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Summary

The widespread adoption of Distributed Ledger technologies (DLTs), specifically
blockchain, has generated great interest in the economic and financial sectors mainly
due to its decentralized approach. An implementation of DLT is the blockchain,
which is the technology created for the Bitcoin cryptocurrency. The blockchain
is the underlying structure that enables the exchange of cryptocurrency, through
transactions among different peers in a completely decentralized manner. Due to
its nature, the DLT provides advantages such as implicit integrity and increased
transparency of stored information. However, to exploit such benefits, an existing
Trust relationship among the transacting peers is required. Trusted Computing can
leverage the advantages provided by DLTs and combine them with the concepts of
hardware Root-of-Trust (RoT), as well as Trusted Computing Base (TCB). More-
over, Remote Attestation (RA) protocol can be appropriately improved with the
aid of the DLT properties to verify the integrity of a TCB belonging to a device.
Conversely from common RA protocols involving centralized entities, the adoption
of DLT in such a context, enables a decentralized attestation model. This work
of thesis aims to build a completely decentralized model that allows a group of
peers, interacting through a DLT, to establish trust without the intervention of
any central entity. This work focuses on the design of a custom RA protocol, which
leverages a TPM and the IMA kernel module, to implement a model for Distributed
Trusted Computing Base (DTCB). It leverages the IOTA DAG-based DLT, called
Tangle, as a secure means for storing and exchanging information. The RA proto-
col features also a distributed group-consensus protocol. This allows a set of nodes
to maintain a distributed state of trust among themselves and also to detect and
exclude non-trusted peers from the group. This work details the implementation
of a DTCB by building a Proof of Concept (PoC), whose implementation has been
deployed and tested to a set of constrained devices (e.g. RaspberryPi), demonstrat-
ing that the nodes participating in the formation of the DTCB can autonomously
maintain a distributed state of trust.
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Chapter 1

Introduction

Trusted computing has become more and more important over the years due to
the increasing number of computer system owners, which are constantly exposed
to severe threats. Trusted Computing refers to those computer systems that can
identify their hardware and software components to establish trust between them-
selves and an external entity that wants to verify if the computer system is behaving
as expected. The Trusted Computing Group [1] provides standard-based Trusted
Computing specifications, solutions and technologies that enable a reporting mech-
anism about the internal state of a device that can be used to state whether the
device is in a trusted state. One of the major Trusted Computing technologies
developed by the TCG is the Trusted Platform Module (TPM). It is a hardware
module that can be embedded into end systems like PCs, or even IoT devices, and
acts as a “Root of Trust (RoT)” for the platform. The TPM offers the possibility
to store cryptographic hash values, called measurements, inside the TPM’s Plat-
form Configuration Registers (PCRs). Those measurements describe the software
state and configuration of the system, and when digitally signed with a valid key,
an Attestation report is generated. The key used to sign a set of PCRs is often
called Attestation Key (AK) and has to reside inside the platform’s TPM. A third
party (Verifier) can then request an attestation report to a given system (Attester)
and verify the integrity of the digital signature and also the trustworthiness of the
received measurements by comparing them with a database of known values, often
called golden values; then, based on the verifier’s policies, conclusions can be made
about the level of trust of the system under inspection.

Those generally described operations give birth to a new security service called
Remote Attestation. Remote Attestation is often used in conjunction with Trusted
Computing Base (TCB) to provide an additional layer of security. The TCB can be
used to generate the attestation report, and the other party can use the attestation
report to verify that the TCB is functioning correctly and has not been compro-
mised. In TCG’s terms, Verifiers can use Remote Attestation to check whether the
underlying Trusted Computing Base of the targeted device and the data arriving
from the TCB are trustworthy. The TCB is typically made up of low-level com-
ponents such as the operating system kernel, device drivers, and firmware. These
components are responsible for managing the system’s resources, including access
to hardware and software, and enforcing security policies such as access controls
and permissions.
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Introduction

In recent years, many Remote Attestation protocols have been implemented,
but most rely on nodes having to put trust in centralized verifiers. However, today
there is a growing interest, especially in the financial sector, in managing various
types of applications using decentralized technologies like the blockchain or, more
generally, Distributed Ledger Technologies (DLTs). DLTs offer the creation and
the management of an immutable and append-only distributed storage, not
allowing the deletion or the update of any information once stored on the DLT.
These technologies introduce the possibility to build real-world applications in a
completely decentralized manner, which means that there is no more need for cen-
tral authorities to act as trusted intermediaries between two or more peers. Hence,
DLTs are trustless systems where all their participants rely on a single source of
truth, the ledger state. Active nodes on the distributed network execute a consen-
sus mechanism allowing them to agree on a single source of truth, without having
to put trust in third-party authorities. However, computer devices can be vulnera-
ble and if attacked can lie at any time; in such cases about the state of the ledger.
When a set of distributed nodes is unknowingly compromised, the consensus out-
come could not reflect the true state of the ledger, thus compromising the whole
network and making possible the approval of malicious transactions. The just de-
scribed scenario is just an example, but the same issue can be applied to multiple
real-world distributed applications, hence it is important to ensure that nodes in a
distributed system are behaving as expected, possibly without the need of putting
trust in central entities.

This works aims at answering the above issues by extending the concepts of
Trusted Computing, especially of TCB and Remote Attestation, to work in de-
centralized applications in such a way that peers, or devices, can trust each other
without needing the support of external trusted entities. Hence, this work focuses
on providing a DLT-based solution that enables a set of devices to autonomously
maintain a distributed state of trust among them. The design of a Distributed
Trusted Computing Base (DTCB) model, together with the implementation of a
Proof of Concept, is proposed to show how a set of devices can autonomously
monitor and evaluate the trust status of all the DTCB participants by leveraging
a mutual Remote Attestation protocol utilizing a DLT to store and exchange the
protocol’s messages.

In this document, the core concepts and technologies of Trusted Computing are
introduced, such as TCB and Remote Attestation, as well as an overview of the
core aspects and functionalities offered by DLTs. The chosen DLT properties and
the communication library used for interfacing with the DLT are as well presented.
Finally, a DTCB model is presented, highlighting the properties and the require-
ments for a DTCB to be practical, accompanied by an overview of the implemented
Proof of Concept.
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Chapter 2

Trusted Computing Base

In December 1985 the U.S. Department of Defense (DoD) released an important
book that marked a turning point for Trusted Computing: the Trusted Computer
System Evaluation Criteria (TCSEC)[2], which defined the concept of Trusted Com-
puting Base (TCB):

“The totality of protection mechanisms within a computer system – including
hardware, firmware, and software – the combination of which is responsible for
enforcing a security policy.”

The TCB concept is important in trusted computing, as it helps to identify
the components that are responsible for enforcing security and allows for technical
innovations to be focused on these components. The TCB also serves as a reference
point for subsequent discussions of trusted computing and security policy, with their
impact and relevance being evaluated in relation to the TCB. This concept became
particularly influential in the field of trusted computing over the past two decades.
When creating and executing a Trusted Computing Base, several important factors
must be taken into account. One crucial element to consider is reducing the size of
the TCB as much as feasible since a smaller TCB is usually considered more secure.
Additionally, it is necessary to make sure the TCB is designed to resist attacks and
can recover from potential failures or attacks without compromising the security of
the system. For a system’s TCB to meet the trust requirements set by the TCG,
it must fulfill the following TCB properties [3]:

1. The functions executed by the TCB must not compromise its integrity and
must be computationally limited to prevent excessive resource utilization.

2. For a function implementation to be effective in a TCB, it must be able to run
uninterrupted and not be impacted by any restrictions (such as unavailable
resources) or influenced in any manner.

3. TCB instances must be unique and distinguishable from one another. Cryp-
tographic identity confirms that each TCB node has a unique identity, which
it can prove to other devices.

4. The TCB should have a flexible architecture that allows for the integration
of new layers (or removal of existing ones) to respond to evolving hardware
and computational demands.
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Trusted Computing Base

However, while the TCSEC criteria primarily focused on defining the security
domain of operating systems, it is important to recognize that the hardware of a
computing platform also plays a significant role in the TCB. Hardware components
contribute to the system’s overall security, but from the operating system’s (OS)
point of view, the hardware is considered trusted because the OS has no way to
verify that the underlying hardware is behaving correctly. However, this does not
mean that hardware is invulnerable to compromise. The risk of hardware vulnera-
bilities prompted the formation of the Trusted Computing Group (TCG)[1], which
focused on the concept of a hardware Root-of-Trust (RoT) to identify the security-
relevant parts of a hardware platform. A hardware RoT should be able to check its
integrity and then establish trust by confirming the authenticity of the operating
environment, including the boot software, operating system, and other software
and hardware components within the system.

A specific hardware component that implements this concept is the Trusted
Platform Module (TPM), which is defined by the specifications of the TCG. These
specifications are based on the concepts of Trust and Trusted Platforms (TP). A
TP is a system that is designed to have both hardware and software capabilities
that allow it to collect and provide integrity measurements to third parties. These
measurements can be used to remotely determine if the TP is behaving as expected,
a process known as Remote Attestation (RA). A Linux-based TP has the option
to enable a kernel module called Integrity Measurement Architecture (IMA), which
allows for dynamic integrity measurements of all executables, kernel modules, and
configuration files loaded at runtime.

2.1 Trust and Trusted Platforms

The concept of “Trust” has been interpreted in various ways in the past years, but
in the context of the TCG specifications, trust is conveyed to represent a system
that behaves as expected. Trust in a platform is based on the concept of Roots of
Trust (RoTs), which are system components that are secure by design, cannot be
compromised, and any misbehavior cannot be detected during runtime, as defined
by TCG[4].

2.1.1 Roots of Trust

The TCG specifies a minimum set of RoTs required to ensure the trustworthiness of
a platform. These RoTs are defined based on the characteristics that are essential
for platform security. The TCG’s specifications list the following minimum RoTs
required in a TP:

• Root of Trust for Storage (RTS)

• Root of Trust for Measurement (RTM)

• Root of Trust for Reporting (RTR)
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2.2 – The Trusted Platform Module

The RTS is responsible for securely storing critical system information, such as
encryption keys and platform configuration data, in memory locations known as
Shielded Locations. These locations can only be accessed externally through ded-
icated commands known as Protected Capabilities. Shielded Locations can store
sensitive information, like the private part of asymmetric keys, which are protected
from unauthorized access. Other memory locations, known as Platform Configu-
ration Registers (PCRs), are used to store integrity measurements of the platform
components. These integrity measurements are calculated by applying a crypto-
graphic hash function on the software and configurations of the platform, and their
values can only be modified through reset or Extend operations.

The RTM establishes a secure foundation for measuring the system’s configu-
ration, including the firmware and software that is running on it. The RTM relies
on a fixed piece of code called the Core Root of Trust for Measurement (CRTM).
The CRTM is the foundation for measurement and sets the initial measurements
of the platform. These initial measurements are then sent to the RTS which stores
them in a Shielded Location, the PCRs, by leveraging the Extend operation. To
ensure that measurements are accurate, the code being executed must have control
over the environment in which it is running so that the values recorded by the RTS
reflect the initial trust state of the platform. When a power-on reset is performed,
the platform is returned to a known initial state, with the main CPU executing
code from a specific location. This code has full control over the platform, allow-
ing it to take measurements of the firmware. These initial measurements can be
used to establish a chain of trust. This chain of trust is created only once when
the platform is reset and cannot be altered, so it is referred to as a static Root of
Trust for Measurement (S-RTM). An alternate approach to initializing the plat-
form, available on certain processor architectures, is to allow the CPU to function
as the CRTM and enforce protections on specific areas of memory that it measures.
This process enables the creation of a new chain of trust without requiring a reboot
of the platform. Since the Root of Trust for Measurement can be established dy-
namically, this method is referred to as the dynamic Root of Trust for Measurement
(D-RTM). Both S-RTM and D-RTM can bring a system from an unknown state to
a known state. D-RTM has the benefit of not needing to reboot the system.

The RTR is responsible for constructing reports about the contents of the RTS.
An RTR report typically consists of a digital signature on a digest of selected values
that reside in the RTS. It is important to remember that not all Shielded Locations
are directly accessible, and as a result, the RTR report will not contain sensitive
information such as the private part of keys.

2.2 The Trusted Platform Module

A Trusted Platform Module (TPM) is a specialized microcontroller integrated into a
computing device that provides hardware-based security features. The TPM v1.1b
was released back in 2003 by the TCG. The TPM specification has undergone
two major revisions. The first generation, TPM 1.1b to 1.2, gradually added new
capabilities as they were identified by the specification committee, resulting in a
complex final specification. In response to cryptographic weaknesses in SHA-1,
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Trusted Computing Base

TPM 2.0 was completely redesigned, resulting in a more streamlined and cohesive
design [5]. In this work, the TCG specifications being referred to are those of the
“Family 2.0”, thus the TPM version 2.0 will be used as the standard of reference.

A TPM must provide RTS and RTR functionality, which is achieved through
the inclusion of various functional components such as:

• PCRs that enable recording the platform state

• A mechanism for reporting platform state to external parties

• Secure non-volatile and volatile storage

• Hardware random number generator

• Symmetric and asymmetric key generation and management

• Encryption and decryption capabilities

• Hashing capabilities

• Digital signature creation and verification

The TPM is designed to allow for the creation of new security services that
build upon its capabilities, thereby increasing the security level of existing software-
based solutions. A prime example of this is Remote Attestation (RA): TPM-based
RA allows a remote entity to cryptographically verify the trustworthiness of the
platform’s state; whereas software-based RA does not allow a remote entity to
accurately determine the state of the platform because compromised software can
easily lie and provide false information to the remote party.

Before going into deeper details about the process of RA, let us first give a
brief presentation about the TPM’s internal architecture, as well as all the key
functionalities that are needed to better understand how a RA Protocol can be
designed and implemented.

2.2.1 Architecture

In figure 2.1 the major elements of the TPM architecture are shown. To ensure
that TPM hardware components are built correctly, manufacturers must adhere
to the specifications set forth by the TCG. Let’s take a closer look at the various
components of a TPM’s architecture and their respective roles:

• I/O buffer: it serves as the intermediary between a TPM and the host system,
allowing for communication to take place. The host system writes command
data to the I/O buffer, and then retrieves response data from the buffer.

• RNG: it is a protected capability without any access control, and it is used
by the TPM as the source of randomness. The RNG is used for nonces, key
generation, and signatures.

12



2.2 – The Trusted Platform Module

I/O

Asymmetric Engine

Symmetric Engine

Hash Engine

Authorization

Non Volatile Memory 

Platform seed
Endorsement
seed
Storage seed
Counters
Etc.

Key Generation

RNG

Power Detection

Execution Engine

Volatile Memory 

PCR banks
Keys in use
Sessions
Etc.

Figure 2.1. TPM v2.0 internal architecture [4]

• Key generation: it allows the creation of two types of keys. The first, a
standard key, is generated using the RNG as the seed for the calculation. The
output of the calculation is a secret key value stored in a Shielded Location.
The second type of key, called a Primary Key, is created using a seed value,
not the RNG directly. The seed is typically generated by the RNG and is
permanently stored on the TPM.

• Hash engine: it provides the set of SHA family hash functions that can be
utilized independently by external programs or as a result of various TPM
actions. The TPM employs hashing for integrity verification, authentication,
and one-way functions, such as KDFs, as necessary.

• Symmetric and asymmetric engines: they both provide the corresponding
functionalities needed for encryption/decryption and for signing and signature
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Trusted Computing Base

verification.

• Authorization: before a command can be carried out, the Authorization Sub-
system verifies that the necessary permissions have been granted to access
each Shielded Location.

• Power detection: it manages the power states of the TPM, taking also into
consideration the power state of the hosting platform.

• Volatile memory (RAM): it is responsible to store TPM transient data. Data
in TPM RAM may be lost when the TPM power is removed. It stores the
PCR banks, the active sessions, and loadable entities, like keys in use.

• Non-volatile memory: it provides a way to store persistent objects, which
remain intact even when power is removed, through the use of Shielded Lo-
cations that can only be accessed using Protected Capabilities. Some of this
memory is reserved for the storage of primary seeds, which are provided by
TPM vendors, and potentially an Endorsement Key (EK). Some space is also
left to let the TPM user define and store objects, like keys, persistently.

2.2.2 Hierarchies

The TCG uses the concept of hierarchy to represent a collection of entities that
are related and managed as a group[5]. A hierarchy can be persistent or volatile,
allowing the TPM users to choose whether an entity has to be retained after a
reboot or not. The TPM 2.0 specifications enhance this concept by including three
persistent hierarchies and one volatile hierarchy:

• Platform hierarchy

• Storage hierarchy

• Endorsement hierarchy

• NULL hierarchy (volatile)

Each persistent hierarchy has been designed to perform specific tasks in different
use case contexts, but they also share some common properties:

• An authorization value and a policy. These authorization controls are inde-
pendently managed between the three hierarchies, allowing to have separate
administrators for each one of them. This allows for a more granular level
of security management, where different levels of access and control can be
granted to different users or roles within the organization.

• Each one has an enable/disable flag. Disabling one hierarchy does not affect
the other hierarchies.

14



2.2 – The Trusted Platform Module

• Each hierarchy has a different cryptographic root, the seed. A seed is a large,
randomly generated number that is created by the TPM or injected by the
TPM manufacturers and is never shared or exposed outside the TPM’s secure
boundaries. The seed is persistent within its hierarchy and can be used to
derive data objects and keys.

• Each hierarchy can store a tree of keys, where the parent key is a key created
starting from the seed of the corresponding hierarchy, called the primary key.
Starting from the primary key of a hierarchy, descendant keys can be created.

Despite the TPM having a restricted amount of NV memory, it is capable of
creating multiple keys, thanks to the capability of recreating the same keys by
using a cryptographic algorithm on a given hierarchy seed, as it is deterministic.
As a result, the keys do not have to be saved in the file system, as they can always
be regenerated. Thus, users can easily create hierarchies of keys for their specific
needs.

Platform Hierarchy

The platform hierarchy is intended to be under the control of the platform man-
ufacturers and provides a secure location for them to keep objects related to the
platform, including cryptographic material that safeguards the update process of
the CRTM (the early boot code, the BIOS). The seed located in this hierarchy,
known as the Platform Primary Seed (PPS), is generated by the TPM every time
it is turned on and no PPS is present or it can be injected only by the TPM
manufacturer.

Storage Hierarchy

The storage hierarchy facilitates the secure storage of objects that are relevant to
TPM users, including the encryption of any data using the root key of the storage
hierarchy (SRK) and the safekeeping of encryption keys in the non-volatile memory
of the TPM. As for the platform hierarchy, the Storage Primary Seed (SPS) is
created whenever the TPM is powered on and no SPS is present.

Endorsement Hierarchy

The endorsement hierarchy is the hierarchy that is privacy sensitive and is the pre-
ferred option when the user is concerned about privacy. The seed belonging to this
hierarchy takes the name of the Endorsement Primary Seed (EPS). The EPS forms
the foundation of the RTR’s identity and is used to create an asymmetric key, the
Endorsement Keys (EKs)[4]. To ensure that the primary keys in this hierarchy are
only associated with an authentic TPM that is connected to an authentic platform,
manufacturers inject the EPS before the device is shipped and then, optionally,
generate one or more EKs and store them in the TPM. A Certification Authority
(CA) can then issue a digital certificate for the generated public part of the EK;
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Trusted Computing Base

the EK certificate. Generating and certifying the EK enables a correlation to be
made back to a TPM, so that remote or local parties are ensured that received data
are coming from a single and authentic TPM.

NULL Hierarchy

Unlike persistent hierarchies, the NULL hierarchy is the only volatile hierarchy
available on a TPM. The NULL seed is a random value that is set on every TPM
reset (analogous to a platform’s reboot). It can be used to generate primary objects
and also children of primary keys. However, unlike persistent hierarchies, objects
in this hierarchy cannot be made persistent and their existence is limited to the
next TPM reset, as the seed value changes on this event.

2.2.3 Endorsement and Attestation Keys

Due to the properties of the endorsement hierarchy, it is the preferred place where
to store keys or objects that have to be used for privacy-sensitive processes; such
as Remote Attestation. As mentioned in the previous section, the EK is the pri-
mary key of the endorsement hierarchy and is calculated starting from the EPS.
The manufacturers can inject an EK together with its certificate signed by the
manufacturer before the device shipment. The end user can then use the provided
key and certificate to verify that the EK public key is associated with a genuine
hardware TPM produced by the right manufacturer.

The TCG defines an Endorsement Key (EK) as an asymmetric key pair con-
sisting of a public and private key stored in a Shielded Location on the TPM[6],
that can be generated using the supported algorithms provided by the TPM. The
public part of the EK can be read either from the TPM or, if existent, from the
corresponding certificate; while the private part of the EK MUST be never exposed
outside the TPM’s boundaries. In TPM 1.2 specifications the EK could only be
created as a decryption key, while the TPM 2.0 gives the possibility to generate
the key either as a decryption key or as a signing key, providing more flexibility
to the end users or the manufacturers. However, the TCG recommends generating
the EK as a decryption key and restricting it to certain operations. That is be-
cause the EK and the EK certificate are considered privacy-sensitive when used in
a cryptographic protocol, for example in a Remote Attestation Protocol. In such
cases, a signing key has to be generated as well to be able to sign TPM internal
data when needed.

The TCG generally defines an Attestation Key (AK) as a non-duplicable asym-
metric restricted signing key[7], which means that it can be used to sign only
TPM-generated values to prevent the signing of external data but with the same
format as TPM-generated values. An AK that is secured by a TPM can be trusted
to provide accurate reports on Shielded Location content, such as PCRs content,
and not sign any externally provided data that appears to be valid but is not TPM-
produced. However, an identity certification process is needed to link an AK with
the platform it represents, without which it would hold little value for a remote
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2.2 – The Trusted Platform Module

challenger that wants to verify any report signed with that AK. This process takes
the name of Credential activation.

Credential Activation

A TPM user can create an AK and request a certificate for it from a third-party
attestation Certificate Authority (CA). The CA may require proof that the key is
resident on a TPM, which can be provided using a previously generated key, like
an EK, or a Platform Certificate from the same TPM.

The Credential Activation process is a challenge-response protocol that involves
two actors: the Credential Provider (CP) and the TPM. It can be described with
the following steps[5]:

1. The CP receives the AK’s public area and the EK certificate. The correspond-
ing EK key is an encryption/decryption key and its certificate is typically
issued by the TPM manufacturer.

2. The CP validates the EK certificate by verifying its chain up to the issuer’s
root. The CP also makes sure that the EK is fixed to a compliant TPM.

3. The CP examines the AK’s public area and decides if it is a certifiable key.
It also makes sure that the AK is a restricted key that is fixed to the TPM.

4. The CP generates a credential for the AK.

5. The CP generates a secret that is used to protect the credential. Typically,
this is a symmetric encryption key.

6. The CP generates a seed to a key derivation function (KDF).

7. This seed is encrypted with the EK public key. Thus, it can later only be
decrypted by the TPM.

8. The seed is used in a TCG-specified KDF to generate a symmetric encryption
key and an HMAC key. The symmetric key is used to encrypt the secret, and
the HMAC key provides integrity. It is important to know that the KDF
also uses the AK’s name, which is the digest of the AK’s public key and its
attributes and it also identifies the key.

9. The encrypted secret and its integrity value are sent to the TPM, as well as
the encrypted seed.

On the TPM’s side the following steps are needed to recover the credential
generated from the CP:

1. The seed is recovered using the EK’s private key, and the TPM retains the
seed.

2. By using the public part of the AK and its attributes, the TPM computes
the AK’s name.
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3. By using the same TCG KDF and the AK’s name and seed as input, the
TPM can reproduce the same symmetric encryption key and the HMAC key.

4. Now the TPM can recover the secret and returns it to the user.

The protocol ensures that the recovery of the credential is dependent on the
possession of the private key linked to the EK certificate, and the TPM having a
key (the AK) that is identical to the one presented to the credential provider.

The user can now request a certificate for AK by handing the obtained secret
to the CP:

• The CP, after receiving the secret from the requester, checks it is equal to the
previously generated secret. If this verification fails, the CP will terminate
the certification issuing process.

• The CP issued a certificate for the AK and sends it back to the requester.

In conclusion, a descendant certificate (the AK certificate) has been issued,
with the EK certificate being its parent. This allows for remote parties to verify
the authenticity and the provenance of any data signed by the AK certificate, as it
is linked to a trustworthy parent certificate resident in a genuine TPM.

2.2.4 Platform Configuration Register

The TCG defines a Platofrm Configuration Register (PCR) as a mean to provide
a method to cryptographically record software state: both the software running
on a platform and configuration data used by that software[5]. When a computer
turns on or when a TPM Reset command is thrown, the TPM sets all PCRs to
their initial value, either all zeroes or all ones, as defined in the TPM platform
specification. It is not possible to change a PCR value directly; instead, the TPM
uses the Extend operation to modify a PCR value. The Extend operation is a
cryptographic process that guarantees that the PCR value is unique based on the
specific sequence and combination of digest values that were extended, and it is
defined as follows[4]:

PCRnew := Halg(PCRold||digest)

The || symbol is intended to specify a concatenation between the value of the
PCR (before the Extend operation) and the data to be extended. Finally, the new
PCR value is obtained by applying one of the hash algorithms offered by the TPM.
Since the TPM 2.0 can offer a variety of hash algorithms, PCRs are organized in
banks that differ only in the algorithm they are referring to. The same PCR can
then be allocated to multiple banks, allowing any combination based on the various
hash algorithms. The TPM is typically shipped with two banks available, the SHA-
1 and SHA-256 banks. A user can activate and allocate a new bank by using the
TPM2 PCR Allocate command. The typical number of PCR registers that can be
allocated in each bank is a minimum of 24.
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PCR Index PCR Usage
0 CRTM, Host Platform Code (BIOS)
1 BIOS Configuration
2 UEFI driver code
3 UEFI driver configuration
4 MBR (Master Boot Record)
5 MBR Configuration
6 Host Platform Manufacturer Specific
7 Secure Boot Policy

8-15 Static Operating System
16 Debug
23 Application Support

Table 2.1. PCR Allocation [5]

The expected results of the PCR can be determined if the sequence of steps used
in the PCR called is known. However, if the sequence of steps is not predictable, it
is not possible to know the expected results beforehand. To address this, the system
keeps a record of all changes made, known as the Measurement Log (ML). Each
entry in the ML represents a change in the system state, known as a Measurement
Event (ME). The PCR results can be used to verify the integrity of the ML and
ensure that each change made was acceptable.

2.2.5 Trusted Boot

The TPM uses multiple PCRs for better evaluation of the boot to run-time process.
This is done by dedicating each PCR to store measurements of different modules,
rather than using a single PCR for all the digests of the boot sequence. Even though
it is technically possible to use a single PCR for this purpose, using multiple PCRs
simplifies the evaluation process. Table 2.1 shows an example of how PCRs can be
allocated.

Usually, PCRs in the range of 0 up to 9 are dedicated to the measurement of
events that happen during the system booting sequence; while PCRs from 10 up-
wards are dedicated to the measurement of events related after the kernel booted.
As mentioned before, the verification of PCR values can be made to ensure the
state of the platform’s software state. The Trusted Boot process involves taking
measurements of all software components and configuration files involved in start-
ing up the system and storing their unique digest values in a specific PCR. This
mechanism enables an independent entity to confirm the secure boot of a system
by validating the PCRs associated with the boot process.

The Trusted Boot process must ensure the following three key points[8]:

• The chain of trust must be established in a sequential manner. Before granting
control rights, the executable entity must be measured by the TCB and can
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only gain control rights after its integrity has been verified, completing the
chain of trust establishment process.

• The TPM must be responsible for completing all metrics and calls involved
in establishing the chain of trust.

• During the chain of trust establishment, all important secret data, including
keys, pre-measurement data, and verification data, must be stored and sealed
within the TPM for integrity and confidentiality.

A TPM-based Trusted Boot process in a Linux environment is shown in figure 2.2.
The mechanism can be roughly described in the following steps[8]:

Figure 2.2. Trusted Boot process (Linux) [8]

1. During the Trusted BIOS process, the boot loader stored in the boot sector
is loaded and sent to the TPM for measurement and verification. After the
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TPM confirms its integrity, the boot program is loaded into memory, then
the BIOS transfers control rights to the CPU to run the boot program and
load the operating system.

2. The TPM checks the integrity of the operating system loader program, such
as Grub in Linux. If the validation is successful, the Grub Stage 1 code in
the master boot sector is loaded into memory and takes control of the trusted
boot process to proceed with loading the operating system kernel.

3. The trusted boot process continues with Grub Stage 1, which verifies the
integrity of the Grub Stage 1.5 code using TPM. If the validation is successful,
the code for the Stage 1.5 phase is loaded and executed. Upon completion of
this stage, the file system is mounted.

4. The Grub Stage 2 code is first verified by TPM and then loaded by the
trusted Grub Stage 1.5. Once it gains control, it verifies the integrity of the
configuration file “/boot/Grub/Grub.conf”, which holds the details of disk
partitions, the kernel image, and the virtual RAM disk file initrd.

5. The Grub Stage 2 code opens the configuration file, reads the operating sys-
tem kernel image then uses the TPM to verify its integrity. Upon successful
validation, the operating system kernel image is loaded and given control.

6. After the operating system kernel image is successfully loaded, TPM will eval-
uate and confirm the integrity of the Init process. If the process is validated,
the kernel key data structures will be established and the kernel Init process
will take control.

7. The Init process starts by identifying the list of kernel modules and daemons
required to be loaded based on the system configuration. Then, it uses TPM
to verify the integrity of each kernel module and daemon before they are
loaded. Only trusted kernel modules and daemons are executed sequentially
to ensure a secure computing environment. Finally, the Init process begins
to accept user input, and the trusted computer is ready for use.

2.2.6 TPM 2.0 Implementations

The TCG offers different types of TPM implementations to accommodate various
use cases. Each implementation has its own strengths and limitations, making it
suitable for specific applications. Currently, the most widely used TPM implemen-
tations are[9]:

1. Discrete TPM offers the most robust level of security. To achieve this,
a discrete chip is designed, manufactured, and evaluated to withstand tam-
pering, including probing and freezing with advanced attacks. Thus it is
recommended for critical systems.

2. Integrated TPM is the second level of security. This level also includes a
hardware TPM, but it is integrated into a chip that offers features other than
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security. The hardware implementation makes it resistant to software errors,
However, this level is not intended to be tamper-proof.

3. Firmware TPM is a software-based implementation that utilizes a pro-
tected execution environment, known as a Trusted Execution Environment
(TEE), to safeguard sensitive information such as private keys. This type of
TPM does not require a separate hardware chip, as it runs on the main CPU,
but it offers a more secure environment for TPM operations as it is separated
from the rest of the programs running on the CPU. The disadvantage of using
a firmware TPM is that it relies on multiple elements to maintain security,
such as the TEE operating system and the application code running within
it. This makes it more vulnerable to security issues compared to a discrete
or integrated TPM, which has built-in tamper resistance.

4. Software TPM can simulate the functionality of a TPM using software,
but it is susceptible to various vulnerabilities such as tampering and operating
system bugs. However, it is useful for testing and prototyping TPM-based
systems.

2.3 TPM 2.0 Software Stack

The TSS is a software stack created to shield TPM application developers from
the intricate details of interacting with TPM. The TSS comprises several layers, as
shown in figure 2.3, making it possible to customize scalable TSS implementations
for high-end and resource-constrained low-end systems[10].

The lowest layer is the TPM Device Driver which is a software component that
is specific to the operating system and is responsible for managing communication
with the TPM, as well as reading and writing data to the TPM.

The Resource Manager manages the movement of objects, sessions, and se-
quences in and out of the limited TPM memory as required. This is done by
executing context swapping.

The TPM Access Broker (TAB) manages access to the TPM by multiple pro-
cesses, ensuring that each process can complete its TPM command without inter-
ruption from other processes.

The next layer is the TPM Command Transmission Interface (TCTI) is respon-
sible for managing the communication between the TPM and the higher layers of
the TSS stack. It provides different interfaces depending on the type of TPM being
used (see Sect. 2.2.6 for additional details). Additionally, it supports both legacy
TIS and command/response buffer (CBR) interfaces for communicating with the
TPM.

The System API (SAPI) provides comprehensive access to the features of a TPM
2.0 implementation and is intended for use in various contexts such as firmware,
BIOS, applications, and operating systems. It serves as a low-level interface that
is best suited for advanced applications.
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Figure 2.3. TPM 2.0 Software Stack [10]

The Enhanced System API (ESAPI) aims to simplify the process of accessing the
TPM for applications by providing an interface that abstracts away the complexities
of low-level TPM calls. However, a deep understanding of the interface to a TPM
is required because the use of this layer still requires cryptographic operations on
the data that are being sent and received from the TPM.

The Marshalling/Unmarshalling API is responsible for converting TPM com-
mands and responses into a format that can be transmitted over a communication
channel, and vice versa. It is used by both the SAPI and ESAPI.

The Feature API (FAPI) offers a simplified interface for application developers,
allowing them to perform tasks without the need for knowledge of low-level details.
This higher-level software abstraction is intended to make it easier for developers
to work with the TPM. The downside of this high abstraction layer is that it only
provides 80% of the actual TPM’s functionalities[11].
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Chapter 3

Remote Attestation

The Remote Attestation process involves a remote entity, known as the Verifier or
Challenger, assessing the trustworthiness of a computational node, referred to as
the Attester or Prover, through a challenge/response protocol. RA and the TCB
are closely related concepts in the field of trusted computing. The TCB is part of a
system that is responsible for providing security guarantees, such as confidentiality,
integrity, and authenticity. RA allows a remote entity to verify the authenticity
and integrity of the TCB. For RA to be effective, the TCB must be designed and
implemented in a way that allows it to be accurately measured and attested to.
The TCB provides the measurements and evidence that are used in the RA process,
such as cryptographic hashes of firmware and software components, trusted boot
measurements, and other system states.

In recent years, RA has been increasingly used in a variety of applications and
also in different scenarios. Based on the implementation, RA can be classified into
three different approaches[12]:

• Software-based RA does not rely on specialized hardware, making it inex-
pensive and easy to implement. However, the absence of specialized hardware
also limits the level of security that can be achieved. Software-based RA uses
checksum computation time as a means of verifying the integrity of a device.
However, this method is vulnerable to attacks from adversaries with more
powerful computational resources. To counter this, software-based RA pro-
tocols assume that adversaries cannot collaborate with other devices, that
the checksum and attestation code cannot be optimized further, and that the
attestation cannot be parallelized. While these assumptions provide some de-
fense against attacks, a local adversary with faster network latency or stronger
computational power could potentially bypass the attestation.

• Hardware-based RA offers the highest level of security and can be ap-
plied in critical situations. This type of RA typically uses TPMs to protect
cryptographic keys and record the software state of a computing system in
special registers called PCRs (for further details see Sect. 2.2.4). PCR values
can be used as evidence of the system’s state, so if there is any discrepancy
between the measurement log and the PCRs, it means the integrity has been
compromised.
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• Hybrid RA combines hardware and software to create an attestation proto-
col that is more secure than software-only attestation but less expensive than
hardware-only attestation. The security architecture may include a ROM
and MPU (MicroProcessing Unit), where the ROM is used to store the secret
keys and the attestation code, and the MPU ensures that only authorized
processes can access the memory of the ROM, providing immutability and
exclusive access properties for the RA. Hybrid attestation approaches use the
properties of security architectures to protect against local and remote adver-
saries who only operate on the software. The key protection and immutability
of the attestation code prevent these adversaries from breaking the attesta-
tion. Additionally, the attestation protocols rely on the security of HMAC
algorithms and other cryptographic functions, so if these are compromised,
the attestation will be vulnerable.

In this work, the focus is on hardware-based RA approaches that leverage the
use of a TPM that acts as hardware RoT. As seen in Sect. 2.2.5, the trusted
boot process allows for the measurement and storage of the integrity of the boot
sequence in dedicated PCRs, specifically PCR0-7. This enables a remote entity to
verify that a platform has booted correctly by analyzing an integrity report that
can be generated on the target platform. However, the system’s integrity could
be altered even after a successful boot. This is because the software that runs
post-boot, such as kernel modules, device drivers, or privileged applications that
are dynamically loaded, can potentially execute at any time and compromise the
system’s protection requirements.

3.1 Integrity Measurement Architecture

The Integrity Measurement Architecture (IMA)[13] is a Linux kernel module that
allows for the extension of the chain of trust from the BIOS to the application
layer: it extends the principles of Trusted Boot to the Linux kernel, making IMA
an important component to be included in the TCB of a Trusted Platform. IMA has
been a part of the Linux Integrity Subsystem since version 2.6.30 in 2009, and it is
currently a widely accepted TCG-compliant solution for measuring runtime loaded
content. Before kernel modules, configuration files, and executables are loaded onto
the Linux system, IMA measures the integrity value of each loaded component and
extends these measurements in the TPM. This allows external entities to verify not
only the boot of the system but also the applications and kernel modules loaded in
the platform.

When IMA is enabled in the Linux kernel, it extends the measurements in
PCR10; but it can be changed by modifying the kernel’s configuration. As opposed
to the trusted boot process, the order in which IMA aggregates the measurements
into the PCR is not predictable. That is because after the kernel takes control,
a variety of software components are loaded and managed (e.g. kernel modules,
shared libraries, executables) in a non-predictable order. For this reason, a way to
track the order in which the measurements were made is needed. IMA implements
this by appending to a Measurement Log (ML) file every Measurement Event (ME)
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that occurs in the system. The IMA PCR protects the integrity of this ML. In this
way, IMA enables a remote entity to determine if the ML is consistent with the IMA
PCR value received, being able to assess the trustworthiness of the dynamically
loaded components in the system.

3.1.1 IMA Design

The kernel integrity subsystem aims to identify if files have been changed without
authorization, both from remote and local sources, compare a file’s measurements
to a stored “good” value as an extended attribute, and maintain the integrity of
local files[13]. To achieve such goals, IMA provides several integrity functions:

• Collect: measure a file prior to accessing it.

• Store: add the measurements to the kernel ML and extend the IMA PCR if
the platform is TPM-equipped.

• Attest: sign the IMA PCR to allow a remote entity to validate the ML.

• Appraise: ensure the measurement of a file matches the stored “good” value
in its extended attribute before allowing access.

• Protect: safeguard the extended attributes (such as the appraisal hash) of a
file from offline attacks.

• Audit: review the file hash values.

These functions have been incorporated into three IMA major components:

• IMA Measurement is a Linux kernel subsystem that uses the TPM to
provide measurements of the system’s runtime state. IMA Measurement is
responsible, on the attesting system, for determining what files to measure,
performing measurements on files, and, securely maintaining them. Hence, it
enables a challenging system to perform the RA of the entire system’s runtime
state of the attesting system. Verifiers can retrieve the measurement list and
validate its freshness and integrity. By linking the aggregate integrity value
to the TPM, it ensures that any unauthorized changes to the measurement
list would be detected, making IMA measurement a reliable way to confirm
the integrity of the system. This means that IMA measurement can be used
to attest to the system’s runtime integrity by providing a secure and tamper-
proof record of all the files executed and loaded into memory

• IMA Appraisal is an extension that builds upon the IMA measurement
component ensuring the local integrity of files by comparing their measure-
ments against a pre-determined good value stored in the “security.ima” ex-
tended attribute. This validation process uses hashing and digital signature,
to guarantee both the integrity and authenticity of the files. This way, IMA
Appraisal can provide additional security and protection to the system during
runtime.
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• IMA Audit is responsible for maintaining a record of all file measurements
and names in the system audit logs, which can later be used for advanced
security analysis and forensic investigations.

The various aspects of the kernel’s integrity subsystem, such as IMA Mea-
surement, IMA Appraisal, and IMA Audit, complement one another to provide a
comprehensive security solution. However, these functions can also be configured
to operate independently, giving users the flexibility to apply only the security
measures that are necessary for their specific use case.

3.1.2 IMA Measurement

The component responsible for constructing the ML is the IMA Measurement.
The ML file is located in the securityfs and is available in two different formats:
one in ASCII format called ascii runtime measurements, and the other in a
binary format called binary runtime measurements. The ML describes the
order in which the aggregate value stored in the IMA PCR is calculated in terms of
Measurement Events. The IMA Measurement process begins upon receipt of a ME
(e.g. loading a program, mapping a file in RAM, or opening a file) by an IMA Hook
in the system. The process calculates the hash value of the file’s content using a
secure hash function. The file digest and related metadata are then stored in a list
of MEs in the kernel, and the digest is added to a TPM PCR (often PCR 10) via
the extend operation. The first entry of the ML is always the boot aggregate (as
shown in figure 3.1) which can be either all zeros if a TPM is not present on the
platform, or its value is the digest computed over the trusted boot PCRs (PCR0
to PCR7). After boot aggregate, IMA Measurement assesses all accessed files that
conform to a measuring rule in the IMA policy to determine if re-measurement is
required. A new measurement is performed only if:

• The file has not been measured yet.

• The file content has changed since the last measurement.

• The kernel cannot detect changes in that file.

Additionally, the Extend operation is executed before the measured component
(executable or data file) takes control of the platform, preventing a potentially
corrupted component from extending a measurement that does not reflect its actual
state. While a corrupted component may cause additional extensions to the IMA
PCR once it has gained control of the platform, the secure hash algorithms ensure
that the aggregate in the IMA PCR cannot be altered to represent a trusted system.
Therefore, corrupt systems may alter the measurement list, but this is discovered by
recomputing the list’s aggregate and comparing it with the securely stored aggregate
in the TPM [14].

IMA lets the user customize the measurement behavior by adding some kernel
command line parameters that can be specified in terms of the policy, that IMA
adopts during the measurement and re-measurement phase; also in terms of the
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template that constitutes the format of every ME stored in the ML; and finally
in terms of the hash algorithm used to describe the integrity value measured by
IMA.

IMA Policy

The IMA policy can be specified in the kernel command line parameters, by spec-
ifying “ima policy=built-in policy”. The available built-in policies are the follow-
ing [15]:

• tcb: this policy measures kernel modules, software in execution, files mapped
into memory for execution via mmap, and files accessed for reading by the
root user.

• appraise tcb: this policy goes beyond mere measurement and conducts in-
depth evaluations of the same components as the tcb policy. It denies access
to any files that fail to match their previously established and verified hash
values.

• secure-boot: this policy specifically evaluates the kernel, its modules, and
the IMA policies.

Those are the policies that IMA offers and the user can choose which one fits
better for its environment. However, the IMA measurement policy can be modified
by the administrator by accessing the securityfs and modifying the “/ima/policy”
file.

IMA Hash

The hashing algorithm that IMA uses during the measurements can be specified
via the “ima hash=hash” kernel command line parameter. The available hash
algorithms can be looked up in the kernel’s source file “/crypto/hash info.c”.

IMA Template

As for the policy, the IMA template can be specified in the kernel command line
parameters, by adding “ima template=template”. IMA offers three possible tem-
plates:

• ima template allows the recording of events only with SHA-1 or MD5 digests,
with the name of the event limited in size (up to 255 bytes).

• ima-ng template allows the recording of events with an arbitrary hash al-
gorithm implemented by IMA, with the name of the event unlimited in size.
The hash algorithm can then be specified by the “ima hash” command line
parameter.
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• ima-sig template has the same properties as the “ima-ng” template, but
it adds a signature based on either the file’s digest or on the extended file
attribute “security.ima”.

Figure 3.1 shows an example of how an ASCII-based ML is formed when the
kernel parameters are: ima hash=sha256 and ima template=ima-ng. The
fields, listed from left to right, represent:

• the PCR’s index, in this example PCR 10, where the entry was extended.

• the template-hash which is the SHA-1 digest that has been extended into the
IMA PCR. If the PCR bank is a non-SHA-1 bank, requires zero padding of
the digest to meet hash algorithm requirements. For example, if the IMA
PCR is in the SHA-256 bank, the 20-byte digest is padded to 32 bytes.

• the template-name used for the given entry.

• the filedata-hash which is the digest calculated over the file’s content. In this
case, the hash algorithm is SHA-256.

• the filename-hint that is the pathname of the file.

Figure 3.1. Example of IMA ML with template ima-ng and sha256 digests

.

3.2 TPM Quote Operation

The IMA and Trusted Boot mechanisms enable remote verification of a platform’s
state through Remote Attestation (RA). A remote entity (Verifier) can challenge
a given platform (or attesting system) to send a report containing the requested
PCR values and eventually the IMA ML if PCR10 was specified as well. The PCRs
together with the IMA ML only provide integrity, thus the Verifier does not have
the insurance that the PCRs values are coming from a trusted and genuine TPM.
For this reason, the TPM provides the Quote operation.
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The Quote operation defines the authenticity of the report generated in response
to a RA request. The operation consists in hashing the requested PCRs and then
signing the digest with a non-duplicable restricted signing key: an Attestation Key
(AK). This high-level description of the quote operation hides important security
pieces of information that a quote’s structure (the one hashed and signed) internally
contains [5]:

• Magic number TPM GENERATED: protects against unauthorized use of a
restricted signing key to sign arbitrary data and falsely claim it as a TPM
quote.

• Qualified name of the signing key: A key may seem secure but be vulnerable
due to a weaker ancestral algorithm. The qualified name represents all the
descendants of the key.

• Extra data provided by the caller : This information usually consists of an
anti-replay nonce, serving as evidence of the quote’s freshness.

• TPM firmware version: Included to enable the verifier to determine trust in
a specific TPM code version.

• TPM clock state: represents the number of times a TPM has been restart-
ed/resumed. When the signing key is not in the endorsement hierarchy, this
value is obfuscated because it could aid in correlation.

• The attestation structure type (in this case, a quote).

• The PCRs selected to be included in the quote.

• The digest of the selected PCRs, called calcDigest.

To verify the authenticity of the quote, the attesting system needs to provide a
way to retrieve the AK certificate, so that the verifier can be ensured that the AK
is an actual TPM-resident key having as the root of the chain of trust the EK.

3.3 Remote Attestation Protocol

In this section, a generic RA Protocol is proposed describing all the interactions
that happen between the various actors and all the components needed to perform
a TCG-compliant RA. As already mentioned, to enable RA two actors are required:
the Verifier or Challenger, and the Attester or Remote Attestor. The Attester plat-
form must be TPM-equipped and has to provide an EK with the corresponding
EK certificate (usually issued by the TPM manufacturer). These are needed to
represent the root of the chain of trust for the attestation keys (Aks). The At-
tester should also be able to receive RA challenges coming from the remote Verifier
employing a Trusted Platform Agent (TPA). The TPA should be a privileged ap-
plication with the ability to interact with the TPM and request attestation-related
operations, such as requesting to perform a quote with a given AK. On the other
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side, the Remote Attestor needs to be able to retrieve the AK certificate from a
Certification Authority, or from the platform itself. Also, to verify that the PCR
values represent a trusted state for the attesting platform, the Verifier must com-
pare each measurement contained in the ML with a list of “golden values” ; the
whitelist. The whitelist is typically made of a filename hint (i.e. the file path-
name) with its associated integrity measure (i.e. the file data hash). The Remote
Attestor can retrieve the whitelist either from the attesting system, where its ad-
ministrator generated the list in a secure environment the first time the platform
has booted; or from the platform manufacturer and the software vendor.

Figure 3.2 shows how the Trusted Boot and the IMA Measurement components
enable RA.

Figure 3.2. Remote Attestation scheme.

The initiator of the RA challenge/response protocol is the Remote Attestor
which sets off a series of operations that have to be performed by the TPA to
respond to the challenge. The chain of events and operations referring the figure
3.2 are the following:

1. The Verifier requests an attestation from the TPA that resides on the Attester
system, providing a non-predictable nonce and a list of PCRs to be included
in the quote (usually the Trusted Boot and IMA-related PCRs).

2. The TPA is then responsible for requesting the TPM to perform a Quote
operation, including in the request the nonce and the list of PCRs that have
to be included in the quote response. The nonce plays an important role
because it allows the verifier to check the quote’s freshness, thus protecting
against replay attacks (see Sect. 3.2 for a detailed description of the Quote
operation).

3. The TPM fulfills the quote request by loading the AK and using its private
portion (AKpriv) to sign the hash of the selected PCRs, the nonce, and the
other quote’s structure metadata.
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4. The IMA ML is retrieved by the TPA.

5. The TPA constructs and then sends an Integrity Report (IR) consisting of
the IMA ML, the signed quote together with the quote’s structure, and the
public part of the AK (AKpub), eventually with its certificate.

6. Once the Remote Attestor receives the IR, it validates the quote’s freshness
by comparing the nonce contained in the quote’s structure with the previously
sent nonce, and also the quote’s authenticity by verifying the signature with
AKpub. Also, it validates the boot process of the platform, and the integrity
of the IMA ML, and finally assesses the trustworthiness of the runtime mea-
surements contained in the IMA ML by comparing them to the measurements
contained in the whitelist.

The quote’s structure that the Verifier receives contains a field called calcDigest,
which represents the digest of the PCR values selected to perform the quote. The
Remote Attestor uses this digest to verify the integrity of the quoted PCR values
by recalculating this digest and comparing it with the one present in the quote’s
structure. For example, let us consider the case in which the Verifier requests only
to quote the IMA PCR. When the IR is received the IMA PCR aggregate value
has to be recomputed in the same way the IMA Measurement component does.
Figure 3.3 shows how the IMA PCR is extended in the SHA-256 bank: for every
measurement in the ML extend the 20-bytes template-hash with the hash algorithm
that matches the PCR bank until the last measurement is reached.

Figure 3.3. IMA PCR calculation process.

Thus, the Verifier reads the ML and computes the PCR aggregate value, and
subsequentially can perform the digest over the calculated value and compare it
with the one present in the quote’s structure. If the comparison of the two digests
results in a match, it indicates the ML has not been tampered with by an attacker
and can be relied upon to assess the Attester platform’s integrity state.

To decide whether the Attester is in a trusted state, the whitelist is exploited
to evaluate the trustworthiness of the measurements contained in the IMA ML, as
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shown in figure 3.4. Validation of measurements for executable files is equivalent
to that of data files. For every entry in the whitelist, the Remote Attestor checks
whether the ML contains an event whose filename hint is the same as the one
present in the whitelist. The Verifier may then find himself in one of these three
situations:

1. The ML contains the ME with a filename hint equal to the one present in the
whitelist. There is a match between the file data hash of the ML event and
the one stored in the whitelist, which means that the file or executable is in
a known trusted state that does not alter the platform’s trustworthiness.

2. The ML contains the ME with a filename hint equal to the one present in the
whitelist. There is NOT a match between the file data hash of the ML event
and the one stored in the whitelist, which implies that the file could be an
updated version of the file/program or its data/code have been altered by an
attacker.

3. The ML does NOT contain the ME with a filename hint equal to the one
present in the whitelist. This could imply that the file/executable has not
been measured because it has not been opened or executed; or even worse it
could happen that the file has been deleted or altered by a malicious actor.

The Remote Attestor must have a policy that outlines the steps to be taken when
unknown file names or untrusted measurements are detected in ML to properly
evaluate the level of trust of the Attester’s platform.

The Remote Attestation process should be repeated periodically to monitor
the Attester system’s integrity over time.

IMA Measurement Log

10 3af09cc...7abaod0 ima-ng sha256:127cb40... boot_aggregate

10 8af71cc...10aaebc ima-ng sha256:ndoq923... /init

10 asd289...nds019a ima-ng sha256:a8j30i0a... /bin/sh

... ... ... ... ...

10 aos019...sio982ns ima-ng sha256:08sna8… /usr/bin/python

10 kas89w...ask80nhn ima-ng sha256:p2a830a... /usr/lib64/ld-2.16.so

10 1nxb6qk...iajs72ba ima-ng sha256:720nsyy... /usr/bin/dockerd

... ... ... ... ...

Whitelist

boot_aggregate 127cb40…aon38so12

/usr/bin/python 08sna8…7sbo028lla0

/usr/bin/dockerd nqt23fn…aoi289u9js

... ...

Figure 3.4. Integrity Measurements Validation against whitelist.
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Chapter 4

Distributed Trusted Computing
Base

Distributed Ledger Technologies (DLTs) are gaining increasing attention as a po-
tential basis for the global financial system of the future. The security, reliability,
and longevity of DLT systems are becoming increasingly important as they take on
a larger role in the digital economy, serving as the infrastructure for future cryp-
tocurrency and virtual asset exchange networks. With DLTs the exchange of any
kind of information between different parties is no longer processed through a cen-
tral authority, such as banks for traditional financial systems, but the exchange is
completely managed between the parties/peers in a decentralized manner. Trans-
actions are then stored in the distributed ledger and validated by employing a
consensus protocol among the decentralized nodes. However, trust between the
parties needs to be achieved otherwise, a consensus outcome reached by a group of
decentralized nodes is of little value if those nodes have been infected by malware
or viruses without their knowledge.

To this extent, the notion of Distributed Trusted Computing Base (DTCB) will
be introduced by expanding the principles of Trusted Computing, such as TCB (see
Chap. 2 for further details) and RA (see Chap. 3 for further details), to operate in
decentralized P2P networks enabled by DLTs. The objective is to create a DTCB
model that strengthens the trust level among all participating nodes in forming the
DTCB, utilizing a DLT-based RA protocol. As a means to restrict the scope of
the problem, the proposed solution operates within a permissioned DLT allowing
only authorized nodes to participate as peers in the DTCB network.

Hence, a proposal of a DTCB model will be given, accompanied by a brief look
at the features provided by DLTs, and an examination of the DLT selected for the
proposed implementation.

4.1 Distributed Ledger Technologies

The first widespread DLT was introduced in 2009 by S. Nakamoto, called Blockchain
[16]. A blockchain is only one type of DLT that stores transactions in a specific
format (linked list of blocks), while there are other forms of ledgers with alternative
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data formats. When a ledger, including a blockchain, is spread across a network, it
can be considered a Distributed Ledger or simply a ledger. A Distributed Ledger
is an append-only decentralized database that is managed by multiple participants.
This database consists of multiple identical copies that are distributed among the
participants and updated in a synchronized manner. Unlike traditional distributed
databases where participants trust each other to maintain data consistency, in a
distributed ledger the parties do not fully trust each other and a mechanism is
needed to verify the ledgers collectively before they are shared. Hence, a consensus
protocol enables all nodes in a distributed ledger to reach an agreement on a single,
definitive version of the truth, without relying on a trusted third party.

DLT enables decentralization by relying on a peer-to-peer (P2P) network used
to scale up the system, eliminate a single point of failure, and prevent a single entity
or small group from dominating the network. Another core aspect of DLT is that
they can ensure immutability and irreversibility of the Ledger State. That
is because by achieving consensus among a large number of nodes in a distributed
manner, the state of the ledger becomes practically immutable and irreversible
after a certain period. Different ledger deployment strategies exist depending on
the application domain. These strategies lead to two main types of ledgers [17]:

• Permissionless or Public Ledger: this enables nodes to both create and
validate blocks, as well as execute transactions that store and update data
between participating nodes, thus modifying the ledger state. This implies
that anything regarding the ledger (its state, transactions, and data store) are
transparent and accessible to any entity. Hence, this solution is not suitable
in scenarios where data need to be privacy-preserved.

• Permissioned or Private Ledger: it only allows authorized and trusted
entities to participate in its activities. This restriction ensures the privacy of
ledger data, making it suitable for use cases where privacy is a concern.

Nowadays, DLTs are most commonly used for cryptocurrencies, which are digital
assets that employ cryptography to secure transactions and use distributed ledgers
to store them. This eliminates the need for a traditional trusted third party, such
as a bank, to hold user-sensitive information and to execute the money exchange.
Blockchain has been the starting technology that introduced this decentralized
approach thanks to the Bitcoin cryptocurrency. In the last few years, DLTs have
gained significant attention from several fields of application, that spread across
the financial economy down to IoT data management. To this extent, various
implementations of DLT have arisen, as figure 4.1 shows an abstract representation
of the existing technologies based on the type of data structure.

However, the different technologies all share some common properties that are
needed to achieve the desired decentralized infrastructure: public key cryptography,
distributed P2P networks, and consensus mechanisms.

As the name suggests, the blockchain is populated by blocks. The blocks are
linked to each other in a linear, chronological order, forming a chain-like structure,
with each block containing the hash of the preceding block. In the blockchain, en-
tities that connect to it are referred to as nodes. They are responsible for grouping
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Figure 4.1. Overview of existing DLTs [18].

transactions into blocks and determining their validity, deciding which transactions
should be added to the blockchain and which ones should not. To this extent, a
consensus mechanism is needed to achieve a distributed consensus among the par-
ticipant entities. In the Bitcoin blockchain, the consensus protocol used is employed
through what is called Proof-of-Work (PoW). When a transaction needs to be
verified, PoW consists in having some nodes (called miners) responsible for solving
a cryptographic puzzle to prove that enough computational power has been used.
Typically, a node might be required to find a “nonce” that, when hashed along with
the transactions and the hash of the previous block, produces a hash with a certain
number of leading zeros. The computational effort required for this is exponential
with respect to the number of required zero bits, but the verification process is
straightforward, consisting of just a single hash calculation. For their given com-
putation effort, miners are rewarded with an amount of the related cryptocurrency.
The major downside facing Bitcoin lies in the need to keep the number of added
blocks to the blockchain within a tight limit over set time intervals. This limit is set
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such that a block can be validated every ten minutes. Hence, it can be considered
a bottleneck because applications, like healthcare or IoT, require a higher rate of
Transaction per Second (TPS). Additionally, in blockchain technology transparency
is a drawback because everything on the blockchain is open and visible to all.

Tangle-based DLTs are a decentralized data storage architecture and consen-
sus protocol that utilizes a Directed Acyclic Graph (DAG) data structure. Each
node in the graph represents a transaction and the direct edges connecting the
nodes represent the validation chain of the transactions. The first implementation
of this type of DLT has been developed by IOTA [19]. IOTA’s goal is to extend
the scope of decentralized ledger technology (DLT) solutions to include both con-
ventional and constrained computational devices, particularly in the context of the
Internet of Things (IoT). The IOTA ledger enables fast and fee-free transactions
without the need for miner validation, thus all the participants contribute to the
DLT by validating transactions. IOTA’s consensus protocol operates without a
leader and uses a probabilistic approach to validate transactions in parallel, with-
out the need for complete ordering. Hence, the consensus mechanism adopted in
this implementation requires a user to perform a PoW that validates two already
existing transactions. The PoW is of reduced complexity to allow the inclusion of
IoT devices. The Tangle due to its design offers a highly efficient ledger solution.

As for the Tangle, hashgraph employs a DAG as its data structure for storing
transactions and, differently from the other solutions, utilizes a voting algorithm
in conjunction with a gossip protocol to rapidly achieve consensus among nodes.
The consensus mechanism enables a much faster replication of data with respect
to blockchain implementation. Hashgraphs can be described in terms of columns,
where each column represents a user, and in terms of vertices which are events.
Thus, a user can submit an event containing a new transaction on the ledger.
A user can then gossip about a transaction by randomly choosing other users to
spread its knowledge about the ledger. This process facilitates a quicker exchange
of information about newly submitted transactions. Although Hashgraphs provide
the fastest throughput with respect to the other technologies, it is still a pre-mature
technology that has only been tested in private environments [20].

Being the Tangle technology a promising solution to cope with the limitation of
blockchain technology, we will focus on the IOTA Tangle technology and will give
a brief overview of the functioning and the features offered by the IOTA protocol.

4.2 The IOTA Tangle

IOTA [19] is a DLT that enables individuals to take control of their data, execute
programs securely without interference, and transact and own assets without the
need for intermediaries with the proper implementation of DLT. IOTA operates on
the Tangle, a system where recent transactions validate previous ones, while most
other DLTs operate on a blockchain. To maintain its state and record, a blockchain
must compile transactions into blocks and link them sequentially, which results in
a bottleneck, similar to loading the entire world’s goods onto a single train, one
wagon at a time. IOTA explicitly states that its technologies eliminate the issues
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carried out by a blockchain solution [21]. In this work, the IOTA Chrysalis
version (IOTA 1.5) will be considered as the protocol reference.

Decentralized cryptocurrencies, such as Bitcoin and Ethereum, require users to
pay a fee in order to broadcast transactions on the network. In contrast, IOTA
eliminates the need for miners and does not impose any fees on users. Instead,
the amount taken from the sender’s wallet is equal to the amount added to the
recipient’s wallet. This results in a fee-free transaction network. This is an opening
for a vast type of IoT applications, where a large number of microtransactions can
be submitted with any imposed fee by the IOTA network. Hence, IOTA relies
on a purely community-driven platform which is feeless and designed to be more
performant as the number of nodes increases.

As mentioned in Sect. 4.1, IOTA relies on an architecture called the Tangle.
The Tangle is a decentralized network of nodes that replicate a data structure that
keeps track of token ownership information. In the IOTA network, nodes serve as
the record-keepers and verifiers of all information. Every node has a real-time
understanding of the current status and holdings of all addresses in the network,
referred to as the ledger state. Additionally, every IOTA node is referred to as an
Hornet node and is also the entry point for all clients willing to interact with the
Tangle.

The Tangle is structured as a DAG of blocks, where each new block is connected
to several previous ones. Figure 4.2 shows the interconnections of blocks that make
up the Tangle. Each block represents a message and the edges pointing out from
it represent the parent messages.

From figure 4.2, we can observe that a block can be a:

• genesis block, which represents the starting point for the Tangle and serves
to initialize it by generating the total supply of tokens. No further tokens
will ever be produced. This block is the first one in the Tangle, has no parent
transactions, and is marked as solid, and confirmed.

• message defines the structure and the type of its content through the inclu-
sion of a payload. IOTA defines different payloads that allow the representa-
tion of various types of messages, such as transactions and many others.

• tip is a valid solid message which has not been approved yet by any other
transaction, and all its directly and indirectly referenced blocks are also valid.

Before diving into the details of an IOTA Message and how it can be published
on the Tangle, let us first define how consensus is reached in the IOTA network.

4.2.1 Consensus in IOTA

Consensus in the IOTA network is reached by means of a Coordindator . The
Coordinator acts as a client that generates and sends signed messages, called mile-
stones, which nodes trust and use to confirm messages within the Tangle.
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Figure 4.2. Tangle structure overview.

The authenticity of the issued milestone is achieved through Ed25519 signatures.
For a message to be considered confirmed, it must be linked either directly or
indirectly to a validated milestone from the nodes, as figure 4.3 illustrates.

To ensure nodes can identify valid milestones, all IOTA nodes on a network are
configured with the signatures of a trusted Coordinator node. With this informa-
tion, nodes can validate the signatures in issued milestones and confirm if they were
indeed signed by the trusted Coordinator. To give new messages a chance of being
confirmed, the Coordinator regularly sends indexed milestones that are signed with
its trusted signatures. This process guarantees that nodes can compare the indexes
of their milestones to verify their synchronization with the rest of the network. The
cadence with which milestones are issued is fixed and is, typically, 10 seconds, but
also in case a private tangle is desired, the periodicity can be configured through a
specific configuration file.

On the public IOTA ledger, the Coordinators are maintained by IOTA itself.
This solution introduces some sort of centralization, which obviously, represents
a limitation of the current IOTA technology (IOTA version 1.5). Hence, IOTA
declares that this is a temporary solution that will be discarded as soon as IOTA
2.0 (Coordicide) will be published. As of now, the Coordicide protocol is under
continuous development and the testing network (Shimmer) has been launched to
test the new features that will be introduced.
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Figure 4.3. Coordinator-issued milestone confirming other messages.

4.2.2 IOTA Messages

In IOTA, different types of messages can be used for different purposes. Some
messages transfer IOTA tokens or digital assets, while others only transfer data.
Some messages even combine both value and data. This versatile message struc-
ture allows for secure, decentralized transport of both value and data without any
fees, with network nodes verifying the validity of the messages, and also ensuring
secure distribution via the Tangle. A Message is made up of basic information that
specifies its type and structure, and may also include various payload types which
may vary based on the type of message that needs to be published.

The IOTA protocol defines the syntactical message structure that every message
generators (wallets or applications) have to rely on, otherwise, nodes will discard
the message. Table 4.1 defines an IOTA message:

Name Type Description

NetworkID uint64
It is the first 8 bytes of the BLAKE2b-256 hash

obtained by the concatenation of the network type
and the protocol version string

Parents length uint8 The number of messages it directly approves
(value between 1-8)

Parents ByteArray{[}32 * parents length{]} The referenced Message IDs
Payload length uint32 The payload’s length.

Payload See available Payload types See details of the payload types
Nonce uint64 The nonce needed to satisfy the PoW requirement.

Table 4.1. IOTA Message structure. [21]
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Once the message has been generated, the Message ID is obtained by hashing
the entire serialized message by employing a BLAKE2b-256 hashing algorithm.
Syntactically, the message is considered to be valid if the following rules apply:

1. The maximum message size is limited to 32 KiB (32 * 1024 bytes).

2. When parsing the syntax structure of a message, there are no unknown bits.
Any unreadable information, which could potentially contain harmful code,
is rejected for security reasons.

3. The payload type must be known to the node, and the payload itself must be
syntactically correct.

4. The Message nonce (PoW) is considered valid if it meets the PoW require-
ments established by the network or node.

5. The number of parents is between 1 and 8 and must be sorted in lexicograph-
ical order, and each one of them must possess a unique Message ID.

As table 4.1 suggests, a message may contain a payload. Table 4.2 shows the
IOTA-defined core payloads that can be embedded into a message:

Payload Name Type Value
Transaction payload 0
Milestone payload 1
Indexation payload 2

Table 4.2. IOTA defined payloads. [21]

Transaction payloads are used for value transactions, Milestone payloads are
used by the Coordinator to issue new milestones, and finally, Indexation payloads
are used for data messages.

To initiate a token transfer within the IOTA network, a client composes an
IOTA message that carries a signed transaction payload. This payload provides
all the required details to specify the transfer of a specified number of tokens from
address A, owned by the message issuer, to address B, effectively allowing the state
update of the IOTA ledger.

For the scope of this work, data transfer is a crucial ingredient, thus the Indexa-
tion payload represents a core notion. Hence, IOTA defines an Indexation payload
as shown in table 4.3.

The Indexation payload enables the addition of an index to the message and
the inclusion of additional data. Nodes provide an API that allows for querying
messages based on their index. Differently, from the other two payload types,
indexation payloads are not sent with a signature and the data contained in them
are visible to any peer that knows the message index. Hence, if the privacy of the
data is a concern, an additional cryptographic protocol may be needed to protect
the payload content. This problematic issue is covered in Sect. 4.3.
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Name Type Description

Payload type uint32 An Indexation payload is denoted with a value of 2
Index length uint16 The length in bytes of the below index field.

Index ByteArray[Index length] The Message’s index
Data ByteArray Binary data

Table 4.3. Indexation payload structure. [21]

4.2.3 Sending a message in IOTA

A client who has the ability to generate an IOTA message can send it to an IOTA
node, which is responsible for processing it. An IOTA node must first check if
the syntactic rules against the proposed message: if the syntactic requirements are
not met the message will be discarded by the node. Otherwise, the message is
considered valid and thus must be attached to two tips, and must validate them
by employing PoW. The Weighted Uniform Random Tip Selection (W-URTS) al-
gorithm is used to select the tips from a pool of tips, that is constructed on every
IOTA node. IOTA classifies the tips by assigning a score to each one of them.
The scoring system is based on the relation between the tip’s approval cone (all the
messages directly and indirectly referenced) and the previous milestone. Hence, a
tip can assume three different score states [22]:

• 0: the tip is lazy and should not be selected. IOTA defines them as the
tips attached to a sub-tangle where the most recent confirmed messages were
verified by an old milestone.

• 1: the tip is semi-lazy and can be selected. IOTA defines them as the tips
with a single parent connected to a sub-tangle where the newest confirmed
messages were validated by a recent milestone.

• 2: the tip is non-lazy and can be selected. IOTA defines them as the
tips attached to a sub-tangle where the most recent confirmed messages were
verified by a recent milestone.

“Non-lazy” refers to a tip that is not attached to a cone of transactions that
are too far in the past, as such cones are likely to have already been confirmed
and therefore do not increase the rate of newly confirmed transactions when a
milestone is released. Hence, in order to increase the confirmation rate, the tip
selection algorithm has to return non-lazy tips.

If the node is synchronized with the ledger state, it is asked to randomly select
two or more (up to eight) non-lazy tips to approve from its pool of tips. Once the
selected tips are approved by the node, they are removed from the tips pool and
the message becomes a new tip that will be later approved by future incoming
messages. Additionally, a PoW computation is needed in order to fulfill the require-
ments of a valid message. Differently from the Bitcoin PoW, IOTA’s PoW (refer
to Sect. 4.2.4 for further details) solution is not meant to reach consensus into the
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DLT, but only to limit the rate of the network. Once the PoW requirement has
been satisfied, the message is broadcasted into the IOTA Tangle to all its direct
neighbor nodes through a gossip protocol. Additionally, every neighbor receiving
the message will again repeat the gossiping process. In this way, every node in
the network quickly perceives the message and possesses identical information and
understanding of the network’s “state” at a specific moment.

4.2.4 IOTA Proof-of-Work

In IOTA, PoW serves to limit the rate of the network and, thus, prevent spamming.
Completing PoW by finding a suitable nonce enables you to attach your message
to the tangle, but it does not give you the power to determine the truth.

To enhance the efficiency of the PoW, IOTA embraces a two-stage approach
that allows a faster validation process. To begin with, the message is processed
through the BLAKE2b-256 hash function to generate a fixed-length digest. Then,
this digest and the nonce are combined and processed through Curl-P-81. By only
computing the digest once and varying the nonce, Curl remains the hash function
crucial to the PoW process. In comparison to a complete Curl implementation
(which reaches only 2 MB/s on a single core), the validation process is much more
efficient, as BLAKE2b-256 has a performance rate of approximately 1 GB/s.

Curl-P-81 is a trinary hash function that accepts trits as input. A trit defines
a Ternary system where a trinary digit, or trit, can assume only three different
values (or states): -1, 0, 1. The notion of trit is essential for PoW calculation.

The IOTA network assesses the PoW requirement by verifying that the nonce
satisfies a certain amount, called the PoW score. The PoW score is determined
as the average number of iterations needed to locate the number of trailing zero
trits in the hash, divided by the size of the message. Hence, to calculate the PoW
score that validates the PoW, the following steps have to be performed [23]:

• Calculate the BLAKE2b-256 hash of the serialized message, excluding the
Nonce field, and convert the hash to its 192-trit representation.

• Convert the 8-byte Nonce into its 48-trits representation and append it to the
hash obtained in the previous step.

• Add three 0-trits to obtain a 243-trit string.

• Calculate the Curl-P-81 hash.

• From the hash result of the previous step, count the number of trailing zero
trits.

• Calculate the PoW score as 3num.zeros/size(message).

In case of a deployment of a private tangle, IOTA allows an administrator to
set the desired PoW score that a message has to satisfy. This may help in speeding
up (lower the desired PoW score), or further limit the rate of the network (increase
the desired PoW score).
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4.2.5 Spammer

In IOTA transactions are confirmed by adding subsequent transactions to the tan-
gle. The more transactions that are added, the quicker previous transactions are
confirmed. To this extent, Hornet includes a compact plugin that floods the net-
work with messages, known as Spammer.

This plugin can be useful in case the network needs to boost the message sub-
mission rate. Within the public IOTA main net, a Spammer may not be needed,
but in case a private Tangle is deployed the rate of published transactions may be
very low. Hence, spamming the private network can help in increasing the mes-
sage validation rate. This plugin can also be utilized during a network stress test,
in which the community assesses the network’s ability to handle high volumes of
transactions.

Typically the plugin is disabled by default, thus, an administrator may enable
the Spammer plugin through the Hornet node’s configuration file. Additionally, the
number of messages per second (TPS) that the Spammer tries to send can be also
specified.

4.2.6 Snapshot

Every Hornet node attached to the Tangle maintains a local database where all the
ledger’s information is stored. As the Tangle grows over time, the node’s ledger
stores every message that is published, leading to disk capacity saturation. To cope
with this problem, IOTA introduces the concept of local snapshots.

A local snapshot consists in having a Hornet node record the state of the ledger
into a local file. Hence, a snapshot file can be used to represent the ledger starting
from the genesis (or an old milestone) up to a recent specific milestone. By taking
local snapshots, nodes are able to rapidly synchronize with the ledger by starting
from a recent milestone instead of an older one. Additionally, these snapshots allow
for the deletion of older messages that are located below the last milestone index
included in the snapshot.

Snapshot creation policies can be customized through a configuration file, where
this feature can be:

• Enabled or disabled.

• If enabled, the user can specify the maximum number of milestones to keep
(e.g. keep a maximum of 300.000 milestones).

• If enabled, the user can specify the maximum desired size for the local node’s
database.

There exist two types of snapshots:

• A Full snapshots captures the entire ledger status up to a designated mile-
stone
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• A Delta snapshots references a specific full snapshot and includes only the
differences since the last full snapshot

However, snapshots may cause some data to be permanently lost as it will no
longer exist on the Tangle. Applications that may require the persistence of data
on the Tangle for a long time would be limited. To this extent, IOTA provides a
special client node that can be deployed to record all the Tangle history and save
it into a database. This node’s implementation is referred to as Chronicle [21].

4.3 Ensuring Data Safety on the Tangle

In order to write and read data over the Tangle, IOTA proposes an implementation
of two L2 protocols. They are responsible for structuring the data coming from
the lower layer in case a write operation is needed, or de-structuring when the
data needs to be retrieved from the tangle. Hence, the objective is to facilitate
the transmission and retrieval of data streams. Furthermore, while the Tangle
ensures the immutability and integrity of data, an L2 protocol must still provide
security measures to secure the transmission of data among peers on the Tangle. To
this extent, cryptographic primitives verify the provenance and ownership of data,
encrypt and decrypt data, and also have a mechanism to retrieve data streams
while ensuring their authenticity.

The integration of an L2 cryptographic protocol and the Tangle offers a secure
transport alternative to TLS, allowing for secure, multi-point to multi-point data
transfer. This combination creates a trust layer for any decentralized system to
exchange data securely in nearly real-time.

IOTA proposes two implementations of such a protocol: Masked Authenticated
Messaging (MAM) and STREAMS. Although they both provide an efficient solu-
tion, in this work we adopted a third-party library developed by the LINKS Foun-
dation, named Wrapped Authenticated Message (WAM) [24]. The reason for
this choice stands behind the fact that both of the solutions proposed by IOTA were
not adaptable to work on IoT devices due to the programming languages used for
their implementations: MAM is written in Javascript, and STREAMS is written
in Rust. Moreover, MAM is only suitable to work on legacy versions of the IOTA
protocol and thus has been substituted by the STREAMS protocol.

Before diving into the details of the WAM protocol, let us give a brief overview
of MAM and STREAMS protocols.

4.3.1 The MAM protocol

The MAM protocol [25] can only be employed in the legacy version of the IOTA
Tangle and allows the data publishment by means of transactions over the network.
The purpose of MAM is to offer a system for structuring and protecting data
streams, ensuring their subsequent verification by any device. For this reason, the
concepts of data channels and channel ownership have been introduced, enabling
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only the channel owner to have the power to publish onto the channel. By doing
so, it is ensured that attempts by any malicious actors to compromise the channel
and inject false information can be detected by either the channel owner or by the
(only-read authorized devices).

MAM utilizes a Merkle tree signature scheme [26] to sign the encrypted mes-
sage’s cipher digest. The root of this Merkle tree functions as the channel ID. The
previous trees are not referenced, but only the subsequent ones are thanks to the
internal inclusion of the next tree’s root within each message. When a device pub-
lishes data to its channel, it obtains a channel ID, which serves as an identifier that
enables other devices to subscribe to the channel and retrieve the data stream.

Channels can be created in three different modes of operations: public, private,
or restricted. The address of a transaction containing MAM data in public channels
is the root of the Merkle Tree, allowing any device to decrypt the data using the
channel ID as the decryption key. In private channels, the address of the transaction
holding MAM data is the hash of the root of a Merkle Tree. As a result, only
the device possessing the original root can decrypt the data. Restricted channels
enhance privacy by incorporating a pre-shared symmetric key. The transaction
address containing MAM data is generated by combining the hash of the pre-shared
key and the root of the Merkle Tree. As a result, only devices that have access to
both the original root and the required symmetric key can decrypt the data.

4.3.2 STREAMS

The MAM protocol has been substituted by STREAMS. STREAMS is an organi-
zational tool for structuring and navigating secure data through the Tangle, and it
organizes data by ordering it in a uniform and interoperable structure [27].

Differently from MAM, IOTA STREAMS has been extended to provide not
only a “Channel” implementation but an entire framework for cryptographic ap-
plications. Hence, the feature of channels has been redesigned and works as a
protocol that operates in the STREAMS framework; the Channels protocol. This
allows building different solutions on top of the STREAMS framework when the
Channel application is not suitable for the specific case. As in MAM implemen-
tation, the roles of Publisher and Subscriber remain, but with the difference that
also Subscribers can publish unsigned messages onto the channel. STREAMS also
enhances the message’s structure management allowing to publish on the same
channel different message formats, whereas in MAM multiple channels were needed
for each different message structure.

In MAM, messages were standalone, but in IOTA Streams, messages can refer-
ence other messages by linking to them. This allows a message to provide additional
information about itself through another linked message. Additionally, in MAM to
replace an old message with a new one you had to create a new channel; while in
IOTA Streams you can update messages in the same channel. The older message
stays in the Tangle to ensure integrity, but applications can access only the latest,
valid message. Lastly, STREAMS improves access control for channels by allowing
for the customization of cryptographic methods for each message based on its type,
facilitating the implementation of specific access rules.
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While IOTA Streams offers a robust solution for securing data on the Tangle, its
use of the Rust programming language limits its usefulness in resource-constrained
environments.

4.3.3 The WAM protocol

As previously stated, the WAM protocol was chosen for its lightweight implemen-
tation, making it a suitable solution for the scope of this project. Therefore, WAM
is a cryptographic protocol designed to structure and securely read and write data
over the IOTA Tangle, specifically designed for use with the Chrysalis version of
the IOTA protocol.

A WAM message is encapsulated in the IOTA Chrysalis message, called index-
ation payload (for further details refer to Sect. 4.2.2). The indexation payload is
composed of arbitrary data, usually application data, and an index. The index is
used as an address, thus is a pointer to the message stored in the tangle.

Figure 4.4 depicts the structure of a WAM message and its encapsulation within
an IOTA Chrysalis message.

APPDATA_LEN

APPDATA

PUB_KEY

NEXT_INDEX

SIGN INDEX

IOTA Chrysalis
Message

+

WAM Message

Figure 4.4. WAM encapsulation into an IOTA Chrysalis message.

Higher-level protocols or applications that wish to utilize WAM, will place their
data in the APPDATA field and specify its length in the APPDATA LEN field. In
cases where the data exceeds the maximum allowed length for a single message a
sequence of linked data must be created. To this extent, WAM structures a data
stream as a series of linked elements on the Tangle. Each piece of data is con-
nected to the next one through an index, allowing subscribers to reconstruct the
stream by starting at any point and following the chain of linked data. In essence,
each data message holds the current index and the index of the next message (the
NEXT INDEX field) in the series, thus allowing the chaining of these messages.
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By constructing the chain as a single-linked series of messages, subscribers can
only read the data stream in a forward direction. This design prevents the re-
trieval of previous information, as it restricts access to previous messages within
the same data stream. The chaining mechanism enables the concept of WAM
channels: a single-linked series of messages where only allowed subscribers can
read the messages from the chain. Thus, similar to the blocks within blockchains,
WAM channels logically represent messages in a linear manner. However, being
IOTA a DAG-based DLT, each message within a WAM channel is “spread” across
the DLT and chained thanks to the Next Index included in each WAM message.
Figure 4.5 illustrates the WAM chaining mechanism.

WAM Chain IOTA Message WAM Message

NXT_IDX

NXT_IDX

NXT_IDX

NXT_IDX

Figure 4.5. Chaining of WAM messages in the IOTA Tangle.

Additionally, WAM is responsible for determining the values of the INDEX and
NEXT INDEX fields. It uses a random source to generate a seed, which is then
utilized to create a keypair based on the edwards25519 curve. The public part of
the key pair is then hashed to produce the index. The value of the NEXT INDEX
field is generated by leveraging the same process but starting from a different key
pair. Figure 4.6 illustrates the generation flow of an index.

The WAM protocol has been designed to allow a subscriber to verify that the
data in a stream are coming from the same source. This is achieved through the
SIGN field. This field is populated by signing a digest h with the PRIV KEY
previously generated. The digest is the BLAKE2b hash of the APPDATA LEN,
APPDATA, PUB KEY, and NEXT INDEX fields. Therefore, a subscriber can
verify the message by recomputing the same digest and checking the signature with
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Random source SEED Generate
keypair

PRIV_KEY

PUB_KEY hash INDEX

Figure 4.6. Index field generation flow.

the public key contained within the message itself. Moreover, it is possible to also
verify that the hash of the PUB KEY matches the index of the retrieved message.
At every message retrieval, those two verifications are performed. It’s important
to note that an adversary attempting to redirect the next message to a malicious
stream would need to discover the public key used to generate the NEXT INDEX
and include it in their message. Therefore, the signature and the public key fields
used for verification ensure that no malicious actors can use the NEXT INDEX to
append their chain of messages, as they do not have the key pair used to generate
the next index. Figure 4.7 shows how the two verifications are performed.

APPDATA_LEN

APPDATA

PUB_KEY

NEXT_INDEX

SIGN

INDEX

hash

verify SIGN

Compare

hash

Figure 4.7. INDEX and SIGN fields verification procedure.

Furthermore, every WAM message is encrypted to maintain the confidentiality
of the data, which will be made public on the Tangle. The encryption process uses
a symmetric cryptographic key and a nonce serving as an initialization vector. The
entire WAM message, including all its fields, is encrypted using the XSalsa20 cipher.
The encryption key is a Pre-Shared Key (PSK) shared between the communicating
parties: the data source and the subscribers. It’s important to note that the message
chaining mechanism, together with the above cryptographic features, offers forward
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secrecy (FS) for the data stream. Even if an attacker gains access to the encryption
key, they won’t be able to retrieve previous messages in the same data stream.

4.4 DTCB Model

Chapter 2 discussed the properties that a system’s TCB must possess to align with
the principles of Trusted Computing. These properties can be expanded to define
the fundamental characteristics of a DTCB. A system can be considered DTCB-
enabled if it meets the following requirements [3]:

1. Group Membership: the DTCB is comprised of TCB nodes that meet
specific membership criteria. Membership is enforced to prevent non-TCB
nodes from joining and to expel compromised or non-compliant nodes from
the group. The use of distributed consensus algorithms may be exploited as
a method for enforcing group membership.

2. Truthful Attestation: all the nodes forming the DTCB must be able to
accurately report the integrity status of their hardware, software, and config-
uration.

Distributed TCB

DTCB Group Membership DTCB Trusthful Attestation

TCB P1

TCB P2

TCB P3

TCB P4

TCB Node i

TCB P1

TCB P2

TCB P3

TCB P4

TCB Node i+1

TCB P1

TCB P2

TCB P3

TCB P4

TCB Node i+j

Figure 4.8. Abstract illustration of a DTCB [3].
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To be considered a DTCB-enabled node, it must first meet the properties re-
quired for it to function as a TCB, as figure 4.8 illustrates. The property of Truth-
ful Attestation enables a remote entity to challenge all the nodes to report about
their internal state and verify if any node can be considered DTCB-compliant,
thus enabling RA. In the context of this work, the keyword is decentralization.
Hence, there should be no central entities that are enabled to act as Remote At-
testors within RA protocol executions. As a consequence, every DTCB node must
act both as a Verifier and as an Attester, enabling any DTCB node in the net-
work to evaluate the trustworthiness of all active nodes on its own employing a
mutual RA protocol. Every peer will then be structured with what we refer to as
Local Attester (LA) and Local Remote Attestor (LRA) and, thus, have the
capabilities to not only produce integrity reports but also have the capabilities of
verifying such generated reports from the other peers. By leveraging the common
technologies, a mutual RA protocol would require a node to open multiple con-
nections towards all the other nodes. Hence, in order to collect all the attestation
reports generated by the other peers, a secure connection needs to be established
for each node present in the network willing to act as a DTCB node. Figure 4.9
(a) illustrates the scenario just described, in which a full-mesh topology would be
required if classical technologies, such as TLS connections, were to be used.

The limitation of this scenario consists of the complexity driven by the number
of connections needed to link all the peers among them: the number of connections
needed grows proportionally to the square of the number of nodes. If N is the
number of peers in the network and C is the totality of the needed bi-directional
connections, C can be obtained by applying the following formula:

C := N ∗ (N − 1)/2

DLT

(a) (b)

Figure 4.9. Full mesh topology (a) vs. DLT-based topology (b).

To address this issue, figure 4.9 (b) illustrates that nodes have the option of
establishing a single connection to a DLT. This arrangement enables a node to
gather all necessary attestation reports on its peers for verifying compliance with
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the DTCB, while only having to open one connection. Due to its properties, the
DLT can act as an immutable data storage, where the information can be easily
submitted and retrieved by any peer. The usage of a DLT seems to offer nice
properties that meet the requirements needed for a DTCB to be implemented.
The IOTA Tangle (refer to Sect. 4.2 for further details) will be used as a means
for storing peer data and will enable data exchange between them. As already
mentioned, data are sent to the ledger by structuring them in IOTA Messages which
internally have an indexation payload attached to its structure. Once an IOTA
Message is submitted onto the Tangle and has been gossiped to all the peers, the
data contained inside each message are public and thus are readable and retrievable
by anyone that knows its Index. To overcome this limitation, the WAM protocol
(refer to Sect. 4.3 for further details) will be employed to also ensure on-Tangle
data confidentiality. Hence, a Tangle-based mutual RA protocol is proposed and it
will be applied in the context of a permissioned Tangle where only a restricted
group of nodes will participate in forming the DTCB. A private Tangle is deployed
in this project to limit its scope and improve testing. If the public IOTA main
net were used, authorized nodes could be isolated by using the PSK, allowing only
those with the key to encrypt and decrypt messages on the Tangle.

Additionally, the Group Membership property must also apply, allowing the
DTCB to evaluate the TCB compliance of the participating nodes. To this extent,
a group-oriented consensus protocol may be employed to decide which non-TCB
nodes have to be expelled from the group and also to ensure that non-compliant
and compromised nodes become part of the DTCB. Hence, a node’s capability to
accurately report its internal status enables it to demonstrate its active partici-
pation in a group-consensus computation. Consensus is crucial in constructing a
DTCB as it helps to prevent compromised nodes from lying about their internal
state and falsifying the results of the other DTCB node’s verifications.

In other words, a DTCB can be seen as a group of nodes that belong to the same
trust domain, where they all cooperate in a decentralized mutual attestation
process in order to maintain a distributed state of trust, and it is enforced by
a group-oriented consensus protocol to regulate nodes compliance inside the
DTCB itself.
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Chapter 5

DTCB Implementation

In this chapter, a proposal of a Proof of Concept (PoC) implementation is presented
to meet the requirements of the DTCB model described in section 4.4. Hence,
a customized (RA) protocol is proposed to facilitate the mutual exchange and
verification of attestation data among the nodes forming the DTCB, allowing the
verification of such reports to be performed by the same group of nodes responsible
for exchanging the attestation data. Additionally, a consensus protocol is proposed
that aims at maintaining a distributed state of trust among the DTCB participants.

The communication among the DTCB nodes is facilitated by utilizing the IOTA
Tangle, with a private tangle deployed specifically for testing purposes. The private
deployment of the Tangle also enables customization of its configuration, providing
the flexibility to optimize the network according to specific requirements without
being limited by the constraints of the public main network (e.g. PoW complexity).

First, an overview of the deployed private tangle infrastructure is given, followed
by an explanation of the implemented PoC.

5.1 Private Tangle Infrastructure

To have a fully functional private tangle based on the Chrysalis protocol, a regular
Hornet and a Coordinator node are needed. Hornet nodes can be directly com-
piled from the source code which is public on the IOTA official Github repository.
However, to simplify and automate the deployment of a Chrysalis private Tangle,
IOTA provides Docker-based automated tools for deploying regular Hornet nodes,
Coordinator nodes, and other types of nodes such as Spammers. Therefore, each
node can run within a Docker container, and the essential nodes mentioned above
are all built starting from the same Docker image available on the Docker Hub
registries. To instruct the behavior of a specific Hornet-based container, configura-
tion files have to be defined before launching the container. Afterward, they will
be mounted within the containerized application by leveraging Docker-based tools.
These configuration files, which are in JSON format, specify the type of node to be
launched together with all its relevant parameters.

Figure 5.1 illustrates the general architecture for the deployment of a private
tangle using Docker together with the three main nodes needed for its correct
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functioning. A Spammer node is essential for achieving a higher throughput in
a tangle in which there is a low affluence of new messages and consequentially a
low number of tips to be approved. Hence, each node is executed inside a Docker
container, and every one of them is connected to the same Docker network.

As soon as a Hornet node is started for the first time, it will be associated with
a unique identifier generated by the node itself called PeerID. The identity of the
node is represented by an asymmetric key pair and its peerID is obtained by hashing
the public part of the key pair. This allows a verifiable linkage between the given
peer and its public key, also enabling secure communications among the various
peers as they can use the hash to verify a peer’s identity. The identity-related data
of a given node are locally stored in a file and should never be disclosed to anyone,
while the peerID is public. Once the PeerID has been generated, Hornet will use
it also between subsequent restarts.

Tangle Docker Network

Node1

Coordinator Spammer

Legend

TCP Port - transactions MQTT Port (Not used)TCP Port - gossip Dashboard
Hornet

188315600

14265 8081

IOTA Client Server N

Node N

Figure 5.1. Private tangle infrastructure overview.

To be functional, a private tangle must at least deploy three main nodes:

1. The Coordinator which is responsible for periodically emitting milestones.
The Coordinator bootstrap process expects to generate an Ed25519 key pair
which is used to sign the emitted milestones. The key pair is stored in a local
file that has to be protected and not disclosed. The public key is also stored
in a second local file which is passed to every instantiated node to let them
verify the Coordinator’s milestones.

2. The Spammer sends messages to the Tangle at regular intervals, enabling
the minimum message load necessary for transaction approval in accordance
with the IOTA protocol.
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3. The Regular Hornet Node is responsible for processing the requests com-
ing from the clients (e.g. validate messages, perform PoW, etc.). Additionally,
it may also need to connect with other nodes that can be later attached to
the Tangle.

Figure 5.1 also shows what type of communications are needed inside the Tangle
infrastructure. All the nodes involved leverage the TCP port 15600 to exchange
gossiping information, allowing them to quickly update the ledger state and also
to inform if new peers have joined the tangle. Additionally, regular Hornet nodes
also provide access to REST APIs through TCP port 14265. Being the container
executed inside a virtual environment, it may be needed to map the ports onto the
available machine ports and enable the traffic forwarding from the machine port
to the correct container port. This also protects against exposing nodes like the
Coordinator, which should not interact with external clients. Hence, only regular
Hornet nodes should expose the REST API’s port onto the hosting machine. This
allows any client, that can communicate with the hosting machine, to make requests
for tasks such as sending messages on the Tangle, reading messages, and others.
Additionally, access to exposed REST APIs can be restricted by enabling JSON
Web Tokens (JWT) [28] authorization. For a more friendly way to interact with
a node, a dashboard can be obtained by exposing the TCP port 8081, allowing to
navigate Tangle information through a visual interface.

The Tangle can be bootstrapped in two ways: either by using an existing snap-
shot file or by generating it on the fly starting a Tangle completely from scratch.
Once everything is set up, any client can freely interact with the IOTA Tangle.

Additional regular Hornet nodes can be easily added to an already existing
tangle by instructing the new node with the correct peering information needed to
reach the other peers (nodes). To this extent, Hornet utilizes the MultiAddress
format (multiaddr) for combining multiple layers of address information into a
single path structure. After obtaining your node’s multiaddr, it can be shared
with other node owners to establish mutual peer connections. For example, a node
that is reachable using IPv4 at address 192.168.0.1 on port 15600 and knowing its
PeerID, the multiaddr encoding would look like it is shown in 5.2.

/ip4/192.168.0.1/tcp/15600/p2p/(PeerID string)

Figure 5.2. Example of encoding peer information with multiaddr.

It is recommended to have 3 to 6 peer neighbors for increased redundancy. As
already mentioned, every node must be equipped with the Coordinator’s public
key to ensure the correct verification of every emitted milestone. Hence, every
new instance of Hornet nodes must be supplied with the correct Coordinator’s
cryptographic material. Additionally, for each new node that joins the Tangle, a
snapshot file must be supplied to initiate the synchronization process. This enables
the node to quickly catch up to the current state of the Tangle, allowing it to
participate in it effectively.
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5.2 Proof of Concept Implementation

This section provides a high-level overview of all the operations that have to be
performed in order to implement the proposed DTCB model, which comprises a
Tangle-based RA together with a group-consensus protocol. The fundamental prin-
ciples of RA have been taken into account to design a custom RA protocol (refer to
Sect. 3.3 for further details) that allows a subset of nodes to exchange attestation
reports among themselves by leveraging a permissioned IOTA Tangle together with
the WAM protocol for secure data exchange. The proposed protocol behaves in de-
centralized fashion, allowing all the nodes that participate in forming the DTCB
to mutually attest to each other without the need for any central authority. With
the support of a group-oriented consensus mechanism, it is possible to maintain a
distributed state of trust among the DTCB nodes. Hence, the goal is to implement
all the functional requirements described in Sect. 4.4.

To avoid ambiguity, we will refer to the client nodes as simply “nodes” and refer
to the IOTA nodes responsible for handling the requests of these nodes as “Hornet
nodes”.

In this work, RaspberryPi devices have been used to deploy the application.
To support the correct functioning of the implementation, every device must be
equipped with a functioning TPM. The TPM-based operations performed in the
PoC have been developed by leveraging the APIs offered by TSS. From the available
software stack, the ESAPI have been chosen because they offer all functionalities
exposed by the TPM with a higher layer of abstraction with respect to the SAPI
(refer to Sect. 2.3 for further details). The entire PoC has been implemented us-
ing the C language to achieve a lightweight application and to have the possibility
to deploy it on any IoT device. A modular approach has been adopted, which
separates all the core components into independent units that can be deployed
without any interdependencies. This design enables greater flexibility, scalability,
and maintenance of the application. As mentioned in Sect. 4.4, every node con-
sists of two major components, identified as the Local TPA (i.e. Local Attester)
and the Local Remote Attestor (i.e. Verifier). The local TPA module will be
responsible for correctly generating the TPM-related cryptographic material and
the attestation reports that have to be published onto the Tangle. The role of the
local Remote Attestor module, instead, is to verify reports submitted by all peers
other than itself and to actively participate in the group consensus protocol. Every
node will be correctly set up to execute the whole application, thus acting both as
the Attesting system and as a Remote Attestor. By avoiding interactions with a
central authority, this approach facilitates a fully decentralized implementation,
which is a key requirement for a functional DTCB.

From the described RA protocol in Sect. 3.3, the Remote Attestor acts also
as the initiator of the protocol, by challenging the Attesting system to report its
current state. The challenge is composed of a nonce, that ensures the freshness
of the quote, and of a list of PCRs that the attester should include in the quote
operation. But within a P2P network, every node’s local Remote Attestor should
challenge all the other nodes participating in forming the DTCB. This results in
a high-complexity solution because the number of required challenges grows pro-
portionally to the square of the number of nodes. To minimize the complexity of
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this process the concept of Heartbeat node is introduced. As the name suggests,
a Heartbeat node is a system that produces some information at a specific peri-
odic rate, just like a human’s heart does. Hence, one of the participating nodes
will be selected by the administrator to act also as the Heartbeat node. It will
be responsible for providing, in a periodic fashion, a nonce on the Tangle making
it accessible to all DTCB nodes for inclusion in the quote to guarantee freshness.
When the Heartbeat node publishes a new nonce, all local TPAs are responsible for
generating new attestation reports, and all local Remote Attestors are prepared to
evaluate these reports. The Heartbeat node thus controls the frequency of all the
Attestation cycles throughout the lifecycle of the DTCB.

Hence, for every Attestation cycle, each local Remote Attestor collects all the
attestation reports which are composed of a quote signature, signed with the AKpub,
together with the “quoted” structure and the Attesting system’s IMA ML. For ev-
ery attestation evidence, the local Remote Attestor verifies the signature of the
quote. If successful, it validates the received quote’s structure and finally evaluates
the IMA ML against the whitelist which was previously retrieved from the Tangle.
If the evaluation process successfully terminates, the node related to the analyzed
evidence is considered to be Trusted, otherwise, it will be marked as Untrusted.
By executing the verification process over all the DTCB attestation reports, the
local Remote Attestor can construct its own table that encapsulates the trust evalu-
ations of the other DTCB nodes. We refer to this table as the Local Trust-Status
table. Once the table is built, it will be published on the Tangle making it avail-
able to all the other DTCB nodes. Therefore, during each Attestation cycle, every
DTCB peer will publish its own Local Trust Status table. These tables can then
be utilized as inputs for a group-consensus protocol to construct the Global
Trust-Status Table. Every DTCB node will be instructed to perform the same
consensus mechanism. Through this method, each DTCB node will be able to
generate the Global Trust Status table by utilizing the same inputs, resulting in
consistent and uniform outcomes across all nodes. This protocol guarantees the
detection of compromised DTCB nodes, enabling the DTCB network to remove
non-compliant nodes and maintain a distributed state of trust among all DTCB
peers.

Assumptions

The strong assumptions that have to be taken into account are the following:

1. Each node is assumed to boot in a trusted manner, hence, the Trusted Boot
process is not enabled, and the corresponding PCRs are not used during quote
operations.

2. The WAM protocol utilizes a PSK to encrypt the data embedded into ev-
ery indexation payload, the WAM message. The distribution of this PSK is
assumed to be performed off-chain in a secure manner, preferably by using
secure protocols like the Diffie-Hellman key exchange protocol [29].

3. The AK is assumed to come from a genuine TPM where its corresponding EK
resides in the same hardware RoT. As a means of simplifying the deployment
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of this proof of concept and avoiding the need to establish a CA during the
testing phase, AK certificate provisioning has not been incorporated.

It is worth highlighting that every message shared by the nodes in the Tangle
is assigned a unique identifier based on its corresponding node ID. By using the
SHA256 hashing algorithm the node ID is computed as follows:

NodeID = H(AKpub)

5.2.1 Off-chain Operations

Before participating in the mutual RA protocol and interacting with the Tangle,
it is necessary for every node to undergo some initial setup procedures. These
preparations ensure the smooth operation of the application and enable the node
to effectively communicate with the Tangle and other DTCB peers.

Hornet nodes expose a REST API to allow any client to request the retrieval
of a Message given its Index. Also, WAM constructs a chain of Messages starting
from an Index and chaining them by calculating also the Next Index, as explained
in Sect. 4.3. Therefore, in order to access data published by another node, each
node must be aware of the starting indexes at which the other nodes initiated their
chain. This allows the node to subscribe to the publisher’s chain. To this extent,
the administrator must generate what we refer to Indexing Files: they contain
all the indexes that a node must know in order to write and read data to/from the
Tangle. Every node must be equipped with two Indexing files: one for the local
TPA module and one for the local Remote Attestor module.

The local TPA module will need a file containing:

1. A node, as the file owner, will use an index to begin writing its attestation
reports. To ensure the proper structure of the WAM message, the key pair
associated with the index must be known to the node and saved within the
file.

2. An index, together with its key pair, to write the verification policies (i.e.
whitelist) to allow the Remote Attestors to truthfully evaluate the software
status.

3. An index, together with its key pair, to write the AK’s public part to allow
the Remote Attestors to verify the signature of the resulting quote operation.

4. An index to read the nonces published by the Heartbeat node. The index
is saved together with only the corresponding public key that was used to
generate it.

Instead, the local Remote Attestor module must be equipped with a file con-
taining:
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1. A list of indexes to read at the correct index of the attestation reports pub-
lished by other peers. These indexes are only used for reading, hence, only
the public part of the key pair must be known to correctly verify a WAM
message. Then, the file will contain a list of “index-publicKey” pairs.

2. An index to read the nonces published by the Heartbeat node.

3. A list of read indexes needed to access the verification policies (i.e. whitelist)
published by the other peers.

4. A list of read indexes needed to obtain the public part of the AKs owned by
the DTCB peers.

5. An index, together with its key pair, to write the Local Trust Status table.

6. An index to read the Local Trust Status tables submitted by the other DTCB
peers.

Once the administrator generates the Indexing files, he distributes them off-
chain in a secure way. The implemented application provides an automated script
that helps the administrator in creating the correct files. For more readable content
the “Indexing files” are generated following the JSON format [30].

Additionally, every node must generate the required cryptographic material to
perform RA. To this extent, the node must create an EK with its corresponding
AK and persist them inside the TPM’s Non-Volatile memory. Also, a local file is
generated which contains the two NV-Indexes values to be able to retrieve them
when necessary. It is assumed that the lower NV-index references the EK, while the
highest one references the AK. For this task, the application provides an automated
script that generates and stores the two keys according to the TCG’s guidance.

The last step consists in generating the so-called whitelist. The application
provides a Python script to allow an administrator to easily generate the whitelist
file. The content will be organized as a list of “filename-digest” pairs, which the
Remote Attestors will use for comparison with the matching entries in the IMA
ML. It is of crucial importance that the client generates the whitelists in a secure
and isolated environment. This also enables a distributed whitelisting approach.

5.2.2 On-chain Operations

Once all preparatory steps have been completed, every node is ready to participate
in the formation of the DTCB. Every node will execute both the core needed
modules: the local TPA and the local Remote Attestor modules.

Local TPA Operations

In order to read and write the necessary information, each local TPA must be able
to access its corresponding indexing file, which contains the relevant indexes. The
local TPA first checks that the EK and AK have been previously generated, and
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also it tries to publish on the Tangle the public part of the AK (AKpub) together
with its whitelist. To be part of the DTCB, a node must first have a pre-existing
whitelist. If this requirement is not met, the node will be unable to participate.
However, if the node does have a whitelist, it will be able to publish both its AKpub

and its whitelist. The node is now ready to subscribe to the Heartbeat channel
and wait for a new nonce to be published. Once the nonce has been published, it
triggers the local TPA to proceed in performing the Quote operation. The local
TPA has been statically instructed to include only the PCR10 inside the quote
request that will be sent to the TPM. The PCR10 will contain the aggregate value
of all the Extend operations performed over the IMA ML, as explained in Sect.
3.1.2. The quote structure together with its signature is returned by the TPM after
a successful Quote operation. The local TPA then retrieves the IMA ML from
the security filesystem and together with the TPM Quote’s output it constructs
the IR (Integrty Report). The IR is then published on the Tangle at the index
specified in the node’s Indexing file. The chaining mechanism is transparent to the
application, it is the WAM library that takes care of correctly chaining subsequent
IRs submissions. After publishing the IR on the Tangle, the local TPA waits for
the next nonce to be published before restarting the process from the beginning. It
is important to note that the size of the entire IMA ML may grow indefinitely over
the Attestation cycles. This could slow down the writing process onto the Tangle.
To this extent, the full IMA ML is stored inside the IR only in the first Attestation
cycle, while in the following cycles, only the difference between the current IMA
ML and the previously sent ML is incorporated inside the new IR. This enables
a faster writing process and, also, enables the local Remote Attestors for a faster
verification process.

This whole process performed by the local TPAs is designed to be repeated
indefinitely, but there is a possibility that a node may be excluded from the DTCB
group as a result of the group-consensus protocol. If this occurs, the node’s local
TPA can still publish its IRs, but they will no longer be evaluated by the other
DTCB peers.

To summarize, each local TPA among the DTCB nodes performs a Quote oper-
ation and constructs an IR upon receipt of a new nonce published by the Heartbeat
node as long as it’s DTCB-compliant, as figure 5.3 illustrates.

Local Remote Attestor Operations

The local Remote Attestors expect to read from the Tangle the necessary infor-
mation needed to validate the IRs that will be published by the local TPAs. This
information includes the AKpub and the whitelist of all the nodes participating in
the DTCB. The local TPAs are responsible for publishing them. Each local Re-
mote Attestor utilizes its Indexing file to know at which index these data are stored
on the Tangle, and once they are retrieved it constructs a table where each row
contains a tuple of AKpub and whitelist. This allows the usage of the correct key
for the verification of the quote’s signature and the usage of the correct whitelist
for the evaluation of the node’s software state trustworthiness. The construction of
this table must be successful otherwise the correct verification of all the IRs will not
be possible. The local Remote Attestor is designed not to retrieve from the Tangle
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Figure 5.3. Local TPA operations performed at each Attestation cycle.

the data associated with the local TPA that is running on the same machine, as
highlighted in figure 5.4.
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Figure 5.4. Local RAs retrieving the other DTCB nodes whitelists and AKpubs.
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Once this step has been successfully terminated, the local Remote Attestor is
ready to retrieve the IRs from the Tangle. The Indexing files denote the starting
indexes at which the local TPAs will write their attestation reports, allowing every
local Remote Attestor to subscribe to the correct WAM channels. The local Remote
Attestor will need to verify the IRs published by the other nodes on the Tangle
except the IR generated by the local TPA that is running on the same device as
the local Remote Attestor. Hence, if N is the number of DTCB nodes every local
Remote Attestor verifies N − 1 reports. That is because an adversary who gains
control of a device will typically attempt to present itself as a Trusted entity. As a
result, the assessment of a device’s trustworthiness is delegated to the other DTCB
devices.

The verification process of a single IR is executed as explained in Sect. 3.3:

1. The quote’s signature is validated.

2. The PCR10 aggregate value is recalculated, and a digest of the resulting value
is also computed (the calcDigest).

3. The calcDigest value is compared with the digest included in the received
quote’s structure. This ensures that the IMA ML has not been modified by
a malicious actor.

4. If all previous steps successfully terminate, it finally assesses the trustworthi-
ness of the runtime measurements contained in the IMA ML by comparing
them to the integrity measurements contained in the whitelist.

Based on the results of the verification processes, the local Remote Attestor is
able to state whether the system of each Attester is in a Trusted or Non-Trusted
state. Each local Remote Attestor will then store its trust decisions in the Local
Trust-Status table and will publish these tables on the Tangle when all the N −1
reports have been evaluated. Figure 5.5 illustrates this behavior from the point of
view of a single DTCB node.

Every node will be then able to read the trust decisions made by the other
DTCB nodes that can be used as inputs to the group-consensus protocol. The
consensus protocol will be executed by every DTCB node and will output what
we refer to as Global Trust-Status Table. This process allows the detection
of compromised nodes. In the case in which a Non-Trusted device is detected,
every local Remote Attestor will not consider any attestation report coming from
the infected device. In addition, each Remote Attestor will unsubscribe from the
infected device’s WAM channel, preventing it from receiving any further messages
related to the untrusted device. The Remote Attestor of the untrusted device
determines that it is no longer part of the DTCB group by examining the trust
tables published by the other peers. If it finds that the other peers have not
evaluated its IR and have therefore not included it in the consensus protocol, the
Remote Attestor will understand that it is no longer considered part of the group
and will stop its execution.

Also, the Heartbeat node will read the submitted Local Trust-Status tables
and will participate in the consensus mechanism. In this way, also the Heartbeat
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Figure 5.5. The Local RA verifies the IRs of other nodes and then publishes
the local Trust-Status table.

instance will have a complete view of the trusted DTCB nodes. After the consensus
mechanism terminates the Heartbeat node is ready to publish a new nonce, starting
a new instance of an Attestation cycle.

5.2.3 Group-Consensus Protocol

The proposed protocol allows the detection of compromised nodes only in some
specific cases, which we will illustrate in this section. Every single node must
adhere to the Attestation procedure, otherwise, it will be expelled from the DTCB
group. If this is not the case, a single node reads the local Trust-Status tables
published by all the other peers. The consensus protocol takes as input a collection
of trust tables, which includes the local trust table of the “host” node as well as
the tables of all other nodes that have been obtained from the Tangle. The node’s
local Remote Attestor is responsible for executing the consensus mechanism and
providing it with the necessary inputs.

The consensus logic executes the following steps:

1. Scans all the local Trust-Status tables to initialize the global Trust-Status
table by assigning a row to the distinct NodeIDs.

2. It calculates the consensus rule, which varies based on the number of DTCB
participants.
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3. It determines the Trusted and Untrusted nodes by applying the rule obtained
from step 2 and populates the global Trust-Status table.

4. It returns the global Trust-Status table to the local Remote Attestor.

This mechanism works on the assumption that non-corrupted nodes are able
to correctly determine if a node is Non-Trusted already when verifying the IRs.
Additionally, every single node will always consider himself a trusted node.

After the consensus execution, the node’s local Remote Attestor reviews the ta-
ble generated by the consensus mechanism to determine whether any Non-Trusted
nodes have been detected. If any non-trusted nodes are identified, the local Re-
mote Attestor will take appropriate action, such as unsubscribing from their
corresponding WAM channels. This helps to prevent the node from receiving fur-
ther potentially harmful messages from those nodes, thus ensuring the continued
security and integrity of the DTCB group.

The consensus rule varies based on the number of DTCB nodes (N) and it can
be obtained by applying the following formula:

rule(N) ≥

N/2, if N is even
(N div 2) + 1, if N is odd

(5.1)

The div operator represents an integer division. The rule outcome is used in
taking the overall trust decision related to every single node, which will construct
the global Trust-Status table.

To better understand this process, let’s suppose that the DTCB is formed by
four nodes and that they all have published on the Tangle their local Trust-
Status tables. Additionally, let’s suppose that “Node3” has been compromised and
lies about the trust state of the other evaluated nodes. From the point of view of
“Node1”, after having retrieved all the trust tables of the other peers, launches the
execution of the consensus mechanism, which outputs the final trust decision table
as shown in figure 5.6.

From figure 5.6, it can be highlighted how each honest node is able to correctly
detect untrusted nodes even before the consensus outcome is produced. However,
the consensus logic takes its trust decisions driven by a majority approach. In this
example, Node3 is considered to be Non-Trusted by all the other nodes, and thus, it
will be detected as compromised by all the honest nodes and also by the consensus
logic. Even if Node3 tries to lie about the trust status of the other DTCB nodes,
the consensus mechanism allows the correct identification of honest nodes also in
such cases. The node does not evaluate its own trust, which is why in each local
trust table there is no trust decision about itself, but it is assumed that each node
considers itself as Trusted. By utilizing the formula 5.1 we obtain the consensus
rule to apply. In the case shown in figure 5.6, the rule(4) ≥ 2 is obtained and for
every row, the number of Non-Trusted decisions is summed. If this sum satisfies the
consensus rule, it means that the node related to the scanned row is Non-Trusted,
otherwise, it will be considered Trusted.
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Figure 5.6. Example of a consensus outcome from Node1’s perspective.

Taking as reference the above example, it is important to note that if more than
one node has been compromised the majority trust decision cannot be taken prop-
erly. Hence, supposing that two out of the four nodes have correctly been expelled
from the DTCB group and that one of the two remaining nodes is compromised,
only one trust decision per node will be available. This situation would lead the
consensus outcome to be of little value. Hence, given that N is the number of
DTCB participants and that A is the number of compromised DTCB nodes, to
autonomously maintain a distributed state of trust, the following conditions must
be met:

N ≥ 3, A(N) < N div 2 (5.2)

As a result, in the case that N = 4 or N = 5, the maximum tolerable number
of compromised nodes is equal to one; instead, when N = 6 only two compromised
nodes are tolerable.

However, the proposed consensus protocol is only at a preliminary stage and
covers only a limited set of possible use cases. In fact, this is only a setup for further
investigation and improvements to this dowel of the DTCB.
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Chapter 6

Tests and Results

In this chapter, we will provide a detailed description of the tests that were per-
formed, as well as an overview of the infrastructure that was deployed to measure
the results. This information will give readers a clear understanding of the method-
ology used to conduct the tests and the tools used to obtain accurate and reliable
measurements.

The goal is to measure the time of multiple Attestation cycles. It is important
to note that the Attestation cycle refers to the duration between the publication
of a new nonce by the heartbeat and the verification of all the IRs published by
other DTCB peers by a local Remote Attestor, followed by the execution of the
consensus protocol.

By evaluating the time performance of Attestation cycles, we can determine the
amount of time an attacker has to compromise a device before it is verified by other
DTCB nodes. This information is crucial in understanding the system’s security
and integrity, as a long time between cycles provides more opportunities for an
attacker to go undetected.

6.1 Testbed

The PoC was tested on an IOTA private Tangle based on the Chrysalis protocol,
with an infrastructure illustrated in figure A.1. The Tangle configuration with
which the tests have been executed is the following:

• The Coordinator has been instructed to generate a milestone every 30 sec-
onds.

• To enhance the message validation rate of a private Tangle, which experiences
low message traffic, a Spammer has been configured to publish messages at
a Message Per Second (MPS) rate equal to 10 . Consequently, the Spammer
generates 10 new messages every second.

• All the three Hornet nodes have been set up to perform the PoW with a score
(see Sect. 4.2.4 for detailed information about the PoW) equal to 1000 .
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• By evenly distributing the traffic load across all three Hornet nodes, the
NGINX load balancer facilitates PoW computation on each node. If only one
Hornet node were to receive all the requests, it would be the sole node capable
of providing computational power.

To test the performance of the application in terms of Attestation cycles, three
RaspberryPi devices (version 4) were deployed. These devices must be synchronized
in order to output valuable timing results. In order to ensure that the clocks of
the devices involved in the testing were synchronized with an error lower than one
millisecond, a Network Time Protocol (NTP) server was set up. This allowed for
accurate timekeeping across all devices and ensured consistent and reliable measure-
ments during the testing process. The NTP server ensures a precise time because
it uses Global Navigation Satellite System (GNSS) as a time source to provide
highly accurate time information to the devices on the network. The low clock
synchronization error is also achieved because both the NTP server and the Rasp-
berryPi devices were located within the same Local Area Network (LAN). Figure
6.1 illustrates the utilized testbed.

DTCB nodes

NTP Server and 
GNSS Receiver

LAN

GNSS

Figure 6.1. Installed testbed overview.
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6.2 Performance tests

During performance tests, the time required for each DTCB node to finish an
Attestation cycle is considered. This time interval represents the duration for which
a node is exposed to attacks before being validated by the other members of the
DTCB. An Attestation cycle starts as soon as the heartbeat publishes a new nonce.
As a result, the length of a cycle is calculated by subtracting the timestamp when
the local Remote Attestor completed the verification and consensus process from
the timestamp when the corresponding nonce was published. In this case, three
DTCB nodes have been deployed with one of them acting also as the heartbeat.
Hence, the obtained timings have been calculated by applying the following formula:

cycle devicei = deviceiTimestampend − heartbeatT imestampnonce

The NTP server error margin is approximately 0.150 milliseconds, which is
negligible compared to the time required to complete a single cycle.

Figure 6.2 displays the trend of the time needed to execute a complete Attes-
tation cycle based on 100 samples. In this scenario, the configuration employed is
identical to that which is outlined in the above section.

Figure 6.2. Attestation cycles trend.

The above figure provides limited insights, except for the initial Attestation
cycle. Notably, there is a significant difference between the first timing value,
which is around 700 seconds, and all subsequent ones. This occurs because, in the
first cycle, the local Remote Attestor published an Integrity Report (IR) containing
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a complete IMA ML model. In deployed RaspberryPi devices, the size of the ML
model is typically around 150-160 kB shortly after booting, leading to a larger IR
in the first cycle. Subsequent executions only transmit the changes made to the
previously sent IMA ML, allowing for a faster writing process.

To facilitate a more comprehensive interpretation of the results, the first At-
testation cycle has been excluded. Figure 6.3 depicts the time distribution of the
samples collected.

Figure 6.3. Attestation cycles timing distribution.

From the time distribution histogram, it can be noted that almost every Attes-
tation cycle gets concluded within at most 7,570 seconds. Around 15% of the cycles
terminate in the first time range and the most probable execution time of a cycle is
around 30%. The slightly elevated time ranges are attributed to the possibility that
during the execution, the IMA ML may expand, causing a few Integrity Reports
(IRs) to be larger than usual. Only about 10% of the samples lay in the last three
time ranges. This may depend on the Tangle performance or may depend on the
network traffic load that can slow down the delivery of the requests. Finally, on
average an Attestation cycle is terminated in around 6,240 seconds.

To conclude, except for the first Attestation cycle, the average time that a node
is exposed to attacks is relatively low. The high Tangle’s PoW score limits the speed
of the writing and reading process. The PoW is necessary to shape the traffic load
of the Tangle which allows avoiding attackers, with a higher computational power
with respect to the other peers, to take the control of the whole network.
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Conclusion and Future Work

In conclusion, this work presents the concept of DTCB that enables a decentral-
ized approach where a group of nodes autonomously maintain a distributed state
of trust among them without the need for any interaction with centralized entities.
To achieve such a goal, a custom RA protocol has been proposed to work in a de-
centralized context enforced by the usage of a DLT, specifically the IOTA Tangle.
To maintain a trust status distributed among the DTCB nodes a group-consensus
protocol has been also proposed. In the future, this opens up new scenarios employ-
ing more sophisticated consensus protocols to support various scenarios that have
not been considered in this project. Also, a dynamic joining mechanism could be
developed to allow external nodes to become part of the DTCB at any time. Hence,
these considerations present promising research topics for further investigation in
the future. To conclude, this work serves as an introduction to the concept of
DTCB and its various facets. However, it is important to note that this is only the
beginning, as there are many other potential capabilities and use cases of DTCB
that have not been explored in this study. Further research can explore the various
untouched topics and advance our understanding of DTCB’s full potential.
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User Manual

A.1 Private Tangle Infrastructure Setup

This section illustrates the steps needed to set up a function Chrysalis-based pri-
vate tangle which has been for testing the PoC implementation throughout the
entire project progress. The private tangle has been deployed inside the LINKS
cybersecurity laboratory. Figure A.1 shows a high-level view of the infrastructure.
Three Hornet nodes together with a Coordinator and a Spammer run in Docker
containers to sustain the lifecycle of the Tangle. One Hornet node is deployed in
a different machine to allow better isolation of core nodes like the Coordinator.
Hence, clients will make requests by contacting “Server-1” which is equipped with
a public IP address, while the rest of the nodes are deployed within “Server-2”
which lies in the private network of the laboratory. Additionally, an NGINX load
balancer is used to evenly distribute the traffic to all the Hornet nodes.

Installation steps

On the Server-2 , clone the one-click-tangle project from Github and access the
correct folder dedicated to private tangle deployments.

$ git clone https://github.com/iotaledger/one-click-tangle.git
$ cd one-click-tangle/hornet-private-net/

As the next step, the docker-compose.yml file needs to be modified as follows:

• Disable the Autopeering node by deleting its docker-compose section as well
as in the script private-tangle.sh.

• For every service in the file, substitute the image gohornet/hornet:1.2.1 with
iotaledger/hornet:1.2.2.

• Modify the “ports” of the Hornet node docker-compose section as in figure
A.2. This allows exposing the ports on the host machine.
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Figure A.1. Overview of the deployed private infrastructure.

- "Server2-IP:14265:14265"
- "127.0.0.1:8081:8081"
- "Server2-IP:1883:1883"
- "Server2-IP:15600:15600"

Figure A.2. Mapping ports on the host machine.

Now everything is ready to launch the provided script which deploys a Coordinator,
a Hornet node, and a Spammer.

$ chmod +x private-tangle.sh
$ ./private-tangle.sh install

Figure A.3 shows what the output should look like, and illustrates that a snap-
shot has been generated as well as the other identities, specifically the Coordina-
tor’s one together with its key pair. The Coordinator’s public key is saved in the
“coo-milestones-public-key.txt” file.
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private-tangle

e3aa8383f0d33dd53f30f7873b3a946e512109bc339b39917e69ec83211987c4
Pulling coo ... done
Pulling node ... done
Pulling spammer ... done
Generating an initial snapshot...

...

Snapshot creation successful!
Initial Ed25519 Address generated. You can find the keys at

key-pair.txt and the address at address.txt

...

Bootstrapping the Coordinator...
Creating hornet-private-net_coo_run ... done
Waiting for 10 seconds ...
2023-02-16T11:17:22Z INFO Coordinator milestone issued (1):
d1d73d493a16c8d55704ea143026ff558847ace29267cb98f10f88dd5eb2ab92
Coordinator bootstrapped!

...

Creating coo ... done
Creating spammer ... done
Creating node1 ... done

Figure A.3. Example of private-tangle output.

The PeerIDs are locally saved in different files which should be kept safe. For
example, the “node1” PeerID is in the “node1.identity.txt”.

Your p2p private key (hex):
1432bfbaca5badbefd065f46b57053d532a9f505470a6b7563bd...

Your p2p public key (hex):
469458a1e84e691b1487d130ebaed97115fe81c74a57facadb8a...

Your p2p public key (base58):
5kWjkF8J4ZPuqbegh6sPk9fuS9ZTst2ZwqaMzSoPVkus

Your p2p PeerID:
12D3KooWEZsuVNi1FTfQFVA7KhcjWwkjvUc6ua73uRwPNRxHPhdo

The second Hornet node has to be deployed. The snapshot path, the multiaddr
information of the Hornet “node1”, and the Coordinator’s public key have to be
supplied. The peers comminucate through the gossip protocol which for node1 runs
on the 15600 TCP port.
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$ cd extra-nodes/

Open the docker-compose.yaml file and substitute the image gohornet/hornet:1.2.1
with iotaledger/hornet:1.2.2. Now launch the new node.

$ chmod +x private-hornet.sh
$ ./private-hornet.sh install "node2:14272:15602:8082"

(../coo-milestones-public-key.txt)
"/ip4/(Node1-IP)/tcp/15600/p2p/(Node1-PeerID)"
"../../../snapshots/private-tangle/full_snapshot.bin"

Being a different machine the snapshot file, the Coordinator’s public key, and a
multiaddr of one of the two running Hornet nodes need to be provided also to
“Server-1”. Open the docker-compose.yaml file in the ./extra-nodes folder, and
substitute the image gohornet/hornet:1.2.1 with iotaledger/hornet:1.2.2. The third
Hornet node can be now deployed as well.

$ git clone https://github.com/iotaledger/one-click-tangle.git
$ cd one-click-tangle/hornet-private-net/
$ mkdir snapshots && cd snapshots
$ mkdir private-tangle && cd ../
$ sudo chown -R 65532:65532 ./snapshots # now copy the

snapshot in ./snapshots/private-tangle/
$ cd extra-nodes/
$ chmod +x private-hornet.sh
$ ./private-hornet.sh install "node3:14265:15600:8083"

(coo_public_key_PATH)
"/ip4/(Server2-IP)/tcp/15600/p2p/(Node1-PeerID)"
"../../../snapshots/private-tangle/full_snapshot.bin"

Server-1 is equipped with a public IP address to allow clients outside the private
network to make requests to the Hornet nodes. To this extent, a firewall (Un-
complicated Firewall), together with an NGINX load balancer , have been set
up on this machine.

$ sudo apt update
$ sudo apt-get install ufw
$ sudo ufw allow in on enp2s0 from any to any port 14000

# Allow incoming traffic to port 14000 on public IP
address interface

$ sudo apt install nginx

Create the server block configuration to instruct the even traffic distribution of
API requests among the Server-1 and Server-2 nodes. Create the new file in
/etc/nginx/sites-available/dtcb.io and add the lines displayed in figure A.4:
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upstream dtcb {
server Server1-HornetNode-ContainerIP:14265;
server Server2-PrivateIP:14265;
server Server2-PrivateIP:14272;

}
server {

listen 14000;
server_name Server-1-PublicIP;
location / {

proxy_pass http://dtcb;
}

}

Figure A.4. NGINX Load Balancer configuration.

Next, the file needs to be “enabled” by creating a link to the directory which
NGINX reads from the startup. Now the NGINX daemon must be restarted to
catch up with the changes.

$ sudo ln -s /etc/nginx/sites-available/dtcb.io
/etc/nginx/sites-enabled/

$ sudo nginx -t # Test for syntax errors
$ sudo systemctl restart nginx

At this point, a private Tangle should be up and running.

A.2 RaspberryPi Setup

RaspberryPi-4 devices, equipped with an Infineon TPM-slb9670, have been used to
act as clients for the Tangle and to develop the PoC. From a Windows device, down-
load the Raspberry Pi Imager tool from https://www.raspberrypi.com/software/
and flash an SD card by installing the 32-bit version of Raspi OS lite. The Rasp-
berry can be launched. The kernel has to be rebuilt to support the IMA module
and the TPM-related modules.

$ sudo apt update
$ sudo apt install git bc bison flex libssl-dev make
$ git clone --depth=1 https://github.com/raspberrypi/linux
$ cd linux
$ KERNEL=kernel7l
$ make bcm2711_defconfig
$ nano .config

Modify the “.config” by adding/modifying the lines displayed in figure A.5:
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CONFIG_INTEGRITY=y
CONFIG_IMA=y
CONFIG_IMA_MEASURE_PCR_IDX=10
CONFIG_IMA_NG_TEMPLATE=y
CONFIG_IMA_DEFAULT_TEMPLATE="ima-ng"
CONFIG_IMA_DEFAULT_HASH_SHA256=y
CONFIG_IMA_DEFAULT_HASH="sha256"
CONFIG_IMA_AUDIT=y
CONFIG_IMA_LSM_RULES=y
CONFIG_TCG_TPM=y
CONFIG_HW_RANDOM_TPM=y
CONFIG_TCG_TIS_CORE=y
CONFIG_TCG_TIS_SPI=y
CONFIG_SPI_BCM2835=y
CONFIG_SPI_BCM2835AUX=y
CONFIG_SPI_BITBANG=y
CONFIG_SPI_GPIO=y

Figure A.5. Modules to enable for re-building the kernel.

Save and close the file. Now the kernel can be built.
$ make -j8 zImage modules dtbs
$ sudo make modules_install
$ sudo cp arch/arm/boot/dts/*.dtb /boot/
$ sudo cp arch/arm/boot/dts/overlays/*.dtb* /boot/overlays/
$ sudo cp arch/arm/boot/dts/overlays/README /boot/overlays/
$ sudo cp arch/arm/boot/zImage /boot/$KERNEL.img

Enable the SPI interface and the TPM’s device tree overlay.
$ sudo nano /boot/config.txt

At the bottom of this file add the following lines:
dtparam=spi=on
dtoverlay=tpm-slb9670

Finally, add to the kernel boot parameters the desired IMA properties.
$ sudo nano /boot/cmdline.txt

Concatenate the following line to the already existing parameters of the file.
lsm=integrity ima_policy=tcb ima_template=ima-ng

ima_hash=sha256

Reboot the device and the kernel should be correctly set up with both IMA and
the TPM drivers enabled. Repeat this process for every RaspberryPi that needs to
be installed.
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U The rpi-5.15.y kernel could not properly boot the IMA module and the
TPM drivers in the correct order. The IMA module was loaded before the
TPM’s spi-driver, and thus, IMA was not able to detect the TPM. Me
and my colleague Alberto, managed to patch the rpi-5.15.y kernel. The
accepted Pull-Request is available at https://github.com/raspberrypi/
linux/pull/5003.

A.3 TPM-related Software setup

In order to access the TPM functionalities, the TCG offers the TSS library that
exposes the needed APIs to develop TPM-based applications. Furthermore, to
manage the concurrent connections and TPM resources, the TPM2 Access Broker
and Resource Manager needs to be installed.

TSS Library Installation

On the RaspberryPi device, the TSS library can be compiled as follows:

$ sudo apt -y update
$ sudo apt -y install autoconf-archive libcmocka0 \

libcmocka-dev procps build-essential pkg-config \
libtool automake libssl-dev uthash-dev autoconf \
libjson-c-dev libini-config-dev libcurl4-openssl-dev \
libltdl-dev uuid-dev libglib2.0-dev

$ wget https://github.com/tpm2-software/tpm2-tss/releases/
download/3.2.0/tpm2-tss-3.2.0.tar.gz

$ tar -xvf tpm2-tss-3.2.0.tar.gz && cd tpm2-tss-3.2.0
$ ./configure --prefix=/usr
$ make -j8
$ sudo make install
$ sudo ldconfig

TPM2 Access Broker and Resource Manager

For installing and correctly install the tpm2-abrm daemon, these steps shown in
figure A.6 have to be performed on the device:
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$ wget https://github.com/tpm2-software/tpm2-abrmd/
releases/download/2.4.1/tpm2-abrmd-2.4.1.tar.gz

$ tar -xvf tpm2-abrmd-2.4.1.tar.gz && cd tpm2-abrmd-2.4.1/
$ ./configure --with-dbuspolicydir=/etc/dbus-1/system.d

--with-systemdsystemunitdir=/usr/lib/systemd/system
--libdir=/usr/lib --prefix=/usr

$ make -j8
$ sudo make install
$ sudo udevadm control --reload-rules && sudo udevadm trigger
$ sudo systemctl daemon-reload
$ systemctl status tpm2-abrmd.service # here it should be dead
$ sudo systemctl start tpm2-abrmd.service # after this it

should be active

Figure A.6. TPM2-abrm installation guide.

A.4 IOTA and WAM libraries installation

For the correct execution of the PoC, the iota.c and the WAM libraries need to
be properly installed.
For the correct installation of the IOTA C library, the following steps have to be
performed:

$ cd
$ sudo apt-get install cmake
$ git clone https://github.com/iotaledger/iota.c.git && cd

iota.c && git checkout dev
$ mkdir build && cd build
$ cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++

-DIOTA_WALLET_ENABLE:BOOL=TRUE -DCryptoUse=libsodium
-DCMAKE_INSTALL_PREFIX=$PWD ..

$ make all
$ make install

The WAM library can be obtained as follows:
$ cd
$ git clone https://github.com/Cybersecurity-LINKS/WAM.git

It is important that the WAM folder and the iota.c folder lay in the same root
directory (i.e. /home/user/WAM, and /home/user/iota.c).

A.5 Proof of Concept

This section describes the structure of the project as well as how to build and run
it. A high-level view of the project exposes the following folders and files:
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+ PoC/
|-- Consensus/
| # Contains the consensus logic.
|-- HeartBeat-Utils/
| # Contains the source code for launching a Heartbeat node.

Also, it contains the scripts necessary for the generation
of the Indexing Files.

|-- IMA/
| # Contains the source code for reading the IMA ML from the

security fs.
|-- RA/
| # Contains the source code for deploying a local Remote

Attestor.
|-- TPA/
| # The source code necessary for launching a local TPA.
|-- Whitelist_generator/
| # A python script file for easily generating whitelists.
|-- build_HeartBeatutils.sh
| # Bash script for automatically compiling the source code

related to the HeartBeat-Utils folder.
|-- build_RA.sh
| # Bash script for automatically compiling the source code

related to the RA folder.
|-- build_TPA.sh
| # Bash script for automatically compiling the source code

related to the TPA folder.

Configuring the project

For every needed Raspberry, to successfully run the project, prepare the local en-
vironment by performing the following steps:

$ cd /etc/
$ sudo mkdir tc
$ sudo mkdir tc/TPA_AKs
$ sudo chown $USER tc

If all the previous components have been correctly installed, the root user directory
(/home/$USER/) should be composed of:

+ PoC/
+ WAM/
+ iota.c/
...

Now compile the various main project components of the PoC:
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$ cd && cd PoC
$ ./build_HeartBeatutils.sh /home/$USER/
$ ./build_RA.sh /home/$USER/
$ ./build_TPA.sh /home/$USER/

Prepare the Indexing Files that have to be distributed to all the other nodes. The
distribution process is left to the administrator.

$ cd && cd PoC/HeartBeat-Utils/generateIndexesWAM/
$ sudo chmod +x WAM_generateIndexes
$ NUM_FILES=4 # the number should be equal to the number of

nodes that have to run the PoC
$ ./WAM_generateIndexes $NUM_FILES

The executable generates in this case the following files:

heartbeat_write.json
RA_index_node1.json, TPA_index_node1.json
RA_index_node2.json, TPA_index_node2.json
RA_index_node3.json, TPA_index_node3.json
RA_index_node4.json, TPA_index_node4.json

Each node must possess one RA Indexing file and one TPA Indexing file. Only
one node will be selected to run also as HeartBeat and will also need the heartbeat
Indexing file. These files should be saved in the /etc/tc folders of the various
nodes, except for the heartbeat file which must be placed in the following directory:
./PoC/HeartBeat-Utils/heartbeat WAM/. Before going online each node must
generate the whitelist with which the other nodes will then verify the integrity
status. To generate a new whitelist, a python script may be used as in A.7.

$ cd && cd PoC/
$ cd Whitelist_generator/
$ DIRS=/home/$USER/.ssh’’ # The files you want to include

in the whitelist
$ python whitelist_generator.py sha256 $DIRS # python

v.3.8.0 used

Figure A.7. Whitelist generation script.

The script outputs a whitelist that should contain something similar to figure
A.8.
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d77d5531019c462af5f8036ab6bbdf98f26bfe6959d9551d19b4c846d9c33f19
32 /home/$USER/.ssh/id_rsa.pub

b1e83554ebd981ec56e26e7668a5ac663b0e650a89cfe60cb2ec07dafa868285
37 /home/$USER/.ssh/known_hosts.old

06cb4ca3ea41542a289513d0450b3b34f808e4fc425effa80f90c08e657a65fd
33 /home/$USER/.ssh/known_hosts

8ae475f630877ba10cb1a80fe0d97898716b102bf11bcdd40d1b1e6e29d82f79
28 /home/$USER/.ssh/id_rsa

Figure A.8. Example of a whitelist.

Running the project

The PoC can be launched on every node. Hence, both the TPA and the RA
modules have to be executed, and optionally also the HeartBeat module. Before
launching the TPA, the TPM key material, such as the EK and the AK, must be
first generated:

$ cd && cd PoC/
$ cd TPA/
$ sudo ./PoC_TPA init

The TPA can be launched by performing the following commands:
$ cd && cd PoC/
$ cd TPA/
$ sudo ./PoC_TPA (path_to_file)/TPA_index_node1.json run

For executing the RA module, hence a local Remote Attestor, perform the following
commands:

$ cd && cd PoC/
$ cd RA/
$ NODES_NUM = 4
$ NUM_VERIFIERS = $NODES_NUM - 1 # The RA must know the

number of DTCB nodes that will participate minus it self.
$ sudo ./RA (path_to_file)/TPA_index_node1.json run

$NUM_VERIFIERS

Repeat this process on all the deployed RaspberryPis (i.e. the DTCB participants).
At this point, both the TPAs and the RAs are waiting for the heartbeat to

publish a nonce in order to further proceed. The selected node that has to run the
HeartBeat module must perform the following commands:

$ cd && cd PoC/
$ cd /HeartBeat-Utils/heartbeat_WAM/
$ NUM_NODES = 4 # The Heartbeat must know the number of DTCB

nodes that will participate.
$ sudo ./WAM_heartbeat $NUM_NODES
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All the modules will run indefinitely to check the DTCB compliance of the
deployed devices.
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B.1 Generating The Indexing Files

The source code contained in “./PoC/HeartBeat-Utils/generateIndexesWAM/”
can be compiled and leveraged for an automated generation of the Indexing Files.
Once compiled, the executable WAM generateIndexes generates the following files
based on the number of needed files that can be passed as input:

heartbeat_write.json
RA_index_node1.json, TPA_index_node1.json
RA_index_node2.json, TPA_index_node2.json
...
RA_index_nodeN.json, TPA_index_nodeN.json

These files are stored in the ./PoC/HeartBeat-Utils/generateIndexesWAM/ folder,
then the administrator has the task of correctly distributing them to the DTCB
nodes.

The function generate_iota_index is used for generating an Index together with
its corresponding Ed25519 key pair. This function is exposed by the WAM library
and is defined as follows:

uint8_t generate_iota_index(...)
The generation process conforms to what is explained in 4.3 and illustrated in figure
4.6.

Input:

• IOTA_Index *idx, pointer to a IOTA Index structure which contains the
parameters defined in figure B.1. First, a seed is created and used for the
private key generation. The key pair is then generated and, by hashing the
public part, the index is obtained.

Output: It returns a WAM ERR NULL code in case of error or a WAM OK code
for successful function execution.
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uint8_t index[INDEX_SIZE];
uint8_t berry[SEED_SIZE];
iota_keypair_t keys;

Figure B.1. IOTA Index data type.

The cJSON library is used for formatting raw data in JSON-like encoding.
This allows more readable file content. The relevant cJSON-related functions are
the following:

cJSON* cJSON_CreateObject(void)

Input: None.

Output: In case of failure NULL is returned, otherwise, a reference to the allocated
object is returned.

cJSON* cJSON_CreateString(...)
It generates a cJSON item from a string.

Input:

• const char* string, the string is encapsulated into a cJSON item.

Output: In case of failure NULL is returned, otherwise, the reference to the cJSON
item is obtained.

cJSON_bool cJSON_AddItemToObject(...)

Input:

• cJSON* object, pointer to a cJSON object. It acts as the “destination”
object as the name of the function suggests.

• const char* string, it represents the key that will be put in front of the
source value.

• cJSON* item, it is the cJSON item added to the destination object. A string
can be transformed into a cJSON item.

Output: In case of failure false is returned, otherwise, true is returned.

char* cJSON_Print(...)
Renders a cJSON object to text for transfer/storage.

Input:

• cJSON* object, pointer to a cJSON object to be formatted.

Output: The pointer to the formatted text. In case of failure, NULL is returned.

Figure B.2 roughly illustrates a pseudo-code of the performed operation.
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json = cJSON_CreateObject();

indexes = (IOTA_Index *) malloc(sizeof(IOTA_Index) *
number_of_indexes);

for(i = 0; i < number_of_indexes; i++) {
generate_iota_index(&(indexes[i]));
...
item = cJSON_CreateString(indexes[i].index);
cJSON_AddItemToObject(json, "index", item);
...

}

out = cJSON_Print(json);
fprintf(Indexing_File, "%s", out);

Figure B.2. Pseudo algorithm for generating an Index File.

B.2 The local Trusted Platform Agent

The local TPA is designed to be executed in two modes depending on the received
parameters: the “init” parameter allows preparing the environment by generating
the EK and AK needed for the Quote operation, and after, it can be run with
the “run” parameter which launches the execution of continuous quote operations
upon receipt of new nonces published on the tangle. The file containing the “root”
source code is “./PoC/TPA/PoC TPA.c”.

The Init phase

The main function that initializes the TPM is initialize_tpm() and it is re-
sponsible for generating the EK and the AK. The keys are generated and their
corresponding NV indexes (pointers to the TPM’s NV memory) are saved into a
local file called /etc/tc/keys.conf. The first index of the file always represents
the EK handle, while the second represents the AK handle. To access and mod-
ify the file, root privileges are required. If the file does not exist or is empty, the
program launches the keys generation process, otherwise, it reads the NV indexes
in the file and checks that the corresponding keys are actually in the TPM NV
memory. If both of the NV indexes or one of the two indexes do not reference the
correct object in the TPM the program launches an error, otherwise, the indexes
will be saved in the received inputs. Hence, the keys.conf file must be deleted,
and at the next program’s execution, the keys will be correctly generated. Figure
B.3 shows a pseudo-code of the described behavior.
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bool initialize_tpm(uint16_t *ek_handle, uint16_t *ak_handle){
tss_r = Tss2_TctiLdr_Initialize(NULL, &tcti_context);
tss_r = Esys_Initialize(&esys_context, tcti_context, NULL);
keys_conf = fopen("/etc/tc/keys.conf", "r");
if(keys_conf == NULL || file_is_empty(keys_conf)){

goto generate_keys;
} else {

ek_handle = fread(..., keys_conf);
ak_handle = fread(..., keys_conf);
if(ek_handle == NULL || ak_handle == NULL)

goto error;
rc = tpm2_getCap_handles_persistent(esys_context,

ek_handle);
rc2 = tpm2_getCap_handles_persistent(esys_context,

ak_handle);
if(rc < 0 || rc2 < 0)

goto error;
}

}

Figure B.3. Pseudo code for checking EK and AK persistence.

TSS2_RC Tss2_TctiLdr_Initialize(...) [31].
It initializes a TCTI context used to communicate with the TPM.

TSS2_RC Esys_Initialize(...) [31].
Creates an ESYS CONTEXT instance that will store and manage all the data for
communicating with the TPM.

int tpm2_getCap_handles_persistent(...)
Reads the number of persistent handles in the TPM and checks that the given input
handles exist and are persisted.

Input:

• ESYS_CONTEXT *esys_contex, a previously allocated ESYS CONTEXT.
• uint16_t *handle1, the NV index which has to be checked for persistence.

Output:

• -1 in case the TPM’s persistent handles cannot be read.
• -2 if “handle1” is not an existing persistent handle.
• 0 in case of success.

If it the case, the keys generation depends on two fundamental functions: tpm2_createek
and tpm2_createak. The key generation phase is illustrated in the pseudo-code
shown in B.4.
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generate_keys:
keys_conf = fopen("/etc/tc/keys.conf", "w");

tss_r = tpm2_createek(esys_context, ek_handle);
...
tss_r = tpm2_createak(esys_context, ek_handle, ak_handle);
...
fwrite(ek_handle, ..., keys_conf);
fwrite(ak_handle, ..., keys_conf);
fclose(keys_conf);
...

Figure B.4. Pseudo code for creating the EK and the AK.

TSS2_RC tpm2_createek(...)
Creates an EK in the endorsement hierarchy, and persists it in the TPM NV mem-
ory. The EK will be created by following the TCG EK profile guidance. Figure
B.5 illustrates the key type that will be generated. The public key is locally stored
in PEM format in the /etc/tc/ek.pub.pem file.
Input:

• ESYS_CONTEXT *esys_contex, a previously allocated ESYS CONTEXT.
• uint16_t *ek_handle, the NV index with which the EK can be later refer-

enced.
Output:

• TSS2_RC_SUCCESS in case the TPM’s EK has been successfully created and
persisted.

• TSS2_ESYS_RC_BAD_VALUE in case of errors. Internal functions have their
error codes to allow a multi-level error log.

TSS2_RC tpm2_createak(...)
Creates an AK within the endorsement hierarchy. The generated AK is an RSA
2048-bit key that uses rsassa as the signing algorithm and the SHA256 as a
hashing algorithm. It is a signing-restricted key as explained in Sect. 2.2.3. The
public key is locally stored in PEM format in the /etc/tc/ak.pub.pem file.
Input:

• ESYS_CONTEXT *esys_contex, a previously allocated ESYS CONTEXT.
• uint16_t *ek_handle, the NV index with which the EK can be later refer-

enced.
• uint16_t *ak_handle, the NV index assigned to the AK. It can be used for

later referencing.
Output:

• TSS2_RC_SUCCESS in case the TPM’s AK has been successfully created and
persisted.

• TSS2_ESYS_RC_BAD_VALUE in case of errors. Internal functions have their
error codes to allow a multi-level error log.
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Figure B.5. Endorsement Key profile. (source [6])

The Run phase

First, the keys.conf file is read to retrieve the NV indexes that reference the two
keys for correctly performing the quote operation. If the keys cannot be found
in the TPM the program launches an error and stops, otherwise, it will read the
TPA’s Indexing file and will initialize all the WAM channels needed for writing and
reading to/from the tangle. Then, it starts polling the HeartBeat channel, and as
soon as a new nonce is published, the TPA performs the Quote over PCR10 and
imports the IMA ML into an internal data structure. Finally, construct the IR and
writes it onto the tangle at a specific index. Once this process is over, the TPA
starts waiting again for a new nonce. The execution runs indefinitely until the user
stops it or an error occurs. A pseudo-code is shown in figure B.6.
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...
if(!initialize_tpm(...)) {

printf("Could not retrieve keys handles");
return ;

}
...
rc = get_Indexes_from_file(...);
for(i = 0; i < num_channels; i++){

rc = WAM_init_channel(...);
rc = set_channel_index_read(...);

}
if(!sendAkPub_Whitelist_WAM(...)) {

printf("Could not write on tangle");
return ;

}
while(1){

ret = WAM_read(...) // read NONCE
if(ret == WAM_OK){

tss_r = tpm2_quote(...);
if (tss_r != TSS2_RC_SUCCESS) {

printf("Error while computing quote!");
return ;

}
}
sendDataToRA_WAM(...);

}

Figure B.6. TPA Run mode pseudo-code.

int get_Indexes_from_file(...)
It parses the JSON TPA’s Indexing file and stores the read indexes in the corre-
sponding IOTA Index data structure. In the case of a “write” index, the whole
Ed25519 key pair is also stored in the data structure, otherwise, in the case of a
“read” index, only the public key will be present in the Indexing file.
Input:

• FILE *indexing_file, the file pointer to the Indexing file. The file path is
passed as an argument in the command line.

• IOTA_Index *heartBeat_index, it contains the Index for reading the nonce
on the Tangle.

• IOTA_Index *writeIR_index, it references the index used for writing the IR
on the Tangle.

• IOTA_Index *writeAk_Whitelist_index, it contains the index used for writ-
ing the AK and the whitelist on the Tangle.

Output:
• -1 in case of wrong or unexpected file content.
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• 0 in case the file parsing and the file content are correct.
uint8_t WAM_init_channel(...)
It initializes the WAM Channel structure with all the necessary data. The WAM Channel
is defined as illustrated in figure B.7.
Input:

• WAM_channel* channel, a pointer to a WAM Channel structure.
• uint16_t id, represents the ID of the channel.
• IOTA_Endpoint* endpoint, the IOTA Endpoint structure contains the nec-

essary metadata to be able to connect to a Hornet node.
• WAM_Key* PSK, a structure that encapsulated the PSK together with its length.

A reference is needed to instruct the WAM Channel to use that PSK.
Output:

• WAM_ERR_CH_INIT, in case of NULL pointers or of wrong provided data, this
code error is returned.

• WAM_OK, it is returned in successful cases.

typedef struct WAM_channel_t {
uint16_t id;

IOTA_Endpoint* node;

IOTA_Index start_index;
IOTA_Index current_index;
IOTA_Index next_index;

uint8_t read_idx[INDEX_SIZE];

WAM_Key *PSK;

uint16_t sent_msg;
uint16_t recv_msg;
uint16_t sent_bytes;
uint32_t recv_bytes;

uint8_t buff_hex_data[IOTA_MAX_MSG_SIZE];
uint8_t buff_hex_index[INDEX_HEX_SIZE];

} WAM_channel;

Figure B.7. WAM Channel data structure definition.

uint8_t set_channel_index_read(...)
This function instructs a WAM Channel to set the writing starting with the index
passed as a parameter.
Input:

• WAM_channel* channel, a pointer to a WAM Channel structure.
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• IOTA_Index* write_index, it contains the index where the chain starts, to-
gether with the Ed25519 keypair.

Output:

• WAM_ERR, in case of NULL pointers or of wrong provided data, this code error
is returned.

• WAM_OK, it is returned in successful cases.

bool sendAkPub_Whitelist_WAM(...)
This function writes within one single message on the Tangle the public part of
the AK and the previously generated whitelist. The message is “tagged” by in-
cluding the hash of the AKpub (NodeID). The message is built by leveraging the
data structures illustrated in figure B.8. The AKpub PEM file is retrieved from
/etc/tc/ak.pub.pem, while the whitelist can be read from the ./PoC/Whitelist generator/
folder, and created as explained in A.7

Input:

• WAM_channel* channel, a pointer to a WAM Channel initialized with the
correct index.

• IOTA_Index* write_index, it contains the index where the chain starts, to-
gether with the Ed25519 keypair.

• AK_BLO *ak_blob, contains the Ak’s public part together with its SHA256
digest.

• WHITELIST_BLOB *whitelist_blob, contains the golden values that the other
nodes will use in the verification process.

Output:

• false, is returned in case of NULL pointers or the writing process failed.
• true, it is returned in successful cases.

struct whitelist_entry {
u_int8_t digest[SHA256_DIGEST_LENGTH*2+1];
u_int16_t path_len;
char *path;

};
typedef struct {

u_int16_t number_of_entries;
struct whitelist_entry *white_entries;

} WHITELIST_BLOB;

typedef struct {
u_int16_t size;
u_int8_t *ak_pub;
u_int8_t ak_hex_digest[SHA256_DIGEST_LENGTH*2+1];

} AK_BLOB;

Figure B.8. AK and Whitelist data structures.
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uint8_t WAM_read(...)
This function reads once from a channel and stores the read bytes in a buffer.

Input:

• WAM_channel* channel, a pointer to a WAM Channel initialized with the
correct index where it reads.

• uint8_t* outData, the buffer where the read data will be stored.
• uint32_t *outDataSize, it is the size of the outData buffer.

Output:

• WAM_BROKEN_MESSAGE, is returned in case of corrupted messages.
• WAM_NOT_FOUND, it is returned when at the reading index there is no published

message yet.
• WAM_OK, returned in case a successful read has been performed.

TSS2_RC tpm2_quote(...)
This function is responsible for performing the Quote operation only on the PCR10.
After the quote has been produced by the TPM, the IMA ML is also read from the
security file system. All the generated data, together with the IMA ML, are stored
inside a user-defined data structure called TO SEND. The internal composition
of this structure is illustrated by figure B.9.

Input:

• ESYS_CONTEXT *esys_contex, a previously allocated ESYS CONTEXT.
• TO_SEND *TpaData, a pointer to a previously allocated structure for contain-

ing IRs data.
• ssize_t imaLogBytesSize, it represents the bytes of the IMA ML that have

been up to the time of calling the quote. It is used for avoiding to send the
whole log at every cycle.

• uint16_t *ak_handle, it is the AK handle needed to load the key and sign
the Quote.

Output:

• TSS2_RC_SUCCESS in case the quote and all the related operations have been
successfully executed.

• TSS2_ESYS_RC_BAD_VALUE in case of errors. Internal functions have their
error codes to allow a multi-level error log.
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typedef struct {
u_int16_t size;
u_int8_t buffer[MAX_RSA_KEY_BYTES];

} SIG_BLOB; # Quote signature

typedef struct {
u_int16_t size;
u_int8_t buffer[sizeof(TPMS_ATTEST)];

} MESSAGE_BLOB; #Quote’s structure

struct event_blob {
struct {

u_int32_t pcr;
u_int8_t digest[SHA_DIGEST_LENGTH];
u_int32_t name_len;

} header;
char name[TCG_EVENT_NAME_LEN_MAX + 1];
u_int32_t template_data_len;
u_int8_t template_data[512]; /* template related data

*/
};
typedef struct {

u_int16_t size;
u_int8_t wholeLog; // 1 = whole log will be sent, 0 =

only part of it
struct event_blob *logEntry;

} IMA_LOG_BLOB;

typedef struct {
u_int8_t ak_hex_digest[SHA256_DIGEST_LENGTH*2+1];
SIG_BLOB sig_blob;
MESSAGE_BLOB message_blob;
IMA_LOG_BLOB ima_log_blob;

} TO_SEND;

Figure B.9. Data structures composing an Integrity Report.

int sendDataToRA_WAM(...)
This function is responsible for sending the IR on the Tangle, writing at the index
stored in the WAM Channel structure passed as input.

Input:

• TO_SEND TpaData, The IR data to write on the tangle.
• ssize_t *imaLogBytesSize, the function calculates the number of bytes of

the IMA ML that has been written.
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• WAM_channel *ch_send, it is a reference to the WAM channel used for writing
on the tangle.

Output:
• 1 in case the IR has been successfully written on the tangle.
• -1 in case of errors (i.e. NULL pointers or missing necessary data).

uint8_t WAM_write(...)
For writing on the Tangle the WAM library exposes this function.
Input:

• WAM_channel* channel, a pointer to a WAM Channel initialized with the
correct index where it reads.

• uint8_t* outData, the buffer where the read data will be stored.
• uint32_t *outDataSize, it is the size of the outData buffer.

Output:
• WAM_ERR, it is returned in case of internal errors.
• WAM_OK, returned in case a successful write operation has been performed.

B.3 The local Remote Attestor

The local Remote Attestor first reads its Indexing file and prepares itself for reading
and writing on the Tangle by setting up all the WAM channels. Afterward, it reads
the AKs and the whitelists and stores them in an array of objects. If a node does
not publish the AK and the whitelist the execution stops. At this point, the local
RA is ready to read the nonce from the tangle. As soon as a node publishes its IR,
the verification process starts and the result is stored in the local Trust-Status table.
When all the expected IRs have been verified, the consensus protocol is executed.
As a consequence, some nodes may get expelled from the DTCB, and the local RA
stops reading from their WAM channels. Figure B.10 displays a pseudo-code of the
local Remote Attestor operations.
int read_and_save_AKs_whitelists(...)
This function reads from the tangle the nodes-related data (i.e. whitelists and the
public part of the Aks), except himself, and constructs a table that will be used in
the verification process. All the read AKpub are saved in PEM format in the folder
/etc/tc/TPA AKs. If a node does not accomplish writing them the execution stops
and an error is thrown. The data are stored by following the structure illustrated
in figure B.11.
Input:

• WAM_channel* channel, a pointer to a WAM Channel initialized with the
correct index where it reads.

• AK_WHITELIST_TABLE* ak_white_table, an already initialized object where
the AKs and the whitelists will be stored

• int node_number, it is the index pointing to a row of the table.
• FILE *ak_file, it represents the file where the AKpub will be stored. The

root folder is ‘‘/etc/tc/TPA_AKs/’’.
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...
rc = get_Indexes_from_file(...);
for(i = 0; i < num_channels; i++){

rc = WAM_init_channel(...);
rc = set_channel_index_read(...);

}

for(i = 0; i < num_channels; i++){
int res = read_and_save_AKs_whitelists(...);

}

while(1) {
ret = WAM_read(...) // read NONCE
if(ret == WAM_OK){

readIRs = 1;
}
while(readIRs > 0) {

if(IR_channels[i] != ignored && !already_verified){
ret = WAM_read(...); // read IR of i-th node
if(ret == WAM_OK) {

rc = parseIR_to_TPAdata(...);

rc = verify_PCR10_whitelist(...);
if(!tpm2_checkquote(...))

ver_response[i].is_quote_successful == 0;
else ver_response[i].is_quote_successful == 1;

if(ver_response[i].is_quote_successful == 1 &&
ver_response[i].number_white_entries == 0)
local_trust_table[i] = T;

else local_trust_table[i] = NT;

readIRs += 1;
}

}
if(readIRs == expected_IRs_to_verify){

rc = sendLocalTrustStatus(...);
rc = readOthersTrustTables_Consensus(...);
readIRs = 0; // wait new nonce

}
}

}

Figure B.10. Local Remote Attestor’s pseudo-code.

Output:
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• 1 in case of successful execution.
• -1 in case some data are missing from the tangle.
• -2 in case of errors while processing the read data.

struct whitelist_entry {
u_int8_t digest[SHA256_DIGEST_LENGTH*2+1];

u_int16_t path_len;
char *path;

};
typedef struct {

u_int8_t ak_md[SHA256_DIGEST_LENGTH];
u_int8_t *path_name;
u_int16_t number_of_entries;
struct whitelist_entry *white_entries;

} AK_WHITELIST_TABLE;

Figure B.11. AK plus Whitelist data structures used by local Remote Attestors.

int parseIR_to_TPAdata(...)
This function reads the IR from the tangle and parses them in the analogous data
structure defined in figure B.9.

Input:

• TO_SEND *TpaData, it receives an array of the data structure that will be
filled by parsing the IR’s byte buffer.

• uint8_t *read_attest_message, it is the IR’s byte buffer to parse.
• int node_number, it represents the TpaData’s array index where the data

will be written.

Output:

• 1 in case of successful execution.
• -1 in case some data are missing from the tangle.
• -2 in case of errors while processing the read data.

bool verify_PCR10_whitelist(...)
This function re-calculates the PCR10 aggregate value by reading the IMA ML con-
tained in the IR. While reading the IMA ML also the whitelist is verified against
the ML. The local Remote Attestor maintains the memory of the last calculated
PCR10 of the given node. This allows for correctly constructing the PCR10 aggre-
gate value even if the ML has not been entirely sent. All the verification results are
stored in the data structure defined in figure B.12.

Input:

• unsigned char *pcr10_sha256, the last calculated PCR10. If the whole
IMA ML is sent, it is reset to all zeros.

• IMA_LOG_BLOB ima_log_blob, it contains the IMA ML.
• AK_WHITELIST_TABLE whitelist, it represents the whitelist of the verifying

node.
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• VERIFICATION_RESPONSE *ver_response, the result of the whitelist verifi-
cation is stored in this data structure. the whitelist verification is successful
if the ver_response[verifying_node].number_white_entries is zero.

Output:
• true in case of successful execution.
• false in case of errors while processing the data.

typedef struct {
uint16_t name_len;
char *untrusted_path_name;

} UNTRUSTED_PATH;
typedef struct {

uint8_t ak_digest[SHA256_DIGEST_LENGTH+1];
uint16_t number_white_entries;
uint8_t is_quote_successful;
UNTRUSTED_PATH *untrusted_entries;

} VERIFICATION_RESPONSE;

Figure B.12. Data structures for Verification results.

bool tpm2_checkquote(...)
This function checks the authenticity of the received quote and also the integrity of
the received IMA ML. The public part of the AK is read from “/etc/tc/TPA AKs/”.
If the quote is successfully verified it also validates the whitelist verification done
previously.
Input:

• TO_SEND TpaData, it contains the quote’s structure together with its signa-
ture.

• uint8_t* nonce, the nonce read from the tangle will be used to prove the
quote’s freshness.

• AK_WHITELIST_TABLE ak_white_table, it is used to read the AKpub. The
file name is contained in the data structure.

• unsigned char *pcr10_sha256, it is used to compare its digest with the one
contained in the quote’s structure (calcDigest field).

Output:
• true in case of successful execution.
• false in case the quote is not genuine.

bool sendLocalTrustStatus(...)
This function writes on the tangle the trust decisions that the local Remote Attestor
has made about the other nodes’ IR. The local trust table is defined as illustrated
in figure B.13.
Input:

• WAM_channel *ch_send, the channel where to write the local trust table.

101



Developer Manual

• STATUS_TABLE local_trust_status, the table to be written on the tangle.

Output:

• true in case of successful execution.
• false in case the write operation fails.

typedef struct {
uint8_t ak_digest[SHA256_DIGEST_LENGTH+1];
int8_t status; // 0 = NT, 1 = T
}STATUS_ENTRY;

typedef struct {
uint16_t number_of_entries;
uint8_t from_ak_digest[SHA256_DIGEST_LENGTH+1]; //

NodeID’s source that created the table
STATUS_ENTRY *status_entries;
}STATUS_TABLE;

Figure B.13. Trust table definition.

int readOthersTrustTables_Consensus(...)
This function reads the local trust tables that the other nodes wrote on the tangle.
When all the data are retrieved, a call to the consensus execution is made.

Input:

• WAM_channel *ch_read, the channel where to read the local trust tables pub-
lished by the other DTCB peers.

• STATUS_TABLE my_local_trust_status, the local trust table constructed lo-
cally. The consensus algorithm needs all the tables.

• int *invalid_channels_status, the index of this array represents every
node’s channel. If a cell is marked it means that the channel related to the
i-th cell is ignored. This happens when the owner of that channel (a node)
was previously detected as Non-Trusted.

Output:

• 1 in case of successful execution.
• 0 in case the other trust tables could not be read.
• -1 in case the consensus failed its execution.

B.4 The consensus protocol

This simple consensus mechanism allows for ensuring the coherence of the local
trust decision made by every DTCB peer. It is based on a majority vote approach.
The consensus mechanism receives all the local trust tables and constructs a global
trust-status table. The sum of Non-Trusted decisions made about a single node is
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taken, and if it satisfies the consensus rule it is marked as untrusted. Figure B.14
illustrates a pseudo-code of this mechanism.

int consensous_proc(...) {

int *nt_array = calloc(nodes_number, sizeof(int));
int consensus_rule = get_consensus_rule(nodes_number);

// prepare the global table
for(i = 0; i < nodes_number; i++) {

for(j = 0; j <
others_local_trust_status[i].number_of_entries; j++) {
if(!inGlobalTable(others_local_trust_status[i].nodeID))

setNodeID_inGlobal(global_trust_status,
others_local_trust_status);

}
}

// Detect untrusted tables
for(i = 0; i < nodes_number; i++) {

for(j = 0; j <
others_local_trust_status[i].number_of_entries; j++) {
if(others_local_trust_status[i].status_entries[j].status

== 0) // status = NT
nt_array[k] += 1; // sum of NT decisions

}
}

for(i = 0; i < nodes_number; i++) {
if(nt_array[i] >= consensus_rule)

global_trust_status->status_entries[i].status = 0; //
tag the node id as NT

else global_trust_status->status_entries[i].status = 1;
// tag the node id as NT

}

}

Figure B.14. Pseudo algorithm of the consensus protocol.

int consensous_proc(...)
This function constructs the global trust table as roughly shown in figure B.14.

Input:

• STATUS_TABLE *others_local_trust_status, an array that represents all
the local trust tables.
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• STATUS_TABLE *global_trust_status, the global trust-status table that
will be constructed.

• int nodes_number, it represents the number of rows that the global table
should have.

Output:
• 1 in case of successful execution.
• -1 in case the consensus failed its execution.

int get_consensous_rule(...)
This function returns the rule on which the “majority” decision is taken.
Input:

• int nodes_number, the consensus rule varies based on the number of DTCB
nodes.

Output:
• It outputs the result of the formula 5.1.
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