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Summary

Self-Sovereign Identity (SSI) is a new digital identity paradigm that allows users to create and
control their own identity, without relying on any centralised authority. A user can generate its
own identity (Decentralized Identifiers) stored in a Distributed Ledger (DL) and associates au-
thentic and demonstrable attributes to it (Verifiable Credentials). The Transport Layer Security
(TLS) protocol version 1.3 is a client/server Internet protocol that allows two endpoints to com-
municate securely by providing authentication of the parties, confidentiality and integrity of the
messages. In TLS identities are issued in the form of X.509 certificates by Certification Author-
ities (CAs), which are centralized entities who have full control on the certificates they emit. In
this project I have designed an SSI-aware version of TLS providing an authentication mechanism
that substitutes X.509 certificates with Decentralized Identifiers. Furthermore, to facilitate the
transition to this new identity system I have also developed a hybrid TLS model to allow an
endpoint identify itself with a Decentralized Identifier and still allow the other to make use of
an X.509 certificate and vice-versa. I have implemented and tested the solution in OpenSSL, an
open-source, widespread and multiplatform cryptographic library that supports TLS 1.3.
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Chapter 1

Introduction

Digital identities are used over the Internet to prove who a user is to the websites, services,
and apps in order to establish trusted relationships to access or to protect private information.
The way digital identities are managed can be grouped under three different models, namely:
centralized, federated, decentralized [1].

1.1 Centralized identity model

Figure 1.1: Centralized Identity Model.

The Centralized Identity model (Figure 1.1) is the first model to be proposed and the one
that, most of the times is still employed today. In practice, a user accesses a website, a service
or an application that manages the identity system. The user must create its own identity by
registering an account (that usually consists of a tuple, composed of a username and a password)
that will be stored in the databases of the service provider [2]. However, this approach presents
several drawbacks:

❼ accounts are not portable, so users have to create one identity per service provider, with the
responsibility of handling and remembering several different names and passwords [1];

❼ compromise user’s privacy [1], for example by tracing user’s online activities;

❼ the centralized databases that store all the users’ credentials have been subject to some of
the biggest data breaches in history [1].

❼ depending on the security and privacy policies of the service provider the quality of data
associated to the user’s account can be more or less reliable: heavily regulated sectors
such as governments and financial services have accurate identity proofing process, instead
of some social media platforms where creating multiple and fake identities can be easily
accomplished [2].
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Introduction

1.2 Federated identity model

This model tries to overcome some of the problems brought up by the centralized approach, by
inserting a service provider named identity provider (IDP) in between the user and the website,
the service or the application is trying to access (Figure 1.2). This approach offers a degree of
portability to the centralised identity model: the user now can register an account with a certain
IDP that will provide some basic identity data to any site, service, or app that uses that IDP to
log the user in. The collection of all the sites that exploit the same IDP is called a federation.
Unfortunately, even this model presents some flaws [1]:

❼ there is not a single IDP compatible with all websites, services, and apps;

❼ even though a federation proposes some kind of portability, the identity provider still has
full control over the user’s data;

❼ as with centralized systems, the trust level may highly vary depending on the system owners
and the identity verification degree that they perform [2];

❼ IDP can track user’s login activity across multiple services;

Figure 1.2: Federated Identity Model.

1.3 Decentralized identity model

In the two approaches addressed above the identity is provided by a third party. In the decen-
tralized identity model the user has full control of their identity and decides how and under what
circumstances their data should be shared with others. This technology has a completely different
architecture compared to the other two models because it leverages the features of a peer-to-peer
network, such as the Distributed Ledger Technology (DLT). The decentralized identification
system consists of many nodes that can act as users, organizations, issuers, and validators. The
Self-sovereign identity (SSI) model is an instance of this system [3].

In the SSI paradigm the user creates its own digital identity(ies), by creating one or several
unique identifiers, named Decentralized IDentifiers (DIDs), and associating authentic and
provable attributes to them. After this step, the user can request and obtain credentials from
trusted parties and show them when it is necessary. For instance, a student can collect credentials
from their university, and then can present the appropriate credential when applying for a student
loan. This technology exploits public key cryptography, such as digital signatures, to prove the
authenticity of a credential (for instance to inspect if it has been issued by the named authority
and has not been manipulated or if the person who presents it is the same person being referred
to). These digital credentials take the name of Verifiable Credentials (VCs) and they can be
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recognized by any service providers and website. However, the SSI will not completely get rid
of intermediate parties, but it will still rely on them to sign data that will turn into verifiable
credentials. Like physical credentials, the authority that issues a VC still has full control over it
(e.g. the state can issue a driving license, and can also revoke it). For many use cases, relying on
trusted third parties to issue VCs that can be associated with user-generated identifier would be
desirable [2].

Self-Sovereign Identity is an emerging technology and the lack of standard implementations
keeps it from being adopted, so the goal of my thesis is to provide a way to establsih a secure
communication among two parties over the Internet employing one of the fundamental elements
of this new paradigm: the Decentralized Identifiers.
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Chapter 2

Self-sovereign identity model

2.1 Self-Sovereign Identity

Self-Sovereign Identity is an emerging digital identity management system where users should be
able to create and control their own identity, without relying on any centralised authority. At
the basis of this new paradigm there are three fundamental technologies: the Distributed Ledger
Technology (DLT), the Decentralized Identifier (DID), and the Verifiable Credential(VC).

2.2 Distributed Ledger Technology

A Distributed Ledger Technology (DLT) or Distributed Ledger is a decentralized system that
records events and allows all participants to interact without needing a trusted third party, even
if they do not trust each other. It is based on three main components: (i) public key cryptography,
which provides a secure digital identity for each participant, consisting of a pair of keys (one public,
one private); (ii) a distributed peer-to-peer network that ensures all participants have a copy of the
ledger and that transactions are propagated to everyone in the network, avoiding a single point
of failure and preventing a single or small group of players to take over the network; and (iii)
consensus mechanisms that ensure all participants agree on the validity and order of transactions.
With their digital identity, participants can claim ownership over objects in the ledger [4].

Figure 2.1: IOTA Tangle structure.

The IOTA Tangle is a type of DLT which has been created by the IOTA Foundation, a non-
profit foundation. The Tangle consists of a DAG (Directed Acyclic Graph), i.e. a graph where
nodes are directionally connected to each other but they never form a cycle. In the Tangle each
node corresponds to a record and must be pointed by at least two other nodes (i.e. at least two
incoming edges), but without ever forming a cycle. At the end of the Tangle there are nodes that
do not have incoming edges which means that these records are unconfirmed. These nodes are
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called tips. When a new record must be inserted in the Tangle it randomly selects two tips, up
to eight, and attaches itself to them becoming a new tip of the Tangle. In short, whenever a new
record is added to the Tangle two records are being confirmed. The IOTA Tangle structure is
illustrated in Figure 2.1

2.3 Decentralized Identifiers

Figure 2.2: Decentralized Identifier example (source: Decentralized Identifiers - W3C).

Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable, decentral-
ized digital identity. A DID is a URI (Figure 2.2) that consists of three parts [5]:

❼ the did URI scheme identifier;

❼ the identifier for the DID method;

❼ the DID method-specific identifier.

A DID is associated to a DID document (a JSON object stored in the DLT specified in
the DID method of the DID) that contains information related to the DID, such as ways to
cryptographically authenticate a DID controller or services to interact reliably with the DID
subject [5].

The DID subject is the entity identified by the DID (e.g., a person, organization, thing,
data model, abstract entity, etc..). The DID controller is the entity (person, organization,
autonomous software) allowed to make changes to a DID document and can select which subject
the DID refers to. Furthermore, a DID could have more than one controller and the DID subject
can be the DID controller or can correspond to one of them. Differently from typical identifiers,
DIDs no longer depend on centralised registries and identity providers enabling the controller of a
DID to prove control over it without relying on any other party [5]. Figure 2.3 offers an overview
of the relations between this components.

Figure 2.3: DID architecture

Figure 2.4 illustrates a sample of a DID document where the context field states which JSON
representations the DID document follows, the id property expresses the DID subject (in this case
corresponds to the DID controller) and the authentication method (to authenticate the controller)
has various fields such as the name (id), the type, the controller and the value of the public key.

12
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{

"@context":[

"https://www.w3.org/ns/did/v1",

"https://w3id.org/security/suites/ed25519-2018/v1"

],

"id": "did:example:123456789abcdefghi",

"authenticationMethod": [

{

"id": "did.example:123456789abcdefghi#key-0",

"type": "Ed25519VerificationKey2018",

"controller": "did:example:123456789abcdefghi",

"publicKeyBase58": "3M5RCDjPTWPkKSN3sxUmmMqHbmRPegYP1tjcKyrDbt9J"

}

]

}

Figure 2.4: DID document example.

2.4 Verifiable Credentials

A credential in the physical world expresses information, such as the identification of the sub-
ject (photo, name, identification number, etc.), the issuer of the credential (government, national
agency, etc.), the type of the credential (passport, driving license, etc.) and some other content.
A verifiable credential (VC) is a machine-readable credential and can represent the same infor-
mation a physical credential does, but it can also depict things that have no physical equivalent,
such as the ownership of a bank account.

These new type of credentials are more tamper-evident and trustworthy than the classical ones,
since with the introduction of public key cryptography, they are digitally signed by the issuer and
can be verified cryptographically. Whenever the holder of a verifiable credential is requested to
authenticate to access a service can always generates verifiable presentations and then share them
with verifiers to verify that matches certain characteristics. This new credential model provides
the additional feature of establishing trust at a distance in a very efficient and easy way as the
transmission of verifiable credentials and verifiable presentations can be done rapidly, employing
the network. [6]

The three main actors in the Verifiable Credentials ecosystem are (Figure 2.5):

❼ the holder: the entity who owns one or more verifiable credentials and then generate ver-
ifiable presentations starting from them. Students, employees, and customers could belong
to this category;

❼ the issuer: its task is to make claims about one or more subjects (a claim is an assertion
about an entity), creating a verifiable credential from these claims and transmitting the
verifiable credential to the holder which will store it in a credential repository. Most of the
times the holder of a VC is the subject, but there are cases in which this statement is not
true, like a parent might hold the verifiable credentials of a child. This issuer role could be
interpreted by corporations, non-profit organizations, trade associations, governments, and
individuals;

❼ the verifier: processes the verifiable credentials received, optionally inside a verifiable pre-
sentation, from the holder. Example of verifiers include employers, security personnel, and
websites. Among the verifier and the issuer there is implicit trust.

Technically a verifiable credential is a JSON object and consists of three main parts (Figure 2.6):

13



Self-sovereign identity model

Holder

VerifierIssuer

Is
su
es
...

Send...

Trust

Figure 2.5: VC schema (source: Verifiable Credentials - W3C).

❼ some metadata to express properties of the credential, such as the issuer, the expiry date
and time, a representative image, a public key to use for verification purposes, the revocation
mechanism and so on;

❼ a set of one or more claims made by the same entity;

❼ digital signature (digital proof) of metadata and claims to cryptographically prove who
issued them.

Verifiable Credential

Credential Metadata

Claim(s)

Proof(s)

Figure 2.6: Verifiable Credential structure (source: Verifiable Credentials - W3C).

There are cases where a holder wants to protect its privacy and express only the strictly
necessary information for a specific situation and this is when Verifiable Presentations (VP)
come into play to represent a subset of one’s persona. A verifiable presentation collects data from
one or more verifiable credentials, and it is structured in such a way that the authorship of the
data is verifiable. The data in a presentation is often about the same subject, but might have been
issued by multiple issuers. The aggregation of this information typically expresses an aspect of a
person, organization, or entity [6]. Similarly to verifiable credentials, three fundamental elements
give shape to a verifiable presentation (Figure 2.7):

❼ the presentation metadata;

❼ one or more verifiable credentials;

❼ one or more digital proofs.

The fact that the attribute “verifiable” precedes the terms credential and presentation does
not guarantee the veracity of the claims that have been made, but it is linked to the characteristic

14
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Verifiable Presentation

Presentation Metadata

Verifiable Credential(s)

Proof(s)

Figure 2.7: Verifiable Presentation structure (source: Verifiable Credentials - W3C).

of a credential or presentation as being able to be verified by a verifier; however, the issuer can
include values in the evidence property to help the verifier apply their business logic to determine
whether the claims have sufficient truthfulness for their needs.

Figure 2.8: Pat’s credential graph (source: Verifiable Credentials - W3C).

Let’s consider an example to illustrate a typical use case scenario [6], were both credentials
and presentations are employed, such as redeeming an alumni discount from a university. For
instance Pat receives an alumni verifiable credential from a university, signed with the private
key of the University authentication method, and stores it in a digital wallet (Figure 2.8 shows
Pat’s credential graph). Later, Pat will try to buy a ticket to access some sporting event. The
ticket sales system declares that any alumni of “Example University” receives a discount for that
specific game. Pat then starts the procedure of purchasing the ticket and will be requested to
demonstrate the ownership of an alumni verifiable credential. Pat’s digital wallet opens up and
asks him if he would like to provide a previously generated verifiable credential. Pat chooses the
alumni verifiable credential, which is then configured into a verifiable presentation that will be
sent to the verifier to be verified. The proof in Figure 2.9 is generated employing the private key
corresponidng to Pat’s DID document auhentication method.

15
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Figure 2.9: Pat’s presentation graph (source: Verifiable Credentials - W3C).

Figure 2.10 shows the JSON representation of the Verifiable Credential and Verifiable Presen-
tation discussed above.

16
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Figure 2.10: Verifiable Credential (left) and Verifiable Presentation (right) example.

2.5 SSI framework

After discussing the main features of the single elements at the core of the SSI paradigm, it is time
to explore how these components connect with each other. The SSI framework presents itself as a
stack that expands into four layers (Figure 2.11). The first layer consists of all the different DLTs
where the DID documents are stored and manipulated. Each DLT implements a DID method
interface which allows to perform CRUD (Create, Resolve, Upadate, and Delete) operations on
DID documents. Each DLT must have its own DID method interface.

The second layer (DID communication) is responsible of establishing a secure and private
connection among two parties. In order to be secure each actor should prove its identity to the
other. DIDs are employed to ensure this: one party sends its DID to the other, the receiving
party resolves the DID into the corresponding DID document through the DID method of the
related DLT and proposes an authentication challenge by using the public key stored in the DID
document of the sender to strongly verify the identity of the latter and vice versa.

The verifiable credential trust triangle appears in the Authorization layer where issuers, holders
and verifiers exchange credentials and proofs using credential exchange protocols that run on top

17
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of the DID Communication layer. The fourth layer, the Application Ecosystem includes all the
applications that exploit the lower layers with which humans can interact with [7].

The work of my thesis aims at implementing the secure channel proposed in the second layer
of the stack by employing an already existing security protocol, the Transport Layer Security
protocol, and make it compliant with the Decentralized Identifiers.

Figure 2.11: SSI stack

18



Chapter 3

SSI-aware TLS 1.3 handshake in
OpenSSL

3.1 X.509

X.509 (Figure 3.1) is a standard format for public key certificates, which are data structures that
securely tie a public key of an asymmetric keypair to some attributes like information about the
key itself, information about the identity of its owner (website, individual, organization) and the
digital signature of the issuer, named Certification Authority (CA). There are several fields in
an X.509 certificate, specified in [8]. The most common ones are:

Figure 3.1: X.509 Certificate example.

❼ version number: version of the X.509 standard, the latest one is v3;

❼ serial number: uniquely identifies a certificate;

19
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❼ signature algorithm ID: the algorithm the CA has employed to sign the certificate con-
tents;

❼ issuer name: the name of the creator of the certificate which is specified by following the
distinguished name (DN) syntax that consists of three fields:

– C: the country;

– O: the organization;

– CN: the common name;

❼ validity: defines the period of time in which the certificate is considered valid;

❼ subject: the entity (machine, individual, organization) that controls the private key corre-
sponding to the public key being certified;

❼ subject public key info: expresses the algorithm of the subject’s public key and the public
key itself.

❼ extensions: offers ways to bind more attributes to users or public keys and to handle
relationships among certificate authorities.

❼ digital signature: the digital signature of the issuing certification authority computed over
the certificate.

A public key infrastructure (PKI) is a system responsible for the creation, distribution
and revocation of public key certificates. These certificates can be revoked before their expiration
date on request by both the subject (if, for instance, they lose control over their private key) and
the issuer (if, for instance, they realize a certificate has been released to someone claiming a fake
identity).

Figure 3.2: Certification Authority hierarchy.

Furthermore, CAs are organized hierarchically (Figure 3.2). The root CA stands at the top,
self-signs its own certificate and issues certificates for intermediate CAs that in turn will release

20
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certificates for CAs one level below and so on down to CAs that operate directly with end entities
[9]. There is not a single root CA in the world, but there are several to avoid that a single entity
control all the certificates.

X.509 certificates are employed to verify identities, so when an entity receives a signature from
a peer it must check its validity by making sure that at the moment of signature the certificate
of the sender and the certificates of all the CAs that build the chain-of-trust are not expired or
issued by an untrusted CA, otherwise the signature is compromised. Two are the possible ways
to assess the validity of a certificate:

❼ through the CRL (Certificate Revocation List): the CA creates a list of revoked certifi-
cates and digitally signs it to keep a malicious entity from removing or adding certificates
to the list;

❼ employing the OCSP (Online Certificate Status Protocol): this mechanism is preferred
for real-time checks as the only concern is to verify that the certificate is valid now. The
response is signed by the server so it is not possible for someone to provide a fake response.

3.2 Transport Layer Security Protocol

TheTransport Layer Security (TLS) protocol allows client/server applications to communicate
securely over the Internet and runs on top of a reliable transport protocol (e.g. TCP) in the OSI
model (Figure 3.3). Specifically it provides a secure channel between two communicating parties
by enabling [10]:

Figure 3.3: TCP/IP stack with TLS.

❼ authentication: the server side of the communication is always authenticated, the client
side is optionally authenticated;

❼ confidentiality: once the channel is established, messages can be read only by the two
endpoints;

❼ integrity: if an attacker manipulates the data sent over the channel, the endpoints can
detect the changes.

Version 1.3 of the protocol, which is also the latest at the time of writing, consists of three primary
components (Figure 3.4):

❼ a handshake protocol: authenticates the communicating parties, negotiates cryptographic
modes and parameters, and establishes shared keying material.
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❼ an alert protocol: contains closure and error messages. These messages are encrypted
according to the current connection state.

❼ a record protocol: splits the data to be transmitted into a series of records, each of
which is independently protected using the cryptographic parameters negotiated during the
handshake phase. This protocol is exploited by the two above and by the application one
that runs on top of TLS to exchange data. For instance, HTTPS stands for HTTP protocol
on top of TLS.

Figure 3.4: TLS architecture.

TLS is application protocol independent, however, it does not specify how protocols add
security with TLS. The designers and developers of the protocols placed on top of TLS must
establish how to initiate TLS handshaking and how to interpret the authentication certificates
exchanged.

In addition, TLS introduces the concepts of session and connection (Figure 3.5): the first one
is a logical association among client and server produced by the handshake protocol, establishes
a set of security parameters and is shared by one or more TLS connections. The second one is a
transient channel between client and server associated to one specific TLS session.

Figure 3.5: session-connection relationship in TLS.

The handshake protocol is the first used when server and client start communicating with each
other. Once the handshake is complete the peers use the established keys to protect application-
layer traffic. If there is a failure in the handshake the connection is terminated right away,
optionally preceded by an alert message. TLS 1.3 provides three key exchange modes:

❼ EC(DHE): Diffie-Hellman over either finite fields or elliptic curves;

❼ PSK-only: pre-shared key only;

❼ PSK with (EC)DHE.

Figure 3.6 shows the messages exchanged during a full handshake, and below I will break down
the content of each handshake message proposed in the figure.
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Client

Client

Server

Server

1 Client Hello + extensions

2 Server Hello + extensions

3 {Encrypted Extensions}

4 {Certificate Request*}

5 {Certificate*}

6 {Certificate Verify*}

7 {Finished}

8 {Certificate*}

9 {Certificate Verify*}

10 {Finished}

11 [Application Data]

* Indicates optional messages/extensions that are not always sent.

{ } Indicates messages protected using keys
derived from a [sender] handshake traffic secret.

[ ] Indicates messages protected using keys
derived from [sender] application traffic secret N.

Figure 3.6: Original TLS full handshake protocol.

3.2.1 Extensions

Some TLS messages contain extensions encoded following the tag-length-value syntax. Figure 3.7
shows the extension structure and the list of all the available extensions in TLS 1.3: the extension
type field associates a constant value to the specific extension type, the extension data expresses
information related to a specific extension type and the opaque data type is used for uninterpreted
data.

Usually an extension request is followed by an extension response, however some extensions
do not require any response. The client sends its extension requests in the Client Hello message
and server responds in the Server Hello, Encrypted Extensions, and Certificate messages. The
server, instead, can produce extension requests in the Certificate Request message which a client
may reply to with the Certificate message.
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struct {

ExtensionType extension_type;

opaque extension_data<0..2^16-1>;

} Extension;

enum {

server_name(0),

max_fragment_length(1),

status_request(5),

supported_groups(10),

signature_algorithms(13),

use_srtp(14),

heartbeat(15),

application_layer_protocol_negotiation(16),

signed_certificate_timestamp(18),

client_certificate_type(19),

server_certificate_type(20),

padding(21),

pre_shared_key(41),

early_data(42),

supported_versions(43),

cookie(44),

psk_key_exchange_modes(45),

certificate_authorities(47),

oid_filters(48),

post_handshake_auth(49),

signature_algorithms_cert(50),

key_share(51),

(65535)

} ExtensionType;

Figure 3.7: Extension structure and list of all the available extension types in TLS (source: TLS
1.3 (RFC8446)).

3.2.2 Client Hello

Client Hello is required to be the first message sent by the client when connecting to a server. It
has the following structure:

❼ protocol version: in older versions of TLS represents the highest version of the protocol
the client supports for version negotiation. In the case of TLS 1.3 it is set to 1.2 and the
client will express its preferences in the supported versions extension .

❼ random: 32 bytes generated by a secure random number generator.

❼ session id: in prior versions utilized for session resumption which is now implemented with
pre-shared keys, so it is kept for backward compatibility and should be a single byte set to
zero.

❼ cipher suites: TLS 1.3 supports only AEAD (Authenticated Encryption with Associated
Data) symmetric ciphers, so this field contains the list of symmetric ciphers (and encryption
mode) to protect TLS records, paired with a hash algorithm to be used with HKDF (HMAC
Key derivation function) to calculate handshake and application keys, in descending order
of client preferences. The server can ignore some of the elements in this list if it does not
support or wish to use them. For instance TLS AES 128 GCM SHA256 uses AES-128 with
GCM (Galois Counter Mode) plus SHA-256 hash.
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❼ compression methods: compression has been disabled in TLS 1.3 so this field contains
exactly one byte set to zero which expresses the null compression method.

❼ extensions: they are used to request additional features to the server. In order to preserve
backward compatibility with previous versions of the protocol new functionalities are ex-
pressed here and for this reason some extensions are mandatory in TLS 1.3 like the supported
versions one to indicate version 1.3. A client that wants to exchange keys in (EC)DHE mode
produces one or more keypairs, based on the (EC)DHE groups it supports, and will send
the public keys in descending order of its preference in the key share extension.

3.2.3 Server Hello

The server processes the Client Hello and sends in response the Server Hello message. It has the
same structure of the Client Hello:

❼ legacy version: contains the version number corresponding to TLS 1.2.

❼ random: 32 bytes generated by a secure random number generator.

❼ session id: echoes the session id value sent by the client.

❼ cipher suite: the selected cipher suite among the ones received by the client.

❼ compression method: a single byte with value zero.

❼ extensions: contains responses only to the extensions sent by the client and that are needed
to negotiate the cryptographic context. The supported versions extension must be present in
each Server Hello for TLS 1.3 negotiation and again if a server received a key share extension
from the client it will have to select one entry in the list of (EC)DHE, then generate a keypair
for that group and in the end send back the public key in the same extension.

3.2.4 Encrypted Extensions

After the Server Hello all the handshake messages will be encrypted, in fact both the server and
the client now have all the material to derive handshake keys (the server possesses the client public
key from Client Hello and the server private key from key generation, the client has the client
private key from key generation and the server public key from Server Hello) to cipher future
messages.

This message contains all the extensions that are not needed to establish cryptographic param-
eters and are not related with certificates, like the application layer protocol negotiation (ALPN)
extension that selects the application protocol to be used on top of TLS.

3.2.5 Certificate Request

A server that requests client authentication must send this message, otherwise it should not be
sent. It consists of two fields:

❼ a certificate request context: identifies the certificate request and the client will echo
it in its Certificate message. In order to avoid replay of client Certificate Verify messages
this value must be unique within the scope of this connection. Thus, it must be zero-
valued single-byted unless used for post-handshake authentication (a server can request client
authentication at any time after the handshake has completed by sending a Certificate
Request): in this case it should be generated randomly, so an attacker that has temporary
access to the client’s private key will not be capable of pre-computing valid Certificate Verify
messages.

❼ extensions: this field is used by the server to request features the client’s certificate should
have. The signature algorithms extension must always be provided and contains a set of
signature algorithms the server is willing to accept on Certificate Verify message sent by the
client, the other extensions are optional.
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3.2.6 Certificate

This message contains the endpoint’s X.509 certificate signed by the CA plus the whole chain
of certificates up to the root CA excluded. The client sends a Certificate message solely upon
receiving the Certificate Request message from the server, the latter instead, must always send
this message unless PSK key exchange mode is adopted. It consists of:

❼ a certificate request context: if replying to a Certificate Request it carries the value of
the certificate request context in that message, otherwise it must be zero length;

❼ a certificate list: represents the certificate chain, where each element of the chain contains
an X.509 certificate and a set of extensions related to that certificate. The server must
reflect the extensions in the Client Hello message and that are related to this message,
instead the client should send only the ones contained in the Certificate Request message
from the server. The first certificate also holds the extensions concerning to the whole chain.

3.2.7 Certificate Verify

This message proves that an endpoint is the owner of the private key bound to the public key
present in its certificate by signing the hash of all the handshake messages up to this point, thus
providing integrity of the handshake as well. The client sends this message only when is requested
to authenticate. It contains:

❼ the signature algorithm;

❼ the signature: the content of the digital signature with the above algorithm.

The signature is computed over the concatenation of four elements:

❼ a string composed of octet 32 (0x20) repeated 64 times;

❼ a context string that is “TLS 1.3, server CertificateVerify” on server side and “TLS 1.3,
client CertificateVerify” on client side;

❼ a single 0 byte that acts as the separator;

❼ a hash of all the messages exchanged so far.

For instance if the hash of the messages were 32 bytes of 01 (which could be the output of
SHA-256 hash algorithm) the digital signature will be applied on the content proposed in Figure
3.8.

Figure 3.8: Certificate Verify content example.

3.2.8 Finished

It is the final message and consists of a MAC(Message Authentication Code) over the entire
handshake, so both parties can assert that the handshake has not been tampered with and tie their
identities to the exchanged keys. After sending this message an endpoint derives the application
keys from its handshake keys and can start sending and receiving application data.
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3.3 SSI-aware TLS 1.3 handshake model

Comparing X.509 certificates and Decentralized Identifiers we can immediately notice that root
CAs are represented by centralised entities who have full control on all the certificates they issue
and so they can revoke them as they wish, while Decentralized Identifiers can be emitted by
anyone and they benefit from the data immutability feature of the DLT.

Client

Client

Server

Server

1
Client Hello + extensions +
extensions .supported did methods +
extensions .did sig algs

2 Server Hello

3 {Encrypted Extensions}

4 {DID Request*}

5 {DID*}

6 {DID Verify*}

7 {Finished}

8 {DID*}

9 {DID Verify*}

10 {Finished}

11 [Application Data]

* Indicates optional messages/extensions that are not always sent.

{ } Indicates messages protected using keys
derived from a [sender] handshake traffic secret.

[ ] Indicates messages protected using keys
derived from [sender] application traffic secret N.

Figure 3.9: SSI-aware handshake protocol.

I have designed a new handshake model that provides a new authentication mechanism (with-
out disrupting the default one) that leverages the potential of DIDs. Figure 3.9 proposes the
structure of the new handshake protocol enabling the SSI paradigm. In the next section is de-
tailed how each TLS message is adapted to support DIDs mechanisms.

3.3.1 Client Hello

Client Hello structure stays the same, but now the message is equipped with two completely new
extensions:

❼ a supported did methods extension: expresses that the client is willing to authenticate
the server through the use of Decentralized Identifiers and contains the list of DID methods
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for which a client can resolve a DID into a DID document. If the server does not have a
DID or it does, but the DID method of its DID is not present in this list, it must terminate
the handshake with an alert message. This extension has the same structure of all the other
extensions (Figure 3.10): the extension type field contains a new value associated to the
supported did methods enum, and the extension data field is of type SupportedDid-
Methods, which in turn is a list of single-byte values utilized to depict the possible DID
methods. Figure 3.11 shows how to properly build this extension.

struct {

ExtensionType extension_type;

opaque extension_data<0..2^16-1>;

} Extension;

enum {

server_name(0),

max_fragment_length(1),

...,

key_share(51),

supported_did_methods(60),

(65535)

} ExtensionType;

enum { ott(0), btcr(1), sov(2), .., (255)

} DidMethod;

struct {

DidMethod supported_did_methods<1..2^8-1>

} SupportedDidMethods;

Figure 3.10: Supported DID Methods extension structure.

value = 00 3C 00 04 03 00 01 02 (in hex)

- 00 3C - 0x3C (60) assigned value for extension SupportedDidMethods

- 00 04 - 0x04 (4) bytes of SupportedDidMethods extension data follows

- 03 - 0x03 (3) bytes of data are in the following list of did methods

- 00 - 0x00 (0) assigned value for ott

- 01 - 0x01 (1) assigned value for btcr

- 02 - 0x02 (2) assigned value for sov

Figure 3.11: Supported DID Methods extension example.

❼ a did signature algorithms extension: must be present only if the above extension is
produced and contains the list of signature algorithms (authentication methods), allowed
in DID documents, the client is willing to verify on a DID Verify message later sent by
the server. The server’s DID document authentication method (its public key) must be
compatible with one of these algorithms, otherwise the server must abort the handshake
with an alert message. A new extension type named did signature algorithms has been
inserted (Figure 3.12) and the DidSignatureAlgorithms, which consists of a sequence of
authentication methods expressed as single-byte values, fills the extension data field;
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struct {

ExtensionType extension_type;

opaque extension_data<0..2^16-1>;

} Extension;

enum {

server_name(0),

max_fragment_length(1),

...,

key_share(51),

supported_did_methods(60),

did_signature_algorithms(61)

(65535)

} ExtensionType;

enum { ecdsa_secp256k1_verification_key2019(0),

ed25519_verification_key2018(1), rsa_verification_Key2018(2), .., (255)

} DidSignatureScheme;

struct {

DidSignatureScheme did_signature_algorithms<1..2^8-1>

} DidSignatureAlgorithms;

Figure 3.12: DID Signature Algorithms extension structure.

value = 00 3D 00 04 03 00 01 02 (in hex)

- 00 3D - 0x3D (61) assigned value for extension DidSignatureAlgorithms

- 00 04 - 0x04 (4) bytes of DidSignatureAlgorithms extension data follows

- 03 - 0x03 (3) bytes of data are in the following list of did signature

algorithms

- 00 - 0x00 (0) assigned value for ecdsa_secp256k1_verification_key2019

- 01 - 0x01 (1) assigned value for ed25519_verification_key2018

- 02 - 0x02 (2) assigned value for rsa_verification_key2018

Figure 3.13: DID Signature Algorithms extension example.

3.3.2 DID Request

The server could request client authentication by sending a DID Request message to have the
client authenticate through a challenge-response authentication mechanism employing the client’s
DID document authentication method. Figure 3.14 presents the addition of this new message in
the handshake struct, and below I discuss the fields of this new message:

❼ did request context: must hold the value zero unless used for post-handshake authen-
tication. In fact when the server requests post-handshake authentication to the client the
context should be made unpredictable so that an attacker who is in possession of the client’s
private key will not be able to pre-compute valid DID Verify messages.

❼ extensions: it contains two extensions that must always be present (if a client receives this
message and at least one of the two extensions is missing it must terminate the handshake
with an appropriate alert message):

– supported did methods: it is a set of the DID methods the two endpoints have
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in common. If the client does not have a DID or it does but the DID method is not
present in this list, it must abort the handshake;

– did signature algorithms: list of signature algorithms allowed in DID documents
the server is willing to verify on DID Verify message sent by the client.

enum {

client_hello(1), server_hello(2), new_session_ticket(4),

end_of_early_data(5), encrypted_extensions(8), certificate(11),

certificate_request(13), certificate_verify(15), finished(20),

key_update(24), did_request(31), message_hash(254), (255)

} HandshakeType;

struct {

HandshakeType msg_type; /* handshake type */ 1 Byte

uint24 length; /* remaining bytes in message */ 3 Bytes

select (Handshake.msg_type) {

case client_hello: ClientHello;

case server_hello: ServerHello;

case end_of_early_data: EndOfEarlyData;

case encrypted_extensions: EncryptedExtensions;

case certificate_request: CertificateRequest;

......

case key_update: KeyUpdate;

case did_request: DidRequest;

};

} Handshake;

struct {

opaque did_request_context<0..2^8-1>;

Extension extensions<2..2^16-1>;

} DidRequest;

Figure 3.14: DID Request message structure.

Figure 3.15 demonstrates how to interpret the sequence of bytes that composes a DID Request
message .
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value = 1F 00 00 12 00 00 0F 00 3D 00 03 02 00 01 00 3C 00 04 03 00 01 02

1F - 0x1F (31) handshake message type DID Request

00 00 12 - 0x12 (18) bytes of DID Request payload

00 - 0 bytes of request context follows

00 0F - 0x0F (15) bytes of extensions will follow

00 3D - 0x3D(61) assigned value for extension DID Signature Algorithms

00 03 - 0x03 (3) bytes of DID Signature Algorithms extension data follows

02 - 0x02 (2) bytes of data are in the following list of algorithms

00 - assigned value for ecdsa_secp256k1_verification_key2019

01 - assigned value for ed25519_verification_key2018

00 3C - 0x3C (60) assigned value for extension supported did methods

00 04 - 0x04 (4) bytes of Supported Did Methods extension data follows

03 - 0x03 (3) bytes of data are in the following list of did methods

00 - 0x00 (0) assigned value for ott

01 - 0x01 (1) assigned value for btcr

02 - 0x02 (2) assigned value for sov

Figure 3.15: DID Request message example.

3.3.3 DID

This message is employed when one of the endpoints needs to provide its own identity: the server
must send a DID message only if PSK mode has not been selected and it has previously received
the supported did methods and did signature algorithms extensions from the client in Client Hello
message, instead the client will supply its own identity only upon a DID request.

The DID message carries the endpoint’s DID and when the peer receives it, it will perform
a resolve operation employing the DID method library (as previously said it provides CRUD
operations) offered by that specific DLT that will return the DID document associated to the initial
DID. At this point the peer will extract the public key from the DID document authentication
method that later on will use to verify the signature computed by the sender contained in the
DID Verify message. The DID message is populated by the following fields (Figure 3.16):

❼ a did request context: on server side must assume the value zero, on client side it must
hold the same value of the did request context present in the DID Request message;

❼ a did method: contains on a single byte the DID method of the sender’s DID;

❼ a did value: the actual value of the sender’s DID.

An endpoint willing to send a DID message should follow the syntax proposed by Figure 3.17.
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enum {

client_hello(1), server_hello(2), new_session_ticket(4),

end_of_early_data(5), encrypted_extensions(8), certificate(11),

certificate_request(13), certificate_verify(15),

finished(20), key_update(24), did(30),

did_request(31), message_hash(254), (255)

} HandshakeType;

struct {

HandshakeType msg_type; /* handshake type */ 1 Byte

uint24 length; /* remaining bytes in message */ 3 Bytes

select (Handshake.msg_type) {

case client_hello: ClientHello;

case server_hello: ServerHello;

case end_of_early_data: EndOfEarlyData;

case encrypted_extensions: EncryptedExtensions;

...

case key_update: KeyUpdate;

case did: Did;

case did_request: DidRequest;

};

} Handshake;

struct {

opaque did_request_context<0..2^8-1>;

DidMethod did_method;

opaque did_value <0..2^16-1>;

} Did;

Figure 3.16: DID message structure.

value = 1E hl hl hl 00 00 dl dl xx xx xx .. .. (in hex)

- 1E 0x1E (30) Did message type

- hl hl hl bytes of Did payload

- 00 0x00 (0) bytes of request context

- 00 0x00 (0) assigned value for "ott" did method

- dl dl did_value length

- xx xx xx .. .. did_value

Figure 3.17: Server’s DID message example.

3.3.4 DID Verify

After sending a DID message an endpoint must send a DID Verify message to prove ownership
(and so its identity) of the private key associated to its DID document authentication method.
Essentially it is a signature of all the handshake messages exchanged so far, so it also supplies
integrity of the handshake up to this point. The structure (Figure 3.18) remains the same as the
Certificate Verify message, with two subtle differences: the signature algorithm belongs to the
DID Signature Scheme and the context string changes to “TLS 1.3, server DidVerify” on server
side and “TLS 1.3, client DidVerify” on client side.

Figure 3.19 offers a simple example of the proper construction of a DID Verify message.
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enum {

client_hello(1), server_hello(2), new_session_ticket(4),

end_of_early_data(5), encrypted_extensions(8), certificate(11),

certificate_request(13), certificate_verify(15),

finished(20), key_update(24), did(30),

did_request(31), did_verify(32), message_hash(254), (255)

} HandshakeType;

struct {

HandshakeType msg_type; /* handshake type */ 1 Byte

uint24 length; /* remaining bytes in message */ 3 Bytes

select (Handshake.msg_type) {

case client_hello: ClientHello;

case server_hello: ServerHello;

....

case did: Did;

case did_request: DidRequest;

case did_verify DidVerify;

};

} Handshake;

struct {

DidSignatureScheme algorithm;

opaque signature<0..2^16-1>;

} DidVerify;

The signature is computed over the concatenation of:

- a string that consists of octet 32 (0x20) repeated 64 times;

- the context string = "TLS 1.3, server DidVerify" or "TLS 1.3, client

DidVerify";

- a single 0 byte which serves as the separator;

- a hash of all the messages exchanged so far.

Figure 3.18: DID Verify message structure.

value = 20 hl hl hl 01 dl dl xx xx xx .. .. (in hex)

- 20 0x20 (32) Did Verify message type

- hl hl hl bytes of Did Verify payload

- 01 0x01 (1) assigned value for ed25519_verification_key2018

- dl dl signature length

- xx xx xx .. .. signature

Figure 3.19: DID Verify message example.

3.4 Server Authentication

If during the handshake the server does not want the client to prove its identity, then the handshake
message flow will be subject to the modifications proposed in Figure 3.20, where the Did Request
(on server side), Did and Did Verify (on client side) messages are omitted.
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Figure 3.20: SSI-aware TLS handshake with Server Authentication.

3.5 Cross Authentication

There could also be circumstances of mutual authentication in which one of the two endpoints still
wants the peer to authenticate with X.509 certificates: the client could have the server authenticate
with certificates by not sending neither the supported did methods nor the did signature algorithms
extensions, the server in turn should send the Certificate Request message instead of the DID
Request one.

Figure 3.21: SSI-aware TLS handshake with Cross authentication. The client authenticates with
an X.509 certificate, the server with a DID.

In Figure 3.21 the client sends the two DID extensions so the server authenticates itself with
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DID and DID Verify messages and requests client authentication with a Certificate Request mes-
sage to which the client will reply with Certificate and Certificate Verify messages. In the case the
server neither finds values in common for the DID extensions nor has a valid DID to send it must
abort the handshake after processing the Client Hello by sending an appropriate alert message.

In Figure 3.22, instead, the client does not send the two DID extensions as the server authen-
ticates through Certificate and Certificate Verify messages and will ask for client identity through
a DID Request (the supported did methods extension include all the methods the server supports,
since the client did not send this extension in Client Hello) message to which the client will re-
spond with DID and DID Verify messages. In the case the client neither has values in common
with the extensions present in the DID Request message nor possesses a valid DID to send back
it must abort the handshake after receiving the DID Request message with an alert message.

Figure 3.22: SSI-aware TLS handshake with Cross authentication. The client authenticates with
a DID, the server with an X.509 certificate.

The table in Figure 3.23 summarizes all the possible authentication scenarios considered in this
work.
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Figure 3.23: Possible authentication scenarios in SSI-aware TLS handshake protcol.

3.6 OpenSSL

OpenSSL is an open-source cryptographic library that provides an implementation of the SSL
(a previous version of TLS) and TLS protocols [11]. It is mainly written in the C programming
language and offers a command line interface (CLI) to interact with it. I have selected OpenSSL
version 3.0, which is the latest stable version, for the development of my solution since:

❼ it is open source;

❼ it is available for the most widely-spread operating systems such as Microsoft Windows,
macOS and Linux;

❼ it supports TLS 1.3, the most recent version of the protocol.

Figure 3.24: File hierarchy in statem directory in original OpenSSL.
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In detail OpenSSL 3.0 consists of two primary components: the crypto library that implements
basic cryptographic functions, and the ssl library that implements the SSL and TLS protocols
employing the cryptographic utilities supplied by the first element. For the objective of my work
I mainly focused on the second component. The ssl library consists of:

❼ a record directory that contains several files needed to implement the record protocol;

❼ a statem directory that contains several files needed to implement the handshake protocol;

❼ files that contain data structures and functions needed by the above packages.

Within the design of my solution the record protocol was not affected by any modifications,
so the record directory stays unchanged. The statem directory is organized hierarchically like
in Figure 3.24: the file statem.c implements the TLS handshake through two state machines:
the first one is the message flow state machine that controls the reading and sending of mes-
sages including handling of non-blocking I/O events, handling of unexpected messages, etc. It
is itself broken into two separate sub-state machines in charge of reading and writing messages
respectively. The second one is the handshake state machine that keeps track of the current TLS
handshake state that will recall client-specific handshake state machine code (statem clnt.c) and
server-specific handshake state machine code (statem srvr.c). The functions that the two just
mentioned files have in common are stored separately into an additional file named statem lib.c.

Instead of making changes to the original OpenSSL files, wherever it was possible I decided
to create new files from scratch to implement the handshake additional features and then include
them in the appropriate section, to keep them separate from the original ones. In the statem di-
rectory I added one header file (statem local did.h) and one source file (statem local did.c).
The first one declares the client and server methods to construct and process the additional DID
handshake messages, while the source file implements them. Figure 3.25 proposes file hierarchy
that results into the TLS handshake state machine.

Figure 3.25: File hierarchy in statem directory in SSI-aware OpenSSL.

Among the general files contained in the ssl library there is the ssl local.h file that supplies
the essential structures and functions needed to initialize and hold the current status of the
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handshake context. In order to expand the TLS handshake context to make it SSI-compliant I
decided to attach DID structures to this file and then provide two additional files: one header
(ssl local did.h) and one source (did.c) that offer functions to manage the new DID structures
that complete the handshake context.

3.7 WAM

Links Foundation have set up a node for the IOTA Chrysalis Tangle and developed the WAM
(Wrapped Authenticated Message) protocol, to assist constrained IoT devices in structuring
and navigating data on the IOTA Tangle, as the IOTA Foundation provides protocols only for
fully-featured devices. The WAM protocol utilizes the Chrysalis message payload named the
indexation payload to anchor data to the Tangle. The indexation payload consists of an index
along with additional data (i.e. application data). All WAM protocol messages are therefore
encapsulated within the indexation payload (Figure 3.26).

Figure 3.26: fields of a WAM message (left) and IOTA Chrysalis message (right).

WAM organizes data streams as a single-chain on the Tangle, with each piece of data in the
stream linked to the next one through an index. This allows any subscriber of the data stream to
reconstruct it by starting at any index on the Tangle and following the chain of linked data. Each
data message includes the current index and the index of the next message. Additionally, WAM
adds a security layer by using Authenticated Encryption with Associated Data (AEAD) to protect
the data, which is anchored to the Tangle in plain-text. Higher-level protocols or applications
can include data in the APPDATA field and its length in APPDATA LEN field. For data that
exceeds the maximum data length of a single WAM message or for continuous data transmission,
multiple data messages must be linked. This is done through the NEXT IDX field, which contains
the index of the next message in the stream to look for on the Tangle. Figure 3.27 illustrates
chaining mechanism.
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Figure 3.27: Chain of WAM messages.

By linking messages in a single chain, the WAM protocol allows subscribers to read data
streams in only one direction. This is intentional as it prevents the retrieval of previous informa-
tion from the same data stream. Figure 3.28 illustrates the process for generating the INDEX and
NEXT IDX. The WAM protocol generates a secret key and the corresponding public key deter-
ministically from a random seed, using the edwards25519 curve. The index of a WAM message is
then calculated by applying a hash function to the public key. Additionally, each WAM message
includes a link to the next index (NEXT IDX) to facilitate the continuous flow of data. Also the
NEXT IDX is generated in the same manner, using a different key-pair.

Figure 3.28: Generation of INDEX and NEXT IDX fields.

Each message includes a field called SIGN, which is calculated by using the private key
(PRIV KEY) of the key-pair to sign a digest h, as shown in the following equations.

h = H(APPDATA LEN +APPDATA+ PUB KEY +NEXT IDX)

SIGN = signature(h|PRIV KEY )

It’s important to note that an attacker who wants to redirect the next message to a different,
malicious stream would need to discover the public key used to derive the next index and include it
in their message. On the receiver side, the signature and public key are used for verification (Figure
3.29), ensuring the recipient cannot use the discovered NEXT IDX to append their own chain of
messages because they do not have the key-pair used to derive the NEXT IDX. This design allows
subscribers to confirm that data is coming from the same source. The WAM protocol employs
EdDSA (Edwards-curve Digital Signature Algorithm) over the edwards25519 elliptic curve and
uses the BLAKE2b hashing algorithm for integrity signature.
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Figure 3.29: Verification of a WAM message.

However WAM manages raw data, writes/reads bytes to/from the Tangle without assigning
them a particular meaning. The DID method library, that lies on top of WAM, has been developed
to structure this data and thus be able to perform CRUD operations on DID documents over the
IOTA ledger. The DID method library provides the following four methods: Create, Resolve,
Update, Delete.

Figure 3.30: DID Method - Create method.

Figure 3.30 illustrates the process of creating a DID document. Initially a node must generate
an asymmetric keypair plus all the attributes it wants to include in the document, then invokes the
Create method of the DID method interface which will internally call WAM functions to anchor
the DID document on the ledger. In this way a new data stream must be generated, so INDEX
and NEXT IDX are produced to identify the first two blocks of the chain and the INDEX field

40



SSI-aware TLS 1.3 handshake in OpenSSL

corresponds to the DID of the DID document that will be written at the INDEX block. After
writing all the data to the ledger the DID document will be returned to the node (Figure 3.30).

Whenever a node wants to apply changes to a DID document the DID method library makes
available the Update method that requests in input the DID and the changes to be made. The
DID is needed to find the index of the block where the DID document is stored, then the current
DID document is extracted, a new one is generated, containing the desired changes, and saved
at the NEXT IDX block. Logically, the updated DID document will also have a different DID
that corresponds to the NEXT IDX field. Furthermore, any time a new block is populated a new
NEXT IDX must be generated. Figure 3.31 illustrates all these steps.

Figure 3.31: DID Method - Update method.

In the situation where node B receives a DID from node A and tries to resolve it, invokes the
Resolve method of the DID method library. The DID must correspond to the most recent version
of the associated DID document, i.e. should be the index of the last non-empty block in the chain,
otherwise the resolve operation will fail. The WAM library will internally perform this check and,
if it succeeds, reads the payload of the block and hands it back to the above DID method library
which will organize this data into a DID document and returns it to node B, otherwise an error
code will be returned. Everything is shown in Figure 3.32.

The Revoke operation (Figure 3.33) supported by the DID method library provides the func-
tionality to dismiss a DID document by accepting as input parameter its DID. One of the main
features of the IOTA Tangle, but more in general of the DLT, is the data immutability property
which does not allow the removal of data from the ledger. In order to manage this, WAM will first
individuate the block of the chain that contains the DID document to revoke and sets NEXT IDX
to the value zero. So the next time a node tries to resolve the DID will realize that is no more
valid by checking that the last block of the chain has the IDX value set to zero.
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Figure 3.32: DID Method - Read method.

Figure 3.33: DID Method - Revoke method.
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3.8 Security Assessment

The modifications the TLS handshake protocol has undergone for enabling the SSI paradigm must
not invalidate the level of security and robustness the original one had. Thus, I have designed
two theoretical MITM (man-in-the-middle) attacks to prove its reliability starting from a couple
of assumptions:

❼ the attacker does not have a valid DID;

❼ if they do, the handshake endpoints will still be protected by the DID Method PSK;

Figure 3.34: Transparent Proxy attack in SSI-aware TLS handshake.

The first attack, denominatedMITM - Transparent Proxy supposes the attacker is passive,
that is it can only sniff messages the two endpoints exchange, but they can’t forge new ones. As
Figure 3.34 shows, after the Server Hello the subsequent messages exchanged are encrypted with
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handshake keys established among client and server in Client Hello and Server Hello by employing
the key exchange extension. In fact in the previous two messages both parties produced an
asymmetric keypair and shared with the other only the public part. Handshake keys are derived
by feeding to some internal algorithm the own private key and the peer’s public key. In this way
the attacker will never be able to access the private keys of the two endpoints as they will never
be sent over the network. Furthermore, after the client’s Finished message the application data
will be ciphered with application keys derived from handshake keys to which the attacker did not
have access previously, so the communication can be treated as secure.

In the MITM - Active Proxy attack, the attacker intercepts the messages exchanged by
the client and the server, manipulates them and sends them. In Figure 3.35 the blue messages
are the ones sent by the client, the red ones are sent by the attacker and the black ones are sent
by the server. The Client Hello gets intercepted by the attacker which discards it and sends its
own Client Hello to the server. The same happens for the Server Hello. Now the attacker and the
server have established their handshake keys (we reference them with black curly braces) which
are different from the ones established by the client and the attacker (represented by the red curly
braces). Whenever the Encrypted Extensions and Did Request messages are sent they will be
blocked by the attacker which will send its version of these messages encrypted with handshake
keys that it previously established with the client. Consequently, at the time the server sends the
Did message two different scenarios unfolds: in the first one the attacker does not possess a valid
DID to send and will simply forward the DID message from the server to the client, but the latter
will not be able to decrypt it as it is encrypted with handshake keys it does not possess. In the
second case the attacker discards the server’s Did message and forges a new one to send to the
client. The latter now will be able to extract the content of the message but when it will try to
resolve it will detect that the DID does not belong to the channel that its PSK can access.

Figure 3.35: MITM - Active Proxy attack in SSI-aware TLS handshake.
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Results

4.1 Functional tests

After designing and implementing the new SSI-aware TLS handshake model, I performed some
functional tests on a local machine to validate the solution. Below I will list all the scenarios
where the TLS handshake protocol should succeed in OpenSSL. In all the following cases both
server and mutual authentication are considered.

❼ a client employing the original OpenSSL and a server employing the SSI-aware OpenSSL
must be able to complete a handshake when using X.509 certificates.

❼ a client employing the SSI-aware OpenSSL and a server employing the original OpenSSL
must be able to complete a handshake when using X.509 certificates.

❼ a client and a server both employing the SSI-aware OpenSSL must be able to complete a
handshake when using X.509 certificates.

❼ a client and a server both employing the SSI-aware OpenSSL must be able to complete a
handshake when using DIDs.

❼ a client and a server both employing the SSI-aware OpenSSL must be able to complete a
handshake when the client authenticates through a DID and the server through an X.509
certificate.

❼ a client and a server both employing the SSI-aware OpenSSL must be able to complete a
handshake when the client authenticates through an X.509 certificate and the server through
a DID.

4.2 Performance tests

Afterwards I ran some performance tests, employing the SSI-aware OpenSSL, to measure the
handshake time over different authentication scenarios. I installed the SSI-aware OpenSSL on
two Raspberry Pi’s model 4 in the laboratory and connected them through an Ethernet switch.

The times were taken both on client and server side. The client starts measuring time before
sending the Client Hello message, thus before initiating a TLS connection, and stops the clock
after sending the Finished message because that is when can start sending application data. On
the other hand, a server starts the clock at the receiving of a Client Hello message, avoiding the
first network trip, but it will have to process all the client’s messages before stopping the time.
In fact the server completes the handshake only after processing the Finished message received
from the client. Anyway, for each scenario I will show a diagram of the interval of time measured
by both the client and the server.
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In the results I will discuss below, it is worth noting that the Round Trip Time among the two
RPI’s was, on average, 0,238 ms. For each authentication scenario I ran 100 tests and considered
the average time. All the DID documents and X.509 certificates I have utilized used an RSA-2048
keypair and an RSA-PSS-SHA256 algorithm for signatures.

4.2.1 Certificate Authentication

In this first scenario both parties are only allowed to authenticate with X.509 certificates. Times
were taken both in a mutual authentication handshake and a server authentication handshake.
Figure 4.1 shows the operations involved in the interval of times that have been measured in both
situations.

Figure 4.1: Operations included in the interval of time measured by the Client and the Server in
a mutual authentication (left) and server authentication (right) scenario in the TLS handshake
protocol with X.509 certificates.

In the server authentication chart (Figure 4.2) the two graphs almost overlaps as the average
time of the handshake on client side is 57,74 ms while on server side is 57,93ms. On the mutual
authentication chart (Figure 4.2) the client’s average handshake time takes 76,94 ms, while the
server’s is 81,93 ms, which is slightly greater due to the processing of Client Certificate and
Certificate Verify messages.
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Figure 4.2: Client and Server time graph of TLS handshake with X.509 certificates. Mutual
authentication (left) and Server authentication (right).

4.2.2 DID Authentication

In the second scenario authentication is performed through DIDs. I have created two DID docu-
ments, employing the DID method library, one for the server and one for the client on the IOTA
Devnet Tangle (a public ledger). In all the tests I have run all the connections to the Devnet
ledger are TLS-free, since data are already encrypted by the WAM protocol.

Figure 4.3: Operations included in the interval of time measured by the Client and the Server in
a mutual authentication (left) and server authentication (right) scenario in the TLS handshake
protocol with DIDs.

Both server and mutual authentication (Figure 4.4) with DIDs are an order of magnitude
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greater with respect to the certificate authentication scenario, due to the resolve operation of a
DID document on the IOTA ledger. In particular in a server authentication scenario the average
handshake time on client side is 385,36 ms, very similar to the one on server side which is 385,54
ms. This is due the fact that both the server and the client in their time interval will have to
wait only for one resolve operation, while in the case of a mutual authentication the server’s times
on the chart almost doubles the client’s ones. This is because the server during its interval will
have to wait for the client’s resolve operation of its DID document and then himself perform a
resolve operation of the client’s DID, whereas the client after sending its Finished message stops
the counter. The average handshake time on client’s side is 416,74 ms, while on server’s side is
738,80 ms.

Figure 4.4: Client and Server time graph of TLS handshake with DIDs. Mutual authentication
(left) and Server authentication (right).

4.2.3 Cross Authentication

Cross authentication is always mutual, but the two endpoints uses different authentication mech-
anisms.

Client-X.509 & Server-DID

Figure 4.5 illustrates the operations included in the time intervals where the client authenticates
with an X.509 certificate and the server with a DID. The chart (Figure 4.6) shows that the
handshake times are similar on client and server side, with an average of 476,71 ms for the client
and 484,28 ms for the server, due to the fact the resolve operation performed by the client of
the server’s DID involves both endpoints.
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Figure 4.5: Operations included in the interval of time measured by the Client and the Server in
a cross-authentication (Client-X.509 & Server-DID) scenario in the TLS handshake protocol.

Figure 4.6: Time graph of Client:X.509-Server:DID authentication handshake.

Client-DID & Server-X.509

In the second case of cross authentication the client authenticates with a DID and the server with
an X.509. The chart (Figure 4.8) shows quite different results between the client and the server.
The client now will not perform any resolve operation on the IOTA ledger because it receives an
X.509 certificate from the server, while the server receives the client DID and performs the resolve
of the DID document. The average time on the client’s side is 95,12 ms, on the server is 435,84
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ms.

Figure 4.7: Client and Server time interval in a cross-authentication (Client-DID & Server-X.509)
scenario in the TLS handshake protocol.

Figure 4.8: Time graph of Client:DID-Server:X.509 authentication handshake.
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Conclusions

In conclusion, the goal of this work was to introduce the Self-Sovereign Identity paradigm in the
TLS handshake protocol and demonstrate how to get rid of centralised Certification Authorities in
the handshake protocol, by replacing them with self-owned Decentralized Identifiers. In the future
the WAM protocol should be improved to catch up with the time performances of the original
TLS handshake protocol, so as all the protocols that will be designed to interact with the different
DLT’s. Furthermore, we know in the original handshake protocol an endpoint rarely consults, at
the time of the handshake, the CRL or the OCSP server to validate the peer’s certificate chain, but
most likely resorts to shortcut techniques such as pushed CRL or OCSP stapling. In the SSI-aware
TLS handshake similar extensions could be designed to reduce to the minimum the authentication
time. In the end since DIDs are self-issued, the identity of a party cannot be proved. In fact this
solution works for small groups of actors who trust each other by sharing a PSK (like in WAM)
or something similar. Thus the ultimate goal of this work will be to integrate VCs with DIDs to
guarantee the authentication property of TLS even in an untrusted environment.
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User Manual

This section illustrates how to install and execute the code of the DID Method library developed
for the IOTA Tangle and the SSI-aware version of OpenSSL 3.0.

A.1 DID Method

The DID Method library provides methods to create, update, resolve and revoke DID documents.

A.1.1 Requirements

The DID Method requires the following dependencies to work properly.

cJSON

cJSON is an ultra-lightweight library used to parse and generate JSON objects. It is written in
ANSI C to support a wide variety of platforms and compilers and it consists of a single source
file (cJSON.c) and header file (cJSON.h) which can be directly downloaded and included into a
project [12].

iota.c

It is the iota C client library needed to interact with the IOTA ledger and will be employed by
WAM [13].

WAM

WAM is the cryptographic protocol utilized to securely read and write data to the IOTA Chrysalis
Tangle.

libsodium

Sodium is a cross-platform, cross-language and easy-to-use cryptographic library which can be
installed on linux platforms with the command [14]:

sudo apt install libsodium-dev
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A.1.2 Installation

The DID Method library is stored on the git server at Links Foundation and can be downloaded
with:

git clone git-guest@gitserver:/git/GUEST/C CRUD.git

To install it we enter the new directory and we launch the bash script:

cd C CRUD

./build.sh

The build.sh script (figure A.2) contains the necessary instructions to output the static library
libdidmethod.a and a ./demo/demo application to play around with CRUD operations on the
IOTA Chrysalis Tangle. The script initially clones from github the dev branch of the iota.c repos-
itory then builds it and installs it in the local system. Furthermore it downloads the WAM library
from the Links Foundation’s git server and in the end the cmake tool executes the CMakeLists.txt
file (Figure A.1) to generate the MakeFile that outputs the final library.

cmake_minimum_required(VERSION 3.9)

project(wam)

include_directories(

✩{CMAKE_CURRENT_SOURCE_DIR}/WAM

✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/include/

✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/include/cjson/

✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/include/client/

✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/include/crypto/

✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/include/core/

)

link_directories(✩{CMAKE_CURRENT_SOURCE_DIR}/iota.c/build/lib/)

add_library(didmethod STATIC did_method.c

✩{CMAKE_CURRENT_SOURCE_DIR}/WAM/WAM.c

✩{CMAKE_CURRENT_SOURCE_DIR}/WAM/wam-wrapper.c)

target_link_libraries(didmethod PUBLIC iota_crypto crypto iota_core

iota_client cjson curl sodium)

set_property(TARGET didmethod PROPERTY POSITION_INDEPENDENT_CODE ON)

add_subdirectory(demo)

Figure A.1: Content of the CMakeLists.txt file
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#!/bin/bash

set -e

DIR="./iota.c"

if [ -d "✩DIR" ]; then

# Take action if ✩DIR exists. #

echo "iota.c already present -> skip download"

else

echo "Downloading IOTA C Library from Git..."

git clone -b dev https://github.com/iotaledger/iota.c.git

echo "Building IOTA C Library..."

cd iota.c

mkdir build && cd build

cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++

-DCryptoUse=libsodium -DIOTA_WALLET_ENABLE:BOOL=TRUE

-DCMAKE_INSTALL_PREFIX=✩PWD -DWITH_IOTA_CLIENT:BOOL=TRUE

-DWITH_IOTA_CORE:BOOL=TRUE ..

make all

make install

cd ..

cd ..

fi

DIR="./WAM"

if [ -d "✩DIR" ]; then

# Take action if ✩DIR exists. #

echo " WAM already present -> skip download"

else

echo "Downloading WAM Library from Git..."

git clone git-guest@gitserver:/git/GUEST/WAM.git

fi

echo "Building DID Method..."

cmake .

make

echo ’’Finished’’

Figure A.2: Content of the build.sh script

A.2 SSI-aware OpenSSL 3.0

A.2.1 Installation on UNIX-like platforms

The SSI-aware version of OpenSSL can be downloaded from the Links Foundation’s git server by
executing:

git clone git-guest@gitserver:/git/GUEST/OpenSSL.git

then we run the script that generates the MakeFile (Figure A.3) needed to build OpenSSL by
running the following commands:

cd OpenSSL

./openssl-config.sh

In openssl-config.sh the --prefix option lets the user choose the installation directory of the
OpenSSL executable and libraries.

Now we are ready to build and install the new version of OpenSSL with:

make

make install
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./config --debug --prefix=path/to/openssl

-Wl,--enable-new-dtags,-rpath,’✩(LIBRPATH)’ -I/path/to/C_CRUD/WAM

-I/path/to/C_CRUD/iota.c/build/include

-I/path/to/C_CRUD/iota.c/build/include/cjson

-I/path/to/C_CRUD/iota.c/build/include/client

-I/path/to/C_CRUD/iota.c/build/include/crypto

-I/path/to/C_CRUD/iota.c/build/include/core -I/path/to/C_CRUD

-L/path/to/C_CRUD/iota.c/build/lib/ -L/path/to/C_CRUD -ldidmethod

-liota_crypto -liota_core -liota_client -lcjson -lcurl -lsodium

Figure A.3: Content of the MakeFile

A.2.2 Usage

OpenSSL provides the openssl command line tool to perform various cryptographic operations
such as performing a client/server TLS handshake. In order to accomplish this a user should
navigate to the directory where they installed OpenSSL:

cd path/to/openssl

In the /bin subdirectory the user will find the openssl executable file and can run their desired
application providing. Below we will check out some openssl configurations to perform the TLS
handshake under several authentication scenarios. Let’s also suppose that an endpoint’s identity
information, such as the X.509 certificate and its private key, are stored in the /bin folder and
both the TLS client and server will run on a local system.

TLS 1.3 Handshake with server authentication - x.509

Server side

./openssl s_server -cert ./server_certificate.pem -key ./server_cert_pkey.pem

-accept 44330 -www

❼ s server: sets up a TLS server;

❼ -cert ./server certificate.pem: loads into openssl the server’s x.509 certificate con-
tained in server certificate.pem file;

❼ -key ./server cert pkey.pem: loads into openssl the server’s private key contained in
the server cert pkey.pem file;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330;

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters.

Client side

./openssl s_client -connect localhost:44330

❼ s client: sets up a TLS client;

❼ -connect localhost:44330: specifies the host and the port to connect to.
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Figure A.4: Client output of a successful TLS 1.3 handshake using x.509 certificates in OpenSSL.

TLS 1.3 Handshake with mutual authentication - x.509

Server side

./openssl s_server -cert ./server_certificate.pem -key ./server_cert_pkey.pem

-accept 44330 -www -verify 1

❼ s server: sets up a TLS server;

❼ -cert ./server certificate.pem: loads into openssl the server’s x.509 certificate con-
tained in server certificate.pem file;

❼ -key ./server cert pkey.pem: loads into openssl the server’s private key contained in
the server cert pkey.pem file;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330.

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters;

❼ -verify 1: requests a certificate from the client and specifies the client certificate chain
should contain only one certificate.

Client side

./openssl s_client -connect localhost:44330 -cert ./client_certificate.pem

-key ./client_cert_pkey.pem

❼ s client: sets up a TLS client;
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❼ -connect localhost:44330: specifies the host and the port to connect to;

❼ -cert ./client certificate.pem: loads into openssl the client’s x.509 certificate con-
tained in client certificate.pem file;

❼ -key ./client cert pkey.pem: loads into openssl the client’s private key contained in
./client cert pkey.pem file.

TLS 1.3 Handshake with server authentication - DID

Server side

./openssl s_server -accept 44330 -www -nocert -did

did:ott:A132F780A4FFF3D439A59A81453B968AA30C4A7687EBFCB1BCE0DC7A2DE0635A

❼ s server: sets up a TLS server;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330.

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters;

❼ -nocert: no certificate is used;

❼ -did did:ott:A132F780A4FFF3D439A59A81453B968AA30C4A7687EBFCB1BCE0DC7A2DE0635A:
loads the server’s DID into openssl.

Client side

./openssl s_client -connect localhost:44330 -did_methods ott,eth

❼ s client: sets up a TLS client;

❼ -connect localhost:44330: specifies the host and the port to connect to;

❼ -did methods ott,eth: the DID methods the client supports.

TLS 1.3 Handshake with mutual authentication - DID

Server side

./openssl s_server -accept 44330 -www -nocert -verify 1 -did

did:ott:A132F780A4FFF3D439A59A81453B968AA30C4A7687EBFCB1BCE0DC7A2DE0635A

-did_methods ott,eth

❼ s server: sets up a TLS server;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330.

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters;

❼ -nocert: no certificate is used;

❼ -verify 1: requests a DID from the client;

❼ -did did:ott:A132F780A4FFF3D439A59A81453B968AA30C4A7687EBFCB1BCE0DC7A2DE0635A:
loads the server’s DID into openssl;
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❼ -did methods ott,eth: the DID methods the server supports.

Client side

./openssl s_client -connect localhost:44330 -did

did:ott:43FAB3D59E0FB5611622CC24E3ECD659D249622333F66C7AAF32E9A958367992

-did_methods ott,eth

❼ s client: sets up a TLS client;

❼ -connect localhost:44330: specifies the host and the port to connect to;

❼ -did did:ott:43FAB3D59E0FB5611622CC24E3ECD659D249622333F66C7AAF32E9A958367992:
loads the client’s DID into openssl

❼ -did methods ott,eth: the DID methods the client supports.

Figure A.5: Client output of a successful TLS 1.3 handshake using DIDs in OpenSSL.

TLS 1.3 Handshake with cross authentication - Client(DID) & Server(x.509)

Server side

./openssl s_server -accept 44330 -www -verify 1 -cert

./server_certificate.pem -key ./server_cert_pkey.pem -did_methods ott,eth.

❼ s server: sets up a TLS server;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330.

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters;
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❼ -verify 1: requests a DID from the client;

❼ -cert ./server certificate.pem: loads into openssl the server’s x.509 certificate con-
tained in server certificate.pem file;

❼ -key ./server cert pkey.pem: loads into openssl the server’s private key contained in
the server cert pkey.pem file;

❼ -did methods ott,eth: the DID methods the server supports.

Client side

./openssl s_client -connect localhost:44330 -did

did:ott:43FAB3D59E0FB5611622CC24E3ECD659D249622333F66C7AAF32E9A958367992

❼ s client: sets up a TLS client;

❼ -connect localhost:44330: specifies the host and the port to connect to;

❼ -did did:ott:43FAB3D59E0FB5611622CC24E3ECD659D249622333F66C7AAF32E9A958367992:
loads the client’s DID into openssl

Figure A.6: Client output of a successful TLS 1.3 handshake where the client authenticates with
DID and the server with X.509.

TLS 1.3 Handshake with cross authentication - Client(x.509) & Server(DID)

Server side
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./openssl s_server -accept 44330 -www -nocert -verify 1 -did

did:ott:A132F780A4FFF3D439A59A81453B968AA30C4A7687EBFCB1BCE0DC7A2DE0635A

-did_methods ott,eth

❼ s server: sets up a TLS server;

❼ -accept 44330: the server will be listening for incoming TCP connections on port 44330.

❼ -www: sends information back to the client when it connects, like used ciphers and other
session parameters;

❼ -nocert: no certificate is used;

❼ -verify 1: requests a DID from the client;

❼ -did did:ott:43FAB3D59E0FB5611622CC24E3ECD659D249622333F66C7AAF32E9A958367992:
loads the server’s DID into openssl;

❼ -did methods ott,eth: the DID methods the server supports.

Client side

./openssl s_client -connect localhost:44330 -cert ./client_certificate.pem

-key ./client_cert_pkey.pem -did_methods ott,eth

❼ s client: sets up a TLS client;

❼ -connect localhost:44330: specifies the host and the port to connect to;

❼ -cert ./client certificate.pem: loads into openssl the client’s x.509 certificate con-
tained in client certificate.pem file;

❼ -key ./client cert pkey.pem: loads into openssl the client’s private key contained in
./client cert pkey.pem file;

❼ -did methods ott,eth: the DID methods the client supports.
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Figure A.7: Client output of a successful TLS 1.3 handshake where the client authenticates with
X.509 and the server with DID.
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B.1 SSI-aware OpenSSL

B.1.1 The ssl directory

statem local.h is a key file in the ssl directory, since it hosts two fundamental structures in
the library: SSL CTX (alias of ssl ctx st) and SSL (alias of ssl st). The first one represents the
configuration and state of an SSL/TLS context. It contains information such as the SSL/TLS
version to use, the set of available cipher suites, the trusted certificate authorities, etc. It is
typically used to create new SSL/TLS connections. The second one represents the state of an
individual SSL/TLS connection. It contains information such as the current cipher suite, the
session key, and the peer’s certificate. This structure is used to maintain the state of an existing
SSL/TLS connection.

For the SSI-aware TLS model I have added in this file two new structures, one that recalls the
other, to manage DID documents and made them available to the SSL and SSL CTX structures.
The body of these structures is symmetrical to the ones that handle X.509 certificates.

typedef struct did_pkey_st DID_PKEY

struct did_pkey_st {

unsigned char *did;

size_t did_len;

uint8_t did_method;

EVP_PKEY *privatekey;

};

The DID PKEY (alias of did pkey st) structure stores all the fields of an endpoint’s DID docu-
ment that are considered relevant for the handshake, such as the string that identifies the DID,
its length and DID method. Furthermore, the EVP PKEY *privatekey field corresponds to the
authentication method private key and will be indispensable for the endpoint to construct the
DID Verify message. EVP PKEY *privatekey is an OpenSSL internal structure to save public and
private keys.

typedef struct did_st {

DID_PKEY *key;

DID_PKEY pkeys[SSL_PKEY_NUM];

} DID;

The DID (alias of did st) structure provides an array of DID PKEY elements. SSL PKEY NUM

is a constant and represents the number of asymmetric key types supported in OpenSSL, thus
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an endpoint’s DID document is classified by its authentication method key type. When a DID
document will be uploaded into this structure will be placed in a specific position in the array,
leaving the rest of the array empty, and the DID PKEY *key is a pointer to the above-mentioned
DID document in the array.

An endpoint should also need to store some information about the peer’s DID document after
resolving it, such as the authentication method public key that can be saved in the EVP PKEY

*peer did pubkey variable. This information will be essential to verify the peer’s signature when
we receive its DID Verify message. Anyway this element is only present in the SSL structure,
since it belongs to a specific TLS connection.

In the SSL structure I have also added the authn method variable, which is an integer, that will
be employed by an endpoint to figure out whether to authenticate itself with an X.509 certificate
(value 0) or a DID (value 1).

B.1.2 The ssl/statem subdirectory

The ssl/statem directory contains the files for the handshake state machine. The extensions.c
file contains general methods to manage the extensions in the handshake messages, while the files
extensions clnt.c and extensions srvr.c provide the implementation of client-specific and
server-specific extensions respectively. Similarly, the statem.c contains general handshake state
machine functions while statem clnt.c and statem srvr.c implement client-specific and server-
specific handshake messages. The functions in these two files observe the syntax: tls construct ...

and the name of the message to send when constructing a message, tls process ... and the
name of the message to process when receiving a message. The two files I’ve added, the header
one (statem local did.h) and the source one (statem local did.c) include functions for the
new handshake messages (e.g. DID Request, DID and DID Verify) following the syntax of the
statem clnt.c and statem srvr.c files. These functions are discussed in the statem local did.c

file.

It’s worth noting that in the following methods the WPACKET structure is utilized to store data
that will be sent through the network, while the PACKET structure contains the data that comes
from the network.

Client Methods

EXT RETURN tls construct ctos supported did methods (...)

This is the function that constructs the client’s supported did methods extension. If the client
supports DID methods this function writes them into a WPACKET, otherwise it does nothing.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ WPACKET *pkt: the supported DID methods will be written here;

❼ unsigned int context: expresses the state of the handshake, in this case is SSL EXT CLIENT HELLO

since the construction of this extension happens in Client Hello;

❼ X509 *x: this parameter is not NULL only when the extension is applied to a specific certifi-
cate in the Certificate message, so here it is NULL;

❼ size t chainidx: equals to zero, since this field is still related to Certificate message
extensions.

Output : if the client has DID methods to send it will return the enum value EXT RETURN SENT,
otherwise EXT RETURN NOT SENT.

int tls parse stoc supported did methods(...)
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This function parses the DID methods the server has sent to the client in the Did Request
message and saves them into the s->ext.peer supporteddidmethods variable.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: reads the incoming DID methods from this variable;

❼ unsigned int context: in this case is SSL EXT TLS1 3 DID REQUEST since the parsing of
this extension happens while processing the Did Request message;

❼ X509 *x: NULL;

❼ size t chainidx: equals to zero.

Output : returns 1 in case of successful outcome, 0 otherwise.

MSG PROCESS RETURN tls process did request(...)

This function processes the Did Request message received from the server. It first saves
the did request context into s->pha context and then parses the two extensions it is sup-
posed to receive: supported did methods and did signature algorithms. Successively it sets
the signature algorithms it has in common with the server and checks if its DID has a DID
method compatible with one of those sent by the server by invoking tls1 process sigals() and
tls1 process supported did methods() respectively.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: the DID Request message is read from here.

Output : in case everything goes smoothly it returns the MSG PROCESS CONTINUE READING enum
value to express the processing of this message is over and we can proceed with the next one, if
something goes wrong returns the MSG PROCESS ERROR enum value.

MSG PROCESS RETURN tls process server did(...)

Upon a DID message received from the server the client calls this function. First, it reads
the context, the DID method and the DID from pkt. Afterwards it uses the resolve operation
supplied by libdidmethod.a to retrieve the server’s DID document from the ledger. It does some
internal operations to transform the server’s authentication method public key from an array of
unsigned char into a EVP PKEY structure and saves it into the s->session->peer did pubkey

variable. In the end it saves the current handshake state for when it receives the DID Verify
message.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: the DID message is read from here.

Output : If all the operations listed above succeed it returns the MSG PROCESS CONTINUE READING

enum value to express the processing of this message is over and we can proceed with the next
one, otherwise it returns the MSG PROCESS ERROR enum value.

int tls construct client did(...)

When constructing the DID message the client writes in pkt the DID request context, the DID
method of its DID and the actual DID. The first one is always zero since post-handshake authen-
tication has not been implemented yet, while the other two are extracted from the s->did->key
variable where did is a pointer to a did st element, that as we have seen earlier it contains the
endpoint’s DID document information.

Input :
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❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: the DID message is read from here.

Output : In case of success it returns 1, otherwise 0.

Server Methods

int tls parse ctos supported did methods(...)

This method parses the DID methods the client has sent to the server in the Client Hello
message and saves them into the s->ext.peer supporteddidmethods variable.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: reads the incoming DID methods from here;

❼ unsigned int context: in this case is SSL EXT CLIENT HELLO since the parsing of this
extension happens while processing the Client Hello message;

❼ X509 *x: NULL;

❼ size t chainidx: equals to zero;

Output : returns 1 in case of successful outcome, 0 otherwise.

EXT RETURN tls construct stoc supported did methods(...)

The server invokes this function to construct the supported did methods extension to send
to the client in the Did Request message. The only difference from the corresponding client’s
method on is that if the server has previously received the supported did methods extension from
the client it must send the list of DID methods they both have in common and that is stored
into the s->shared didmethods variable, otherwise it must send the full list of supported DID
methods held in s->ext.supporteddidmethods.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ WPACKET *pkt: the DID methods will be written here;

❼ unsigned int context: expresses the state of the handshake, in this case is
SSL EXT TLS1 3 DID REQUEST since the construction of this extension happens in the Did
Request message;

❼ X509 *x: NULL;

❼ size t chainidx: zero.

Output : if the server has DID methods to send it will return the EXT RETURN SENTenum value,
otherwise the EXT RETURN NOT SENT enum value.

int tls construct did request(...)

A server that constructs a Did Request must insert into the WPACKET the DID request
context that must always be zero (post-handshake authentication has not been implemented
yet) and the two extensions supported did methods and did signature algorithms, through the
tls construct extensions() function.

Input :
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❼ SSL *s: the structure that contains the TLS connection parameters;

❼ WPACKET *pkt: the content of the Did Request message is written here.

Output : in case of success it returns 1, otherwise 0.

int tls construct server did(...)

This function constructs the server’s DID message by writing in *pkt the DID request context
(value zero), the DID method of the server’s DID and the actual DID.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ WPACKET *pkt: the content of the Did Request message is written here.

Output : in case of success it returns 1, otherwise 0.

MSG PROCESS RETURN tls process client did(...)

Similarly to the client, the server processes the peer’s DID using the resolve function of
libdidmethod.a and stores the client’s public key into the s->session->peer did pubkey vari-
able.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: reads the DID message from here.

Output : in case of success returns the MSG PROCESS CONTINUE READING enum value to express the
processing of this message is over and we can proceed with the next one, otherwise it returns the
MSG PROCESS ERROR enum value.

General Methods

int tls construct did verify(...)

Both the client and the server employ the same function to construct the DID Verify message.
The function first verifies the endpoint’s s->did->privatekey is not NULL, then it prepares
the content to be signed and signs it calling get did verify tbs data() and EVP DigestSign()

respectively and finally writes in *pkt the DID signature algorithm utilized and the content of
the signature.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ WPACKET *pkt: the content of the DID Verify message is written here.

Output : in case of success returns 1, otherwise 0.

MSG PROCESS RETURN tls process did verify(...)

Also the processing of the DID Verify message is equal for both the client and the server.
An initial check verifies the peer’s public key type contained in s->session->peer did pubkey

matches the signature algorithm included in the DID Verify message. Additionally it reads the
content of the signature contained in *pkt and puts it in the data variable, then calculates the
hash of the content that was supposed to be signed invoking the get did verify tbs data() and
stores it in hdata. Finally it verifies the signature through the EVP DigestVerify() function by
feeding in input the data and hdata variables.

Input :
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❼ SSL *s: the structure that contains the TLS connection parameters;

❼ PACKET *pkt: the content of the DID Verify message is read from here.

Output : in case of success returns the MSG PROCESS CONTINUE READING enum value to express the
processing of this message is over and we can proceed with the next one, otherwise it returns the
MSG PROCESS ERROR enum value.

B.1.3 The ssl general files

Among the general files in the ssl directory I included a new source file (did.c) and its header file
(ssl local did.h) to supply some utility functions to manage the new components contained inside
the SSL and SSL CTX structures.

int tls13 set server did methods(...)

This method is invoked by the server during the post processing of the client hello and it
represents the real novelty in this new version of OpenSSL. It allows the server to establish how
it should authenticate itself: if the client did not send any DID methods the s->auth method will
be set to CERTIFICATE AUTHN (value 0) as the server should authenticate with the Certificate and
Certificate Verify message, otherwise if the client has sent the supported did methods extension
the server will set s->auth method to DID AUTHN (value 1). Moreover, in this last case if also
the server has a list of supported DID methods, it stores into s->shared didmethods the DID
methods it has in common with the client.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

Output : returns 1 in case of success, 0 otherwise.

int ssl has did(...)

Since server authentication is always mandatory in TLS, this function is invoked by the server
together with ssl has cert() when setting up the TLS connection since the server must possess
at least either an X.509 certificate or a DID.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

❼ int idx: value between 0 and SSL PKEY NUM;

Output : returns 1 in case of success, 0 otherwise.

DID *ssl did new(...)

This function gets invoked from an external function SSL CTX new ex() employed by both
the client and the server, in s client.c and s server.c respectively, to initialize the handshake
context (SSL CTX). In the specific it instantiates the DID *did variable.

Output : returns a pointer to the DID structure in case of success, 0 otherwise.

DID *ssl did dup(...)

Both the endpoints make use of the SSL new() function to create a new TLS connection,
which internally duplicates most of the content of the SSL CTX element into the SSL one, so the
ssl did dup() function duplicates the content of SSL CTX->did into SSL->did.

Input :

❼ DID *did: pointer to the element to duplicate;
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Output : returns a pointer to the new element in case of success, a NULL pointer otherwise.

int send did request(SSL *s)

The server resorts to this method when in the writing state of the handshake has sent the
Encrypted Extensions message and has to figure out whether client authentication is requested or
not. If the -verify option in the s server configuration is present then the server should send
a DID Request message.

Input :

❼ SSL *s: the structure that contains the TLS connection parameters;

Output : returns 1 in case of client authentication required, 0 otherwise.

B.1.4 The apps directory

The apps directory include the files to implement the various OpenSSL applications. The
apps/s server.c and apps/s client.c files contain the code of the s server and s client

applications respectively. I have equipped these two files with two brand new options: the -did

option permits to specify the endpoint’s DID string while the -did methods one allows to list
all the endpoint’s supported DID methods. Both the DID and DID methods will be later on
uploaded into an instance of the SSL CTX to initialize the handshake context.

The s server main() parses all the options received , initializes the SSL CTX *ctx variable
through the SSL CTX new ex() function loads into it the parsed options and starts listening for
incoming TLS connections. Once a new connection is received the SSL new() function to instan-
tiate an SSL structure is invoked.

The s client main() similarly to s server main() parses all the options, instantiates the
SSL CTX variable through the SSL CTX new ex() function, loads into it the parsed options, du-
plicates its content into an instance of the SSL structure calling the SSL new() function and starts
the handshake.

Below, we will go through the methods that allow to manage the options I have added in
s client and s server.

int ssl ctx set did methods()

Fills the content of the ctx->ext.supportedidmethods variable with the list of DID methods
present in the -did methods option.

Input :

❼ SSL CTX *ctx: the structure that contains the handshake context;

❼ const char *did methods: the list of DID methods contained in the -did methods option.

Output : returns 1 in case of success, 0 otherwise.

int set did key stuff()

Loads into ctx->did the DID document private key (EVP PKEY *key), the DID string and its
DID method.

Input :

❼ SSL CTX *ctx: the structure that contains the handshake context;

❼ EVP PKEY *key: the DID document private key loaded from memory.

❼ const char *did: the DID contained in the -did option

Output : returns 1 in case of success, 0 otherwise.
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