
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Image Classification in the Browser: a
performance assessment

Supervisors

Prof. ANDREA CALIMERA

Dott. VALENTINO PELUSO

Candidate

VALERIA SORRENTI

April 2023

Summary

During the last decades, are made steps forward in the Artificial Intelligence (AI)
field. Until recently, the Cloud Computing paradigm has allowed for increasingly
complex and large models, but recently, a paradigm shift has occurred, and Edge
Computing has taken over, having an eye on issues such as privacy and portability.
In the last years, JavaScript (JS) libraries have emerged, allowing Deep Learning
(DL) to be brought into the browser. These libraries provide several benefits. In
particular, they ensure portability. WebAssembly is a low-level binary format that
is designed to be executed by web browsers. It provides a way to run code in the
browser, in a way that is closer to native machine code than JS. It means that DL
models built using JavaScript libraries can be deployed with WebAssembly on a
wide range of devices and platforms, making it easier to integrate DL into web
applications. The solution presented is a static web application that performs a
classification task on the emotional states of people in a work environment. Using a
static site ensures privacy, and the ONNX Runtime Web, enables ONNX DL models
to run in the browser. The results are obtained by testing the web application of
three devices with different hardware performances. Eight Convolutional Neural
Networks with different depths and complexity are taken into consideration. The
outcomes produced are the latency time and the prediction with its probability.
This Master thesis, proves that JS libraries are the correct solution to overcome the
issue of portability and, in particular, put the focus on the performance obtained
with a web application.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1

2 State of Art 4
2.1 Background . 4

2.1.1 Deep Learning . 4
2.1.1.1 Artificial Neural Networks 4
2.1.1.2 Training . 7
2.1.1.3 Dataset Handling and Data Preprocessing 8
2.1.1.4 Evaluation Metrics 10
2.1.1.5 Image Classification and Convolutional Neural Net-

works . 12
2.1.2 Edge Computing and paradigm shift 14
2.1.3 Web Application for AI . 16

2.1.3.1 Web Application 16
2.1.3.2 JavaScript and WebAssembly 18

2.2 Related works . 21

3 Methodology 23
3.1 Data Collection and Preparation . 23
3.2 Training . 24
3.3 ONNX Model . 25
3.4 Image Classification inference on Static Site using ONNX Runtime

Web . 28

iv

4 Experimental Results 31
4.1 Experimental Setup . 31

4.1.1 Datasets . 31
4.1.1.1 Office31 . 31
4.1.1.2 DAiSEE . 33

4.1.2 Models . 33
4.1.3 Data Preparation, Data Preprocessing and Training 36

4.1.3.1 Office31 . 36
4.1.3.2 DAiSEE . 37

4.1.4 ONNX format conversion and Static Site deployment 40
4.2 Results . 41

4.2.1 Office31 . 41
4.2.2 DAiSEE . 42

5 Conclusion 46

Bibliography 50

v

List of Tables

4.1 Distribution of DAiSEE dataset samples among classes. 33
4.2 Values of resizing and cropping used with each model on DAiSEE

samples. 40
4.3 Hardware features of devices used to test the web application devel-

oped. Device 1 and 2 are notebooks, the Device 3 is a smartphone. 43
4.4 Result with Office31 dataset obtained with Device 1. 43
4.5 Result of experiments on DAiSEE dataset using different devices

and models. 44

5.1 Results of latency time obtained on the same pictures using ONNX
models and Pytorch models. For this comparison, models are tested
on Device 1 (table 4.3). 47

vi

List of Figures

2.1 Example of an Artificial Neural Network with one hidden layer. . . 5
2.2 Architecture of Perceptron. Source [9] 6
2.3 Scheme of training algorithm. Source [10] 9
2.4 Example of ROC curve. The AUC is respectively the area under the

ROC. In this figure is highlighted how a classifier is good or bad.
Source [11] . 11

2.5 Example of convolutional neural network. Source [12] 12
2.6 Comparison between cloud and edge Computing. Figure 2.6a shows

the cloud computing paradigm and is evident how data producer
and consumer are two different figures. Figure 2.6b shows the edge
computing paradigm and, unlike the previous paradigm, the data
consumer is also the data producer. Source [1]. 14

3.1 Methodological flow followed to implement a Web Application able
to do image classification tasks on browser. 24

3.2 Example of a graph representation in ONNX format using Netron
[37]. Source [38] . 26

3.3 Frameworks supported by ONNX for building models. 27
3.4 Runtimes used for deploy ONNX models. 28
3.5 High-level system architecture of ONNX Runtime Web. Source [44] 30

4.1 Example of a bike and laptop PC in the three domains of Office31
dataset. 32

4.2 Example of frames taken from class "Confusion" of DAiSEE dataset.
Starting from the left, there are respectively the four levels of labels. 33

4.3 Distribution of "Webcam" branch, of Office31 samples among 31
classes. 36

4.4 Distribution of branch "Confusion" of DAiSEE dataset frames among
the 4 classes. 39

4.5 The most important components of web application. 40
4.6 Static sites appearance. 42

vii

4.7 Relationship between the latency mean of models and their size. . . 45

5.1 Comparison between latency mean of Pytorch and ONNX models.
Models are tested on Device 1 (table 4.3) for this comparison. . . . 48

viii

Acronyms

AI
Artificial Intelligence

DNN
Deep Neural Network

CNN
Convolutional Neural Network

DNN
Recurrent Neural Network

DL
Deep Learning

ML
Machine Learning

JS
JavaScript

CPU
Central Process Unit

GPU
Graphic Process Unit

ONNX
Open Neural Network Exchange

x

TP
True Positive

FP
False Negative

ROC
Receiver Operating Characteristic

AUC
Area Under the Curve

IoT
Internet of Things

HTTP
HyperText Transfer Protocol

URL
Uniform Resource Locator

HTML
Hyper Text Murkup Language

GIF
Graphics Interchange Format

TCP/IP
Transmission Control Protocol Over Internet Protocol

SQL
Structured Query Language

DOM
Document Object Model

CSS
Cascading Style Sheets

xi

SSH
Secure Socket Shell

DSLR
Digital Single-Lens Reflex

FLOPs
loating-Point Operation per second

NAS
Neural Architecture Search

SGD
Neural Architecture Search

VM
Virtual Machine

ES
ECMAScript

NLP
Natural Language Procssing

xii

Chapter 1

Introduction

In the last decades, Artificial Intelligence (AI) has been widely used to automate
industrial processes in different sectors and to make easier some actions in everyday
life. Many applications concern image processing, speech recognition, object
training, and others. They combine a large amount of data and algorithms
for solving assigned tasks. In several context, technologies that exploit AI need
sensitive data, these concern:

• personal data that reveal political orientation, ethnic origins, philosophical
beliefs

• genetic data, biometric data that are used exclusively to identify a human
being

• data related to the health conditions

• data about sex or sexual orientation

• trade-union membership

In recent years, Computer Vision has been widely exploited for implementing
numerous applications. In this field, data processed and passed to DL models are
images. If the subject of an image is a person or object that contains data traceable
to a person, it means that this data contain sensitive data.
For example, if a company would make statistics into the working environment or
the collective productivity, it would need sensitive data of a worker, in his office or
smart-working setting, for making predictions. In the majority of cases, these data
are sent to third parties, and people do not accept that they can get hold of these
data, to exploit them for other scopes. The big problem that emerges is the pri-
vacy of users when sending sensitive data to third parties to exploit AI technologies.

1

Introduction

To overcome this problem, AI community studies methods to bring the infer-
ence phase near as possible to the data source. A change of paradigm is necessary.
The paradigm widely used in AI technologies is Cloud Computing: data are sent
and processed on cloud servers. This paradigm, especially for Deep Learning (DL)
applications, is widely adopted because for processing data and for using DL models,
it is necessary hardware that has optimal performances, sometimes suffering long
response time.
Unfortunately, this paradigm does not take care of users’ data privacy. Another
paradigm that, instead, takes care of this aspect is edge computing [1]. It brings
the computation in the proximity of the data source preserving the users’ privacy,
contrary to cloud computing. The resulting limitations of edge computing are in
the hardware performances because not all devices have powerful Graphic Process
Units (GPUs) and Central Process Units (CPUs) able to process heavy data and
use heavy DL models.

Edge computing solves privacy issue but brings attention to another problem.
Due to the heterogeneity of operating systems and hardware, an AI application
should have one version for each operating system and hardware. Developing and
keeping updated every single version of an application is a non-trivial task. Native
applications exploit DL frameworks and libraries that could run on heterogeneous
development environments as Windows, Linux, MacOS/iOS or Android. These
applications, are implemented with different languages according to the develop-
ment environments. The development of mobile applications, is harder than other
devices. Often, applications must be maintain and develop in both iOS and Android
versions. In addition, also distribution is non-trivial because the most current
platforms have an app store, and sometimes, apps are rejected or need manual
test before being accepted. The solution is to develop portable applications over
operating systems and hardware devices.

A DL application that ensures privacy and portability issues is a web ap-
plication that makes inference on browser. For building AI web application
many JavaScript (JS) libraries are developed. They provide the instruments and
APIs required for allowing DL models to be integrated in the web application that
make accessible CPU and GPU to DL models.
Another technology that runs together with JS components is WebAssembly [2].
It is a low-level binary format that is designed to be executed by web browsers. It
provides a way to run code in the browser that is closer to native machine code
than JS. One of the main use cases for WebAssembly is to allow developers to
run computationally intensive code in the browser, such as ML algorithms. Using
WebAssembly, developers can create web applications that can take advantage
of the full power of the users’ devices without relying on a server to perform

2

Introduction

complex computations. Most surveys are made for comparing the performance
between native and in-browser applications [3]. From the above mentioned studies,
it is clear that the performances of native applications are more powerful in terms
of inference time, but the backend technologies (CPU or GPU) have a strong impact.

In this work, a web application is realized, able to recognize the emotional states
of a user through a photo of him/her face. For its relevant and flexible features,
Open Neural Network Exchange (ONNX) model format [4] and ONNX Run-
time Web [5] are chosen for developing a web application that performs inference
on an image classification task. It ensures data privacy and solves the problem
of portability among different devices and operating systems. ONNX is chosen
for its speed and its interoperability. The last property is very advantageous
because there are no limits for frameworks used to implement a model and for the
runtime used to deploy the model. The Web Application developed has the task of
predicting the emotional state of a worker through a picture taken by a webcam of
a notebook or other devices. The work is organized into three main parts:

• training Pytorch [6] models

• conversion of it in ONNX format

• integration of ONNX model in a Web Application

In order to satisfy portability on different devices with different computational
performances, many DL models are trained because not all devices are the same
hardware performances. The web application developed give back the prediction
produced by the inference and the latency time for making prediction.
The setting adopted for discussing this work is the following. Chapter 2 discusses
about some background concepts, useful for understanding the operations and
behind the application developed, and it will mention some applications developed.
Chapter 3 describes the flow followed for the development of the application.
Chapter 4 explain the experiments and will comment on the results obtained.
Finally, Chapter 5 gives comments on the goodness of the application, makes
comparison between ONNX and Pytorch models and gives some ideas for future
works.

3

Chapter 2

State of Art

This chapter introduces the fundamental notions for understanding the operations
and motivations behind using browsers for ML inference. The first part deals the
theoretical background, and in the second part the applications developed in
recent years.

2.1 Background
This section aims to give some fundamentals of DL, edge computing, and DL
inference in browser in such a way as to link each component for a better
understanding of the final solution.

2.1.1 Deep Learning
DL is a subset of AI, particularly Machine Learning (ML). This field is based on
particular algorithms, Artificial Neural Network (ANN) with multiple layers,
used to analyze and understand complex data, such as images, audio, and text. DL
is present many applications, including image recognition, speech identification,
natural language processing, and self-driving cars.

2.1.1.1 Artificial Neural Networks

ANN is an algorithm of DL that tries to imitate the human brain and its behaviour.
An ANN is made of multiple layers of nonlinear processing unit (neurons). They
are used to transform data and extract information from them. Each output of
a single layer is the input of the following one, until the final prediction is made.
The three essential blocks that make up an ANN are input layer, hidden layers
and output layer.

4

State of Art

Figure 2.1: Example of an Artificial Neural Network with one hidden layer.

Figure 2.1 shows a simple scheme of a ANN. The idea of ANN has its roots in
the years 1940s and 1950s, when developers explored the possibility of creating
computer systems that could mimic the structure and function of the human brain
for the first time. Warren McCulloch and Walter Pitts published a seminal paper
in 1943 that proposed using simple mathematical models to simulate the behavior
of individual neurons [7], and this work laid the foundation for the development of
the first ANNs. In the 1950s, Frank Rosenblatt developed the Perceptron [8]. It
is the simplest neural network that have n number of inputs, one neuron and one
output.
However, the Perceptron was limited in its ability to solve more complex problems,
and it was later found that single-layer perceptrons could only learn linearly sep-
arable functions. In the 1960s and 1970s, the researchers developed multi-layer
perceptrons (MLPs) and other types of ANNs that were capable of solving more
complex problems by stacking multiple layers of artificial neurons.

The output z (eq. 2.2) of each neuron is obtained through many computations.
The first operation is the dot product between input x and weights w (the
strength of connections) (eq. 2.1). Then, all dot products are summed.

x · w = (x1 × w1) + ... + (xn × wn) (2.1)

Then a bias b (eq. 2.2) is added to the function produced above (eq. 2.1)0.

5

State of Art

Figure 2.2: Architecture of Perceptron. Source [9]

z = x · w + b (2.2)

Finally, the output z is passed to a non-linear activation function σ to make the
function bounded. For the example of sigmoid for non-linear activation function,
the output obtained is ŷ (eq. 2.3).

ŷ = σ(z) = 1
1 + e−z

(2.3)

This flow of operation is called forward propagation, in which is computed the
output z. Among ANN there are three basic structures:

• Deep Neural Networks (DNN): feedforward networks with multiple layers
that bring the output forward without going back.

• Convolutional Neural Networks (CNN): variation of multi-layer perceptron
used for tasks that require minimal preprocessing, especially in images.

• Recurrent Neural Networks (RNN): networks with connections between
nodes that create a direct graph, used to store time sequences.

6

State of Art

Different fields use these algorithms and their combinations, such as computer
vision, language, and audio recognition, bioinformatics.

2.1.1.2 Training

The learning process of an ANN is called training. In a few words, the DL model
learns how to make accurate predictions, computing the proper weights and biases.
A model needs to train data to learn the task and the structure of objects he
has to process. This data could be labeled or unlabeled. The first case is present
in Classification or Regression tasks data also contain the class to which it
belongs (the label is called ground truth). Instead, the second case is present in
Clustering tasks data contain only itself. There are two macro-approaches of
learning: Supervised and Unsupervised. For Unsupervised Learning task during
the training phase, the network receives several unlabeled data. The aim of this
process is to extract information from data for learning as well as possible because
there aren’t labels to compare.
For Supervised Learning, during the training phase, the network receives many
labeled data. Here, the goal is to minimize the error computed between the
prediction made by the model and the ground truth.
Only Supervised Learning will be described in depth because it is necessary to
know its fundamental to understand the next sections.
Another fundamental parameter of the training process is Loss function. The
loss function is a function cost and it is used to compare the prediction and the
ground truth. It measures how well a network performs. Loss functions can be
divided into two basic groups: Regression Loss functions and Classification
Loss functions. The output’s model, used for the Regression task, is a real value,
while for the Classification task is a probability distribution. The softmax layer
to the end of the network is used to convert digits into probabilities.
This thesis work uses Classification for its task. Among loss functions, the widely
used for this task is the Cross-Entropy Loss L (eq. 2.4). It is computed as the
negative sum of all n products between the prediction yi and the natural logarithm
of correspondent ground truth ŷi. It measures the distance between the prediction
y and the ground truth ŷ.

L(y, ŷ) = −
nØ

i=1
yi ∗ ln(ŷi) (2.4)

The training process has two fundamental phases:

• Backpropagation: the process aims to minimize the Loss function L. For
doing it, is necessary to tune the weights and biases. This values can be
obtained through the computation of the negative gradient of Loss function δL

7

State of Art

with respect to the weights w. The gradient is the vector of partial derivatives
of a function f in a point x, it is used to find a local minimum of a multi-
variable function. Since the loss function is not directly related to the weight
wi, it necessary use the chain rule (eq. 2.5), where L is the loss function, z is
the output value of the dot product summation with addition of bias b in (eq.
2.2) and ŷ is the output of the activation function in (eq. 2.3).

δL

δwi

= δL

δŷ
× δŷ

δz
× δz

δwi

(2.5)

• Optimization: the process aims to find the best weights and biases among
the possible solutions. Optimization algorithm makes this operation. To
explain the concept it is chosen Gradient Descent, that changes the weight
and biases values proportional to the negative Loss function with respect to
the corresponding weight and bias. Weight and biases are initialized randomly,
but during iteration are updated as in (eq. 2.6) and (eq. 2.7). The factor α
is called learning rate, it is an hyperparameter that controls how change
weight and bias.

wi = wi − (α× δL

δwi

) (2.6)

b = b− (α× δL

δb
) (2.7)

TThe procedure described above, is repeated until convergence. Other important
hyperparameters in training phase are the epochs, i.e., the iterations in which data
passes exactly one time in one of them, and the batch size, i.e., is the number of
samples processed before the model update.

2.1.1.3 Dataset Handling and Data Preprocessing

The choice of the right data and its handling is fundamental. This part of the
entire DL process is the first that affects the goodness of the final result.
During training, the DL model learns the task assigned through data. If data
processed in the training phase are wrong or have the incorrect quantity, it is
possible to incur two bad situations:

• Overfitting: The condition in which the model becomes too complex, fits
the training data too well and it becomes not able to generalize to examples
not present in training data. This occurs when a model is trained on a limited
amount of data and it starts to learn the noise in the data rather than the
underlying patterns.

8

State of Art

Figure 2.3: Scheme of training algorithm. Source [10]

• Underfitting: the condition in which a model is too simple, is not able to
capture the underlying patterns in the training data and it is not able to
generalize to new data.

In order to train and test the model, dataset is split in subset:

• Training dataset: data used to train model. Usually it is the most significant
slice of the source dataset.

• Validation dataset: data used to evaluate the model during the training
phase.

• Test dataset: data never seen by the model, used to test it at the end of
training phase.

Among different splitting techniques, the most widely used for a large dataset is the
Random split. The source dataset is shuffled and samples are picked randomly
and put in one of the split dataset, in a proportion choose by the user.
There are other famous techniques as Stratified, similar to Random but used
when datasets have imbalanced class distribution, and K-Fold Cross Validation,
the model is train and evaluated "K" times on different samples. The last cited
technique is the most robust, but it is not recommended for large dataset.
After the split phase, usually, data are pre-processed and normalized in order

9

State of Art

to have comparable output. If data are unbalanced in class distribution, there
are over-sampling or under-sampling techniques to fit the model with the correct
proportion of classes. Data augmentation techniques are useful in the training
process, in order to avoid overfitting.

2.1.1.4 Evaluation Metrics

For classification tasks, there are different evaluation metrics. Their role is to test
the goodness of a model, in other words, if a model can make correct predictions.
For simplicity, we consider a binary classification task whose result can be only
Positive or Negative. This prediction could be True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN) with respect to the ground
truth.
The metrics considered are:

• Accuracy:
Accuracy = TP + TN

TP + TN + FP + FN
(2.8)

It is the commonly used metric. It computes the positive percentage over all
cases. It gives no information on the distribution of FP and FN if classes are
unbalanced, the combinations with other metrics are more suitable.

• Precision:
Precision = TP

TP + FP
(2.9)

Its value depend from both Negative and Positive samples. It consider when
a sample is classified Positive, but doesn’t take care of classifying correctly all
positive samples. It is often used in conjunction with another metric called
Recall (eq. 2.10).

• Recall:
Recall = TP

TP + FN
(2.10)

It measure the ability of the model to detect positive samples. It consider the
fairness of the classification of all Positive samples, but it doesn’t care if a
Negative sample is classified as Positive. It is often used in conjunction with
Precision (2.9), which together provide a more complete picture of a model’s
performance. The Recall is particularly important when the costs of false
negatives are high.

• F1-score:
F1− score = 2 ∗ Precision ∗Recall

Precision + Recall
(2.11)

10

State of Art

It is the weighted average of Precision (eq. 2.9) and Recall (eq. 2.10). This
metric is used when we have an unbalanced class or when you care more about
the false positives and false negatives than the overall accuracy. It is more
robust than the previous ones.

• ROC Curve and AUC: The Receiver Operating Characteristic (ROC) curve
is a graphical representation of the performances of a binary classification
model, and the Area Under the ROC Curve (AUC) is a scalar metric that
summarizes the overall performance of the model.

FPR = FP

FP + TN
(2.12)

The ROC curve plots the so called ’true positive rate’ (TPR) against the
false positive rate (FPR) at different classification thresholds. The TPR is
also known as Recall (eq. 2.10), and the FPR is the rate of false positives
among the negative instances. The AUC is the area below the ROC curve
and provides a single number that summarizes the model’s performance, with
a value of 1 indicating perfect performance and a value of 0.5 indicating a
model that performs no better than random guessing.
AUC is useful metric when the data is imbalanced or when the costs of false
positives and false negatives are different. A model with a higher AUC has
better performance than a model with a lower AUC.

Figure 2.4: Example of ROC curve. The AUC is respectively the area under the
ROC. In this figure is highlighted how a classifier is good or bad. Source [11]

11

State of Art

2.1.1.5 Image Classification and Convolutional Neural Networks

Image classification is a field of computer vision. The goal is to recognize and
categorize objects or scenes in images. The image classification goal is to assign an
input image to one of a pre-determined set of labels or classes.
Models used for this task are Convolutional Neural Network (CNN). The
architecture of CNN is arranged as the connectivity patterns of the human brain
and is inspired by the visual cortex. A CNN can capture the spatial and temporal
dependencies in an image. It reduces the number of parameters involved and reuses
weights.

Figure 2.5: Example of convolutional neural network. Source [12]

Typically, in a CNN there are three layers: convolutional layer, pooling layer
and a fully connected layer.
The convolutional layer is the heart of a CNN and it is used for feature extraction.
The main idea behind convolutional layers is to apply set of filters to the input
data to extract features, i.e., edges, textures, and shapes. This layer executes a dot
product between two matrices, one is called kernel or filter (i.e, the set of learnable
parameters) and the other one is a portion of the receptive field. During the
forward pass, the kernel runs across the height and width of the image, producing
a representation of the receptive region. This process produces a bi-dimensional
representation of the image called the activation map, which provides the response
of kernel in each spatial region of image. The sliding dimension of the kernel is
called stride.
For example, if we have an input image of size W ×W ×D and Dout number of

12

State of Art

kernels with a spatial size of F , stride S and amount of padding P , the size of
output volume is obtained through the (eq. 2.13). The resulting output volume
will be Wout ×Wout ×Dout.

Wout = W − F + 2 ∗ P

S
+ 1 (2.13)

The ideas that bring computer vision researchers to adopt convolutional layers are:

• Sparse interaction: every output unit interacts with every input unit.

• Parameters sharing: for obtaining an output, the weights applied in a input
are also used in other inputs.

• Equivariant representation: input and output change in the same way.

Convolution is a linear operation, but the images are not linear, so it is necessary to
introduce non-linearity layers usually located directly after convolutional layers
for introducing the non-linearity in the activation map. There are several types of
non-linear operation, one widely used is the ReLU.
The Pooling Layer replaces the network’s output at certain points deriving a
statistic result from other nearby outputs. This operation helps to reduce the
spatial dimension of the representation, decreasing the amount of computation and
weights. Additionally, it is executed on every slice of the representation individually.
There are different pooling operations, one of the most commonly used is max
pooling, which retrieves the maximum output from the neighbourhood.
If the activation map of W ×W × D, a pooling kernel with spatial size F and
stride S the output volume, can be computed with (eq. 2.14). The output volume
size will be Wout ×Wout ×D.

Wout = W − F

S
+ 1 (2.14)

Fully Connected Layer contains all connections neurons wholly connected with
all neurons of the previous and successive layers. For this reason, it is possible to
compute a matrix multiplication with a bias effect. It is the last layer of a CNN
architecture and is used to make predictions. The Fully Connected Layer helps to
map the representation between input and output.
Another typical layer in a CNN is the Dropout Layer. It helps to prevent
overfitting that, temporarily, doesn’t allow some neurons to contribute, leaving the
others active.

13

State of Art

2.1.2 Edge Computing and paradigm shift

Edge computing is a species of distributed computing paradigm that brings
computing power, storage, and other capabilities closer to the data source. The
paradigm widely used before edge computing is cloud computing. Resources
such as software and storage are provided over the internet rather than on a local
computer or server. The remote servers host resources, or "the cloud," and users
can access them from anywhere with an internet connection.
In the last years, a shift paradigm occurs.

(a) Cloud Computing paradigm.

(b) Edge computing paradigm.

Figure 2.6: Comparison between cloud and edge Computing. Figure 2.6a shows
the cloud computing paradigm and is evident how data producer and consumer are
two different figures. Figure 2.6b shows the edge computing paradigm and, unlike
the previous paradigm, the data consumer is also the data producer. Source [1].

14

State of Art

The factors that drive this shift are:

• Privacy and security: by processing data at the edge, there is less need to
send sensitive data over a network, which can reduce the risk of data breaches.

• Latency: edge computing reduces the amount of time for processing data,
because there is not necessity to send data to a centralized location first. This
is important for applications such as autonomous vehicles, where decisions
need to be made in real-time.

• Bandwidth: by processing data at the edge, fewer data needs to be sent over
a network, which reduces the amount of bandwidth required.

• Cost: by reducing the amount of data that needs to be sent over a network,
edge computing can also help to reduce costs associated with data transfer
and storage.

• Power consumption: edge computing devices are typically smaller and
less powerful than cloud computing servers, which can help to reduce energy
consumption.

• Reliability: management of failures is crucial for the good working of a service.
If a single node is out of service, users should be able to enjoy the service. This
problem could be present also for less reliable connection technologies, hence
in order to guarantee the service, each device must keep the same network
topology of the entire distributed system.

• Meeting the demands of Internet of Things (IoT) and 5G: with the
increasing number of IoT devices and the advent of 5G, there is a growing
need for more localized computing capabilities to handle the large amount of
data generated by these devices. Edge computing provides a solution to this
problem by processing data at the network edge, close to the source of the
data.

Nowadays, DL is widely used for AI applications, shifting towards a new paradigm:
the Edge Intelligence [13]. DL needs high computational resources reach high results
especially in the training phase. In order to satisfy the computational requirements
of DL, the cloud computing paradigm is the obvious choice, exploiting the powerful
resources of data centers. In order to use them, data needs to be moved from the
sources to data centers, but this operation, in inference phase, raises some issues in
terms of privacy. Due the discussed reasons above, Edge computing paradigm is a
good solution for exploiting DL, enabling users privacy.

15

State of Art

2.1.3 Web Application for AI
Edge computing is the perfect paradigm that enables the privacy of the users.
By adopting this paradigm, devices process data directly on it. In this way, it is
mandatory to develop different copies of the same application for each operating
system or hardware performance. Thus, the edge computing paradigm leads to a
portability issue. The solution is the web browser. In recent times, the AI
community is attracted to experimenting with client-side DL. DL inference in a
web browser enables real-time processing of data and applications on the client
side without needing for a server or cloud. This can result in faster and more
responsive experiences for the user, increasing the privacy and security of sensitive
data, reducing server loads and costs, and solving the problem of portability.
The notions of background necessary for understanding the components of a web
application and how to exploit the browser to make DL inference will be explained
in the rest of the section.

2.1.3.1 Web Application

A Web Application is an application program that uses browsers to run, thereby does
not need to download. Two main components characterize the general architecture
of a web application:

• Client: who sends requests to the server. In this case it is the web browser.

• Server: who holds information (e.g., Web sites) and responds to request
information.

The network handles the communication between the client and the server. In the
server-side there are different layers:

• Web server manages the Hyper Text Transfer Protocol (HTTP) protocol. It
receives a client request, reads static pages from the filesystem, activates the
application server for dynamic pages, and then provides a Hyper Text Markup
Language (HTML) file to send back to the client. The adopted standards are:

– Uniform Resource Locator (URL): used for finding web pages.
– Hyper Text Murkup Language (HTML): used for writing web pages.
– Graphics Interchange Format (GIF): for images.
– Hyper Text Transfer Protocol (HTTP): used for client-server interac-

tion.
– Transmission Control Protocol Over Internet Protocol (TCP/IP):

communication protocol for data transfer.

16

State of Art

• Application server is the layer between the client browser and the data
residing on a database. It generates dynamic pages, manages the site business
logic, and implements the session mechanism. The adopted standard are:

– HTTP: POST or GET with query for sending user-specified data.
– Integration of a programming language accessible to web server.
– Cookies for storing the state of the session.

• Database server stores data on which the application server works and
executes queries issued by the application server (updates data, inserts data,
and others). There are two types of databases:

– Structured Query Language (SQL)
– Not Only SQL (NoSQL)

The client-side is characterized by the browser. The requirements for the client-side
are:

• A programming language accepted by all browsers.

• A program embedded in the web page.

• an execution engine in the browser.

The standard used to represent a web page is:
• Document Object Model (DOM): to access to on-the fly modification of a

web page.

• JavaScript (JS): to handle runtime environment on the browser.

• Cascading Style Sheets (CSS): modify the aspect on web page.
A web application could be static or dynamic. A static web application has fixed
content that does not change, regardless of who accesses it or when it is accessed.
The content is stored in plain HTML files on a server and is delivered to the user’s
web browser as is. A dynamic web application, on the other hand, generates its
content on the fly based on user input, the current date and time, or other factors.
The server-side script generates the content, such as Personal Home Page (PHP),
Ruby, or Python, delivers it to the user’s web browser as HTML. In particular,
simple websites often use static web applications that display information and
don’t require frequent updates, such as personal blogs, portfolios, and informational
websites. They are fast, scalable, and easy to maintain, as the contents are stored
as plain files on a server and served to the client without any additional processing.

Some benefits of using a static web application include the following:

17

State of Art

• Fast loading times.

• Good performance even under high traffic.

• Cost-effective hosting.

• Increased security as there is no need for server-side code execution.

However, static web applications have limited functionality and cannot support
dynamic features such as user authentication, database integration, or server-side
processing. In such cases, a dynamic web application would be more appropriate.

2.1.3.2 JavaScript and WebAssembly

Inference, in DL, refers to using a trained model to make predictions on new, unseen
data. It involves feeding the model input data and using the learned parameters
to produce an output prediction. The DL inference on the browser is one of the
exploitations of edge computing. Some benefits of making DL inference on the
browser are:

• Privacy: by keeping the data and computation on the user’s device, DL
inference in the browser protects user privacy and reduces the risk of data
breaches.

• Cross-platform: web browsers run on multiple platforms and devices, so a
DL model that performs inference in the browser can be used on any device
with a web browser.

• Reducing server load: by running the inference on the client-side, the load
on the server is reduced, which can improve the system’s scalability.

• Customization: by running the inference on the client-side, the model
can be customized to the user’s device and browser, which can improve the
performance of the model.

• Ease of deployment: making inference in the browser eliminates the need
for complex server infrastructure, reducing the cost and effort required to
deploy a DL model.

• Real-time performance: the performances of DL inference in the browser
can be optimized for real-time use cases, such as image classification or object
detection, where fast response times are crucial.

• Offline capability: browsers can cache DL models, allowing for offline
inference even when a user is not connected to the internet.

18

State of Art

In order to perform DL applications on the web browser, are implemented several JS
libraries. The starting point of the process is the representation of DL models. Web
applications do not support Pytorch or other model representations, is necessary to
think of a more straightforward model representation. Models, data, and inference
processes are managed by JS libraries. According to the task assigned and the
features supported by the device, different technologies of the backend are used:
CPU or GPU. For using CPU as backend technology, a component that allows a
web application to run ML models with a speed near to the native application is
WebAssembly [14]; a low-level assembly-like language with a compact binary
format that running with near-native performance and provides languages such as
CC++, C#, and Rust with a compilation target, and it can run alongside JS for
working together. Using JS WebAssembly APIs, it is possible to load WebAssembly
modules and share functionality with JS. It allows using server-side code on the
client-side in the browser. The goals of WebAssembly are:

• Fast, efficiency and portability: it can be executed at near-native speed
across different operating systems and instruction set by taking advantage to
the common hardware capabilities [15].

• Readability and debugability: WebAssembly is a low-level language, but
his format is readable by human. For this reason is easy to debug its code by
hand.

• Security: WebAssembly is implemented to be executed in a safe environment.
Due to its usage, it is forced to use the same-origin policies.

• Coesistency with other component: WebAssembly is implemented with
working with other web components; for this reason, it does not break the
web.

The web platform can be regarded as consisting of two parts:

• A Virtual Machine (VM) that runs the web application code, such as JS code
that power the application.

• A set of Web APIs that the Web application can call to control Web browser/de-
vice features and make them work (DOM, CSSOM, WebGL [16], IndexedDB,
Web Audio API, etc.).

In the past the VM is used for loading only the JS code. It solved many problems
on the web, but for applications that require more computational power, only JS
is not enough. Another problem arises with the downloading of very large JS
applications; in some cases, it could be prohibitive. Mobile and other devices with

19

State of Art

limited resources could increase this bottleneck phenomenon. WebAssembly is
thought of as a language that acts together with JS. In this way, the weaknesses of
each are filled by the other.
The different types of code can call each other as needed: the WebAssembly
JavaScript API allows exported WebAssembly code to be wrapped with JavaScript
functions, making them callable in the same way as normal JavaScript functions.
Similarly, WebAssembly code can import and call normal JavaScript functions
synchronously. WebAssembly code is organized into modules, which are similar in
many ways to ECMAScript (ES) modules, making it easy to work with both types
of code in a complementary manner.
The key concepts of WebAssembly are:

• Module: it represents a binary WebAssembly that is compiled by the browser
in executable machine code. A module could be explicitly shared between
windows and workers (through postMessage() message). A module declares
imports and exports just like an ES module.

• Memory: a resizable ArrayBuffer that contains the linear array of bytes tath
are read and written of WebAssembly instructions.

• Table: a resizable typed array that contains the references (e.g to functions),
that can not be stored in the memory device for portability and security issues.

• Instance: a module is paired with all the states that are used in the execution
phase, e.g the memory, the table a set of imported values.

There are many ways to implement WebAssembly in a web application. The
simplest uses AssemblyScript [17]. It compiles strict variants of TypeScript to
WebAssembly, allows users to use tools such as ESLint, Prettier, and others.
Previously, are cited some APIs that WebAssembly uses. It uses the GPU acceler-
ation capabilities of modern web browsers to perform computationally intensive
operations, such as matrix operations and activation functions, faster. The APIs
implemented for this scope are:

• WebGL [16]: is a JavaScript API for rendering interactive 3D graphics in web
browsers. It is based on OpenGL ES, a low-level graphics library for mobile
and embedded devices, and provides a way for web developers to create 3D
graphics, animations, and games without installing any plugins or software.
It provides a set of JS functions for creating 3D graphics and animations,
which are then translated into graphics commands and sent to the GPU for
rendering. It is widely supported by all major browsers, and it does not require
any plugins or software installations.

20

State of Art

• WebGPU [18]: is a new graphics and computing API for the web that is
designed to replace WebGL. It provides a low-level, efficient, and flexible way
to perform graphics and computation on the GPU from within a web browser.
WebGPU is based on the latest graphics hardware capabilities and is designed
to take advantage of modern GPUs, providing improved performance and
features compared to WebGL. It is expected to become widely supported in
the near future, providing a modern and efficient way to perform graphics and
computation in the browser.

The notion of background necessary to know to understand the functioning behind
an AI web application was explained. The following section will describe some
applications that use the technologies mentioned above.

2.2 Related works
During these years, several applications that are relevant in the edge computing
context and, in particular, for DL web applications, are developed. Most of them
are published and widely used. For example, there is MLitB [19], a ML framework
written entirely in JavaScript and able to perform large-scale distributed computing
with heterogeneous devices, TensorFlow playground [20], an interactive platform
that teaches the fundamentals of DL, and others. Several JS libraries are developed,
to implement web applications that exploit DL. Synaptic [21] was created in 2013
by Nathan Rabault. It is one of the earliest DL frameworks for JS. It was designed
to provide simple and intuitive API for training and developing neural networks
in JS. It was a low-level library that provided a flexible and modular architecture
for building and training neural networks, as well as a set of pre-trained models
for common tasks. Despite its early promise, it has not been actively maintained
in recent years. ConvNetJS [22] was created in 2013 by Andrej Karpathy. As
synaptic [21], it is one of the earliest JS libraries for DL implemented. The entire
library is based on the transformation of 3-dimensional volumes of numbers. It
supports common models of CNN networks and cost function for classification and
regression. It has not been active in recent years. Keras.js [23] was created in 2016
by Google’s PAIR (People + AI Research) division. It was based on the popular
Python library Keras and provided an API for loading and running pre-trained
models in the browser. WebDNN [24] was first released in 2017 by the University
of Tokyo and Preferred Networks. It claims to be the fastest DL framework in
the browser. It supports only inference and all the backends. TensorFlow.js [25]
was released in 2018 by Google. It is the successor of deeplearning.js, which is
now called Tensorflow.js Core. It is based on WebGL [16] and supports all Keras
layers. The most famous JS libraries are cited above. A lot of the following web
application use or use them. Different fields are relevant for DL edge computing

21

State of Art

applications that exploit the browser. In computer vision, the relevant tasks are
image classification and object detection. Significant results there are in video
surveillance, object counting, image recognition and others. Teachable Machine
[26] is a web application that allows users to teach, to machine, how to respond
when they pose a gesture using the camera in the browser. Morphcast [27] is a web
application that combines interactive videos and face recognition with emotion,
gender and age to create adaptive-media. BeeMachine [28] is a website that
identifies bumble bee species. Users received the top three predictions with their
probabilities after sending an image of a bumble bee. This website can be used
on both mobile and desktop browsers. Due to the pandemic emergency, of such
applications are developed, an example is WearMask [29]. It is a web application
that understands if a user doesn’t wear, wear or wear a mask improperly. It is
useful in places like hospitals, schools and any places in which masks are required.
Another example of application that is widely used in pandemic times (not only) is
WebRTC-based Video Conferencing System [30], that could be used from any device
such as laptops, smartphones, tablets and similar. It applies the DL in web browser
environment to overcome the limitations of videoconferencing systems background.
In Natural Language Processing (NLP), relevant applications are speech translation,
speech recognition, sentiment analysis [31] and soon. An example of edge devices
that exploit these algorithms, is a vocal assistant. Augmented Reality and Virtual
Reality bring AI community attention to web browser latency, energy consumption,
bandwidth occupancy issues and in general bad user experience. For these reasons
new approaches to collaborative computing [32] improved the results in this field,
especially in 5G era. In the audio recognition field, an example is Google search
engine for songs; another is Essentia [33] that is a collection of pre-trained models
for music-related tasks on the web. Internet of Things (IoT) is the field that
brought the most AI attention during the last years. Recently, a new paradigm,
called Artificial Intelligence of Things (AIoT) [34], is emerged for the necessity to
link AI with IoT, and for the strong demand to integrate AI and edge computing
born the Edge Intelligence [13]. Examples include human activity recognition from
wearable sensors, pedestrian traffic in a smart city, and electrical load prediction in
a smart grid.
The application cited above are a few of the many developed in recent years. There
are other fields of edge computing application, but the applications cited above are
inherent to this work thesis.

22

Chapter 3

Methodology

This chapter will present the methodology, i.e., the flow followed to deploy a static
site that exploits DL in the browser. Figure 3.1 shows the general flow followed to
implement the static site able to classify images on the browser. The phases de-
scribed in this chapter are: data collection and preparation, training, ONNX
conversion and the implementation of static site with ONNX Runtime for
the deployment of ML models.

3.1 Data Collection and Preparation
For ML and DL applications, is fundamental to collect and prepare data suitable
for the assigned task. Data are collected for the purpose to fit models. For the
assigned task, datasets must contain labels and low-resolution images to perform
a classification task on images snapped from different devices, with the light
condition and camera performance sub-optimal. There are many ways to collect
data [35], the simplest one is to search a dataset on the web, which must be as
close as possible to the task of the application to deploy. In this case, the search
engines used to search datasets are Google Scholar and Kaggle.
After choosing the proper dataset, it is loaded on a remote machine through
Secure Socket Shell (SSH) protocol with a sufficiently large GPU memory to
train models.
After finding the proper dataset, data are prepared for the training step. The first
thing to do is create train, validation and test set. Usually, the train set is bigger
than the others. The proportion used is typically 80:20 (or 70:30 if the dataset is
relatively small) for respectively train and test sets. The same proportion is used
for train and validation. In the same cases, if data are few, the validation set is not
used. Then, data are transformed into tensors by making resizing and center crop,
choosing channels, and normalizing with the right mean and standard deviation.

23

Methodology

Figure 3.1: Methodological flow followed to implement a Web Application able
to do image classification tasks on browser.

For the training set, usually augmentation techniques are used, for preventing
overfitting.
These transformations are done when datasets are transformed in dataloader.
This is the final step. Each set is divided into batches, that will be loaded into the
memory of the device (GPU in this case) during train, validation, and test phases.

3.2 Training
The development environment used is Visual Studio Code [36]. Through it, it
was possible to create a folder in which it was created a virtual environment with
Python v3.9. The DL framework used for this Computer Vision application is
Pytorch.
After preparing data, the following step is to prepare a set of hyperparameters
and the other useful component for this part:

• Learning Rate: is a parameter used in optimization algorithm that de-
termines how much moving towards a minimum of a loss function in each

24

Methodology

iteration.

• Epochs: in one epoch, data makes a complete run. In one of this, data pass
exactly one time.

• Batch Size: is the samples numbers processed before the update of a network.

• Step Size: how many epochs pass before decreasing the learning rate if using
a step-down policy.

• Gamma: multiplicative factor for learning rate step-down.

• Model: the algorithm used for predictions. Here, it is fundamental to choose
model and modify it with correct number of classes that our classification
required. Weights could be initialize randomly, but in order to optimize
resources and time training, it is used a finetuning of the network, i.e. using
weights of a previous deep learning algorithm with another similar problem.

• Loss function: exist several loss functions, such as Cross Entropy, Mean
Squared Error and so on. According to the problem, it is possible to choose
one of them, for convolutional neural networks is widely used Cross Entropy
Loss 2.4.

• Optimizer: is an algorithm or a function that modify weights and learning rate
in order to minimize the loss function. It is possible choose which parameters
of a network to optimize, with transfer learning only fully connected ones.

• Learning Rate Scheduler: is a predefined framework that modify the
learning rate during epochs.

At the end of each epoch, the loss is computed on the train set and accuracy (or
other metrics) on the validation set to save the model, with certain hyperparameters,
that achieve the best performances.
Finally, the model is checked on the test set (to verify if there is overfitting or
underfitting) and saved in ’.pt’ format, for reusing it.

3.3 ONNX Model
The format used to run models on a web application is Open Neural Network
Exchange (ONNX) [4], an open format built to represent ML models. It can be
compared, to a programming language specialized in mathematical functions. It
defines a set of operators, the building block of a model, and a file format that
allows using a model on various frameworks, tools, runtimes, and compilers.
Figure 3.2 shows an ONNX representation of linear regression. It defines a direct

25

Methodology

graph, in which X, A and B are the inputs, Y is the output and MatMul and Add
are the called operators, that operate on inputs, i.e., the results of their parents.

Figure 3.2: Example of a graph representation in ONNX format using Netron
[37]. Source [38]

Models can be obtained with different methods:

• From ONNX Model Zoo [39]. It is a collection of pre-trained models converted
from Pytorch, not customized, useful for different tasks.

• From ML frameworks, converting and customizing them.

In this case, it is chosen the second method. Models were implemented and
customized using Pytorch among frameworks available and then converted with
a specific function that allows exporting models defining the operation set, input
samples (that coincides with the resize values of models), dynamic axes, input and
output names. The package used for converting models from Pytorch is torch.onnx.
Finally, with an appropriate function, it is possible to verify the fairness of the
ONNX model obtained.
The features that attract AI community to ONNX are:

• Interoperability: the ability to provide a uniform format that acts as an
intermediate between ML frameworks.

26

Methodology

Figure 3.3: Frameworks supported by ONNX for building models.

• Support for a wide range of models: support both ML and DL models.
It supports a wide variety of neural network architectures and layer types,
including feed-forward networks, recurrent networks, and transformers.

• Portable: ONNX models can be easily exported and imported, and can be
run on a variety of platforms, including Windows, Linux, and Mac, as well as
embedded devices and edge devices.

• Language-agnostic: ONNX is not tied to a specific programming language,
meaning the same model can be used with different languages and tools.

• Active community: ONNX is an open-source project with an active commu-
nity of contributors and users, which helps to ensure its continued development
and support.

• Runtime support: ONNX Runtime is a high-performance inference engine
for ONNX models that can be used across various platforms and devices. It is
not the only runtime used to deploy ONNX models.

27

Methodology

Figure 3.4: Runtimes used for deploy ONNX models.

3.4 Image Classification inference on Static Site
using ONNX Runtime Web

As described in Chapter 2, a web application has two sides: a client and a server.
In this case, the use of a static site is fundamental for its benefits:

• Speed: the content is fixed. There is no need for the server, to generate it on
the fly, which means that pages load faster and the website can handle more
traffic.

• Security: there is no server-side scripting or database connections, there are
fewer opportunities for hackers to exploit vulnerabilities.

For the server side Node.js v16.15.0 [40] is used, for the generation of static site
are used Next.js v11.1.2 [41] (a React.js [42] framework), written in typescript.
For bundle JS files webpack v1.1.4 [43] is used. To make the appearance of the
page, are used HTML and CSS. For performing inference on the client side, for
enabling ONNX models to run in the web browser, and for deploying models in a
production environment is used ONNX Runtime. It is an open-source project
developed by Microsoft, a high-performance inference engine for ONNX models
designed to be fast, efficient, and flexible. ONNX Runtime is implemented in C++
and runs on various platforms, including Windows, Linux, and MacOS. It supports
multiple programming languages, including C++, Python, and C#, and can be
used in several environments, including desktop applications, cloud services, and
IoT devices. ONNX Runtime is optimized for running ONNX models and provides
a consistent interface for inferencing, regardless of the underlying hardware. This
makes it easy for developers to conceive ONNX models in different environments

28

Methodology

and provides a level of consistency and compatibility across multiple platforms.
The goal of ONNX Runtime is to provide a fast, efficient, and flexible engine for
running ONNX models, making it easier for developers to build and deploy DL
applications in production.
In particular, ONNX Runtime Web is used. It is a WebAssembly (Wasm)
based version of ONNX Runtime. It runs in the browser and provides a high
performance inferencing with ONNX models. ONNX Runtime Web is designed to
run efficiently on web browsers and enables the deployment of ONNX models on
the web, making it possible to perform inferencing directly in the browser without
requiring any additional servers or infrastructure. Some key features of ONNX
Runtime Web include:

• Support for ONNX models: ONNX Runtime Web can run any model that
is in the ONNX format, which is a standard format for exchanging neural
network models between different frameworks and tools.

• Cross-platform compatibility: ONNX Runtime Web can run on a wide
variety of platforms, including web browsers on desktops and mobile devices.

• High performance: ONNX Runtime Web is optimized for performance,
making it suitable for running large and complex models in real-time.

• WebAssembly support: ONNX Runtime Web can use WebAssembly [2]
for performance improvements.

• Easy integration: ONNX Runtime Web can be easily integrated into web
applications, allowing developers to add ML capabilities to their apps with
minimal effort.

Figure 3.5 describes the component and the steps followed during the whole process.
The input data in this case is the image snapped from the device in use.
Data is pre-processed and transformed in tensor, then it is passed to ONNX
model. The flow followed by ONNX Runtime to manage the ONNX model is:

• ONNX Runtime convert the ONNX model graph into an in-memory graph
representation.

• It executes a set of graph optimizations (graph-level transformation, such
as graph simplification, elimination or complex fusion of nodes, and layout
optimizations) independent from the provider used.

• It is divided into a set of sub-graphs based on available execution providers.

29

Methodology

Figure 3.5: High-level system architecture of ONNX Runtime Web. Source [44]

• Each sub-graph is assigned to an execution provider. To be sure that a
execution provider could execute sub-graph, is needed to query the capability
of the provider using the GetCapability() function.

The use of WebAssembly JS API by ONNX Runtime Web is to load a wasm module
(ONNX model) in a web page. It is useful because there is not necessity of a
separate server. The flow of operation made by wasm module are:

• WebAssembly module is compiled from source code.

• The compiled WebAssembly module is loaded into the browser as a binary
file.

• The browser’s WebAssembly engine parses and decodes the binary file into an
internal format, ready for execution.

• The WebAssembly module is executed by the browser’s WebAssembly engine,
running in a separate environment from JS.

• WebAssembly code can interact with the JS code and DOM in the browser by
calling JS functions and accessing the DOM, and vice versa.

Finally, the output result of the web application implemented is the prediction
with its probability and the latency time, time used for prediction.

30

Chapter 4

Experimental Results

The previous chapter described the methodological flow that it must be follow to
deploy a web application for image classification. This chapter discusses results
achieved on a real application. The task of this application is to consider the
affective states of a worker with the purpose of make possible intern statistics of
a work environment. The goal of these experiments is to demonstrate how making
DL inference on browser is useful in terms of security and portability. This
chapter illustrates the experimental setup adopted and the results obtained after
having tested the application with different DL models and hardware settings.

4.1 Experimental Setup
This section introduces the datasets, models, and hyperparameters used in the
training phase, the components useful for obtaining ONNX models for the inference
phase.

4.1.1 Datasets
In order to test a web application that performs inference on a image classification
tasks, two different datasets are considered: Office31 [45] and DAiSEE [46].
These two datasets were chosen because their data are similar to working or
smartworking settings. The approach adopted, was to start with a simpler task
using Office31 as a test, and then use DAiSEE for the final application.

4.1.1.1 Office31

Office31 is a dataset used for Domain Adaptation. It is a sub-discipline of ML
deals of scenario in which a model is trained on a source distribution, and used on
a target domain, different but related.

31

Experimental Results

From the last update, this dataset contains 4203 element distributed among 31
object categories, commonly encountered in a working environment, in three
domains: Webcam, Amazon and Digital Single-Lens Reflex camera (DSLR).
These 31 objects are commonly used in office settings, such as mouses, laptops,
desktops and others.

Figure 4.1: Example of a bike and laptop PC in the three domains of Office31
dataset.

Images are distributed among classes in this way:

• Amazon: contains on average 90 images per class and in total 2848, captured
on online merchants websites. Images are captured on a clean background
and with a unified scale.

• DSLR: contains 5 images per class and in total 529 low-noise high resolution
(4288×2848) ones.

• Webcam: contains on average 25 images per class and 826 of low resolution
(640×480) images in total, whit significant noise.

As discussed above, this application was designed to be used in a working environ-
ment, using mainly images with low resolution. For this purpose, only Webcam
branch is considered.

32

Experimental Results

4.1.1.2 DAiSEE

DAiSEE is a multi-label video classification dataset that is used to recognize the
users’ affective states of Boredom, Engagement, Frustration and Confusion.
For each affective state, there are four levels of labels: ’very low’ , ’low’ , ’high’ ,

’very high’ .

Figure 4.2: Example of frames taken from class "Confusion" of DAiSEE dataset.
Starting from the left, there are respectively the four levels of labels.

The dataset captures "in the wild", i.e., in the conditions that are as close as
possible to the real world: different environments with different background noise,
illumination conditions, head poses, and occlusions.
It has 9068 videos snipped and captured from 112 users. In table 4.1, we can see
how they are distributed samples among classes.

Affective States Very Low Low High Very High
Boredom 3869 2931 1934 334
Confusion 6024 2191 752 101

Engagement 61 459 4477 4071
Frustration 6986 1649 346 87

Table 4.1: Distribution of DAiSEE dataset samples among classes.

In this case, only class "Confusion" are considered with two labels: "very low"
and "very high".

4.1.2 Models
As discussed in Chapter 2 models used are CNN.
To solve the problem of portability some CNN are chosen with different sizes,
allowing, also to devices with low performance, to use the application. The models
used are:

• MobileNetV3 small and large [47]: it is a CNN developed by Google.
This model is perfect for mobile or low performance devices. This model is

33

Experimental Results

the combination of a Neural Architecture Search (NAS) complemented
in NetAdapt [48] algorithm, and then improved thanks to an innovative
architecture. NAS [49] is a process that tries to make a model that produces
output modules, that, together, could make a model that reaches the best
accuracy searching among all the possible combinations. This process is the
starting point of NetAdapt [48] algorithm. In the following steps, NetAdapt
generates some proposals that must have latency time lower than the previous
ones. Then, it sets the weights of the new proposal with the previous one
and sets random initialisation of any new filters. Finally, it fine-tunes of the
selected proposal until the target latency is reached. The general architecture
is based on some blocks introduced by each network version. MobileNetV1
[50] introduced the depthwise separable convolutions replacing the traditional
convolutional layers. This block aims to divide spatial filtering (made from
light weight depthwise layers) from the feature generation mechanism (made
from heavier 1 × 1 pointwise convolutions). The MobileNetV2 [51] added
the linear bottleneck and the inverted residual structure. This structure
maintain a compact representation in the input and output while it expands
internally to a space with higher-features for increasing the expressiveness of
nonlinear transformation per channel. MnasNet [52] is built on the structure
of MobilenetV2 and it introduces lightweight attention modules based
on squeeze and excitation modules into the bottleneck structure. Finally
the MobileNetV3 is the combination of these blocks and layers with the
introduction of swish non-linearities and the hard sigmoid in order to improve
accuracy. The difference between large and small is in the size of model and
they are use for high and low-performance resource respectively.

• ResNet18 and ResNet34 [53]: it is a CNN that induced a breakthrough
in computer vision field. In order to reduce the error rate, networks became
deeper, but a phenomenon called Vanishing/Exploding gradient occurred.
The gradient became zero or tends to infinite. Consequently, the training test
and error rate increase. ResNet introduces the Deep Residual Learning,
the gradients flow through skip connections backwards from later layers to
initial filters. These connections are called shortcuts connection and which
turn a plain network in residual. The identity shortcuts (eq. 4.1. y is the input
and x is the output vectors of the layer considered. F (x, {Wi}) is the residual
function to learn) are used when input and output have the same dimension.
If the dimension became too large are considered two options: shortcuts still
performing identity mapping with extra zero-padded to increase dimension,
or projection shortcut (Eq. 4.2 y is the input and x is the output vectors of
the layer considered. Ws is the square matrix of linear projection.) matching

34

Experimental Results

dimension with convolution 1× 1.

y = F (x, {Wi}) + x (4.1)

y = F (x, {Wi}) + Wsx (4.2)
The difference between ResNet18 and 34 is the depth; the last one has more
layers.

• Inception V3 [54]: it is a CNN that belongs to Inception family. This network
is composed by Inception modules, that has different kernel size, and aux-
iliary classifiers. The motivation that brings researchers to implement these
networks are the large variety of location of the subject in a picture, the depth
of networks that brings to overfitting and the computational expensiveness in-
troduced by large convolutional operations. For these reasons, the architecture
is more "wider" than deeper. The innovations brings by Inception V3 are:
the use of Label Smoothing technique, the Batch Normalization in the
auxiliary classifiers and the factorized 7×7 convolutions. The Label Smoothing
is a regularization technique; it introduces noise for the labels to prevent
overfitting. Researchers notice that the auxiliary classifiers did not contribute
in a significant way, until near the end of training phase, when accuracy was
nearing saturation. The Batch Normalization reduces the internal covariate
shift that produces an acceleration in training phase. It also introduces a
benefit for the gradient flow through the network.

• EfficientNet V2 s, m and l [55]: it is a CNN that belongs to the family of
networks optimized for FLOPs (Floating-Point Operation per second) and
parameters efficiency. It has faster training and better parameters efficiency
than the previous versions. To develop this models, it is used a combination
of NAS [49] and scaling, to jointly optimize training speed. NAS [49]
is used to make optimal model design choices and find hyperparameters.
Scaling strategies are rules that indicate how to make bigger small networks.
Training speed is improved with new regularization methods and guidelines
to training efficiently. Progressive learning is used to accelerate training
by progressively increasing the image size. Various types of convolutional
and building blocks are used to implement a network. Widely used and
fundamental blocks are MBConv and fused-MBConv. They are used
for efficiency reasons, the MBConv is used with depthwise convolution and
fused-MBConv is used without depthwise convolution. Scaling EfficientNet
V2 s produces EfficientNet m and l. The difference among these networks is
the size.

ResNet18 is used both for Office31 and DAiSEE datasets, the other networks are
used only for DAiSEE.

35

Experimental Results

4.1.3 Data Preparation, Data Preprocessing and Training
This section deals with techniques used in Data Preparation and Preprocessing
step, and hyperparameters setup of Training phase, respectively for Office31
and DAiSEE datasets. The main steps that are highlighted in this section are the
split of the dataset (train, validation, and test set), the transformation of data,
the choice of hyperparameters, and the Transfer Learning techniques used.
Both training processes have been carried out with NVIDIA TITAN Xp GPU
with 12 GB of memory.

4.1.3.1 Office31

The branch "Webcam" of Office31 has 795 objects. As shown in Figure 4.3, the
dataset is slightly imbalanced; the lowest class size is the class "ruler" and contains
11 elements; the largest one is "monitor" that contains 43 elements.

Figure 4.3: Distribution of "Webcam" branch, of Office31 samples among 31
classes.

The resulting subset are:

• Train: 332 objects

• Validation: 331 objects

• Test: 132 objects

36

Experimental Results

After preparing the datasets, dataloaders are obtained with a batch size of 64
for all sets and with shuffle only for the train set. Images are transformed in
tensors, resized, and center cropped, respectively 256 and 224 for ResNet18.
Only for images that belong to the train set was used data augmentation tech-
nique with ColorJitter to prevent overfitting. As mentioned above, the model used
is ResNet18. It is pre-trained on ImageNet [56] to perform transfer learning.
The last fully-connected layer is replaced with a linear one with 31 classes, and
the images are normalized with a mean and standard deviation of ImageNet,
respectively [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225]. In this case, for better
performance and more speed in the training phase, only on the fully-connected
layer is performed finetuning, e.g., only weights of the last layer are updated.

The loss function used is the Cross Entropy 2.4. The optimizer used is
Stochastic Gradient Descent (SGD) (algorithm 1) and the input values used
are:

• learning rate: 0.001

• weight decay: 0.00005

• momentum: 0.9

Finally, a scheduler to decay learning rate is used with a γ value of 0.1 and a
step size of 10. The number of epochs used are 25. In the training process, loss
(2.4) and F1 score (2.11) is computed after each epoch. The choice of F1 score as
evaluation metrics is due to the imbalanced dataset.

4.1.3.2 DAiSEE

The branch of "Confusion" of DAiSEE contains 268401 frames. Figure 4.4 shows
the distribution of frames among the 4 classes and the imbalance distribution is
evident. The largest class is "very low" and contains 178860 elements, while the
smallest one is "low" and contains 3008 samples. In this case, the goal is to detect
if a user is confused or not, hence, only "very low" and "very high" class are
considered.
Data are taken from Activeloop website [57], converted from tensors to images,
stored on the device, and finally re-transformed to tensors. Data had already been
divided into three sets. After filtering and taking only the two classes mentioned
above, the results are shown as follows:

• Train: 149596

• Validation: 46221

37

Experimental Results

Algorithm 1 Stochastic Gradient Descent algorithm.
inputs: γ (learning rate), θ0 (parameters to optimize), f(θ) (objective), λ (weight
decay), µ (momentum), τ (dampening), nesterov, maximize

for t = 1 to . . . do
gt ← ∇θft(θt−1)
if λ /= 0 then

gt ← gt + λθt−1
end if
if µ /= 0 then

if t > 1 then
bt ← µbt−1 + (1− τ)gt

else
bt ← gt

end if
if nesterov then

gt ← gt + µbt

else
gt ← bt

end if
end if
if maximize then

θt ← θt−1 + γgt

else
θt ← θt−1 − γgt

end if
end for
return θt

• Test: 47288

Afterwards, dataloaders are obtained with a batch size of 32. Only for the train
set, shuffle techniques and a strategy to draw samples from the dataset are used.
The second technique assigns different weights to samples based on the origin
class because the two classes are imbalanced. Images are transformed in tensor and
preprocessed using values in table 4.2. For the train set Data Augmentation is
used with RandomRotation of 20° and ColorJitter. Each model is pre-trained on
ImageNet to perform transfer learning. The last fully-connected layer is replaced
with a linear one with 2 classes and images are normalized with a mean and
standard deviation of ImageNet, respectively 0.485, 0.456, 0.406] and [0.229, 0.224,
0.225]. Also in this case, for the same reasons explained for Office31 training, only

38

Experimental Results

Figure 4.4: Distribution of branch "Confusion" of DAiSEE dataset frames among
the 4 classes.

on fully-connected layer is performed finetuning.

The loss function used is Cross Entropy 2.4. The optimizer used is Stochastic
Gradient Descent (SGD) (1) and its input values are:

• learning rate: 0.001

• weight decay: 0.00005

• momentum: 0.9

A scheduler to decay learning rate is used with a γ value of 0.1 and a step size
of 10. The number of epochs used is 50. During training process, after each
epoch, loss (2.4) and F1 score (2.11) are computed. The choice of this metric is
due to the imbalance of dataset.

39

Experimental Results

Models Resize Center Crop
Resnet18-34 256 224
Inception V3 342 299

EfficientNet V2 s 384 384
EfficientNet V2 m-l 480 480

MobileNet V2 large-small 256 224

Table 4.2: Values of resizing and cropping used with each model on DAiSEE
samples.

4.1.4 ONNX format conversion and Static Site deployment
Models trained, for both DAiSEE and Office31, are saved in .pt format and then
converted in .onnx format with an operation set version of 16. The conversion is
carried out with NVIDIA TITAN Xp GPU of 12 GB of memory. The browser
used to deploy the static site is Google Chrome.

Figure 4.5: The most important components of web application.

The main Typescript files handle the part of inference:

• imageHelper.ts: image is loaded from public folder of the project and
transformed in a tensor. Then, data are preprocessed according to the resize
and centre crop values of the model chosen.

• modelHelper.ts: the tensor created in the previous step is ready for inferenc-
ing. An inference session through ort.InferenceSession.create() is created. The

40

Experimental Results

fundamental parameter passed to this function is ’wasm’ (CPU) as execution
provider (for better compatibility of operators) and the model previously
converted in .onnx format. In each inference session a WebAssembly module
is used to run the model as near-native speed. At the end of each inference
session, the time to do it, the prediction and its probability are saved.

• predict.js: contains all the functions written in the previous files.

Data URLs used for inference and the identification of classes are saved in data
folder. The web component that has the buttons and display elements is Image-
Canvas.tsx. The functions written predict.js are called in this component. Finally,
this component is called by index.tsx. It is in charge of the title and the Image-
Canvas.tsx components of the web page. Figure 4.6 shows the final aspect of the
two web application.
The last two important files are next.config.js and package.json. The first file is
the webpack configuration implemented in the NextJS Framework. Its task is to
copy wasm files and model folder files to the out folder for deployment. The second
file contains the assets needed for the static site deployment and puts them in out
folder.

4.2 Results
This section shows the results achieved with both datasets using the web application
developed. The experiments have been done with a combination of different DL
models and hardwares. The two crucial metrics used for judging the goodness
of a model for the device used to run the application are: ONNX model size and
latency time, the time used for a single prediction. The experiments are done with
devices described in Table 4.3. Three type of devices are taken into consideration:
a high-performance PC, a low-performance PC and a smartphone. The
browser used to run experiments is Google Chrome for all devices.

4.2.1 Office31
Table 4.4 shows the results obtained with Device 1 (features in Table 4.3). Means
and standard deviations latency are computed by taking 10 images from the
Google search engine.
This experiment aims to test if integrating of the ONNX model with the web
application works and if the predictions are correct. The latency time is acceptable
because the device used has good hardware features. Due to the simplicity of the
task, almost all predictions are correct.

41

Experimental Results

Figure 4.6: Static sites appearance.

4.2.2 DAiSEE
Table 4.5 refers to the results obtained with all different combinations of models
and hardware. The three critical indicators considered for the comparison are
the latency (inference time in browser) computed in ms, the ONNX size of the
model computed in MB, and the F1 score of Pytorch models. The mean and
standard deviation of latency are computed by taking ten images (five from class
"very low" and "very high") from the test set used to test Pytorch [6] models. The
same images are used for all devices used in this experiment. The F1 score of
Pytorch models is computed in the test phase before the ONNX format conversion.

42

Experimental Results

Device Model Name Model CPU Clock rate Core RAM
CPU

1 Asus VivoBook Intel® Core™ 2.60 GHz 12 16 GB
X571GT i7-9750H

2 Asus X55A- Intel® Pentium® 2.40 GHz 2 4 GB
SX093D B980

3 Redmi Note Octa-core Max 2.20 GHz 8 4 GB
10 5G

M2103K19G

Table 4.3: Hardware features of devices used to test the web application developed.
Device 1 and 2 are notebooks, the Device 3 is a smartphone.

Model Latency (mean - std) ONNX size F1 score Pytorch
Resnet18 (155.56 - 2.70) ms 42.68 MB 93.93%

Table 4.4: Result with Office31 dataset obtained with Device 1.

From the experiments conducted, the last network (EfficientNet V2 l) resulted
in too heavy for Devices 2 and 3 due to the limited performance of both devices.
Figure 4.7 shows the relationship between the mean of latency time and the size
of each ONNX model. There are three lines, one for each device. It is possible to
identify two general behaviors:

• The latency time grows with the decrease in the device’s performance.

• The latency time grows with the increasing size and complexity of the ONNX
model.

We can see how the small models are suitable for all devices in this case, the latency
time computed with the MobileNet V2 small and MobileNet V2 large is
similar for all devices.
The F1 score achieved by Pytorch models is a relevant element to consider. In
this case, the F1 scores obtained from each model are very similar. The higher F1
achieved is 92,21% from EfficientNet V2 m, but it has latency time and size
too large compared to the others. The two best alternatives are MobileNet V2
small and Inception V3 with respectively 91,32% and 91,95% F1 score. These
two models have lower latency time and size.

43

Experimental Results

Latency (mean - std)
Models Device 1 Device 2 Device 3 ONNX F1 score

size Pytorch
MobileNet (32,67- (31,33– (122,33– 5,76 91,32%

V3 6,76) ms 1,32) ms 26,41) ms MB
small

MobileNet (74,78- (88,89– (187,33– 16,01 89,15%
V3 3,70) ms 5,49) ms 13,96) ms MB

large
ResNet18 (314,44- (422,33– (768,22– 42,63 89,76%

6,04) ms 78,04) ms 17,93) ms MB
ResNet34 (629,44- (765,78– (1474,44– 81,18 81,95%

15,74) ms 2,39) ms 59,02) ms MB
Inception (918,33- (1152,11– (2374,33– 83,09 91,95%

V3 14,83) ms 1,45) ms 243,55) ms MB
Efficient- (1500,78- (1971,33– (3493,00– 76,75 88,48%
Net V2 52,95) ms 112,54) ms 85,27) ms MB

s
Efficient- (4410,67- (5703,89– (10322.44– 201,18 92,21%
Net V2 109,93) ms 119,05) ms 250.45) MB

m ms
Efficient- (9680,56- 446,37 89,15%
Net V2 188,11) ms - - MB

l

Table 4.5: Result of experiments on DAiSEE dataset using different devices and
models.

44

Experimental Results

Figure 4.7: Relationship between the latency mean of models and their size.

45

Chapter 5

Conclusion

In this present master thesis is discussed the methods for exploiting the browser to
ensure the privacy and the portability of a DL application. There are several
ways to ensure privacy and portability, but WebAssembly and JS libraries are a
good compromise between the easiness of implementation and the goodness of the
performance.
The web application developed, has a simple layout. The predictions obtained
with ONNX models on Office31 are all right, while with DAiSEE there are some
prediction errors. This difference in the performance could be due to the different
complexity between the two datasets. The networks implemented are simple and
not provided of other branches. The choice of this implementation design, is due
to the scope of this thesis work. The size and the complexity of the networks are
important features that allow also to low-performance devices to make DL inference.
There are techniques able to simplify the complexity and able to reduce the size
of a network. ONNX Runtime provides a tool to use Quantization method on
ONNX models. The basic idea is to represent the weights and activations of a DL
model using fewer bits than their original precision. As shown in Figure 5.1, larger
networks have a larger inference time. Thus optimization technique cited above
could be useful for them.
Figure 5.1 shows the latency mean of ONNX and Pytorch models used in web
applications. This test was made only on Device 1 4.3. Table 5.1, shows the results
obtained from the test. Figure 5.1 shows the gap between the latency time of the
two model format. The latency gap between the two model format increases with
the growth of the complexity of the model. The larger gap lies between Resnet-34,
with a ONNX model 18.32 times slower than Pytorch one. The smallest gaps
lies between MobilenetV3 small and large, with ONNX model 1,96 and 3,39
times slower than Pytorch model respectively. MobilenetV3 is optimize to run
on low-performance device, in fact the gap observed is very small respect to the
others. For the other models, techniques of optimizations are necessary.

46

Conclusion

Models Pytorch Latency ONNX Latency
(mean - std) (mean - std)

Resnet18 (18,85 - 0,22) ms (314,44 - 6,04) ms
Resnet34 (34,36 - 5,40) ms (629,44 - 15,74) ms

InceptionV3 (70,88 - 8,03) ms (918,33 - 14,83) ms
MobileNetV3 small (16,60 - 10,84) ms (32,67 - 6,76) ms
MobileNetV3 large (22,03 - 2,58) ms (74,78 - 3,70) ms
EfficientNetV2 s (127,30 - 23,14) ms (1500,78 - 52,95) ms
EfficientNetV2 m (302,43 - 13,05) ms (4410,67 - 109,93) ms
EfficientNetV2 l (566,73 - 10,31) ms (9680,56 - 188,11) ms

Table 5.1: Results of latency time obtained on the same pictures using ONNX
models and Pytorch models. For this comparison, models are tested on Device 1
(table 4.3).

The web application developed is not able to switch models according to the
hardware performance. To implement the process of switching models according to
the hardware of the device, some ideas can potentially be helpful for future works:

• Navigator.deviceMemory [58]: a read-only property of the JS Navigator
interface. The value returned is an approximation of the amount of memory
(in gigabytes) available to the device and can be used to make informed
decisions about the performance of the device and the resources that could
be allocated to a web application. This value can be used to optimize the
performance of a web application by making adjustments to the way the
application uses resources. For example, if the value indicates that the device
has a low amount of memory, the application can reduce the resources it
uses, such as images and animations, to ensure that it runs smoothly. In this
context, the resources are the networks. Unfortunately, this property has an
experimentation status; it can not be used in the building phase.

• Choose your model: implementing a menu that allows users to choose the
right network according to the performance of his/her device.

This Master thesis aims to study and implement technologies that allow doing, DL
inference on all devices and operating systems. It confirms that using web applica-
tion for DL is safe and portable. DL models have to be light and straightforward
to allow the correct function and also to more powerful hardware. WebAssembly is
a relevant technology for speed up performances of DL models in a web application.
In particular, ONNX Runtime Web is a good solution for implementing DL in
the browser, but using more extensive networks without any optimization process,

47

Conclusion

Figure 5.1: Comparison between latency mean of Pytorch and ONNX models.
Models are tested on Device 1 (table 4.3) for this comparison.

48

Conclusion

sometimes is prohibitive.
In conclusion, until now, ONNX models work very well and their performances are
comparable with Pytorch ones only if they are small or optimized for all types of
hardware.

49

Bibliography

[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
computing: Vision and challenges». In: IEEE internet of things journal 3.5
(2016), pp. 637–646 (cit. on pp. 2, 14).

[2] WebAssembly. url: https://webassembly.org/. (accessed: 03.02.2023) (cit.
on pp. 2, 29).

[3] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. «Moving
deep learning into web browser: How far can we go?» In: The World Wide
Web Conference. 2019, pp. 1234–1244 (cit. on p. 3).

[4] ONNX. url: https://onnx.ai/index.html. (accessed: 19.01.2023) (cit. on
pp. 3, 25).

[5] ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/.
Version: x.y.z. 2021 (cit. on p. 3).

[6] Pytorch. url: https://pytorch.org/get-started/locally/. (accessed:
19.01.2023) (cit. on pp. 3, 42).

[7] Warren S McCulloch and Walter Pitts. «A logical calculus of the ideas
immanent in nervous activity». In: The bulletin of mathematical biophysics 5
(1943), pp. 115–133 (cit. on p. 5).

[8] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 5).

[9] Architecture of Perceptron. url: https://ai.plainenglish.io/the-rise-
and-fall-of-the-perceptron-c04ae53ea465. (accessed: 08.02.2023) (cit.
on p. 6).

[10] Sung Eun Kim and Il Won Seo. «Artificial Neural Network ensemble modeling
with conjunctive data clustering for water quality prediction in rivers». In:
Journal of Hydro-environment Research 9 (Apr. 2015). doi: 10.1016/j.jher.
2014.09.006 (cit. on p. 9).

50

https://webassembly.org/
https://onnx.ai/index.html
https://onnxruntime.ai/
https://pytorch.org/get-started/locally/
https://ai.plainenglish.io/the-rise-and-fall-of-the-perceptron-c04ae53ea465
https://ai.plainenglish.io/the-rise-and-fall-of-the-perceptron-c04ae53ea465
https://doi.org/10.1016/j.jher.2014.09.006
https://doi.org/10.1016/j.jher.2014.09.006

BIBLIOGRAPHY

[11] Receiver operating characteristic. url: https://towardsdatascience.com/
a- comprehensive- guide- to- convolutional- neural- networks- the-
eli5-way-3bd2b1164a53. (accessed: 28.01.2023) (cit. on p. 11).

[12] A Comprehensive Guide to Convolutional Neural Networks — the ELI5
way. url: https : / / en . wikipedia . org / wiki / Receiver _ operating _
characteristic. (accessed: 28.01.2023) (cit. on p. 12).

[13] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar,
and Albert Y Zomaya. «Edge intelligence: The confluence of edge computing
and artificial intelligence». In: IEEE Internet of Things Journal 7.8 (2020),
pp. 7457–7469 (cit. on pp. 15, 22).

[14] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. «Bringing
the web up to speed with WebAssembly». In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
2017, pp. 185–200 (cit. on p. 19).

[15] Portability. url: https://webassembly.org/docs/portability/. (ac-
cessed: 08.02.2023) (cit. on p. 19).

[16] Khronos. WebGL. url: https://www.khronos.org/webgl/. (accessed:
05.10.2022) (cit. on pp. 19–21).

[17] AssemblyScript. url: https : / / www . assemblyscript . org/. (accessed:
08.02.2023) (cit. on p. 20).

[18] WebGPU. url: https://www.w3.org/TR/webgpu/. (accessed: 05.10.2022)
(cit. on p. 21).

[19] Edward Meeds, Remco Hendriks, Said Al Faraby, Magiel Bruntink, and Max
Welling. «MLitB: machine learning in the browser». In: PeerJ Computer
Science 1 (2015), e11 (cit. on p. 21).

[20] Tensorflow Playground. url: https://playground.tensorflow.org/. (ac-
cessed: 04.02.2023) (cit. on p. 21).

[21] synaptic. url: https://caza.la/synaptic/#/. (accessed: 05.10.2022) (cit.
on p. 21).

[22] ConvNetJS. url: https://cs.stanford.edu/people/karpathy/convnetj
s/. (accessed: 05.10.2022) (cit. on p. 21).

[23] Keras.js. url: https://github.com/transcranial/keras-js. (accessed:
05.10.2022) (cit. on p. 21).

[24] WebDNN. url: https : / / mil - tokyo . github . io / webdnn/. (accessed:
05.10.2022) (cit. on p. 21).

51

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://webassembly.org/docs/portability/
https://www.khronos.org/webgl/
https://www.assemblyscript.org/
https://www.w3.org/TR/webgpu/
https://playground.tensorflow.org/
https://caza.la/synaptic/#/
https://cs.stanford.edu/people/karpathy/convnetjs/
https://cs.stanford.edu/people/karpathy/convnetjs/
https://github.com/transcranial/keras-js
https://mil-tokyo.github.io/webdnn/

BIBLIOGRAPHY

[25] Tensorflow.js. url: https://www.tensorflow.org/js. (accessed: 05.10.2022)
(cit. on p. 21).

[26] Teachable Machine. url: https://teachablemachine.withgoogle.com/.
(accessed: 04.02.2023) (cit. on p. 22).

[27] MorphCast. url: https://www.morphcast.com/. (accessed: 04.02.2023)
(cit. on p. 22).

[28] Brian J Spiesman, Claudio Gratton, Richard G Hatfield, William H Hsu,
Sarina Jepsen, Brian McCornack, Krushi Patel, and Guanghui Wang. «As-
sessing the potential for deep learning and computer vision to identify bumble
bee species from images». In: Scientific reports 11.1 (2021), pp. 1–10 (cit. on
p. 22).

[29] Zekun Wang, Pengwei Wang, Peter C Louis, Lee E Wheless, and Yuankai
Huo. «Wearmask: Fast in-browser face mask detection with serverless edge
computing for covid-19». In: arXiv preprint arXiv:2101.00784 (2021) (cit. on
p. 22).

[30] Sangwoo Ryu, Kyungchan Ko, and James Won-Ki Hong. «Performance
Analysis of Applying Deep Learning for Virtual Background of WebRTC-
based Video Conferencing System». In: 2021 22nd Asia-Pacific Network
Operations and Management Symposium (APNOMS). IEEE. 2021, pp. 53–56
(cit. on p. 22).

[31] Vlad Pandelea, Edoardo Ragusa, Tommaso Apicella, Paolo Gastaldo, and Erik
Cambria. «Emotion Recognition on Edge Devices: Training and Deployment».
In: Sensors 21.13 (2021), p. 4496 (cit. on p. 22).

[32] Pei Ren, Xiuquan Qiao, Yakun Huang, Ling Liu, Calton Pu, and Schahram
Dustdar. «Fine-grained elastic partitioning for distributed dnn towards mobile
web ar services in the 5g era». In: IEEE Transactions on Services Computing
(2021) (cit. on p. 22).

[33] Albin Correya, Pablo Alonso-Jiménez, Jorge Marcos-Fernández, Xavier Serra,
and Dmitry Bogdanov. «Essentia TensorFlow models for audio and music
processing on the web». In: Web Audio Conference (WAC 2021). 2021 (cit. on
p. 22).

[34] Jing Zhang and Dacheng Tao. «Empowering things with intelligence: a survey
of the progress, challenges, and opportunities in artificial intelligence of
things». In: IEEE Internet of Things Journal 8.10 (2020), pp. 7789–7817
(cit. on p. 22).

[35] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. «Data
Collection and Quality Challenges in Deep Learning: A Data-Centric AI
Perspective». In: arXiv preprint arXiv:2112.06409 (2021) (cit. on p. 23).

52

https://www.tensorflow.org/js
https://teachablemachine.withgoogle.com/
https://www.morphcast.com/

BIBLIOGRAPHY

[36] Visual Studio Code. url: https://code.visualstudio.com/. (accessed:
19.01.2023) (cit. on p. 24).

[37] Netron. url: https://github.com/lutzroeder/netron. (accessed: 10.10.2022)
(cit. on p. 26).

[38] ONNX concept. url: https://onnx.ai/onnx/intro/concepts.html.
(accessed: 19.01.2023) (cit. on p. 26).

[39] ONNX Model Zoo. url: https://github.com/onnx/models. (accessed:
10.10.2022) (cit. on p. 26).

[40] OpenJS Foundation. Node.js. url: https://Node.js. (accessed: 16.01.2023)
(cit. on p. 28).

[41] Vercel. Next.js. url: https://Next.js. (accessed: 16.01.2023) (cit. on p. 28).
[42] Meta Platforms. React.js. url: https://React.js. (accessed: 16.01.2023)

(cit. on p. 28).
[43] webpack. url: https://webpack.js.org. (accessed: 16.01.2023) (cit. on

p. 28).
[44] ONNX Runtime Architecture. url: https://onnxruntime.ai/docs/refere

nce/high-level-design.html. (accessed: 24.01.2023) (cit. on p. 30).
[45] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. «Adapting visual

category models to new domains». In: European conference on computer
vision. Springer. 2010, pp. 213–226 (cit. on p. 31).

[46] Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, and Vineeth Balasubramanian.
«Daisee: Towards user engagement recognition in the wild». In: arXiv preprint
arXiv:1609.01885 (2016) (cit. on p. 31).

[47] Andrew Howard et al. «Searching for mobilenetv3». In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, pp. 1314–1324
(cit. on p. 33).

[48] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark San-
dler, Vivienne Sze, and Hartwig Adam. «Netadapt: Platform-aware neural
network adaptation for mobile applications». In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 285–300 (cit. on p. 34).

[49] Barret Zoph and Quoc V Le. «Neural architecture search with reinforcement
learning». In: arXiv preprint arXiv:1611.01578 (2016) (cit. on pp. 34, 35).

[50] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:
Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on p. 34).

53

https://code.visualstudio.com/
https://github.com/lutzroeder/netron
https://onnx.ai/onnx/intro/concepts.html
https://github.com/onnx/models
https://Node.js
https://Next.js
https://React.js
https://webpack.js.org
https://onnxruntime.ai/docs/reference/high-level-design.html
https://onnxruntime.ai/docs/reference/high-level-design.html

BIBLIOGRAPHY

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. «Mobilenetv2: Inverted residuals and linear bottlenecks». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520 (cit. on p. 34).

[52] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V Le. «Mnasnet: Platform-aware neural archi-
tecture search for mobile». In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 2820–2828 (cit. on p. 34).

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 34).

[54] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. «Rethinking the inception architecture for computer vision». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 2818–2826 (cit. on p. 35).

[55] Mingxing Tan and Quoc Le. «Efficientnetv2: Smaller models and faster
training». In: International Conference on Machine Learning. PMLR. 2021,
pp. 10096–10106 (cit. on p. 35).

[56] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on p. 37).

[57] Google Tesla Priceton University ETHzurich Equinix. Activeloop. url: ht
tps://datasets.activeloop.ai/docs/ml/datasets/daisee-dataset/.
(accessed: 11.01.2023) (cit. on p. 37).

[58] Mozilla Foundation. Navigator.deviceMemory documentation. url: https:
//developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemo
ry. (accessed: 13.02.2023) (cit. on p. 47).

54

https://doi.org/10.1109/CVPR.2009.5206848
https://datasets.activeloop.ai/docs/ml/datasets/daisee-dataset/
https://datasets.activeloop.ai/docs/ml/datasets/daisee-dataset/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory

	List of Tables
	List of Figures
	Acronyms
	Introduction
	State of Art
	Background
	Deep Learning
	Artificial Neural Networks
	Training
	Dataset Handling and Data Preprocessing
	Evaluation Metrics
	Image Classification and Convolutional Neural Networks

	Edge Computing and paradigm shift
	Web Application for AI
	Web Application
	JavaScript and WebAssembly

	Related works

	Methodology
	Data Collection and Preparation
	Training
	ONNX Model
	Image Classification inference on Static Site using ONNX Runtime Web

	Experimental Results
	Experimental Setup
	Datasets
	Office31
	DAiSEE

	Models
	Data Preparation, Data Preprocessing and Training
	Office31
	DAiSEE

	ONNX format conversion and Static Site deployment

	Results
	Office31
	DAiSEE

	Conclusion
	Bibliography

