as with
interpolation the trend is generally predicted correctly but it may occur that the
predicted temperature is not accurate, so the predictions have the correct trend
but are shifted up or down from the observed values. The magnitude of this shift
depends very much from turbine to turbine, it is generally contained but sometimes
it is quite high.
However, non-ideal values are not predicted because in training the model has never
seen any and has no input temperatures that would cause it to deviate from the
standard.

Figure 5.2.6, shows a histogram showing the error distribution of one of the
turbines with good results, obtained by calculating the difference between the actual

88

Discussion

Turbine Gearbox
Bearing Temp

WTG 1 0.813

WTG 2 0.91

WTG 3 0.942

WTG 4 0.795

WTG 5 0.903

WTG 6 0.924

WTG 7 0.876

WTG 8 0.764

WTG 9 0.878

WTG 10 0.513

WTG 11 0.767

WTG 12 0.876

WTG 13 0.772

WTG 14 0.919

Table 5.5. Results of the GRU model using the single device model on the test
set in terms of R2. The results are divided by turbine.

and predicted value for each sample. In most of the turbines, most of the errors
are between -2 °C and +2 °C or so from zero, which is a quite small error. Only a
small part reaches higher magnitudes, thus committing more significant errors.

In conclusion, this is a very good model assuming, however, that the turbine to
be analyzed is among the turbines that are predicted well (which are most turbines)
and also assuming that the necessary data to train the model for each turbine is
available. If these assumptions are met, the model is also better than the model
with interpolation. Since the training time is very rapid, having to do one per
turbine does not create any particular slowdown.

89

Discussion

Figure 5.2.5. Gearbox bearing temperature single device model pre-
diction over test set.

Figure 5.2.6. Gearbox bearing temperature single device model error
distribution over test set.

90

Discussion

5.2.2 Generator Bearing Temperature

The generator bearing temperature is the second temperature taken in the analysis
and is important to analyze because as with the gearbox the generator is prone to
high temperatures and failures.

Interpolation and Shift

The first type of model taken into analysis is one that introduces interpolation
of the wind-temperature distribution and temperature shift between inputs. This
model is the one that obtained the best results in terms of R2. The results that
the model obtains on the test dataset are shown in Table 5.6.

Generator
Bearing Temp

0.997

Table 5.6. Results of the GRU model using interpolation and shift on
the test set in terms of R2.

Figure 5.2.7 shows a comparison between the predictions made by the digital
twin and the actual data produced by the turbine over the course of any given
day. As explained extensively in the previous subsection for the gearbox bearing
temperature, the model has problems in predictions where the current temperature
changes trend very frequently, presenting predictions that appear out of phase with
the observed data, due to the fact that trend changes are noticed only when they
appear among the inputs in the form of the temperature of previous samples. In
contrast, when temperatures are stable or do not have too many sudden changes,
predictions are very accurate.
The results are better than those obtained on the gearbox bearing temperature
although it is more difficult to predict because the changes in generator bearing
temperature are slower and less frequent and the graph appears smoother.

As also explained in the previous subsection, the main problem with this model
is related to the fact that relying mainly on the temperatures of previous samples,
if these are not ideal the model can produce non-ideal results. This is the main
reason why using previous temperatures as input is not recommended.

Figure 5.2.8, shows a histogram showing the error distribution, obtained by
calculating the difference between the actual and predicted value for each sample.
Most of the errors are within -1 °C and +1 °C from zero, which is a very small error.
Only a small part reaches higher magnitudes, thus committing more significant
errors.

91

Discussion

Figure 5.2.7. Generator bearing temp interpolation and shift model
prediction over test set.

Figure 5.2.8. Generator bearing temperature interpolation and shift model
error distribution over test set.

92

Discussion

Interpolation

The second model analyzed is the one without the temperature shift, so as to
see if the interpolation is sufficient to build a single model that can predict the
temperatures of several different WTGs. The results that the model obtains on the
test dataset are shown in Table 5.7

Generator
Bearing Temp

0.791

Table 5.7. Results of the GRU model using interpolation on the
test set in terms of R2.

In this case, the difference between the model with and without shift is even
larger than the gearbox bearing temperature. This is because the shape of the
wind-temperature distribution of the generator bearing temperature is very broad,
not forming a real curve but simply going over an area of varying shape.
It is already clear from R2 that this model is less accurate than the previous one,
as is confirmed in Figure 5.2.9, which shows a comparison between the predictions
made by the digital twin and the actual data produced by the turbine over the
course of any given day.

As explained in the previous subsection, predictions from this model are less
accurate but are better able to predict the temperature trend, although this can be
shifted up or down without straying too far from the interpolation value. In this
way, non-ideal values are hardly predicted.
However, unlike gearbox bearing temperature where this shift is small, in this case
the shift is often very large and it also happens more commonly that the trend is
not correctly predicted.

Figure 5.2.10, shows a histogram showing the error distribution, obtained by
calculating the difference between the actual and predicted value for each sample.
Most of the errors are between -5 °C and +5 °C from zero, which is not exactly a
small error, Only a small part reaches higher magnitudes, thus committing more
significant errors.

93

Discussion

Figure 5.2.9. Generator bearing temperature interpolation model pre-
diction over test set.

Figure 5.2.10. Generator bearing temp interpolation model error distri-
bution over test set.

94

Discussion

Single devices

The last model analyzed is the one trained individually on each turbine, designed
to learn to understand and predict the temperature trend of the individual turbine
since it is different for each one. The results that the model obtains on the test
dataset are shown in Table 5.8.

Turbine Generator
Bearing Temp

WTG 1 0.862

WTG 2 0.554

WTG 3 0.615

WTG 4 0.71

WTG 5 0.452

WTG 6 0.643

WTG 7 0.775

WTG 8 0.852

WTG 9 0.824

WTG 10 0.766

WTG 11 0.662

WTG 12 0.479

WTG 13 0.834

WTG 14 0.878

Table 5.8. Results of the GRU model using the single device model on the test
set in terms of R2. The results are divided by turbine.

The first thing that can be noticed is that the results are not constant among
all turbines but rather vary quite a bit. The results are on average worse than the
gearbox bearing temperature for the same reason related to the wind-temperature
curve explained for the previous model. As with the gearbox bearing temperatures,
it is immediately apparent that the results vary greatly from turbine to turbine,
with a slightly higher percentage of poor results, however.
Figure 5.2.11 shows a comparison between the predictions made by the digital twin
and the actual data produced by one of the turbines with good results over the
course of any given day.

As for gearbox bearing temperature, the predictions are not as accurate as in
the shift model, and as with interpolation the trend is generally predicted correctly
but it may occur that the predicted temperature is not accurate, so the predictions
have the correct trend but are shifted up or down from the observed values. The
magnitude of this shift depends very much from turbine to turbine, it is generally
contained but sometimes it is very high. However, compared with the gearbox
bearing temperature, it happens more often that the model also misses the trend
or the shift is very high.

95

Discussion

Figure 5.2.11. Generator bearing temperature single device model
prediction over test set.

Non-ideal values are not predicted because in training the model has never seen any
and has no input temperatures that would cause it to deviate from the standard.

Figure 5.2.12, shows a histogram showing the error distribution in one of the
turbines with good results, obtained by calculating the difference between the actual
and predicted value for each sample. In most of the turbines, most of the errors
are between -5 °C and +5 °C or so from zero, which is not exactly a small error,
and in the case of malfunctioning turbines it may even be higher.

In conclusion, this is a good model assuming, however, that the turbine to be
analyzed is among the turbines that are predicted well (which are most turbines)
and also assuming that the necessary data to train the model for each turbine is
available. If these assumptions are met, the model is also better than the model
with interpolation. Since the training time is very rapid, having to do one per
turbine does not create any particular slowdown.

96

Discussion

Figure 5.2.12. Generator bearing temperature single device model error
distribution over test set.

5.2.3 Gearbox Oil Temperature

As mentioned earlier, gearbox oil temperature has less relevance because it is cooled
externally, so it is particularly difficult to predict it. For this reason, it is not
analyzed like other temperatures.

97

Chapter 6

Conclusions

In this thesis, it is developed a digital twin which exploits the knowledge contained
in the data to learn how to predict the operation of a wind turbine under ideal
conditions, predicting its main variables of interest based on the data derived from
the surrounding environment. Various technologies in the areas of machine learning
and deep learning, as well as various data management solutions, are proposed and
tested for its development.

To reach this goal, it is necessary to perform an important data cleaning to
extract only the set of data considered ideal so that the digital twin can be trained
only on them to ensure that its predictions always fall within the ideal situation. To
do this, several filters are adopted to remove all data related to wind speeds that are
too low for power production to begin, or related to zero power produced, typical
of when the turbine is stationary. Then, the theoretical production curve is used
to remove samples that do not have ideal performance. Finally, DBSCAN is used
for outlier detection to remove non-ideal data on internal component temperatures,
since there is no theoretical curve for these values.

Three different models were trained multiple times and tested with different
combinations of hyperparameters to obtain the best possible results. This process
of hyperparameters tuning is repeated for the different groups of measurements to
be predicted so that models are optimized specifically to make predictions about
them.
Specifically, the three models tested are:

• SVR: It belongs to the world of machine learning, it has been tested so
that not only neural network-based models are used, but the results obtained
are worse than those obtained from the other models. It also proved to be
particularly slow to train, which is why the training is done using only a
portion of the dataset.

• FNN: A deep learning model, it gets the best results where knowledge of
previous sample data is not required, with short training times.

• GRU: A deep learning model derived from RNNs, which can process temporal
sequences of data and create an internal state that represents a memory.
This allows it to take into account what has happened previously, which

98

Conclusions

is particularly useful for studying temperatures, where data from previous
samples must also be considered. This model achieves very good results for
all outputs, but it is in the prediction of internal component temperatures
that it achieves significantly better results than other models.

In addition, because temperatures are particularly difficult to predict, alterna-
tive solutions had to be sought in order to achieve better results.
In particular, three different strategies were developed to aid learning:

• Temperatures shift: This solution involves including among the inputs the
temperature taken from the previous sample, that is, the temperature ten
minutes earlier. The idea is to provide a starting point for calculating the
current temperature.
This solution is the one that performed best in terms of R2, but it has a major
flaw that it may predict values that are not ideal.

• Temperatures interpolation: This solution involves calculating the in-
terpolation of the wind-temperature curve of each wind turbine so that its
standard trend is known. For each sample, the interpolation value calculated
with the wind speed of that sample is included as an input. This provides
the model with information about the standard temperature values for that
specific turbine based on wind speed.
This solution did not achieve results as accurate as the previous one but it
proved to be able to predict trends better.

• Single device models: The last proposed solution is different from the
previous ones because it does not involve adding any data among the inputs,
but instead a single model for each turbine is trained. In this way, it is not
necessary to provide information about the standard temperatures of each
turbine since there is a model for each one and it can learn them on its own.
This model, like the previous one, has slightly worse accuracy than the former
but can predict trends better than either.

Finally, once the best models and their hyperparameters have been chosen, a
detailed analysis is performed on the test dataset to verify the results obtained by
each model, observing examples of predictions and the distribution of errors.

6.1 Future works

The solutions proposed in this thesis can predict active power and rotor RPM with
very high accuracy. For temperatures, more specialized solutions are used which
are able to achieve excellent results as well. In any case, the latter are the ones
that have the most room for improvement and therefore those on which any future
work could be focused.

For example, one could try to train a model to predict the difference between
the temperature of the previous sample and the current one. In this way, since the
model does not have to predict a temperature but only its variation over the last

99

Conclusions

ten minutes, it might be possible to solve the problem of different temperatures on
different turbines since it is no longer necessary to predict the final temperature
value. To obtain the final value, it is necessary to add the temperature value of
the previous sample to the predicted variation. Probably, in different turbines the
temperature also varies differently, however, these variations might be more similar
to each other than the temperatures themselves.

Further work could also focus on the models trained on individual devices, trying
to understand more accurately why some turbines are predicted better than others.
In addition, it would be appropriate to do the training with a larger dataset, as the
dataset used in this work has many different turbines but for a relatively narrow
period. By being able to use data on a single turbine for each training, it would
be appropriate to collect data over a larger period so that the training can be
performed on a dataset of appropriate breadth and so that larger validation and
test datasets can also be created and thus so that larger tests can be performed.

Finally, another strategy might be to try to use models other than those used
in this thesis, so as to see whether or not these can make a substantial difference.
Certainly, models that can analyze time sequences to predict temperatures should
be chosen.

100

Bibliography

[1] Iea. World total energy supply by source, 1971-2019. url: https://www.iea.
org/reports/key-world-energy-statistics-2021/supply.

[2] NWS Southern Region. Origin of wind. url: https://web.archive.org/
web/20090324043730/http://www.srh.noaa.gov/jetstream/synoptic/

wind.htm.

[3] Chung-hoi Yung. Why is the equator very hot and the Poles very cold? url:
https://www.hko.gov.hk/en/education/edu06nature/ele_srad.htm.

[4] Steve Ackerman. Sea and land breezes. url: http://cimss.ssec.wisc.edu/
wxwise/seabrz.html.

[5] Hrvoje Čočić.How do wind turbines work. Feb. 2019. url: https://chrvojeengineering.
com/2019/02/03/how-does-wind-turbine-work/.

[6] Fouad Amri et al. ≪Toward an evolutionary multi-criteria model for the anal-
ysis and estimation of wind potential≫. In: Journal of Power and Energy
Engineering 03.11 (2015), pp. 14–28. doi: 10.4236/jpee.2015.311002.

[7] christoph.schilter@meteotest.ch METEOTEST. The Swiss Wind Power Data
Website. url: https://wind-data.ch/tools/weibull.php?lng=en.

[8] Ugo Romano and Jacques Ruer. ≪6.2 - Generazione elettrica dal vento≫.
In: Enciclopedia degli idrocarburi. Vol. 3. Istituto della enciclopedia italiana,
2007, pp. 561–574.

[9] Wind energy basics. url: https://web.archive.org/web/20100923194211/
http://www.awea.org/faq/wwt_basics.html.

[10] wind energy — everything you need to know. url: https://justenergy.
com/blog/everything-you-need-to-know-about-wind-energy/.

[11] Vertical axis wind turbine — part 1 - ansys innovation courses. url: https:
/ / courses . ansys . com / index . php / courses / vertical - axis - wind -

turbine-part-1/.

[12] Peter J. Schubel and Richard J. Crossley. ≪Wind Turbine Blade Design≫. In:
Energies 5.9 (2012), pp. 3425–3449. doi: 10.3390/en5093425.

[13] Ammar A. Alshannaq et al. ≪Structural analysis of a wind turbine blade
repurposed as an electrical transmission pole≫. In: Journal of Composites for
Construction 25.4 (2021). doi: 10.1061/(asce)cc.1943-5614.0001136.

[14] Wind Turbine Components. Feb. 2023. url: https://windmillstech.com/
wind-turbine-components/.

101

https://www.iea.org/reports/key-world-energy-statistics-2021/supply
https://www.iea.org/reports/key-world-energy-statistics-2021/supply
https://web.archive.org/web/20090324043730/http://www.srh.noaa.gov/jetstream/synoptic/wind.htm
https://web.archive.org/web/20090324043730/http://www.srh.noaa.gov/jetstream/synoptic/wind.htm
https://web.archive.org/web/20090324043730/http://www.srh.noaa.gov/jetstream/synoptic/wind.htm
https://www.hko.gov.hk/en/education/edu06nature/ele_srad.htm
http://cimss.ssec.wisc.edu/wxwise/seabrz.html
http://cimss.ssec.wisc.edu/wxwise/seabrz.html
https://chrvojeengineering.com/2019/02/03/how-does-wind-turbine-work/
https://chrvojeengineering.com/2019/02/03/how-does-wind-turbine-work/
https://doi.org/10.4236/jpee.2015.311002
https://wind-data.ch/tools/weibull.php?lng=en
https://web.archive.org/web/20100923194211/http://www.awea.org/faq/wwt_basics.html
https://web.archive.org/web/20100923194211/http://www.awea.org/faq/wwt_basics.html
https://justenergy.com/blog/everything-you-need-to-know-about-wind-energy/
https://justenergy.com/blog/everything-you-need-to-know-about-wind-energy/
https://courses.ansys.com/index.php/courses/vertical-axis-wind-turbine-part-1/
https://courses.ansys.com/index.php/courses/vertical-axis-wind-turbine-part-1/
https://courses.ansys.com/index.php/courses/vertical-axis-wind-turbine-part-1/
https://doi.org/10.3390/en5093425
https://doi.org/10.1061/(asce)cc.1943-5614.0001136
https://windmillstech.com/wind-turbine-components/
https://windmillstech.com/wind-turbine-components/

BIBLIOGRAPHY

[15] Ya-Lun Chou. ≪Statistical analysis: With business and economic applica-
tions≫. In: Holt, Rinehart and Winston, 1975.

[16] Erwin Kreyszig. Advanced engineering mathematics. Wiley, 1979.

[17] 2.6 - (Pearson) Correlation Coefficient R. url: https://online.stat.psu.
edu/stat462/node/96/.

[18] Joseph Lee Rodgers and W. Alan Nicewander. ≪Thirteen ways to look at the
correlation coefficient≫. In: The American Statistician 42.1 (1988), pp. 59–66.
doi: 10.1080/00031305.1988.10475524.

[19] Correlation matrix in R (3 examples). Mar. 2022. url: https://statisticsglobe.
com/correlation-matrix-in-r.

[20] Frank E. Grubbs. ≪Procedures for detecting outlying observations in sam-
ples≫. In: Technometrics 11.1 (1969), pp. 1–21. doi: 10.1080/00401706.
1969.10490657.

[21] Lewis Barnett Vic; Lewis. Outliers in statistical data. 1978.

[22] Shubhtripathi. All about outliers in machine learning. Oct. 2020. url: https:
//shubh- tripathi.medium.com/all- about- outliers- in- machine-

learning-2e26be9708f1.

[23] Cos’è un gemello digitale? url: https://www.ibm.com/it-it/topics/
what-is-a-digital-twin.

[24] Simone Formentin, Klaske van Heusden, and Alireza Karimi. ≪Model-based
and data-driven model-reference control: A comparative analysis≫. In: 2013
European Control Conference (ECC) (2013). doi: 10.23919/ecc.2013.
6669388.

[25] Scipy.interpolate.univariatespline. url: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.interpolate.UnivariateSpline.

html.

[26] John R. Koza et al. ≪Automated design of both the topology and sizing of
analog electrical circuits using genetic programming≫. In: Artificial Intelli-
gence in Design ’96 (1996), pp. 151–170. doi: 10.1007/978-94-009-0279-
4_9.

[27] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2016.

[28] Honglak Lee et al. ≪Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations≫. In: Proceedings of the 26th An-
nual International Conference on Machine Learning (2009). doi: 10.1145/
1553374.1553453.

[29] Vladimir Estivill-Castro. ≪Why so many clustering algorithms≫. In: ACM
SIGKDD Explorations Newsletter 4.1 (2002), pp. 65–75. doi: 10 . 1145 /

568574.568575.

[30] Martin Ester et al. ≪A density-based algorithm for discovering clusters in large
spatial databases with noise≫. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (1996), pp. 226–231.

102

https://online.stat.psu.edu/stat462/node/96/
https://online.stat.psu.edu/stat462/node/96/
https://doi.org/10.1080/00031305.1988.10475524
https://statisticsglobe.com/correlation-matrix-in-r
https://statisticsglobe.com/correlation-matrix-in-r
https://doi.org/10.1080/00401706.1969.10490657
https://doi.org/10.1080/00401706.1969.10490657
https://shubh-tripathi.medium.com/all-about-outliers-in-machine-learning-2e26be9708f1
https://shubh-tripathi.medium.com/all-about-outliers-in-machine-learning-2e26be9708f1
https://shubh-tripathi.medium.com/all-about-outliers-in-machine-learning-2e26be9708f1
https://www.ibm.com/it-it/topics/what-is-a-digital-twin
https://www.ibm.com/it-it/topics/what-is-a-digital-twin
https://doi.org/10.23919/ecc.2013.6669388
https://doi.org/10.23919/ecc.2013.6669388
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575

BIBLIOGRAPHY

[31] Demo of DBSCAN clustering algorithm. url: https://scikit-learn.org/
stable/auto_examples/cluster/plot_dbscan.html.

[32] Hans-Peter Kriegel et al. ≪Density-based clustering≫. In:WIREs Data Mining
and Knowledge Discovery 1.3 (2011), pp. 231–240. doi: 10.1002/widm.30.

[33] Michael I. Jordan et al. ≪Support Vector Regression Machines≫. In: Advances
in neural information processing systems 9. MIT Press, 1997, pp. 155–161.

[34] Corinna Cortes and Vladimir Vapnik. ≪Support-Vector Networks≫. In: Ma-
chine Learning 20.3 (1995), pp. 273–297. doi: 10.1007/bf00994018.

[35] Tom Sharp. An introduction to support vector regression (SVR). May 2020.
url: https://towardsdatascience.com/an-introduction-to-support-
vector-regression-svr-a3ebc1672c2.

[36] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. ≪Kernel
methods in machine learning≫. In: The Annals of Statistics 36.3 (2008). doi:
10.1214/009053607000000677.

[37] Maysam F. Abbod et al. ≪Application of artificial intelligence to the man-
agement of urological cancer≫. In: Journal of Urology 178.4 (2007), pp. 1150–
1156. doi: 10.1016/j.juro.2007.05.122.

[38] Saul Dobilas. Feed forward neural networks - how to successfully build them
in Python. Feb. 2022. url: https : / / towardsdatascience . com / feed -
forward- neural- networks- how- to- successfully- build- them- in-

python-74503409d99a.

[39] CHRISTIAN W. DAWSON and ROBERT WILBY. ≪An artificial neural net-
work approach to rainfall-runoff modelling≫. In: Hydrological Sciences Journal
43.1 (1998), pp. 47–66. doi: 10.1080/02626669809492102.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. ≪General Back-Propagation≫.
In: Deep learning. The MIT Press, 2017, pp. 211–214.

[41] Ahmed Tealab. ≪Time series forecasting using Artificial Neural Networks
Methodologies: A systematic review≫. In: Future Computing and Informatics
Journal 3.2 (2018), pp. 334–340. doi: 10.1016/j.fcij.2018.10.003.

[42] Recurrent neural networks cheatsheet star. url: https://stanford.edu/

~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks.

[43] John F. Kolen, Stefan C. Kremer, and Sepp Hochreiter. ≪Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies≫. In: A field
guide to dynamical recurrent networks. IEEE Press, 2001.

[44] Joel C. Heck and Fathi M. Salem. ≪Simplified minimal gated unit variations
for recurrent neural networks≫. In: 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS) (2017). doi: 10 . 1109 /
mwscas.2017.8053242.

[45] Jonte Dancker. A brief introduction to recurrent neural networks. Dec. 2022.
url: https://towardsdatascience.com/a- brief- introduction- to-
recurrent-neural-networks-638f64a61ff4.

[46] Javaid Nabi. Recurrent neural networks (rnns). July 2019. url: https://
towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85.

103

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
https://doi.org/10.1002/widm.30
https://doi.org/10.1007/bf00994018
https://towardsdatascience.com/an-introduction-to-support-vector-regression-svr-a3ebc1672c2
https://towardsdatascience.com/an-introduction-to-support-vector-regression-svr-a3ebc1672c2
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1016/j.juro.2007.05.122
https://towardsdatascience.com/feed-forward-neural-networks-how-to-successfully-build-them-in-python-74503409d99a
https://towardsdatascience.com/feed-forward-neural-networks-how-to-successfully-build-them-in-python-74503409d99a
https://towardsdatascience.com/feed-forward-neural-networks-how-to-successfully-build-them-in-python-74503409d99a
https://doi.org/10.1080/02626669809492102
https://doi.org/10.1016/j.fcij.2018.10.003
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://doi.org/10.1109/mwscas.2017.8053242
https://doi.org/10.1109/mwscas.2017.8053242
https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4
https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85

BIBLIOGRAPHY

[47] Simeon Kostadinov. Understanding GRU networks. Nov. 2019. url: https:
//towardsdatascience.com/understanding-gru-networks-2ef37df6c9be.

[48] Mean squared error (MSE). url: https://www.probabilitycourse.com/
chapter9/9_1_5_mean_squared_error_MSE.php.

[49] Georges Casella and Roger L. Berger. In: Statistical inference. Duxbury/Thom-
son Learning, 2002, pp. 556–556.

[50] Thomas Bruce. ≪Analysis of the premature failure of wind turbine gearbox
bearings≫. PhD thesis. 2016.

[51] Lee Brannan. Omphalos, Uber’s parallel and language-extensible time series
backtesting tool. Aug. 2022. url: https://www.uber.com/blog/omphalos/.

[52] Python. url: https://www.python.org/.

[53] NumPy. url: https://numpy.org/.

[54] Pandas. url: https://pandas.pydata.org/.

[55] Scikit-Learn. url: https://scikit-learn.org/stable/.

[56] Pytorch. url: https://pytorch.org/.

[57] Peter Worcester. A comparison of grid search and randomized search using
Scikit learn. June 2019. url: https://medium.com/@peterworcester_
29377/a-comparison-of-grid-search-and-randomized-search-using-

scikit-learn-29823179bc85.

[58] Sklearn.svm.SVR. url: https://scikit- learn.org/stable/modules/
generated/sklearn.svm.SVR.html.

104

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://www.probabilitycourse.com/chapter9/9_1_5_mean_squared_error_MSE.php
https://www.probabilitycourse.com/chapter9/9_1_5_mean_squared_error_MSE.php
https://www.uber.com/blog/omphalos/
https://www.python.org/
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://pytorch.org/
https://medium.com/@peterworcester_29377/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://medium.com/@peterworcester_29377/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://medium.com/@peterworcester_29377/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

	List of Figures
	List of Tables
	Introduction
	Background
	Thermodynamics effects on atmospheric air: wind
	Weibull Distribution
	Energy Contained in the Wind

	Wind Turbine Generator
	Wind Turbine Components

	Statistics
	Moving Average
	Standardization
	Correlation Matrix

	Outlier Detection
	Digital Twin
	Interpolation
	Machine Learning
	Density-Based Spatial Clustering of Applications with Noise DBSCAN
	Support Vector Regression (SVR)
	Feedforward Neural Networks (FNN)
	Recurrent Neural Networks (RNN)
	Gated Recurrent Unit (GRU)
	Other useful notions

	Dataset and Data Preprocessing
	Dataset
	Measures
	Correlation Matrix

	Preprocessing
	Generic Filters
	Power curve filters
	Standardization

	Temperature Preprocessing
	Time Series Model
	Temperature filters
	Features Expansion

	Methods and Experiments
	Algorithms and Configurations
	Support Vector Regression
	Feedforward Neural Networks
	Gated Recurrent Unit

	Active Power and Rotor RPM Model
	Support Vector Regression
	Feedforward Neural Networks
	Gated Recurrent Unit

	Temperatures Model
	Support Vector Regression
	Feedforward Neural Network
	Gated Recurrent Unit

	Further Temperatures Tests
	Introduction of Additional Information into the Dataset
	Single Turbine Models

	Discussion
	Active Power and Rotor RPM
	Active Power
	Rotor RPM

	Temperatures
	Gearbox Bearing Temperature
	Generator Bearing Temperature
	Gearbox Oil Temperature

	Conclusions
	Future works

