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Summary

In the digital age, online identity has become a critical part of our daily lives and has
been managed through centralized and federated identity models. However, both
models have drawbacks, such as a lack of user control and privacy concerns. The
presence of intermediaries, such as certification authority and identity providers, is
a fundamental requirements in both models. Nevertheless, they represent possible
targets of cyber attacks, resulting in as data breaches and identity theft. The Self-
Sovereign Identity is a new paradigm in digital identity that seeks to address these
issues by putting users in control of their identity and personal data, avoiding the
involvement of centralized authorities or third-party intermediaries. One of the key
building blocks of the SSI model is the Decentralized Identifier (DID), which is a
unique identifier anchored on a Distributed Ledger Technology (DLT). DIDs enable
entities to authenticate and authorize identity-related transactions and interactions,
without relying on a centralized authority.

Currently, the implementation of SSI solutions is limited, particularly in the
realm of IoT systems. This is because IoT systems have highly constrained hard-
ware and software capabilities, which further complicates their integration with the
Self-Sovereign paradigm. The main purpose of this thesis is to bring within this
constrained IoT world the SSI model, in order to define an ecosystem of devices
that, making use of their digital identity, can communicate securely over network.
The main idea is to integrate the usage of DIDs within the TLS handshake, to cre-
ate a secure communication channel using an SSI-aware approach. By introducing
a decentralized authentication mechanism, third party entities are no longer re-
quired for identity management. In this context, the DID Documents, to which the
DIDs refer, are stored onto the DLT, which serves as a Root-of-Trust, leveraging
its inherent property of data immutability.

Timing performance measurements are gathered to evaluate the impact of the
additional SSI features. Such performances are measured on three different plat-
forms, ie, x86/x64, ARM (Raspberry Pi) and STM32 board based on ARM Cortex-
M4, according to the different TLS authentication models (server only and mu-
tual) and according to different peer identity key types and signature algorithms
(RSA2048-SHA256 and ECDSA-p256-SHA256).
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Chapter 1

Introduction

“The Internet of Things ( IoT ) has enabled as well as boosted several applica-
tions that will radically change everyday life, including smart building, environ-
mental monitoring, smart energy grids, and intelligent transportation. Unlike tra-
ditional IT systems, IoT deployments will be directly exposed and reachable over
the Internet, and massively composed of constrained devices equipped with limited
resources.”[1]

However, these devices introduce risks that can potentially represent a threat
to the environment in which they are employed and to the privacy of those who use
them, since they often process sensitive informations. For this reason the security of
these devices is crucial, but it is also equally difficult to ensure it given the variety
of ecosystems where these devices are used and given their resource-constrained
nature.

Among the main secure communication protocols used in this world there is the
Transport Layer Security (TLS), which allows to provide confidentiality, integrity
and authenticity of communications between entities. Among these properties,
authentication is perhaps the most important, as in the absence of it the other
properties might be compromised.

In order to authenticate themselves, IoT devices must have their digital identity,
which nowadays is based on a centralized model which makes use of X.509 certifi-
cates issued by Certification Authorities (CAs). CAs are vulnerable targets and are
subjected to attacks every day and removing a CA from the status of “trusted”, as
soon as it is compromised, is not such a simple process as it may seem, since revok-
ing a popular CA can lead to problems of world-wide compatibility and network
communication. An even worse case is when a CA, either by mistake or because
it has been compromised, issues a fake certificate, but decides to not disclose it
publicly, putting the safety of end users at risk.

1.1 Target of the Thesis

Hence the purpose of this thesis, namely to modify an existing security protocol as
the TLS and adapt it to the Self Soverign Identity paradigm, based on a decentral-
ized digital identity model, which relies on Distributed Ledger Technology (DLT)
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Introduction

such as Blockchain or Tangle, and on Decentralized Identifiers (DIDs).
DLTs provide a decentralized infrastructure for registering events on a distributed
verifiable register, to which all devices in the network can access and rely. One
of its properties is the data immutability and integrity which makes the DLT the
Root of Trust.
DIDs, instead, can be seen as addresses pointing to a block on the DLT where is
recorded in an immutable way all the cryptographic material that represents the
identity of the subject. These two technologies together allow to create an authen-
tication model where there is no central authority needed to certify your identity,
concept on which the Self-Sovereign Identity paradigm is based.

Among the various TLS libraries, MbedTLS [2] was chosen as it is the most
widely used library in IoT environments, which is the main focus of the thesis.
Currently, SSI solutions implementation is limited, particularly in the realm of
IoT systems, due to the highly constrained hardware and software capabilities of
such systems, which further complicates their integration with the Self-Sovereign
paradigm. The other objective of this thesis is to bring the SSI model into this con-
strained IoT world, in order to define an ecosystem of devices that can communicate
securely over the network by leveraging their digital identity.

In the next chapters, the concepts of DID, DID Document and DID Method,
fundamental to understand how the Self Soverign paradigm works, will be explored,
together with the design and implementation of a new SSI-aware TLS handshake
model.
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Chapter 2

Background and related work

2.1 Self-Sovereign Identity

In the digital age, online identity has become a critical part of our daily lives.
For many years, centralized and federated identity models have been the norm for
managing online identity. In the centralized identity model, a central authority
or organization controls and manages users’ identity and personal data, such as
login credentials, personal information, and authentication tokens. This approach
has been widely used by social media platforms, email providers, and other online
services.

However, centralized identity models have several drawbacks, including lack of
user control and privacy concerns. In response, federated identity models emerged
as an alternative approach, which allows users to use their digital identity across
multiple organizations and services while still maintaining control of their personal
data. Examples of federated identity include single sign-on (SSO) and OpenID
Connect.

Despite these advances, both centralized and federated identity models still
rely on intermediaries, such as identity providers or third-party services, to manage
users’ identity and data. This creates a risk of data breaches, identity theft, and loss
of privacy, as intermediaries may mishandle users’ data or be targeted by malicious
actors.

Self-Sovereign Identity (SSI) is a new paradigm in digital identity that seeks
to address these issues by putting users in control of their identity and personal
data. With SSI, users can create, store, and manage their identity and personal
data in a secure and decentralized manner, without relying on intermediaries. SSI
uses Distributed Ledger Technologies (DLT) to create a tamper-proof, verifiable,
and user-controlled digital identity that can be used across multiple services and
organizations.

This approach, therefore, brings advantages to both individuals as mentioned
above, and organizations, reducing resource consumption, risk of cyber attacks or
lawsuits, by storing less user data.
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Background and related work

Figure 2.1. SSI Trust Triangle [3].

In a SSI environment there are three main actors participating (Figure 2.1):

❼ Issuer: entity with the authority to issue Verifiable Credentials

❼ Holder: entity which creates its own DID and receives a Verifiable Credential
from an Issuer and present proofs of claims from one or more credentials when
requested by verifiers.

❼ Verifier: entity checking the Holder’s Verifiable Credential by verifing the
proofs received

The relationship between the issuers, holders, and verifiers is called the trust
triangle, because these participants must trust eachother in order to make this
system work. These entities can be either people, organizations or even devices, for
examples IoT devices.
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2.2 – Distributed Ledger Technology (DLT)

Figure 2.2. SSI stack

The all process of issuing and verifying a Verifiable Credential, involves the
other two pillars of the SSI stack (Figure 2.2), which are the Distributed Ledger
Technology and the Decentralized Identifiers.

2.2 Distributed Ledger Technology (DLT)

Distributed Ledger Technology is “a non-centralized system for recording events.
These systems establish sufficient confidence for participants to rely upon the data
recorded by others to make operational decisions. They typically use distributed
databases where different nodes use a consensus protocol to confirm the ordering of
cryptographically signed transactions. The linking of digitally signed transactions
over time often makes the history of the ledger effectively immutable.”[4]

The consensus algorithm serves to provide synchronization, ensuring the equal-
ity of all the copies of data on the various nodes. There are several types of
consensus algorithms, which vary in complexity and scalability. Generally the sim-
plest algorithms tend to be the least scalable ones, since are poorly optimized and
require lots of use of resources.

Two of the main distributed ledger technologies are Blockchain and DAG.

The Blockchain
The blockchain is a DLT in which transaction records are stored as a chain of blocks
in a verifiable decentralized database. “Chain of blocks” means any type of data
linked together using cryptographic mechanisms. New transactions result in a new
block, in which additionally, a hash of the transaction and a hash from the previous
block will be recorded to provide a link between the blocks. So, if one transaction
in a block changes, the newly calculated hash will differ from the already registered
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hash, making the block invalid. In a blockchain there will always be two types of
distinct entities, the transaction issuers and transaction verifiers (miners).

Every miner should verify and agree on the new block before it is added. This
process is defined by the consensus algorithms. As a result of the consensus algo-
rithm, one of the miners wins the ability to share the new block with the network.
The other miners are required to verify the block to ensure that the data and hashes
are valid. This process, often, require a lot of resources and doesn’t scale well with
high transaction loads, making this algorithm a bottleneck. This happens because
the process is sequential so a verifier cannot validate a transaction if the previous
one has not been already validated.

In this technology the hash function can be seen as a fingerprint, since mod-
ifying a data is not trivial given the decentralized nature of the system, where a
copy of the Blockchain is shared between all participants. As soon as a new node
joins the network, it receives a copy of all records. So, to mount an attack, the
attacker needs to control more then 50% of the nodes in the network, to be able to
successfully change the data in the Blockchain.

The Directed Acyclic Graph
The Directed Acyclic Graph (DAG) is not made by a chain of blocks like blockchains,
but its structure consists of a graph with vertices connected by edges, such that
following the directions pointed by the edges will never create a closed loop. The
vertices can be seen as the transactions registered into the DLT, whereas edges
represent the related validation processes that occurs among them.

Instead of mining, DAG networks use a process called “transaction confirma-
tion.” In a DAG, each node maintains a local copy of the ledger and is responsible
for validating transactions. When a new transaction is made, it is first broadcast
to a subset of nodes in the network called “witnesses.” These witnesses verify the
validity of the transaction and attach it to the DAG. The transaction is considered
confirmed once it has been verified by a certain number of witnesses, which varies
depending on the specific DAG implementation. Once a transaction is confirmed,
it is considered final and cannot be reversed. The transaction confirmation process
in DAG networks has several advantages over mining in blockchain networks, in-
cluding lower energy consumption and faster transaction times. This aspect makes
this DLT architecture suitable for IoT devices and systems with limited resources.

One of most widespread DLTs implementing the DAG is the Tangle, made by
IOTA (See Section 2.6), which is the distributed ledger used is this project.
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2.3 – Decentralized Identifiers (DIDs)

Figure 2.3. Blockchain vs Tangle [5].

2.3 Decentralized Identifiers (DIDs)

A Decentralized Identifier [4] is a new type of identifier that allows an entity to
be recognized in a digital, decentralized and univocal way. DIDs can be seen as
URIs that associate a DID subject (a person, organization, IoT device) with a DID
document, which is a resources, located on a DLT, containing the cryptographic
material that allows an entity to prove its association with the DID.

An entity can have more that one DID, since the generation of Decentralized
Identifiers is a process in which the entity has complete control. Having multi-
ple DIDs can be useful in maintaining a separation of identities and interactions,
making difficult to track a user on the internet and thus guarantee more privacy.

Starting from a DID, the informations contained in the DID Document can be
retrieved through the “resolve” operation implemented by a DID Method. A DID
Method defines the mechanisms for creating, resolving, updating and revoking DIDs
and DID Documents by making use of a specific DLT. If a DID was created using
a particular DID Method, it can only be resolved through the “resolve” operation
implemented by that specific method.

Several DID Methods specifications already exists, but in this project it was
decided to develop a new one more suitable to our case.

The DID format is a simple string made of three parts (Figure 2.4):

❼ the DID URI scheme identifier

❼ the DID Method identifier

❼ the DID method-specific identifier
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The first one indicates that the encountered URI string follows the DID scheme.
The second one specifies the DID Method used in the process of creation of the
DID and that must be used in the process of resolution.
The last one is a method-specific identifier, which ensure the uniqueness of the DID
in relation to that DID Method, and points to a specific memory location, of the
DLT, containing the DID Document.

Figure 2.4. A simple example of a decentralized identifier (DID) [4].

2.3.1 DID Document

A DID Document contains a set of data describing the DID subject, such as crypto-
graphic material used to authenticate and prove association with the DID. Typically
this document format is JSON and may contain different keys, used for different
purposes and saved under fields, whose names refer to the use made of them.

In the Figure 2.5 we can see an example of DID Document. Looking at the list
of attributes (there may be others) we find:

❼ @context: contains a URL pointing to a resource describing the DID Docu-
ment scheme.

❼ id: indicates the the subject to which the document refers.

❼ created: includes a timestamp of when the document was created.

❼ authenticationMethod: this field is the most important and as the name
suggests, contains the informations about the cryptographic material used for
authentication processes. It contains public keys, such as RSA keys, inside
the publicKeyPem field. Each key is associated with the type, recognizable
by the attribute type and an id that is the concatenation of the DID of the
controller, the one in control of the key, and a string (“#keys-1”), in order
to make it unique within the document. The controller very often coincides
with the DID subject, but sometimes it can be a third party to which the use
of that key has been delegated. This is a method example but there could
be also others like assertionMethod, which may contain a key used in the
Verifiable Credentials verification process (See Section 2.4).
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Finally, the standard for DIDs provides for further fields that will not be explored
in this discussion, as they were not so relevant for this project.

Figure 2.5. DID Document example.

2.4 Verifiable Credentials (VCs)

A Verifiable Credential is a data structure containing a set of attributes related to
an subject, serialized in a cryptographically verifiable format, representing all the
information that a physical credential represents. Unlike their physical counterpart,
VCs are more tamper-evident and more trustworthy and bring a lot advantages not
only to individuals but also to the organizations that issue and verify them. For
example a Verifying organization can verify the credential instantly without needing
to contact the entity that issued it. A Issuing organization, instead, can release the
credential in a fast and secure way, reducing the manual work needed and the risk
of fraud.

In the VC data model there are three principal components involved: claims,
credentials and presentations.

Claims are statements about a subject and consist of subject-property-value
relationships. This model permits to express a large variety of information about a
subject by combining together different set of claimns. In order to be able to trust
these claims and have a valid Verifiable Credential, other pieces of information are
needed.
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Figure 2.6. Multiple claims can be combined to express a graph of information [6].

A credential is a set of one or more claims made by the same entity along
with a proof, which is usually a digital signature, to detect tampering and verify
the authorship of the credential. There could be also some metadata describing
for example the issuer, the expiration date and the public key to be used for the
verification of the proof. A subject may be in possess of different credentials and
would like, in certain situations, to be able to show more than one to a verifier or
sometimes only a portion of them. The information that a subject shares with a
verifier, regarding his credentials, are called verifiable presentations.

Figure 2.7. Basic components of a verifiable credential [6].

A presentation is a data structure expressing data from one or more verifiable
credentials and is composed in a way such that is possible to verify the authenticity,
integrity and validity of the information contained. The data in a presentation, since
could be coming from different credentials, might have been issued by different
actors. It is also present a proof but in this case is made by the Holder of the
credentials.
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2.5 – DLTs, DIDs and VCs together

Figure 2.8. Basic components of a verifiable presentation. Image taken from [6]

2.5 DLTs, DIDs and VCs together

All the concepts explained so far, can be mapped/embedded in the so-called Trust
Triangle, described in Section 2.1. The interactions among the entities employs the
DLT as the Root-of-Trust and the concept of DID and VC as means that allow
peer authentication.

Let us take as an example an Holder who wants to access the service provided by
a Verifier, but in order to do it he has to create his digital identity and authenticate
himself to the Verifier.

The pricipal steps occurring during this process are:

1. The three peers proceed to create their DIDs together with some crypto-
graphic material, that consists of two key pairs, where the public portions are
going be saved into the fields authenticationMethod and assertionMethod

of the DID Document. Respectively the first key pair will serve to establish
a secure comunication channel between them, while the second one to create
and validate the proof linked to the Verifiable Credential. To do all this they
have to interface with a DID Method and a DLT.

2. The holder request to the Issuer the Verifiable Credential he needs to access
the service provided by the Verifier. First a new connection is opened between
Holder and Issuer and an exchange of their DIDs takes place. Then they
respectively read the DID Document of the other from the DLT. They now
have the cryptographic material needed to establish a secure communication
channel via a challenge-response protocol.

3. After that, the Issuer releases the credential together with a cryptographic
proof generated through his private key created previously. To validate the
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proof the Holder needs to verify the signature contained in it through the
public key found in the Issuer’s DID Document.

4. Finally the Holder establish a new comunication channel with the Verifier fol-
lowing the same steps as before. The user then proceeds to send the Verifier
a Verifiable Presentation signed by himself that contains the identity infor-
mation required for authentication. Now that the Verifier has received the
presentation and has read the Holder and Issuer DID Documents from the
DLT, can proceed with verifying the VP and VC proofs. If everything goes
well, the last step is to assess whether the Issuer is trusted or not. This can
be done thanks to a list of peers that the verifier interrogates and in which
an implicit trust is placed.

2.6 IOTA

IOTA [7] IOTA is a non-profit foundation that developed the Tangle a feeless
distribute ledger technology designed to run on IoT devices. The Tangle model
is based on Directed Acyclic Graph DLTs, and therefore shares their features and
advantages described in the Section 2.2.

The problem with IOTA and their Tangle is that currently is present a central
node called “Coordinator” which is in charge to publish with regularity a new
transaction called “Milestone”. This is a signed message trusted and used by all
the other nodes to confirm other transactions. In fact “messages in the Tangle are
considered for confirmation only when they are directly or indirectly referenced by
a milestone that nodes have validated”[8]. So for the moment, the “Tangle” can be
seen as a solution non completely decentralized, but the IOTA Foundation stated
that this is a temporaly solution and that from the next version IOTA 2.0 [9], the
Coordinator will no longer be present.

To allow an IoT device to easily comunicate with the Tangle, the Cybersecurity
team at the LINKS Foundation [10] developed a layer 2 protocol called WAM.

2.7 Wrapped Authenticated Messages (WAM)

WAM is a cryptographic protocol for exchanging data with the IOTA Chrysalis
Tangle. It allows to write and read data on the Tangle in a secure way. It is
designed to be executed on an IoT constrained environment, thanks to its small
memory footprint and the possibility to compile it even without the need of an
operating system.

The WAM protocol makes use of Chrysalis indexation payload to write/read
data on Tangle. The indexation payload is made of an index and some arbitrary
data which in this case represent the WAM message. WAM makes use of this design
to link data with each other like a chain, where each data points to the next one
via its index. If someone wants to read the last written data, he just needs to start
from any index and walk the chain to the end.
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Finally, since by default the data written on the Tangle are in plaintext, WAM
takes care of security by encrypting and anthenticating the data before every
write/read operation, using a method called Authenticated Encryption with As-
sociated Data (AEAD)[11].

A WAM message is composed by different fields:

❼ APPDATA LEN

❼ APPDATA

❼ PUB KEY

❼ NEXT IDX

❼ SIGN

APPDATA and APPDATA LEN contain the data to be written on the Tangle
and their length. The NEXT IDX field is the information needed to construct the
chain of messages. It contains the index of the next IOTA Chrysalis message, which
encapsulates the next WAM message. The algorithm which generates the indexes
can be summarized in this way:

1. starting from a random source, two seeds are generated

2. from the two seeds, two key pairs are generated

3. a digest of the public key of the first pair is calculated and that is the message
index

4. the public key used before is saved in the file PUB KEY of the message for
future verifications

5. the same thing is done for the other public key and that is the NEXT IDX

The SIGN field contains a digital signature of previous fields digest computed
with the private key corresponding to the public key used in the computation of
the index and saved in PUB KEY. This field is not for authentication purposes,
but only serves to maintain the integrity in the message chain.

When a message is read, two verifications are performed. The first one is the
verification of the signature with the PUB KEY by recomputing the digest of the
fields. The second one is the index verification by computing the digest of the
PUB KEY and see if it matches the message index. This is done to prevent an
attacker from hijacking the next message of the chain. A malicious user can read
the NEXT IDX field from the last message and know the index where to write his
data. But to be able to write a valid message that passes the checks, he would need
to know the public key from which the index was generated in order to insert it in
the PUB KEY field of his message.

An additional security feature offered by WAM is data confidentiality, since any
information present on the Tangle is publicly available. The encryption is computed
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through a nonce and a symmetric key, pre-shared betweek a group of IoT devices.
The PSK is needed to restrict the access to data to anyone outside that group.
Note that this solution has the problem that the PSK represents a single point of
failure, in fact if an attacker is able to discover the encryption key the whole system
is compromised. However this solution is temporary and the WAM developers at
LINKS Foundation [10] are already working on a more robust mechanism that does
not make use of a shared secret which is difficult to protect.

2.8 TLS 1.2

Transport Layer Security (TLS) [12] is a cryptographic protocol designed to provide
secure communication channels over a network. The TLS protocol aims mainly to
provide confidentiality, integrity, and authenticity through the use of X.509 cer-
tificates [13], between two or more endpoints. This protocol evolved from another
encryption protocol called Secure Sockets Layer (SSL), that was developed by a
company called Netscape. In fact, initially the TLS 1.0 version was named SSL
3.1, but when the protocol was publicly presented the name was changed to clarify
that was not anymore related to the Netscape company.

Since then the protocol has continued to evolve until the latest version released,
which is the TLS 1.3. However, this section will present the version 1.2, which is
the previous version of this protocol. And the reason is as follows. In this project
the development environment is IoT constrained, where devices possess limited
capabilities both from a power and memory point of view. For this reason, among
the various existing implementations of the TLS, the Mbed TLS library was the
most suitable.

Mbed TLS [2] is a C library that implements the TLS protocol together with
various cryptographic primitives and utility functions. It has been designed to run
easily on embedded devices thanks to its small memory footprint. Unfortunately at
the time of writing, the long term support version of Mbed TLS was 2.28, which did
not support the TLS 1.3 version and for this reason TLS 1.2 was the only available
option.

Before analyzing the TLS 1.2 in detail, let us spend some words on the TLS
protocol in general. The protocol phase leading to the creation of the secure comu-
nication channel is called handshake. This phase, regardless of the protocol version
considered, can generally be divided into three main steps:

❼ Negotiation: client and server negotiate the protocol version, the cipher suite
and other parameters to be used during the handshake.

❼ Authentication: server and client (in case of mutual authentication) can au-
thenticate themselves to the other party through different mechanism which
make use of X.509 Certificates and digital signatures.

❼ Key Exchange: when client and server trust each other they can proceed to
derive a symmetric session key that will be used for the encryption of data
once the handshake phase is finished and the tls channel has been created.
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To understand in particular how the TLS 1.2 protocol works, it is necessary to
analyze the messages exchanged between client and server during the handshake
phases previously summarized.

2.8.1 Handshake

The TLS 1.2 handshake is represented by the following diagram and investigated
further below.

Figure 2.9. TLS 1.2 Handshake

The handshake starts with a negotiation phase that includes two messages: the
ClientHello (Figure 2.10) and ServerHello (Figure 2.11).
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First of all, client and server must agree on the protocol version to use, in this case
TLS 1.2. Then they exchange a random nonce that will be involved in subsequent
cryptographic computations. Finally, the two parties must agree on the algorithms
to use during the rest of the handshake.
These algorithms are:

❼ Key exchange algorithm: used to exchange a symmetric encryption key

❼ Digital signature algorithm: used in the authentication process

❼ Encryption algorithm: used to provide confidentiality of the data transmitted
after the handshake on the established TLS channel

❼ Integrity algorithm: used to provide integrity of the data exchange during
and after the TLS handshake

A combination of these algorithms defines a so-called cipher suite. The client
will communicate to the server via ClientHello the list of cipher suite that supports,
then the server will choose one from this list and respond with the ServerHello.
Now the two parties have successfully agreed on how to complete the rest of the
handshake.

In figures 2.10 and 2.11 it is possible to notice that the two messages contain
other information under the name of Extensions. The Extensions add functionali-
ties that were not originally intended for the protocol. The current list of available
extensions is maintained by IANA [14], where each of them is identified by a value
recorded in the TLS ExtensionType Registry [15].

Figure 2.10. ClientHello
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Figure 2.11. ServerHello

The server to authenticate itself sends a Certificate message (Figure 2.12) after
the ServerHello. This message contains an X.509 certificate [13] representing the
server’s identity signed by a Certification Authority (CA). In the certificate is also
specified the algorithm used in the computation of the signature, which must be
supported and adopted by the client in the certificate’s verification process.

Figure 2.12. Certificate
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The client, to check the validity of the certificate, verifies the signature, the
chain of trust (certificate chain up to the root CA certificate) and the revocation/-
expiration status. If these steps are successful, the client is certain that it has
received a valid certificate, but is still not sure if the server is who it claims to
be. In order to achieve this, the server needs to prove that it is the owner of the
private key paired with the public key present in the certificate. The methods used
to accomplish this vary according to the key exchange algorithm chosen during the
negotiation phase, which could be based on RSA or Diffie-Hellman (Elliptic-curve
Diffie-Hellman in case of Elliptic Curve algorithms). The successful outcome of
both methods leads the client to trust the server and share a common value called
pre-master secret with it, from which they can derive a session key used for the
symmetric encryption of data.

In the RSA key exchange, the client creates the pre-master secret as a random
sequence of bytes and use the server’s public key retrieved from the certificate
to encrypt it (Figure 2.13). Then it sends the result in the ClientKeyExchange
message (Figure 2.14). The server receive the message and decrypts it with its
private key to obtain the same value. In this case the server has implicitly proved
to the client that it owns the private key, because otherwise it could not decrypt
the message to get the pre-master secret and derive the session key.

In the (EC)DH key exchange, the pre-master secret is not generated by the
client, but is derived by both party. Client and server generate a key pair (Fig-
ures 2.13 and 2.15) and send the public portion in the ClientKeyExchange (Figure
2.14) and ServerKeyExchange (Figure 2.16) messages respectively. If the server’s
certificate contains a (EC)DH key, then that key could be used and it would not be
necessary to generate a new one to be sent in the ServerKeyExchange message, un-
less an “ephemeral” approach is adopted, as later explained. Now both sides have
the material needed to calculate the pre-master secret by combining their private
key with the other’s public key. However, the client must be able to trust the server
before continuing, which in this case has not yet authenticated itself. To prove its
identity the server sends its (EC)DH public key together with a signature computed
with its identity’s private key, the one paired with the public key contained in the
certificate.

The second approach has some advantages over the first, which made it the
only key exchange algorithm available in TLS 1.3, in contrast to the RSA-based
algorithm that has been deprecated.
The first advantage is that the pre-master secret is never sent over the network,
but is calculated locally by both sides, making the computation of the session key
much more secure.
The second advantage is definitely the most important one and concerns the concept
of forward secrecy. The (EC)DH key pair can be regenerated at each session making
a private key leakage less harmful, since an attacker would only be able to decrypt
the traffic trasmitted during that particular session. In this case we talk about
Ephemeral Diffie-Hellman key exchange algorithm.
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Figure 2.13. Client Key Exchange Generation

Figure 2.14. Client Key Exchange
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Figure 2.15. Server Key Exchange Generation

Figure 2.16. Server Key Exchange

Once the key exchange phase is completed, both client and server share a pre-
master secret from which they can derive the symmetric session key. Therefore,
the client sends a ChangeCipherSpec message, signaling that it has calculated the
session key and that all following messages will be encrypted, followed by a Fin-
ished message (Figure 2.17) with the purpose to verify that the key exchange and
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authentication processes terminated correctly and have not been tampered. The
server repeat the same step(s) and replies with its ChangeCipherSpec and Finished
messages (Figure 2.18). From now on the entire comunication is encrypted with
the session key.

Figure 2.17. Client Encryption Keys Calculation, ChangeCipherSpec and Finished
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Figure 2.18. Server Encryption Keys Calculation, ChangeCipherSpec and Finished

In the previous analysis, it was discussed that in certain cases, the server needs
to authenticate itself to the client. However, in some scenarios, mutual authentica-
tion may be necessary, where both the server and the client must verify each other’s
identities. In this case the server, after the ServerKeyExchange message, will send a
CertificateRequest message (Figure 2.19), to which the client will respond with its
certificate followed by the ClientKeyExchange message and a CertificateVerify mes-
sage (Figure 2.20). The CertificateVerify message will contain a digital signature of
the digest of all previously exchanged handshake messages. This has two purposes,
the first is to prove to the server that the client has the private key paired with
its certificate’s public key, while the latter is to authenticate, in case of (EC)DHE
key exchange algorithms, the ephemeral key generated during that session. Server
side this proof was given by the signature of the (EC)DHE parameters contained
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directly in the ServerKeyExchange message (Figure 2.16).

Figure 2.19. Certificate Request

Figure 2.20. Certificate Verify

2.8.2 Computational details

This section describes in detail the computations which lead, starting from the
pre master secret, to the generation of the master secret and the respective
symmetric keys, with a final reference to the verify data present in the Finished
message, since derived in the same way.

The RFC5246 [16] defines a data expansion function, P hash(secret, data),
that uses a single hash function to expand a secret and a seed into an arbitrary
quantity of data.
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P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +

HMAC_hash(secret, A(2) + seed) +

HMAC_hash(secret, A(3) + seed) + ...

A() is defined as:

A(0) = seed

A(i) = HMAC-Hash(secret, A(i-1))

P hash can be iterated as many times as necessary to produce the required
quantity of data.

The TLS protocol, to derive some of its secrets, internally makes use of a pseudo
random function PRF defined this way:

PRF(secret, label, seed) = P_hash(secret, label + seed)

Now from the pre master secret we can derive the master secret:

master_secret =

= PRF(pre_master_secret, "master secret", ClientHello.random

+ ServerHello.random)[0..47]

= P_hash(pre_master_secret, "master secret" +

ClientHello.random + ServerHello.random)

The master secret is 48 Bytes long, so only two PRF iterations are needed:

seed = "master secret" + ClientHello.random +

ServerHello.random

A(0) = seed

A(1) = HMAC-Hash(pre_master_secret, A(0))

A(2) = HMAC-Hash(pre_master_secret, A(1))

master_secret = HMAC_hash(secret, A(1) + seed)[0..31] +

HMAC_hash(secret, A(2) + seed)[0..15]

The last step is to derive the final encryption keys from the master secret. The mas-
ter secret is expanded into a sequence of bytes, which are splitted to a client write MAC key,
a server write MAC key, a client write encryption key, and a server write encryption key.
Some AEAD ciphers may additionally require a client write IV and a server write IV
for the implicit part of the nonce.

To generate the key material, compute:

key_block = PRF(master_secret, "key expansion",

ServerHello.random + ClientHello.random)

until enough output has been generated.

Then the key block is partitioned as follows:

1. client_write_MAC_key[mac_key_length]

2. server_write_MAC_key[mac_key_length]

3. client_write_key[enc_key_length]
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4. server_write_key[enc_key_length]

5. client_write_IV[fixed_iv_length]

6. server_write_IV[fixed_iv_length]

The same pseudo random function described above is applied in the calculation of
the verify data field contained in the Finished message. The verify data is built
from the master secret and the digest of the payload of all the handshake records
exchange.

Finished.verify_data[verify_data_length] = PRF(master_secret,

finished_label, Hash(handshake_messages))

In details:

seed = "client finished" + SHA256(all handshake messages)

A(0) = seed

A(1) = HMAC-SHA256(master_secret, A(0))

verify_data = HMAC-SHA256(master_secret, A(1) + seed)[0..11]

Now that the concepts of TLS and in particular of TLS 1.2 have been better deep-
ened, the next step is to dig into the details of a new DID Method, used for de-
veloping an SSI-aware version of the TLS 1.2 handshake, described in the Section
3.2.
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Chapter 3

Design and Implementation

In this chapter is explained the work done to develop a new DID Method and a
model of the TLS handshake based on the SSI paradigm.

3.1 SnD DID Method

The DID Method used in this project for the creation of an SSI-aware TLS hand-
shake has been named SnD and was specifically created for this project. It interfaces
with the IOTA Tangle using the WAM protocol described in section 2.7, developed
by the LINKS Foundation. The CRUD operations offered by this method are based
on the WAM read, WAM write, and WAM channel primitives. The WAM channel con-
tains information necessary for opening a communication channel to the Tangle,
such as the node to connect to, the index for reading or writing a message, and
a pre-shared key for data confidentiality. Essentially, this DID Method acts as a
wrapper for the WAM protocol.

In the figure 3.1 below it is possible to have a clearer image of what is meant
by channel and how the operations on the DIDs work.
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Figure 3.1. DID Method: SnD

The scenario includes two nodes, one that wants to create its own identity,
update and revoke it, while the other one deals only with recovering the identity of
the first starting from its DID. The first node starts with the generation of its key
pair. The public part will be inserted inside the created DID Document. When the
CREATE function of the DID Method is called, a communication channel with the
underlying DLT is immediately created and a pair of indices is generated. The first
index represents the starting point of the channel, so where the first message will
be written, while the second index represents the NEXT INDEX field of the message
and indicates the position where the next message will be written. The CREATE

function is also responsible for generating, from the public key of the node, the
DID Document in JSON format to be inserted in the WAM message. At the end
the CREATE function returns to the caller its new DID, where the DID Method-
Specific Identifier (Figure 2.4) is nothing more than the INDEX in which the DID
Document was written.
When the node wants to update its identity, for example by changing its key pair,
it will invoke the UPDATE function, which will generate a new DID Document and
always write it to the last generated NEXT INDEX in the chain.
The REVOKE operation, instead, is simply an UPDATE operation where where an
empty message is written.
Finally the second node wants to retrieve the DID Document of the first one. Once
it has received the other’s DID, it calls the RESOLVE operation, which takes in
input the DID, estracts the INDEX (Method-Specific Identifier) and starts a loop
of read operations. The purpose of this loop is to be sure to always retrieve the last
valid DID Document of the chain, and works by following the NEXT INDEX chain as
long as there is a valid message and a not revoked DID Document.

It is important to note that every message written on the channel, and therefore
belonging to the chain, is encrypted using a pre-shared key. So only those who have
the key will be able to successfully complete the RESOLVE operation of a DID. This
permits to restrict the access to the channel to a limited number of nodes sharing
the PSK. The same protection is applied in the opposite case, where an external
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node not knowing the PSK tries to write its message into the chain. In this case
the other nodes will recognize that message as invalid and ignore it.

3.1.1 APIs

The SnD Method exposes four APIs:

int create_(method_ *methods, char *did_new)

This function creates the DID Document and saves it on the IOTA Tangle. It
takes in input a did new pointer, that at the end will contain the generated DID,
and a methods parameter, which contains the information, such as a public key,
to be included in the authenticationMethod (Figure 2.5) and assertionMethod

fields. The function starts by creating a structure WAM channel representing the
channel. This structure contains also the starting index where the message will be
written, the next index and the pre-shared key for the encryption. Then the DID
Document in JSON format is created and inserted in a WAM message. Finally this
message is sended to the Tangle by calling the WAM write function. If this oper-
ation is successful the state of the channel is saved in memory for future operations.

int update_(method_ *methods, char * did)

This function updates the DID by creating a new DID Document to be written
on the DLT at the end of the channel’s chain of messages. So the first thing that
it does is loading the channel state previously saved containing the endpoint and
indexes information. Then it generates a new DID Document starting from the
methods parameter, as the create operation, and writes it at the last index of the
chain. The new DID is return to the caller through the did pointer parameter.

int revoke_(char *did)

This function permits to revoke a DID Document. It works the same way as the
update , but the only difference is that the message written on the Tangle is empty
and the NEXT INDEX fields is filled with all zeros.

int resolve_(did_document_ *didDocument, char *did)

This function permits to retrieve a DID Document starting from the correspond-
ing DID. The didDocument parameter represents a structure to be filled with the
DID Document’s information retrieved from the Tangle, while the did parameter
contains the DID to be resolved. This function starts with the initialization of a
new WAM channel. In order to do this the pre-shared key and the Tangle endpoint
information are needed. The channel index is estracted from the DID. Then this
function performs a WAM read operation in loop, starting from the index setted
before and at every cicle updating the read index, until the last message of the chain
is encoutered. If this message contains a valid and not revoked DID Document then
its value is returned through the didDocument parameter.

35



Design and Implementation

3.2 SSI-aware TLS 1.2 handshake

In this section will be presented the analysis and implementation choices that led
to the modification of a protocol, robust and widespread, such as TLS and the
development of a new model based on a decentralized digital identity paradigm
called Self-Sovereign Identity.

3.2.1 Case study

The goal is to integrate the use of DIDs into the TLS handshake in order to establish
a secure channel in the Layer 2 of the SSI stack (Figure 2.2). With DIDs, a
decentralized authentication mechanism is introduced, which means that no central
authority is needed to certify one’s identity. Unlike the use of X.509 certificates,
where the root of trust was the Certification Authority that issued the specific
certificate, in this case it becomes the DLT.

To avoid to re-implement the majority of the TLS protocol functionalities, an
existing cryptographic library for secure communication has been considered. A
suitable library should enable a widespread adoption of SSI paradigm, such as
constrained IoT devices. In particular for this project were used STM32 Discov-
ery boards (Figure 3.2), produced by STMicroelectronics [17], equipped with an
STM32L4S5VIT6 MCU, based on Arm➤Cortex➤-M4 core, with only 640 KB of
RAM.

Figure 3.2. STM32 Discovery board

For this reason, the library choice fell on Mbed TLS [2], a lightweight and fast
library with a small memory footprint. At the time of development, the latest LTS
(Long Term Support) of the library is v2.28, which supports TLS 1.2 [16].
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3.2.2 Model

Starting from the TLS 1.2 handshake, a model based on the SSI paradigm was
developed, in which the use of certificates was replaced by the use of Decentrilized
Identifiers.

Figure 3.3. SSI-aware TLS 1.2 handshake

The handshake always begins with the negotiation phase in which client and
server agree on the cipher suite and on the other session parameters to be used
in the remaining part of the handshake. In this model it was assumed to use
only cipher suites based on ephemeral key exchange algorithms which are more
secure. To enable the DID support, a new extension has been introduced in the
ClientHello called SupportedDidMethods. The latter has two purposes: the
first is to communicate to the server that the client intends to proceed with an
authentication using DIDs instead of X.509 certificates, the second is to provide the
server with the list of DID Methods supported by the client, so that it can verify
that it has a DID generated from one of them and that the client can “resolve”.
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The connection is aborted if the server doesn’t have a DID compatible with any
of the client’s DID Methods. Otherwise, if this extension is not present in the
ClientHello, the handshake continues using the X.509 certificates, if supported.

At the end of the negotiation phase, the server will send a new message called
Did containing its DID and an identifier indicating the DID Method to be used for
the “resolve” operation. On the client, the corresponding DID Resolve is performed
to retrieve the DID Document of the server containing its public key.

Then the handshake continues with the key exchange phase, in which is assumed
to use an ephemeral algorithm as mentioned above. It starts on the server side with
the generation of the ephemeral key pair, where the public part is sent to the client
in the ServerKeyExchange message along with its digital signature.
Subsequently, in case the server needs the client authentication, a new message
called DidRequest has been introduced, having the same purpose as the Certifi-
cateRequest message, but with some differences in its content.
Its purpose is therefore to report to the client that its authentication is required
and that it must be done with DIDs. This message contains a list of DID Meth-
ods supported by the server, along with the supported signature algorithm field
that was already present in the CertificateRequest.

At this point, the server reports via the ServerHelloDone message that it has
completed its key exchange phase and that the client can proceed with its own. At
this point the server reports via the ServerHelloDone message that it has completed
its key exchange phase and that then the client can continue with its own. The client
then proceeds with the sending of the Did message containing its DID, which must
respect the constraints required in the DidRequest message. This step is performed
exactly as server-side, but only if the client has previously been explicitly requested
to authenticate via the DidRequest message. Otherwise the client continues directly
with the key exchange phase by sending the ClientKeyExchange message.

Finally, the latest new message introduced in this model is called DidVerify.
It is used by the client to provide an explicit proof of possession of the identity
private key and it is only sent if the client has to authenticate and has previously
sent a valid Did message. Its purpose and content is identical to that of the
CertificateVerify message, the only difference is the latter is used during certificate
based authentication.

After that, the handshake flow continues with the session key derivation and
terminates with the Finished messages exchange, according to the TLS protocol
(see Sect. 2.8).

3.2.3 Implementation details

Before delving into a formal definition of the new TLS extension and the three new
TLS messages introduced, it is essential to have a comprehensive understanding
of certain concepts such as “variable-length vectors,” “opaque” types, and “enum”
types.

“Variable-length vectors” are specified by indicating a range of valid lengths,
including both the lower and upper bounds, using the notation <floor..ceiling>.
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When these vectors are encoded, their actual length is placed before their contents
in the byte stream. The length is represented as a number that takes up as many
bytes as necessary to represent the vector’s ceiling length.

The “opaque” type is used represent entities that consist of a single byte and
contain unprocessed data.

In the following example, vector example is a vector that must have between
100 and 400 bytes of the “opaque” type and cannot be empty. The actual length
field takes up two bytes, which is large enough to hold the value 400.

opaque vector_example<100..400>

Finally, a new type of data called DidMethod needs to be introduced, which
is defined as an “enum”. Data of this type can only take on the values that are
specified in its definition. Each definition creates a different type, and enum values
can only be assigned or compared if they are of the same type. The DidMethod

will consume one byte in the data stream, but it can only take on the value of 0
for now, as the “SnD” method is the only one available in this TLS model.

enum { snd(0), (255)

} DidMethod;

SupportedDidMethods Extension

This extension, as mentioned above, indicates that the client is willing to use the
DID as the authentication method and also contains the list of DID Methods sup-
ported by the client.

From RFC [16] an extension is defined this way:

struct {

ExtensionType extension_type;

opaque extension_data<0..2^16-1>;

} Extension;

The first step to do is to define a new ExtensionType value that has not already
been taken. For this extension the value “60” has been chosen.

enum {

(...), supported_did_methods(60), (65535)

} ExtensionType;

The final step is to determine the contents of the extension, which is the information
stored in the “extension data” field. The “extension data” field of this extension
contains a value of type SupportedDidMethods, which is basically a variable-length
vector of DidMethod enum values defined in this way:

struct{

DidMethod supported_did_methods<1..2^8-1>;

} SupportedDidMethods;
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Did Message

This message serves as an alternative to the Certificate message, which is used
for authentication with X.509 certificates. It contains the DID of the client or
server, along with a byte that indicates the DID Method used to create the DID.

In order to define a new handshake protocol message, it is necessary to assign
first a new HandshakeType value to it. This value will identify the new message.
For this message the chosen value was “30”.

enum {

hello_request(0), client_hello(1), server_hello(2),

certificate(11), server_key_exchange(12),

certificate_request(13), server_hello_done(14),

certificate_verify(15), client_key_exchange(16),

finished(20), certificate_url(21), certificate_status(22),

did(30),

(255)

} HandshakeType;

It is now possible to define a new message in this manner:

struct {

HandshakeType msg_type;

uint24 length;

select (HandshakeType) {

case hello_request: HelloRequest;

case client_hello: ClientHello;

case server_hello: ServerHello;

case certificate: Certificate;

case server_key_exchange: ServerKeyExchange;

case certificate_request: CertificateRequest;

case server_hello_done: ServerHelloDone;

case certificate_verify: CertificateVerify;

case client_key_exchange: ClientKeyExchange;

case finished: Finished;

case certificate_url: CertificateURL;

case certificate_status: CertificateStatus;

case did: Did;

} body;

} Handshake;

Where Did is defined as a structure where the first field represent the DidMethod
value (did method) and the second one is a variable-length vector containing the
DID value (did value).
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struct {

DidMethod did_method;

opaque did_value<1..2^16-1>;

} Did;

DidRequest Message

This message will be sent by the server, instead of the CertificateRequest mes-
sage, in order to request client authentication. This message includes a list of
methods and a list of signature and hash algorithms supported by the server. This
information allows the client to select a valid DID that meets the requirements
of the server. The structure of this message is very similar to that of the Cer-
tificateRequest message, since the purpose is pretty much the same, except that
the latter message includes a list of Certificate types and Certification Authorities
trusted by the server.

As previously mentioned, to properly define this message according to RFC stan-
dards, a new HandshakeType value must be assigned to it.

enum {

(...), did_request(31), (255)

} HandshakeType;

Then this Handshake message can be defined in the following manner:

struct {

HandshakeType msg_type;

uint24 length;

select (HandshakeType) {

...

case did_request: DidRequest;

} body;

} Handshake;

With the DidRequest defined as a structure that includes a variable-length vector
of DidMethod values (supported did methods) and a variable-length vector of Sig-
natureAndHashAlgorithm pairs (supported signature algorithms). The formal
definition for the latter can be found in RFC 5246 [16]:

struct {

DidMethod supported_did_methods<1..2^8-1>;

SignatureAndHashAlgorithm

supported_signature_algorithms<2..2^16-1>;

} DidRequest;
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DidVerify Message

The last Handshake message to describe is the DidVerify message, which will
be sent instead of the CertificateVerify message. It is used by the client to
provide explicit proof of possession of the idenitity private key. This message is
structurally identical to the CertificateVerify message. Therefore, the need to
introduce a new message is simply to ensure consistency and clarity in the flow
of the protocol. The exchange of a message called CertificateVerify during a
DID-based SSI-aware handshake might lead to some confusion.

To the DidVerify message was assigned the HandshakeType value of “32”.

enum {

(...), did_verify(32), (255)

} HandshakeType;

To view the structure of the CertificateVerify, which has the same structure of
this message, refer to RFC 5246[16].

3.2.4 Security Assessment

The changes made by this new model to the TLS protocol have made it neces-
sary to conduct a security assessment in order to verify that the modifications
have not introduced any security vulnerabilities in this SSI-aware version of TLS.
The robustness of the protocol has been verified against two common man-in-the-
middle(MITM) attack scenarios.

The two MITM attacks that will be examined are based on the assumption
that the attacker does not have a valid DID. Unfortunately, it is not possible to
verify the identity of the entity with whom one is communicating when using a
DID-based authentication, as it is with a certificate. While it is possible to confirm
that the entity in question possesses the public key associated with the private key
contained in their DID Document, it cannot be confirmed that they are truly the
entity they claim to be. This is because anyone can create their own DID using the
various available DID Methods.

In an SSI ecosystem, authentication occurs using the next layer of Verifiable
Credentials, which has not been addressed in this project. Instead, the solution to
this problem in this project is found in the SnD DID Method, specifically through
the use of the PSK to encrypt DID Documents written on the Tangle, as mentioned
in the section 3.1. This means that anyone can create their own DID on the Tangle
using SnD. As example, it is considered a scenario where a group of IoT nodes share
a common PSK. Only those who have that key will be able to create a DID on the
Tangle valid within that group of nodes. If an attacker attempts to impersonate
one of the nodes by conducting a man-in-the-middle attack, during the creation
of a TLS channel between a client node and a server node, and sending its DID
created using a different PSK, the attack will not be successful. The client node will
detect during the “resolve” operation that the attacker’s DID Document was not
created with the correct PSK. Taking into account this information, it is possible
to proceed with the analysis of two types of MITM attacks.
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Transparent Proxy Attack

In this scenario, the attacker acts as a transparent proxy, forwarding messages
between the client and server. The attacker has access to all the information ex-
changed between the two parties, but lacks the ephemeral private keys needed to
calculate the session key and decrypt the data. As a result, once both parties have
sent the ChangeCipherSpec message, the traffic between them will be encrypted,
rendering the attacker unable to view the exchanged data.

To defend against a transparent proxy attack, it is important for both the client
and server to verify the authenticity of the DID and integrity of the handshake
messages. It is also important for the client to ensure that it is communicating
with the intended server, and not a malicious actor posing as the server. This
protection as mentioned above is ensured by the SnD DID Method.

Based on this analysis, it can be concluded that the changes made to the protocol
did not introduce a vulnerability that would make this version of TLS susceptible
to attacks of this type.

Figure 3.4. Transparent Proxy Attack
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Active Proxy Attack

An active proxy attack is a type of man-in-the-middle (MITM) attack that in-
volves the attacker inserting themselves into the communication between a client
and a server, acting as a intermediary. The attacker actively modifies the messages
exchanged between the client and server, as opposed to simply forwarding them
like in a transparent proxy attack.

During the TLS handshake, the client and server exchange information such
as their supported cipher suites and DIDs. The attacker can intercept and modify
this information, potentially downgrading the security of the connection or injecting
malicious content. The attacker can also choose to terminate the connection and
create a new one between the client and server, using their own DID and keys. In
this case, the client may not be aware that it is communicating with an attacker
rather than the intended server. However, this is not possible since the protection
offered by the SnD method prevents an attacker from obtaining a valid DID. Thus,
the attacker would not be able to impersonate the server.

Nevertheless, the attacker may attempt to reuse the DID sent by the server
and forge a new ServerKeyExchange message with its own ephemeral public key.
However, this attack will still fail because the attacker must generate their own
(EC)DHE parameters and include the public key in the ServerKeyExchange mes-
sage with a valid signature. In order to do this, the attacker must possess the
server’s identity private key, which is associated with the DID that they forwarded.
The client’s verification process will fail withouth the server’s private key.

Figure 3.5. Active Proxy Attack
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Chapter 4

Test and result analysis

In this chapter, the performance of the SSI-aware version of Mbed TLS, which uses
Decentralized Identifiers for authentication, is compared to the standard version
that uses X.509 Certificates. The tests has been carried out onto three different
hardware platforms: an Intel i7-6700HQ @ 2.6GHz (x86 x64) processor [18], a
Raspberry Pi 4 Model B [19], and a STM32 Discovery board equipped with an
STM32L4S5VIT6 MCU @ 120 MHz [20]. It is worth noting that the DID Method inte-
grated within Mbed TLS for the SSI-aware TLS handshake has been implemented
on top of the WAM protocol for the x86 64 and Raspberry Pi 4 Model B, and on
top of the L2Sec [21] protocol for the STM32L4S5VIT6. The L2Sec protocol was
specifically developed and optimized by STMicroelectronics for their boards.

The handshake duration was recorded from the client perspective on all three
platforms, with a total of 100 samples collected. The server was hosted on a x86 64

system with an i7-12700H @ 2.30 GHz processor [22] in each case. The tests
were designed to measure the handshake time both with server authentication only
and with mutual authentication. They were further divided into sub-tests based
on the type of key used for identity (RSA or Elliptic Curve) on both the client and
server sides, and the signature algorithm used (RSA2048-SHA256 or ECDSA-p256-
SHA256).

In the scenario of certificate-based authentication, certificates with a “chain of
trust” of lenght two were employed. The “chain of trust” is a series of digital cer-
tificates that verify the legitimacy of the certificate used for secure communication.
This sequence starts with a trusted root Certification Authority (CA) and con-
cludes with the certificate being considered. Regarding DID-based authentication,
freshly created DID Documents were used. These documents have not received
any update (see Sect. 3.1), resulting in a chain of DID Documents on the Tangle
with a length of one. Throughout these tests, all operations related to DIDs were
performed by interacting with the public and remote Tangle networks, specifically
utilizing the IOTA Chrysalis DevNet.
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4.1 TLS Handshake - Average Time Performances

The bar charts depicted in figures 4.1, 4.2, and 4.3 illustrate the average times
calculated over 100 standard TLS Handshakes, which only include server authenti-
cation, across the three previously described platforms. The comparison is between
the conventional X.509 certificate authentication, which is already specified in the
TLS protocol by the RFC 5246, and the new SSI-aware version developed in this
project, which employs Decentralized Identifiers as the authentication mechanism.

Observing the charts, it can be seen that on the left columns, the times of the two
handshakes are represented where the server’s identity key pair is RSA 2048 type
and RSA2048-SHA256 is used as the digital signature algorithm, while on the right
columns, the keys used are of the Elliptic Curve type derived from the NIST P-256
curve, and ECDSA-p256-SHA256 is used as the signature algorithm, both in the
case of certificates and DIDs. The total time calculated for the SSI-aware handshake
has been divided into two, in order to clearly highlight the average time taken for
the DID Resolve compared to the rest of the handshake. The operations that have
the greatest impact on the handshake time are certainly cryptographic operations,
especially operations such as creating and verifying digital signatures. Comparing
signature algorithms such as RSA2048-SHA256 and ECDSA-p246-SHA256, it can
be noticed that the first algorithm is slower in generating the signature, but faster in
verifying it. With that being said, in both types of handshakes, with certificates and
with DIDs, these two operations can be found during some steps both on the client
and server sides. On the server side, in the creation of the ServerKeyExchange
message, where an ephemeral key exchange algorithm is used, the message will
contain the generated public key together with the signature of it computed using
the server’s identity private key, while on the client side, in the verification of the
aforementioned signature.

However, there is also a fundamental difference between the two types of hand-
shakes regarding how they handle authentication. In the case with certificate-based
authentication, the client performs “chain of trust” verification, which involves ver-
ifying the signatures on the certificates in the chain up to the root CA. This results
in a higher computational load as the length of the chain increases, which does not
occur with Decentralized Identifiers. From the charts, it can be seen that these op-
erations have an impact on the average speed of the handshake, effectively making
the SSI model faster than the standard model on all three architectures, this of
course without considering the extra time given by the DID Resolve operation.

However, it must be considered that the handshake as a whole is the sum of
all the various operations, including the “resolve”. This step significantly affects
the performance of the x86 64 and RaspberryPi 4 architectures, as having a lot of
computational power, the time solely spent on the CPU-bound operations of the
handshake is clearly lower than the time spent waiting for the DID Resolve to end,
which is architecture-independent.

A remarkable result is obtained on STM32L4S5VIT6, which being an architec-
ture with quite limited resources and also lacking a hardware accelerator, crypto-
graphic operations have such a high impact that in this case the “resolve” time is
almost negligible. In fact, in Figure 4.3 it can be seen that overall the SSI model
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of TLS has better average performance compared to its counterpart.

Figure 4.1. x86 64 - TLS Handshake - Average Time Performances

Figure 4.2. RaspberryPi 4 Model B - TLS Handshake - Average Time Performances
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Figure 4.3. STM32L4S5VIT6 - TLS Handshake - Average Time Performances

4.2 Mutual TLS Handshake - Average Time Per-

formances

The bar charts in Fig. 4.4, 4.5 and 4.6 represent the average time of a TLS hand-
shake with mutual authentication, calculated for both models. As in the previous
case, the performance was compared based on the type of key present in the DID
Document or Certificate and therefore the signature algorithm used. Considering
the two algorithms RSA2048-SHA256 and ECDSA-p256-SHA256, various combi-
nations of them were tested on both the client and the server. This is because, in
measuring the client-side handshake in a mutual authentication scenario, the client,
in addition to verifying the signature of the parameters present in the ServerKeyEx-
change, as in the previous case, must also generate a signature to be sent in the
CertificateVerify/DidVerify message. By testing the various combinations of the
two algorithms on both the client and server sides, the time of the handshake can
be measured as the signature algorithm applied to the previous two operations
changes.

It is important to note that the results of tests conducted on the x86 64 architec-
ture, as displayed in the chart, are impacted by the use of an Intel Core i7-6700HQ
processor which has hardware acceleration for cryptographic operations. This pro-
cessor is equipped with Intel’s Advanced Encryption Standard New Instructions
(AES-NI), which is a set of instructions that enhances the performance of crypto-
graphic operations, including digital signatures.

These results are significantly different from those seen in other architectures
where the combination of ECDSA on the client side and RSA on the server side
tends to be the most efficient, while the reverse combination is typically slower.
This is because the process of verifying a signature using the ECDSA-p256-SHA256
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algorithm is generally slower than using RSA2048-SHA256, while the generation of
a signature using ECDSA-p256-SHA256 is faster. However, this pattern may not
apply to the x86 64 system due to the presence of hardware acceleration.

As an example, consider a server with an elliptic curve key in its certificate, and
a client with an RSA key. In this scenario, the server would sign using the ECDSA-
p256-SHA256 algorithm and the client would verify using the same algorithm. The
client would then sign using RSA2048-SHA256, while the server would verify using
RSA2048-SHA256. This scenario is expected to be the slowest, but on the x86 64
architecture, this may not be the case due to the hardware accelerator.

When comparing the two TLS models, also in this case a better result is obtained
with the SSI-aware version when testing the protocol on an STM32L4S5VIT6 archi-
tecture, despite the presence of the additional latency caused this time by two DID
Resolve operations, one on the client side and one on the server side. These graphs
do not depict the time spent on “resolve” compared to the rest of the CPU-bound
operations of the handshake, as it was not enough to just take the time of the two
“resolves” and subtract them from the total. This is because while the server is
busy performing its “resolve,” the client is not waiting and continues its part of the
handshake until reaching the Finished message, where it is actually waiting for the
server’s subsequent messages.

Figure 4.4. x86 64 - Mutual Authentication TLS Handshake - Average
Time Performances
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Figure 4.5. RaspberryPi 4 Model B - Mutual Authentication TLS Handshake -
Average Time Performances

Figure 4.6. STM32L4S5VIT6 - Mutual Authentication TLS Handshake -
Average Time Performances
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4.3 DID Resolve (SnD) - Time Performances

The results of previous studies on the handshake with Decentralized Identifiers
(DIDs) are highly variable due to the unpredictability and variability of the DID
Resolve process. Several factors contribute to the resolve time (Fig. 4.7), including
the internet network’s capacity and speed, which can be improved by installing a
private Tangle within a LAN network. The time and day of connection to the Tangle
can also play a role, as there are peak times with more traffic and quieter times
with fewer transactions. The type of IOTA network employed as DLT (such as the
Mainnet, Shimmer, Chrysalis Devnet, etc.) can also impact results. Furthermore,
the length of the DID Document chain, as each update of one’s identity results in a
new DID Document being written to the bottom of the chain, and during the DID
Resolve, the entire chain must be traversed to reach the most recent DID Document.
If the chain is very long, traversing through it can become time-consuming. Finally,
the IOTA’s Congestion Control Algorithm [23], which adjusts traffic based on load
and request numbers, may also impact the resolve time. These factors contribute
to the inconsistent results and make it difficult to accurately assess the performance
of DID-based TLS handshakes.

Figure 4.7. SnD - DID Resolve Time Performances
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Chapter 5

Conclusion and future work

The main objective of this work was to integrate IoT-constrained devices into the
SSI ecosystem by assigning them decentralized digital identities. With their decen-
tralized digital identity, these IoT-constrained devices are capable of authenticating
with each other through the use of the SSI-aware version of the TLS 1.2 protocol,
which was implemented into the Mbed TLS library. The principal characteristic of
this model is the use of Decentralized Identifiers as the authentication mechanism.
This replaces the conventional X.509 Certificates, thereby abandoning a centralized
approach in favor of a decentralized solution.

To enhance this solution even further, the possibility of integrating Verifiable
Credentials can be explored. This would eliminate the need for an authentication
mechanism internally implemented by the DID Method, as was the case with the
Pre-Shared Key in SnD. Moreover, updating the SSI-aware model to include TLS
1.3 and integrating it into Mbed TLS is another potential goal for the future. This
work serves as an introductory step towards adopting Self-Sovereign Identity as
the new paradigm for digital identity and authentication, within a well-established
protocol such as TLS.
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Appendix A

User Manual

This appendix explains how to install and how to use the tools of this project.

A.1 DID Method: SnD

The DID Method used in this project for the creation, update, revoke and resolve
of DIDs and DID Documents.

A.1.1 Requirements

The following dependencies are required for SnD to work properly.

cJSON

cJSON [24] is a lightweight, efficient, and flexible C library for parsing and gen-
erating JSON data. It is designed to be easy to use, with a simple and intuitive
API, and it is designed to be easy to integrate into a wide variety of applications.

WAM

WAM is the cryptographic protocol for exchanging data with the IOTA Chrysalis
Tangle explained at section 2.7.

libsodium

libsodium is a modern, easy-to-use crypto software library written in C program-
ming language. It provides a high-level API for secure cryptographic operations
and is designed to be fast and secure.
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A.1.2 Installation

To install the SnD DID Method, one must enter the folder named C CRUD within
the project and run the build.sh script:

cd C_CRUD

bash build.sh

The build.sh script (Figure A.1) is designed to perform the compilation of the
iota.c and WAM libraries, resulting in the creation of a libdidmethod.a static
library and a ./demo/demo application. The script begins by cloning the dev branch
from the iota.c library repository and proceeding to compile it. Next, it clones
the WAM library repository and, using the cmake tool, generates a Makefile that is
used to output the final artifacts.

#!/bin/bash

set -e

sudo apt install libsodium-dev

DIR="./iota.c"

if [ -d "✩DIR" ]; then

echo "iota.c already present -> skip download"

else

git clone -b dev https://github.com/iotaledger/iota.c.git

cd iota.c

mkdir build && cd build

cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++

-DCryptoUse=libsodium -DIOTA_WALLET_ENABLE:BOOL=TRUE

-DCMAKE_INSTALL_PREFIX=✩PWD -DWITH_IOTA_CLIENT:BOOL=TRUE

-DWITH_IOTA_CORE:BOOL=TRUE ..

make all

make install

cd ..

cd ..

fi

DIR="./WAM"

if [ -d "✩DIR" ]; then

echo " WAM already present -> skip download"

else

git clone git-guest@gitserver:/git/GUEST/WAM.git

fi

echo "Building DID Method..."

cmake .

make

echo "Finished"

Figure A.1. build.sh
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A.1.3 Usage

Once the compilation has finished, the SnD demo application is ready for use. Upon
running it, a screen similar to the one depicted below will appear on the terminal,
prompting the user to select an action.

What do you want to do?

1. Create a DID

2. Update a DID

3. Revoke a DID

4. Resolve a DID

Here, you have four options:

1. you can create a new Decentralized Identifier. If this option is chosen, it will
prompt the user to specify whether they wish to define an authenticationMethod
and/or an assertionMethod and the path to the corresponding public keys
to be included in the DID Document.

2. you can update your current DID. As for the “create” operation, the user will
be prompted to define a new assertionMethod and/or authenticationMethod.

3. you can revoke your current DID

4. you can resolve any DID. At The user is asked to enter the DID to be “re-
solved”.

A.2 SSI-aware Mbed TLS

A Self-Sovereign identity aware version of the TLS 1.2 protocol implemented in the
Mbed TLS library version 2.28 [25].

A.2.1 Requirements

The following dependencies are required for SnD to work properly both for Linux
and on the STM32 Discovery board [26].

SnD static library (libdidmethod.a)

It is built by following the procedure outlined above in the section A.1.2 for the
SnD DID Method installation.

STM32CubeIDE

STM32CubeIDE is a comprehensive, multi-operating system development tool that
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provides advanced C/C++ development capabilities, including peripheral config-
uration, code generation, code compilation, and debugging features for STM32
microcontrollers and microprocessors.

It can be installed direcly from the official site [27].

A.2.2 Installation

Desktop/RaspberryPi with Linux

The SSI-aware Mbeb TLS library can be easily installed on a desktop environment
or a RaspberryPi running Linux by executing:

bash ssi_aware_build.sh </path/to/libdidmethod.a>

To execute the ssi aware build.sh script (Figure A.2), you need to pass the path
to the directory that contains the libdidmethod.a static library as an argument.

#!/bin/bash

set -e

if [ -z "✩1" ]

then

exit -1

else

if [[ ✩1 == */ ]]

then

var=✩{1%?}

else

var=✩1

fi

fi

export PATH_TO_DID_METHOD=✩var

DIR=mbedtls_build

if [ -d "✩DIR" ];

then

echo "mbedtls_build already created"

else

mkdir mbedtls_build

fi

cd mbedtls_build

cmake ..

cmake --build .

Figure A.2. ssi aware build.sh
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STM32 board

To install the library on a STM32 board, a preconfigured project is available for
download, which includes the library and a client application. The first thing to
do is to open the project with STM32CubeIDE [27]. Once the project is open,
it will need to be compiled. To do this with the mouse, click on the drop-down
menu near the “Build” button, the one with the hammer symbol. From the menu,
select the MBEDTLS-SSI option. Once the compilation is completed, connect the
STM32 board to the PC and download the binary application into the flash of the
microcontroller. The board will automatically reboot and communication can be
established using a terminal emulator, such as Tera Term [28].

A.2.3 Usage

Desktop/RaspberryPi with Linux

Once the compilation is finished, in the ./mbedtls build/programs/ssl folder,
there will be a client application (ssl client2) and a server application (ssl server2)
with which to interact.

By running both applications and passing -h as a parameter, it will be possible
to view the available options for both applications. If someone is interested, they
can try out the various options as desired. However, only the main options for
testing the library’s functionality will be discussed here.

On the server side, we have these options:

❼ ./ssl_server2

Launches an instance of a server with a preloaded certificate and correspond-
ing preloaded private key.

❼ ./ssl_server2 auth_mode=required

By doing this, it instructs the server to operate in mutual authentication
mode, which always requires the client to provide authentication.

❼ ./ssl_server2 ca_file=<path/to/CA_certificate>

crt_file=<path/to/own_certificate>

key_file=<path/to/private_key>

key_pwd=<priv_key_password>

Here, it is possible to configure the server with a top-level CA that it should
trust by passing the path of the file containing the CA certificate in ca file.
Additionally, the server can be configured with a specific certificate by passing
it through the crt file parameter, then passing the private key through
the key file field and the corresponding password, if it exists, through the
key pwd field.
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❼ ./ssl_server2 did=1

did_value="did:example:1234567890abcdefg"

did_key_file=<path/to/private_key>

Finally, in this way it is possible to configure the server to use DID-based
authentication. By passing did=1 as the first parameter, it enables the use
of DIDs in the TLS handshake. The did value parameter is used to pass
the server’s DID value, and the did key file parameter is used to pass the
path of the private key associated with the public key contained in the DID
Document.

On the client side, we have these other options:

❼ ./ssl_client2 server_addr=<server’s IP address>

This command launches an instance of the client that connects to the server
using traditional certificate-based authentication, whose IP address is passed
through the server addr parameter.

❼ ./ssl_client2 server_addr=<server’s IP address> did=1

This enables the client to use DID-based authentication. As a result, the
client will inform the server of its intention to continue the handshake using
DIDs as the authentication method. If the server does not support them, it
will send an abort signal to the client and the connection will be closed.

❼ ./ssl_client2 server_addr=<server’s IP address> did=1

did_value="did:example:1234567890abcdefg"

did_key_file=<path/to/private_key>

Like the previous command, this enables the use of DIDs and also loads the
client’s identity within the application, as previously seen on the server side.
This enables the client to authenticate itself when the server requests it.

STM32 board

In the case of using the application on an STM32 board, it is not possible to
launch the application and pass values through command line. Therefore, when
the board is accessed and remotely connected to using a terminal emulator such
as Tera Term [28], a menu, as seen in Figure A.3, will appear on the screen, with
a series of options for the user to choose from. In the STM32 project, only the
client application’s functionality was loaded, and the parameters that are usually
passed through command line on a PC or Raspberry Pi were preconfigured within
the code. Hence, if there is a need to modify the client’s identity, such as its DID
and private key, or the IP address of the server it needs to connect to, it would
require manually changing the hardcoded values in the code.
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1. Node info;

2. Get data message;

3. Send data message;

4. Send sensor message;

5. Send encrypted data;

6. Test functions;

7. SSI-aware MbedTLS - Option List;

8. SSI-aware MbedTLS - DID - server authentication;

9. SSI-aware MbedTLS - DID - mutual authentication;

10. SSI-aware MbedTLS - X.509 - server/mutual authentication;

11. SSI-aware MbedTLS - DID - session resumption;

12. SSI-aware MbedTLS - X.509 - session resumption;

0. Exit.

Choose one of the options:

Figure A.3. Client’s menu on STM32 board
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B.1 SSI-aware Mbed TLS

In this appendix, the main functions developed during the creation of the SSI-aware
version of the TLS 1.2 protocol in the Mbed TLS library are listed and analyzed.
The programming style utilized in the Mbed TLS library was adopted as much as
possible to promote organization and comprehensibility.

st❛t✐❝ ✐♥t ss❧ ✇r✐t❡ s✉♣♣♦rt❡❞ ❞✐❞ ♠❡t❤♦❞s ❡①t✭✳✳✳✮

It fills the ClientHello data buffer with the data of the SupportedDidMethods ex-
tension. In this extension the client inserts the list of supported DID Methods.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure
❼ unsigned char *buf, pointer to the current position in the buffer containing
the information to be sent in the ClientHello

❼ const unsigned char *end, pointer to the end of the buffer
❼ size t *olen, length of this extension

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ♣❛rs❡ s✉♣♣♦rt❡❞ ❞✐❞ ♠❡t❤♦❞s ❡①t✭✳✳✳✮

This function parses the information in the SupportedDidMethods extension. If
this extension is present, it indicates that the client wants to use DID-based au-
thentication instead of certificate-based authentication. The server verifies if it has
a valid DID created with a DID method that is compatible with one of the ones
listed by the client.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure
❼ const unsigned char *buf, this is the pointer to the current position in
the ClientHello buffer, now pointing to the SupportedDidMethods extension
data.

❼ size t len, SupportedDidMethods extension length
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Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ♣✐❝❦ ❞✐❞✭✳✳✳✮

This function enables the server to check if the chosen ciphersuite, among those
offered by the client, requires the server to have a specific type of DID and private
key.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure
❼ const mbedtls ssl ciphersuite t * ciphersuite info, current ciphersuite
information

Output : Return 0 if successful, -1 otherwise

st❛t✐❝ ✐♥t ss❧ ✇r✐t❡ ❞✐❞ r❡q✉❡st✭✳✳✳✮

This function serves to create and send the DidRequest message to request client
authentication.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ♣❛rs❡ ❞✐❞ r❡q✉❡st✭✳✳✳✮

This function parse the the DidRequest message to check if the Server has re-
quested the Client’s authentication. This function is based on the function al-
ready present in Mbed TLS for parsing the CertificateRequest message called
ssl parse certificate request. The latter was created so that the information
in the CertificateRequest message, which is meant to assist the client in selecting
a certificate to send to the server, is ignored and not processed on the client side.
The Mbed TLS developers opted for a minimal parsing of the message to verify its
basic validity, allowing the client to send its certificate, whatever it may be, and
let the server decide if it is suitable or not. It has been decided to adopt the same
approach in the case of DIDs.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successfull, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ✇r✐t❡ ❞✐❞ ✈❡r✐❢②✭✳✳✳✮

This function serves to create and send the DidVerify message if client authentica-
tion has been requested and the client holds a valid DID.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

✐♥t ♠❜❡❞t❧s ss❧ ✇r✐t❡ ❞✐❞✭✳✳✳✮

This function serves to create and send the Did message containing the client/server
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DID.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ❝❤❡❝❦ ♣❡❡r ❞✐❞ ✉♥❝❤❛♥❣❡❞✭✳✳✳✮

This function ensures that the peer’s DID has not changed during session renego-
tiation, avoiding a attack called the Triple Handshake Attack.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure
❼ unsigned char *did buf,
❼ size t did buf len,
❼ did methods did method,

Output : Return 0 if successful, or any other value in case of failure

✐♥t ♠❜❡❞t❧s ss❧ ♣❛rs❡ ❞✐❞✭✳✳✳✮

This function acts as a wrapper for function ssl parse did, and additionally checks
that it is correct to expect and parse the message “Did”.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ss❧ ♣❛rs❡ ❞✐❞✭✳✳✳✮

This is the core function responsible for parsing the “Did” message, retrieving the
DID value and its corresponding DID Method, and invoking the function called
resolve did.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

✐♥t ♠❜❡❞t❧s ss❧ ❝♦♥❢ ♦✇♥ ❞✐❞✭✳✳✳✮

This function sets the client/server’s DID Document and private key within the
SSL/TLS configuration data structure. Must be called during the configuration
phase inside a client or server application, before the start of the actual handshake.
Input :

❼ mbedtls ssl config *conf, SSL/TLS configuration to be shared between
mbedtls ssl context structures

❼ mbedtls ssl did document *own did doc, structure containing the informa-
tion about a DID Document

❼ mbedtls pk context *pk key, private key paired with the public key con-
tained in the DID Document

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code
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✈♦✐❞ ♠❜❡❞t❧s ss❧ ❝♦♥❢ ❞✐❞✭✳✳✳✮

This function enables the use of DIDs during the handshake process.
Input :

❼ mbedtls ssl config *conf, SSL/TLS configuration to be shared between
mbedtls ssl context structures

❼ char did conf, this parameter holds either the value MBEDTLS SSL DID ENABLED

or MBEDTLS SSL DID DISABLED

B.1.1 Relevant files

Some relevant files present in this project are explained below. These files contain
definitions for new data structures and functions used throughout the library.

include/mbedtls/did.h and library/did.c

These files define the data structure that holds the pair of DID Document and pri-
vate key, which together represents the peer’s identity, along with a set of functions
used internally during the handshake or exposed to users for interacting with DIDs.
These functions can be seen more like wrapper functions that utilize the underlying
“bridge” functions, discussed below, that interact with different DID Methods.

typedef struct mbedtls_ssl_key_did_doc{

struct mbedtls_ssl_did_document *did_doc; /** did document **/

mbedtls_pk_context *key; /** private key **/

} mbedtls_ssl_key_did_doc;

✐♥t r❡s♦❧✈❡ ❞✐❞✭✳✳✳✮

This function is invoked during the handshake when a peer receives the DID mes-
sage from the other peer. This triggers a chain of function calls until the “resolve”
function of the corresponding DID Method is called. The function internally in-
voked by this function is the resolve did core.
Input :

❼ mbedtls ssl context *ssl, reference to SSL/TLS context structure
❼ const unsigned char *buf, this buffer contains the value of the other peer’s
DID

❼ size t len, this is the length of the DID
❼ did methods did method, this identifies the DID Method needed to “resolve”
the DID

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code
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♠❜❡❞t❧s r❡s♦❧✈❡ ♦✇♥ ❞✐❞ ❞♦❝✉♠❡♥t✭✳✳✳✮

This function performs a similar role as the resolve did function, but it is designed
for external usage, unlike the latter which is solely for internal library use. It has
been utilized in both the client (ssl client2) and server (ssl server2) applica-
tions to fetch the client/server identity and subsequently configure the application
with that identity.
Input :

❼ mbedtls ssl did document *did doc, peer’s DID Document structure
❼ const char *did value, peer’s DID value

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

✐♥t r❡s♦❧✈❡ ❞✐❞ ❝♦r❡✭✳✳✳✮

This function simply acts as a wrapper for the resolve did mapping function with
some additional check.
Input :

❼ mbedtls ssl did document *did doc, peer’s DID Document structure
❼ const unsigned char *did value, peer’s DID value
❼ size t len, DID length
❼ did methods method, corresponding DID Method

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

include/mbedtls/did bridge.h and library/did bridge.c

These files define the data structure used internally by the library for managing
DID Documents, called mbedtls ssl did document, along with the functions that
serve as an interface between Mbed TLS and DID Methods. Currently, the only
supported method is SnD.

typedef struct mbedtls_ssl_did_document{

unsigned char *did;

size_t did_len;

did_methods method;

mbedtls_pk_context pk; /** public key **/

} mbedtls_ssl_did_document;

✐♥t r❡s♦❧✈❡ ❞✐❞ ♠❛♣♣✐♥❣✭✳✳✳✮

This function is used to call the correct “resolve” function based on the DID Method
related to the peer’s DID. The function also includes checks for the SOV and BRCT
Methods, to show how future developments could be, although for the moment these
two methods are not handled within the library.
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int resolve_did_mapping(mbedtls_ssl_did_document *did_doc, const

unsigned char *did_value, size_t len, did_methods method){

int ret = -1;

if(method == SnD){

ret = resolve_snd(did_doc, did_value, len);

}

if(method == SOV){

/** Not yet implemented **/

ret = -1;

}

if(method == BTCR){

/** Not yet implemented **/

ret = -1;

}

/** More could be added in the future **/

return ret;

}

st❛t✐❝ ✐♥t r❡s♦❧✈❡ s♥❞✭✳✳✳✮

This function acts as a wrapper for the resolve function defined within the SnD
Method. Internally, it allocates a data structure of type did document , which is
the data structure to hold DID Document information defined in SnD, and passes
it along with the DID to the “resolve” function resolve , which is responsible for
retrieving the related DID Document and populating the data structure with the
information contained in it. Subsequently, the function map from snd is called,
which is responsible for mapping the information contained in the data structure
did document to the data structure mbedtls ssl did document, defined in Mbed
TLS.
Input :

❼ mbedtls ssl did document *did doc, peer’s DID Document structure
❼ const unsigned char *did value, peer’s DID value
❼ size t len, DID length

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code

st❛t✐❝ ✐♥t ♠❛♣ ❢r♦♠ s♥❞✭✳✳✳✮

This function is used to map the did document data structure defined in SnD to
the data structure specific to Mbed TLS called mbedtls ssl did document. In the
future, there may be other functions like this for various other DID Methods, which
internally manage DID Documents with a data structure defined by them, but
Mbed TLS will always interact with this common data structure defined internally.
Input :

❼ mbedtls ssl did document *mbedtls did doc, DID Document data struc-
ture defined in Mbed TLS
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❼ did document *did doc, DID Document data structure defined in the SnD
Method

Output : Return 0 if successful, or a MBEDTLS ERR XXX XXX error code
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