
Master’s Degree Thesis
CNC end effector tools wear SOH prediction: big data

approach

Candidate:
Mudassar Hussain

Mentor:
Prof. Daniele Apiletti

Supervisor:
Domenico Gatto

Brain technologies srl.

Spring session 2023

Abstract

Pertaining to the high cost of maintenance of various machines in the in-
dustrial sector, there is a growing need of efficient and cost saving techniques
to predict the state of health(or remaining useful life of a machine). It is
obvious that applying efficient techniques can lead to a competitive advan-
tage in the industrial sector. Our thesis extends the work done previously
on the MorePRO project based on the estimation of the state of health of
CNC machines. The contrast with the previous work is to focus on cloud
based computing rather then previously performed analysis with edge com-
puting which is related to the data collected in the local environment from
the machine. Both of these techniques have there own pros and cons. Mainly
edge computing being local and thus has low latency while cloud computing
encompasses a general analysis consequently leads to better accuracy.

The goal is to understand the model pertaining the CNC machine, iden-
tifying the useful features that need to be extracted during the ETL process
and then apply efficient machine learning algorithm on the extracted dataset
using a cloud based approach, deploying the model using real time stream-
ing. Main steps include loading dataset and performing analytic in a spark
based environment. The data exploratory analysis is performed using python
based library along with visualization. Various regression models are trained
and validated using test data. Finally designing pipeline integrating spark
streaming with Apache Kafka

Our work focuses on performing regression task to predict the state of
health (assumed as a continues variable). Since the data is coming from
various models, we need to concatenate these data sets and then perform
analysis on a cloud based platform given that the volume of data collected
from various models requires more memory and consequently high computa-
tion power. We would like to mention that these computations are performed
on the cluster provided by Politecnico di Torino.

Contents

1 Introduction 4
1.1 Maintenance . 4

1.1.1 Palliative maintenance 4
1.1.2 Preventative maintenance 4
1.1.3 Condition based maintenance 5
1.1.4 Predictive maintenance 6

1.2 SoH of CNC machine . 7
1.3 Previous projects reference . 9
1.4 Cloud computing . 10

1.4.1 Cloud computing services 10
1.4.2 Background . 10
1.4.3 Significance of cloud computing 12

1.5 Spark . 12
1.5.1 Pyspark . 13

2 CNC machine model 15
2.1 Mechanical part . 15
2.2 Electrical part . 17
2.3 Plant model . 18
2.4 β as a significant parameter 19
2.5 Contact logic . 19
2.6 Trends in important features 20

3 Exploratory data analysis 21
3.1 The data set . 21
3.2 Heat map . 24
3.3 Scatter plot . 25
3.4 Box plot . 26

1

3.5 KDE plot . 27
3.6 Moving average . 28
3.7 Principal component analysis 29

3.7.1 Covariance . 29
3.7.2 Eigenvectors and eigenvalues 30
3.7.3 Dimensionality reduction 30
3.7.4 Explained variance . 31
3.7.5 Visualizing PCA . 32
3.7.6 Scatter plot . 33

4 Data pre-processing 34
4.1 Spark dataframe . 34
4.2 R formula . 34
4.3 Feature scaling . 35

4.3.1 Why feature scaling . 35
4.3.2 When to perform feature scaling 35
4.3.3 When not to perform feature scaling 36
4.3.4 Scalers available in spark 36

4.4 Pipeline . 38

5 Machine learning techniques 40
5.1 Problem definition . 40
5.2 Generalised linear regression 41

5.2.1 Linear regression . 42
5.2.2 Model representation 43
5.2.3 Methods for learning linear regression model 44
5.2.4 Assumption on data for applying linear regression . . . 46

5.3 Decision tree . 47
5.3.1 Important terminology 47
5.3.2 Working principle . 47
5.3.3 Splitting criteria . 49
5.3.4 Advantages . 50
5.3.5 Disadvantages . 51
5.3.6 Feature importance . 52

5.4 Random forest . 53
5.5 Ensemble learning . 53

5.5.1 Bootstrap aggregation 54
5.5.2 Hyper parameters . 54

2

5.6 Gradient boosted trees . 55
5.6.1 Algorithm working . 56
5.6.2 Loss functions . 56
5.6.3 Validation while training 56

5.7 Gradient boosted trees vs. Random forests 57
5.8 Survival regression . 57

6 Model selection 59
6.1 Parametric grid search . 59
6.2 Cross validation . 61
6.3 Train validation split . 61

7 Evaluation metrics 62
7.1 Mean absolute error (MAE) 62
7.2 Mean squared error(MSE) . 63
7.3 Coefficient of determination (R2) 64
7.4 Explained variance . 64

7.4.1 Summary and results 65

8 Spark streaming with kafka 66
8.1 Apache kafka . 67

8.1.1 Kafka use case . 67
8.1.2 Terminology . 68
8.1.3 Partition . 68

8.2 Apache zookeeper . 71
8.3 Spark streaming . 72

9 Conclusion 73

3

Chapter 1

Introduction

1.1 Maintenance

System dependability is one of the most important challenges in today’s busi-
ness, the development of improved system maintenance approaches based on
data obtained through system or component monitoring (or system state
estimate) and equipment failure prognostics is an emerging topic (or sys-
tem state forecasting). Such procedures can be classified into two groups,
according to the EN 13306 (2001) standard. The first is corrective mainte-
nance, which entails replacing a component and fixing any damage that has
occurred as a result of a catastrophic failure. When the repercussions of a
failure aren’t as serious and field intervention doesn’t need a lot of money or
time, this strategy is adopted.

1.1.1 Palliative maintenance

Palliative maintenance is used when the repair is temporary, while curative
maintenance is used when the repair is permanent.

1.1.2 Preventative maintenance

The second is preventative maintenance, which refers to the provision of
an alarm before defects reach critical levels in order to avoid system per-
formance decline, malfunction, or even catastrophic failure. Predetermined
maintenance is when a maintenance intervention is time-based, meaning that
components are changed according to a predetermined timetable based on

4

the component’s working hours. Obviously, this strategy is inefficient since
components are changed before they reach the end of their useful life, raising
expenses.

1.1.3 Condition based maintenance

Condition-based maintenance, which refers to the analysis of real-time data
in order to detect a probable failure in the changing of their characteristics,
is one such option. However, this method does not guarantee that a main-
tenance strategy will be designed with confidence. Predictive maintenance,
on the other hand, uses more dynamic algorithms to estimate the machine’s
SoH.

Figure 1.1: Types of predictive maintenance

5

1.1.4 Predictive maintenance

Predictive maintenance is a technique that uses data analysis tools and tech-
niques to detect anomalies in the operation and possible defects in equipment
and processes so as to fix them before they result in failure.

Ideally, predictive maintenance allows the maintenance frequency to be as
low as possible to prevent unplanned reactive maintenance, without incurring
costs associated with doing too much preventive maintenance.

Predictive maintenance uses historical and real-time data from various
parts of the operation to anticipate problems before they happen. There are
several key elements to predictive maintenance with technology and software
being one of these critical pieces. Namely, the Internet of Things (IoT),
artificial intelligence, and integrated systems allow for different assets and
systems to connect, work together and share, analyze, and action data.

These tools capture information using predictive maintenance sensors,
industrial controls, and businesses systems. They then make sense of it
and use it to identify any areas that need attention. Some examples of using
predictive maintenance and predictive maintenance sensors include vibration
analysis, oil analysis, thermal imaging, and equipment observation.

Identifying critical assets, creating a database for historical data, analyz-
ing failure modes, making failure predictions, and finally deploying predic-
tive maintenance technology to a group of pilot equipment to validate the
program are all steps in the implementation of a predictive maintenance pro-
gram.

We have the following benefits of predictive maintenance:

• Reduce the number of unanticipated breakdowns.

• Increase asset dependability and maximize asset up time.

• Reduce operating costs by only doing maintenance when it is absolutely
essential, increase production hours, and enhance safety.

• Reduce maintenance expenses by reducing equipment, inventory, and
personnel costs.

6

1.2 SoH of CNC machine

CNC (Computer Numerical Control) machines are high-precision machines
that automate material-subtraction industrial operations that require com-
puterized control to ensure high precision and efficiency. In a subtractive
manufacturing process, machine tools are used to remove layers of material
from a stock component known as the blank or work-piece, resulting in a
custom-designed product. This form of processing is essentially unaffected
by the material used to make the workpiece: plastics, metals, foam, glass,
and so on. This is why CNC machines are used in almost every aspect of
industrial processing.

Figure 1.2: Schematic diagram of a CNC machine

7

These machines often feature a SCARA or cartesian robotic arrangement
with an end-effector, which is commonly a cutter, as seen in figure. Modeling
of the cutter contact is complex because of the large number of variables that
must be taken into account, the most important of which are:

• Robotic configuration.

• Environmental parameters.

• Wear condition of the machine: SoH.

All of these factors must be kept under regular surveillance in order to ensure
the machine’s efficiency and accuracy. There is no direct means to check the
state of health of the end-effector in particular. It may be feasible to install
sensors to monitor temperature, voltage, and pressure, as well as assess the
tools’ potential SoH. However, even with knowledge of variables that can
be measured by sensors, extracting information about the machine’s actual
condition is difficult, firstly because sensors are unlikely to be installed in the
correct position, and secondly because knowledge of those parameters may
not be sufficient to comprehend the real situation. For example, a tempera-
ture sensor cannot be placed close enough to the cutter to accurately detect
the temperature, thus it must be placed further away, resulting in continual
and unavoidable measurement inaccuracies.

The bulk of methods that estimate the SoH nowadays recommend digital-
twin solutions. The difficulty of isolating tool wear from other observed
effects is a shortcoming of such a system. Furthermore, such monitoring
systems estimate SoH using machine learning approaches and digital-twin
simulation without accounting for processing needs.The most influential pa-
rameters in the SoH estimation are those related to the cutting process of the
end-effector: the most stressed mechanical elements. Digital-twin models are
very useful when the variables that need to be controlled are numerous, but
the most influent parameters in the SoH estimation are those related to the
cutting process of the end-effector: the most stressed mechanical elements.

As a result, there are several parameters that are directly connected to
the SoH, with the following being some of the most important:

• Friction coefficients.

8

• Temperature.

• Chip load.

Because those factors are inextricably linked to contact forces, knowing and
modeling them is critical for estimating the state of health of CNC machine
end-effectors.

1.3 Previous projects reference

This project research, as well as the entire thesis, is part of a growing list of
projects managed by brain Technologies srl. Because MorePRO evolved from
certain concepts created in prior projects, it is vital to have a preliminary
review of the ideas and principles that make up the preceding initiatives.

The projects prior to this thesis are following:

• The BAT-MAN research and development project, which is a brain
Technologies-owned industrial project, is the starting point for the ap-
plication of an innovative approach based on an EKF bank, with the
main goal of creating an electronic device capable of detecting and
forecasting the working conditions of a Lead-Acid battery in real-time.

• The ERMES (Extendible Range MultiModal Estimator Sensing) algo-
rithm was created by Brain Technologies, and its innovative value is
to develop approaches to apply to the problem of accumulation system
diagnostics, and in particular to the problem of battery SoH estimate.
The suggested ERMES method for estimating the state of health (SoH)
and state of charge (SoC) is based on a model with augmented state,
which implies that the unknown parameters associated with SoH and
SoC are treated as states rather than outputs.The approach entails cre-
ating a battery model using an analogous circuit and a bank of N EKF
(Extended Kalman Filter) based on distinct SoH hypotheses.

• Thesis written by students of politecnico in collaboration with Brain-
tech based on development of the machine model and applying edge
computing algorithms for the SoH estimation of end-effector.

9

1.4 Cloud computing

Cloud computing is the supply of on-demand computing services through
the internet and on a pay-as-you-go basis, ranging from apps to storage and
processing power. Companies can rent access to everything from apps to
storage from a cloud service provider rather than having their own computing
equipment or data centers.

One advantage of cloud computing is that businesses may avoid the up-
front costs and complexity of building and maintaining their own IT infras-
tructure by paying only for what they need, when they need it.

As a result, cloud-computing service providers may achieve enormous
economies of scale by providing the same services to a diverse set of con-
sumers.

1.4.1 Cloud computing services

Cloud computing services today include everything from basic storage, net-
working, and processing power to natural language processing and artificial
intelligence, as well as common office programs. Almost any service that
doesn’t require you to be physically adjacent to the computer gear you’re
using, including quantum computing, may now be offered over the cloud.

A large number of services rely on cloud computing. Consumer services
such as Gmail and cloud backups of your smartphone images are examples,
as are services that allow major organizations to host all of their data and
operate all of their programs in the cloud. Netflix, for example, uses cloud
computing to power its video-streaming service as well as its other business
operations.

Software providers are increasingly delivering their programs as services
through the internet rather as separate goods as they aim to transition to a
subscription model, and cloud computing is becoming the default choice for
many apps.

1.4.2 Background

The location of the service, as well as many other variables such as the
hardware or operating system on which it is running, are essentially irrelevant

10

Figure 1.3: Cloud Services

to the user in cloud computing. The cloud metaphor was drawn from ancient
telecommunications network designs, in which the public telephone network
(and subsequently the internet) was typically shown as a cloud to indicate
that the location didn’t matter — it was simply a cloud of stuff. Of course,
this is an oversimplification; for many consumers, the location of their services
and data is still a major concern.

The name ”cloud computing” has been used since the early 2000s, al-
though the notion of ”computing as a service” dates back to the 1960s, when
computer bureaus offered firms the option of renting time on a mainframe
rather than purchasing one.

These ’time-sharing’ services were mostly replaced by the PC, which made
owning a computer much more cheap, and subsequently by the growth of
corporate data centers, which allowed firms to store massive quantities of
data.

However, in the late 1990s and early 2000s, the notion of renting access

11

to computer power reappeared in the form of application service providers,
utility computing, and grid computing. The introduction of software as a
service and hyperscale cloud-computing providers like Amazon Web Services
was followed by cloud computing, which truly took off with the advent of
software as a service and hyperscale cloud-computing providers like Amazon
Web Services.

1.4.3 Significance of cloud computing

As computing workloads continue to migrate to the cloud, whether through
public cloud services offered by vendors or private clouds built by enter-
prises themselves, infrastructure to support cloud computing now accounts
for a significant portion of all IT spending, while spending on traditional,
in-house IT continues to decline.Indeed, the cloud is winning when it comes
to corporate computing platforms.

According to Gartner, by 2025, up from 41% in 2022, up to half of all
investment in the application software, infrastructure software, business pro-
cess services, and system infrastructure sectors would have gone to the cloud.
Cloud computing is expected to account for nearly two-thirds of application
software spending by 2022, up from 57.7% in 2022.

This is a shift that increased in 2020 and 2021 as firms advanced their
digital transformation plans in the aftermath of the epidemic. Throughout
the epidemic, the lock downs demonstrated how critical it was for businesses
to be able to access their computer infrastructure, apps, and data from ev-
erywhere their employees worked - not just from an office.

1.5 Spark

Apache Spark is a big data and machine learning analytics engine that runs
at breakneck speed. It was created in 2009 at the University of California,
Berkeley.It is the largest open source data processing project. Apache Spark
as the unified analytics engine, has seen significant adoption by businesses
across a wide range of sectors since its debut. Internet powerhouses like
Netflix, Yahoo, and eBay have utilized Spark at large scale, with clusters
of over 8,000 nodes processing several petabytes of data. With over 1000
contributions from 250+ firms, it has quickly become the largest open source
community in big data.

12

Figure 1.4: The spark open-source project

1.5.1 Pyspark

Apache spark has been developed using scala as a programming language.
PySpark is a Python API for Apache Spark that was published to enable the
collaboration of Apache Spark with Python. Furthermore, PySpark allows
to interact with Resilient Distributed Datasets (RDDs) in Apache Spark and
Python. This has been accomplished by utilizing the Py4j library. Py4j is
a popular library that is built into PySpark that allows Python to interact
with JVM objects dynamically. PySpark comes with a number of libraries
that can help you write more efficient programs. There are also a number of
other libraries that are compatible. Here we report some of them:

PysparkSQL

A Python module for doing SQL-style analysis on large amounts of structured
or semi-structured data. With PysparkSQL, we can also utilize SQL queries.
It’s also possible to connect it to Apache Hive. HiveQL may be used as

13

well. PysparkSQL is a wrapper around the core of Pyspark. PySparkSQL
introduced the Data Frame, which is a tabular representation of structured
data that looks like a table in a relational database management system.

Figure 1.5: pyspark

MLlib

MLlib is Spark’s machine learning (ML) library and is a wrapper around
PySpark. To store and operate with data, this library employs the data
parallelism approach. The MLlib library’s machine-learning API is straight-
forward to use. For classification, regression, clustering, collaborative filter-
ing, dimensionality reduction, and underlying optimization primitives, MLlib
provides a wide range of machine-learning methods.

Graph frames

Graph frames is a graph processing toolkit that uses the Pyspark core and
PysparkSQL to provide a set of APIs for doing graph analysis quickly. It’s
designed for high-performance distributed computing.

The following are some of the benefits of utilizing Pyspark:

• Python is a fairly simple language to learn and use.

• It has a user-friendly and extensive API.

• Python provides considerably greater code readability, maintenance,
and familiarity.

• It has a variety of data visualization capabilities, which is tough to do
with Scala or Java.

14

Chapter 2

CNC machine model

Mathematical model design is the skill of transforming physical problems
from an application field into tractable mathematical equations whose theo-
retical and numerical analysis gives insight, solutions, and direction valuable
for the original application. However, due to the complexity and large num-
ber of aspects that such techno-logic instruments may achieve, modeling a
CNC machine might be a very difficult task. Given the great complexity of
a CNC machine, it has been chosen to start with a minimal model to allow
extraction of data as soon as possible and to gain some useful findings from a
basic simulation environment. The simulation’s major goal is to understand
and simulate the behavior of a certain manufacturing system on a computer
prior to real production, decreasing the number of testing and experimen-
tation on the shop floor. Less material is wasted when a virtual system is
used, and disruptions in the functioning of a real machine on the job site are
avoided.

2.1 Mechanical part

In terms of the mechanical element, a very basic milling machine model is
employed. In specifically, a rotating disc is considered in the image below,
which moves in the pieces direction in order to cut it.

Regarding the mechanical part of the model, we need to specify variables
related to the model as follows:

15

Figure 2.1: Basic milling machine model

• θ̇ : Rotational velocity.

• ẋ : Linear velocity.

• F1 : Horizontal forces that move the cutter.

• F2 : Normal Force due to contact.

• fc : Binary function that defines the presence of contact. Assumes 1
value when the work piece is present or 0 otherwise.

• Ta : DC motor torque applied to the cutter.

• In : Inertia of the motor and the cutter.

• β :Contact rotational friction.

• ∆x Depth of cutting.

• cost : Minimum contact force (introduced in order to avoid model
discontinuities).

Given the above mentioned parametrs we can deduce the following equations:{
θ̈ = Ta−βθ̇Fc

In

ẍ = F1−fc(F2∆x+cost)
m

(2.1)

16

2.2 Electrical part

Modern CNC machines, are powered by brushless or servo motors for the
electrical portion. Fast responsiveness to commands, strong acceleration
and deceleration qualities, the ability to manage velocity safely in all ve-
locity ranges, and extremely accurate position control are the most critical
attributes required for servo motors that drive CNC machines. Machines
that use computer numerical control require high-resolution controllers with
great accuracy. Classical and current control approaches, such as PID con-
trollers, feedback control, feedforward control, adaptive control, and auto
tuning methods, are employed at this time. A DC motor is used to drive and
communicate with the mechanical portion, making the fundamental struc-
ture easier to maintain.

Figure 2.2: Simplified schema of DC motor

17

We can define the following parameters regarding the electrical part of
the model:

• Vs : supply voltage.

• ia : Armature current.

• Ta : DC motor torque applied to the cutter.

• kt : Motor torque proportionality constant.

• L : Inductance.

• R : Resistance.

• Vb : Back E.M.F

• Attmot : Engine friction.

• k :proportionality constant.

• b : Total flux.

• IL : Motor inertia.

we have the following relations between these parameters:
Vs = Ria(t) + Ldia(t)

dt

Vb = kb(̇θ)

Ta = ktia(t)− Attmotθ̇
(2.2)

where as for the angular velocity we have the following relation:

ω =
Vs
k
− Ta
k2
R (2.3)

2.3 Plant model

Finally we can derive the equation that represent both the electrical and me-
chanical parts combined. Please note that exact derivation of these equations
is beyond the scope of this thesis, however they are mentioned for complete-
ness.

θ̈ = ktia−Attmotθ̇−cθ̇
In

ẍ = F1−fc(F2α+cost)
m

ia = Vs −Ria − kvθ̇
(2.4)

18

2.4 β as a significant parameter

Literature research suggests that the friction coefficient plays a crucial role in
the interaction between the work-piece and the end-effector tool, according
to a literature review of the factors that most impact end-effector wear. The
friction coefficient, abbreviated as β, is chosen as the parameter on which the
filter wear hypothesis is based in this first phase of development. β depends
on various factors such as temperature, the used material, relative speed,
applied forces, cooling media, etc.

the key factor is that the analysis carried out during the model formu-
lation operates independently of the precise choice of the parameter in such
a manner that a complication of it might result in findings that are not too
dissimilar from those produced when considering as representative.

2.5 Contact logic

Another important feature is the contact logic that demonstrates the contact
of the machine with the work piece. The function has been implemented using
Boolean operators. The following figure shows the design of such function
in simulink as used in the project. Correlation of this feature with other
features such as voltage and current will be discussed in the later chapter.

Figure 2.3: Contact logic

19

2.6 Trends in important features

In the following figure are shown the important features of the model. As an
observation we can see that most of the features are periodic in nature for
instance current and voltage. These features can be further refined in the
data pre-processing phase as suggested in the later section.

Figure 2.4: Trends in important features

20

Chapter 3

Exploratory data analysis

3.1 The data set

The input is a collection of datasets collected from the simulation of CNC
machine model.The analysis has been performed using 5 datasets with pa-
rameters set according to the table in fig.3.1. Each dataset contains 9 columns
and 10,000 instances. Following are the features of the dataset:

• voltage: Input voltage to the CNC machine.

• current: Current associated to the provided voltage.

• contact force: Binary function that defines the presence of contact.
Indeed, it assumes value when the work piece is present or 0 otherwise.

• angular velocity: Rotation velocity of the cutting piece.

• linear velocity: Velocity related to the movement of cutting piece.

• cutter position: The displacement with respect to the initial place-
ment of the cutting edge.

• F1: Horizontal force that moves the cutter.

• F2: Normal Force due to contact.

• beta : Contact friction co-efficient.

• usurage : Inverse of remaining useful life of the CNC machine.

21

The major goal here is to collect data from numerous machines in the
manufacturing facility, taking into account that each machine is slightly dif-
ferent from the others on a parametric level. This assumption provides for
more realistic data and eliminates edge device estimate problems caused by a
mismatch between the plant and the filter bank. Furthermore, it is expected,
as previously, that data is collected for four alternative wear configurations
for each CNC machine (and therefore of the friction coefficient). As a result,
the algorithm will be based on the five machines stated in the table below.

Figure 3.1: Parameters of different CNC machines

All of the features are numerical as depicted in the following figure. Con-
sidering the types of features are important as many different type of features
may require a different set of preliminary analysis such as encoding, vector-
ization etc.

Figure 3.2: Data types of the features

22

The figure below displays above mentioned features in a tabular form
along with some instances from the dataset. The column on the right is to
be predicted by the algorithm during the testing phase.

Figure 3.3: Features of the data set

The following figure shows a description of the features. The description
reveals that the values of different features are in diverse ranges in term of
min and max values. For example contact force has max value of 1 where
as angular velocity can assume a max value of 339. Thus feature scaling is
required so that the algorithm designed does not bias towards a particular
feature based on its high range of values. Feature scaling can be very useful
when applied keeping in mind that it may affect the appearance of the dataset
in terms of the outliears or variability. Many algorithm can take advantage
of this step and others are not affected. We have discussed this feature later
in great detail in our later chapter.

Figure 3.4: Statistics of all the numerical features

23

3.2 Heat map

Heat Map chart, or heat map is a two-dimensional visual representation of
data, where values are encoded in colors, delivering a convenient, insightful
view of information. Heat map for the dataset is given in figure . The map
reveals a strict correlation between current and voltage which is expected
according to the ohm’s law considering the load as equivalent resistance.
There can be seen a very strong direct relation between beta and the usage.
Other potent features affecting the usage are voltage, current and F2. Other
features are not so effective in relation with the variable to be predicted.
We can verify this impact on the feature to be predicted from the feature
importance of the decision tree in the later chapter.

Figure 3.5: Heat map

24

3.3 Scatter plot

Scatter plot demonstrates the relation between the features of the dataset.
While on the diagonal we have the histograms showing the values a variable
can assume with the height depicting the frequency of that attribute.

In the figure, we can see a direct relation between voltage and current as
well as between beta and usurage. The histogram reveals interesting facts
such as contact force assuming only binary values. These results are congru-
ent with the information given in the heat map. This plot is more insightful
interms of the visualization of the instances projected on a 2 dimensional
plane.

Figure 3.6: Scatter plot

25

3.4 Box plot

A boxplot is a standardized method of depicting data distributions using a
five-number summary (”minimum”, first quartile (Q1), median, third quar-
tile (Q3), and ”maximum”). It can give information about outliers and as-
sociated values. It can also determine if the data is symmetrical, how closely
the data is packed, and whether or not the data is skewed. The following
figure reveals boxplot for the features of the data set. It is clear from the
figure that most of the variability lies in the features such as current, voltage
and angular velocity. These features will play an important role in PCA as
we will see in the later chapter.

Figure 3.7: Box plot

26

3.5 KDE plot

The following kde plot reveals the distribution of the sample space for the
labels of the dataset. One observation is that the plot is skewed towards the
initial values. This indicates that even if the data was collected in equal in-
tervals of time, the machine was estimated to have stable working conditions
for the initial intervals of time and hence more samples are available relevant
to those interval.

Figure 3.8: KDE plot

27

3.6 Moving average

We have observed previously that the features of the dataset are mostly
periodic in nature. This can be easily related to the working of the CNC
machine and of course the current and voltage signals are periodic in nature.
Instead of feeding these featurs directly to the algorithm we could perform
some pre conditioning on these features. The idea is to capture the long
time trends in the signal. We must keep in mind that we should retain as
much information contained in the feature as possible. Moving average can
perform exactly this job. Essentially we are transforming our existing feature
into a new useful feature. Thus we can think of moving average applied to a
signal as a feature transformation. The figure below shows a moving average
performed on the voltage contained in the dataset. Yellow signal being the
original and green signal as a transformation.

Figure 3.9: Moving average for voltage

28

3.7 Principal component analysis

In real world data analysis tasks we analyze complex data i.e. multi dimen-
sional data. We plot the data and find various patterns in it or use it to
train some machine learning models. One way to think about dimensions
is that suppose we have a data point x , if we consider this data point as
a physical object then dimensions are merely a basis of view, like where is
the data located when it is observed from horizontal axis or vertical axis. As
the dimensions of data increases, the difficulty to visualize it and perform
computations on it also increases. So, how to reduce the dimensions of a
data-

• Only keep the most important dimensions

PCA finds a new set of dimensions (or a set of basis of views) such that all
the dimensions are orthogonal (and hence linearly independent) and ranked
according to the variance of data along them. It means more important
principleaxis occurs first. (more important = more variance/more spread
out data).

How does PCA work -

• Compute the vector µ containing mean of all the features in the dataset.

• Compute the centered data Matrix: B = X − µ

• Calculate the covariance matrix of data: S = 1
n
BBT

Where S has a property of being symmetric and hence can be diago-
nalized. S = PDP T

• Calculate the eigenvalues and eigenvectors over covariance matrix. Where
we require that: λ1 ≥ λ2....... ≥ λn ≥ 0

• Choose the principal components according to given threshold of ex-
plained varience (e.g 0.9) or number of components to be kept.

3.7.1 Covariance

It is a measure of the extent to which corresponding elements from two sets
of ordered data move in the same direction.

29

Figure 3.10: Covariance

Positive covariance means X and Y are positively related i.e. as X in-
creases Y also increases. Negative covariance depicts the exact opposite
relation. However zero covariance means X and Y are not related.

3.7.2 Eigenvectors and eigenvalues

The eigenvectors and eigenvalues of a covariance (or correlation) matrix rep-
resent the “core” of a PCA: The eigenvectors (principal components) deter-
mine the directions of the new feature space, and the eigenvalues determine
their magnitude. In other words, the eigenvalues explain the variance of the
data along the new feature axes.

3.7.3 Dimensionality reduction

PCA is an unsupervised dimensionality reduction technique that focuses on
capturing most of the variance in a datset. Usually mapping the data from
a higher dimensional space to a lower one and thus reducing the dimensions.
This mapping can be very useful since many algorithms in machine learning
suffer from what is called ”curse of dimensionality”. Apart from this issue
the algorithm can grow really complex and gives high latency during training
and inference as well. The features obtained after applying this technique are
independent. On the other hand mapping the data to a new set of feature
has the issue of interpretability. It is not so obvious which features were

30

important during the inference. We have various visualization techniques to
describe these new feature and their relation with the original features of the
dataset.

3.7.4 Explained variance

As PCA is meant to capture variance of the data. We can choose the set of
features based on this parameter. Implementations mostly provide the choice
to either choose the number of principal components we want to keep or the
cumulative percentage of variance that these components must represent. So
choosing the right number of components can be a hit and trial method until
a certain threshold is not satisfied. The following figure shows explained
variance of the principle components for the dataset. As an observation we
can see that the first principle component explains the variance in the dataset
upto 86% where as the second principle component explains variance upto
7% hence both of these component can explain upto 95% of the total variance
which is remarkably good compared considering the dimensionality reduction
from 9D to a 2D space.

Figure 3.11: Principle component analysis (PCA)

31

3.7.5 Visualizing PCA

The visualisation of the principle components provides assistance in under-
standing the contribution of the original features. This alleviates the problem
of interpretability to some extent. The following bar graph shows the relation
between the original features and the principle components. The contribut-
ing features were expected this way since the velocity and current as well as
angular velocity had a wide range of values, these feature play a dominant
role in determining the new axis for mapping the dataset.

Figure 3.12: Principle components

32

3.7.6 Scatter plot

The application of PCA technique, allows a mapping to new feature space
possibly in lower dimensional space. The data set can be visualised by map-
ping the original dataset onto the new axis. Figure below represents the
transformation of some instances on the first two principle components. This
figure is similar to the correlation figure between current and angular velocity
represented in scatter matrix since these two feature played dominating role
in determining the new axis.

Figure 3.13: scatter plot: PC1 vs PC2

33

Chapter 4

Data pre-processing

4.1 Spark dataframe

A DataFrame is a named-column Dataset. It’s similar to a table in a rela-
tional database or a data frame in R/Python in terms of principle, but it has
more advanced optimizations. Structured data files, Hive tables, external
databases, and existing RDDs are all examples of sources for DataFrames.
Scala, Java, Python, and R are supported by the DataFrame API. A Dataset
of Rows represents a DataFrame in Scala and Java. DataFrame is just an-
other name for Dataset[Row] in the Scala API.

4.2 R formula

R formula model Fits a dataset to a R model formula by implementing the
necessary transformations.RFormula generates a features vector column and
a label double or string column. String input columns will be one-hot en-
coded, and numeric columns will be converted to doubles, same like when
formulae are used in R for linear regression. If the label column is a string,
it will be converted to a double using StringIndexer first. The output label
column will be produced from the provided response variable in the formula
if the label column is not present in the DataFrame.

34

4.3 Feature scaling

One of the most important phases in the pre-processing of data prior to
developing a machine learning model is feature scaling. Scaling may make
the difference between a weak and a better machine learning model.

Normalization and Standardization are the most frequent feature scaling
approaches. When we wish to limit our data to a range between two integers,
such as [0,1] or [-1,1], we utilize normalization. Standardization makes our
data unitless by transforming it to have a zero mean and a variance of 1.

4.3.1 Why feature scaling

Machine learning algorithms just look at numbers, and if there is a significant
difference in range, such as a few ranging in the thousands against a few
ranging in the tens, it assumes that greater ranging numbers have some form
of superiority. As a result, these larger numbers begin to play a larger part
in the model’s training.

Another rationale for using feature scaling is that some algorithms, such
as Neural network gradient descent, converge more quicker with it than with-
out it. One more reason is saturation, which may be avoided via scaling, as
in the case of sigmoid activation in Neural Networks.

4.3.2 When to perform feature scaling

Machine learning methods that determine distances between data require
feature scaling. When computing distances, if the feature with a higher value
range is not scaled, the feature with a higher value range takes precedence, as
discussed intuitively in the ”why?” section. The ML method is sensitive to
”relative scales of features,” which occurs when the features’ numeric values
are used instead of their rank. Scaling is a must in many algorithms that
need quicker convergence, such as Neural Networks.

Due to the broad range of values in raw data, objective functions in some
machine learning algorithms do not perform correctly without normalization.
The majority of classifiers, for example, use the distance to compute the
distance between two locations. If one of the characteristics has a large
range of values, it is governed by the distance. As a result, all features’
ranges should be normalized such that each contributes about equally to the
final distance.

35

Even if the requirements outlined above are not met, we may need to
rescale your features if the machine learning algorithm anticipates some scale
or a saturation issue. Another suitable example is a neural network with
saturating activation functions (e.g., sigmoid).

• Algorithms that involve measuring distance are sensitive to magnitudes
and hence should be scaled for all features to weigh in equally.

• When doing Principal Component Analysis, scaling is crucial (PCA).
PCA aims to extract the features with the most volatility, and high
magnitude features have a lot of variance, which skews the PCA to-
wards high magnitude features.

• We can accelerate gradient descent by scaling, Because θ drops fast
on short ranges and slowly on wide ranges, and oscillates inefficiently
down to the optimum when the variables are highly unequal.

4.3.3 When not to perform feature scaling

Rules-based algorithms are those that do not require normalization or scal-
ing. Any monotonic modifications of the variables would have no effect on
them. A monotonic transition is scaling. All tree-based algorithms, such as
CART, Random Forests, and Gradient Boosted Decision Trees, fall within
this group. These methods do not need normalization and rely on rules (se-
ries of inequalities). Algorithms such as Linear Discriminant Analysis (LDA)
and Naive Bayes are built to deal with this and assign weights to the features
appropriately. In these algorithms, doing features scaling may not have much
of an impact.

4.3.4 Scalers available in spark

Min-Max scaler

Min-max scaler scales each feature to a certain range to transform it. This
estimator scales and translates each feature independently such that it falls
inside the training set’s predefined range, such as zero to one. If there are
negative values, this Scaler compresses the data to a range of -1 to 1. The
range can be specified to [0,1], [0,5], or [-1,1]. When the standard deviation
is modest and the distribution is not Gaussian, this Scaler performs well.
Outliers are sensitive to this Scaler.

36

Standard scaler

The Standard Scaler considers that data inside each feature is normally dis-
tributed and scales it so that the distribution is centered around 0 with a
standard deviation of 1. By computing the necessary statistics on the sam-
ples in the training set, each feature is individually centered and scaled. This
is not the ideal Scaler to use if the data is not regularly distributed.

xscaled =
x− µ
σ

(4.1)

Normalizer

The whole feature vector is scaled as though it were of unit length. This
generally entails dividing each component by the vector’s Euclidean length
(L2 Norm). The L1 norm of the feature vector may be more practical in
particular applications (e.g., histogram features). The Unit Vector method,
like Min-Max Scaling, creates values in the range [0,1]. This is quite handy
when working with features that have strict bounds.

x′ =
x

||x||
(4.2)

Robust Scaler

In case of robust scaler median is removed, and the data is scaled according to
the quantile range (defaults to IQR: Interquartile Range). The interquartile
range (IQR) is the distance between the first and third quartiles (25th and
3rd quantiles) (75th quantile). Because this Scaler’s centering and scaling
statistics are based on percentiles, they are unaffected by a few large marginal
outliers. It’s worth noting that the outliers remain in the modified data. A
non-linear modification is necessary if distinct outlier clipping is desired.

This Scaler is resilient against outliers, as the name implies. The mean
and standard deviation of the data will not scale well if our data contains
several outliers.

Max abs scaler

Scales each feature to its absolute maximum value. This estimator scales and
transforms each feature independently so that the training set’s maximum
absolute value for each feature is 1.0. It does not relocate or center the data,

37

Figure 4.1: min-max scaling for the voltage

therefore there is no loss of sparsity. This Scaler acts similarly to Min Max
Scaler on positive-only data and, as a result, suffers from severe outliers.

xscaled =
x− xmin

xmax − xmin
(4.3)

We have chosen to use min max scaler to scale the features of the dataset.
In this way correponding values are with in the range of [0,1]. As discusses
before, many algorithm may show biasness towards an attribute based on
wide range of values, by perform feature scaling we can alleviate this kind of
biasness towards any particular feature.

4.4 Pipeline

In machine learning, it is common to run a sequence of algorithms to process
and learn from data. For example in this case we require to perform the
following tasks on the dataset:

• Apply formula model to the train dataset thus extracting a feature and
label columns.

• Apply feature scaling so that all the values in the feature column are
in the same range.

• Apply the machine learning model to learn from the data.

38

A Pipeline, which consists of a sequence of PipelineStages (Transformers and
Estimators) to be performed in a certain order, is how MLlib expresses such
a process.
A pipeline is defined as a series of steps, each of which is a Transformer or
an Estimator. The input DataFrame is modified as it passes through each
stage, which is done in sequence. The transform() method on the DataFrame
is used for Transformer phases. The fit() method is used to create a Trans-
former (which becomes part of the PipelineModel, or fitted Pipeline), and
the transform() method of that Transformer is used on the DataFrame.A
Pipeline acts as an Estimator. Thus, after a Pipeline’s fit() method runs,
it produces a PipelineModel, which is a Transformer. This PipelineModel is
used at test time in order to make predictions.
The PipelineModel has the same number of stages as the original Pipeline,
but all of the Estimators have been transformed into Transformers. The
data are fed through the fitted pipeline in sequence when the PipelineModel’s
transform() function is performed on a test dataset. The transform() method
of each step modifies the dataset before passing it on to the next. Pipelines
and PipelineModels, as a result, assist in ensuring that training and test data
undergo the same feature processing stages. The following figure shows the
working for the pipeline used:

Figure 4.2: Model pipeline

39

Chapter 5

Machine learning techniques

5.1 Problem definition

Continuing our analysis with the data set extracted from the Simulated model
of the CNC machine. We would like to explore the possible data analytic
techniques that we can apply in the Big data environment. The idea is to ex-
plore the possible options available in spark for the analysis. As for the SOH
machine is concerned, we can say that the variable to be predicted is con-
tinuos in nature following a normal distribution as shown in the exploratory
data analysis phase. In this regard, the problem at hand can be posed as a
regression problem. So we would like to implement and compare the results
of various regression techniques provided by apache spark. We will explore
the following regression techniques:

• Generalised linear regression (Linear regression as a case).

• Decision tree.

• Gradient boosted tree.

• Random forest.

• Survival regression.

40

5.2 Generalised linear regression

GLMs (generalized linear models) are linear model formulations in which the
response variable Yi follows one of the exponential family of distributions.
The Generalized Linear Regression interface in Spark enables for flexible
GLM specification, which may be used for a variety of prediction issues such
as linear regression, Poisson regression, logistic regression, and more. Only
a subset of the exponential family distributions are supported in spark.ml
until now, and they are given below. GLMs need natural exponential family

Figure 5.1: Family of GLM in spark

distributions, which are exponential family distributions that may be repre-
sented in their ”canonical” or ”natural” form. A natural exponential family
distribution has the following form:

fy(y|θ, τ) = h(y, τ)exp(
θy − A(θ)

dτ
) (5.1)

where θ is the parameter of interest and τ is a dispersion parameter. In
a GLM the response variable Yi is assumed to be drawn from a natural
exponential family distribution:

Yi ≈ f(.|θi, τ) (5.2)

θi can be related to the response variable µ by:

µi = A′(θi) (5.3)

41

The shape of the chosen distribution is used to define A′(θi). GLMs addi-
tionally enable you to provide a link function, which describes the connection
between the response variable µi predicted value and the so-called linear pre-
dictor η:

g(µi) = ηi = xTi .β (5.4)

A = g−1, which offers a simpler connection between the parameter of interest
and the linear predictor, is a common choice for the link function. The link
function g(µ) is considered to be the ”canonical” link function in this case.

θi = A′−1(µi) = g(g−1(η)i)) = ηi (5.5)

A GLM finds the regression coefficients β which maximize the likelihood
function described as follwos:

maxβL(θ|y,X) =
N∏
i=1

h(yi, τ)exp(
yiθi − A(θi)

dτ
) (5.6)

and the parameter of interest θi is related to the regression coefficients β by:

θi = A′(− 1)(g(− 1)(xi, β) (5.7)

Spark’s generalized linear regression interface also provides summary statis-
tics for diagnosing the fit of GLM models, including residuals, p-values, de-
viances, the Akaike information criterion, and others.

Note

Spark’s Generalized Linear Regression interface currently supports up to 4096
features and will throw an exception if this limit is exceeded.However Models
with a larger number of features may still be trained using the Linear Re-
gression and Logistic Regression estimators for linear and logistic regression.
In our case, the feature are within the limit and hence we can confidently
apply the Generalized Linear Regression Model

5.2.1 Linear regression

We may study Linear regression as a specific case of generalized linear regres-
sion where the distribution of the output follows a Gaussian distribution (i.
a bell shaped curve). We can define the linear regression problem as follows:

42

A linear model is one in which the input variables (x) and the single
output variable (y) are assumed to have a linear relationship (y). That y
can be determined using a linear combination of the input variables is more
detailed (x).

The method is known as simple linear regression when there is just one
input variable (x). When there are several input variables, the technique is
referred to as multiple linear regression in statistics literature.

To construct or train the linear regression equation using data, many
strategies may be utilized, the most popular of which is termed Ordinary
Least Squares. Ordinary Least Squares Linear Regression, or simply Least
Squares Regression, is a term used to describe a model created in this manner.

5.2.2 Model representation

The representation is a linear equation that combines a collection of input
values (x), with the solution being the projected output for that set of input
values (y). As a result, both the input (x) and output (y) values are numeric.

Each input value or column is assigned one scale factor, referred to as a
coefficient and denoted by the capital Greek letter Beta in the linear equation
(β). One more coefficient is added, which gives the line an extra degree of
freedom (for example, going up and down on a two-dimensional plot) and is
known as the intercept or bias coefficient.

In a simple regression issue (with only one x and one y), the model would
have the following form:

Y = β0 + β1.X (5.8)

When there are several inputs (x) in higher dimensions, the line is termed
a plane or a hyper-plane. As a result, the representation is the equation’s
form as well as the coefficients’ precise values (e.g. B0 and B1 in the above
example).

The complexity of a regression model, such as linear regression, is fre-
quently discussed. This refers to the number of coefficients used in the model.

When a coefficient hits zero, it essentially removes the input variable’s
impact on the model and, as a result, the model’s prediction (0 * x = 0).This
is important to consider when discussing regularization strategies, which alter
the learning process to minimize the complexity of regression models by
exerting pressure on the absolute magnitude of the coefficients and pushing
some to zero.

43

Figure 5.2: Linear Regression

5.2.3 Methods for learning linear regression model

Linear regression technique has been around for more than a century and
therefor the technique has been well studied. Hence there are many methods
for learning the model. We shall discuss them in this section:

Simple linear regression

When using basic linear regression with a single input, statistics may be used
to estimate the coefficients. This necessitates the computation of statistical
features such as means, standard deviations, correlations, and covariance
from the data. To traverse and calculate statistics, all of the data must be
available. Given more attributes present in our dataset, we need a more
sophisticated technique for the analysis.

44

Ordinary least squares

When there are several inputs, we may utilize Ordinary Least Squares to
estimate the coefficient values.

The sum of the squared residuals is minimized using the Ordinary Least
Squares approach. This implies that given a regression line across the data,
we square the distance between each data point and the regression line, then
add all of the squared errors together. Ordinary least squares attempts to
minimize this amount.

This method considers the data as a matrix and estimates the best coef-
ficient values using linear algebra techniques. It implies access to all of the
data and sufficient RAM to fit the data and conduct matrix operations.

Gradient descent

When there are one or more inputs, we may utilize an iterative method to
optimize the coefficient values by reducing the model’s error on the training
data.

This method is known as gradient descent and it operates by starting with
random values for each coefficient. For each pair of input and output values,
the total of squared errors is determined. As a scale factor, a learning rate is
utilized, and the coefficients are updated in the direction of minimizing the
error. The procedure is continued until the sum squared error is reduced to a
minimum or no more improvement is achievable. It allows choosing a learning
rate (alpha) parameter that sets the magnitude of the improvement step to
take on each iteration of the procedure while utilizing this approach.Because
it is very simple to grasp, a linear regression model is frequently used to
apply gradient descent. It’s handy in practice when having a large dataset,
either in terms of the number of rows or the number of columns, that won’t
fit in memory.

Regularization

Regularization methods are extensions of the linear model training process.
These aim to lower the model’s complexity while minimizing the model’s sum
of squared errors on the training data (using ordinary least squares) (like the
number or absolute size of the sum of all coefficients in the model).

45

popular examples of regularization procedures for linear regression are:

• Lasso regression: where the Ordinary Least Squares method is ad-
justed to reduce the absolute total of the coefficients as well (called L1
regularization).

• Ridge regression: Ordinary Least Squares is modified to minimize
the squared absolute sum of the coefficients in Ridge Regression (called
L2 regularization).

5.2.4 Assumption on data for applying linear regres-
sion

To effectively apply this techniques we need to make sure thata the following
conditions are evaluated during the preliminary analysis:

• Linearity The relation between the input and output is assumed to
be linear in linear regression. Satisfying this condition may require
performing logrithmic transformation to the non linear features of the
dataset.

• Noise removal The input features and output variables are assumed
to be noise-free in linear regression. This assumption can be satisfied
by eliminating outliers. Visualizing the features using a boxplot help
spotting the outliers as discussed in the chapter before.

• Collinearity The algorithm tends to overfit on data if the features in-
volved are dependent. This phenomina can be spotted using heatmaps
or scatter plots. The feature collinearity can be eliminated by feature
elimination or transformations such as Principle Component Analysis
(PCA).

• Gaussian distribution This technique is more effective if the data
distribution follows gaussian distribution.

• Data scaling For better performance, Data scaling is required so that
all the feaures are in the same range of values.

46

5.3 Decision tree

Decision tree is a simple machine learning algorithm. The objective is to
learn basic decision rules from data characteristics to construct a model that
predicts the value of a target variable. Decision Tree can be used both in
classification and regression problem

5.3.1 Important terminology

Before diving into details, we would like to remind some basic terminology
used when describing a decision tree.

• Root Node: Points to the entire population or sample and further
gets divided into two or more homogeneous sets down the tree.

• Splitting: The process of dividing a node into two or more sub-nodes.
Usually we have to follow some splitting criteria that we will discuss
later.

• Decision node: A node that provides link to further sub nodes.

• Leaf/Terminal node: Node at the end of the tree and has can be
split anymore.

• Pruning: The process of eliminating some nodes or branching.

• Branch/Sub-Tree A subsection of the tree is referred to as a branch
or sub tree.

• Parent and child node: A node, which is divided into sub-nodes
is called parent node of sub-nodes whereas sub-nodes are the child of
parent node.

5.3.2 Working principle

A decision tree generates an estimate by asking the data a set of questions,
each of which narrows the range of potential answers until the model is
confident enough to produce a single forecast. The model determines the

47

Figure 5.3: Decisioin tree: example

sequence of the questions as well as their substance. Furthermore, all of the
questions are True/False in nature.

This is a bit difficult to comprehend since it is not how humans think
naturally, and the simplest way to demonstrate this difference is to design a
true decision tree from scratch. x1 and x2 are two aspects in the preceding
issue that allow us to generate predictions for the target variable y by asking
True/False questions.
There are different branches for each True and False response. We get to
a forecast regardless of the answers to the questions (leaf node). Begin at
the top, at the root node, and work your way down the tree, answering the
questions as you go. As a result, any pair of X1 and X2 can be used.

We should highlight one feature of the decision tree: how it learns (how
the ’questions’ are produced and how the thresholds are set). In the training
phase of model construction, a decision tree learns to map data to outputs as
a supervised machine learning model. During training, all past data relevant
to the issue domain and the real value we want the model to learn to predict
is fed into the model. Any associations between the data and the target
variable are learned by the model.

Following the training phase, the decision tree generates a tree similar to
the one shown in the figure below, determining the best questions to ask as
well as the sequence in which they should be asked in order to create the most

48

accurate predictions possible. When we want to create a forecast, we should
provide the model the same data format in order to produce a prediction.
The forecast will be a guess based on the train data on which it was trained.

Figure 5.4: Decisioin tree: example(2)

5.3.3 Splitting criteria

The major question here is : How is the splitting decided for a decision
tree. In fact the decision to make tactical splits has a significant impact
on a tree’s accuracy. The decision criteria for classification and regression
trees are different. The mean squared error (MSE) is commonly used in
decision trees regression to determine if a node should be divided into two
or more sub-nodes. If we’re making a binary tree, the algorithm will first
choose a value and divide the data into two subsets. It will compute the MSE
independently for each subgroup. The tree selects the value that produces
the lowest MSE value. Let’s take a closer look at how Splitting for Decision
tree regressor is decided. The first stage in building a tree is to make a binary
decision. How are we going to go about doing it?

49

• We need to choose a variable and a value to divide on such that the
two groups are as dissimilar as feasible.

• for every variable, see if the value of the split for that variable is better.

• How can you tell whether it’s better? (mse*num samples) take the
weighted average of two new nodes.

So to summarize we can say that:

• The weighted average of the mean squared errors of the two groups
that make up a split is a single value that shows how good a split is.

• A method for determining the best split is to test each variable and
every potential value of that variable to determine which variable and
value produces the best split.

At each step, choice of the best predictor to split is made according to some
criteria. These measures represent the purity of a split. The most common
ones are:

• Gini index: 1−
∑n

i=1(Pi)
2

• Cross Entropy: −
∑n

i=1 Pilog2(Pi)

Where Pi denotes the probability of an element being classified for a
distinct class. Here is a visual example of gini.

5.3.4 Advantages

• Decision tree may be used to solve problems in both classification and
regression.

• Simple to comprehend, interpret, and visualize When it comes to data
exploration. One of the quickest ways to determine the most important
factors and relationships between two or more variables is to use a
decision tree for instance feature importance.

• We may use decision trees to develop additional variables / features
that have a higher predictive potential for the target variable. This
algorithm may also be useful during the data investigation stage.

50

Figure 5.5: Splitting criteria

• Data preparation isn’t as time-consuming as it formerly was: It is rel-
atively unaffected by outliers and missing values.

• Decision tree can handle both numerical and categorical variables, thus
data type isn’t an issue.

5.3.5 Disadvantages

• Decision-tree learners can create over-complex trees that do not gener-
alise the data well thus creating the problem of overfitting.

• Decision tree learners create biased trees if some classes dominate. It
is therefore recommended to balance the dataset prior to fitting with
the decision tree.

• Decision-tree learning algorithms are based on heuristics such as the
greedy method where locally optimal decisions are made at each node.
Such algorithms cannot guarantee to return the globally optimal deci-
sion tree.

51

• Small differences in the data might result in an entirely different tree
being produced. This is known as variance, and it may be reduced
using techniques such as bagging and boosting.

5.3.6 Feature importance

A very useful aspect of decision tree is the interpretability of this algorithm.
The implementation of this algorithm allows us to seek what is called the
feature importance. In which case, the decrease in node impurity is weighted
by the likelihood of accessing that node to compute feature importance. The
number of samples that reach the node divided by the total number of sam-
ples is the node probability. The more significant the characteristic, the
more is the importance of the feature. The following figure shows the feature
importance for the variables used in the given dataset.

Figure 5.6: Feature importance

The figure reveals that the variable beta is the most significant feature
for determining the usurage while F2 and voltage are important as well.
This was as aspected by looking at the correlations fro the heatmap in the
preprocessing phase.

52

5.4 Random forest

Random forest classifier belong to the ensemble class. Several decision trees
are trained, each of them being trained on a different set of bootstrapped
training data. At each split, only m predictors participate (usually

√
p).

This splitting results in uncorrelated trees and hence obtaining a more robust
model. Spark supports random forests for binary and multiclass classification
and for regression, using both continuous and categorical features. Spark
implements random forests using the existing decision tree implementation.

5.5 Ensemble learning

Ensemble learning is the technique of combining different models that have
been trained on the same data and average their findings to provide a more
powerful regression/classification result. The goal of ensemble learning is
for the mistakes of each model (in this example, the decision tree) to be
independent and varied from tree to tree.

53

5.5.1 Bootstrap aggregation

The Random Forest algorithm uses Bootstrap aggregating, also called bag-
ging, as its ensembling method. It gains accuracy and combats overfitting
by not only averaging the models but also trying to create models that are
as uncorrelated as possible by giving them different training data sets. It
creates the data-sets using sampling with replacement a straightforward but
sufficient data sampling technique. Sampling with replacement means that
some data-points can be picked multiple times.To further decrease the cor-
relation between individual trees, each decision tree is trained on different
randomly selected features. The number of features used for each individual
tree is a hyperparameter, often called max features or n features.

So each decision tree in a random forest is not only trained on a different
data-set (thanks to bagging) but also on different features/columns. After
the individual decision trees are trained, they are combined together. For
classification, max voting is used. That means the class, which most trees
have as the output, will be the Random Forest’s output. For regression, the
outputs of the Decision Trees are averaged.

5.5.2 Hyper parameters

Random forests have several hyper parameters and it is important to under-
stand their role in order to tune the model.

• numTrees The number of trees in the forest.

– Increasing the number of trees will decrease the variance in pre-
dictions, improving the model’s test-time accuracy.

– Training time increases roughly linearly in the number of trees.

• maxDepth: The maximum depth of a tree.

– Increasing the depth makes the model more expressive and pow-
erful. However, deep trees take longer to train and are also more
prone to overfitting.

– In general, it is acceptable to train deeper trees when using random
forests than when using a single decision tree. One tree is more
likely to overfit than a random forest (because of the variance
reduction from averaging multiple trees in the forest).

54

• subsamplingRate: This parameter specifies the size of the dataset
used for training each tree in the forest, as a fraction of the size of the
original dataset. The default (1.0) is recommended, but decreasing this
fraction can speed up training.

• featureSubsetStrategy:At each tree node, the number of features
to utilize as candidates for splitting. The number is expressed as a
percentage or as a function of the total number of features. This value
can be reduced to speed up training, but if it is too low, it can have an
influence on performance.

5.6 Gradient boosted trees

Gradient boosted trees (GBTs) are decision tree ensembles. GBTs train deci-
sion trees iteratively in order to minimize a loss function. GBTs, like decision
trees, handle categorical features, can handle multiclass classification as well
as regression, don’t need feature scaling, and can capture non-linearities and
feature interactions.

GBTs are supported by spark for binary classification and regression, and
they may use both continuous and categorical information. The decision tree
implementation in spark is used to implement GBTs.

Figure 5.7: Gradient Boosting Tree

55

5.6.1 Algorithm working

Gradient boosting is a technique for repeatedly training a series of decision
trees. The method utilizes the current ensemble to forecast the label of each
training instance on each iteration, and then compares the prediction to the
real label. The dataset has been relabeled to place a greater emphasis on
training cases with poor predictions. As a result, the decision tree will assist
in correcting earlier errors in the following iteration.

5.6.2 Loss functions

A loss function defines the specific technique for re-labeling instances. GBTs
lower the loss function on the training data with each iteration. The following
table shows the losses that can be used for training gradient boosted trees.

Figure 5.8: Loss function

5.6.3 Validation while training

Validation during training is beneficial in preventing overfitting. To make
advantage of this option, the method runWithValidation has been supplied.
It accepts two RDDs as parameters, the first of which is the training dataset
and the second of which is the validation dataset.

When the improvement in the validation error is less than a specific tol-
erance, the training is discontinued (supplied by the validationTol argument
in BoostingStrategy). In practice, the validation error lowers at first, then
rises afterwards.If the validation error does not change monotonically, the

56

user should specify a big negative tolerance and check the validation curve
using evaluateEachIteration (which returns the error or loss per iteration) to
fine-tune the number of iterations.

5.7 Gradient boosted trees vs. Random forests

Both Gradient boosted trees (GBTs) and Random Forests are algorithms for
learning ensembles of trees, but the training processes are different. There
are several practical trade-offs:

• GBTs train one tree at a time, taking longer than random forests
to complete. Random Forests may simultaneously train several trees.
GBTs, on the other hand, generally allow for the use of smaller (thin-
ner) trees than Random Forests, and training smaller trees takes less
time.

• Over fitting is less likely with Random Forests. Over fitting is less likely
when more trees are trained in a Random Forest, but it is more likely
when more trees are trained with GBTs. (In statistical terms, Random
Forests use more trees to minimize variance, whereas GBTs use more
trees to reduce bias.)

• Because performance improves monotonically with the number of trees,
Random Forests may be easier to adjust (whereas performance can start
to decrease for GBTs if the number of trees grows too large).

5.8 Survival regression

The accelerated failure time (AFT) model is a censored data parametric
survival regression model. It’s also known as a log-linear model for survival
analysis since it presents a model for the log of survival time. Because each in-
stance contributes to the objective function individually, the AFT paradigm
is easy to parallelize.
Given the values of the covariates x‘, for random lifetime ti of subjects i = 1,
. . . , n, with possible right-censoring, the likelihood function under the AFT
model is given as:

L(β, σ) =
n∏
i=1

[
1

σ
f0(

logti − x′β
σ

)]δiS0(
logti − x′β

σ
)1−δi (5.9)

57

Where δi is the indicator of the event has occurred i.e. uncensored or not.
Using εi = logti−x′β

σ
, the log-likelihood assumes the form:

l(β, σ) =
n∑
i=1

[−δilogσ + δilogfo(εi) + (δi)logS0(εi)] (5.10)

Where S0(εi) is the baseline survivor function and f0(εi) is the corresponding
density function. The Weibull distribution of survival time is the basis for the
most widely used AFT model. The S0(ε) functor corresponds to the extreme
value distribution for the log of the lifetime, and the Weibull distribution
for lifetime corresponds to the extreme value distribution for the log of the
lifetime:

S0(εi) = exp(−eεi) (5.11)

and the f0(εi) function is:

f0(εi) = eεiexp(−eεi) (5.12)

The log-likelihood function for AFT model with a Weibull distribution of
lifetime is given as:

l(β, σ) = −
n∑
i=1

[δilogσ − δiεi + eεi] (5.13)

Due to minimizing the negative log-likelihood equivalent to maximum a pos-
teriori probability, the loss function we use to optimize is −l(β, σ). The
gradient functions for β and logσ respectively are:

∂(−l)
∂β

=
n∑
i=1

[δi − eεi]
xi
σ

(5.14)

∂(−l)
∂(logσ)

=
n∑
i=1

[δi + (δi − eεi)εi] (5.15)

The AFT model is a convex optimization problem, in which the goal is to find
the minimizer of a convex function −l(β, σ) that depends on the coefficients
vector β and the log of scale parameter logσ. L-BFGS is the optimization
method that underpins the implementation. The implementation is identical
to the result of R’s survreg survival function. The Weibull distribution of
survival time is the basis for the most widely used AFT model.

58

Chapter 6

Model selection

The process of selecting a set of ideal hyperparameters for a learning al-
gorithm is known as hyperparameter tuning. A hyperparameter is a model
argument whose value is determined prior to the start of the learning process.
Hyperparameter tuning is the cornerstone to machine learning algorithms.

6.1 Parametric grid search

As we said before, model selection, or using data to determine the optimum
model or parameters for a particular job, is an essential issue in machine
learning. Tuning is another term for this process as well. Individual Es-
timators, such as LogisticRegression, may be fine-tuned, as can complete
Pipelines that comprise numerous algorithms, featurization, and other pro-
cesses. Instead of tweaking each element in the Pipeline individually, users
may tune the entire Pipeline at once. This selection can be performed by
performing an exhaustive search over the parameters provided. This way of
trying each combination for the best measure is known as grid search. The
following figure depicts the grid-search space:

Spark supports model selection using tools such as CrossValidator and
TrainValidationSplit. These tools require the following :

• Estimator: algorithm or Pipeline to tune Set of ParamMaps (or pa-
rameter grid).

• Evaluator: metric to measure how well a fitted Model does on held-out
test data.

59

Figure 6.1: Grid-search space

In general these model selection tools work as follows:

• Split the data into training and test sets.

• For each tuple (training,test) they fit the Estimator using parameters
provided in the in the parameter grid iteratively, get the fitted Model,
and evaluate the Model’s performance using the Evaluator.

• Model is selected that is produced by the best-performing set of pa-
rameters.

The evaluator can be either for regression problems, binary or multi-
class classification problem or even for ranking problems. The default metric
used to choose the best parameter grid can be overridden by the customized
evaluation metric in each of the evaluators.

Working in a big data environment allows parallelism, In spark, param-
eter evaluation can be done in parallel by setting parallelism with a value
of 2 or more (a value of 1 will be serial) before running model selection with
eith CrossValidator or TrainValidationSplit.In order to maximize parallelism
without exceeding cluster resources, the amount of parallelism should be
carefully set, and greater values may not necessarily result in enhanced per-
formance. In general, a number of up to ten should suffice for most clusters.

60

6.2 Cross validation

CrossValidator starts by dividing the dataset into folds, each of which serves
as a distinct training and test dataset. CrossValidator, for example, will
construct three (training, test) dataset pairings with k=3 folds, each using
2/3 of the data for training and 1/3 for testing. CrossValidator computes the
average evaluation metric for the 3 Models built by fitting the Estimator on
the 3 separate (training, test) dataset pairings to assess a given paramMap.

CrossValidator ultimately re-fits the Estimator using the best ParamMap
and the complete dataset after determining the best ParamMap.

6.3 Train validation split

In addition to CrossValidator, Spark also provides TrainValidationSplit for
hyper-parameter tuning. In contrast to CrossValidator, TrainValidationSplit
only examines each combination of parameters once, rather than k times. As
a result, it is less costly, but it will not generate as trustworthy results if the
training dataset is not large enough.

TrainValidationSplit, unlike CrossValidator, provides a single (training,
test) dataset pair. The trainRatio parameter divides the dataset into these
two sections. TrainValidationSplit, for example, with trainRatio=0.75, will
create a training and test dataset pair with 75% of the data utilized for
training and 25% for validation.

TrainValidationSplit, like CrossValidator, fits the Estimator using the
best ParamMap and the full dataset.

61

Chapter 7

Evaluation metrics

The prediction error is used to define model performance in regression issues.
The discrepancy between the actual and expected values is characterized as
the prediction error, often known as residuals.The regression model tries
to fit a line that produces the smallest difference between predicted and
actual(measured) values. When determining the quality of a model, residuals
are crucial. You may look at residuals to see how big they are and if they
create a pattern.

• The model predicts exactly when all of the residuals are zero. The
model becomes less accurate as the residuals get further away from
zero.

• When residuals contain patterns, it means the model is qualitatively
incorrect, since it fails to explain some of the data’s features.

Residual = actual value — predicted value
error(e) = y|ŷ

7.1 Mean absolute error (MAE)

It is the average of the absolute differences between the actual value and the
model’s predicted value.

MAE =
1

N

N∑
n=1

|yi − ŷi| (7.1)

62

where
N = total number of instances in the dataset
yi = actual value
ŷi = predicted value

The mean absolute error (MAE) is measured in the same units as the
original data, and thus can only be compared with models that have the
same error units.The larger the MAE, the more serious the mistake. It can
withstand outliers. As a result, MAE can cope with outliers by using absolute
numbers. Because a large error does not overwhelm a large number of little
mistakes, the output gives us a fairly impartial picture of how the model is
working. As a result, it fails to penalize the more serious errors.Because MAE
is not differentiable, we must use differentiable optimizers such as gradient
descent.

7.2 Mean squared error(MSE)

It is the average of the squared differences between the actual and the pre-
dicted values.

MSE =
1

N

N∑
n=1

(yi − ŷi)2 (7.2)

N = total number of instances in the dataset
yi = actual value
ŷi = predicted value

To eliminate the sign of each mistake value and penalise excessive errors,
MSE employs the square operation. Because the influence of greater errors
is more evident when we take the square of the error, the model may now
focus more on the larger faults.On the other hand, if all of the mistakes are
minor, or even less than one, we may overestimate the model’s shortcomings.

63

7.3 Coefficient of determination (R2)

The R-squared value indicates how much the variation of one variable ex-
plains the variance of the other. In other words, it calculates the fraction of
the dependent variable’s variation that can be explained by the independent
variable. The R squared metric is a widely used statistic for determining
model correctness. It indicates how near the data points are to the regres-
sion algorithm’s fitted line. A better fit is indicated by a higher R squared
value. This aids us in determining the link between the independent and
dependent variables. It is the ratio of the sum of squares and the total sum
of squares:

R2 = 1− SSE

SST
(7.3)

where SSE is the sum of the square of the difference between the actual value
and the predicted value:

SSE =
m∑
n=1

(yi − ŷi)2 (7.4)

and SST is the total sum of the square of the difference between the actual
value and the mean of the actual value:

SSE =
m∑
n=1

(yi − ȳi)2 (7.5)

where yi is the observed target value, ŷi is the predicted value, and ȳi is the
mean value, m represents the total number of observations.

Adding more features to the dataset, the R2 score begins to rise or remain
constant, but it never falls, since it thinks that as more data is added, the
variance of the data rises. The issue is that when we add an unimportant
feature to the dataset, R2 occasionally starts to increase, which is wrong.

7.4 Explained variance

The explained variance score explains the dispersion of errors of a given
dataset, and the formula is written as follows:

explainedvariance(y, ŷ) = 1− V ar(y − ŷ)

V ar(y)
(7.6)

64

where V ar(y − (̂y)) and V ar(y) are the variance of prediction errors and
actual values respectively. Scores close to 1.0 are highly desired, indicating
better squares of standard deviations of errors.

7.4.1 Summary and results

The following table summarizes evaluations metrics discussed in this chapter:

Figure 7.1: Evaluation metrics

The following table shows the results, applying techniques mentioned in chap-
ter 5. We can observe that linear regression model has the best performance
overall:

Figure 7.2: Summary of ML-model

65

Chapter 8

Spark streaming with kafka

We have so far performed data analysis as well as applied machines learning
techniques on the data evaluating these analytical algorithms using various
evaluation techniques. Now the question comes to the deployment of these
application is the real time industrial situation. We would like to demonstrate
how such machine learning model can be applied to a CNC machine operating
in the industry to perform predictive maintenance. The following figure
shows the pipeline of the project we would like to implement.In the later
sections lets explain each bloch separately.

Figure 8.1: Spark Streaming with kafka

66

8.1 Apache kafka

Apache kafka is a distributed publish-subscribe messaging platform that has
been designed specifically to handle real-time streaming data for distributed
streaming, pipelining, and replay of data feeds for rapid, scalable processes.
This framework was designed by linkdin and later open sourced.

Kafka is a broker-based system that works by storing data streams as
records in a cluster of computers. By storing streams of records (messages)
across several server instances in topics, Kafka servers may span different data
centers and provide data permanence. A topic stores records or messages as
a series of tuples, a sequence of immutable Python objects, which consist of
a key, a value, and a timestamp.

Figure 8.2: Kafka: Overview

8.1.1 Kafka use case

Apache kafka is one of the most popular open source messaging systems
available today. This is owing to the architectural design pattern’s improved
logging mechanism for distributed systems.Being purpose-built for real-time
log streaming, Kafka is ideally suited for applications that need:

• Data communication between separate components that is reliable

• The flexibility to divide messaging tasks as application needs vary.

• For data processing, real-time streaming is available.

67

• Data/message replay is natively supported.

8.1.2 Terminology

Kafka topic

In publish/subscribe communications, a topic is a generally ubiquitous idea.
A topic is an addressable abstraction used to demonstrate interest in a spe-
cific data stream (series of records/messages) in Apache Kafka and other
messaging platforms. A topic is an abstraction layer that the application
uses to demonstrate interest in a certain stream of data. It may be published
and subscribed to.

Figure 8.3: Kafka Topics

8.1.3 Partition

Topics in Apache Kafka may be separated into partitions, which are a series
of order queues. A sequential commit log is formed by repeatedly appending
these segments. Each record/message in the Kafka system is given a sequen-
tial ID called an offset, which is used to identify the message or record in a
certain partition.

68

Figure 8.4: Partitions

Kafka producer

The idea of a producer in Apache Kafka is similar to that of other messag-
ing systems. A data producer (records/messages) specifies the subject (data
stream) on which a particular record/message should be published. Because
partitions are used to increase scalability, a producer can choose which parti-
tion a specific record/message is published to. Producers are not required to
identify a partition, and by doing so, load balancing between topic divisions
can be performed in a round-robin fashion.

Figure 8.5: Kafka producer: Sending CNC Ddata

69

Kafka consumer

Consumers are the entities that handle records/messages in Kafka, as they
are in most messaging systems. Consumers can be set up to work inde-
pendently on their own tasks or collaboratively on a particular workload
with other consumers (load balancing). Consumers manage their task pro-
cessing based on the consumer group they belong to. Consumers can be
dispersed inside a single process, across many processes, and even across
multiple systems by using a consumer group name. Consumers can use con-
sumer group names to load balance record/message consumption across the
consumer set (multiple consumers with the same consumer group name), or
process each record/message individually (multiple consumers with unique
consumer group names), where each consumer subscribed to a topic/partition
receives the message for processing.

Figure 8.6: Kafka consumer: alert

70

8.2 Apache zookeeper

Kafka uses Zookeeper to store metadata about brokers, topics and partitions.
Thus we need to have some information about Apache ZooKeeper which is
yet another fascinating service provided by Apache foundation. Zookeeper is
an effort to develop and maintain an open-source server which enables highly
reliable distributed coordination. ZooKeeper is a centralized service for main-
taining configuration information, naming, providing distributed synchro-
nization, and providing group services. All of these kinds of services are used
in some form or another by distributed applications.

Figure 8.7: Zookeeper as a service

71

8.3 Spark streaming

Spark Streaming is an extension of the core Spark API that allows for scal-
able, high-throughput, and fault-tolerant live data stream processing. Data
may be ingested from a variety of sources, including Kafka, Kinesis, and
TCP connections, and processed using complicated algorithms described us-
ing high-level functions like map, reduce, join, and window. Finally, data
may be written to file systems, databases, and live dashboards.

Figure 8.8: Spark streaming: overview

The internal working of the streaming API is as follows.Spark Streaming
takes live incoming data streams and separates them into batches, which
are then processed by the Spark engine to provide the final batch of results.
Spark Streaming provides a high-level abstraction called discretized stream
or DStream, which represents a continuous stream of data. DStreams can
be produced by performing high-level operations on existing DStreams or by
using input data streams from sources like Kafka and Kinesis. A DStream
is internally represented as a succession of RDDs. Spark Streaming can be
written in python, java or in scala with a few exceptions of APIs that are
either different or not available in Python.

Figure 8.9: Spark Streaming in action

72

Chapter 9

Conclusion

This section summarizes the thesis work in a concise manner. In the begin-
ning we have discussed maintenance, explaining various types of it with their
pros and cons. However, focus of the thesis remained predictive maintenance
which allows to predict the remaining useful life of a component during its
life cycle. We mentioned the benefits of using predictive maintenance there
by stressing the fact that such methods can help reduce unanticipated break-
down and maximize asset up time.

Another dimension of the thesis is to apply prediction using cloud based
model which is in contrast with edge computing. The choice was made
following the previous work done at brain technologies srl leveraging big
data architecture to obtain accurate and generalized prediction models. For
this purpose we explained cloud computing and its significance. Basically it
is based on pay-as-you-go paradigm, where computing services are provided
based on business needs. Moreover we explained the responsibility model
(i.e IaaS, PaaS, SaaS) which shows how various layers of cloud architecture
can be customised based on service model being used. That means the
spectrum of responsibility shared between cloud provider and business user
vary among service models ranging from hardware resource management to
network security and application development.

In chapter 2, we discussed the CNC model in great detail. Starting from
its mechanical and electrical parameters, Features such as linear and ro-
tational velocity of the shaft, horizontal and normal forces acting on the
machine, torque, supply voltage, armature current, inductance, resistance,
inertia, friction co-efficient beta were considered for the mathematical model.
We mentioned the equations of the plant model, However the derivation of

73

these equations is out of scope of this thesis and is based on the work pre-
viously done on the same project. We also depicted the different features in
graphical form which helps visualize various trends in those features. More-
over we discusses the significance of contact logic and β that depends on
factors related to temperature, physical material etc.

Chapter 3 is devoted to exploratory data analysis which is considered to
be the basic step in any data analytics pipeline. Understanding the type of
data is crucially important for the choice of algorithm in the next step. On
top of that, we need to look for any missing values or anomalies in the dataset.
We covered that in great detail in that chapter. Starting from feature de-
scription, choice of machine parameters, we went on to depict these features
using various visualization techniques. The techniques such as heat map,
scatter plots, box plot are very useful for data analysis. They help spot fea-
ture correlation, data outliers etc. Another important technique introduced
in that chapter is PCA which is very useful for dimensionality reduction.
However the purpose of applying PCA was to understand the variance of the
data and the features that contribute the most to it. This approach provides
an additional support in understanding feature importance.

Next step in the knowledge discovery pipeline is to perform data pre-
processing. This phase is further divided into different techniques aimed
at preparing the data for training predictive models. As we developed the
pipeline in spark based setting. these steps included creating spark data
frame from extracted data sets, applying feature scaling using transformer
model which can also be thought of as an automation process to join all steps
in the knowledge discovery phase. Moreover we discussed what actually fea-
ture scaling is, different types of feature scaling such as min-max, standard,
max-abs and robust scaler etc. Moreover we explained when and when not
to perform this step for optimal results in the training phase.

Chapter 5 covers machine learning techniques applied to the data. Con-
sidering SOH estimation as a continuous variable, we applied various re-
gression techniques provided by the pyspark framework. Techniques such as
linear regression, decision tree, random forest and survival regression have
been discussed in detail, providing working principles, pros and cons etc.
Relevant concepts are explained using diagrams to help understand them in
an easy manner.

74

Next chapter discusses techniques to train the model in an optimal way.
Using techniques such as cross validation and train-validation splitting over
fitting of the model can be avoided. Furthermore we discussed grid search
which is an exhaustive way of finding best parameters of the model. Grid
search is useful for a small number of selection parameters however for al-
gorithms requiring more time fro training, other heuristics could be applied
for the estimation of optimal parameters. Afterwords we presented evalua-
tion metrics like mean absolute error (MAE), mean standard error (MSE)
etc. We demonstrated the performance of each trained model on the test set
using these metrics.

In chapter 8, we demonstrated how a pre-trained machine learning model
can be applied to real time data. The pipeline consists of a broker, in this case
its kafka. The broker is a distributed publish subscribe messaging platform.
Each kafka topic stores consists of a key, value and a timestamp. On one side,
kafka producer publishes a record on a data streams. On the other end is the
kafka consumer that receives data streams from the subscribed topics only.
Note that a consumer can also publish data to another topic at the same
time. In the pipeline the stream of data is fed to the machine learning model
and evaluated. Once The predicted value (RUL) passes a certain threshold,
Alarm is raised via published message on a kafka topic. For technical details,
docker is used to run containerized applications, Kafka runs as a container
applications and provides pub/sub services for data streaming. Zookeeper
on the other hand stores metadata about kafka topics and partitions etc.

Finally relevant links to the thesis work are mentioned as references. This
includes softwares used to build the pipeline such as spark, kafka, zookeeper
java jdk etc.

75

References

• Spark documentation for machine learning:
https://spark.apache.org/docs/latest/ml-guide.html

• Predictive maintenance documentation:
https://en.wikipedia.org/wiki/Predictive maintenance

• Predictive maintenance for turbo fan engine degradation:
https://github.com/sabderra/predictive-maintenance-spark

• Maven repository containing jar files for kafka integration:
https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-
kafka-0-10

• Java jdk download:
https://www.oracle.com/it/java/technologies/javase/jdk11-archive-downloads.html

• Docker download:
https://www.docker.com/products/docker-desktop/

• Spark download:
https://spark.apache.org/downloads.html

• Zooker and Kafka image:
https://hub.docker.com/

• Relevent for debugging code:
https://stackoverflow.com/

76

