
POLITECNICO DI TORINO

DIPARTIMENTO DI AUTOMATICA E INFORMATICA
Master Degree in Computer Engineering

MASTER THESIS

Unsupervised feature extraction using autoencoders for
analyzing single-cell images from acute myeloid leukemia

patients

Supervisors Candidate
Prof. Tatiana Tommasi Raheleh Salehi
Dr. Carsten Marr
Ario Sadafi

Academic year 2022-2023



Dedication

Words cannot express my gratitude to Dr. Carsten Marr and Dr. Tatiana Tommasi for
their invaluable patience, support, and feedback. I also could not have undertaken this
journey without members of the Marr lab, who generously provided knowledge and ex-
pertise. Additionally, this endeavor would not have been possible without the generous
support from Ario Sadafi, who guides and supports me.

I am also grateful to my flatmates for their support and positive energy during this
journey that impacted and inspired me. I would also like to thank Dr. Ali Danaee who
supported me all these years when I moved abroad to start my new life.

Lastly, I would be remiss in not mentioning my family, especially my parents, and my
sisters. Their belief in me has kept my spirits and motivation high during this process.

2



Abstract

Identification and classification of white blood cells in peripheral blood smears is a key
step for the diagnosis of hematological malignancies. Different lab procedures, illumina-
tion, staining, and microscope settings are resulting in domain shifts, which hamper the
reusability of machine learning methods when applied to data collected from different
sites. In this thesis, we propose an autoencoder to extract unsupervised cross-domain
features on three different datasets of single white blood cells. Using a Mask R-CNN ar-
chitecture as a first step allows the autoencoder to focus on the relevant white blood cell
and eliminate artifacts in the image. A simple random forest method is used to classify
the extracted features of the single cells as a way to evaluate the quality of the features
extracted by the autoencoder. We show that the random forest classifier trained on only
one of the datasets can perform satisfactorily on the unseen datasets thanks to the rich
features extracted by the autoencoder. In the cross-domain task, it outperforms published
oracle models. According to the results, this unsupervised approach can be employed in
more complicated diagnosis and prognosis tasks without the need to add expensive expert
labels to unobserved datasets and it is expected that it will improve the applicability and
reliability of machine learning algorithms in different centers and hospitals.

3



Contents

1 Introduction 5
1.1 Scientific contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methods 9
2.1 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Instance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Mask R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Normalization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Group normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Domain adaptation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 Normal distribution alignment . . . . . . . . . . . . . . . . . . . . . 17
2.7.2 Adversarial domain adaptation . . . . . . . . . . . . . . . . . . . . 17
2.7.3 Maximum mean discrepancy . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Autoencoder-based cell feature extractor . . . . . . . . . . . . . . . . . . . 20

3 Experiments and results 23
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Mask R-CNN dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Training Mask R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Setup and hyperparameters . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Bottleneck size: A thorough study . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Model architecture: An ablation study . . . . . . . . . . . . . . . . . . . . 28
3.4.1 ND-AE-DA: Normal distribution alignment . . . . . . . . . . . . . 31
3.4.2 AAE-DA: Adversarial domain adaptation . . . . . . . . . . . . . . . 31
3.4.3 AE-CFE: Maximum mean discrepancy . . . . . . . . . . . . . . . . 32

4 Discussion 35
4



Chapter 1

Introduction

Hematopoietic malignancies such as leukemia rank among the leading causes of death
and are a major obstacle to increase of life expectancy in countries worldwide during the
past decade Deschler and Lübbert [2008]. Leukemia has different types which are based on
histopathologic and histochemical findings in peripheral blood and bone marrow Buechner
et al. [1985]. The main four types of Leukemia are chronic myelogenous leukemia (CML),
chronic lymphocytic leukemia (CLL), Acute myeloid leukemia (AML), and acute lym-
phocytic leukemia (ALL). Chronic forms of leukemia affect middle-aged to older adults,
while acute types mostly affect children and young adults. Based on data from SEER
NCI [2021], it is estimated that there will be around 60,650 new cases of leukemia and an
estimated 24,000 people will die of this disease in the next two decades. ALL and AML
are among common childhood cancers and most often in older adults. It is slightly more
common in men than women. A leukemia diagnosis can be challenging to process and it
depends on age, gender, and some other parameters.
Cytomorphologists evaluate white blood cells under the microscope in blood or bone
marrow smears for proper diagnosis. So far, this morphological analysis has not been
automated and it requires trained experts checking blood smears under the microscope.
Trained experts are expensive and the process is time-consuming. Computer-aided diag-
nosis systems are thus an essential element helping cytologists to speed up the process
and have accurate performance. In recent years, deep learning approaches are more and
more applied to biomedical tasks and are demonstrating their considerable capabilities,
especially in image processing tasks, mostly due to hardware improvements and develop-
ment of new algorithms. The promising ability of deep learning methods has supported
them as a primary option for computer based diagnosis and recognition particularly in
medical images. Since diagnosing hematological malignancies requires identification and
classification of white blood cells in peripheral blood smears, classification based on deep
learning techniques has received vast attention and recent works show the potential for
automation of this medical task. For instance, Matek et al. [2019] have defined a highly
accurate supervised approach based on convolutional neural networks ResNext Xie et al.
[2017] architecture for the classification of white blood cells in blood smears of acute
myeloid leukemia patients. They are using over 18,000 white blood cell images to train
the model for the classification of the most important cell types with high accuracy based

5



Introduction

on blood smears. In another work Matek et al. [2021], they suggest a CNN method for
cell morphologies classification in bone marrow smears as well. Boldú et al. [2019] have
suggested a predictive machine-learning approach for diagnosis of acute myeloid leukemia
in peripheral blood cell images. They have developed a model that can identify differ-
ent types of blasts (myeloid and lymphoid origin) and pathological promyelocytes and
lymphocytes from normal mononuclear cells such as lymphocytes and monocytes. Their
proposed model has two steps: First, the image is segmented, and features are extracted,
this is called image processing in their pipeline.
Final recognition module includes a linear discriminant analysis (LDA). LDA is used for
reducing the dimensionality of the features and to find a combination of features helping
the classification. In the second step, the method predicts the patient’s disease diag-
nosis based on the individual cells. In another work, Acevedo et al. [2021] suggested a
machine-learning model for the automatic diagnosis of patients who are suffering from
myelodysplastic syndrome, a preform of acute myeloid leukemia. The model is used
two different neural network architectures, Vgg-16 and Inceptionv3. Firstly the model is
trained on two neural networks and extracted the features, then these features were used
to train a support vector machine classifier. In the second case, they suggested using
the same networks as two end-to-end models for classification of the eight white blood
cells classes. All of these studies have used data that are provided by a single center.
However, there are many factors that can affect the microscopic images such as camera
resolution, microscope settings, illumination, and staining protocols in laboratory proce-
dures. Additionally, there are many cases where it is difficult to gather datasets that have
all the required verification and diversity to train robust neural networks. These changes
can affect model performance considerably. Datasets need to be annotated again and the
models should be re-trained every time for every center. This challenge is called domain
shift Sankaranarayanan et al. [2018]. Domain adaptation can be a solution to align dif-
ferent domains in the data. The aim is to train a model on one dataset as a source and
get similar high performance on other target datasets. Based on the target domain data,
domain adaptation methods can be categorized into the following:

• Supervised: Both the source domain and the target domains are fully annotated.

• Semi-Supervised: Both source and target domains are labeled partially, but unla-
belled data in the source domain and target domains exists too.

• Unsupervised: Samples are not labeled in the target domains.

There are many learning setups that have been applied before under different names in
domain adaptation methods. Dou et al. [2019] formalized a learning semantic feature
space by incorporating global and local constraints in a supervised approach. They in-
troduced two complementary losses to explicitly regularize the semantic structure of the
feature space. Chen et al. [2020] have proposed a conduction synergistic alignment of
both images and features for unsupervised domain adaptation method. In their method,
they considered two perspectives of alignments by an adversarial learning regime with a
shared feature encoder to get their mutual benefits for decreasing the gap between them in
an end-to-end training. Finally, Ranzato and Szummer [2008] have published a standard

6



1.1 – Scientific contribution

semi-supervised problem by ignoring the domain difference and considering the source
instances as labeled data and the target ones as unlabeled data. Published methods we
are aware of are altering the classifier by retraining on the new domain to change decision
boundaries. Most of them require at least a few labels in the target domains.

1.1 Scientific contribution
In this thesis, we present an AutoEncoder-based Cell Feature Extractor (AE-CFE). It is
a simple, economic, and robust approach for feature extraction single white blood cells.
The proposed method is based on instance features that are extracted by a Mask R-CNN
He et al. [2017] architecture as a white blood cell detector and feature extractor, then
we propose an autoencoder to get the features of single white blood cells in digitized
blood smears. Since the data is coming from different centers, we are defining a domain
adaptation loss to decrease the discrepancy between the source distribution and the target
distributions. The proposed approach is the first unsupervised two-staged autoencoder
method for cross-domain feature extraction. While many domain adaptation methods
have been published, there is no unsupervised feature extraction method that is able
to work across different domains without requiring instance labels. We outperformed
the published supervised methods on the unseen white blood cell datasets and offered a
more robust decision support algorithm for diagnosing hematopoietic malignancies. The
implementation is publicly available at https://github.com/marrlab/AE-CFE.

7



8



Chapter 2

Methods

2.1 Image classification
Image classification Guo et al. [2017] is a challenge in computer vision and the goal is
to categorize the objects present in an image into a set of known predefined categories.
Two general methods of classification are “supervised” and “unsupervised”. In unsuper-
vised classification methods, a algorithm is using the specified characteristics of an image
systematically during the image processing stage. An architecture that can automati-
cally learn the underlying distribution of the data could answer questions about the data,
for instance about correlations or clusters. The classification methods used are “image
clustering” or “pattern recognition”. Supervised classification method is the process of
visually selecting samples within the image and assigning them to pre-selected categories.
A breakthrough in building models for image classification came with the discovery that
a convolutional neural network (CNN) could be used to progressively extract higher- and
higher-level representations of the image content. Instead of preprocessing the data to
derive features like textures and shapes, a CNN takes just the image’s raw pixel data as
input and "learns" how to extract these features, and ultimately infer what object they
constitute.

Input image Class predictions

Dog

Cat

Tiger

Lion

Figure 2.1. Example of image classification. The deep learning model returns classes
along with the detection probability [figure from creative commons/rawpixel.com].

9



Methods

2.2 Object detection
Object detection is a technique in computer vision to locate instances of objects in images
or videos. When humans look at images or videos, they can recognize the instances of
objects and detect their positions. The aim of using object detection algorithms is not
only to classify the present objects in an image but also to locate where they are.

Figure 2.2. Exemplary object detection on an image. Three objects of Dog, Cat, and
Trunk are detected [figure from https://www.boredpanda.com/].

There are two key steps in any object detection algorithm:

• To detect the instances of objects and their boundaries in the image.

• To classify the instances of objects into a set of known groups.

In general, there are two categories of deep object detectors: single-staged and two-staged
methods. Single-staged methods are faster and more suitable for real-time scenarios.
Redmon et al. [2016] for example is one of the single-staged object detectors. On the
other hand, two staged approaches are more accurate in localization and recognition of the
objects while requiring more resources and are slower in computation. In these methods
first, the candidate bounding boxes are generated in the first stage, and in the second
stage the candidate bounding boxes are refined and classified. R-CNN based methods,
such as Faster R-CNN Ren et al. [2015] is an example of a two-staged object detector.

2.3 Instance segmentation
In instance segmentation algorithms are quite similar to instance detectors, while in addi-
tion to localization and classification of the objects, they provide binary masks indicating
which pixels of an image belong to the detected objects. Mask R-CNN is one of the most
widely used two staged instance segmentation algorithms.

10



2.4 – Mask R-CNN

Figure 2.3. Exemplary instance segmentation on two images. The instances are seg-
mented and categorized into the classes [figure from https://pixabay.com/] .

2.4 Mask R-CNN

Mask R-CNN He et al. [2017] is a Convolutional Neural Network (CNN) and one of the
widely used state-of-the-art algorithms in instance segmentation tasks. It is an extension
of Faster R-CNN Ren et al. [2015] which was developed previously for object detection.
Mask R-CNN is able to segment instances found in an image and it focuses on detecting
and segmenting every instance in the image. There are two stages in a Mask R-CNN
model. The first stage consists of a feature extraction step over the whole image and a
region proposal network (RPN) suggesting candidate bounding boxes all over the image.
In the second stage extracted features are cropped out for every instance by RoIAlign to
be analyzed by different heads of the network to classify and refine the bounding box, and
instance segmentation. The feature extractor of the Mask R-CNN is based on a ResNet101
He et al. [2016] backbone with Feature Pyramid Network (FPN) Lin et al. [2017].

Feature Pyramid Network helps the recognition of objects at different scales. It takes
a single-scale image and then returns a sized feature map at multi-levels and is calculated
independently of the backbone of the convolutional neural network. There is a bottom-up
pathway and a top-down pathway in the construction of the pyramid. The feedforward
computation of the backbone ConvNet computes a hierarchy of feature maps in several
scales for the bottom-up pathway. While in the top-down pathway, it samples spatially
coarser but semantically stronger, hallucinated in higher resolution features. Then those
features are raised via lateral connections from the bottom-up pathway. The task for lat-
eral connections is to merge feature maps from the bottom-up pathway and the top-down
pathway.

ResNet101 architecture is a convolutional neural network with 101 layers. A pre-
trained version of the network is trained on more than a million images from the ImageNet
database. The image input size is 224 by 224 and the network has learned rich feature
representations for a wide range of images.

11



Methods

Figure 2.4. In the left figure, in a top-down method without the connections, the features
are predicted on the finest level. On the right figure, it is a Feature Pyramid Network
that has two pathways with predictions independently [figure from Lin et al. [2017]].

2.4.1 Loss function
Mask R-CNN is a combination of three different tasks including classification, bounding
box, and segmentation mask. For each of those, a loss is defined and the overall loss of
the model is the linear summation of the three:

L = Lcls + Lbox + Lmask (2.1)

Where Lcls is the log-likelihood loss for classification and Lbox is bounding box regression
loss, and Lmask is a mask branch output compared with the groundtruth. The classification
loss is the classic negative log-likelihood Lcls(p, u) = −log(pu) for the true class u. Where
p represents the predicted probability and u is the predicted value of the corresponding
label. Bounding box regression loss Girshick et al. [2014] consists of the hyper-parameter
λ to set the balance of the two tasks and it uses a smooth function.

Lbox(tu, v) = λ
Ø

iϵ(x,y,w,h)
smoothL1(tu − v) (2.2)

Lbox calculates the similarity of the tu and v where tu is predicted tuple for class u and v
is a ground-truth bounding-box regression target. The smoothL1 function is a robust L1
loss that is sensitive to outliers.

smoothL1(x) =
; 0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(2.3)

The definition of Lmask is the average binary cross-entropy loss when considering uth

mask and the region is related to the ground truth class u.

Lmask = − 1
m2

Ø
1≤i,j≤m

è
yij logŷu

ij + (1 − yij)log(1 − ŷu
ij)

é
(2.4)

where y is the label of the object (i, j) in the corrected mask for the bounding box
of mxm size, and ŷu

ij is the predicted mask value of the same cell corresponding to the
ground-truth class u.

12



2.4 – Mask R-CNN

Figure 2.5. The plot of smoothL1 loss [figure from Lin et al. [2017]].

2.4.2 Augmentation
Mask R-CNN is one of the critical components in our design because correct detection of
white blood cell images and extraction of the relevant features is crucial for the next steps.
To increase the detection accuracy of unseen data, we need to increase the dynamics in
our training samples so that we obtain a robust model able to detect single cells and
extract features in different illuminations, microscope settings, and other domain-specific
characteristics of the data. Since it is hard to get more real data in medical or biological
cases; data augmentation is a good solution to obtain more training data. Augmenting the
data means that the number of existing samples is increased by generating new data points
using a set of techniques without changing the sample labels Goodfellow et al. [2016], while
the relevant information is retained in the images. The augmentation techniques that we
used on the datasets are:

• Random flips and mirroring: The image is randomly flipped and mirrored on
the horizontal and vertical axis. It is a perfect technique because the cells can have
different orientations.

• Affine rotation and scaling: The image is randomly rotated or zoomed in and
out. It is a good technique because there are three different datasets with different
resolutions.

• Changing color temperature: The color temperature of the image is modified to
a provided value.

• Changing linear contrast: The contrast of the image is adjusted by modifying
pixel values to 127 + alpha × (v − 127) where v is the original pixel value.

• Random bilateral blur: The image is blurred by a bilateral filter by setting the
max distance parameter.

There are two different ways to augment datasets. Offline and online data augmenta-
tion. In offline augmentation during dataset generation, augmented images are saved on
the disk and are repeated for every epoch. It is not recommended as there is a higher
chance that the model overfits the data. While in online data augmentation, the image

13



Methods

is augmented randomly during the training, and each time the model sees a new image
with a much lower chance of repetition. It is more efficient in storage but requires more
CPU time, and there is less control over the augmentation process.

Ground truth Flip-horizontal Affine-scaling Color-temp Linear contrast Bilateral blurFlip-vertical Rotation-45 Rotation-90

Figure 2.6. Some common augmentation methods applied on exemplary im-
ages from the datasets.

14



2.5 – Autoencoder

2.5 Autoencoder
Autoencoders are unsupervised neural network models that can be used for feature rep-
resentation and dimension reduction Kramer [1991], Hinton and Salakhutdinov [2006].
The autoencoder can extract the features from unlabeled input data, encodes it to a low
dimensional latent space, and then attempts to reconstruct the input data at the output
layer Baldi [2012]. The common autoencoder consists of two components called encoder
and decoder. The encoder tries to compress the input to a low dimensional representation,
the decoder then reconstructs the input only based on that. An autoencoder implementa-
tion involves deciding about several hyperparameters. These hyperparameters are “latent
space size”, “number of layers”, “number of nodes in each layer”, and “loss function”. The
big challenge for autoencoders is learning a meaningful and concise latent space represen-
tation. Furthermore, the autoencoders are learning features specific to the training data,
they can be a close but degraded representation.

Input
Latent space

Output

D
ec

od
er

En
co

de
r

Figure 2.7. This is an example of a common autoencoder; the encoder takes an image as
input, and compresses the input into a latent space dimension. Then the decoder tries to
reconstruct the output from this representation [figure from https://www.rawpixel.com/].

A common autoencoder has two parts, encoder and decoder. In the simplest case,

zi = fencoder(Ii) : ∀IiϵD (2.5)

Where zi is the feature representation of the latent space in ith the image from the dataset.

x̂ = fdecoder(zi) (2.6)

where x̂ is the reconstructed images and fdecoder is a neural network to map the latent
space representation zi to reconstruct the input.
to minimize the reconstruction errors, reconstruction loss is defined:

L(x, x̂) = ||x − x̂||2 = ||x − σ̂(fdecoder(σ(fencoder)))||2 (2.7)

where σ is the potentially activation function to be used.

2.6 Normalization techniques
Normalization techniques have been widely used in deep learning models, for better stabi-
lization of the activiations of the hidden units and faster network convergence Shen et al.

15



Methods

[2021]. In recent years, a variety of normalization techniques have been proposed such as
batch normalization, weight normalization, layer normalization, instance normalization,
and group normalization (GN).

• Batch Normalization is a technique that tries to improve the training neural
network performance by stabilizing the feature distribution. It standardizes the
features for each mini-batch, by using the mean and variance to normalize features
in a layer. The biggest issue when using batch normalization is the large batch size
it requires to work correctly. Using batch normalization with a small batch size
leads to a lower performance. Hence, since the GPU memory is limited one has to
compromise between the batch size and the model size Santurkar et al. [2018].

• Weight Normalization is a technique to improve the conditioning of the opti-
mization problem and speed up the convergence of stochastic gradient descent. It
can work even for small mini-batches in a neural network. Implementing the weight
normalization method is inspired by batch normalization’s property of adding noise
to the gradients. It is used to reparameterize each weight vector in terms of a pa-
rameter vector and scalar parameter for getting the desired output with respect to
those parameters instead Salimans and Kingma [2016].

• Layer Normalization: While batch normalization normalizes each feature inde-
pendently across the mini-batch. Layer normalization Ba et al. [2016] normalizes
each of the inputs in the batch independently across all features. There is one axis
corresponding to the batch and the other axis is for feature dimensions in this strat-
egy.

• Instance Normalization It is another term of contrast normalization. It performs
intensity normalization across the width and height of a single feature map of a
single example. For example, Ulyanov et al. [2016] applied Instance Normalization
instead of batch normalization on deep neural networks for image generation. The
main difference between instance normalization and batch normalization. Instance
normalization operates on a single sample of a channel. While batch normalization
applies for the whole samples of a channel in the mini-batch.

2.6.1 Group normalization
The representation of feature distribution is critical in the latent space for different do-
mains. To generalize the latent space representation with different domains, Group Nor-
malization (GN) Wu and He [2018] is used in each layer of the encoder. GN is a com-
bination of layer normalization and instance normalization strategies and it is suitable
for both sequential and generative models. In this technique, the channels are divided
into groups and the specific means and variance are calculated for each group to be nor-
malized. GN calculation is not dependent on batch size and the accuracy stabilizes in a
wide range of batch sizes. Many classical features like SIFT Lowe [2004] and HOG Dalal
and Triggs [2005] have group-wise features and they include group-wise normalization.
For instance, the result of the several spatial cells is a HOG vector which represents a
normalized orientation histogram in each cell.

16



2.7 – Domain adaptation techniques

Batch Norm
H

, W

C

N

Layer Norm

H
, W

C

N

Instance Norm

H
, W

C

N

Group Norm

H
, W

C

N

Figure 2.8. Visualization of different types of normalization techniques are used in deep
learning approaches [figure from Wu and He [2018]].

2.7 Domain adaptation techniques
Gathering the datasets from different labs that might have different lab procedures, stain-
ing, lighting conditions, and camera viewpoints leads to domain shift in the data. Because
of the domain shift, it is pretty difficult to train the model on a specific dataset and then
apply it to another dataset for the same task that the model has not seen before. One of
the solutions is exposing domain shifts in the optimization of the model to align different
domains. In particular, we want to propose a feature extraction method that is invariable
between different domains. In this thesis, one dataset is always considered to come from
a single source, and the target domain can be more than one dataset. We have tested
several domain adaptation methods to find the best for our problem.

2.7.1 Normal distribution alignment
The idea behind normal distribution alignment Sun and Saenko [2015] is very intuitive.
Different representations coming from each dataset have their own specific distribution in
the latent space of the autoencoder. Given a normal distribution with the mean matrice
and the standard deviation as 0 and 1 respectively, not only the model tries to bring
the euclidean distance closer by changing the value of the mean metrics but also tries
to minimize the symmetric Kullback-Leibler divergence (KLD) for the difference between
the covariance matrices. Domain adaptation loss is defined as follows:

L =
kØ

k=1

;
|D(µk) − D(µ0)| + 1

2 [DKL(s0||sk) + DKL(sk||s0)]
<

(2.8)

With D = D1, ..., DK being the datasets, and the µk is mean and sk as softmax of
covariance matrix of the embedded features of dataset DK .

2.7.2 Adversarial domain adaptation
Adversarial domain adaptation Tzeng et al. [2017] is another method to solve the domain
shift problem by reducing the domain discrepancy between different datasets. The idea

17



Methods

KL Divergence

Normal distribution

Sampling

Latent representation

Acevedo-20

Matek-19

INT-20

Figure 2.9. The normal distribution strategy is applied as a source distribution and the
other datasets are aligned to the source distribution through the domain adaptation loss.

of the technique is based on Generative Adversarial Networks (GANs) that two networks
called generators and discriminators are competing with each other. The generator is
trying to generate fake outputs that look real while the discriminator tries to distinguish
the fake from the real images. If the discriminator is able to recognize the fake example
from the real one, the generator is punished with an adversarial loss.

L = βLautoencoder + βLdiscriminator (2.9)

Lautoencoder = 1
N

NØ
i=1

(ĥi − hi)2 + 1 − SSIM(r̂i, ri) (2.10)

Ldiscriminator = NLLLoss(xreal, xfake) (2.11)
NLLLoss is negative log likelihood loss. To describe the formula:

l(xreal, xfake) =
)
l1, ..., lN

*T
, ln = −WxfakeXn,xfake (2.12)

Where xreal is source and xfake is target, w is the weight and N is the batch size.

L(xreal, xfake) =


qN

n=1
1qN

n=1 wyn

ln, if reduction = ”mean”;qN
n=1 ln, if reduction = ”sum”.

 (2.13)

2.7.3 Maximum mean discrepancy
The third domain adaptation technique we tried to apply the Maximum Mean Discrepancy
(MMD) method Borgwardt et al. [2006] on the different distributions in the latent space

18



2.8 – Classification methods

Adversarial domain 

Discriminator

Generator

feature (real or fake)

fake features

real features

Acevedo-20

Matek-19

INT-20

Figure 2.10. Overall view of an adversarial domain adaptation in our study.

to minimize the distance between the distributions. A mean squared error is used for
mean matrices while a symmetrized Kullback-Leibler (KL) divergence is minimizing the
difference between the covariance matrices.

To formulate MMD, having D =
)
D1, ..., Dk

*
as the set of all datasets, and mean

matrix µk and sk as softmax of the covariance matrix of any dataset Dk the MMD domain
adaptation loss is calculated by:

LDA =
kØ

k=1

;
MSE(µk, µ0) + 1

2 [DKL(s0||sk) + [DKL(sk||s0)]
<

(2.14)

2.8 Classification methods
Classification is a supervised task in which machine learning algorithms learn how to
predict a class for samples from the problem domain. To evaluate our unsupervised
approach and the quality of the extracted features, we require a task to measure our
performance on it. Trying to classify the instances in the dataset based on the extracted
features of our model is the task we decided to use for evaluation. In binary classification,
the trained classifier tries to classify the input data into only two different classes. For
instance, the dataset consists of only healthy and unhealthy samples while in multilabel
classification more than two classes exist. For example predicting the subtypes of a disease
or diagnosis of different diseases.

2.9 Random forest
Random forest is a simple and powerful classification method used to classify various
sub-samples of the dataset. It has several decision tree classifiers that fit on sample data

19



Methods

Figure 2.11. An example of multi-label and binary classification methods in
machine learning approaches.

and uses averaging to improve the prediction accuracy. Several important parameters are
defined for the model Breiman [2001] such as: number of estimators that are the number
of the trees in the forest, maximum depth of each tree, the minimum samples split that
are required to split an internal node and minimum samples leaf that are required to split
an internal node.

2.10 Autoencoder-based cell feature extractor
We present an AutoEncoder-based Cell Feature Extractor (AE-CFE), which starts with
a Mask R-CNN model to obtain features of single white blood cells in blood smears.
This way there is a specific feature vector extracted for every detected cell instance with
dimensionality of 2561414. An autoencoder receives the feature vector as input and a two-
stage decoder modalities are developed. The decoder components involve a feature decoder
and image decoder, that try to reconstruct the latent space representation to encoded
features and the single cell images respectively. The encoder is a fully convolutional
network and consists of 6 layers. To stabilize training independent from the batch size
and to improve the model performance, a group normalization (GN) method is applied
after each layer in the encoder as an alternative to batch normalization. For the encoder,
part zi is the extracted features obtained from the encoder by

zi = fenc(hi; θ) (2.15)

where hi is the input features from the Mask R-CNN, which is compressed by the autoen-
coder in the latent space and θ is the parameters in the encoder.

ĥi = ffeat−dec(zi; λ) (2.16)

ĥi is reconstructed features by the feature decoder from the latent space α considered as
the parameters in the feature decoder.
ri is the reconstructed image by the image decoder according to the reconstructed features
with defining β as parameters in image decoder training.

r̂i = fimg−dec(ĥi; δ) (2.17)

20



2.10 – Autoencoder-based cell feature extractor

For optimizing our two-staged autoencoder we define a multi-task loss as:

Lautoencoder(θ,γ,δ) = 1
N

NØ
i=1

(ĥi − hi)2 + 1 − SSIM(r̂i, ri) (2.18)

Where the quality of the reconstructed features and the input features are calculated with
a mean square error and for measuring the similarity of the reconstruction image x with
the original single cell image y which is detected by Mask R-CNN, we define the structural
similarity index measure (SSIM) Wang et al. [2004] as:

SSIM(s, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (2.19)

where mean and variance of the images are defined as µ and σ respectively and c1 and c2
are constants for numerical stability.

Figure 2.12. The proposed autoencoder method starts with the Mask R-CNN
method which detected and extracted the single cell and feature from all over the
datasets. The autoencoder consists of two decoders which are called Feature De-
coder and Image Decoder separately to reconstruct features and images from the 50
bottleneck size [figure from Salehi et al. [2022]].

The domain adaptation loss introduced in section Maximum Mean Discrepancy (2.7.3)
by constant coefficient β . To evaluate the overall training loss,

L(λ, φ, Ω) = 1
N

NØ
i=1

(ĥi − hi)2 + 1 − SSIM(r̂i, ri) + βLDA (2.20)

21



22



Chapter 3

Experiments and results

In this chapter we explain the three datasets used in the experiments and further elaborate
on the utilized hyper-parameters. Experiments are presented in detail, along with the
results. The aim is to determine if morphological classification of white blood cells is
possible from different datasets.

3.1 Datasets
We use three different datasets to evaluate our method:

Matek-19 dataset includes over 18,000 annotated white blood cells. This dataset is
collected from 100 acute myeloid leukemia patients from the leukemia diagnostics labora-
tory at Munich University Hospital between 2014 and 2017. The dataset is categorized
into 15 different classes with 400×400 pixels image dimensions for each image or 29×29
micrometers almost. This data is published and is publicly available Matek et al. [2019].

Figure 3.1. The example images of Matek-19 dataset, it has 15 different types
of white blood cells classes.

INT-20 is an in-house dataset consisting of around 42,000 images in 18 different classes.
Image dimensions are 288×288 in pixels or 25×25 micrometers.

23



Experiments and results

Figure 3.2. The example images of the INT-20 dataset, it repairs 18 different classes.

Acevedo-20 dataset has a total of 17,092 samples of individual normal cells coming
from 8 different classes. The dataset is collected in the core laboratory at the Hospi-
tal Clinic of Barcelona and published by Acevedo et al. [2020]. Image dimensions are
360×363 pixels or 36×36.3 micrometers. Since each dataset has a different definition of

Figure 3.3. The example images of Acevedo-20 dataset from eights different classes.

classes, a medical expert helped us to categorize different labels into 13 commonly defined
classes which are: basophil, eosinophil, erythroblast, myeloblast, promyelocyte, myelo-
cyte, metamyelocyte, neutrophil banded, neutrophil segmented, monocyte, lymphocyte
typical, lymphocyte atypical, and smudge cells. In Fig.3.4., sample distribution of com-
monly defined classes is shown in three datasets. The distribution is unbalanced and some
classes are empty for the Acevedo-20 dataset.

3.2 Mask R-CNN dataset
The Mask R-CNN model is trained on a small separate dataset of around 1500 images
annotated from the Matek-19 dataset. Since the annotated images did not need any
expertise, it is extremely simple and affordable to annotate the images, increasing the
applicability of our model. We annotated 1500 samples from different classes without any
cell labels.

24



3.2 – Mask R-CNN dataset

1

10

100

1000

10000

Bas
op

hil

Eos
ino

ph
il

Eryt
hro

bla
st

Mye
lob

las
t

Prom
ye

loc
yte

Mye
loc

yte

Meta
mye

loc
yte

Neu
tro

ph
il b

an
de

d

Neu
tro

ph
il s

eg
men

ted

Mon
oc

yte

Ly
mph

oc
yte

 ty
pic

al

Ly
mph

oc
yte

 at
yp

ica
l

Smud
ge

 ce
ll

Matek-19 INT-20 Acevedo-20

Figure 3.4. Distribution of samples between these 13 classes for different datasets
[figure from Salehi et al. [2022]].

Original images 

Mask images 

Annotated images
By Mask R-CNN 

Figure 3.5. An example of segmented white blood cell images in the Matek-19 dataset.

3.2.1 Training Mask R-CNN
The implementation of Mask R-CNN on Python3, Keras, and TensorFlow is available.
The model generates bounding boxes for the instances over the image, based on the
ResNet101 Feature Pyramid Network (FPN) backbone.

3.2.2 Setup and hyperparameters
The Mask R-CNN is trained for 26 epochs with a learning rate of 0.001 and Adam opti-
mizer. To segment the white blood cells perfectly on the other datasets, we applied several
different augmentation techniques which are explained in section 2.4.2 and 50 percent of
the samples are augmented during the training in an online augmentation regime. The
Mask R-CNN is reaching an mAP of 0.89 and 85% of the cells in datasets are detected
successfully leading to 65,693 segmented single cells out of a total of 77,363 images coming
from the three datasets.

25



Experiments and results

3.3 Bottleneck size: A thorough study
In order to have a thorough evaluation of the results we are studying the performance of
the model both qualitatively and quantitatively.

3.3.1 Qualitative evaluation
In all experiments for qualitative evaluations, firstly we trained Mask R-CNN with a
ResNet50 backbone and then another Mask R-CNN model with a ResNet101 backbone.
We conducted 8 experiments with the two models. Here is the list of every experiment in
details:

• ResNet50-MSE: We use the whole image and MSE loss function for both decoders
(Figure 3.6).

• ResNet50-BB-MSE: Images are cropped based on cell bounding boxes and we use
MSE loss function for feature decoder and reconstructed image decoder (Figure 3.7).

• ResNet50-SSIM: Use the whole images and use only MSE loss function for feature
decoder and SSIM loss function for reconstructed images (Figure 3.8).

• ResNet50-BB-SSIM: Images are cropped based on cell bounding boxes and use
only MSE loss function for feature decoder and SSIM loss function for reconstructed
images (Figure 3.9).

• Same 4 experiments repeated with a ResNet101 backbone.

We decided to firstly use qualitative results to select the best bottleneck size so we analyzed
the performance of our method in the above experiments in different bottleneck sizes.
Here, the reconstructed images compare for different bottleneck sizes in above experiments.
A smaller bottleneck size leads to a lower quality of reconstruction due to the problem in
passing very small amounts of information. A higher bottleneck leads to reconstruction
of noisy red blood cells around the image which is also not desirable.

26



3.3 – Bottleneck size: A thorough study

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.6. Example with different bottleneck size (BN) from 5 to 1000 of recon-
structed images on ResNet50-MSE.

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.7. Example of reconstructed images on ResNet50-BB-MSE.

3.3.2 Quantitative evaluation
All experiments done in qualitative evaluations are studied in the quantitative evolutions
as well. To quantitatively calculate the quality of the extracted features by our experiment
models, the random forest model is trained on the extracted features trying to classify
single white blood cells of the Matek-19 dataset. The Matek-19 dataset is split between
the train set and the test set at 80% and 20% respectively. The results are provided in
Table 3.1 for different bottleneck sizes of the autoencoder.

Looking at the qualitative and quantitative results, ResNet101-BB-SSIM success-
fully eliminated irrelevant information while the dimension of the latent space is chosen

27



Experiments and results

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.8. Example of reconstructed images on ResNet50-SSIM.

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.9. Example of reconstructed images on ResNet50-BB-SSIM.

to be 50 due to the simplicity to solve domain shift and being able to retain enough
information.

3.4 Model architecture: An ablation study

To study the effectiveness of every component in our method we have designed an ablation
study with five baselines:

28



3.4 – Model architecture: An ablation study

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.10. Example of reconstructed images on ResNet101-MSE.

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.11. Example of reconstructed images on ResNet101-BB-MSE.

1. ResNet-RF: Using a pretrained ResNet101 He et al. [2016] architecture on Ima-
geNet dataset Deng et al. [2009] to extract features and classify them with a random
forest.

2. R-CNN-RF: Trained a random forest classification model on the instance features
extracted by the Mask R-CNN architecture which is trained on single cell detection
task.

3. AE-RF: A random forest classification trained on a similar autoencoder which is
trained on our datasets with no domain adaptation technique.

29



Experiments and results

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.12. Example of reconstructed images on ResNet101-SSIM.

Input BN:5 BN:10 BN:50 BN:100 BN:150 BN:300 BN:400 BN:650 BN:1000

Figure 3.13. Example of reconstructed images on ResNet101-BB-SSIM.

4. ND-AE-DA: A normal distribution domain adaptation is applied on features ex-
tracted by the two-staged autoencoder.

5. AAE-DA: Trained the two-staged autoencoder on the adversarial domain adapta-
tion on features extracted.

In all experiments for quantitative evaluations, we trained a random forest model on the
extracted features from the AE-CFE model. The goal is to try to classify the single cell
features into one of the 13 defined classes.

30



3.4 – Model architecture: An ablation study

Table 3.1. Try to classify a random forest classifier on different autoencoder models in
which a Mask R-CNN is trained on ResNet101 or ResNet50.

AE-MSE AE-SSIM AE-MSE-BB AE-SSIM-BB
BN ResNet101 ResNet50 ResNet101 ResNet50 ResNet101 ResNet50 ResNet101 ResNet50

5 0.46 0.46 0.46 0.72 0.81 0.46 0.78 0.72
10 0.59 0.66 0.52 0.72 0.74 0.75 0.79 0.78
50 0.81 0.79 0.82 0.81 0.85 0.84 0.85 0.84
100 0.82 0.79 0.82 0.82 0.86 0.84 0.87 0.85
150 0.82 0.80 0.83 0.83 0.86 0.84 0.87 0.85
300 0.82 0.80 0.82 0.83 0.85 0.83 0.87 0.85
400 0.82 0.81 0.81 0.83 0.86 0.84 0.87 0.86
650 0.84 0.77 0.82 0.82 0.87 0.82 0.87 0.85
1000 0.81 0.88 0.80 0.83 0.84 0.82 0.86 0.86

3.4.1 ND-AE-DA: Normal distribution alignment

The model tries to align the three distributions by help of a reference normal distribution
through minimizing the euclidean distance between the means and symmetric Kullback-
Leibler (KL) divergence for the difference between the covariance matrices.

Setup and hyperparameters

In this experiment, the reference normal distribution is the source and all datasets are
considered as target, loss function calculates the similarity between source and targets in
every iteration.

3.4.2 AAE-DA: Adversarial domain adaptation

To implement the proposed adversarial domain adaptation, there is a discriminator net-
work to distinguish the fake from the real samples. In our setting, the adversarial dis-
criminator tries to look at the latent feature vectors generated by the autoencoder and
recognize the dataset it comes from. If the discriminator is able to distinguish, an ad-
versarial loss is imposed on the autoencoder. The discriminator consists of 3 layers and
all intermediate layers use the ReLU activation functions and there is not any set for the
output of the discriminator.

Setup and hyperparameters

In this study, two Adam Optimizers are used during the training, an Adam optimizer for
generator and discriminator with a learning rate of 0.001 and 0.001 respectively NLLLoss
loss is used for the discriminator and adversarial loss is calculated by a combination of
MSE and SSIM loss function

31



Experiments and results

3.4.3 AE-CFE: Maximum mean discrepancy
For implementation of maximum mean discrepancy loss, Matek-19 is defined as the source,
and the other datasets are considered as targets and loss function calculates the difference
between the source and targets in every iteration.

Setup and hyperparameters

Training is done with use of an Adam optimizer for 150 epochs with a learning rate of
0.001 on three NVIDIA A100-SXM4-40GB GPUs with a total batch size of 1500 (500 on
each GPU).

Matek-19 INT-20 Acevedo-20

Without domain adaptation With domain adaptation

Figure 3.14. UMAP embedding of AE-CFE method before and after domain adaptation
method. After using the domain adaptation loss, there is a uniform distribution in the
representation space [figure from Salehi et al. [2022]].

Here, The different oracle methods are compared with our results. All the experiments
share the main hyperparameters and the training procedure:

• In all experiments, the models are trained for 150 epochs using Adam Optimizers
with learning rate of 0.001 on three NVIDIA A100 SXM4 40 GB CPUs.

• The whole datasets are splitted on 80% and 20% as train set and test set respectively.
Then a random forest model is trained on one dataset and tested on the test set of
all three datasets. We repeat these experiments for all datasets. The mean and
standard deviation of accuracy is reported over 5 runs.

In Table 3.2 we compare these oracle methods with the quality of features extracted
from our model. For two of the baselines (ResNet-RF and R-CNN-RF) cross-domain
evaluations were inaccurate and accuracy was close to zero and random forest was not
able to classify any sample correctly. Next in Table 3.3, we compared our method with
the oracle methods which are specifically trained for the classification of the datasets.

32



3.4 – Model architecture: An ablation study

Matek et al. Matek et al. [2019] have published their ResNext architecture and trained
model weights. Additionally a similar ResNext model is trained on each of the datasets
to compare and evaluate our method. The results in both tables show that both of the
oracles fail on the unseen dataset while the random forest method trained on AE-CFE
feature vectors is performing far better on unseen datasets.

Table 3.2. The accuracy percentage of a random forest model trained on AE-CFE model
with five other feature extraction models as baselines: ResNet 101 trained on ImageNet,
extraction features with Mask R-CNN, an autoencoder trained on instance feature vector,
a normal distribution domain adaptation trained on extracted features, and adversarial
domain adaptation on trained on features extraction.

Trained on Tested on ResNet-RF R-CNN-RF AE-RF ND-AE-DA AAE-DA AE-CFE

Matek-19
Matek-19
INT-20

Acevedo-20

62.5±2.8
0
0

60.5.± 0.8
0
0

86.0±0.04
46.8±0.2
20.1±0.1

83±0.4
40±0.21
8.4±0.8

87.5± 0.8
31.4± 0.31
8.6± 0.4

83.7±0.5
48.4±0.2
21.9±0.4

INT-20
Matek-19
INT-20

Acevedo-20

0
45.2±1.1

0

0
46.09±0.4

0

47.2±3.4
69.1±0.4
4.6±0.6

30.0±0.1
66.3±0.3
15.7±0.9

63.9±0.2
66.8±0.4
17.7±0.7

73.2±0.1
65.6±0.5
31.8±0.4

Acevedo-20
Matek-19
INT-20

Acevedo-20

0
0

37.1±0.8

0
0

35.9±1.1

39.4±1.4
9.7±0.3

67.2±0.7

15.2±0.4
16.0±0.6
40.0±0.2

39.4±0.6
17.7±0.7
64.3±0.1

45.1±0.5
21.0±0.5
65.2±0.5

Table 3.3. Percentage of accuracy of a random forest model which is trained on AE-CFE
features with 3 other oracle methods specifically trained for each of the datasets.

Trained on Tested on ResNext Matek et al. AE-CFE

Matek-29
Matek-19
INT-20

Acevedo-20

-
-
-

96.1
29.5
8.1

83.7±0.5
48.4±0.2
21.9±0.4

INT-20
Matek-19
INT-20

Acevedo-20

49.6±6.3
88.7±1.5
16.9±1.6

-
-
-

73.2±0.1
65.6±0.5
31.8±0.4

Acevedo-20
Matek-19
INT-20

Acevedo-20

7.3±3.1
8.1±1.4

85.7±2.4

-
-
-

45.1±0.5
21.0±0.5
65.2±0.5

33



34



Chapter 4

Discussion

Computer-aided diagnosis systems are rapidly entering in the health care landscape and
have advanced to a level of maturity that permits them to be used under real-life condi-
tions to help human decisions in some case of medical and healthcare environments. The
diagnosis of many pathologies, such as leukaemia, infectious diseases or other hematopoi-
etic malignancies disorders need the identification and classification of subtypes of white
blood cells Topol [2019]. In this thesis, we investigated a method to focus only on white
blood cell images because surrounding objects like red blood cells, are irrelevant and can
greatly affect the performance of any model for any subsequent task, such as leukemia
subtype diagnosis. For instance, the density of red blood cells that are around the white
blood cells in the image can mislead the model into categorizing samples based on anemic
features rather than the cytomorphological white blood cell properties. This makes the
Mask R-CNN a critical element in our design. It is focusing on instance features that are
cropped out by the region of interest instead of the whole image or features in the back-
ground. Since the feature vector is sparse and we aim on extracting meaningful features,
a two-staged autoencoder is considered for the next step.
Still, there is a question: What happens if cells in new dataset e.g. from a different clinics,
are considerably different? Mask R-CNN achieves an 85% detection rate for single white
blood cells in three different datasets while it is trained on only one of them, making it
a reliable single cell detector for the first stage. Annotation of the white blood cells in
images for training the Mask R-CNN is cheap, simple, convenient, and fast, thus Mask
R-CNN performance can be improved easily. However, due to the domain shift in the
datasets, our features should remain invariant between different datasets making them
useful for any subsequent model trained on the features.
Training diagnostic models can be challenging, requiring expensive and not always avail-
able medical experts so having domain invariant features is another critical task. We have
tackled this problem using an Maximum Mean Discrepancy (MMD) loss trying to make
features as similar as possible across different domains. For classification, using a random
forest model which is trained on features extracted by our method does not perform well
compared to oracle models that are specifically trained on the source domains, but its
performance is by far superior in cross-domain scenarios. This is partly because of our
design in domain adaptation loss that forces the distributions from three different datasets

35



Discussion

to get closer to each other. Choosing the small feature vectors with minimum sparsity
allows usage of these features in many different applications.

Our AuroEncoder-based Cell Feature Extractor (AE-CFE) approach which
is a part of this master thesis is published in a paper for the 2022 edition of the Conference
on Medical Image Computing and Computer Assisted Intervention - (MICCAI).

Future works in this context can extend the approach and address some of its short-
comings: using additional features from cell nuclei can improve the extracted features
quality. Additionally so far the domain shift is only assumed to be present between differ-
ent datasets, so handling possible domain shift presents within dataset would be desirable.
Furthermore, applying a feature extraction method to some diagnosis scenarios would bet-
ter exhibit its capabilities. And finally trying different methods of domain adaptation are
just some of the exciting directions to explore in the future.

36



Bibliography

Andrea Acevedo, Anna Merino, Santiago Alférez, Ángel Molina, Laura Boldú, and José
Rodellar. A dataset of microscopic peripheral blood cell images for development of
automatic recognition systems. Data in brief, 30, 2020.

Andrea Acevedo, Anna Merino, Laura Boldú, Ángel Molina, Santiago Alférez, and José
Rodellar. A new convolutional neural network predictive model for the automatic recog-
nition of hypogranulated neutrophils in myelodysplastic syndromes. Computers in Bi-
ology and Medicine, 134:104479, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings
of ICML workshop on unsupervised and transfer learning, pages 37–49. JMLR Workshop
and Conference Proceedings, 2012.

Laura Boldú, Anna Merino, Santiago Alférez, Angel Molina, Andrea Acevedo, and José
Rodellar. Automatic recognition of different types of acute leukaemia in peripheral
blood by image analysis. Journal of Clinical Pathology, 72(11):755–761, 2019.

Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard
Schölkopf, and Alex J Smola. Integrating structured biological data by kernel maximum
mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

SA Buechner, Chin-Yang Li, and WP Su. Leukemia cutis. a histopathologic study of 42
cases. The American journal of dermatopathology, 7(2):109–119, 1985.

Cheng Chen, Qi Dou, Hao Chen, Jing Qin, and Pheng Ann Heng. Unsupervised bidirec-
tional cross-modality adaptation via deeply synergistic image and feature alignment for
medical image segmentation. IEEE transactions on medical imaging, 39(7):2494–2505,
2020.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

37



BIBLIOGRAPHY

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Barbara Deschler and Michael Lübbert. Acute myeloid leukemia: epidemiology and eti-
ology. Acute Leukemias, pages 47–56, 2008.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain
generalization via model-agnostic learning of semantic features. Advances in Neural
Information Processing Systems, 32, 2019.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Tianmei Guo, Jiwen Dong, Henjian Li, and Yunxing Gao. Simple convolutional neural
network on image classification. In 2017 IEEE 2nd International Conference on Big
Data Analysis (ICBDA), pages 721–724. IEEE, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2961–2969,
2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural
networks. AIChE journal, 37(2):233–243, 1991.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

Christian Matek, Simone Schwarz, Karsten Spiekermann, and Carsten Marr. Human-level
recognition of blast cells in acute myeloid leukaemia with convolutional neural networks.
Nature Machine Intelligence, 1(11):538–544, 2019.

Christian Matek, Sebastian Krappe, Christian Münzenmayer, Torsten Haferlach, and
Carsten Marr. Highly accurate differentiation of bone marrow cell morphologies using
deep neural networks on a large image data set. Blood, The Journal of the American
Society of Hematology, 138(20):1917–1927, 2021.

38



BIBLIOGRAPHY

Surveillance Research Program NCI. Seer* explorer: An interactive website for seer cancer
statistics, 2021.

Marc’Aurelio Ranzato and Martin Szummer. Semi-supervised learning of compact doc-
ument representations with deep networks. In Proceedings of the 25th international
conference on Machine learning, pages 792–799, 2008.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

Raheleh Salehi, Ario Sadafi, Armin Gruber, Peter Lienemann, Nassir Navab, Shadi Albar-
qouni, and Carsten Marr. Unsupervised cross-domain feature extraction for single blood
cell image classification. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 739–748. Springer, 2022.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in neural information processing
systems, 29, 2016.

Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa.
Learning from synthetic data: Addressing domain shift for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3752–3761, 2018.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? Advances in neural information processing
systems, 31, 2018.

Yang Shen, Julia Wang, and Saket Navlakha. A correspondence between normalization
strategies in artificial and biological neural networks. Neural Computation, 33(12):
3179–3203, 2021.

Baochen Sun and Kate Saenko. Subspace distribution alignment for unsupervised domain
adaptation. In BMVC, volume 4, pages 24–1, 2015.

Eric Topol. Deep medicine: how artificial intelligence can make healthcare human again.
Hachette UK, 2019.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7167–7176, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

39



BIBLIOGRAPHY

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European con-
ference on computer vision (ECCV), pages 3–19, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated resid-
ual transformations for deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1492–1500, 2017.

40


	Introduction
	Scientific contribution

	Methods
	Image classification
	Object detection
	Instance segmentation
	Mask R-CNN
	Loss function
	Augmentation

	Autoencoder
	Normalization techniques
	Group normalization

	Domain adaptation techniques
	Normal distribution alignment
	Adversarial domain adaptation
	Maximum mean discrepancy

	Classification methods
	Random forest
	Autoencoder-based cell feature extractor

	Experiments and results
	Datasets
	Mask R-CNN dataset
	Training Mask R-CNN
	Setup and hyperparameters

	Bottleneck size: A thorough study
	Qualitative evaluation
	Quantitative evaluation

	Model architecture: An ablation study
	ND-AE-DA: Normal distribution alignment
	AAE-DA: Adversarial domain adaptation
	AE-CFE: Maximum mean discrepancy


	Discussion

