
POLITECNICO DI TORINO

College of Computer Engineering, Cinema and Mechatronics

Master’s Degree Thesis

A novel framework for condition-based
maintenance and performance analysis

based on data-driven approaches

Supervisors
prof. Bartolomeo Montrucchio
dr. Antonio Costantino Marceddu

Candidate

Francesco Cartelli

April 2023



Summary

Over the past decade, wind energy has become increasingly significant in the global energy sec-
tor. Nonetheless, operation and maintenance (O&M) account for at least one third of the overall
energy generation cost. Condition-based maintenance (CBM) provides a remedy for this issue:
instead of scheduling maintenance, this technique monitors turbine components and performs
maintenance only when certain warnings are provided (possibly anticipating any faults).
Besides the numerous studies of wind turbine generators (WTGs) on fault detection and diag-
nosis, all of these strategies could be categorized as model-based approaches and data-driven
approaches. Model-based techniques rely mostly on a precise mathematical model of the WTG
and its subsystems. In contrast, data-driven systems do not require physical or exact mathemat-
ical models, but instead infer the defect detection system from observed sensor data. The latter
techniques have shown to be particularly successful in recent years for modeling complex interac-
tions associated to wind turbines [1]. Yet, the existence of various nonlinearities in the examined
issues and measurement noise necessitates the adoption of complex and robust algorithms.
This thesis proposes a framework for data-driven condition-based maintenance: the objective of
this work is to develop anomaly and failure detection algorithms, that can be later used to provide
maintenance on condition.
To this end, an unsupervised learning method, involving several auto-encoder (AE) neural net-
work models (FNN as well as RNN) is provided.
The dataset of this work comes from real world SCADA measurements of Sirius s.r.l., a partner of
important companies in the world of renewable energies. The turbines data, belonging to various
plants located in southern Italy, is collected from mechanical and thermic sensors measurements,
every 10 minutes. The considered problem includes also different turbine designs, with distinct
engineering designs.
In the process, data from SCADA systems is acquired and clustered based on WT performances,
relying on key performance indicators, turbines statuses and alarms. The best-performing time
sequences are then selected as inputs for the subsequent training phase.
In an unsupervised learning manner, different AE models are trained in a multivariate time series
reconstruction task. During this phase, the models learn a robust latent representation of the
time series key features.
When used on unseen data, the algorithm will reconstruct the provided input sequences, the
reconstruction error is then analyzed for anomalies detection. in this study the different autoen-
coder models will then be exposed to different
regularization approaches such as dropout and de-noise autoencoder (DAE) assessing the different
robustness of the models produced. The various AE architectures are then tested in a simulated
benchmark environment, in which anomalies, noises and faulty behaviors are injected in order to
be detected. The most promising models are then employed in a real world test-case, in which,
previously labelled WTG critical events need to be detected.
The objective of the analysis will not only be to detect adverse events, but also to correctly iden-
tify the measures and subsystems implicated in the anomalies.
With this study, the efficacy of data-driven AI-powered ways to acquire evaluations on the ex-
istence and nature of anomalies has been demonstrated, for the possibility of these models in
generating nonlinear relationships by effectively simulating real-world contexts.. Also, the effi-
cacy of the method permits an evaluation of the performance of wind farms and their subsystems.
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Chapter 1

Introduction

Wind power is a source of renewable energy that is seeing increasing adoption while also having
significant global impact. The generation of energy via the use of wind power has a number of
positive effects, including phase out fossil fuels, and encouraging sustainable development.

During the last several years, there has been a substantial rise in the use of wind energy, and
there are currently wind turbines constructed in more than 90 nations throughout the globe. Ac-
cording to the Global Wind Energy Council, there is enough wind energy capacity built throughout
the globe to produce over 700 gigawatt, which accounts for around 7% of the total power produced
worldwide. Wind energy plays an even more major role in some nations, such as Denmark, which
generates more than fifty percent of its power from wind energy.

It is also notable that wind energy may be used in a variety of contexts, ranging from large-
scale wind WPP to small-scale home systems. This adaptability allows wind energy to be utilized
in a variety of situations. Wind energy may be especially useful in outlying places since it has the
potential to serve as a dependable and inexpensive source of electrical power in these locations.
Moreover, developments in wind turbine technology have made it feasible to collect electricity
from low-wind-speed places as well as offshore sites, which has further expanded the possibilities
for the use of wind energy. The use of wind energy, despite the numerous advantages it offers, is
not without its share of difficulties. Intermittency is one of the key obstacles, since wind energy
generation is reliant on the availability of wind. This makes it one of the primary challenges.
This may lead to difficulties in the integration and stability of the grid, which calls for rapid and
affordable solutions such as energy storage and demand response.

Although the use of wind energy has the potential to play a significant role in the global
transition to a more sustainable and low-carbon energy system, the costs of maintenance and
repair are a significant part of the overall cost of wind energy (maintenance and repair costs
can account for 20% to 25% of the total operating costs of a wind power plant and can cause
a reduction in energy production of up to 5%). This is despite the fact that wind energy has
the potential to play a significant role in this transition. Nevertheless, recent developments in
condition monitoring and predictive maintenance technology have helped to bring these expenses
down while simultaneously increasing the overall reliability and availability of the wind turbines.

Wind turbine operators are able to spot possible defects and maintenance requirements before
they result in expensive downtime or equipment breakdowns if they use appropriate condition
monitoring and maintenance techniques. This not only lowers the costs of maintenance and
replacement, but it also increases the lifetime of wind turbines, which leads to an improvement in
the economic performance of the turbines as a whole. Therefore, despite the fact that the costs of
maintenance and repair are a significant factor in the adoption and expansion of wind energy, the
ongoing development of technologies for condition monitoring and predictive maintenance, along
with improvements in wind turbine design, will help to ensure that wind energy continues to be
an affordable and sustainable source of renewable energy.
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Introduction

1.1 Scope of the Thesis

The primary objective of this thesis is to provide the groundwork for the development of a
condition-based maintenance algorithm for wind turbine generators (WTG). This algorithm will
be developed to identify weak performance and downtimes in WTG and offer measurements that
correspond to the system constituent parts.

In order to accomplish this objective, our primary emphasis will be on the development of
algorithms that are in a position to recognize and identify periods of poor performance and
downtime in an anomaly detection task. The system will be able to spot trends and abnormalities
that flag possible performance difficulties by evaluating data from numerous sources, including
sensors and other monitoring devices. This data will be analyzed by our algorithm. The capability
of the framework to tie poor performance to certain subcomponents of the WTG system is one
of the most important aspects of the proposed methods. In this way it is possible to discover the
underlying causes of performance difficulties and build maintenance methods that are specifically
tailored to solve them.

The creation of a condition-based maintenance algorithm for WTG, in general, may have
substantial repercussions for the wind energy sector. This algorithm has the potential to further
reduce the cost and encourage its broad adoption by enhancing the efficiency of maintenance and
increasing reliability.

1.2 Background and Solution

The study makes use of a dataset that is the intellectual property of Sirius s.r.l., and it is comprised
of a number of wind power plants (WPPs) that are situated in southern Italy. Observation of
SCADA data originating from customer WPPs is made possible via the apps that Sirius has
created and is offering to customers. The 10-minutes average statistics that are provided here
give a collection of magnitudes that were acquired in real time and aggregated.

In the proposed problem, only one wind farm will be considered in the experiment. However,
within this park different types of turbines, with different geometrical and mechanical character-
istics, will be considered. Together with the associated measurements, each turbine allows for a
set of indicators to observe the operating status of these turbines and even verify the malfunction
of their subsystems by integrating an alarm system.
While these technologies make it possible to identify particular faults of a variety of system com-
ponents, the alerts generated by these tools are not adequate to completely capture all of the
potential irregularities and performance decreases that may occur. The number of these events
then constitutes an extremely small amount (less than a dozen events for each subsystem per year
each lasting around 10 minutes), so learning about these malfunctions cannot be based on mere
observation of them.
For this reason, the algorithm exploits an unsupervised type of anomaly detection. Not being able
to explicitly isolate and study these down moments, the problem is turned on its head, instead
developing an algorithm that learns to obtain a representation of optimal turbine operation. This
algorithm, working with appropriately filtered data, according to logic related to performance and
elimination of malfunction states, should autonomously learn to recognize certain moments and,
much more importantly, report malfunctions and poor performance.

The autoencoder (AE) is a sort of neural network that was developed expressly for situations
like these. It was meant to solve them quickly and accurately. In point of fact, AEs are networks
that lend themselves very well to the process of learning a condensed representation of a dataset.
A representation that will thereafter be utilized to carry out a job in response to the inputs that
have been received. The outcome of this mission will be included into a discrimination method
that will be used to differentiate between the proper actions of the turbine and its faults. After
that, this outcome may be put through the assessments that are inherent in its distribution, which
will subsequently make it possible to construct rankings and histories of the functioning of these
different systems.
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The activity that will be performed by these AE will be a straightforward data reconstruction
activity. As an input to the network, the time sequences will be compressed and rebuilt while
attempting to reduce the amount of reconstruction error that occurs. If the AE was trained
on data that was properly reflective of good performance, then its results will be outstanding
when using comparable data, but they will be insufficiently accurate when using data from other
sources.

In a series of tasks involving anomaly detection, various types of AE will be used and evaluated.
These tasks will assess the capacity of the AE to distinguish between good data and irregular
data, as well as their ability to obtain an accurate interpretation of anomalous phenomena and
correlate it to various subsystems. The different tasks to be solved will be:

• Ability to recognize test data filtered with the same techniques and metrics as training data.

• Ability to recognize error and idle status of turbines.

• Ability to recognize anomalies in artificially introduced data.

• Adequately explain the different measures involved in a well-documented anomaly both
quantitatively and qualitatively.

In the end, the algorithm will be implemented in the process of comprehending and assessing
a group of turbines that are part of the wind farm. In addition to that, this will give a use case
for the method in the context of maintenance.
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Chapter 2

General Notions

2.1 Wind Energy and Wind Turbine Generators Principles

Wind energy is the energy that can be extracted from the movement of air masses, generally
called wind. Those air masses are moved due to changes in atmospheric pressure, temperature,
and the rotation of the Earth.

2.1.1 Wind and its Energy

The uneven heating of the surface of the Earth by the sun causes various regions to have varying
temperatures. This temperature difference creates air pressure changes. Since heated air is less
dense than cool air, it rises, while cool air descends. Wind is caused by the passage of air from
places of high pressure to areas of low pressure.
In addition to temperature variations, the planet rotation also influences the movement of air
masses. The Coriolis effect, caused by the rotation of the Earth, causes the wind to deflect to
the right in the Northern Hemisphere and to the left in the Southern Hemisphere. This deviation
causes the wind to bend rather than travel in a straight line.
Additional variables, including the topography of the land and the existence of significant bodies
of water, can also influence wind patterns. For instance, mountains may force the wind to flow
around them, and big bodies of water can cause the wind direction to alter when it interacts with
the water surface.
The fundamental attraction for coastal or marine wind farms is that wind blows faster over vast,
flat areas like the sea. Wind speeds up on plateaus or valleys parallel to the primary wind direction
and slows down on uneven surfaces like cities or woods.
Overall, the movement of air masses is a dynamic and complicated process that is influenced
by a number of elements. Wind energy provides a sustainable and clean source of electricity by
capturing the energy contained in this movement.
When managing wind-generated energy, it is crucial to account for the vast changes in wind
velocity across different locations: sites merely a few kilometers apart may be exposed to different
circumstances and have distinct interests for the construction of wind turbines [2].

2.1.2 Wind Turbines

Wind turbines are machines that convert wind energy to electricity. Blades are coupled to a rotor
that is connected to a generator placed in a tower. The blades collect the kinetic energy of the
wind, causing the rotor to revolve and the generator to produce electricity. Wind turbines can be
utilized as independent devices or linked to the power grid to provide communities with renewable
energy [3].
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2.1.3 Wind Turbines Components

These are the main components of a generic wind turbine generator [4] (Figure 2.1):

• The tower of a wind turbine is the structure that supports the rotor and generator. It
is normally constructed from steel or concrete and is tall enough to take advantage of the
greater and more constant wind speeds at higher elevations. The tower height is crucial
to the overall efficiency and performance of the wind turbine, as the quantity of accessible
wind energy grows with height. In addition, the tower houses the gearbox, which increases
the rotor rotational speed to create power, and the electrical components that convert
mechanical energy into electrical energy. The tower may be set on a concrete base or fixed
with guy wires.

• A wind turbine blade is a long, thin structure linked to a wind turbine rotor that trans-
forms the kinetic energy of the wind into rotational energy. Blades of wind turbines are
often constructed from composite materials, such as fiberglass or carbon fiber, and are de-
signed to be aerodynamic and effective at gathering wind energy. The blade form is tailored
to maximize the amount of energy collected while reducing resistance and structural stress.
The blades are fixed on a hub that is attached to the rotor shaft and are normally oriented
with their leading edge pointing into the wind. The blades revolve with the wind, causing
the rotor to rotate and generating electricity through the tower generator. The total per-
formance and efficiency of a wind turbine is significantly impacted by the blade dimensions
and designs [5]. The majority of contemporary wind turbines feature three or two blades.
Wind turbines with three blades are the most prevalent and commonly utilized due to their
efficiency, dependability, and ease of maintenance. The balanced and symmetrical design of
three-bladed turbines helps to decrease structural stresses and increase the rotor stability.
Two-bladed wind turbines are also used due to their light weight and simplicity compared
to their three blades counterparts.

• The gearbox of a wind turbine is a mechanical system that increases the rotor rotating
speed. The gearbox is positioned in the tower and is connected to the generator and rotor
respectively by a high-speed shaft and a low-speed shaft. The objective of the gearbox is to
convert the sluggish spinning speed of the rotor into a sufficient speed for power generation.
The gearbox normally employs a set of gears to raise the rotating speed by a factor of 50 or
more, enabling the generator to produce alternating current (AC) with a higher frequency
suited for the power grid. The gearbox is an essential component of the wind turbine because
it permits the conversion of wind kinetic energy to electrical energy. Nonetheless, it is a
high-wear component that is subject to tremendous stress and must be routinely serviced
to preserve the wind turbine durability and dependability.

• The rotor of a wind turbine is the component that transforms the kinetic energy of the
wind into rotational energy. Typically, the rotor consists of many blades joined to a hub
that is coupled to a shaft. When wind blows over the blades, lift is created, causing the
rotor to revolve. The rotor is linked to a generator within the tower, and the rotor spinning
causes the generator to generate power. The size, number, and diameter of the rotor blades,
as well as the rotor diameter, are crucial design elements that influence the overall perfor-
mance and efficiency of the wind turbine. Typically, the rotor is placed towards the top of
the tower, where it can take advantage of the greater and more constant wind speeds. The
rotor revolves on a horizontal axis, and when viewed from above, the direction of rotation
is generally clockwise. Vertical wind turbines with big cup- or curved-shaped blades utilize
drag designs more frequently. The wind physically moves the blades, which are coupled to a
central shaft, out of the way. The slower rotational speeds and strong torque capabilities of
drag-designed rotor blades make them suitable for water pumping and agricultural machin-
ery power. Lift-powered wind turbines have a far faster rotating speed than drag-powered
turbines and are thus ideal for energy generation.

• A wind turbine nacelle is a housing that encloses the wind turbines primary components,
such as the rotor, gearbox, generator, and control systems. Typically, the nacelle is po-
sitioned at the top of the tower and is situated behind the rotor blades. It is often built
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Figure 2.1: Wind turbine generator scheme. Image from [6].

of fiberglass or other composite materials and is intended to shield the inside components
from wind, rain, and snow. The nacelle also features maintenance and inspection access
ports and hatches. Depending on the design of the wind turbine, the size and shape of the
nacelle will vary, although it will normally be streamlined to reduce drag and aerodynamic
resistance. The nacelle is an essential component of the wind turbine, since it contains and
protects the electricity-generating components.

• A wind turbine generator turns the kinetic energy of a wind turbine rotor into electrical
energy. Typically, the generator is housed in the tower and is linked to the rotor by a
shaft and gearbox. As the rotor revolves, it drives the generator to provide an output of
alternating current (AC). Depending on the wind turbine design, the generator may be a
permanent magnet generator, an induction generator, or a synchronous generator.
The type of generator utilized influences the wind turbine efficiency, cost, and control system
complexity. The generator is an essential component of the wind turbine, since it generates
the electrical energy that may be consumed directly or fed into the power grid. Typically,
the generator is cooled by air or a dedicated cooling system, and it may be equipped with a
number of sensors and controls to monitor its operation and prevent overloading or failure.

• Control system of electronics, sensors, and software that monitors and controls the wind
turbine functioning. The control system is responsible for starting and halting the wind
turbine, regulating the blade pitch, and monitoring the generator and other components
performance.

• Yaw Drive is a device that spins the nacelle and rotor in order to align them with the
direction of the wind. Typically, the yaw drive is located near the tower’s base and is
powered by an electric motor.

• Anemometers are instruments that measure the speed and direction of the wind. The
anemometer is utilized to regulate the yaw drive and enhance the rotor’s performance in
the wind by adjusting the rotor’s location.

• A system of mechanical or hydraulic brakes that may be used to halt the rotor’s spinning
in an emergency or during maintenance.
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Figure 2.2: Flow pattern around a wind turbine.

2.1.4 Wind Turbines Energy Model

The power associated with the flow (Figure 2.2) of a moving air mass is equal to:

P =
1

2
ρSrV

3
0

where ρ is the air density, Sr is the section through which the air mass flows, and V0 is the wind
speed. The rotor faces the wind, so the Sr represents the area of the rotor. Since a certain amount
of energy is subtracted from the wind kinetic energy, the speed downwind of the rotor results is
lower than the upwind one. As a result, the diameter of the flow tube at the back of the rotor is
greater than that at the front. This behavior is depicted in Figure 2.2.

Thanks to A. Betz, it was discovered that it is impossible to entirely convert the kinetic energy
of a mass of air into mechanical energy. He also discovered that there is an upper limit to the
amount of kinetic energy that can be converted. Due to this reason, Betz introduced a parameter,
called the power coefficient Cp, which can be calculated as a function of the ratio of the speed of
the wind wake behind the rotor to the speed ahead. The power produced by a wind turbine is
thus [7]:

Pwtg =
1

2
CpρSrV

3
0

The optimal value of this parameter is 0.593 [8]. As a result, convertible energy accounts for
roughly one-third of wind energy. Therefore, it is not possible to design a turbine with a higher
value of the power coefficient. But, this condition occurs for a rotor under ideal conditions when
the outgoing air velocity is one-third of the incoming air velocity and the rotor is infinitely thin.
Today’s turbines have power coefficients of about 70-80% of the theoretical limit. On a WTG,
there are two primary controls:

• Blade pitch angle control: a blade is similar to a wing. The surface area available to the
incoming wind is critical for increasing aerodynamic forces on the rotor blades. The angle
of attack α is defined as the angle between the incident flow vector and the plane of the
blade segment, while the pitch angle β represents the angle between the plane of the blade
segment and the plane of the rotor. Blade pitch angle control can rotate the blades around
their axis in such a way as to have, for each wind speed, an optimal blade angle of attack
(Figure 2.3).

• Yaw control: by rotating the nacelle, the turbine is oriented, actively or passively, in the
direction of the wind to maximize the efficiency of the energy conversion process (Figure
2.3).

Both types of controls are depicted in Figure 2.3.
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The rotor blades utilize either the lift or drag principle to capture energy from air masses in
motion. The design of the lift blades is based on the same concept that allows airplanes, kites,
and birds to fly, providing a lifting force perpendicular to the direction of motion. Essentially,
the rotor blade is an aerofoil, or wing comparable in form to an airplane wing. As the blade
slices through the air, a disparity in wind speed and pressure is produced between the upper and
bottom sides of the blade. The stronger pressure at the bottom surface ”lifts” the blade upward,
by design this force has to be as great as possible. This lift is transformed into a rotating motion
when the blades are joined to a central rotational axis, as in a wind turbine rotor. This lifting
force is opposed by a drag force that is perpendicular to the direction of motion and generates
turbulence around the trailing edge of the blade as it slashes through the air. This turbulence
has a braking effect on the blade, thus it has to be minimized. The combination of lift and drag
generates the rotor’s propeller-like rotation.

The rotor blades revolve around a center bearing, making a complete 360-degree circle. There-
fore, as the swept area of the rotor rises, the area it covers increases proportionally with the radius
squared. Therefore, doubling the length of a turbine’s blades results in a quadrupling of its surface
area, allowing it to capture four times as much wind energy. However, this significantly increases
the wind turbine’s size, weight, and eventually cost. The rotational tip-speed of the rotor resulting
from the angular velocity is a significant aspect of the blade length. The greater the length of the
turbine blade, the faster the spinning of the tip at a given wind velocity. Similarly, for a given
length of rotor blades, the greater the wind speed, the faster the spin. Why then can’t a wind
turbine design have extremely long rotor blades that operates in a windy area and generates a
great deal of free power from the wind? The explanation is that there is a point at which the
length of the rotor blades and the wind speed diminish the output efficiency of the wind turbine.
This is why many designs for larger wind turbines revolve at significantly slower rates. Efficiency
is a function of how quickly the rotor tip rotates at a given wind speed, generating a constant
wind speed to tip ratio known as the ”tip-speed ratio”, which is a dimensionless unit used to
maximize rotor efficiency. In other terms, ”tip-speed ratio” (TSR) is the ratio of the revolving
blade tip speed in revolutions per minute (rpm) to the wind speed in kilometers per hour (Kph)
or miles per hour (mph) (mph).

Figure 2.3: From left to right: blade pitch angle and yaw controls.
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2.1.5 Power Curve

A power curve is a graphical representation of the relationship between wind speed and the power
output of a wind turbine. It shows how the power output of a wind turbine changes with changes
in wind speed. Its shape is unique to each wind turbine and is determined by several factors
[9], including the size and design of the blades, the height of the tower, and the efficiency of the
generator.
The power curve can be used to determine the wind speeds at which the wind turbine will operate
most efficiently and generate the maximum power output. It can also be used to identify any
operational limitations of the wind turbine, such as cut-in and cut-out speeds, and to optimize
the performance of the wind turbine by adjusting its operating parameters.

The shape of the power curve can vary depending on the type of wind turbine and its operating
conditions [10], but typically shows an exponential increase in power output with increasing wind
speed up to a peak, after which the power output levels off and eventually decreases with higher
wind speeds. In general, wind turbines are designed to generate maximum power at wind speeds
between 8 and 25 meters per second (m/s). Typically, the power curve of a wind turbine consists
of three regions: the cut-in region, the rated region, and the cut-out region (Figure 2.4).
Each region is limited by an homonymous speed, those speeds are described below.

Cut-in-speed

The cut-in speed is the wind speed at which the turbine starts to generate power.
When the wind speed is below this threshold, the wind turbine’s blades cannot revolve quickly
enough to produce power. After the wind speed reaches the cut-in speed, the blades of the turbine
will begin to revolve and produce electricity. Up to a certain point, the quantity of electricity
generated by the turbine grows as the wind speed increases.

Rated output speed

The rated output speed is the rotational speed at which a WTG generates its maximum rated
output power.
Typically, the rated output speed is determined by the turbine manufacturer based on the design
and performance parameters of the turbine. It is a crucial characteristic for wind turbines since it
controls the speed at which the generator achieves its maximum power output and, therefore, the
quantity of electricity the turbine can produce. Typically, the rated output speed is less than the
maximum speed that the turbine’s blades can achieve. This is due to the fact that the generator is
intended to function most efficiently within a specified speed range, and the turbine management
system is designed to keep the turbine’s speed within this range. By running at its rated output
speed, the generator may produce the most power while incurring the least amount of component
wear and tear.

Cut-out-speed

The cut-out speed is the wind speed at which a wind turbine automatically shuts down to prevent
damage.
Wind turbines have a maximum working speed, which corresponds to the speed at which they
generate the most electricity. Nevertheless, when wind speeds surpass this maximum working
speed, the turbine’s blades might spin too quickly, resulting in significant wear and tear on the
generator and gearbox. This may result in damage and, in severe situations, complete turbine
failure. A cut-out speed is chosen to prevent damage to the turbine. When the wind speed reaches
the cut-out speed, the control system of the turbine activates a device that slows and shuts down
the turbine to prevent damage. Typically, the cut-out speed is set above the maximum working
speed to give a safety buffer and guarantee that the turbine shuts down prior to being exposed to
damaging wind speeds.
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Figure 2.4: Ideal power curve, showing the different regions and speeds.

2.2 Condition-Based Maintenance

Condition-Based Maintenance, often known as CBM, is a technique for preventative mainte-
nance that determines when maintenance should be conducted by monitoring the condition of the
equipment and systems in real time. It makes it possible to plan maintenance depending on the
current conditions, rather than planned maintenance (PM). This last strategy is conducted at pre-
determined intervals, while CBM is performed only when a decline in the equipment’s condition
is recognized [11]. This extends the time between maintenance fixes compared to preventative
maintenance, as maintenance is performed when needed.

To be successful, CBM operation, must also include a number of additional components.
This involves establishing a system for scheduled maintenance that allows to examine equipment,
identify abnormalities, and trigger prompt follow-up repair orders. This is an advantage over the
alternatives. This strategy may result in a more effective use of resources as well as lower expenses
associated with upkeep. CBM gathers data and provides information on the status of equipment
through the use of a variety of technologies and procedures [12], including as vibration analysis,
thermal imaging, and oil analysis.
There are a few different approaches of data collection that may be used for CBM:

• Vibration Analysis refers to the monitoring of the vibration levels of machinery and using
software to analyze the data in order to look for any odd patterns or changes that may signal
the presence of a possible issue.

• Thermal imaging is a technique that involves the use of thermal cameras to locate and
quantify heat patterns on various pieces of equipment and systems. These heat patterns
can serve as an indicator of regions of increased wear or probable failure.

• In the process of oil analysis, samples of oil are obtained from different pieces of equipment
and analyzed in order to look for evidence of wear and contamination while also determining
the state of the lubricating oil.

• Ultrasonic testing refers to a technique that employs sound waves with a high frequency
in order to examine the state of the apparatus being tested and locate any potential issues.

• Acoustic testing can be used to detect gas, liquid or vacuum leaks.

• Software for Predictive Maintenance are used to evaluate and interpret data from
sensors and other monitoring equipment in order to forecast when maintenance will be
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necessary. These are some of the most prevalent approaches that are taken in the process
of collecting data for CBM. The approach that is used is determined by the specific needs
for the piece or the type of equipment that is being monitored.

2.2.1 Predictive Maintenance Software

The software known as ”Predictive Maintenance” is a subcategory of CBM software. It is designed
to assist in determining when components of a system or piece of equipment are likely to fail by
performing real-time monitoring and analysis of data collected from sensors and other monitoring
devices. The program uses algorithms and machine learning to do an in-depth analysis of the data
collected on the operation of the equipment, how it is being used, and the surrounding environ-
ment in order to predict and prevent any issues. This enables maintenance teams to proactively
address possible issues and plan maintenance at appropriate periods, which in turn reduces the
chance of unexpected downtime and improves the reliability of the equipment [13].
Software that does predictive maintenance can also assist in the optimization of maintenance
procedures, the reduction of maintenance costs, and the improvement of overall equipment per-
formance and efficiency.

2.2.2 Key Performance Indicators

Key Performance Indicators (KPIs) are the critical (key) measurable indications of progress to-
ward a desired outcome. KPIs serve as a focal point for strategic and operational improvement,
give an analytical basis for decision making, and assist in focusing attention on what is most
important [14].
In CBM, KPIs are essential for measuring the efficacy and efficiency of the maintenance approach.
They give a quantifiable measurement of the CBM program’s performance and can aid in identi-
fying areas for enhancement.
KPIs are a set of metrics that organizations use to measure progress toward specific goals. In
the context of CBM, they can be used to measure equipment reliability, downtime, maintenance
costs, and other performance-related factors.

In WTGs, KPIs are essential for measuring the effectiveness and efficiency of the maintenance
strategy [15]. They give a quantitative measurement of the WTG’s performance and can assist
in identifying areas for improvement.
Among the essential KPIs for WTGs are [16]:

• Availability: It measures the percentage of time that a WTG is available to produce power.
A higher availability means that the WTG is producing more energy and generating more
revenue.

• Capacity factor: It measures the percentage of energy that a WTG produces compared to
its rated capacity. A higher capacity factor means that the WTG is producing more energy
and generating more revenue.

• Mean Time Between Failures (MTBF): It measures the average time between failures
of the WTG. A higher MTBF means that the WTG is more reliable.

• Mean Time to Repair (MTTR): It measures the average time it takes to repair a WTG
after a failure. A lower MTTR means that the WTG can be returned to operation more
quickly, which increases availability.

• Energy production: It measures the amount of energy produced by the WTG over a
period of time. A higher energy production means that the WTG is producing more energy
and generating more revenue.

• Wind speed: It measures the average wind speed at the site. A higher wind speed means
that the WTG can produce more energy.
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• Turbine efficiency: It measures the efficiency of the WTG in converting wind energy into
electrical energy. A higher turbine efficiency means that the WTG is producing more energy.

These KPIs can be calculated by collecting and analyzing data pertaining to the WTG’s per-
formance over time. For instance, availability can be determined by dividing the entire operating
time by the sum of the working time and the downtime. Likewise, the capacity factor can be
determined by dividing the total energy produced by the WTG’s rated capacity.
Overall, KPIs are an essential aspect of WTG maintenance since they enable firms to track suc-
cess and identify areas for development. By monitoring KPIs on a regular basis, enterprises can
guarantee that their WTGs are functioning at maximum capacity and earning the most income
feasible.

2.3 Time Series Theory

Time series is a statistical method for analyzing data gathered at regular periods across time.
Time series data is a set of successive observations that may be used to model and predict trends
and patterns across time.
Finance, economics, meteorology, and engineering often use time series data to comprehend and
anticipate the behavior of a variable over time [17]. Examples of time series data that may be
used to anticipate future trends include stock prices, weather patterns, and sales information.
The study of time series permits the identification of patterns and trends in data across time, as
well as seasonal or cyclical fluctuations, outliers, and other abnormalities. This data may be used
to create models that can predict the future values of the variable under study.
Real-world time series data can be challenging to work with due to several factors that can
complicate analysis and prediction [18]. Here are some of the main problems with real-world time
series data and some related terms:

• Non-stationarity: Many real-world time series are non-stationary, meaning that their sta-
tistical properties change over time. This can make it difficult to apply traditional time series
analysis techniques, which assume that the statistical properties of the data are constant
over time.

• Missing data: Time series data can often contain missing values, which can create gaps in
the data and make it difficult to model and predict.

• Outliers: Time series data can also contain outliers, or extreme values that are far outside
the normal range of the data. These outliers can distort statistical analyses and make it
difficult to accurately model and predict future values.

• Seasonality: Many time series exhibit seasonality, or patterns that repeat over fixed periods
of time (e.g. daily, weekly, or yearly cycles). Seasonality can complicate analysis and
prediction by introducing complex patterns that must be accounted for in the models.

• Noise: Time series data can also contain noise, or random fluctuations that are unrelated
to the underlying process being measured. Noise can make it difficult to identify meaningful
patterns in the data and can lead to overfitting of models.

Real-time series can be decomposed into different components by separating time series data
into its constituent factors, which can aid in identifying the data’s underlying patterns and cor-
relations. A time series is decomposed by separating it into three main components:

• Trend: The trend component of a time series represents the long-term direction or pattern
of change in the data. It can be upward, downward, or flat, and it reflects the underlying
behavior of the series over time.

• Seasonality: The seasonality component of a time series represents the regular and pre-
dictable fluctuations that occur within a year or over a shorter period. It reflects the
systematic changes that occur due to external factors such as weather, holidays, or cultural
events.
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Figure 2.5: Three days of data for the ambient temperature measured by a WTG, separated in
trend, seasonality and noise components. The time series appear to be periodic in each day with
a slight increase in the overall temperature. Trend is computed with a 1 day centered moving
average. Seasonality is obtained by considering the average measure at each timestamp in each
day.

• Noise: The noise component of a time series represents the random or irregular fluctuations
that cannot be attributed to any known factors. It reflects the unpredictable or unexplained
variations in the data.

By identifying and modeling these components (an example of which is reported in Figure 2.5),
a deeper understanding of the behavior of the time series can be understanded and provide more
precise forecasts or predictions. Using the trend and seasonality components, for instance, a
forecasting model that accounts for the underlying patterns of the data can be created, while
filtering out the noise component helps to limit the impact of random fluctuations on the forecast.

2.3.1 Moving Average

In time series analysis, a moving average is a technique for smoothing out fluctuations in the data
by calculating the average of a fixed number of consecutive data points. The resultant numbers
indicate a moving or rolling average of the original data.

There are two primary moving average types:

• Simple Moving Average (SMA) is generated by averaging a specified number of consec-
utive data points. A 5-period SMA, for instance, would be the average of the past 5 data
points. Once new data points become available, the SMA is recalculated by moving the data
point window forward and including the most recent data point. An example is reported in
Figure 2.6.

• Weighted Moving Average (WMA) gives more weight or emphasis to specific data points.
Using a weighted average technique that gives more weight to more recent data points and
less weight to older data points may accomplish this.
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Figure 2.6: One month of data for the wind speed measured by a WTG. Each plot shows the
moving average with a specific time window length obtained from 10 minutes time series data.
The overlap of the three time series demonstrates the smoothing effect, which progressively remove
the oscillations as the time window increases.

Moving averages are commonly used in time series analysis for several purposes:

• Smoothing: Moving averages can help to smooth out fluctuations in the data and highlight
underlying trends or patterns.

• Forecasting: Moving averages can be used to forecast future values of the time series by
extrapolating the trend or pattern observed in the historical data.

• Detecting anomalies: Moving averages can be used to identify anomalies or outliers in
the data by comparing the actual values to the moving average values.

Overall, moving averages are a simple but effective technique for analyzing time series data
and can be used in combination with other techniques for more advanced analysis and prediction.

2.3.2 Rolling Window

The input and output sequence formats used for the problem under consideration in this thesis
are created using the rolling window principle. A sequence of values is used as input while a single
value is returned as output. The method used for data transformation is the sliding window or
moving window. According to this principle, the data is divided into windows of a certain length,
where each successive window sequence starts with the value one step later. For this experiment,
the window length was set to 2 hours or 12 timestamps (equivalent to 10-minute averaged values).
The timestamp represents a digital record of the time of an event. The sliding step is 1. The
sliding window principle is shown in Figure 2.7.
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Figure 2.7: Rolling window method for a timeseries of n timestamps in which n−(L−1) sequences
of lenght L = 2 are made.

2.4 Machine Learning

Machine learning (ML) is an area of Artificial Intelligence (AI) concerned with the creation of
algorithms that can learn from data and make predictions or judgments based on that data.
The purpose of machine learning is to develop intelligent systems capable of improving their
performance over time without being explicitly programmed.
Algorithms that employ machine learning learn from examples or data and use statistical methods
to detect patterns and relationships in the data. Once a model has been trained, it can be applied
to new data to generate predictions or judgments.
In contrast, AI is a broad field that incorporates a variety of methodologies and approaches for
developing intelligent systems. Machine learning is one of the numerous subfields of artificial
intelligence, alongside natural language processing, computer vision, and robotics.

2.4.1 Learning Paradigms

ML is frequently combined with other AI approaches to construct intelligent systems capable
of complicated tasks such as speech recognition, natural language comprehension, and real-time
decision making. Hence, machine learning is a crucial aspect of artificial intelligence, and the two
sciences are tightly related. Machine learning can be categorized into three main distinct groups
based on the learning strategy [19]:

• Supervised learning (SL) is a type of ML in which the model learns to make predictions based
on labeled samples. Labeled data is data that has already been categorized or labeled with
the appropriate output. In supervised learning, an algorithm is taught using a collection of
inputs and outputs. The objective is to discover a mapping function capable of predicting the
outcome of fresh, unobserved inputs. Regression and classification difficulties are examples
of supervised learning.

• Unsupervised learning (UL) is a type of ML where the model discovers patterns in unla-
beled data. The term ”unlabeled data” refers to information that lacks a preset output or
classification. In unsupervised learning, the algorithm is trained on a collection of inputs
for which there are no outputs. The objective is to discover the underlying data structure
and group comparable data points together. Unsupervised learning includes clustering and
dimensionality reduction as examples.

• Reinforcement learning (RL) is a sort of ML in which a model learns by interacting with its
environment and gets rewards or penalties as feedback. Its objective is to discover a strategy
or collection of activities that maximizes the cumulative reward over time. Robotics and
game play are examples of reinforcement learning.

There are also hybrid approaches, such as semi-supervised learning, which combines labeled and
unlabeled data, and self-supervised learning, which uses unsupervised learning to pretrain a model
before fine-tuning it on a supervised learning task.
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Regression and Classification

Based on the desired output, supervised algorithms can be divided into:

• Classification: Is a process of categorizing or arranging things into various classes or cate-
gories based on their qualities or traits. In machine learning and data science, classification
refers to the process of creating models that can learn to assign incoming data items to one
of several predefined categories depending on their characteristics.
The objective of classification issues is to create a predictive model that can learn from
labeled data and accurately categorize fresh, unseen data points into one of the preset cat-
egories. Several applications, including image recognition, spam filtering, fraud detection,
and sentiment analysis, make extensive use of classification.

• Regression: Is a statistical technique employed to determine the relationship between a
dependent variable and one or more independent variables. The fundamental objective of
regression analysis is to evaluate the connection between the dependent variable and the
independent variables and make predictions about the first based on the values of the second.
Regression analysis is utilized in numerous disciplines, including economics, finance, social
sciences and engineering. In machine learning, regression is a supervised learning technique
used to predict the continuous numeric values of a dependent variable based on one or more
independent factors.

Clustering, Dimensionality Reduction and Anomaly Detection

There are numerous unsupervised learning strategies, including:

• Clustering: Clustering is a process that involves grouping together comparable data items
based on their resemblance. The objective is to discover patterns and structures in the data
without preconceived labels or classifications. Some clustering algorithms examples [20] are
k-means, hierarchical clustering, and DBSCAN.

• Dimensionality reduction: Dimensionality reduction is a technique that reduces the
number of variables or features in a dataset while maintaining the underlying structure of
the data. The objective is to eliminate superfluous or irrelevant characteristics and simplify
the data representation. Dimensionality reduction strategies include techniques such as
principal component analysis (PCA) [21] , t-SNE [22], and autoencoders.

• Anomaly detection: Anomaly detection is a technique that identifies data points in a
dataset that are exceptional or rare. The objective is to recognize patterns that depart from
the norm and may signal unexpected behavior or occurrences. Algorithms for detecting
anomalies are isolation forest [23], local outlier factor (LOF), and autoencoders.

Types of Anomaly Detection

Anomaly detection can be categorized into three main types: supervised, unsupervised, and semi-
supervised.

• Supervised anomaly detection: In this type, the algorithm is trained on labeled data,
where each data point is labeled as either normal or anomalous. The algorithm then uses this
labeled data to classify new data points as either normal or anomalous. Supervised anomaly
detection is useful when there is a large amount of labeled data available for training.

• Unsupervised anomaly detection: In this type, the algorithm is trained on unlabeled
data, where the data points are not labeled as normal or anomalous. The algorithm then
tries to identify patterns in the data that are different from the majority of the data points,
which are considered anomalies. Unsupervised anomaly detection is useful when there is no
labeled data available for training.
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• Semi-supervised anomaly detection: In this type, the algorithm is trained on both
labeled and unlabeled data. The labeled data is used to train a classifier to identify normal
and anomalous data points, while the unlabeled data is used to learn the underlying patterns
in the data. Semi-supervised anomaly detection is useful when there is a limited amount of
labeled data available for training. It’s worth noting that unsupervised anomaly detection
is more challenging than supervised anomaly detection because there is no labeled data
to guide the learning process. The algorithm must identify anomalies solely based on the
patterns and characteristics it learns from the unlabeled data. Therefore, it’s important
to carefully choose the features and techniques used for unsupervised anomaly detection to
ensure that the algorithm can effectively identify anomalies in the data.

Each method of anomaly detection has benefits and drawbacks, and the choice of which type
to employ relies on the nature of the problem and the data provided. When labeled data is
available, for instance, supervised anomaly detection is more accurate than unsupervised anomaly
detection. Nevertheless, it may be less effective at detecting novel forms of abnormalities that
were not present in the labeled data. Unsupervised anomaly detection, on the other hand, can
be more effective at detecting novel anomalies, but it may yield more false positives and false
negatives.

In our test case, unsupervised anomaly detection is the appropriate approach. If a large
number of anomalies and strange behavior is provided and there is no way in how to label them,
then supervised anomaly detection is not feasible.

Classification and Anomaly Detection: Similarities and Differences

Binary classification and anomaly detection are two machine learning techniques used for different
purposes, although they may seem similar at first glance. Both techniques involve making a
decision based on input data, but they differ in terms of the goal of the analysis, the nature of
the data, and the techniques used to analyze it.

Binary classification is used to classify data into one of two classes or categories. For example,
in medical diagnosis, binary classification can be used to determine if a patient has a certain
disease or not. In this case, the two classes are ”disease” and ”no disease”. Binary classification
involves training a model on a labeled dataset in order to predict the class of new, unseen data.
The goal of binary classification is to minimize the number of misclassifications, which are the
cases where the model assigns the wrong class.

Anomaly detection, on the other hand, is used to identify rare events or observations that
deviate significantly from the expected behavior of a system. In contrast to binary classification,
anomaly detection is often an unsupervised learning technique, where the data is not labeled as
normal or anomalous. it can be used in various domains, such as cybersecurity, fraud detection,
and predictive maintenance. Its goal is to detect the unusual or rare events, rather than classify
data into specific categories.

One of the key differences between binary classification and anomaly detection is the nature of
the data. In binary classification, the data is often balanced, meaning that the number of instances
in each class is roughly equal. In anomaly detection, the data is typically imbalanced, where the
majority of observations are normal and only a small proportion are anomalous. This means
that standard classification techniques may not work well for anomaly detection, and specialized
techniques such as outlier detection, clustering, or density-based methods may be needed.

Another key difference is in the evaluation of the models. In binary classification, the models
are typically evaluated using metrics such as accuracy, precision, recall, and F1 score. In anomaly
detection, the evaluation is often more challenging because the dataset is imbalanced, and the true
labels are not known. Therefore, evaluation metrics such as the area under the receiver operating
characteristic curve (AUC-ROC) or the area under the precision-recall curve (AUC-PR) are used
to measure the performance of the model.
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Figure 2.8: Schema representing the artificial neuron with inputs and outputs. In the process, an
input xn is multiplied with a set of weight wn with summed with the bias b, all aggregated by
a function Σ. The output from the aggregate function is the input of the activation function ϕ
with output y.

2.4.2 Artificial Neural Network

Neural networks are a machine learning technique that are based on the structure and function
of biological neurons. It is made up of interconnected artificial neurons that transmit and process
information via a network of weighted connections. Neural networks are employed for a variety
of tasks, such as pattern recognition, classification, regression, and prediction.
The fundamental component of a neural network is an artificial neuron, which is a mathematical
function that accepts one or more inputs, computes a weighted sum of those inputs, and applies
an activation function to generate an output. Training is essential to determine ites weights and
activation function.

The concept of neural networks dates back to the 1940s, but it wasn’t until the 1980s and 1990s
that significant advancements were made in creating effective training algorithms and architectures
for neural networks. Since then, neural networks have been utilized in numerous applications,
such as image recognition [24], speech recognition [25], natural language processing [26], and
autonomous vehicles [27]. There are numerous types of neural network models, each with its own
architecture and training algorithms that make them suitable for a variety of tasks. Examples
of common neural network types include Feed-Forward Neural Network (FNN), recurrent neural
networks and convolutional neural networks.

Adjusting the weights of their connections based on the error signal generated by the cost
function is how neural networks learn. This method is commonly referred to as supervised learning
because it requires a labeled dataset to train the network. Autoencoders and generative adversarial
networks are two examples of unsupervised learning techniques that can be used to train neural
networks.
The number of layers, the number of neurons in each layer, the learning rate, and the activation
function are among the hyperparameters that must be set prior to training neural networks.
Selecting the appropriate hyperparameters is crucial for achieving good performance and avoiding
overfitting and underfitting [28].

Using a technique known as backpropagation, neural networks are trained by iteratively adjust-
ing the weights of the connections between neurons based on the difference between the network’s
predicted and actual outputs for a given set of training data [29]. The objective of training is to
minimize a cost function that measures the gap between predicted and actual outputs.
The gradients are then employed to update the weights in the opposite direction of the gradient,
thereby decreasing the cost function. The learning rate is a hyperparameter that controls how
frequently the weights are updated during each iteration of backpropagation. The cost function
is a function that measures the gap between the predicted and actual outputs for a given set of
training data.

In Figure 2.8 the structure of an artificial neuron is shown alongside the description of its
logic. Each of the n inputs, represented by x1, x2, xn, is multiplied by its relative weight and the
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result is added with a value called bias to obtain the net input function Σ. The bias allows for
the introduction of a shift into the activation function [30]. The activation function determines
the calculation of the output. The result proceeds to the activation function ϕ, which determines
the calculation of the output and if a neuron should be activated or not. The scope is to decide
whether or not the input of the neuron provided to the network is significant during the prediction
process.

Artificial Neural Network is composed of multiple neurons called nodes connected to each
other through links called synapses. A simple ANN consists of at least three layers of simple
neurons. The first layer, called the input layer, is followed by the hidden layer in the middle and
an output layer. The neurons in the layers are interconnected and a weight is assigned to each
connection.

During the training phase, the output values are compared with labels and the result is called
the loss function or cost function. The loss function is used in the back-propagation process to
adjust the output results, which means that the error in the output layer is carried back through
the neural network. Instead, during the testing phase, a new set of data is sent to the neural
network and the output error value represents the value of the metric. ANNs are part of supervised
learning as they normally require labeled data to learn the task to do.

Perceptron: The Foundation of ANN

The concept of ANN was first proposed by Warren McCulloch and Walter Pitts in 1943 and was
then implemented by Frank Rosenblatt in 1958 as perceptron.
A perceptron is a type of artificial neural network that can be used for supervised binary classi-
fication tasks. It consists of a single layer of neurons, where each neuron computes a weighted
sum of its inputs and applies a nonlinear activation function to the result. The output of the
perceptron is then passed through a threshold function to generate the final binary classification
decision.

Let x = (x1, x2, ..., xn) be the input vector of n features, and w = (w1, w2, ..., wn) be the
weight vector. The weighted sum of inputs is computed as:

z =

n∑︂
i=1

wixi

Then, a nonlinear activation function f is applied to z to obtain the output y:

y = f(z)

Common activation functions used in perceptrons include the step function, sigmoid function, and
ReLU function. Finally, the output y is passed through a threshold function g to generate the
binary classification decision:

ŷ = g(y)

The threshold function is typically defined as:

ŷ =

{︄
1, if y ≥ θ

0, otherwise

where θ is the decision boundary or threshold value.

The perceptron learning algorithm involves updating the weights based on the error between
the predicted output and the true label. Let d be the true binary label of the input x. The error
e is defined as:

e = d− ŷ

The weights are then updated according to the following rule:

wi ← wi + ηexi
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Hidden Layers

Output Layer

Input Layer

… … …

Figure 2.9: Generic Multilayer Perceptron configuration.

where η is the learning rate, which controls the step size of the weight updates. In summary, the
perceptron is a simple but powerful algorithm for binary classification tasks. It involves computing
a weighted sum of inputs, applying a nonlinear activation function, and passing the output through
a threshold function to generate the final binary classification decision. The weights are updated
based on the error between the predicted output and the true label using a simple rule.

Deep Learning and Multilayer Perceptron

Deep learning is a subfield of machine learning that involves training neural networks with multiple
layers to learn and make predictions from large datasets. A neural network is a collection of
connected nodes (neurons) that are interconnected and structured in layers. The layers closest to
the input data are called input layers, and the layers closest to the output predictions are called
output layers. The layers in between are called hidden layers [31].

The Multilayer Perceptron (MLP) is a type of neural network that consists of multiple layers
of perceptrons (single-layer neural networks) (as shown in Figure 2.9). The MLP is one of the
simplest and most popular types of FNN. In the hidden layers of an MLP, the perceptrons receive
weighted inputs from the previous layer, apply a non-linear activation function to the sum, and
send the result to the next layer. MLPs are often used for supervised learning tasks, such as
classification and regression, and may be taught via backpropagation.

MLPs are a form of deep learning since they comprise numerous layers of neurons that are
linked. Nevertheless, they are not as deep as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), which are used in deep learning (RNNs). Nonetheless, MLPs can still
be very effective for certain tasks and are relatively easy to implement and train.

2.4.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are ANNs that, differently from FNNs which only admit
connections between nodes in different layers, allow connections even within the same layer. This
characteristic is depicted in Figure 2.10. In RNNs, nodes can also admit loops and/or can also
be connected with neurons from a previous layer. This feature allows RNNs to ”remember” the
previous input while processing a new one. In an RNN network, the output of a neuron can
influence both itself and other neurons at a later time, which in turn will again interfere with the
behavior of the neuron by forming a loop.

An RNN network can be represented by a cell with a loop. Through a network unfolding
operation, depicted in Figure 2.10, the RNN is transformed into a feed-forward one.

An RNN cell is a recurrent network section that preserves an internal state h(t) for each time
instant. A cell consists of a fixed number of neurons and can be considered a kind of layer. In
this network at each instant the output will be ht = f(h(t−1), Xt) where ht depends on the input
Xt and the previous state h(t−1).
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The equations of the RNN states, during the learning process are:

• Hidden state update:
ht = f(Wxhxt +Whhht−1 + bh) (2.1)

• Output computation:
yt = g(Whyht + by) (2.2)

In these equations, xt is the input at time step t, ht−1 is the previous hidden state, W and b are
weight and bias parameters, f and g are activation functions (such as sigmoid, tanh, or ReLU)
[32], and yt is the output at time step t. During training, the parameters W and b are updated
through backpropagation through time (BPTT) to minimize a loss function, such as the mean
squared error or cross-entropy loss. BPTT is a variant of backpropagation that computes the
gradients of the loss with respect to the parameters at each time step, and accumulates them
over the entire sequence. The learning process in an RNN can be prone to the vanishing gradient
problem, where the gradients can become very small as they are backpropagated through time,
making it difficult to learn long-term dependencies. To mitigate this problem, variants of RNNs
have been proposed, such as LSTMs and GRUs, which use gating mechanisms to selectively
update the hidden state and control the flow of information through the cell.

The input and output of RNN models can be single data or sequences in all combinations
(showed in Figure 2.11). Particularly for regression problems, these versions are implemented:

• Many-to-one with a sequence as input and a single time as output.

• Many-to-many with both input and output sequences.

Time series with many inputs suffer from the problem of disappearing or exploding gradients,
and this happens because updating the weights for an output requires numerous multiplications
that cause the weights to tend to zero or infinity [33].

Long Short-Term Memory

Long Short-Term Memory (LSTM ) neural networks are particular RNNs capable of learning de-
pendencies in long time series data, and they solve the problem of the vanishing of gradient Like
all RNNs, LSTMs can be considered as a set of memory cells. The LSTM architecture was firstly
introduced in [34], and the cell main feauture is that it is able to control how much information
to remember from the previous cell, how much information to retain from the current cell, and
how much to inject into the next cell. These tasks are handled by the gates of the cell. (Figure:
2.12). Each LSTM hidden layer has as many hidden cells as the number of time steps. Moreover,
each hidden cell is composed of multiple hidden units. The unit represents the number of neurons
per cell.
The learning process in an LSTM cell involves updating the values of the cell state and hidden

Unfold

xt

yt

Ht H0 H1 … Hp

x1 … x p

y1 … y p

Figure 2.10: Unfolding operation performed on a RNN cell.

21



General Notions

One-to-one One-to-Many Many-to-one Many-to-many Many-to-many

Figure 2.11: Different RNN working modes (and examples), from left to right: One-to-one (no se-
quential), one-to-many (text-to-X generation), many-to-one (sentiment analysis), many-to-many
with different input and output length (machine translation) and many-to-many (data reconstruc-
tion). The red rectangle represent the inputs, while the blue ones the algorithm outputs. The
green rectangle holds the intermediate state.

state based on the input, previous hidden state, and previous cell state. The input gate deter-
mines which information from the input should be added to the cell state, while the forget gate
determines which information from the previous cell state should be discarded. The output gate
determines which information from the cell state should be output as the new hidden state.
The first is the input gate, which determines the information to add to the cell state:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2.3)

Next, is the forget gate, which determines the information to discard from the cell state:

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2.4)

Then, there is the cell state update, which determines the new cell state value:

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (2.5)

Finally, the output gate, which determines the information to output as the new hidden state:

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (2.6)

ht = ot tanh(ct) (2.7)

In these equations, xt is the input at time step t, ht−1 is the previous hidden state, ct−1 is the
previous cell state, W and b are weight and bias parameters, and σ is the sigmoid function. The
tanh function is used to squash the cell state values between -1 and 1, which helps prevent the
vanishing gradient problem.
During training, the parameters W and b are updated through backpropagation to minimize a
loss function, such as the mean squared error or cross-entropy loss. The goal is to learn a set of
weights that can accurately predict the target output given the input sequence.

Figure 2.12: LSTM Cell. Image from [35].
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Gated Recurrent Unit

Firstly introduce in [36], Gated recurrent unit (GRU), is a simplified version of LSTM that was
developed to solve some of its architectural restrictions. Two gates, a reset gate and an update
gate, regulate the information flow inside a GRU (Figure 2.13). The reset gate controls how
much information from the past should be discarded, while the update gate defines how much
information from the present should be added.
The primary distinction between GRU and LSTM is their architectural complexity and gate count.
LSTM contains three gates, a memory cell, and a large number of parameters to learn, whereas
GRU has just two gates and a smaller number of parameters. GRUs are hence easier to train
and require less data to generalize effectively, but they may not perform as well as LSTMs on
memory-intensive complicated tasks.
In fact, both GRU and LSTM are useful for modeling sequential data, and the selection between
the two relies on the specific job and amount of training data.
Just like the LSTM the learning process, involves updating the cell state and hidden state based
on the input. The gates are updated with the following equations:

• Reset gate:
rt = σ(Wxrxt +Whrht−1 + br) (2.8)

• Update gate:
zt = σ(Wxzxt +Whzht−1 + bz) (2.9)

• Candidate hidden state:

h̃t = tanh(Wxhxt + rt(Whhht−1) + bh) (2.10)

• Hidden state update: Hidden state update:

ht = (1− zt)ht−1 + zth̃t (2.11)

In these equations, xt is the input at time step t, ht−1 is the previous hidden state, W and b are
weight and bias parameters, σ is the sigmoid function, and h̃t is the candidate hidden state. The
reset gate rt and the update gate zt are used to control the flow of information in the cell.
During training, the parameters W and b are updated through backpropagation to minimize a
loss function, such as the mean squared error or cross-entropy loss. The goal is to learn a set of
weights that can accurately predict the target output given the input sequence.

Figure 2.13: GRU Cell. Image from [37]
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2.4.4 Autoencoders

An autoencoder (AE) is a type of neural network that can are trained to reconstruct their input
data by first learning a compact representation of the input in a lower-dimensional space, known
as the encoding, and then using this encoding to recreate the original data. An AE architecture
(Figure 2.14) consists of two sub-components: the encoder and the decoder.

The encoder converts an input to a lower-dimensional representation, typically referred to as a
bottleneck or latent space. Typically, the encoder comprises of one or more neural network layers
that perform feature extraction and dimensionality reduction. The lower-dimensional space, which
is the intermediate representation of the input data that an AE learns to extract, may then be
utilized for activities such as visualization, grouping, and further analysis, making it simpler to
comprehend the relationships and patterns in the original data.
Typically, the size of the latent space is substantially lower than the amount of the input data,
allowing the AE to successfully capture the key aspects of the input while disregarding noise. The
choice of latent space size is a crucial hyperparameters in the AE, as it influences the tradeoff
between the quality of the reconstructions and the quantity of information lost during the en-
coding process. In general, a smaller latent space will provide simpler reconstructions with less
information, whereas a larger latent space will produce more comprehensive reconstructions with
a greater danger of overfitting [38].

In symbols, let x ∈ Rn be an input vector, and let z ∈ Rm be the corresponding latent code,
where m < n. The encoder maps the input x to the latent code z using a function fθ(x), where
θ are the learnable parameters of the encoder. Formally:

z = fθ(x)

The decoder translates the representation of the bottleneck back to the original input space.
Typically, the decoder is comprised of one or more neural network layers that conduct feature
expansion and reconstruction. The output layer is the last layer of the decoder, and it has the
same amount of neurons as the input layer. The decoder maps the latent code z back to the
original input space using a function gϕ(z), where ϕ are the learnable parameters of the decoder.
Formally, where x̂ is the reconstructed input:

x̂ = gϕ(z)

The AE is trained by minimizing the reconstruction error between the input x and the recon-
structed input x̂. This is typically done by minimizing the mean squared error (MSE) between
the two:

L(x, x̂) = ||x− x̂||22
The overall objective of the AE is to find the optimal values of the encoder and decoder parameters
θ and ϕ that minimize the average reconstruction error over a set of training examples:

min
θ,ϕ

1

N

N∑︂
i=1

L(x(i), x̂(i))

where N is the number of training examples, and x(i) and x̂(i) are the input and reconstructed
input, respectively, for the ith training example.
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Hidden Layers Output LayerInput Layer

Bottleneck

Encoder Decoder

Figure 2.14: Simple AE architecture, with 3 hidden layers. The encoder network is in charge of
transforming the 5 dimensional input in the corresponding 3 dimensional latent space representa-
tion, while the decoder recovers the original dimensionality from the bottleneck layer.

Autoencoder for time series reconstruction

In time series reconstruction, an AE can be taught a compact representation of the underlying
patterns and dependencies in the data by being trained on a subset of the time series. This
encoding can then be used to rebuild missing or invisible time series values.
A typical AE design for time series reconstruction consists of an encoder network that maps the
input time series to a lower-dimensional representation and a decoder network that maps the
encoding back to the original time series. The network is trained to minimize the difference
between the original and reconstructed time series, which is defined as the loss function.
AE can be used to rebuild missing or corrupted data in numerous forms of time series data,
including financial, ecological, and meteorological time series [39]. They have been demonstrated
to improve the precision of time series reconstruction and can be utilized as a preprocessing step
in other time series analytic jobs. AEs are ideally suited for time series analysis due to their
ability to capture nonlinear relationships and patterns in the data.

AEs have been widely used in time series data analysis, and have been applied to a variety of
tasks, including:

• Anomaly detection: AEs can be used to identify anomalies in time series data, such as
unusual patterns or deviations from normal behavior [40].

• Forecasting: AEs can be used for time series forecasting, such as predicting future values
of a given time series.

• Dimensionality reduction: AEs can be used to reduce the dimensionality of time series
data, allowing for more efficient processing and storage.

• Representation learning: AEs can be used to learn compact representations of time series
data, which can be used for various tasks, such as clustering, classification, and visualization.

• Data denoising: AEs can be used to remove noise (Figure 2.15 illustrates different data
in a visual denoise task) from time series data, making it easier to identify patterns and
trends in the data.
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Figure 2.15: Different data in a denoising problem on MNIST dataset. From left to right: original
input data, corrupted data, reconstructed data.

RNN Based Autoencoders

An AE based on Recurrent Neural Networks (RNNs) is a neural network architecture used for
reconstruction of sequence-to-sequence data. It is a variation of the AE architecture used for
unsupervised learning of feature representations from input data [41]. Encoder and decoder net-
works of an RNN-based autoencoder are both constructed of RNNs, which are used to encode
and decode sequential data.

An RNN-based autoencoder’s design consists of two major components: an encoder network
and a decoder network. The encoder network receives a series of data as input and encodes it us-
ing an RNN into a lower-dimensional representation (latent space). The decoder network receives
the encoded sequence as input and uses another RNN to recover the original sequence. During
training, the reconstruction error, which quantifies the difference between the original sequence
and the rebuilt sequence, is commonly employed as the loss function.
Formally, the equations for the RNN-based autoencoder training process are the following: En-
coder network:

ht = fe(Wxhxt +Whhht−1 + bh) (2.12)

z = hT (2.13)

Decoder network:
ht = fd(Wzhz +Whhht−1 + bh) (2.14)

x̂t = g(Whxht + bx) (2.15)

In these equations, xt is the input sequence at time step t, ht−1 is the previous hidden state, W
and b are weight and bias parameters, fe and fd are activation functions used in the encoder and
decoder RNNs respectively, z is the encoded sequence, x̂t is the reconstructed output at time step
t, and g is an activation function used in the output layer.
During training, the parametersW and b are updated using backpropagation through time (BPTT),
which computes the gradients of the reconstruction error with respect to the parameters at each
time step and accumulates them over the entire sequence.

AE based on RNNs have been implemented in a variety of applications, including speech
recognition, machine translation, and anomaly detection in time series data. They may also be
developed to more complicated designs, such as variational autoencoders [42] and adversarial
autoencoders [43], which employ additional regularization and adversarial training approaches to
increase the quality of the learnt representations.

RNN Returning Hidden States

When stacking several RNN layers, the decision between returning the complete sequence or
simply the hidden state is driven by the goal to minimize the dimensionality of the input to
the subsequent layer. By returning the whole sequence from each layer, all hidden states of the
current layer are transmitted as input to the subsequent layer, resulting in a high-dimensional
representation. Nonetheless, this method might be advantageous if the information included in
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Input sequence

(n, t) Intermediate rep.

(h1, t)
Latent code

(t)
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(h1, t) Encoder II

(h2, t)

returning state

returning sequence
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(n, t)
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(g2, t)
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(g1, t)
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(g1, t)

repeat input

Figure 2.16: Example schema of the data flow in an RNN-based AE. Starting from an input
sequence of n measures and t timesteps, data is processed through the different encoder layers.
In the first encoder sequence are return, while in the second one, only the final state becomes
the latent code. An RNN layer with h units produces output of h measures and t timesteps,
transforming the first dimension and leaving unchanged the one representing time. The last layer
of the AE, in this case, is a RNN layer with n units, instead of h1 dimension. This choice has been
done to reduce the image size but the last decoder layer can also be similar to the first encoder
layer with number of units. In that other case the last layer will be a dense one, which has to
map the decoder output to the effective newtork output.

the complete sequence is essential for the final prediction [41]. Returning just the last hidden state
from each layer, on the other hand, minimizes the dimensionality of the input, since only the final
hidden state is transmitted to the next layer (Figure 2.16). This strategy might be effective when
the objective is to capture the overall context of a sequence rather than granular information at
each time step. The trade-off is that some information from the sequence is lost, although this
might be a suitable compromise when the dimensionality of the input is an issue.

Variational Autoencoders

A variational autoencoder (VAE) is a type of generative neural network model [44] that learns to
produce new data by encoding input data into a low-dimensional latent space and decoding the
latent representation back into the original data space.
In a VAE, the encoder converts an input data point x to a typical Gaussian probability distribution
in the latent space. A point in the latent space is then mapped by the decoder to a probability
distribution over the original data space, which is commonly a Gaussian distribution. The network
is trained by optimizing the evidence lower limit, which is a lower bound on the log-likelihood of
the training data (ELBO).
The ELBO may be broken down into two components: reconstruction loss and the KL divergence
between the learnt latent distribution and a previous distribution. The reconstruction loss is a
measure of the network’s ability to reconstruct the input data from the latent representation,
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while the KL divergence term encourages the network to learn a latent distribution that is close
to the prior distribution [45].
In symbols, ELBO can be written as:

ELBO = Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z))

where p(x|z) is the decoder probability distribution, q(z|x) is the encoder probability distribution,
and p(z) is the prior distribution over the latent space.

The objective of a VAE is to discover a compact and useful representation of the input data,
which can then be used to produce new data samples that are comparable to the training data.
VAEs are often utilized in applications such as the production of images, videos, and text.
Additional loss terms can be added to the VAE objective function to improve its performance for
certain jobs. For instance, the addition of a reconstruction loss term might encourage the VAE to
create more realistic samples. Moreover, a regularization term may be introduced to the encoder
to promote sparsity in the learnt representation. These extra loss terms can aid in enhancing the
VAE’s performance for specific tasks.
The VAE objective function is defined as follows:

LVAE = −Ez ∼ q(z|x)[log p(x̃|z)] + KL(q(z|x)||p(z))

where KL(q(z|x)||p(z)) is the Kullback-Leibler divergence between the encoder distribution and a
prior distribution p(z), which is typically a standard normal distribution. The−Ez∼q(z|x)[log p(x̃|z)]
represents the reconstruction error, while the term KL(q(z|x)||p(z)) is the KL divergence regular-
ization term.

2.4.5 Overfitting

Overfitting is a machine learning issue in in which the output of an analysis corresponds too
closely to a certain data set. It occurs when a model is over-trained on the training data, to the
point that it begins to fit the noise and random changes rather than the underlying patterns (as
shown in Figure 2.17). Consequently, the model may perform well with training data but badly
with validation or test data. This is due to the fact that the model has learnt to memorize the
training data, as opposed to generalizing to new, unknown data.
Overfitting in machine learning can be explained by analyzing the model’s representation of the
prediction-making space. A machine learning model will typically discover a mapping between
input data and output predictions. The space in which this mapping is learned is called the
hypothesis space. This indicates that the model fits the training data too well, leading in a
hypothesis space that is too particular to the training data and does not transfer well to new,
unobserved data.

Overfitting can be caused by a number of factors in machine learning [46], including:

• Complex model architecture: A model with too many parameters relative to the size
of the training data can easily overfit, as it has the capacity to fit the noise in the training
data.

• Insufficient training data: A model trained on a small training dataset is more likely to
overfit, as it may not have seen enough diverse examples to generalize to new, unseen data
[47].

• High model capacity: A model with high capacity, such as deep neural networks, can
overfit more easily, as it has the ability to fit very complex and intricate patterns in the
data.

• Unregularized training: Training a model without regularization can result in overfitting,
as the model will try to fit the training data as closely as possible.

• Overly long training: Training a model for too long can cause overfitting, as the model
may continue to fit the training data even when it has already learned the underlying
patterns [48].
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Using techniques like as regularization as well as a bigger and more varied training dataset helps
avoid or limit overfitting. During training, it is essential to check the model’s performance on a
validation set to detect this issue and make any required modifications.

Underfitting Optimal Overfitting

Figure 2.17: Underfitting and overfitting representation schema in a classification process.

2.4.6 Regulatization

Regularization is a method used to avoid overfitting in neural networks by adding a penalty
term to the loss function. When a model is excessively complicated and learns the noise in the
training data rather than the underlying patterns, overfitting occurs. Regularization aims to
enhance the generalization performance of a model by lowering its ability to learn irrelevant input
characteristics or noise.

Regularization for RNN

The following are examples of common RNN regularization techniques:

• Dropout is a strategy in which a random subset of neurons are momentarily ”dropped
out” or turned off in each forward pass during training. By requiring the network to learn
numerous distinct representations of the input data, this helps prevent overfitting [49].

• L1 and L2 regularizations add a penalty term to the loss function to encourage the
network to have smaller weights. L1 regularization produces sparse weight matrices, whereas
L2 regularization favours small and evenly distributed weights [50].

• Early stopping entails monitoring the network’s performance on a validation set and
terminating the training process when the performance on the validation set begins to
decrease.

• Weight decay is a method of regularization that promotes the network to have smaller
weights by adding a penalty term to the loss function that is proportional to the magnitude
of the weights.

• Data Augmentation increases the quantity of the training data by generating additional
instances by transformations like as rotation, scaling, and inversion. The most effective reg-
ularization strategy relies on the RNN’s architecture and workload, and frequently requires
testing to find. Regularization is an essential part of training RNNs and can significantly
enhance the network’s generalization performance on unknown input.

Denoise Autoencoders

Denoising autoencoder (DAE) is a form of AE that is trained to reconstruct the original, uncor-
rupted input data from a corrupted version of the input [51]. The goal of the DAE is to discover
a robust representation of the input data that can successfully reduce noise.
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In order to reproduce this process, the first step is to generate a version of the input data with
noise: Noise is added to the input data by masking numbers at random, introducing Gaussian
noise or otherwise polluting the data.

In symbols, let x ∈ Rn be a noisy input vector, and let z ∈ Rm be the corresponding latent
code, where m < n. To add noise to the input, a noise function h(·) that corrupts the input in
a controlled way, is introduced. For example, by adding a Gaussian noise with zero mean and
variance σ2 to each element of the input:

x̃ = h(x) = x+ ϵ, ϵ ∼ N (0, σ2I)

The objective function of the problem, as well as the mapping function provided by the
encoder and decoder, are unchanged respect to the previous case. During train the AE learns to
recover the uncorrupted, original input data from the noisy version: which corresponds to reduce
reconstruction loss between the original input data and the reconstructed output.

DAE can be seen of data augmentation strategy. During training, the model is exposed
to many permutations of the input data and learns to recognize the underlying patterns while
ignoring the noise. By training on noisy data, the model is compelled to acquire a more robust
representation of the input data, which might enhance its generalization performance. This is
comparable to the concept of data augmentation, in which the training data is increased by the
application of numerous modifications to the original data [52].

Dropout

Using dropout in a neural network can help prevent overfitting and improve generalization per-
formance by reducing the co-adaptation of neurons, which can lead to over-reliance on specific
features. By randomly dropping out neurons during training (Figure 2.18), the network is forced
to learn more robust and generalizable features, which can improve its performance on unseen
data. Let w be the weights of a network layer with biases and x be the input to the layer. The
output of the layer is given by:

y = f(w · x+ b)

where f is the activation function of the layer and b is the bias term.

To apply dropout to the layer, a dropout mask m is introduced, which is a binary vector of
the same size as the output y. The mask is generated by sampling from a Bernoulli distribution
with a parameter p, which represents the probability of dropping out each neuron. The mask is
then multiplied element-wise with the output y to obtain the masked output ỹ:

m ∼ Bernoulli(p)

ỹ = m⊙ y

where ⊙ denotes element-wise multiplication.

During training, the dropout mask is sampled anew for each forward pass through the layer
to create a different mask for each mini-batch of data. During testing or inference, the mask is
not used, and the full output y is used instead.

Dropout and Overfitting

Dropout may be used as a kind of regularization to minimize overfitting in anomaly or outlier
identification [53]. When training an anomaly detection model, the objective is to identify oc-
currences that differ from the regular behavior pattern as anomalies. Overfitting may result in
a model that is overly particular to the training data and may not generalize to new data well.
In this scenario, dropout might be advantageous by introducing unpredictability into the model,
which reduces the likelihood of the model overfitting the training data. A model that is well-
regularized is more likely to generalize and discover abnormalities in fresh, unobserved data. On
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Figure 2.18: Dropout schema in which 2 neurons (in red) are deactivated. In left image the weight
related to the deactivated neuron are in red while on the right the weights are removed.

the other side, overfitting the model to the training data may result in a model that is too particu-
lar to the training data and does not generalize well to new data, leading to a large number of false
positive or false negative predictions. Overfitting may not be advantageous for anomaly detection
since it may result in a model that is not generalizable and ineffective at finding abnormalities
in fresh data. In conclusion, it is preferable to utilize dropout or other types of regularization in
anomaly or outlier detection models, as it prevents overfitting and increases the generalizability
of the model.

Dropout and DAE

DAE and Dropout in an AE are two regularization strategies in deep learning that are distinct
from one another.
DAE are taught to rebuild a clean input from a noisy version of the same input. During training,
the input is contaminated randomly with zero values (or other types of noise), and the model is
taught to recreate the original, uncorrupted input. The objective is to get a robust representation
of the input that can withstand a certain amount of noise. Dropout, on the other hand, is a
regularization strategy that randomly sets to zero a portion of the network’s activations during
training. This reduces overfitting by preventing the network from depending too much on a single
characteristic. Dropout may be implemented on any network layer, not simply auto-encoders.
DAEs are a form of auto-encoder trained with a particular type of noise, zero values, to acquire
a robust representation, while dropout is a universal regularization approach that can be used to
any layer of a deep learning network to minimize overfitting [51]. DAE may be achieved using
input dropout in the first layer. In this instance, the dropout layer would function as a sort of
noise injection by randomly setting a portion of input activations to zero during training [54].
It is essential to note, however, that dropout is frequently performed at a substantially greater
rate (e.g., 50%) than denoising in DAEs (normally 10%). Typically, the dropout rate for DAEs
is significantly lower to guarantee that sufficient information remains in the input for the model
to develop a usable representation [55].
In conclusion, dropout may be used as a sort of noise injection in a DAE to avoid overfitting and
regularize the model, however the rate of dropout employed for DAEs is often lower than for other
regularization strategies such as dropout in a FNN.

2.4.7 Principal Component Analysis

Principal Component Analysis (PCA) is a method that is commonly utilized in the field of multi-
variate data analysis. Its purpose is to reduce the dimensionality of a dataset while maintaining
the majority of that dataset’s variability. The fundamental objective of principle component anal-
ysis (PCA) is to convert an initial collection of correlated variables into a new set of uncorrelated
variables known as principal components. These principal components are linear combinations of
the variables that were used in the analysis (schema in Figure 2.19).
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Figure 2.19: Process of PCA transformation applied to a dataset with with 3 dimension (x, y
and z). The transformation allows to remove the least representative dimension and keep the
two most diverse component (PC1 and PC2). The dataset has two classes (depending on the
point color) in order to prove that PCA is an unsupervised process, which does not alter the
relationships between classes.

Given a dataset X = [x1,x2, . . . ,xn] ∈ Rd×n, where xi ∈ Rd is the i-th data point, PCA is a
linear dimensionality reduction technique that finds a low-dimensional representation of the data
by projecting it onto a new orthogonal basis. The new basis is chosen to maximize the variance
of the projected data, subject to the constraint that the basis vectors are orthogonal.

More specifically, let W = [w1,w2, . . . ,wk] ∈ Rd×k be the matrix of k orthogonal basis vectors
(i.e., wT

i wj = δij), where k < d. Then, the low-dimensional representation of the data is given
by Z = WTX ∈ Rk×n. The columns of Z are the projected data points in the new k-dimensional
space.

The PCA problem can be formulated as an optimization problem, where variance of the
projected data has to be maximized, subject to the constraint that the basis vectors are orthogonal:

max
W

Var(WTX) subject to WTW = Ik,

where Var(WTX) is the variance of the projected data and Ik is the k×k identity matrix. The
solution to this problem is given by the eigenvectors of the covariance matrix C = 1

nXXT , sorted
in decreasing order of their corresponding eigenvalues. The eigenvectors are the basis vectors wi

and the eigenvalues are proportional to the variance of the projected data along the corresponding
eigenvector.

PCA is utilized on a regular basis in a wide variety of applications including, but not limited to,
image processing, biometrics, finance, bioinformatics, and engineering. In the context of anomaly
detection, PCA can be utilized to identify unusual patterns in multivariate time series data
through the process of comparing the reconstruction error of the original data to the reconstruction
error of the reduced-dimensionality data. This is accomplished by comparing the original data to
the reduced-dimensionality data [56].

In order to use PCA for anomaly detection [57], it must be applyed PCA to the initial mul-
tivariate time series data in order to acquire a set of principle components. This will allow us
to use PCA for anomaly detection. According to the amount of variability in the data that each
principle component explains, the principal components are ranked as follows: the first principal
component explains the greatest variability, followed by the second principal component, which
explains the second most, and so on. After that, the top k primary components that account for
the majority of the data’s variability can be selected, and then make use of those components to
rebuild the initial data.

Upon the completion of the reconstruction, the reconstruction error is determined for each
timestep by comparing the original data with the reconstructed data. Any appropriate distance
measure, such as mean squared error (MSE) or Mahalanobis distance, can be utilized to compute
the reconstruction error. Both of these distance measures are examples. A particular timestep
is classified as abnormal if the reconstruction error for that timestep is greater than a threshold
that has been previously established.
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PCA can capture correlations between the variables in the data, which can be useful for
detecting anomalies that are not visible in the individual variables. This is the primary advantage
of using PCA for anomaly detection. Another advantage is that PCA can capture correlations
between the variables in the data. In addition, it has the capability of lowering the dimensionality
of the data, which can assist in the reduction of noise as well as the expenses associated with
computing analysis.

AE are non-linear models, but PCA is a linear transformation technique. This is one of the
most significant distinctions between the two. The data are projected onto a lower-dimensional
subspace using PCA, which does this by locating a linear combination of the original character-
istics that best reflects the variance in the data. AE, on the other hand, make use of a neural
network to first learn a non-linear mapping from the input to a lower-dimensional latent space,
and then they reconstruct the input from the latent space. This process is called autoencoding.
AE are able to capture more complicated and non-linear correlations in the data as a result of
this.

AE outperform PCA for detecting anomalies in datasets with complicated and nonlinear re-
lationships. AE can learn more expressive representations of the data, resulting in improved
reconstruction performance and more precise anomaly detection. Nevertheless, this comes at the
expense of greater computing complexity and the requirement for vast quantities of training data.

In contrast, PCA is computationally efficient and may be applied to datasets containing fewer
samples. With datasets with linear connections between features, it can also serve as a suitable
baseline for anomaly detection. PCA may not capture all the information essential for successfully
detecting anomalies in datasets with complicated nonlinear relationships.

2.4.8 Correlation Matrix

A correlation matrix is a table that displays the correlation coefficients that are present be-
tween different variables. In statistical analysis, correlation is a method for determining both the
strength and the direction of a relationship between two variables. The range of possible values
for correlation coefficients is from -1 to 1, with -1 indicating a perfect negative correlation, 0
indicating that there is no link, and 1 representing a perfect positive correlation.

In the process of data analysis, a correlation matrix is frequently used to gain a better under-
standing of the links that exist between the various variables that make up a dataset. It can be
used to find patterns and trends, as well as variables that are highly associated to one another,
and it can help identify patterns and trends. In domains such as finance, economics, and psy-
chology, where researchers may be interested in understanding how several variables are related
to one another, correlation matrices are a frequent tool that are utilized.

A correlation matrix is used to offer an overview of the relationships that exist between the
variables that are contained in a dataset. Researchers are able to get insight into which variables
are closely associated to each other and may then utilize this information to drive future analysis
by examining the values in the correlation matrix. For instance, if a researcher is interested
in predicting one variable based on another variable, they may use the correlation matrix to
determine which factors are most closely associated to the outcome variable, and then use this
knowledge to construct a predictive model.

The correlation matrix is computed using the correlation coefficient, also known as Pearson’s
correlation coefficient. The formula for the correlation coefficient between two variables X and
Y , with sample size n, is:

r =

∑︁n
i=1(Xi − X̄)(Yi − Ȳ )√︂∑︁n

i=1(Xi − X̄)2
√︂∑︁n

i=1(Yi − Ȳ )2

where X̄ and Ȳ are the means of X and Y, respectively.

To compute the correlation matrix for a set of variables, the correlation coefficient between
each pair of variables can be evaluated. For example, with variables X, Y , and Z, it is required to

33



General Notions

calculate correlation coefficient between X and Y , X and Z, and Y and Z. The final correlation
matrix might resemble something like this if it were created:⎡⎣ 1 rX,Y rX,Z

rY,X 1 rY,Z
rZ,X rZ,Y 1

⎤⎦
where rX,Y is the correlation coefficient between X and Y , rX,Z is the correlation coefficient
between X and Z, and so on.

2.4.9 Metrics

Metrics are functions used to monitor and evaluate a model’s performance. The objective of the
metrics is to quantify the performance of the model in the prediction task. The most commonly
used evaluation metrics for regression problems are Root Mean Squared Error (RMSE), Mean
Squared Error (MSE), Mean Absolute Error (MAE), R2.

• Mean absolute error (MAE) represents the average of the absolute difference between the
original and predicted values in a data set.

• Mean Squared Error (MSE) represents the average of the squared difference between the
actual and predicted values in a data set.

• Root Mean Squared Error (RMSE) is the square root of the Mean Squared error. The
advantage over MSE is that the error is comparable with the output measure. It measures
the standard deviation of the error, so it is the most widely used.

• R2 is an indicator that, starting from the regression line, summarizes in a single numerical
value how much the analyzed quantity deviates from that line on average, so it is an indicator
of model goodness-of-fit. The best performance is achieved when this value is equal to 1.

MAE =
1

N

N∑︂
i=1

|yi − ŷ|

MSE =
1

N

N∑︂
i=1

(yi − ŷ)2

RMSE =
√
MSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(yi − ŷ)2

R2 = 1−
∑︁

(yi − ŷ)2∑︁
(yi − ȳ)2

where:
ŷ - predicted value of y
ȳ - mean value of y

The less MAE, MSE, and RSME values are, the better a model fits the data. The greater the
R2 value, the better the model fits a data set and the better the predictor variables can explain
the variance in the response variable.

Since they are based on the square of the error, RMSE and MSE are more sensitive to obser-
vations that are further from the mean than MAE. This suggests that RMSE is most beneficial
when huge mistakes are very undesirable.

Each epoch’s performance indicators are measured and then shown as learning curves. The
best aim is for the training loss and validation loss to be as near to each other as feasible, while
both are close to 0.
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Confusion Matrix

A confusion matrix is a table that summarizes a classification model’s performance on a set of
test data. It is a matrix with rows and columns matching to the true and anticipated classes,
respectively. Each column of the matrix reflects the number of test samples belonging to a certain
true class that were classified as a specific predicted class. The goal of the confusion matrix is to
offer a quantitative evaluation of the performance of the classification model.

Suppose, having a binary classification problem with two classes, ”Positive” and ”Negative”,
in which predictions are made on a test set using a machine learning model. The confusion matrix
can be represented as follows:

a
c
tu

a
l

v
a
lu
e

Prediction outcome

p n total

p′ True
Positive

False
Negative

P′

n′ False
Positive

True
Negative

N′

total P N

Using the values from this confusion matrix, various metrics can be calculated such as accuracy,
precision, recall, F1-score, and others. Formally, those metrics can be written as:

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision:

Precision =
TP

TP + FP

Recall (also called Sensitivity or True Positive Rate):

Recall =
TP

TP + FN

F1-score:

F1-score =
2× Precision×Recall

Precision+Recall

Specificity (also called True Negative Rate):

Specificity =
TN

TN + FP

False Positive Rate:

False Positive Rate =
FP

TN + FP

False Negative Rate:

False Negative Rate =
FN

TP + FN

Moreover, the confusion matrix may be utilized to discover certain sorts of model mistakes,
such as false positives and false negatives. This information can aid in finding improvement areas
and refining the parameters of the model.
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ROC Curve

A Receiver Operating Characteristic (ROC) curve is a graphical depiction of the performance of
a binary classifier system as the discrimination threshold changes. The graph compares the true
positive rate (TPR) to the false positive rate (FPR) for different threshold values. The curve
gives a visual depiction of the trade-off between the true positive rate and false positive rate for a
classifier and allows for a quick and easy method of evaluating a model effectiveness. Area Under
the Curve (AUC) is a statistic generated from the ROC curve that summarizes the performance
of the classifier in a single scalar number [58].

The confusion matrix provides the raw data used to construct the ROC curve, while the ROC
curve provides a graphical representation of the performance of a binary classification model based
on different threshold values.

Pros of ROC Curves:

• ROC Curves give a clear visual depiction of the trade-off between the true positive rate
and false positive rate of a classifier, allowing for a straightforward comparison of several
models.

• Using the ROC curve, the optimal threshold for a classifier may be determined by maximiz-
ing the false positive rate and the true positive rate.

• The Area Under the Curve (AUC) measure obtained from the Receiver Operating Charac-
teristic (ROC) curve offers a single scalar number that represents the overall performance
of the classifier.

• ROC Curves are utilized extensively in machine learning and may be applied to a variety
of binary classification issues.

Cons to ROC Curves:

• ROC Curves are not appropriate for multiclass classification tasks and must be modified for
usage in these circumstances.

• The ROC curve can be susceptible to changes in the distribution of the underlying data and
may not always accurately represent the performance of a classifier.

• Interpreting the ROC curve might be challenging for those with insufficient statistical knowl-
edge.

• The ROC curve does not give information on the precision or recall of a classifier; hence,
other metrics may be required to measure its performance in its entirety.

2.4.10 Normalization

Normalization is a data preparation method used to adjust the values of a variable to a certain
range. This is done to enhance the performance of machine learning algorithms and make the
data more consistent and easier to interpret..

Min-Max Scaling and Standardization are two typical normalizing techniques:

• Min-Max Scaling entails transforming the data into an interval between 0 and 1. This is
accomplished by removing the variable’s minimal value and dividing by its range (maximum
value minus minimum value). For instance, if a dataset contains ages ranging from 20 to
60, Min-Max Scaling may be used to change the numbers to a range of 0 to 1.

Xsc =
X −Xmin

Xmax −Xmin
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• Standardization entails altering the data such that the mean is 0 and the standard devi-
ation is 1. This is accomplished by removing the variable’s mean value and dividing by its
standard deviation.

z =
xi − µ

σ

Normalization is used in machine learning algorithms since it may lessen the influence of out-
liers and enhance the performance of particular algorithms. Many machine learning methods
assume that input data is regularly distributed, and It assists in achieving this assumption. Nor-
malization may also enhance the interpretability of the data by making it simpler to compare and
comprehend the variables within a dataset.

The machine learning techniques k-nearest neighbors, support vector machines, and neural
networks all benefit from normalization [59]. These methods analyze the similarity between data
points using distance metrics, and it helps to guarantee that the distance metrics are consistent
across all variables. Moreover, when input data is normalized, some algorithms, such as neural
networks, may converge more quickly.
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Chapter 3

Methodology

This section lists and explains the different procedures used in the implementation of the process.

3.1 Introduction

The purpose of this thesis is to define a data-driven framework for condition-based maintenance.
An analysis of the WTGs performances is firstly performed, the ultimate product will be an
algorithm that returns metrics for understanding the quality of the turbine and its subsystems
throughout operation. The generated metrics should be able to measure and differentiate oc-
currences associated with system faults against instances of optimal operation. Therefore, the
developed model should be able to show malfunctions related to the different turbine subsystems.

The development of the algorithm will demand the availability of vast quantities of data and
will not be restricted to the examination of single turbines. The model will be trained using an
unsupervised anomaly detection approach. This choice depends on the fact that it is not possible
to have large amounts of correctly labeled data, in which a malfunction occurs on a particular
turbine sub-component. However, through various performance metrics, is possible to limit the
unwanted behaviors that make up a large portion of the available data, in which anomalies are
also contained. By examining and analyzing the problem for a subset of outstanding candidates,
the method must be able to yield good results when applied to additional candidates as well.
In addition to evaluating turbines that represent distinct instances of the same model, blended
methods will also be examined. With these approach, it will be feasible to assess algorithms
trained on certain model types but tested on others.

Using several classification-related test and metric, the algorithms functionality will be vali-
dated. It will be assessed based on their capacity to distinguish between several significant events
associated with the operation of WTGs in real-world scenarios. But, they will also be assessed
using benchmarks that were generated intentionally by inserting outliers and other abnormalities
into the temporal data.

3.2 Data Selection and Filtering

During the data selection step, several turbines are assessed based on a variety of attributes for
subsequent usage in the model training and testing stages. Remember that autoencoder models
for anomaly detection are driven by high-performance data to enable accurate identification of
unconventional data patterns during testing and eventual production usage.
Thus, the aim of this step is to choose a subset of turbines with sufficient data to provide a
proper training sample, as well as filtering those data in order to provide good training samples
in the consequent training phase. During the filtering process different KPIs are involved, such
as performance evaluation, energy production, downtimes and other measures.
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3.2.1 Performance Filtering

The performance of the WTG can be calculated as the ratio of produced power to producible
power at each time period:

Performance =
P

Pp

This performance metric can be used to identify any periods of time when the WTG is not
performing as expected, such as when the performance drops below a certain threshold, indicating
a potential issue with the WTG or the wind conditions.

Formally, the performance at a given time t, based on the active power output Pact and the
maximum producible power Pmax at the corresponding wind speed, can be expressed as:

Performance(t) =
Pact(t)

Pmax(v(t))

where v(t) is the wind speed at time t and Pmax(v(t)) is the maximum producible power at that
wind speed, as determined by the power curve of the WTG.

3.2.2 Temperature Filtering

Filtering data in a WTG by examining the absolute temperature differential between the gearbox
oil and the gearbox bearing temperature may be utilized to discover possible problems or anomalies
in the functioning of the WTG. If the temperature differential is too great, it may signal that
the gearbox is not performing as intended, which may result in greater wear and tear, decreased
efficiency, and the possibility of catastrophic failure. Formally, the difference in temperature
between the gearbox oil and the gearbox bearing temperature can be expressed as:

∆T = Toil − Tbearing

where ∆T is the temperature difference, Toil is the temperature of the gearbox oil, and Tbearing

is the temperature of the gearbox bearing. If the temperature difference ∆T is too high, it can
lead to a number of issues, such as increased friction between the gearbox components, increased
wear and tear on the gears and bearings, and reduced efficiency of the WTG. In extreme cases,
a high temperature difference can lead to catastrophic failure of the gearbox, which can result in
costly repairs and extended downtimes for the WTG.

For this reason, by observing those temperatures, it is possible to detect potential issues with
the WTG before they become more serious, and to take proactive actions to address them, such
as conducting maintenance or replacing faulty components.

3.2.3 Status Filtering

As well as SCADA data related to sensor measurements, WTGs also have a number of components
aimed at observing and reporting the presence of states related to their operation. These statuses
may be roughly classified into three categories:

• Ok status: characterizes an operational turbine that is producing power.

• Idle status: Identifies a turbine that, although it is not malfunctioning, is not producing
power, either due to external causes (lack of wind) or due to demand for shutdown or main
cable unrolling.

• Error statuses: Signalling system malfunctions and stops.

Furthermore, the existence of status readings due to an alert, defect, or communication problem is
cause for concern and may contradict the notion of healthy behavior. For this reason, the healthy
turbine operation data do not include timestamps characterized by the alarm states. In contrast,
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there is no need to eliminate idle states because they do not in themselves constitute malfunctions;
nonetheless, these states may be characterized by the presence of other numbers associated with
abnormal measurements. In conclusion, most of the idle states are indirectly removed using other
filters. While these actions are frequently adequate to remove the majority of outliers, further
considerations may be made by studying the remaining values of the wind turbines’ active power
and other measurements in more detail.

3.2.4 Limitations Filtering

The power restrictions may be the result of maintenance requirements or limits imposed by Terna
S.p.A., the Italian Transmission System Operator (TSO), which is in charge of managing the
balance between energy demand and offer in real time. At times, a WPP turbines may need to
operate in low-power mode and send less electricity into the grid. In these moments, the turbines
exhibit unexpected behavior; hence, the impacted samples may be deleted. This information is
not encoded with a T-Status code and has to be pulled from a company-supplied supplemental
data collection.

3.2.5 Other Filters

Other filters were included in the process along with the ones previously considered. They directly
fix upper and lower limits to some of the observed quantities, such as active power and wind speed
with the aim of removing outliers and corrupted data.

3.3 Data Preprocessing

The previously filtered data was then modified for use in model training and testing. The models
are always fed sequential data, therefore each sample used for training and testing is always
comprised of a series of distinct timesteps, each of which consists of the observed variables. The
data, including training and test splits, were processed using a conventional scaler throughout
the data preparation step. Scaler if fitted on training data and then use consequently on all the
testing data using a particular model. The subsequent step consists of generating time sequences
from data in non-sequential format.

It should be considered that training data and test data differ significantly:

• Training data: Consists of a set of sequences from different turbines, not equally partic-
ipating in the final composition. Each sequence in this dataset is characterized by having
every timestamp of every sequence belonging to the anomaly-free data cluster. Each indi-
vidual filter, in fact, grouped in a logical OR operation (positive labels equals anomalous)
allows the isolation of sequences uniquely consisting of ideal data (the ones with negative
labels). In this way, the training set can be significantly smaller than the entire dataset, as
it is stripped of all sequences that contain at least one anomaly timestamp. To overcome
this problem of data scarcity, some filtering operations are performed by exploiting metrics
in terms of moving average (with strict filters) and with time single timestamps (with more
loose filters).

• Test data: Test data is not filtered as it is necessary to discriminate the data in detec-
tion, however, the considerations made regarding filters will instead go to characterize the
anomaly labels associated with the test data. These labels, produced considering different
indicators and different metrics during the various tests, will be specifically discussed.
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3.4 Models Processing

3.4.1 Models Training and Tuning

A number of potential models will be developed to recreate time sequences throughout the training
phase. All neural network models used for this task are AE. As described in the preceding sections,
the goal of this architecture is to create a compressed (latent) representation of the observed data
by attempting to rebuild the data such that it closely resembles the original. During training,
model parameters are optimized using losses that measure the inaccuracy created after each
reconstruction of a batch of data.

The algorithms’ hyperparameters will then be used to examine the various models and archi-
tectures. The main AE flavours include:

• Feed forward AE: Basically a multi-layer perceptron.

• Recurrent AE: Uses LSTMs and GRUs as recurrent models.

• Variational AE: AE Uses a Gaussian probability distribution in the latent space.

• Denoise AE: AE used in denoising task instead of a data reconstruction.

It should be noted that the different types of AE will be used in combination therefore the models
will have many variations.

Several training parameters will be used during the training phase, some of which are: the
batch size, the optimizers and number of epochs. Algorithms with a higher degree of regularization
will be trained on more epochs to produce an effective level of training therefore it will last as
long as an appropriate level of loss is reached.

3.4.2 Models Validation

To ensure that the models are not overfit, a validation set will be used throughout the training
phase. The validation set will only be used during the reconstruction step and not during following
stages of anomaly detection. Other techniques will be used during the actual testing phase of
anomaly detection, which led to this decision. Thus, these various model assessments in the
training phase will attempt to reflect validation or testing models. The validation dataset is
obtained by selecting a random subset of sequences from the training data, with a distribution of
1 validation data versus 9 training data.

3.5 Model Evaluation

Once the model has been trained and validated on the reconstruction task. The algorithms will
be tested on different anomaly detection tasks, which consist of identifying different events in the
turbine time series.

Experiments to test the effectiveness of the model will resort to the study of various phenomena
related to real data, but also to the verification of detection of artificial anomalies injected into
original SCADA data.

The detection of anomalies can be distinguished into two stages, as shown in Figure 3.1, the
procedure is addressed partially in this thesis.

Offline anomaly detection, also known as batch processing, involves analyzing historical data
to identify anomalies. The data is collected and stored over a period of time, then analyzed in
batches to identify patterns and anomalies. The output of this process is a set of rules or models
that can be used to detect anomalies in real-time.
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On the other hand, online anomaly detection involves analyzing data in real-time as it is
generated. This method is used when it is critical to identify anomalies as soon as they occur,
such as in a production system or in network traffic monitoring. In online anomaly detection, the
system continuously collects and analyzes data in real-time, looking for deviations from normal
behavior. When an anomaly is detected, an alert is triggered so that appropriate action can be
taken.

In this thesis, the process is similar, however the step of evaluating the residuals is only
considered in part, in favor of measuring the performance of the various models based on ROC
curves. If the residuals evaluation approach were considered in its entirety, the measurement in
the testing step would consist only of a classification result. However, the approach described in
this paper is not reduced to the determination of a threshold for the purpose of evaluating these
events, but claims to consider more well-grounded aspects related to the study of anomalies.

The approaches noted in the study can then be used to extract metrics designed to represent
thresholds for alarms. However, in the context considered, alarm events are not sufficient in
number to accurately determine these thresholds without also including events that are not of
interest but still anomalous.

3.5.1 Status and Filter Discrimination

The objective of anomaly detection in machine learning is to find odd patterns or events within
a given dataset. In many instances, the dataset consists of examples that have been tagged as
either normal or abnormal. For this reason, the first test involves a task in which the filters used
for finding the right training sequence are employed again in a labelling process. Secondly, the
model is used in a task of partial testing for the Error and Inactivity Status.

During this stage, the MSE will be used to aggregate the residuals produced by the difference
between the actual measurements and the reconstructed measurements over all of the different
magnitudes and all of the different timesteps. The time sequences that contain only one timestep
that is reported as being abnormal will be eliminated from the dataset in an effort to cut down
on the number of borderline situations.

In anomaly detection, partial testing is used to evaluate the performance of a machine learning
model on a subset of the training classes. This means that, during testing, the model is assessed
on a subset of the classes used for training and not the complete set.

There are various reasons why anomaly detection use partial testing. One reason is that it
can provide a more accurate evaluation of the performance of the model. In the majority of
real-world situations, anomalous events are uncommon and the great bulk of data is typical. So,
it is essential to evaluate the model’s capacity to detect anomalies in a realistic scenario, where
the model is exposed to a big quantity of normal data and a small quantity of abnormal data. A
further reason why partial testing is utilized in anomaly identification is that it can help determine
the model’s strengths and shortcomings. By testing the model’s performance on a subset of the
classes used for training, it is possible to determine the classes on which the model excels and those
on which it struggles. This can assist guide future model enhancements. Randomly separating
the labeled data into training and testing sets is a popular way to partial testing in anomaly
identification. Training set is used to train the model, while testing set, is used to evaluate its
performance. During testing, however, just a subset of the conditions utilized during training
are utilized. This method is frequently employed in unsupervised anomaly detection, where the
objective is to discover unusual events without using labeled data.

3.5.2 Benchmark Evaluation

In the evaluation through benchmarks, the different models will be used in the detection of
particular anomalies artificially generated through the injection of noise or transformation of
certain measurements associated with particular subsystems. Some of these transformations come
from the scientific literature and their nature is well documented [60].
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The realization of these benchmarks will consist first in the creation of an altered signal by
introducing modifications by starting from the original. Then, using a binary mask computed with
probabilistic approaches, timestamps will be replaced in the original time sequences. The masks
will form the labels of the anomalous events to be identified in the testing phase of the model.
However, given the chaotic nature of the WTG systems, it will first be necessary to ensure that
the original signal is free of previous anomalies. If it is not, there is a risk of introducing anomalies
into a time series that already has additional unreported anomalies. This would cause a lowering
of the performance of the model during testing, since previously present anomalies would not be
reported as such [61]. In the observed literature, the duration of these phenomena is extremely
short (on the order of a few minutes) therefore, the identification of these discontinuities will be
limited to the study of individual timesteps unlike previous tests. In the observed literature, the
duration of these phenomena is extremely short (on the order of a few minutes) therefore, the
identification of these discontinuities will be limited to the study of individual timesteps unlike
previous tests.

The nature of this experiment differs considerably from a test performed by finding faults or
alarms on real data: the main difference lies in the fact that such events can occur involving
several subsystems, even if only one alarm may be triggered on the subsystem in the most critical
state.

In spite of their different nature, this experiment is nevertheless interesting for verifying the
degree to which different observed quantities turn out to be correlated with each other in the
training phases. Indeed, by observing the reconstruction error on the individual quantities, one
can verify how the model reacts on the others to an anomaly concentrated on one sensor.

This experiment is designed to be a departure from what has been considered in the past. If
it turns out that in the event discrimination, the sequences come aggregated interametne among
all of the timesteps and all of the measures, then in this experiment, the aggregation with MSE
will work only on the measures, leaving the timesteps untouched. For this reason, the experiment
will not only have to do with finding whether or not there are anomalies throughout the sequence,
but it will also have to do with determining where the anomaly is located inside the issue that is
being considered.

3.5.3 Downtime Evaluation

In the process of analyzing AE models, the very last phase is the investigation of downtimes.
The WTG downtimes that are being considered are made up of a sequence of alarms that go
off whenever a given quantity reaches a predetermined upper or lower limit in relation to that
amount. The measurements taken at this point are approximately comparable to those taken
earlier. In point of fact, downtimes are already recorded along with the relevant alarm state. As
a result, the detection of them involves making use of the work that was done before in the event
discrimination steps.

On the other hand, the study of the individual quantities that are present in the environment
during these downtimes is the most essential part of these events. After that, this evaluation
will take place, both qualitatively and statistically, with the goal of visualizing, using the metrics
that have previously been presented, the kind of event that will take place. However, the study
of the individual quantities will be the single most significant part, as this will allow researchers
to attempt to have an accurate picture of what these phenomena are and the corresponding
countermeasures that are targeted at minimizing them. Following that step, particular models
will be chosen for commentary based on how well they explain the observed phenomenon.

The occurrence of these downtimes is exceedingly seldom, and in each of the clusters, there
were at most a handful of turbines that exhibited a given category of event. Their nature may
also be easily grasped in a very short amount of time due to the fact that, despite the fact that
only one quantity might be to blame for these occurrences, all measures are able to recognize
departures from these in terms of reconstruction error. So, it is necessary to do this study on an
individual basis for each downtime in order to get a proper understanding of what occurred and
whether or not the models can actually recognize it.
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Ultimately, in this experiment, the labels that were obtained with the error states and the
timestemps that were defined by inactivity will be used to have both a qualitative and quantitative
indicator of the capability to detect fault statuses.
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Figure 3.1: Flowchart of the fault detection using online and ofline phase.

3.6 Performance Analysis

The algorithm can be used to verify the real performance of the turbines and reconnect them to
the various subsystems of the devices once the best models have been determined through the
various anomaly detection tests.

For this reason, at the end of the experiment, there will be a study that is specifically called
Performance Analysis, where an entire set of turbines will be observed in order to understand and
verify that observed deviations in magnitudes are somehow related to the macroscopic functioning
of these energy systems. This study will be conducted in order to understand and verify that
observed deviations in magnitudes are somehow related to the macroscopic functioning of these
energy systems.

This aspect of the work contributes significantly to the validation of models as well as the
analysis of wind farms. In this part of the article, a number of graphs and metrics will be
provided that can subsequently be utilized as an example of how the method should be applied.
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Chapter 4

Experiments

4.1 Gamesa G90

The next experiments involves 9 turbines G90 in the a single wind farm in southern Italy. The
main technical specifications of the G90 wind turbine are as follows:

• Power:

– Rated power: 2.00 MW.

– Cut-in wind speed: 3 m/s.

– Cut-out wind speed: 25 m/s.

– Survival wind speed: 49 m/s

• Rotor:

– Blade number: 3.

– Diameter: 90 m.

– Area: 6,362 m2.

• Gearbox:

– Type: spur/planetary.

– Gear stages: 3.

– Transmission Ratio: 0.101.

– Brand: Echesa (Gamesa Group)/Hansen/Bosch Rexroth/Winergy.

• Generator:

– Type: Doubly-fed Asynchronous.

– Brand: Cantarey.

– Voltage: 690 V.

– Main frequency: 50 Hz.

– Speed max: 1900 U/min.

• Weight:

– Single Blade: 5.8 t.

– Hub: 18.6 t.

– Rotor: 36 t.

– Nacelle: 70 t.

– Tower: 255 t.

– Total: 361 t.
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4.2 Data Selection and Preprocessing

At this stage of the work, a set of G90 turbines available for the experiment will be partitioned
and studied to allow suitable and usable data to be produced for subsequent training and testing
phases.

4.2.1 Data Selection

In the data selection step a set for WTGs is considered in a particular plant among several
available. In our experiment on G90s the subset of turbines will then be divided into 2 groups:

• High-performance (Training/Validation) turbines: These turbines will be used to
train effectively the models used for anomaly detection. These turbines will then also be
used for a subsequent validation and testing phase. For this reason, the data proceeds from
these turbines will be divided into several splits used separately in the training and testing
phases. Training and test splits will prevent overfitting issues and let the algorithm to be
assessed when applied to turbines used in training. Due of the vast number of similar wind
turbines in the same location, it was decided to train neural networks utilizing a group
of unique wind turbines. This cluster is made with 4 turbines, these are called: WTG-1,
WTG-2, WTG-3 and WTG-4.

• Other (Testing Turbines) turbines: These turbines will be used exclusively in the
testing phase to verify the behavior of the algorithm on data proceeds from unobserved
turbines (in the training phase). This test will allow the models to be evaluated on new
data with some degree of diversity from previous data. This whirlwind there are 4 and will
be called: This cluster is made with 4 turbines, these are called: WTG-5, WTG-6, WTG-7,
WTG-8 and WTG-9.

The decision to combine the data from many turbines in the training phase, was dictated by the
lack of extensive training periods, since the data from a single turbine was inadequate to train
neural networks adequately. In addition, this decision makes it feasible to avoid neural networks
from learning to detect the operation of a single turbine correctly, and provides a good degree of
generalization for testing on unseen data with good performance.

Specified data for both high-performance and other turbines will be provided for one year.
With the difference, however, that in the case of high-performance turbines part of the period will
be used in the training phase. To have an appropriate degree of diversity in the data provided
in the training phase, these periods will be selected in different parts of the year. While a great
deal of data has been made public, only the last year is available. This amount of data may not
be sufficient for training neural networks if seasonal phenomena have to be included. Specifically,
the year will be split into three four-month periods, and each of these will be subdivided into
three splits (splits shown in Table 4.1):

• Training split: For the first 3 months of the four-month period, after the filtering process
described next.

• Validation split: Random samples from the previous set.

• Testing split: Consists of the last month in the four-month period.

4.2.2 Dataset Measures

It is essential, while picking characteristics for anomaly detection, to choose those that are perti-
nent to the particular issue you are attempting to address and have a high signal-to-noise ratio.
In certain instances, it may be necessary to contain all of the traits, while in others, a subset of
the qualities may work. It is essential to use domain expertise and data analysis to establish the
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Period Split N° Timestamps
Jan, Feb, Mar Train+Val 12960
Apr Test 4319
May, June, July Train+Val 13248
Aug Test 4463
Sep, Oct, Nov Train+Val 13248
Dec Test 4463

Train Total 39456
Test Total 13245

Table 4.1: Table representing the different splits in the experiment and the corresponding size of
the datasets.

optimal collection of characteristics for a specific situation.
Therefore, the SCADA measurements considered in the reconstruction and anomaly detection
phase will be:

• Active Power.

• Blade Pitch Angle.

• Gearbox Bearing Temperature.

• Gearbox Oil Temperature.

• Generator RPM.

• Generator Temperature.

• Wind Speed.

• Reactive Power.

• Rotor RPM.

These measures are all characterized by being 10-minutes data obtained through 10-minute aver-
age statistics. Generally, this method is performed to reduce the amount of storage space required
for the vast quantity of data that is continuously generated by wind farms. The quantities can
be grouped into several categories to identify the most important subsystems of the WTGs:

• Gearbox subsystem: Considered from a mechanical point of view, such as Rotor RPM
and Generator RPM ), and also from a thermal point of view Oil Temperature and Bearing
Temperature.

• Rotor subsystem: Measures such as Rotor RPM and Wind Speed.

• Generator subsystem: Quantities like Generator RPM, Generator Temperature, Active
Power and Reactive Power.

Along with these metrics in the next phase of data filtering and dataset creation other metrics
will be used, either obtained from additional turbine SCADA sensors or obtained by transforming
previously collected measurements. These additional measures will be used in an attempt to
detect possible breakdowns and to filter anomalous events in the data for the training.
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4.2.3 Data Filtering

After the extraction of data for each individual turbine, the data was filtered. The filters used are
described in Table 4.2. These include both filters on individual quantities and filters obtained by
considering other metrics:

• Filters on dataset metrics: Such as Active Power and Wind Speed. That allow the
moments associated with low turbine operativity to be removed.

• Filters on additional metrics: Such as Perfomance, Difference in gearbox temperatures,
Status and Limitations. These remove moments associated with irregular work and reduced
productivity.

Measure Lower Bound Upper Bound Other Conditions
Active Power -50kW 2300kW
Wind Speed 3.5m/s 25m/s
Performance (G90) 50% 200%
ABS Temp. Difference 10C°
Status Not error status
Perf. (G90) Cent. MA 12 80% 150%
Limitations Not a limitation

Table 4.2: Types of filters used in the filtering phase. The table shows the list of quantities used
and the appropriate filter conditions. All data less than the lower bound or greater than the
upper bound were removed. Since Status is a symbolic data type the Error Status is removed.

Filters used directly on the dataset quantities make it possible to eliminate negative active
power or excessively high values of it, probably the result of sensor fluctuations. Another impor-
tant discrimination measure is wind speed. This procedure also excludes any samples in which
the wind speed is below the cut-in speed, below which the rotor cannot operate. This procedure
also excludes any samples in which the wind speed is below the cut-in speed, below which the
rotor cannot operate.
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As previously announced in the Methodology section, performance metrics allow for a discrep-
ancy between the energy produced and the energy that can be produced by the WTG system.
Therefore, by considering the power curve of the G90 model in question, it is possible to estimate
the producible energy as Wind Speed changes and compare it with the measured Active Power.

Table 4.3: Cross plots of the performance from the WTGs involved in training. The color of the
points represents the performance value.
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Table 4.4: Performance distributions from the WTGs involved in training.

In Table 4.3, there are figures showing SCADA data of turbines observed in scatter plots, Wind
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Speed-Active Power. I graph shows each data with color mapped against the relative performance
value. In this way it is possible to see how the data underlie the shape of the curve and verify the
variability of the observed performance.

The different performances are then shown in the histograms in Table 4.4. It is evident from
the table that the data have a normal distribution with a center around 1. This is not a random
number, since the training turbines were selected according to their high productivity. Additional
turbines associated with subsequent tests will have data distributions with lower mean values.

Performance metric is used as filter both on instantaneous data (directly on 10 minutes data)
but also on sequential ones (using MA with 12 periods). Using only the instantaneous data would
cause too sharp an evaluation of the data by excluding too many of them; MA, on the other hand,
allows a data to be evaluated in an adjacent set of values, achieving a harmonizing effect.

Table 4.5: Cross plot of the gearbox oil and bearing temperatures from the WTGs involved in
training. The color of the points represents the absolute value of the difference between the two
temperatures.

In addition to metrics related to the productivity of the individual turbines, which are mainly
useful for verifying the actual operation of the turbines. A metric related to gearbox operation
from a thermal point of view is also considered. The temperature difference between the oil and
the bearing of the latter is shown in images of Table 4.5. In the filter operation the difference is
measured in absolute value is compared with a constant difference, higher values are discarded.
This decision of hangs on the fact that turbines with high temperature difference have irregularities
in the cooling fluids.
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Figure 4.1: Comparison of the filtered timeline in all the training WTGs. Black bands represents
filtered timestamp while the white ones are the one kept for training. It is evident, how often,
data removed from timelines are aligned between various turbines.

All previously considered filters are finally encapsulated through a logical-and operations into
a single label indicating the validity of the timestamp in training. A candidate sequence for
training becomes such only if all the data in it are characterized by being valid. In Table 4.6
the logical-and operation can be observed in the WTG-1 dataset. The overall result allows us to
limit the data in use as a small number of training sequences. It can be observed how much of
the sequences are filtered by multiple conditions simultaneously, a symbol of how non-ideal data
can be found by multiple indicators. Another interesting aspect is how, inactivity status data are
still almost entirely excluded from the other metrics although they have not been filtered.

The power restrictions may be the result of maintenance requirements or limits imposed by
the TSO. At times, a wind farm’s turbines may need to operate in reduced power mode and send
less electricity into the grid. At these times, the turbines exhibit unexpected behavior; hence, the
impacted samples may be deleted. This information is not encoded with a Status code and has
to be pulled from a company-supplied supplemental data collection.

Figure 4.1 shows the overall validity labels in the datasets of the different training turbines.
The finding that clearly emerges is how in many instances observed the data on invalid states are
shared by all turbines, probably because they are the result of environmental causes (periods of
inactivity).
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Table 4.6: Filtering process displayed in a band plot for the first training period (january, february
and march) for the training WTGs. The last band plot is the logical-and between all the previous
filters. Black stands for removed timestamps. The gray color in Status plot band stands for a
Inactive Status, while black represents the Error Status.
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4.2.4 Feature Selection

When selecting features for an anomaly detection job using machine learning, it is essential to
examine the connection between the features. A correlation matrix may be used to find strongly
associated characteristics, which can lead to issues such as:

• Redundancy: Strongly correlated characteristics may supply duplicate information, which
may raise the model’s complexity and make it more difficult to comprehend.

• Overfitting: If strongly correlated characteristics are included in the model, this might
result in , where the model fits the noise in the data instead of the underlying pattern.

• Instability: Adding strongly correlated characteristics might render the model unstable,
resulting in substantial output changes for modest input changes.
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Figure 4.2: Correlation matrix of the training WTGs before filtering operations.

To address these problems, strongly linked characteristics may be eliminated or merged into
a single feature. This may simplify the model, enhance its interpretability, and decrease the
likelihood of overfitting. By incorporating the correlation between features, it is possible to
develop a more accurate and dependable anomaly detection model that is less susceptible to
overfitting and other problems.

After all the filtering process correlation matrix can be confronted in order to verify (before
and after the process in Figure 4.2 and 4.3) that the removed outlier are characterized by more
correlated data, producing a reduction in the overall values of the correlation matrix. From
the correlation matrices, an extreme correlation on the magnitudes Rotor RPM and Generator
RPM emerges. In light of this large correlation only rotor RPM will be considered in this, and
subsequent experiments.
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Figure 4.3: Correlation matrix of the training WTGs after filtering operations.

In contrast, Active Power and Wind Speed measurements after the outlier removal process
became more correlated. This phenomenon is due to the fact that by operating with limitations
on the power curve both using cut-in and cut-out speeds and operating on performance, cleaner
data were obtained around the most linear part of the power curve. Despite the large level
of correlation in the experiment both values are retained because, in turbines with anomalous
performance these data are the two most relevant in discriminating anomalies.

4.2.5 Sequence Processing

During the preprocessing phase, the previously selected and filtered data are transformed into
data sequences suitable for training. Obtaining data sequences from the filtered data is achieved
by a sliding windows technique, in which the size of it takes in 12 timesteps (2 hours of 10 minutes
averaged data).
The size of the training dataset can be seen in Table 4.7. Data are considered valid for training
only if the entire data sequence is associated with a validity label. A single invalid instant allows
it to be discarded.

4.3 Models Processing

In this section the AE training task is described. The reconstruction challenge in anomaly detec-
tion using AE is the job of training the model to recreate normal, non-anomalous data as precisely
as feasible. After the AE has been trained on this normal data, it can be used to identify anomalies
by comparing the reconstructed data to the original input data and calculating the difference.
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WTG N° Samples (Seqs.) % Samples (Seqs.) % Valid Timesteps
WTG-1 4097/39304 10.42% 25.91%
WTG-2 9223/39304 23.47% 36.15%
WTG-3 8745/39304 22.25% 35.73%
WTG-4 6962/39304 17.71% 37.49%

Table 4.7: Data samples (in sequence format) after filtering and preprocessing. The fact that the
number of valid sequences does not equal the number of valid timestamps resides in the fact that
only sequences solely consisting of valid data are usable in the training phase.

4.3.1 Reconstruction and Denoise Tasks

In a reconstruction task, the input and target data are the same. The goal of the model is to
learn a compressed representation of the input data that can be used to accurately reconstruct
the original input data. During training, the input data is fed into the encoder, which generates
a compressed representation of the data. This compressed representation is then fed into the
decoder, which reconstructs the original input data. The reconstruction error between the input
data and the reconstructed output data is used as the loss function during training, and the
weights of the autoencoder are adjusted to minimize this reconstruction error.

In a denoising task, the input and target data are not necessarily the same. A denoising AE is
a type of model that is designed to learn a representation of the input data that is robust to noise.
During training, the input data is corrupted with noise, and the AE is trained to reconstruct the
original, noise-free input data. In this instance, the input data and the destination data are not
same. The input data are the corrupted version of the original, noise-free data, while the output
data are the original, noise-free data. The objective of a DAE is to discover a mapping between
noisy input data and noise-free destination data.
Just like a normal reconstruction task, after been trained on normal, non-anomalous data, the
DAE may be used to identify anomalies by comparing the difference between the reconstructed
data and the original input data. When the reconstruction error between the input data and the
reconstructed output data exceeds a predetermined threshold, anomalies will be discovered.

4.3.2 Train and Validation Datasets

In the model training phase, reconstruction metrics will be measured using a validation set. The
purpose of this is to verify that the models do not go into overfitting, by learning representation
of the training data too weak in generalization. The validation set permits reconstruction to be
assessed even on unseen data; hence, it must always be aligned with the training values.

If the validation set is utilized for the denoising process, its significance increases. In this
challenge, only the training data are impacted by the injected noise, therefore the model’s perfor-
mance may be evaluated even on undamaged data (such as those from the test phase). The results
on the validation set should be better since the time series are easier to rebuild when noise-free,
resulting in a smaller reconstruction error.

To properly use a validation dataset, it is necessary to choose a dataset with certain features.
The validation dataset must first be indicative of the data that the model is anticipated to
meet in the actual world. This indicates that the distribution of classes and features in the
validation dataset should be comparable to the distribution in the training dataset. In addition,
the validation dataset must be big enough to offer a reasonable assessment of the performance of
the model. The validation dataset should be at least 10% of the size of the training dataset, as
a general rule. In addition, it is essential to guarantee that the validation dataset is independent
from the training dataset, meaning that validation dataset data should not be utilized to train
the model.

The whole process is shown in Figure 4.4.

Balance is another crucial attribute of a quality validation dataset. If the training dataset is
unbalanced, it is crucial that the validation dataset include an equal number of samples for each
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Figure 4.4: Phases of creation of training, validation, and test data sets.

class. The validation dataset should be sufficiently difficult to evaluate the model’s capacity to
generalize to new, untested data. This implies that the validation dataset should include distinct
instances from the training dataset.

4.3.3 Autoencoders Models

This section discusses the architectures of the different AEs involved. The structure of the models
used will consist of symmetric encoder/decoder structure, with 2-layers each in the models.

The model are used with a structural difference related to the size of the latent space. Two
structures will therefore be used:

• 48 units latent space: Providing a latent space with 1/2 of the total input dimension.

• 64 units latent space: Providing a latent space with 2/3 of the total input dimension.

Feed Forward Autoencoders

The first model considered is a feedforward type autoencoder consisting solely of dense layers.

In Figure 4.5 it can be observed the initial structure of the AE with latent space with dimension
48.
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DENSE (96)input: (_, _, 96) output: (_, _, 96)

DENSE (h)input: (_, _, 96) output: (_, _, h)

DENSE (g)input: (_, _, h) output: (_, _, g)

DENSE (96)input: (_, _, g)

output: (_, _, 96)

Flatten (96)input: (_, 12, 8) output: (_, _, 96)

Reshape (12, 8)input: (_, _, 96)

output: (_, 12, 8)

Time Distributed (8)input: (_, 12, 8)

output: (_, 12, 8)

Figure 4.5: FNN AE initial configuration with latent code dimension of h.
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This initial model represents only one of several configurations used for this type of network.
Instead, in Figure 4.6 can see the complete model with all the different regularization layers.

DENSE (96)input: (_, _, 96) output: (_, _, 96)

DROPOUTinput: (_, _, 96) output: (_, _, 96)

DENSE (h)input: (_, _, 96) output: (_, _, h)

DENSE (g)input: (_, _, h) output: (_, _, g)

DROPOUTinput: (_, _, g) output: (_, _, g)

DENSE (96)input: (_, _, g) output: (_, _, 96)

Gaussian Noiseinput: (_, 12, 8)

output: (_, 12, 8)

Flatten (96)input: (_, 12, 8)

output: (_, _, 96)

Reshape (12, 8)input: (_, _, 96)

output: (_, 12, 8)

Time Distributed (8)input: (_, 12, 8)

output: (_, 12, 8)

Figure 4.6: FNN AE regularized configuration with latent code dimension of h.

Different hyperparameter configurations will be tested during the training phase and the sub-
sequent validation phase. These configurations make it possible to greatly increase the available
combinations and thus the models considered.
The hyperparameters will be:

• Batch size: 6, 12, 24 and 48.

• Dropout rate: 0.0 and 0.1.

• Gaussian Noise Variance: None, 0.05, 0.1 and 0.2.

• Latent space dimension: 24, 32 and 48.

Instead, all of the models considered will have the following features in common, the result of
experimentation preparatory to that discussed in this thesis.
The fixed parameters are:

• Activation Functions: ReLU for the dense layers.
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• Learning rate at start: 0.01.

• Loss Function: MSE.

• Optimizer: Adam.

Recurrent Autoencoders

The LSTM and GRU are the recurrent cells used considered in the models. As in the previous
scenario, the overall structure of the network consists of an encoder and a decoder, each having
two layers. The layers surrounding the bottleneck interact with the different states that the cells
are in, while the input and output layers are responsible for accepting and returning the sequence
that was formed by the recurrent cells. To be more specific, in order to achieve a high degree
of dimensionality reduction, the second layer of the encoder will have the most recent state of
the cells as its output, and the first layer of the decoder will interact with the states as its input
in order to produce sequences once more. It is typically beneficial to return the hidden state at
the final timestep rather than the full sequence since this enables the model to capture long-term
dependencies in the input sequence.

The network’s middle layer is responsible for ensuring that the states generated by the bot-
tleneck can be reliably replicated along a time sequence. The layer is necessary when use the
LSTM or GRU is required to process fixed-length inputs as if they were sequences. It does this by
repeating the input a fixed number of times to create a ”pseudo-sequence” that can be processed
by the LSTM or GRU layer.

In Figure 4.7 is visible the first version of the RNN network in the version with reduced latent
space.

Recurrent (96)input: (_, 12, 8)

output: (_, 12, 96)

Recurrent (h)input: (_, 12, 96) output: (_, _, h)

Recurrent (h)input: (_, 12, h) output: (_, 12, h)

Recurrent (96)input: (_, 12, h) output: (_, 12, 96)

Time Distributed (8)input: (_, 12, 96) output: (_, 12, 8)

Repeat (12)input: (_, _, h)

output: (_, 12, h)

Figure 4.7: LSTM-AE and GRU-AE initial configuration with latent code dimension of h.

The last layer in the network, which appear as a dense layer, can be referred as a Time
Distributed layer. This layer is a mechanism for applying a dense layer, or any other kind of layer,
to each timestep of the output sequence that is created by the LSTM decoder in an AE that uses
LSTM or GRU. In an AE that makes use of LSTM, the LSTM decoder is the component that,
given the latent representation that was produced by the encoder, is responsible for generating a
sequence of output values that should correspond to the input sequence. It is possible to apply
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it to each timestep of the output sequence in order to translate the output values to the same
dimensionality as the input values.

The Time Distributed layer function is to offer a versatile approach of applying a thick layer
to each timestep in the output sequence. In particular, it enables the model to acquire distinct
weights for each timestep, despite the fact that it continues to make use of the same thick layer
throughout all timesteps. In other words, this layer at the end of the network gives the model
the ability to recognize temporal patterns in the output sequence and to learn how to map these
patterns to the input sequence that corresponds to them.

In Figure 4.8 the regularized configuration of the RNN network is shown.

Recurrent (96)input: (_, 12, 8)

output: (_, 12, 96)

DROPOUTinput: (_, 12, 96) output: (_, 12, 96)

Recurrent (h)input: (_, 12, 96) output: (_, _, h)

Recurrent (h)input: (_, 12, h) output: (_, 12, h)

DROPOUTinput: (_, 12, h) output: (_, 12, h)

Recurrent (96)input: (_, 12, h) output: (_, 12, 96)

Time Distributed (8)input: (_, 12, 96) output: (_, 12, 8)

Gaussian Noiseinput: (_, 12, 8) output: (_, 12, 8)

Repeat (12)input: (_, _, h)

output: (_, 12, h)

Figure 4.8: LSTM-AE and GRU-AE regularized configuration with latent code dimension of h.

The hyperparameters conisidered are:

• Batch size: 6, 12, 24 and 48.

• Dropout rate: 0.0 and 0.1.

• Gaussian Noise Variance: None, 0.05, 0.1 and 0.2.

• Latent space dimension: 48 (1/2) and 64 (2/3).

The unchanged parameters during the process are:

• Learning rate at start: 0.01.

• Loss Function: MSE.
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• Optimizer: Adam.

• Activation Functions: Tanh for the RNN layers.

4.3.4 Training and Validation Losses

FNN, LSTM and GRU Autoencoders

During training, the convergence speed of a neural network can be affected by a number of
variables, including the model’s complexity, the quantity and quality of the training dataset, the
choice of hyperparameters, and the employed optimization technique. Many factors can affect
the convergence speed of a fully connected neural network-based autoencoder (FNN-AE) and
a recurrent neural network-based autoencoder (RNN-AE), including the number of layers, the
number of neurons per layer, and the input data type.

From Figure 4.9 it is clear how the recurrent models are able to obtain lower losses with a much
longer convergence time. It is possible that an FNN-AE can converge faster than an RNN-AE for
the same reconstruction task due to the following reasons [33]:

• Feedforward Architecture: FNN-AE has a feedforward architecture where information
flows only in one direction, from the input layer to the output layer. This makes it easier
to optimize the model using standard backpropagation algorithms, which calculate the gra-
dients of the loss function with respect to the model parameters. In contrast, RNN-AE has
a recurrent architecture where information loops back from the output layer to the input
layer, which can cause instability during training and make optimization more challenging.

• Size of model: FNN-AE typically has a smaller number of parameters than RNN-AE.
A smaller model size can make it easier to train the model, as there are fewer parameters
to optimize. Additionally, smaller models can generalize better, which can result in faster
convergence and better performance.

Yet, it is possible that the FNN-AE causes a larger loss at the end of training than the
RNN-AE. This may occur if the FNN-AE reaches a suboptimal solution as a result of premature
stopping or overfitting. In contrast, the RNN-AE may continue to improve throughout training
and arrive at a superior solution, resulting in a reduced final reconstruction loss.

For the identical reconstruction job, a FNN-AE can converge quicker than an RNN-AE because
to its feedforward design and reduced model size. However, the FNN-AE may result in a greater
loss at the conclusion of training due to overtraining or premature cessation. The design of the
autoencoder should be selected depending on the specific job and the properties of the input data,
and different architectures should be compared based on their performance on a validation set
rather than just the training loss.

Latent Space Dimension

The size of an AE latent space can have a substantial effect on the results of anomaly detection.
Each point in the latent space corresponds to a potential representation of the input data. The
latent space represents a compressed version of the input data. The difference between the input
data and the rebuilt data can be utilized to detect anomalies when an AE is trained to reconstruct
the input data from this compressed form.

A wider latent space permits more expressive representations of the input data, which can be
useful for spotting abnormalities that are more complex or subtle. Nevertheless, a bigger latent
space may also increase the danger of overfitting, which occurs when the AE learns to reconstruct
the training data too well and becomes less capable of recognizing anomalies in new or unknown
data. A smaller latent space, on the other hand, may be less expressive but more resilient to noise
and outliers. This can be useful for finding more evident anomalies, but it may overlook subtler
or more sophisticated ones.
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Figure 4.9: Losses from FNN and RNNs AE. Dense AE has few epochs since it models a slightly
simpler problem, converging faster. Left: linear scale. Right: Logarithmic scale. Solid line refers
to training loss and dotted line refers to validation loss.

Thus, the selection of the latent space size in an AE depends on the unique anomaly detection
problem and the trade-off between the expressiveness of the representation and the danger of
overfitting. In practice, it may be essential to experiment with various latent space sizes and
compare the results of anomaly detection to discover the ideal size for a given problem.

In the problem considered, models with latent space dimensionality ratios of 1/2 and 1/3 to
the input data will be used.

This can be considered a moderate dimensionality reduction, but it is highly limited by the
number of available dimension in the starting problem. When the original measures are highly
correlated or similar to each other, it may be possible to achieve a higher level of dimensionality
reduction without significantly impacting the information content of the data. In contrast, when
the original measures are distinct or less correlated, aggressive dimensionality reduction may result
in the loss of important information. In this specific case the number of measure is very limited
and some of these are unique measures representing a specific sub-component of the WTG. With
larger datasets the intensity of dimensionality reduction could have been considerably greater.

Batch Size

The batch size can have a substantial effect on the training losses of a neural network model.

These are a few examples of how model losses might vary based on batch size:

• The gradient estimates used to update the model parameters are noisier when the batch
size is small because they are based on a smaller sample of the training data. This can result
in more unstable training and slower convergence, leading to greater loss values.

• Lower batch sizes might also result in less precise optimization since the optimizer may
be less able to locate the global minimum of the loss function. This can lead to increased
ultimate loss values and subpar model performance.

• Small batch sizes can also have a regularization effect because the model is exposed to
more variability in the training data. This can aid in preventing overfitting and enhancing
generalization performance, resulting in reduced loss values on the validation set.

• A larger batch size means that fewer updates are made to the model parameters during each
training iteration. This can result in slower training, as it takes longer to process each
batch of data.

• If the batch size is too large, it can also result in poor generalization performance. This
is because the model is less likely to encounter rare or unusual examples during training,
which can make it less able to handle such cases during inference.
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((a)) Losses from FNN-AE with different batch size.

((b)) Losses from LSTM-AE with different batch size.

((c)) Losses from GRU-AE with different batch size.

Figure 4.10: FNN and RNN AE, models losses at different batch sizes. The parameter after the
model name refers to batch size. Left: linear scale. Right: Logarithmic scale. Solid line refers to
training loss and dotted line refers to validation loss.

In general, the best batch size for a given model will depend on the unique task and architec-
ture, as well as other considerations such the available computational resources and the amount
of the training dataset. In reality, it is frequently advantageous to experiment with various batch
sizes during model training and select the one that yields the best results on the validation set.

From the results in Figure 4.11, it can be easily observed that batch size has mixed effects
among different AEs architectures. In particular in recurrent models the use of very large batch
sizes (48-sample size) produces large losses and extremely long convergence times. The overall
result in these models makes it possible to say with great confidence that the effect of batch size is
easily explained by the reduction of optimization steps in the models across epochs. However, the
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effects on the FNN model gives unsuspected results, leading it to obtain better scores the more the
batches increase in size. Probably due to the fact that the regularization effect introduced from
the small batches resulted too pronounced on a much simpler model than on the more complex
RNNs.

Different batch sizes will be tested in the experimental phase: starting with 6 sequences at a
time, sizes at 12, 24 and 48 will be tried. However, only the approaches with size at 6 and 12 will
be further investigated with other parameters, while the remainder will have purely demonstrative
value in this training phase.

Denoising Task Noise Intensity

In AE, the model is trained to minimize the reconstruction error between the input and the out-
put. As there is no additional noise removal step, the model learns to encode the input data as
accurately as possible.

However, in DAE, the model is trained to remove the added noise and reconstruct the original
input. Therefore, the DAE has an additional objective to remove noise from the input and
reconstruct the original signal, which can be more challenging than the simple reconstruction
task in AE.

As the noise variance increases in DAE (Figure 4.10), the problem becomes harder as the
model needs to remove more severe noise from the input signal. In contrast, in AE, the model
only needs to reconstruct the input signal, and the added noise does not affect the reconstruction
loss significantly. Therefore, in general, the reconstruction problem in AE has a lower loss than
the DAE problem, especially at higher noise variances. For this reason reduced loss value is found
in all model variations considered.

The effect of higher error occurs not only on the training data but also on the validation data,
although they are not directly altered by the effect of noise. The reason for this could be in
general a more difficult tendency to learn the reconstruction task for denoise-type models.

In the process of denoising, the models will employ as a Gaussian noise parameter, the value
of a relative variance in relation to the data that is input into the model. The values vary from
5 percent, to 10 percent, and then finally all the way up to 20 percent of the variance in the
training data. Taking into account the fact that each of the training data has a unit variance, the
mistake that is introduced will have a variance that is equal to the decimal value that is taken
into account. Due to the fact that the mistakes will have averages that are not zero, the lags that
are brought about by the Gaussian disturbance will be both negative and positive.
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((a)) Losses from FNN-AE with different noise power.

((b)) Losses from LSTM-AE with different noise power.

((c)) Losses from GRU-AE with different noise power.

Figure 4.11: DAE (and AE, since it has no noise) models losses at different noise power. The
parameter after the model name refers to the variance of the noise added in the input data (data
is monovariate after standard scaling technique). Left: linear scale. Right: Logarithmic scale.
Solid line refers to training loss and dotted line refers to validation loss.
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Dropout

A percentage of neurons in a layer are chosen at random to be ignored after each forward training
pass when dropout is applied. This reduces the reliance between the neurons, which can enhance
the network’s capacity for generalization.

((a)) Losses from FNN-AE with different dropout rate.

((b)) Losses from LSTM-AE with different dropout rate.

((c)) Losses from GRU-AE with different dropout rate.

Figure 4.12: AEs models losses at different dropout rate. The parameters refer to the percentage
of neuron deactivated during each training step. Left: linear scale. Right: Logarithmic scale.
Solid line refers to training loss and dotted line refers to validation loss.

The effect of dropout on the loss of a neural network model might vary based on the design
and data used, but in general, dropout will reduce the loss performances of the model during
training. This is because dropout prevents overfitting and promotes the network to discover more
robust and generalizable characteristics.
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It is also important to note that attrition can make training more difficult and hinder con-
vergence. This is due to the employment of a distinct group of neurons on each forward pass,
which might result in more unstable gradients and slower convergence. Thus, it is typical to
combine dropout with other regularization approaches, such as weight decay, to further enhance
the network’s performance.
It is evident from Figure 4.12 how the dropout acted by reducing the ability of the model to
converge rapidly is had in effect of raising the loss is thus reduced the overfitting This technique
therefore has effects that are the same as the AE denoise case.

Throughout the course of the experiment, different dropout rates will be employed. The
percentage of artifact neurons that remain inactive after a forward pass constitutes the dropout
benchmark. In the particular example of the experiment, the levels that will be used are going
to be 10% and 20%. While better levels of regularization will be achieved with the use of other
approaches, additional dropout benchmarks will not be considered at this time.

Graphs of losses using mixed regularization techniques will not be reported, but instead results
on anomaly detection tasks related to them will be reported.

VAE

VAEs are potent generative models commonly employed for unsupervised learning and data gen-
eration. Nonetheless, training VAEs can be problematic due to the complexity of maximizing the
trade-off between reconstruction loss and KL divergence.

The reconstruction loss represents the difference between the input data and the output of the
decoder network, whereas the KL divergence measures the difference between the latent variable
distribution and a previous distribution (usually a standard normal distribution).

The beta parameter β, which adjusts the KL divergence term in the loss function, controls
the trade-off between the two terms. A high value of β reduces the variance in the latent space,
but can cause the model to be inadequately fitted to the data. A low value, on the other hand,
results in a greater variation in the latent space, but can cause the model to overfit the data.
Consequently, determining the ideal parameter value is essential for training a VAE.

In conclusion, it might be challenging to train a VAE due to the delicate trade-off between the
reconstruction loss and the KL divergence term. The β parameter plays a critical role in achieving
a balance between these two variables, and its optimal value must be determined through thorough
experimentation. Losses can be seen in Figure
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((a)) Losses from FNN VAE.

((b)) Losses from LSTM-VAE.

((c)) Losses from GRU-VAE.

Figure 4.13: VAEs models losses (β at 0.01). The parameters refer to the percentage of neuron
deactivated during each training step. Left: linear scale. Right: Logarithmic scale. Solid line
refers to training loss and dotted line refers to validation loss.
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4.3.5 Residual Evaluation

At the end of the training process, the models can be evaluated in their reconstruction capability
using the evaluation of their residuals. After the health reference model is trained, the can
multivariate residuals be obtained.

From the residual the aggregation metric is computed (MSE in this case) allowing to produce
an anomaly indicator. With this indicator all fault can be detected by choosing a threshold which
allow from a discrimination of the sample when the value is exceeded.

When monitoring indicators are produced from a sequence using Mean Squared Error (MSE),
a distribution can be computed to determine a threshold for anomaly detection. Traditionally,
a Gaussian distribution has been used for this purpose, but in some cases, a Kernel Density
Estimation (KDE) can provide more accurate results.

Estimating the probability density function of a random variable can be done using the KDE
technique, which is a non-parametric approach. Using a kernel function at each data point, it
constructs a continuous probability density function, which is then used to make an estimate of
the underlying probability density function of a given set of observations. This estimate can then
be used. Estimating the likelihood of seeing a particular value can be done with the help of the
probability density function that was produced as a result. KDE is able to adjust to the shape
of the data and provide a more accurate representation of the distribution that it is based on,
in contrast to the Gaussian distribution, which assumes that the shape will always be the same.
Because of this, it is a useful tool for anomaly detection because it is able to identify anomalies
that may not be captured by a Gaussian distribution. Consequently, this makes it a useful tool.

Formally, KDE is defined as, given a sample population X = {x1, x2, ..., xn}, the estimated

probability density function f̂(x) using the Gaussian kernel is defined as:

f̂(x) =
1

nh
√
2π

n∑︂
i=1

e−
(x−xi)

2

2h2

where h is the bandwidth parameter, which controls the smoothness of the estimate, and is
typically selected using a method such as cross-validation.

In this work the Gaussian kernel K(u) is used, is defined as:

K(u) =
1√
2π

e−
u2

2

where u is the distance from the observation to the point at which the density estimate is
evaluated.

• x is the value at which the density estimate is evaluated.

• K is the kernel function, which determines the shape of the density estimate.

• h is the bandwidth, which controls the smoothness of the density estimate. A smaller
bandwidth produces a smoother estimate but may oversmooth the data, while a larger
bandwidth may capture more detail but may be more sensitive to noise.

It does this by computing a weighted sum of kernel functions centered at each observation,
with the weight of each kernel determined by its distance from x and scaled by the bandwidth
h. The resulting density estimate represents the probability of observing a value x from the
underlying distribution.
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In Figure 4.14 GRU-AE distribution and PDF resulting from KDE are shown.

Figure 4.14: MSE distribution and PDF from KDE estimation on validation set.

In Figure 4.15, residual are shown for few models involved in training.

Figure 4.15: Residual PDF distribution using KDE on several models residual over the validation
data for reconstruction and denoise tasks.
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4.4 Anomaly Detection in Validation and Testing Datasets

In multivariate anomaly detection, reconstruction error is generally employed as a measure of
how abnormal a data point is. This is because reconstruction error takes into account multiple
variables simultaneously. After the calculation of the reconstruction error for each data point in
our dataset, labels are aligned to the data points and evaluate the performance of our model by
plotting ROC curves.

Here are the general steps to go from reconstruction error to labeling and ROC evaluation:

• Determine a threshold value for the reconstruction error. This threshold value will be used
to classify data points as normal or anomalous. One way to determine the threshold is to
use a validation set and choose a threshold that balances the false positive rate (FPR) and
true positive rate (TPR).

• Classify each data point as normal or anomalous based on whether its reconstruction error
is above or below the threshold value.

• Compute the confusion matrix based on the true labels and predicted labels. The confusion
matrix will have four elements: true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).

• Calculate the TPR and FPR for different threshold values by varying the threshold value
and computing the corresponding TPR and FPR. These values can be plotted on a ROC
curve.

• Evaluate the performance of the model by computing the area under the ROC curve (AUC).
A higher AUC indicates better performance.

It’s important to note that the choice of threshold value will affect the labeling of data points and
the resulting ROC curve. Therefore, it’s important to choose an appropriate threshold value that
balances the trade-off between the FPR and TPR.

In symbols, let X be the original multivariate time series, and let X’ be the reconstructed time
series using a reconstruction algorithm such as PCA or autoencoder. Let e(t) be the reconstruction
error at timestep t, which is defined as the difference between X(t) and X’(t):

e(t) = X(t)−X ′(t)

To obtain a measure that can be used for anomaly detection at each timestep, the reconstruc-
tion errors is aggregated across all variables using an aggregation function f . This function can
be any suitable measure of distance between the original and reconstructed time series. The types
of functions are listed later.

Let F be the aggregation function, and let f(t) be the resulting measure at timestep t, which
is defined as follows:

f(t) = F
(︁
e(t)1, e(t)2, . . . , e(t)n

)︁
where e(t)1, e(t)2, ..., e(t)n are the reconstruction errors for each variable at timestep t.

For example, with MSE as the aggregation function, f(t) can be defined as follows:

f(t) =
1

n

n∑︂
i=1

e(t)2i

where n is the number of variables in the multivariate time series.

Once the measure f(t) is calculated for each timestep, it can be compared to a threshold to
detect anomalies. If f(t) exceeds the threshold, that timestep can be flagged as anomalous.

The aggregation function used before can be one of the following:
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• Maximum reconstruction error: In this method, the maximum reconstruction error
is taken across all the measures as the anomaly score for that data point. This method
assumes that the measure with the highest reconstruction error is the most important in
detecting anomalies.

• Average reconstruction error: In this method, the average of the reconstruction errors
is computed across all the measures as the anomaly score for that data point. This method
assumes that all the measures are equally important in detecting anomalies.

• Mahalanobis distance: In this method, the Mahalanobis distance is obtained between
the reconstructed data point and the mean of the normal data points. The Mahalanobis
distance takes into account the covariance of the data and provides a more accurate measure
of distance than Euclidean distance.

• Principal component analysis (PCA): In this method, PCA is applied to the reconstruc-
tion errors and take the first principal component as the anomaly score. The first principal
component captures the most variance in the data and is often a good representation of the
overall anomaly score.

Once a single anomaly score is obtained for each data point, it can be used to plot the ROC
curve and evaluate the performance of our anomaly detection model. The choice of method for
aggregating the reconstruction errors depends on the specific application and the characteristics
of the data.

In the case studied by this thesis, the aggregation metric for the data in the anomaly detection
stage is the MSE. Therefore, after obtaining the scores in the testing phase of the model, the
timestamps for the reconstructed sequences are used to calculate a difference the values obtained,
which is then squared and aggregated with an averaging operation.

The anomaly task, in some tests will then be used at different levels of complexity to determine
the accuracy of the algorithm:

• Time series anomaly detection: In this first task, the objective is determining if the
entire time series is anomalous, is commonly known as anomaly detection for time series
data.

• Point anomaly detection: In this task, each individual timestep of time series will be
tested for anomalies.
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4.4.1 Event Discrimination in Validation

A Status discrimination is performed as an initial test to verify the efficacy of the models in the
anomaly detection phase of the process.

At this point in the process, data that has been labeled using the same labels that were used to
discriminate data for training can be used. In particular since the discrimination involves whole
sequences, RE is aggregated in the sequence with an MSE (between all measures and timesteps
inside the sequence). The labels referring to an anomalous sequence are obtained by aggregating
the single timesteps labels using a logical-OR between all the single timesteps labels, plus a
performance average between all the timestep of a sequence. The time sequences that contain
only one timestep that is reported as being abnormal will be eliminated from the dataset in an
effort to cut down on the number of borderline situations.

It is also possible to employ a partial method, in which only particular subsets of labels are to
be evaluated. The requirement here is that the subsets in question contain partitions with higher
reconstruction error, or that they only use partitions with both positive and negative labels. In
this partition test, only few filter conditions are considered.

Figure 4.16: ROC curves classifications results with the main models. The same filters used in
training are used for labelling the data.

In Figure 4.16, it can be seen that all models are easily able to bring great results in the
classification phase by trying to positively label the data according to the splits used in the filters
of the training phase. The models in the image are all the basic version of the AEs with 48 latent
dimension, with batch 12. The number of principal components for PCA is determined when the
cumulative variance contribution rates exceed 80%, 90% and 95%.

Figure 4.17: ROC curves classifications results with the main models. Labels refers to the Active
Status vs Error and Inactive ones.

73



Experiments

((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.18: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR. Model with dropout at zero and batch size at 6, latent
space dimension of 48.

In Figure 4.18, different roc curves are displayed for different DAE models, making case for
the highest TPR values. The image shows that all models achieved comparable performance, and
the models with more pronounced noise produced the greatest results in the case of RNNs. In
Figure 4.17, on the other hand, it is possible to visualize the same patterns in the classification
stage using the turbine Status in the observed timestamp as the discriminating label.

From Figure 4.19 it can be observed, all DAE models, both FNN and RNN, are able to achieve
very high TPR values with very low FPR values. This demonstrates that this type of event is
characterized by a high reconstruction error relative to the observed quantities.

The fact that the results are greater demonstrates that the times when the status becomes
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.19: ROC curves for Error and Inactive statuses for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR. Model with dropout at zero and batch size at 6, latent
space dimension of 48.

inactive or error, the reconstruction error obtains the most deviant results from the normality of
the data observed in the training phase, and as a result, it is easier to observe such differences
than data that are characterized only by lower performance. This is because the reconstruction
error obtains the most deviant results from the normality of the data observed in the training
phase. In the context of the results, it is not difficult to deduce that the model is endowed with an
excellent capacity for detecting the filters that were applied in order to gain access to the training
phase. The faults in the reconstruction turn out to be extremely interchangeable on the states
that the turbine is in, whether it be error or idle (in Figure 4.20).

In the tables below, all model results are shown at varying batch size, dropout for models with
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Figure 4.20: Reconstruction error for all the different measures and the Status code representing
Error statuses in black and Inactive statuses in gray.

latent space at 32 for FNN (Table 4.8), LSTM (Table 4.9) and GRU (Table 4.10).

A bar graph is shown in the Figure 4.21 where one can see the trend of ROC-AUC score as
the hidden space dimension changes in the training filter test. Although the values are within a
small range the best results are obtained with hidden dimension at 48. In fact, the experiments
show the different results with value of the parameter at 32 and 48 units.

Figure 4.21: ROC-AUC score for the main model with different latent space dimension. These
values refers to the the train filters test on validation data, with batch size at 6, 0% dropout
rate and no noise. Maximum values are reached in all the models at 48 which is chosen as main
parmeter.
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Dropout Rate
0% 10%

Batch-6

N
o
is
e

NO 0.9123 0.907
5% 0.912 0.9066
10% 0.9110 0.9039
20% 0.9098 0.9002

Batch-12
N
o
is
e

NO 0.9190 0.9115
5% 0.912 0.902
10% 0.9139 0.9054
20% 0.9120 0.9010

Dropout Rate
0% 10%

Batch-6

N
o
is
e

NO 0.9511 0.9425
5% 0.9452 0.9410
10% 0.9504 0.9400
20% 0.9456 0.9393

Batch-12

N
o
is
e

NO 0.9502 0.9456
5% 0.9489 0.9432
10% 0.9467 0.9458
20% 0.9457 0.9384

Table 4.8: FNN AE (latent dimension of 32) results in terms of ROC-AUC scores. The tables
show different results based on combinations of batch-size, noise power and dropout probability
in each model. Left: Results for discrimination based on the same filters used in training. Right:
Results for discrimination using only Error and Inactive statuses.

Dropout Rate
0% 10%

Batch-6

N
o
is
e

NO 0.8944 0.8992
5% 0.9086 0.9142
10% 0.9104 0.9192
20% 0.9171 0.9181

Batch-12

N
o
is
e

NO 0.8925 0.892
5% 0.9066 0.9035
10% 0.9129 0.9187
20% 0.9141 0.9181

Dropout Rate
0% 10%

Batch-6
N
o
is
e

NO 0.9529 0.9544
5% 0.9525 0.9528
10% 0.9532 0.9584
20% 0.9547 0.9447

Batch-12

N
o
is
e

NO 0.955 0.9562
5% 0.9549 0.9584
10% 0.9509 0.9597
20% 0.9588 0.9568

Table 4.9: LSTM-AE (latent dimension of 32) results in terms of ROC-AUC scores. The tables
show different results based on combinations of batch-size, noise power and dropout probability
in each model. Left: Results for discrimination based on the same filters used in training. Right:
Results for discrimination using only Error and Inactive statuses.

Dropout Rate
0% 10%

Batch-6

N
o
is
e

NO 0.9023 0.9091
5% 0.8997 0.9012
10% 0.8932 0.9016
20% 0.8973 0.9026

Batch-12

N
o
is
e

NO 0.9031 0.9103
5% 0.9003 0.9025
10% 0.8964 0.9010
20% 0.8984 0.9005

Dropout Rate
0% 10%

Batch-6

N
o
is
e

NO 0.9547 0.9562
5% 0.9512 0.9524
10% 0.9459 0.9461
20% 0.9488 0.9461

Batch-12

N
o
is
e

NO 0.959 0.9476
5% 0.9510 0.9476
10% 0.9494 0.9468
20% 0.9488 0.945

Table 4.10: GRU-AE (latent dimension of 32) results in terms of ROC-AUC scores. The tables
show different results based on combinations of batch-size, noise power and dropout probability
in each model. Left: Results for discrimination based on the same filters used in training. Right:
Results for discrimination using only Error and Inactive statuses.

In the tables below, all model results are shown at varying batch size, dropout for models with
latent space at 32 for FNN (Table 4.11), LSTM (Table 4.12) and GRU (Table 4.13).
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Dropout Rate
0% 10% 20%

Batch-6
N
o
is
e

NO 0.922 0.911 0.9071
5% 0.91 0.91 0.9159
10% 0.9105 0.9138 0.9111
20% 0.9135 0.915 0.9002

Batch-12

N
o
is
e

NO 0.9197 0.9121 0.906
5% 0.9184 0.9119 0.9084
10% 0.9105 0.9041 0.9029
20% 0.9087 0.9054 0.9026

Dropout Rate
0% 10% 20%

Batch-6

N
o
is
e

NO 0.9457 0.9354 0.9431
5% 0.937 0.9323 0.9404
10% 0.948 0.9447 0.942
20% 0.9431 0.9383 0.9369

Batch-12

N
o
is
e

NO 0.9512 0.9439 0.936
5% 0.9484 0.9373 0.9293
10% 0.9413 0.9429 0.9333
20% 0.9365 0.9479 0.9359

Table 4.11: FNN AE results in terms of ROC-AUC scores. Left: Results for discrimination
based on the same filters used intraining. Right: Results for discrimination using only Error and
Inactive statuses.

Dropout Rate
0% 10% 20%

Batch-6

N
o
is
e

NO 0.9138 0.9034 0.9128
5% 0.913 0.9192 0.9308
10% 0.9054 0.9294 0.9253
20% 0.9182 0.9146 0.9239

Batch-12

N
o
is
e

NO 0.9112 0.9052 0.9105
5% 0.9164 0.9192 0.9298
10% 0.9058 0.9253 0.9232
20% 0.9184 0.9130 0.9210

Dropout Rate
0% 10% 20%

Batch-6

N
o
is
e

NO 0.9553 0.9478 0.9464
5% 0.947 0.9546 0.9637
10% 0.9556 0.9548 0.9600
20% 0.9546 0.9548 0.9549

Batch-12

N
o
is
e

NO 0.9518 0.9512 0.9557
5% 0.9552 0.9545 0.9593
10% 0.9518 0.9511 0.9504
20% 0.9613 0.9557 0.9545

Table 4.12: LSTM-AE results in terms of ROC-AUC scores. Left: Results for detection based
on the same filters used in training. Right: Results for detection using only Error and Inactive
statuses.

Dropout Rate
0% 10% 20%

Batch-6

N
o
is
e

NO 0.9116 0.9033 0.929
5% 0.9121 0.9166 0.9109
10% 0.8948 0.9109 0.9157
20% 0.9183 0.9225 0.9126

Batch-12

N
o
is
e

NO 0.9106 0.8891 0.9273
5% 0.9091 0.9134 0.9102
10% 0.906 0.9183 0.9100
20% 0.9062 0.9124 0.9045

Dropout Rate
0% 10% 20%

Batch-6

N
o
is
e

NO 0.9542 0.9486 0.9559
5% 0.9528 0.9501 0.9508
10% 0.952 0.9495 0.9539
20% 0.9523 0.9505 0.9414

Batch-12

N
o
is
e

NO 0.9512 0.9505 0.9524
5% 0.9505 0.9525 0.9438
10% 0.9509 0.9478 0.9493
20% 0.9514 0.9485 0.9469

Table 4.13: GRU-AE results in terms of ROC-AUC scores. Left: Results for detection based
on the same filters used in training. Right: Results for detection using only Error and Inactive
statuses.
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Instead, Table (4.14) show the various results of the models with VAE-type regularization.

VAE Model
FNN LSTM GRU

Batch-6 0.8821 0.9193 0.9003
Batch-12 0.8832 0.9196 0.9008

VAE Model
FNN LSTM GRU

Batch-6 0.9386 0.9587 0.9528
Batch-12 0.9397 0.9496 0.9514

Table 4.14: VAEs results in terms of ROC-AUC scores. The tables show different results based
on combinations of batch size and network. Left: Results for discrimination based on the same
filters used in training. Right: Results for detection using only Error and Inactive statuses.

Variance
0.8 0.9 0.95

PCA .8112 0.8234 0.8423

Variance
0.8 0.9 0.95

PCA .8576 0.8533 0.8831

Table 4.15: PCA results in terms of ROC-AUC scores based on principal component variance.
Left: Results for discrimination based on the same filters used in training. Right: Results for
detection using only Error and Inactive statuses.

Table 4.15 show the various results for the PCA.

At the end of the experiments, all models obtain rather similar results at this stage. However,
the models with higher latent space obtain higher overall. In addition, RNN-type models benefit
more from regularization as models that are more prone to overfitting because they contain more
parameters. The batch size, does not particularly alter the results, so it can be set at the value
of 12 for later experiments. By increasing the batch value, the results tend to become worse and
produce mixed results.

The best model tested at this stage results in both experiments LSTM-DAE with batch size
at 6 noise variance at 5% and dropout at 20%.
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4.4.2 Benchmarks Validation

In the evaluation that will be done using benchmarks, the various models will be put to use in
the process of detecting particular anomalies that have been artificially produced by the insertion
of noise or the alteration of certain measurements that are linked with specific subsystems.

The accomplishment of these benchmarks will begin with the production of a modified signal,
which will be accomplished by starting with the initial signal and then introducing modifications.
Timestamps will be replaced in the original time sequences by the use of a binary mask, which
will be computed through the application of probabilistic methods. But, because of the chaotic
nature of the WTG systems, it will first be necessary to guarantee that the original signal is free
of any earlier anomalies. This will be necessary to do because of the nature of the WTG systems.
In the event that it is not, there is the potential for the introduction of anomalies into a time
series that already contains further anomalies that have not been reported.

During this phase, the data from the four validation turbines are initially filtered to produce
time sequences that have the highest possible level of performance. Table 4.16 outlines the many
filters that were applied. After the filtering the top performance sequences are extracted, the
scarcity of data with such characteristics can be seen in Table 4.17. Unlike previous experiments,
the benchmarks will be evaluated on single timesteps, due to the short-lived nature of the anomaly
phenomena reproduced.

Measure Lower Bound Upper Bound Other Conditions
Active Power -50kW 2300kW
Wind Speed 3.5m/s 25m/s
Performance (G90) 90% 110%
ABS Temp. Difference 8C°
Status Not error status
Perf. (G90) Cent. MA 12 95% 105%
Limitations Not a limitation

Table 4.16: Types of filters used in the benchmark preprocessing phase. The table shows the
list of quantities used and the appropriate filter conditions. All data less than the lower bound
or greater than the upper bound were removed. Since Status is a symbolic data type the Error
Status is removed. It is important to note that the performance settings that are employed at
this step of model training are more restrictive than those that were used in the filter phase in
order to generate a time series that is of the highest possible quality.

WTG N° Bench. Seqs. % Bench. Seqs. % Valid T.
WTG-1 99/13212 0.74% 5.54%
WTG-2 1396/13212 10.5% 15.02%
WTG-3 155/13212 1.17% 8.47%
WTG-4 219/13212 1.66% 11.03%

Table 4.17: Data samples (in sequence format) after filtering and preprocessing for the benchmark
testing. The fact that the number of valid sequences does not equal the number of valid timestamps
resides in the fact that only sequences solely consisting of valid data are usable in the benchmark
testing phase.

One way to insert anomalies is to use a masking technique where a random subset of the
time series is selected, and the values in that subset are replaced with anomalous values. In this
scenario, the mask is formed by employing a random chance of 1/12. This suggests that one of
every twelve timesteps will be chosen to be replaced with an anomalous value in the course of the
process. A value of one in the mask indicates that the corresponding timesteps in the time series
should be replaced with an anomalous value, while a value of zero indicates that the timesteps
should be left unmodified. The mask is a binary vector that is the same length as the time series.

In the next experiments only few measures are selected for the benchmark evalutation, with
particular values of anomaly injected:
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• Active Power: The anomaly correspond to a scaling by 0.90 of the observed Active Power
measure. Benchmark inspired by literature on WTG registered anomalies [60].

• Rotor RPM: The anomaly correspond to a scaling by 1.10 of the observed Rotor RPM
measure. Benchmark inspired by literature on WTG registered anomalies [60].

• Gearbox Oil Temperature: The anomaly correspond to an addictive noise Gaussian
noise with zero-means and unitary variance. The noise is added to the scaled measure so
the variance can be considered equal to to the one of the observed Gearbox Oil Temperature
measure.

Using a masking technique in which a random portion of the time series is chosen, and then
having the values in that portion of the time series replaced with anomalous values, is one method
for introducing anomalies into the data. After the mask has been created, it is put to use to
introduce anomalies into the time series. This is done by selecting the timesteps in the mask
that correlate to the 1s and then changing the values of those timesteps with values that are
anomalous. The random noise, spikes, trends, or any other patterns that can be important to the
application are some of the types of anomalies that can be detected using the anomalous values,
which can be selected according on the sort of anomaly that one wishes to identify.

Anomalies can be introduced into a time series in different ways depending on the type of
anomaly being simulated. For instance, to simulate a scaling anomaly, the value of the i-th
timestamp can be substituted using the mask, which is generated as a binary vector of length
N , where N is the number of timestamps in the time series. The mask contains ones at random
positions with probability p, where p is the proportion of anomalous timestamps. Thus, the mask
M can be defined as follows:

Mi =

{︄
1, with probability p

0, with probability 1− p

To introduce the anomaly, the original value xi at the i-th timestamp is multiplied by a scaling
factor s, which can be randomly generated or fixed, and then replace it with the new value x′

i, as
follows:

x′
i =

{︄
s× xi, if Mi = 1

xi, otherwise

On the other hand, to simulate an additive anomaly, such as spikes or noise, the pattern can
be added directly to the original time series using the mask. For example, a spike anomaly can
be generated by adding a random value a to the i-th timestamp, which is selected by the mask.
Thus, the mask A can be defined as follows:

Ai =

{︄
a, with probability p

0, with probability 1− p

To introduce the anomaly, the anomaly mask A is added to the original time series x, as
follows:

x′
i = xi +Ai

By using these techniques, different types of anomalies can be artificially introduced into a
time series and use them to evaluate the performance of anomaly detection algorithms.
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Measured Active Power Benchmark

Below are the results for the anomaly detection phase on the Active Power benchmark. It can be
observed how the recurrent models are able to produce excellent results. The feed-forward type
models, while achieving good results, have significantly lower scores.

Table 4.18, 4.19, 4.20 and 4.21 show in that order, the results of FFN, LSTM, GRU and the
different VAEs. The tables show the ROC-AUC score values at varying hyperparameters of noise
variance (in the AE denoise problem) and dropout probability. Since results are almost identical,
table reports only batch sizes of 12.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8478 0.8157
5% 0.8157 0.783
10% 0.8294 0.8163
20% 0.8352 0.7744

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8514 0.7528 0.8029
5% 0.8267 0.835 0.8667
10% 0.8363 0.8277 0.8277
20% 0.8412 0.8404 0.7914

Table 4.18: FNN AE results in terms of ROC-AUC scores for the Active Power benchmark. Left:
latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8932 0.8932
5% 0.9071 0.8915
10% 0.8921 0.8963
20% 0.9058 0.8966

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9286 0.9362 0.9329
5% 0.9284 0.9305 0.9178
10% 0.9377 0.9391 0.9218
20% 0.9367 0.9339 0.9334

Table 4.19: LSTM-AE results in terms of ROC-AUC scores for the Active Power benchmark.
Left: latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.9024 0.8914
5% 0.9042 0.8905
10% 0.8983 0.8549
20% 0.9034 0.8549

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9255 0.9183 0.9099
5% 0.9262 0.931 0.9262
10% 0.9365 0.9358 0.9293
20% 0.9281 0.9394 0.9311

Table 4.20: GRU-AE results in terms of ROC-AUC scores for the Active Power benchmark. Left:
latent dimension 32. Right: latent dimension 48.

VAE Model
FNN LSTM GRU

Batch-12 0.8634 0.8832 0.8848

VAE Model
FNN LSTM GRU

Batch-12 0.8723 0.9029 0.8937

Table 4.21: VAEs results in terms of ROC-AUC scores for the Active Power benchmark. Left:
latent dimension 32. Right: latent dimension 48.

Variance
0.8 0.9 0.95

PCA .7932 0.8056 0.8239

Table 4.22: PCA results in terms of ROC-AUC scores for the Active Power benchmark.

Table 4.22 show the various results for the PCA.

Furthermore, some ROC curves for the most important models that were employed are de-
picted in Figure 4.22 that may be found below.
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.22: ROC curves for the Rotor RPM benchmark for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR. Only for latent dimension 48.
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Gearbox Oil Temperature Benchmark

The outcomes of the anomaly detection phase on the Gearbox Oil Temperature benchmark are
included in the following. Once again, recurrent patterns produce superior results on this detection
stage. This time, however, the results are slightly worse than the proceeding ones; the case
becomes much worse when feed-forward models are used. The main reason for that may be:

• Dependence between variables: In a multivariate time series, the variables are often
interdependent, and anomalies in one variable can affect the behavior of other variables.
This dependence can make it harder to detect anomalies because the anomaly signal may
be spread across multiple variables and may not be as pronounced as in a univariate time
series.

• Noise in the normal measure: Even if there is more noise in the normal measure of
a multivariate time series, this may not necessarily make it easier to detect anomalies. In
fact, if the noise is already high, the anomaly signal may be masked by the noise, making it
harder to detect. Moreover, the noise may also have a similar statistical distribution as the
anomalies, making it harder to distinguish between the two.

Table 4.23, 4.24, 4.25 and 4.26 show in that order, the results of FFN, LSTM, GRU and VAEs.
The tables show the ROC-AUC score values at varying hyperparameters of noise variance (in the
autoencoder denoise problrm) and dropout probability. Since results are almost identical, table
reports only batch sizes of 12.

Dropout Rate
0% 10%

N
o
is
e

NO 0.7487 0.6392
5% 0.6392 0.7413
10% 0.7273 0.7192
20% 0.7101 0.7132

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.6732 0.7201 0.7813
5% 0.6971 0.7825 0.8023
10% 0.7478 0.7466 0.7466
20% 0.6623 0.7282 0.7984

Table 4.23: FNN AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark. Left: latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8132 0.8132
5% 0.8349 0.804
10% 0.7919 0.8165
20% 0.8267 0.8077

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.868 0.8711 0.8493
5% 0.8741 0.867 0.8485
10% 0.8736 0.874 0.8599
20% 0.8693 0.8534 0.8527

Table 4.24: LSTM-AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark. Left: latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8367 0.8186
5% 0.8375 0.8186
10% 0.8231 0.7841
20% 0.8215 0.7841

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8501 0.8601 0.8364
5% 0.8549 0.8682 0.8584
10% 0.8801 0.8624 0.8544
20% 0.8628 0.8575 0.8539

Table 4.25: GRU-AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark. Left: latent dimension 32. Right: latent dimension 48.

Table 4.27 show the various results for the PCA.

ROC curves for the most important models that were employed are depicted in Figure 4.23
that may be found below.
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VAE Model
FNN LSTM GRU

Batch-12 0.7323 0.7456 0.7453

VAE Model
FNN LSTM GRU

Batch-12 0.7566 0.7717 0.748

Table 4.26: VAEs results in terms of ROC-AUC scores for the Gearbox Oil Temperature bench-
mark. Left: latent dimension 32. Right: latent dimension 48.

Variance
0.8 0.9 0.95

PCA .7123 0.7345 x0.7717

Table 4.27: PCA results in terms of ROC-AUC scores for theGearbox Oil Temperature benchmark.

((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.23: ROC curves for the Active Power benchmark for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR. Only for latent dimension 48.
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Rotor RPM Benchmark

Below are the results for the anomaly detection phase on the Rotor RPM benchmark. It is clear
that recurrent models are capable of generating high-quality output, as can be shown above. Just
like the previous case, even though they produce satisfactory outcomes, feed-forward models have
much lower score averages.

Table 4.28, 4.29 and 4.30 and 4.31 show in that order, the results of FFN, LSTM, GRU and
VAE. The tables show the ROC-AUC score values at varying hyperparameters of noise variance
(in the AE denoise problem) and dropout probability. Only batch 12 results are shown.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8314 0.8177
5% 0.8177 0.8209
10% 0.8376 0.8375
20% 0.8361 0.8302

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8165 0.8973 0.9265
5% 0.8052 0.9107 0.9403
10% 0.8131 0.9046 0.9046
20% 0.8047 0.9286 0.9056

Table 4.28: FNN AE results in terms of ROC-AUC scores for the Rotor RPM benchmark. Left:
latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.9295 0.9182
5% 0.9353 0.9234
10% 0.9308 0.9297
20% 0.9269 0.9238

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9698 0.9748 0.9756
5% 0.973 0.9716 0.9597
10% 0.969 0.9745 0.9759
20% 0.9756 0.9686 0.9718

Table 4.29: LSTM-AE results in terms of ROC-AUC scores for the Rotor RPM benchmark. Left:
latent dimension 32. Right: latent dimension 48.

Dropout Rate
0% 10%

N
o
is
e

NO 0.9379 0.926
5% 0.9398 0.931
10% 0.9348 0.8909
20% 0.9417 0.8909

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9697 0.9638 0.9723
5% 0.9727 0.9754 0.9624
10% 0.9626 0.9759 0.9634
20% 0.9731 0.9607 0.9681

Table 4.30: GRU-AE results in terms of ROC-AUC scores for the Rotor RPM benchmark. Left:
latent dimension 32. Right: latent dimension 48.

VAE Model
FNN LSTM GRU

Batch-12 0.8634 0.8832 0.8848

VAE Model
FNN LSTM GRU

Batch-12 0.8723 0.9029 0.8937

Table 4.31: VAEs results in terms of ROC-AUC scores for the Rotor RPM benchmark. Left:
latent dimension 32. Right: latent dimension 48.

Variance
0.8 0.9 0.95

PCA .7653 0.7867 0.7967

Table 4.32: PCA results in terms of ROC-AUC scores for the Rotor RPM benchmark.

Table 4.32 show the various results for the PCA.
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Again, some ROC curves for the most important models that were employed are depicted in
Figure 4.24 that may be found below.

((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.24: ROC curves for the Active Power benchmark for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR. Only for latent dimension 48.
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4.4.3 Downtimes Detection Validation

In this specific instance, there is only one downtime associated with one of the turbines that can
be researched within the validation set.

• WTG-3:

– 2021/08/31: Generator bearing high temperature from 02:15:28 to 02:33:07.

– 2021/08/31: Generator bearing high temperature from 16:47:42 to 17:00:53.

WTG-3 Generator Bearing High Temperature

The Figure 4.25 displays the error in the reconstruction of the most important parameters during
this downtime; from the image, it is clear that a number of measurements are contributing to a
significant deviation. Nevertheless, the measure that has the most obvious impact in the downtime
is is still the Generator Bearing High Temperature.

Figure 4.25: Heatmap of the RE for the most significant measures of the Generator Bearing High
Temperature downtime.

The correlation between the anomalies found can be explained by the fact that through the
generator shaft, the rotational energy that is generated by the rotor is transferred to the generator.
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The generator bearing is connected to the rest of the system through the generator shaft. The
rotational speed of the rotor is typically increased by a gearbox that is attached to the generator
shaft. This ensures that the rotational speed of the rotor is compatible with the requirements
of the generator. In the event that the bearing fails, it is possible that the rotor would become
frozen and stop rotating, which will lead to expensive downtime and repairs.

Anomalies on the generator bearing can be propagated through the system in several ways.
For example, if the bearing becomes worn or damaged, it may produce increased levels of vibration
that can be transmitted through the generator shaft and into the gearbox and other components
in the drivetrain. These vibrations can cause additional wear and tear on these components and
increase the risk of failure.

In the Tables 4.33, 4.34, 4.35 the results for the different models in the determination of error
statuses and stopping moments are shown. In the next tables batch with size 12 and latent space
of size 48 models results are shown.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9234 0.9122 0.9095
5% 0.9112 0.9047 0.9049
10% 0.9101 0.9100 0.9022
20% 0.911 0.9002 0.9066

Table 4.33: FNN AE results in terms of ROC-AUC scores for the 10 days surrounding the Gen-
erator Bearing High Temperature downtime.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9355 0.9214 0.9253
5% 0.9125 0.9206 0.9221
10% 0.9359 0.9489 0.9487
20% 0.9408 0.9502 0.9243

Table 4.34: LSTM-AE results in terms of ROC-AUC scores for the 10 days surrounding the
Generator Bearing High Temperature.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9334 0.9235 0.9145
5% 0.9234 0.9213 0.9255
10% 0.9453 0.9519 0.9481
20% 0.9458 0.9522 0.9321

Table 4.35: GRU-AE results in terms of ROC-AUC scores for the 10 days surrounding the Gen-
erator Bearing High Temperature downtime.

89



Experiments

4.4.4 Event Discrimination Testing

A Status discrimination is performed as an initial test to the new set of turbines.

At this point in the process, testing data has been labeled using the same labels that were
used to discriminate data for training dataset. As the previous experiment, RE is aggregated in
the sequence with an MSE (between all measures and timesteps inside the sequence). The labels
referring to an anomalous sequence are obtained by aggregating the single timesteps labels using
a logical-OR between all the single timesteps labels, plus a performance average between all the
timestep of a sequence.

Also this time a partial method is used, in which only particular subsets of labels are to be
evaluated. The requirement here is that the subsets in question contain partitions with higher
reconstruction error, or that they only use partitions with both positive and negative labels. In
this partition test, only few filter conditions are considered.

Figure 4.26: ROC curves classifications results with the main models. The same filters used in
training are used for labelling the data.

In Figure 4.26, it is clear that every model has the potential to readily deliver excellent
outcomes in the classification phase by making an effort to positively label the data in accordance
with the splits that were utilized in the filters during the training phase.

Figure 4.27: ROC curves classifications results with the main models. The same filters used in
training are used for labelling the data.

In Figure 4.27, on the other hand, it is possible to visualize the same patterns in the classifi-
cation stage using the turbine Status in the observed timestamp as the discriminating label.
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.28: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR.

In Figure 4.28, it can be observed that, it is possible for any DAE model, whether it be a FNN
or an RNN, to acquire very high TPR values despite having very low FPR values.
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.29: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR.

From Figure 4.29 it can be observed, all DAE models, both FNN and RNN, are able to achieve
very high TPR values with very low FPR values.

In general, the same outcomes are observed in these tests as in the validation dataset testing
phase. The results reaffirm that RNN models are superior, despite the fact that the scores differ
by just a minor amount. Regularization benefits RNN models, however FNN models perform
better when this is decreased. On general, the scores are lower, but the difference is negligible
given that these data originate from turbines that have not yet been observed.

In following tables (4.36, 4.37 and 4.38) results are shown for models with latent space dimen-
sion at 32.
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Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.8928 0.8980
5% 0.8918 0.8818
10% 0.8937 0.8877
20% 0.8910 0.8819

Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.9469 0.9432
5% 0.9387 0.9304
10% 0.9441 0.9394
20% 0.9351 0.9317

Table 4.36: FNN AE (latent dimension of 32) results in terms of ROC-AUC scores. Left: Results
for discrimination based on the same filters used in training. Right: Results for discrimination
using only Error and Inactive statuses.

Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.8916 0.9005
5% 0.8976 0.9046
10% 0.8921 0.9088
20% 0.8912 0.9012

Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.9443 0.9421
5% 0.9447 0.948
10% 0.942 0.9481
20% 0.9432 0.9442

Table 4.37: LSTM-AE (latent dimension of 32) results in terms of ROC-AUC scores. Left: Results
for discrimination based on the same filters used in training. Right: Results for discrimination
using only Error and Inactive statuses.

Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.8875 0.9012
5% 0.8944 0.8999
10% 0.8825 0.8886
20% 0.892 0.892

Dropout Rate
0% 10%

Batch-12

N
o
is
e

NO 0.9425 0.9421
5% 0.9421 0.9479
10% 0.9363 0.9365
20% 0.9379 0.9379

Table 4.38: GRU-AE (latent dimension of 32) results in terms of ROC-AUC scores. Left: Results
for discrimination based on the same filters used in training. Right: Results for discrimination
using only Error and Inactive statuses.
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In following tables (4.39, 4.40, 4.42 and 4.42) results are shown for models with latent space
dimension at 48. PCA results are in Table 4.43.

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.9103 0.863 0.8735
5% 0.9019 0.8799 0.886
10% 0.9048 0.8862 0.8862
20% 0.8883 0.8768 0.8684

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.9478 0.9266 0.9317
5% 0.9346 0.9282 0.9326
10% 0.9413 0.9356 0.9356
20% 0.9401 0.9295 0.9285

Table 4.39: FNN AE results in terms of ROC-AUC scores. Left: Results for discrimination based
on the same filters used in training. Right: Results for discrimination using only Error and
Inactive statuses.

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.9091 0.9081 0.9123
5% 0.901 0.921 0.9242
10% 0.8975 0.9127 0.9267
20% 0.9014 0.9122 0.9167

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.9486 0.9496 0.9500
5% 0.9463 0.9479 0.9512
10% 0.9455 0.9492 0.9522
20% 0.9459 0.9434 0.9442

Table 4.40: LSTM-AE results in terms of ROC-AUC scores. Left: Results for discrimination
based on the same filters used in training. Right: Results for discrimination using only Error and
Inactive statuses.

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.8954 0.8944 0.8962
5% 0.8973 0.9085 0.8923
10% 0.8943 0.9123 0.9045
20% 0.9043 0.9126 0.9042

Dropout Rate
0% 10% 20%

Batch-12

N
o
is
e

NO 0.9456 0.9488 0.9492
5% 0.9443 0.9445 0.9386
10% 0.9448 0.9502 0.9441
20% 0.9428 0.9505 0.9497

Table 4.41: GRU-AE results in terms of ROC-AUC scores. Left: Results for discrimination based
on the same filters used in training. Right: Results for discrimination using only Error and
Inactive statuses.

VAE Model
FNN LSTM GRU

Batch-12 0.8521 0.8642 0.8923

VAE Model
FNN LSTM GRU

Batch-12 0.8942 0.9043 0.8921

Table 4.42: VAEs results in terms of ROC-AUC scores. Left: Results for discrimination based on
the same filters used in training. Right: Results for discrimination using only Error and Inactive
statuses.

Variance
0.8 0.9 0.95

PCA .8257 0.8235 0.8342

Variance
0.8 0.9 0.95

PCA .8563 0.8459 0.8798

Table 4.43: PCA results in terms of ROC-AUC scores based on principal component variance.
Left: Results for discrimination based on the same filters used in training. Right: Results for
detection using only Error and Inactive statuses.
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4.4.5 Benchmarks Testing

In the benchmark testing, the various models will be utilized in the process of recognizing certain
abnormalities. Those one, similarly to the evaluation ones, have been artificially manufactured by
the introduction of noise or the modification of certain data associated with particular subsystems.
The main difference this time is that these anomalies will not be included in test periods related
only to individual months used in the validation phase. Since in the current case the test phases,
take the entire year, the anomalies will be entered on a data type with a more variable seasonality.

This difficulty will be in addition to those already mentioned in the unobserved turbine testing
phase previously discussed.

Measured Active Power Benchmark

Below are the results for the anomaly detection phase on the Active Power benchmark. Just like
for the validation set of WTG, it can be seen that recurrent models are capable of producing good
outcomes. While feed-forward models achieve good performance, their scores are much lower. In
contrast to the validation set, some results are below the validation ones while other, the ones
with high level of denoising are few points above. Those are acceptable results considering the
difficulties of this dataset compared to the previous one.

Table 4.44, 4.45 and 4.46 show in that order, the results of FFN, LSTM and GRU. The tables
show the ROC-AUC score values at varying hyperparameters of noise variance (in the AE denoise
problem) and dropout probability

Dropout Rate
0% 10%

N
o
is
e

NO 0.8324 0.7834
5% 0.8503 0.7922
10% 0.7834 0.7761
20% 0.7521 0.7697

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8475 0.7425 0.7938
5% 0.8249 0.8208 0.8402
10% 0.82 0.8147 0.8147
20% 0.8097 0.8228 0.7756

Table 4.44: FNN AE results in terms of ROC-AUC scores for the Active Power benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8982 0.8982
5% 0.8928 0.8947
10% 0.8904 0.9045
20% 0.9073 0.8948

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9436 0.9294 0.9223
5% 0.9324 0.9324 0.92
10% 0.9368 0.9316 0.9283
20% 0.9382 0.9302 0.9315

Table 4.45: LSTM-AE results in terms of ROC-AUC scores for the Active Power benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8959 0.9042
5% 0.9032 0.901
10% 0.9008 0.8773
20% 0.9095 0.9083

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9276 0.9343 0.9211
5% 0.9245 0.9391 0.9364
10% 0.9437 0.9335 0.9359
20% 0.9358 0.9405 0.9236

Table 4.46: GRU-AE results in terms of ROC-AUC scores for the Active Power benchmark.

PCA results are in Table 4.47.

In addition, Figure 4.30 depicts ROC curves for the most significant models selected.
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Variance
0.8 0.9 0.95

PCA .7743 0.7895 0.8099

Table 4.47: PCA results in terms of ROC-AUC scores for the Active Power benchmark.

((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.30: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR.
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Gearbox Oil Temperature Benchmark

The following are the outcomes of the anomaly identification phase for the Gearbox Oil Temper-
ature benchmark. Again, RNN models give superior outcomes at this stage of detection. This
time, however, the outcomes are marginally worse than validation phase; the situation becomes
significantly better for the FNN model in this phase.

The Tables 4.48, 4.49 and 4.50 show in that order, the results of FFN, LSTM and GRU. PCA
results are in Table 4.51.

Dropout Rate
0% 10%

N
o
is
e

NO 0.731 0.6921
5% 0.7155 0.713
10% 0.6921 0.7437
20% 0.6688 0.7326

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.7953 0.7466 0.7815
5% 0.7957 0.744 0.8137
10% 0.8309 0.7584 0.7584
20% 0.771 0.7257 0.7628

Table 4.48: FNN AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8193 0.8193
5% 0.8198 0.8282
10% 0.7968 0.8295
20% 0.828 0.8263

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8828 0.8431 0.803
5% 0.8719 0.8596 0.7969
10% 0.8667 0.8414 0.8218
20% 0.8671 0.8348 0.8367

Table 4.49: LSTM-AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8295 0.8205
5% 0.8205 0.8285
10% 0.8278 0.8188
20% 0.8042 0.8226

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8771 0.8711 0.8472
5% 0.8774 0.8758 0.8534
10% 0.8777 0.8747 0.8434
20% 0.8729 0.8711 0.8575

Table 4.50: GRU-AE results in terms of ROC-AUC scores for the Gearbox Oil Temperature
benchmark.

Variance
0.8 0.9 0.95

PCA .6805 0.7101 0.7564

Table 4.51: PCA results in terms of ROC-AUC scores for theGearbox Oil Temperature benchmark.

Figure 4.31 depicts the ROC curves for the most significant models that were utilized.
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.31: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR.
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Rotor RPM Benchmark

The findings for the Rotor RPM benchmark phase of anomaly identification are provided below.
As demonstrated in the preceding section, it is evident that recurrent models can produce high-
quality output. Similar to the preceding scenario, the score are just aligned as the ones from the
validation phase. RNN models provide better results than the FNN ones.

Table 4.52, 4.53 and 4.54 show in that order, the results of FFN, LSTM and GRU. The tables
show the ROC-AUC score values at varying hyperparameters of noise variance (in the autoencoder
denoise problrm) and dropout probability.

Dropout Rate
0% 10%

N
o
is
e

NO 0.8456 0.8332
5% 0.8321 0.8428
10% 0.8332 0.8375
20% 0.811 0.8213

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.8568 0.84 0.8849
5% 0.8472 0.9017 0.9096
10% 0.8535 0.8792 0.8792
20% 0.8344 0.9005 0.849

Table 4.52: FNN AE results in terms of ROC-AUC scores for the Rotor RPM benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.9303 0.9303
5% 0.9301 0.9265
10% 0.9207 0.9349
20% 0.9394 0.9281

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9714 0.9533 0.9444
5% 0.9662 0.9579 0.9447
10% 0.9634 0.9498 0.9481
20% 0.9574 0.9527 0.9485

Table 4.53: LSTM-AE results in terms of ROC-AUC scores for the Rotor RPM benchmark.

Dropout Rate
0% 10%

N
o
is
e

NO 0.9335 0.9316
5% 0.9316 0.9356
10% 0.9307 0.9293
20% 0.9377 0.9382

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9621 0.9583 0.9558
5% 0.9604 0.9613 0.9554
10% 0.9677 0.96 0.9551
20% 0.9626 0.9555 0.9421

Table 4.54: GRU-AE results in terms of ROC-AUC scores for the Rotor RPM benchmark.

Variance
0.8 0.9 0.95

PCA .7242 0.7542 0.7894

Table 4.55: PCA results in terms of ROC-AUC scores for the Rotor RPM benchmark.

Again, some ROC curves for the most important models that were employed are depicted in
Figure 4.32 that may be found below.
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((a)) ROC curves for AE.

((b)) ROC curves for LSTM.

((c)) ROC curves for GRU.

Figure 4.32: ROC curves for all filters involve in training for AE and DAE models. Left: whole
curve. Right: curve zoomed on high TPR.
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4.4.6 Downtimes Detection Testing

During this phase of the downtime detection process, the group of turbines that were used for
testing will be analyzed for the presence of anomalies, and an effort will be made to track the
model results back to an interpretation of the observed phenomenon by virtue of the subsystems
that make up the model.

In particular, the following downtimes experienced by the set of turbines that will be analyzed
will be investigated. As was the case in the earlier example (concerning the training and validation
turbine data), downtime moments have an extraordinarily varied character and have almost never
occurred before in the history of a turbine. These behaviors, which are compounded, are found to
occur within a group of anomalies on several quantities. The reason for this can be traced back to
the fact that turbine subsystems are externally related to one another. However, the problem is
further complicated by the fact that, once triggered, downtimes typically result in the activation
of additional measures that are intended to suppress the phenomenon.

The studied downtimes are:

• WTG-6:

– 2022/10/24: High gearbox bearing temperature from 00:03:40 to 00:38:35.

– 2022/10/24: High gearbox bearing temperature from from 15:50:40 to 13:04:55.

– 2022/10/24: High gearbox bearing temperature from from 13:18:35 to 13:31:35.

– 2022/10/24: High gearbox bearing temperature from from 14:00:00 to 14:14:25.

– 2022/10/24: High gearbox bearing temperature from from 14:24:40 to 16:39:55.

• WTG-7:

– 2021/11/02: High gearbox oil temperature from 04:27:52 to 05:02:24.

– 2021/11/02: High gearbox oil temperature from 05:07:58 to 05:52:58.

– 2021/11/02: High gearbox oil temperature from 10:35:23 to 11:24:13.

– 2021/12/02: High gearbox oil temperature from 21:50:32 to 21:55:25.

– 2021/12/02: High gearbox oil temperature from 23:51:04 to 00:11:34.

High Gearbox Bearing Temperature

From the observation of the reconstruction error, it is evident how this phenomenon is be reported
on the measure of Gearbox Bearing Temperature (Figure 4.33). There is a discernible rise in
temperature during large part of the day, and this rise reaches its top value precisely at the times
that are reported by the downtimes. A brake was applied in response to the sudden increase in
temperature, which resulted in a precipitous reduction in temperature for both the oil and the
bearings. This is another noteworthy event that occurred after the temperature rose.

The phenomenon also shows changes on the other parameters that were recorded, most notably
on the parameters Rotor RPM and Wind Speed toward the end of the downtime period. In this
scenario, the braking action brings an end to the rotation of the blades, which in turn causes the
wind speed to increase in a manner that is disproportionate to the movement of the rotor.

The causes and effects of this phenomena are detailed in the following list. If the temperature
of the bearing is too high, it is possible that the following subsystems and components will be
involved:

• Rotor: That could cause the bearings to wear out faster than normal and cause them to
overheat. In addition, if the blades are not pitched correctly, this might result in higher
loading on the bearings, which in turn can cause the bearings to overheat.

• Generator: It is possible for the generator to produce an increased accumulation of heat
in the bearings and other components, which can lead to the generator overheating if the
generator is not adequately cooled or ventilated.
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Figure 4.33: Reconstruction errors relative to the most significant features for the downtime High
Gearbox Bearing Temperature registered on 2022/10/24 from 00:03:40 to 16:39:55. Model used:
GRU-AE with batch size 6, hidden space dimension of 64.

• Lubrication system: It is essential to have a good lubrication system in order to keep
the bearings at the correct temperature and minimize wear. If the lubrication system is not
maintained properly, it may cause reduced oil flow or oil degradation, both of which can
lead to bearings that get too hot.

• Cooling system: The cooling system is in charge of dissipating the heat generated by
a number of different components, including the bearings. If the cooling system is not
operating as it should, the cooling capacity may be diminished, which may lead to an
increase in the amount of heat that builds up in the bearings.

In the Tables 4.56, 4.57, 4.58 the results for the different models in the determination of error
statuses and stopping moments are shown.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9189 0.9031 0.9071
5% 0.9233 0.9107 0.8975
10% 0.9136 0.9182 0.8882
20% 0.9117 0.9042 0.8805

Table 4.56: FNN AE results in terms of ROC-AUC scores for the 10 days surrounding the High
Gearbox Oil Temperature downtime.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9179 0.9095 0.957
5% 0.9215 0.9244 0.9214
10% 0.9227 0.9342 0.9449
20% 0.9134 0.9264 0.9276

Table 4.57: LSTM-AE results in terms of ROC-AUC scores for the 10 days surrounding the High
Gearbox Oil Temperature downtime.
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Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.924 0.9112 0.9286
5% 0.9468 0.8932 0.9026
10% 0.9368 0.9258 0.9238
20% 0.9195 0.9339 0.9039

Table 4.58: GRU-AE results in terms of ROC-AUC scores for the 10 days surrounding the High
Gearbox Oil Temperature downtime.

High Gearbox Bearing Oil Temperature

From the observation of the reconstruction error, it is evident how this phenomenon is reported on
the bearing oil temperature measurement 4.34. There is a noticeable increase in the temperature
temperature during downtime reporting. In fact, between 4:00 and 6:00 a series of relevant bands
are noted a high temperature encountered. The same is experienced between 10:00 and 11:00.
this phenomenon is associated with a prolonged rotor speed reduction effect probably due to the
startup of an actuator for the brake procedure.

Figure 4.34: Reconstruction errors relative to the most significant features for the downtime High
Gearbox Bearing Oil Temperature registered on 2021/11/02 from 04:27:52 to 11:24:13. Model
used: GRU-AE with batch size 6, hidden space dimension of 64.

One month after the previous event, another exceeding of critical bearing oil temperature
thresholds is recorded. This time, however, the duration of the observation is different. In fact, it
can be found a period of prolonged abnormality even after the triggering of the downtime (Figure
4.35).

When the oil temperature in the gearbox is too high, it can lead to a number of issues, including
a reduction in the gearbox’s overall efficiency and the possibility that some of its components will
be damaged. In certain circumstances, the control system of the WTG may be programmed to
react to high temperatures by slowing the rotor’s rotational speed. This is done with the intention
of saving the system from suffering additional damage.

The precise character of this response will be determined by the particular design of the control
system and the WTG itself, respectively. This hypothesis, that the response is a countermeasure
that has been programmed into the PLC, can be observed in the sudden nature of this reduction.

In the next Tables 4.59, 4.60, 4.61 the results for the different models in the determination of
error statuses and stopping moments are shown.
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Figure 4.35: Reconstruction errors relative to the most significant features for the downtime High
Gearbox Bearing Oil Temperature registered on 2021/12/02 from 04:27:52 to 00:11:34. Model
used: GRU-AE with batch size 6, hidden space dimension of 64.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.92 0.9324 0.9245
5% 0.9229 0.9228 0.9203
10% 0.9231 0.9338 0.9338
20% 0.9195 0.9315 0.9238

Table 4.59: FNN AE results in terms of ROC-AUC scores for the 10 days surrounding both
periods for the High Gearbox Bearing Oil Temperature downtime.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.93 0.9146 0.9226
5% 0.9285 0.9274 0.9444
10% 0.9239 0.933 0.9429
20% 0.9256 0.9269 0.9225

Table 4.60: LSTM-AE results in terms of ROC-AUC scores for the 10 days surrounding both
periods for the High Gearbox Bearing Oil Temperature downtime.

Dropout Rate
0% 10% 20%

N
o
is
e

NO 0.9319 0.9233 0.9223
5% 0.9327 0.9352 0.9371
10% 0.9286 0.9262 0.9124
20% 0.9261 0.9296 0.9196

Table 4.61: GRU-AE results in terms of ROC-AUC scores for the 10 days surrounding both
periods for the High Gearbox Bearing Oil Temperature downtime.
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4.5 Performance Analysis

The proposed framework is a valuable tool not only for anomaly detection of discrete events, but
can also be employed for discovering unexpected or abnormal occurrences within a dataset. It is
possible to use it to detect changes in behavior within a set of data, in addition to using it to
identify certain sorts of anomalies, such as outliers or errors, which it can be applied to detect.

For instance, if a dataset contains information about wind turbines, anomaly detection can
be exploited to determine whether or not a turbine is undergoing unanticipated changes in its
performance or output. This could be the result of a malfunction in the turbine or a change in the
conditions of the surrounding environment, either of which would be classified as an abnormality.
On the other hand, the algorithm might also be used to detect more subtle changes in behavior,
such as when a turbine begins to perform differently from others in the same cluster of turbines.
This could be due to variations in the operating or maintenance methods, which might not be
immediately obvious if an anomaly detection algorithm is not used.

Significant insights on the behavior of the wind turbines can be acquired by using such an
algorithm, which will allow us to improve their overall performance and reduce the amount of time
they are offline. In general, the application of anomaly detection algorithms is a strong tool that
can be used to discover and handle any issues that may exist within datasets. These potential
issues may include changes in behavior over the course of time.

When the reconstruction error is noticed, a measurement that refers to the gap between the
actual value and the expected value can be derived. When it comes to wind turbines, there are a
number of subsystems that contribute to the overall performance of the turbine. Some examples
of these subsystems include the rotor, gearbox, generator, and control system. The performance
of every individual subsystem can be evaluated using its own unique set of metrics, such as the
rotor speed, the temperature of the gearbox, and the output of the generator.

When the values of these measures diverge from what is typical or expected, the newly created

Figure 4.36: Power curve depicting the unscaled RE of the Active Power measure. In the image,
which only display timesteps with non-error statuses, can be easily notice how the RE of this
measure can be used to detected performance. In the image the RE is visualized with negative
sign, making high performance appear in blue when an actual overpower is measured above the
expected one. Since training data has a performance mean around 0.8, value above this threshold
appear positively related.
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method can be utilized to determine when this deviation has occurred. It is possible to spot
problems and take remedial action before they become more serious if reconstruction error of
each specific measure that is related to the subsystems of the wind turbine is monitored. This
has the potential to assist us in enhancing the dependability and effectiveness of wind turbines,
which will ultimately result in improved energy output and decreased downtime.

In order for the algorithm to function properly, the training dataset must be representative
of the system being monitored. This indicates that the design and operating circumstances of
the wind turbines used for training should be as similar as possible. If the training dataset
includes wind turbines with significantly diverse designs or operating conditions, the model may
not converge or be unable to detect unexpected behavior with precision. Due to the fact that the
model was trained on a dataset that does not precisely represent the monitored system, it may
not be able to reliably anticipate the behavior of the system under varied operating conditions.

The algorithm will be modified in this section of the study so that it can view macroscopically
the set of test turbines that was used in the G90 trials. In point of fact, evaluations of the behavior
of various subsystems can be carried out by observing the errors that occur during reconstruction.
Under the framework of the investigation and upkeep of these subsystems, this observation might
be interpreted as a use case of the algorithm.

The first indicator for obtaining macroscopic information on wind farm performance comes
from observing the RE on the Active Power measure. It can be seen in the Figure 4.36 how this RE
is particularly effective in observing the performance of operating systems. After all, performance
filters allowed the study of ideal turbine behavior where average performance was considered to
be around 80%. If AEs did not bring problems in the correlation of quantities, Active Power and
Wind Speed are the most useful measures that implicitly represent performance. In the figure,
where the error states have been removed, which otherwise would have made it difficult to observe
in the part of the graph at the cut-out speed, this relationship is evident. It is worth noting that
in the graph RE is calculated with a negative sign. Since it is normally considered as pred − act.
The graph tries to link a positive RE with an overproduction of energy, so it was preferable to
use act − pred. That way the expectation, being smaller than the actual production, would give
a positive sign.

Figure 4.37: Power curve depicting the unscaled RMSE for the bearing temperature measures.
In the image only timesteps with non-error statuses are displayed.

Nevertheless, when looking at other RE metrics, whether or not there is a correlation or
connectivity with the power curve is not as easily discernible as it is when looking at the power
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curve itself. This point is demonstrated in the figure that can be found in Figure 4.37. In this
particular instance, the root mean square error (RMSE) between gearbox temperatures does not
return the same result as what was demonstrated in the previous example. In point of fact,
significant reconstruction errors are more common towards the top of the curve, and they become
more common as the Active Power grows. Nonetheless, the greatest amount of reconstruction
error was seen for these quantities at practically all of the points that were found below the curve,
in the region that was quite a ways below the high point density.

Figure 4.38: Scatter plot depicting the gearbox temperature measures, each point color represents
the unscaled RMSE value. In the image only timesteps with non-error statuses are displayed.

This is a reliable result with what was said in the data filtering step about gearbox tempera-
tures. The desired effect with these filters was to limit the difference in absolute value between the
temperatures to within about 10 C°. This measure was chosen as a compromise to avoid includ-
ing malfunctions but at the same time avoid over-cleaning the dataset, which would have led to
substantial reductions in the number of data. This RMSE measurement on gearbox temperatures
can be related more to the scatter plot of temperatures. One can esservare in the Figure 4.38 how
this magnitude isolated the most distant points from the bisector.

According to what was just stated, the following table presents the active power RE measure-
ments that were taken on average for each turbine that was part of the test set during the various
months of the year. The data presented in the Table 4.62 are derived from time sequences that
have had any erroneous periods eliminated.

The table presents the reconstruction error forthe WTGs, where the mean Active Power has
been used for each month as the metric of interest. While this approach may seem reductive, it
is still significant for analysis purposes. Additional metrics such as standard deviation, skewness,
and kurtosis can also be calculated for the obtained distributions, providing further insights into
the data. However, to avoid redundancy, only the mean has been reported in this table. When
analyzing the efficacy of the reconstruction model, the reconstruction error is an essential measure
to take into consideration. This is something that should be brought to your attention. It gives
an indication of the degree to which the projected values and the actual values differ from one
another.

Although it is possible to deepen the analysis on all the turbines and different periods, below
is the case study of WTG-6 turbine in September. This turbine in this time period has the
lowest RE in the Active Power measure. The measurements reported in the table refer to the RE
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RE Mean Devices
Month WTG-5 WTG-6 WTG-7 WTG-8 WTG-9
Jan -20.68 -5.07 -12.2 9.4 2.48
Feb -20.41 0.66 -1.77 11.79 5.25
Mar -21.17 -3.13 -4.62 4.19 6.85
Apr -12.09 6.69 2.05 12.68 7.32
May -28.87 -5.47 -8.23 8.05 4.37
Jun -33.86 -12.76 -18.76 1.34 2.58
Jul -45.34 -13.35 -8.07 7.44 -4.25
Aug -37.8 -38.11 -12.57 -2.36 -6.84
Sep -26.96 -59.86 -1.48 -2.47 -5.32
Oct -33.77 -24.71 -10.08 -8.46 1.39
Nov -18.56 12.65 5.56 15.94 17.93
Dec -10.4 10.67 4.75 14.5 7.26

Table 4.62: Unscaled RE of the measured Active Power for the test WTGs during the year. All
measures refer to the produced power and are expressed in kW.

measured always act − pred, moreover in the case of the table they were then scaled back to the
original size therefore the measurements are in kW.

Despite the measurements tend to be lower for WTG-5, observations on WTG-6 show a higher
level of deviation than the average case of the latter. This turbine was selected to be monitored
since, in the previous scenario, one could still be able to see a phenomenon of low productivity
and failure, but a longer time period would be required to justify it.

It is also generally true, as can be seen from the observation of the table, that turbines appear
to have a lower production of energy during the summer. This is understandable due to the fact
that a WTG’s primary function is to transform the kinetic energy of wind into electrical energy.
The amount of energy that can be generated by a WTG is contingent upon a number of variables,
including as the wind speed, the air density, the size of the turbine, and its level of efficiency.
Alterations in the pressure and temperature of the atmosphere tend to bring about shifts in
the wind patterns that prevail during the summer months. The average wind speed during the
summer months is significantly lower in many areas than it is during the other seasons. Because
of this, WTGs produce less power. In addition, summer temperatures can reduce the efficiency
of WTG components like the rotor blades and generator, reducing energy production. Heat can
weaken and expand materials, decreasing aerodynamic performance and rotor blade resistance.

This effect, though diminished, is still evident in the results. To reduce it further, the data
might include an indication of the symbolic on the measurement time to induce the AEs in a
different representation at these points. This would lessen the effect. In addition to symbolic
measurements of system state and environment, air density should be measured. Using air tem-
perature readings would make sense, however during the data selection process, it was found that
these measurements are already confined and have a high link to other turbine temperatures.
These measurements are ignored for the problem.
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WTG-6 Performance Analysis

In comparing the performance among different turbines, WTG-6 was initially considered. This
turbine appears in the list of turbines on which downtime is present, in addition, the objective of
this study is to determine how the occurrence in question may be connected to differences in the
manner in which reconstruction errors are distributed.

Through the use of violin plots, which allow us to visualize the distribution of reconstruction
error during the year, it is possible to examine this behavior on the amount of active power. This
RE is generated by taking into account the difference in magnitude between what was observed
and what was expected, and by doing so, attempting to highlight in the positive or negative
variance a direct representation of the magnitude that was either over- or under-reported.

In Figure 4.39, for the size of Active Power, there is a fairly regular behavior throughout the
year with a definite deviation during the month of September. In this month the RE register a
actual energy production lowest than the expectation.

Figure 4.39: Active Power RE violin plots for each month.

The month in question is highlighted in the downtime event on the magnitude of Gearbox
Bearing Temperature, and as a result, the following violin graph (Figure 4.40) will display precisely
this measurement.

It is evident from the graph that the observed measure is significantly deviated from previous
ones. In addition to this measure, others are also given below (Figure 4.41 and Figure 4.42),
for the magnitudes of Gearbox Oil Temperature and Rotor RPM. These were the other measures
involved in the observation on the downtimes that occurred.

The latter metrics, despite having variances that cannot be ignored, are nevertheless rather
insignificant in comparison to the prior ones in terms of size. Last but not least, the curve of the
gearbox bearing temperature is displayed in Figure 4.43.

In the graph shown, they are clearly distinguishable:

• A period of lasting discontinuity, in which the temperature undergoes a significant rise for
about a week.

• A peak, at the downtime recorded subsequent to the period when the temperature is high.
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Figure 4.40: Gearbox Bearing Temperature RE violin plots for each month.

Figure 4.41: Gearbox Oil Temperature RE violin plots for each month.
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Figure 4.42: Rotor RPM RE violin plots for each month.

Figure 4.43: Gearbox Bearing Temperature plot from august and october for WTG-6.
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4.6 Gamesa G87

• Power:

– Rated power: 2.00 MW.

– Cut-in wind speed: 3.5 m/s.

– Cut-out wind speed: 25 m/s.

– Survival wind speed: 50 m/s

• Rotor:

– Blade number: 3.

– Diameter: 87 m.

– Area: 5,945 m2.

• Gearbox:

– Type: spur/planetary.

– Gear stages: 3.

– Transmission Ratio: 0.101.

– Brand: Echesa (Gamesa Group)/Hansen/Bosch Rexroth/Winergy.

• Generator:

– Type: Doubly-fed Asynchronous.

– Brand: Cantarey.

– Voltage: 690 V.

– Main frequency: 50 Hz.

– Speed max: 1900 U/min.

• Weight:

– Single Blade: 6.2 t.

– Hub: 18.6 t.

– Rotor: 37.0 t.

– Nacelle: 107.0 t.

– Tower: 242.0 t.

– Total: 386.0 t.

4.6.1 G87 Cross Testing

At this point in the trial, a cross-experiment will be undertaken, during which models that were
previously trained on G90 turbine types will be utilized with G87 turbine types. In order to
establish some sort of basis for comparison, these models will be confounded with models that
are identical to them (in terms of their hyperparameters) but are towed directly by G87s. The
experiment, which at first glance seems unfair (given that the models that have been towed up
until this point have never come into contact with this type of turbine), turns out to be motivated
by the fact that the models that are trained on G87s will have a significantly smaller dataset
available to them. The question that arises next is whether it is more advantageous to adopt a
technique in which AE models are built using fewer data from the target type turbine, or whether
it is more advantageous to choose pretrained models using extraneous datasets with more data.

As the only factor that varies the data that were looked at is the type of turbine that was
investigated, it is quite reasonable to raise this question. The distinctions between these models
can be boiled down to relatively insignificant discrepancies in terms of geometric and mechanical
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characteristics, however there are some aspects of the wind farm in question that are shared.
Since these models are all situated in the same region of the world, the environmental factors are
uniform across all of them.

The experiment involves using the models firstly developed for dataset G90 on data from
cluster G87 to detect anomalies in the operation of the wind turbines. After taking into account
the results that were produced with the models that were trained using the G90 dataset, those
models are then tested on a fresh dataset that comes from the G87 cluster to determine how well
they perform on new data. The dataset obtained from cluster G87 comprises sensor measurements
that are quite comparable to those obtained from cluster G90; however, the operating conditions
and physical features of the turbines in cluster G87 may be different.

Further models are trained directly on the G87 dataset utilizing the same evaluation criteria
and algorithms in order to conduct a head-to-head comparison of the performance of the first
models on the G87 dataset. Following this step, the performance of the various models is evaluated
based on their respective receiver operating characteristic (ROC) curves.

The outcomes of this experiment have the potential to shed light on the generalizability of
the models trained on the G90 to fresh datasets as well as various types of wind turbine clusters.
If the first models perform well on the new dataset, this suggests that they are able to detect
anomalies in a variety of wind turbine clusters successfully, which is an essential need for anomaly
detection in industrial systems. On the other hand, if the models do not perform well on the G87
dataset, this indicates that the models may require additional training or optimization in order
to increase their generalizability.

4.6.2 Data Selection

As in previous experiments, the dataset considered will be divided into two cluters:

• High-performance (Training/Validation) turbines: These turbines will be used to
train effectively the models used for anomaly detection. However, this time the experiments
will consider as the anomaly detection scenario, only the next cluster. This dataset will not
be tested with anomaly detection, however, time periods related to the detection phases will
still be removed. This cluster is made of 2 turbines, namely: WTG-10 and WTG-11.

• Other (Testing) turbines: During the testing phase, these turbines will be utilized solely
for the purpose of testing the performance of the algorithm on data derived from unobserved
turbines (in the training phase). The models will be able to be evaluated using new data
that is somewhat distinct from the data that was used in the prior tests thanks to this test.
This cluster is made of 3 turbines, namely: WTG-12, WTG-13 and WTG-14.

As was mentioned earlier, the number of turbines that will be taken into consideration this time
will be cut down. Ensuring that there is at least a level playing field when compared to the
challenger models that were trained earlier. This time, the potential of mixing data from a large
number of turbines in the training phase will be decreased; in fact, there will be just two training
devices, which increases the danger of not fully obtaining the level of generalization that is actually
wanted.

Once again, data will be evaluated over an entire year. The produced splits are:

• Training split: For the first 3 months of the four-month period, after the filtering process
described next.

• Validation split: Random samples from the previous set.

• Testing split: Consists of the last month in the four-month period. Not used in this
experiment.
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Measure Lower Bound Upper Bound Other Conditions
Active Power -50kW 2300kW
Wind Speed 3.5m/s 25m/s
Performance (G87) 40% 200%
ABS Temp. Difference 12°
Status Not error status
Perf. (G87) Cent. MA 12 80% 150%
Limitations Not a limitation

Table 4.63: Types of filters used in the filtering phase for the G87 dataset. The table shows the
list of quantities used and the appropriate filter conditions. All data less than the lower bound
or greater than the upper bound were removed. Since Status is a symbolic data type the Error
Status is removed.

4.6.3 Data Filtering

After the extraction of data for each individual turbine, the data was filtered. The filters used
are described in Table 4.63.

Given the small number of data available and the different shape of the G87 power curve,
filters on performance were considered with reduced severity. The defined result therefore should
be a dataset with little more than 50% of the previous one.

4.6.4 Sequence Processing

At the end of the preprocessing phase, the sequences obtained are about two-thirds of those
available in the G90 dataset. Table 4.64 shows more information about the splits.

WTG N° Samples (Seqs.) % Samples (Seqs.) % Valid Timesteps
WTG-10 6812/39304 17.3% 36.74%
WTG-11 14442/39304 36.74% 51.26%

Table 4.64: Data samples (in sequence format) after filtering and preprocessing for G87 dataset
for cross test. The fact that the number of valid sequences does not equal the number of valid
timestamps resides in the fact that only sequences solely consisting of valid data are usable in the
training phase.

4.6.5 Models Processing

Models are chosen based on the results of previous experiments. The models chosen for this
experiment have the following characteristics:

• Batch size: 12.

• Dropout: 0% and 10%.

• Gaussian Noise: None or 10%.

• Latent dimension: 48.

• Network type: FNN, LSTM and GRU.
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4.6.6 Anomaly Detection in Validation and Testing Datasets

Leaving out the description on training and validation of models and calculation of residuals.
At this stage, attention is being focused on the testing phase of the process. This stage will be
focused entirely on the application of the event discrimination practice.

In the Tables 4.65, 4.66 and 4.67 results are shown for FNN, LSTM and GRU model in anomaly
detection for training filters.

Dropout Rate
0% 10%

N
o
is
e NO 0.9016 0.9012

10% 0.9008 0.8958

Dropout Rate
0% 10%

N
o
is
e NO 0.8969 0.8716

10% 0.8847 0.8631

Table 4.65: FNN AE results in terms of ROC-AUC scores for for discrimination based on the
same filters used in training. Left: G87 models. Right: G90 models.

Dropout Rate
0% 10%

N
o
is
e NO 0.9073 0.9205

10% 0.9146 0.9224

Dropout Rate
0% 10%

N
o
is
e NO 0.8995 0.9100

10% 0.8871 0.9135

Table 4.66: LSTM-AE results in terms of ROC-AUC scores for for discrimination based on the
same filters used in training. Left: G87 models. Right: G90 models.

Dropout Rate
0% 10%

N
o
is
e NO 0.9051 0.9173

10% 0.8904 0.9288

Dropout Rate
0% 10%

N
o
is
e NO 0.8704 0.9031

10% 0.8901 0.9118

Table 4.67: GRU-AE results in terms of ROC-AUC scores for for discrimination based on the
same filters used in training. Left: G87 models. Right: G90 models.

It can be seen from the results that the values obtained from the models towed on the G87s
are very similar to those for the G89 models and tested in the corresponding datasets. The values
that were obtained from the FNN models, on the other hand, were much lower. This is most
likely because the network had a reduced capacity to assess the dataset that was being analyzed
due to the fact that it had a smaller number of training parameters. High results are produced
by the RNN models, and they are pretty equivalent to those obtained on the prior dataset.

In terms of the outcome of the cross testing, the G90 models have generally lower performances,
but the results are satisfactory taking into consideration the fact that the data reflect various
kinds of turbines. The FNNs have a poorer performance in this regard, but the recurrent models,
particularly those with a higher degree of regularization, are able to drastically diminish the effect.
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In the Tables 4.68, 4.69 and 4.70 results are shown for FNN, LSTM and GRU model in anomaly
detection for Inactive and Error statuses.

Dropout Rate
0% 10%

N
o
is
e NO 0.9316 0.9324

10% 0.9188 0.9058

Dropout Rate
0% 10%

N
o
is
e NO 0.9231 0.9208

10% 0.9206 0.8958

Table 4.68: FNN AE results in terms of ROC-AUC scores for discrimination using only Error
and Inactive statuses. Left: G87 models. Right: G90 models.

Dropout Rate
0% 10%

N
o
is
e NO 0.9273 0.9205

10% 0.9346 0.9456

Dropout Rate
0% 10%

N
o
is
e NO 0.9273 0.9105

10% 0.9346 0.9360

Table 4.69: LSTM-AE results in terms of ROC-AUC scores for discrimination using only Error
and Inactive statuses. Left: G87 models. Right: G90 models.

Dropout Rate
0% 10%

N
o
is
e NO 0.9235 0.9273

10% 0.9207 0.9478

Dropout Rate
0% 10%

N
o
is
e NO 0.9166 0.914

10% 0.9263 0.9380

Table 4.70: GRU-AE results in terms of ROC-AUC scores for discrimination using only Error
and Inactive statuses. Left: G87 models. Right: G90 models.

The findings of the most recent experiment add legitimacy to the statements made above.
However, the AUC scores pick up on more irregular scores, most likely as a result of the varied
characteristics of the datasets that were taken into consideration. In point of fact, it is not
possible to rule out the possibility that different models of the G87 have distinct sensors and
control features, as well as varied ways of reporting issues linked to failure and error status.
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Conclusions

The thesis emphasizes the significance of anomaly detection algorithms in the process of deter-
mining the performance of turbines and the subsystems that comprise them. The obtained results
highlight the fact that FNN and RNN techniques are preferable to linear algorithms when it comes
to reconstructing multivariate time series data.

The proposed solution comprises the development of a variety of AE models that are based
on these approaches. In addition to this, the regularization procedures of DAE and VAE are
the primary emphasis of the thesis since they offered significant benefits in comparison to more
conventional models. The research demonstrates that multivariate time series data, particularly
those that are derived from sensors and 10-minute data, are frequently difficult to understand
and require the use of advanced algorithms for reconstruction and interpretation. This thesis
focuses on the data that are derived from 10-minute data. When working with these types of
data, linear algorithms are not always sufficient; rather, more complex approaches are required
to handle the situation. The AE models that were proposed were able to capture the underlying
patterns and relationships that were present in the data because they were based on approaches
such as FNN and RNN. In comparison to linear algorithms, the end consequence of their work
was an increase in the accuracy of the reconstructed image. This is of the utmost significance
for systems such as turbines, where even tiny differences in performance can result in severe
problems and downtime if the issue is not handled immediately. The validity and reliability of the
algorithms were established through the execution of different types of tests, the results of which
demonstrated the viability of the solution that was proposed. Other than these tests, the work
offers a way of use for these algorithms within real-world contexts in which the observation of
quantities often requires numerous techniques for determining outliers. In addition, the presence
of many time series that were distinguished by downtime and alarms made it possible for the
algorithms to be qualitatively evaluated throughout the process of composing failure triggers.

In general, this thesis contributes to the field of anomaly detection and performance evaluation
by presenting a holistic method that applies to a wide variety of fields and systems, including the
energy industry.

5.1 Future Works

In this thesis, an unsupervised strategy was used due to the absence of many strongly marked
anomalous phenomena. In this thesis, an unsupervised strategy was used due to the absence of
many strongly marked anomalous phenomena. This was done because of the lack of supervision.
Because of this, it became feasible to examine certain events indirectly rather than just by observ-
ing them directly. On the other hand, with access to a dataset that contains clearly delineated
phenomena, a supervised method could be employed. Under the context of such an approach,
multiple categories of anomalies would be investigated (each of which would be given a specific
class label), and during testing, a symbolic indicator would be produced without the necessity of
resorting to an explicit computation of an aggregation of the differences. On the other hand, with
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access to a dataset that contains delineated phenomena, a supervised method could be employed.
Under the context of such an approach, multiple categories of anomalies would be investigated
(each of which would be given a specific class label), and during testing, a symbolic indicator
would be produced without the necessity of resorting to an explicit computation of an aggrega-
tion of the differences. In order to make the reality described by the AEs more sophisticated and
accurate, symbolic information linked to quantities that were measured and extracted by various
algorithms may subsequently be added to the data that was fed to the encoders. These symbolic
indicators could have something to do with different indications regarding the consequences of
WTG models, or they could provide information about the context in which the observation was
made.

After that, such a method could be trained with the help of anomalies produced by a generative
model. In the event that these anomalies can be separated from one another with relative ease,
it would be possible to devise a system that would be able to realistically integrate a limited
number of anomalies with an uncontaminated time series. A technique of this kind might thus
also be trained by employing anomalies produced by a generative model. If these anomalies can
be separated from one another with relative ease, it would be possible to devise a system that
would be able to integrate a limited number of anomalies with an uncontaminated time series.
This would also help solve the dearth of recorded anomalies by allowing for the production of
models that are more accurate in their identification of them.

One last point to consider is that the selection of the measures can be different depending
on the type of dataset that was used. Because of the presence of data that were obtained using
averages over extensive periods, the models that were investigated are restricted in their grasp
of the intricacy of the phenomenon (10 minutes). By utilizing data that is characterized by
higher frequencies (a few seconds or even less), it would be possible to analyze abnormalities and
decreases in performance that is even caused by short transitory variations. Ensuring a level of
comprehension of the event that is more precise with each passing day.
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