
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

Super-Twisting Sliding Mode Control
and Observation for a mobile ground

robot

Supervisors
Prof. Elisa Capello
Iris David Du Mutel
Enza Incoronata Trombetta

Candidate
Luca Orsini

Academic Year 2022-2023

Abstract

An Observer and a Controller based on the Sliding Mode theory have been developed for
a mobile ground robot. After an introduction about the main control theory concepts,
including classical control techniques such as Proportional Integral Derivative (PID),
additional considerations about the utility and use of observers in practical cases are
provided. The theory of sliding mode is presented and analyzed in terms of performance,
stability and convergence. The mathematical stability of the control and observation al-
gorithm is studied making use of Lyapunov theory. The Observer and Controller design
is based on the kinematic model of the unicycle. Matlab and Simulink have been used
as simulation environment in which a pre-existing vehicle model is present. An initial
tuning in simulation has been performed for both the navigation and control blocks. For
the experimental case, a practical trial-and-error phase has been addressed to assess per-
formance issues, such as sensor noise, non-linearities, data sampling frequencies, making
it possible to deal with such limitations. An overview of the nodes and topics already on
the robot board has been addressed, including a description of the Extended Kalman Fil-
ter (EKF). The filter performance is compared with the new sliding mode super-twsting
observer. The observer estimates the body velocity and orientation angle in an inertial
reference frame using as inputs acceleration and angular velocity, from IMU sensors, and
inertial position from encoders. The controller takes as input the inertial orientation and
body velocity from the observer and a reference trajectory from a ROS node containing
the Artificial Potential Field (APF) algorithm. The algorithm from simulation are trans-
lated to Python code to be deployed on the real Unmanned Ground Vehicle (UGV). The
Observer is tested on the real robot, initially in an open loop configuration. Eventually,
the Observer is implemented in feedback with the Controller. The influence of the nonlin-
ear closed loop system on the robot dynamic is then discussed. The results of the thesis
enhance the robustness of the Sliding Mode technique, showing optimal performances
from both the Observer and Controller.

Contents

1 Introduction 5

2 Guidance, Navigation and Control Systems 7
2.1 Guidance . 7

2.1.1 Artificial Potential Fields . 8
2.2 Navigation . 8
2.3 Control systems main concepts . 9

2.3.1 Stability . 11
2.3.2 Controllability . 14
2.3.3 Observability . 16

2.4 Classical control algorithm . 18
2.4.1 PID . 18
2.4.2 Extended Kalman Filter . 19
2.4.3 Low-pass filters . 20

3 Sliding mode theory 23
3.1 First Order Sliding Mode . 23
3.2 Higher Order Sliding Mode . 25

3.2.1 Supertwisting algorithm . 29
3.3 Sliding Mode Observers . 30

3.3.1 Super-Twisting Observers . 32

4 Kinematic Model 33

5 Observer and Controller design 39
5.1 Observer Model . 39
5.2 Controller Model . 43

6 Results 47
6.1 Devastator robot . 47
6.2 Simulated results . 48
6.3 Experimental results . 57

7 Conclusions 63

2

A Observer Code 65

B Controller Code 69

Bibliography 73

3

4

Chapter 1

Introduction

A mobile ground robot is a vehicle that operates on surfaces and can move in space to
reach a target and accomplish a goal. Mobile robots have numerous applications, such
as emergency rescue operations, manufacturing, logistics, agriculture, and exploration,
among others [1]. The Mars rovers are an example of exploratory ground robots that
allow remote vehicle control and perform in hostile environments for humans. Typically,
a mobile robot is designed to move autonomously and must be capable of determining
the actions needed to accomplish a task. For autonomy, a mobile robot needs batteries
for energy, boards with CPUs, databases, and algorithms for intelligence, and sensors,
such as cameras, to obtain knowledge about the surrounding environment. Perception
and locomotion are two of the most important areas of robotics. Perception refers to the
ability of a robot to acquire and interpret sensory information about its environment. This
can include information from cameras, lidar, sonar, or other sensors that allow the robot
to understand its surroundings. Locomotion refers to the ability of a robot to move from
one place to another. From a mechanical point of view a mobile robot consists of a rigid
body (chassis) with a Locomotion system. The Locomotion structure is influenced mainly
by the environment in which the robot has to perform, it can be on ground, underwater or
on air. This obviously influence the mechanical components needed. For a ground mobile
robot generally a wheeled structure is preferred, but it could be a "legged" structure, like
in humanoid robots. A robot can be mathematically modeled as a system, which is a
non-trivial concept. A system can be described as a collection of interacting components
that evolve in time in response to an input or perturbation, which is detected by sensors
to produce an output. For instance, a car is an example of a system composed of various
components that generate friction with air or ground, each of which has a physical weight,
and these interactions impact the evolution of the car’s velocity, which is considered as the
output in this case. A control system is a system with additional components to control
its behavior. In modern control theory, the first step in defining a control system is to
obtain or construct a mathematical model that describes the evolution of variables called
states in response to a perturbation. Building a model is not an easy task, as it involves
defining a first-order differential equation. The definition of a mathematical model can be
based on a physical knowledge of the system, and this is the case of the kinematic unicycle
model that will be introduced in chapter 4, or it can be done by sampling a large number

5

Introduction

of data to fit a model that generates a so called black box, a function that links inputs
and outputs, this process is called System Identification. This second method may allow
to achieve great performances, but its very hard to be applied to control algorithms,
because the information about physical meaning of variables is then lost. Obviously
the mathematical model has a fundamental importance, because it defines the degree of
correlation between the real, "ideal", evolution of the system, and its approximation. In
short words no matter how the model is defined, some informations will always be lost,
it is an approximation of the real world, Nonlinearities and other sources of disturbances
can be difficult to model with precision, which can lead to errors in control or estimation.
Additionally, there may be unmodeled dynamics or uncertainties in the system that can
also impact the accuracy of the model. Therefore, it’s important to carefully consider
the limitations of the model and use techniques such as robust control and estimation to
handle uncertainties and disturbances. The control of a mobile ground robot must then
consider the presence of this uncertainties, so robust control algorithms must be chosen
such that this kind of non-linearities are compensated. A good candidate for this purpose
is the Sliding Mode technique, a non-linear algorithm with a switching function, which is
considered very robust to compensate modeling uncertainties, and is also computationally
very efficient [2]. Considering the experimental robot used for this thesis, since not all
the control variables are available from the sensors, one of the aim of this thesis is the
design of an Observer to estimate the body velocity and orientation of the robot with
the knowledge of the inertial position from encoders. For this purpose a second order
sliding mode technique has been chosen, because the kinematic relation between position
and velocities contains second order degree uncertainties, so in this case a simple first
order sliding mode observer would not compensate the uncertainties effect. As explained
here [3], a very good candidate to deal with this kind of problem is the super-twisting
sliding mode algorithm [4]. Then a controller has been designed, and since the control
variable, for a kinematic reason, has a relative degree of one, a super-twisting control
algorithm has been chosen for this purpose, because it avoid the so called "chattering".
The sliding mode theory will be explained in chapter 3. Instead others chapters contain:

• Chapter 2 describes the basics of Guidance Navigation and Control system. It intro-
duces important mathematical tools and concepts such as stability, controllability
and observability, very importatnt to explain the algorithms design.

• Chapter 4 is used to introduce the kinematic model of the unicycle, which is the
physical approximation used for the models design.

• Chapters 5 is where the design of the two algorithms occurs.

• chapter 6, is the result section, it contains an explanation of the experimental robot
characteristics, the simulated and real results of the algorithms.

6

Chapter 2

Guidance, Navigation and Control
Systems

Guidance, Navigation and control systems (GNC) are critical modules generally related
to aerospace and missile fields, that deals with the control movement of objects, and can
also be extended to the case of a ground Robot. The three modules can be represented
in a closed loop as in Fig. 2.1.

Figure 2.1. A closed loop representation of a GNC system

2.1 Guidance
The Guidance module is involved in the problem of defining a trajectory for the vehicle
considering the required task goal, and the possible presence of obstacles. Is defined by
algorithms that taking into account sensors data define desired reference points. A path
planning algorithm, can work:

• Off-line: Requieres a structured environment, it means that a "map" of the sur-
rounding enviroenment is known and so is the position of all the potential obstacles.

• On-line: An on-line path planning algorithm, instead, does not know the surround-
ing environment. It needs sensors to acquire informations of the space, and then

7

Guidance, Navigation and Control Systems

takes on-line decisions to reach a point. A very common example of an on-line
guidance algorithm is the Artificial Potential Field [5].

2.1.1 Artificial Potential Fields

The idea is to build potential fields in the space, so that the robot is affected by two
types of potentials:

• Attractive potentials

• Repulsive potentials

The attractive potential generates an attractive force to guide it to the goal position.

Given q =
[︄
x
y

]︄
the inertial position of the robot, qg =

[︄
xg

yg

]︄
the goal position and e(q) =

qg − q an attractive potential can be defined as a:

• Paraboloidal potential:

Ua = 1
2kae(q)T e(q) = 1

2ka||e(q)||2

Then the attraction force is linear in e:

fa = −∇Ua = kae(q)

• Conical:

Ua = ka||e(q)||

In this case the attractive force is constant:

fa = ka
e(q)

||e(q)||

Obviously the first one works better in proximity of the goal, but increases linearly with
e, so a good approach consist of an hybrid between the two. The number of repulsive
field depend on the number of obstacles. The intensity of the repulsive force depend
on distance from the obstacles, generally, to simplify, a range of influence is defined. A
graphical representation of a APF scenario is showed on Fig. 2.2.

2.2 Navigation
A navigation system is a system of devices, technologies, and techniques that enable
the determination of the location, orientation, and movement of an object. Navigation
systems are commonly used in transportation, including aviation, maritime, and land-
based vehicles, as well as in military, scientific, and recreational applications. These
systems typically use a combination of sensors, such as GPS, accelerometers, gyroscopes,
magnetometers, and cameras, to determine position, velocity, and direction, and provide
guidance to reach a desired destination.

8

2.3 – Control systems main concepts

Figure 2.2. An example of the forces involved in an APF algorithm, with two obstacles
and a mobile robot. The red line is the result force that generate a reference to get nearer
to the goal and at the same point avoid obstacle.

2.3 Control systems main concepts

The main components that define a control system are the Controller, the Plant, the
actuators and Sensors. A controller, roughly speaking, is a device that act to minimize
the error between a variable and its desired reference. An example of a controller is the
cruise control, which is a component that regulate the throttle position to control the air
mass that enter in the manifold of the engine, to generate a torque and maintain a constant
velocity of the vehicle [6]. In this case the error is defined by the actual velocity (variable)
and constant velocity desired (reference). Another example is the Anti Blocking System
(ABS), which aim is to avoid wheel blocking while braking both to minimize braking
distance and to maintain steer ability to avoid obstacles, it is based on the measure of
wheel velocity. The plant is the physical system to be controlled, while the actuators are
the devices that allow a physical interaction with the plant, for example the car pedal.
There are two main control system structures, the open loop control system and the
closed loop system, also called feedback loop. The open loop structure is more simply,
has a lower cost, it does not need measurements, to put it simply it is useful for example
in manufacturing processes where output changes are not required, like a conveyor belt.
The closed loop control system 2.3, instead, need sensors measurements to constantly
define the error between the output and desired reference values. Moreover the feedback
loop influences the dynamic of the system, so a stability study in this case is needed.
The Plant can be represented with a mathematical model of differential equations, a very
simple representation is the Linear Time Invariant (LTI) state space model:

9

Guidance, Navigation and Control Systems

Figure 2.3. Closed loop control system

{︄
ẋ = Ax + Bu
y = Cx

(2.1)

It can be read as, the variation in time of the states x linearly depend on the relations
defined in matrix A, and by the inputs relations in B. Instead the matrix C defines the
outputs (y), in short words, what is known from the sensors.
To clarify, from the LTI model is possible to make a very simple and intuitive control
example:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ1 = x2

ẋ2 = u1

ẋ3 = x4

ẋ4 = u2

(2.2)

It can be seen as the kinematic relation of a point in the 2D space, where x2 is the velocity
among the x-axis and x4 is the velocity among the y-axis, while x1 is the inertial position
(x) and x3 the y coordinate. The control could aim to drive the point from an initial
inertial position (x0, y0) to the origin (0,0), the control variables are u1 and u2, that can
represent accelerations on the axis. In this case the state space matrix are defined as:

A =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎦ C =
[︂
1 1 1 1

]︂

The full rank C matrix tells that in this simple case all states are measured. An easy
control law can be defined as:

{︄
u1 = −k1 · x1 − k2 · x2

u2 = −k3 · x3 − k4 · x4
(2.3)

10

2.3 – Control systems main concepts

0 1 2 3 4 5 6 7 8
x-position

0

1

2

3

4

5

6

7

8

y-
po

sit
io

n

Figure 2.4. simple control, initial positions (8,8)

The following values k1 = 1 k2 = 2 k3 = 2 k4 = 4 are chosen, and the initial position
is (8,8), Fig. 2.4. The LTI model is in many cases a too low degree approximation of a
system. Real dynamics are more precisely represented by non-linear systems. Non-linear
systems are generally written in this form:{︄

ẋ = f(x, u)
y = g(x, u)

A classic example used in a scholastic environment is the pendulum, where x =
[︄

θ

θ̇

]︄
:

{︄
x 1̇ = x2

x 2̇ = −K
J · sin x1 − β

J · x2 + 1
J · u

According to the 2nd principle of dynamics (Newton’s Law), from a physical point of
view, K is the elastic constant, J is the moment of inertia and β is the friction coefficient.
From the figure is easy to understand that the states represent the angle and the angular
velocity, the control variable is the Torque. Since the control of this non-linear system is
more complex, will be treated in the second Chapter (2) of Sliding Mode theory as an
example.

2.3.1 Stability

There are many definitions for stability, the mostly considered are the Bounded Input
Bounded Output (BIBO) and the internal stability. Having a dynamical system, by

11

Guidance, Navigation and Control Systems

defining an initial state and integrating the differential equations is possible to define an
evolution of the system called trajectory of the system. Now by defining two different
initial states, and integrating, two trajectories are generated x1(t) and x2(t), by analyzing
the two trajectory is possible to conclude that a system is [7]:

• internally asymptotically stable if lim
t→∞

||x1(t) − x2(t)|| = 0

• internally marginally stable if ∃σ,∃ϵ : ||x1(0)−x2(0)|| < σ =⇒ ||x1(t)−x2(t)|| <
ϵ,∀t

• internally unstable otherwise

The BIBO stability concept, can be expressed as, for any bounded initial conditions, and
for any bounded input ||u(t)|| < Mu < ∞, also the output of the system is bounded
∥|y(t)|| < My < ∞. In the case of LTI systems, stability is an internal property of the
system, it doesn’t depend on the inputs, so it is veryfied for every possible input signal.
Because of this propriety, only the matrix A has to be analyzed. In particular, assuming
A is diagonalizable, from the matrix is possible to calculate the equilibrium point and
the eigenvalues. The equilibrium point in LTI system (if A is diagonalizable) is only one,
and is the point where ẋ = 0, the states does not move without any perturbation. The
eigenvalues can be calculated solving the [m · n] system:⎡⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
...

xm

⎤⎥⎥⎥⎥⎦ = λ

⎡⎢⎢⎢⎢⎣
x1
x2
...

xm

⎤⎥⎥⎥⎥⎦
After calculating the eigenvalues, a theorem defines the system internal stability.
Theorem. The LTI system is internally:

• asymptotically stable iff Re(λi) < 0, ∀i

• marginally stable iff Re(λi) <= 0, and kl = 1 for ∀l : Re(λl) = 0

• unstable iff ∃i : Re(λi) > 0 or ∃i : Re(λi) = 0 and ki > 1

Two simple 2x2 matrix are given to make some example of theorem application:

A1 =
[︄
−3 −2
1 0

]︄
A2 =

[︄
−3 1
1 0

]︄
For both the two matrix the equilibrium point can be founded by solving the simple

system Ax = 0, and is equal to
[︄
x1
x2

]︄
=

[︄
0
0

]︄
. The eigenvalues of matrix A1 are equal to

λ1 = −2 λ2 = −1, both with real part strictly < 0, so the first system is asymptotically
stable, the system’s trajectory converges to it’s equilibrium point 2.5. The eigenvalues
associated to the second matrix are λ1 = −3.3028 and λ2 = 0.3028, so the second system
is unstable, the trajectory diverges 2.6. An important implication links internal stability
and BIBO stability in LTI systems, the inverse implication do not hold generally:

asymptotically stable =⇒ BIBO stable

12

2.3 – Control systems main concepts

If a system is not stable, it’s possible to stabilize the system by manipulating the inputs.
Let’s assume that a system is controllable, the concept will be defined in next section
2.3.2, it is possible then to implement a linear state feedback stabilization, which is also
a form of control as will be shown, that consist on defining a K matrix to change the
system dynamic. As example the same model of (3.1) is used. The system is clearly
unstable, but as will be shown is controllable, so is possible to define input values to make
the system stable. A way is to design a K matrix so that u = Kx so that the simple
dynamic (2.1) becomes: {︄

ẋ = (A + BK)x
y = Cx

K can be chose as in the equation (2.3), K =
[︄
−1 −2 0 0
0 0 −2 −4

]︄
, so that the matrix

(A + BK) becomes asymptotically stable. This method can be considered a control
technique because if a reference value r is added to the input, u = Kx + r the states
converge to r and not zero. The stability analisys discussed so far works for LTI models,
but real world systems are non-linear. A characteristic of non-linear systems is that the
number of equilibrium points is greater than one, so is hard to define a global concept
of stability. Lyapunov’s methods are mostly used in non-linear stability study, tehy are
two:

• Linearization Method: it’s a local analysis of the stability properties of it’s linear
approximation around an equilibrium point.

• Direct Method: it’s a global definition of stability obtained by the analysis of
a energy like function V (x) associated to the dynamic of the system. The chosen
candidate function have to satisfy some relations:

– V̇ < 0 for x /= 0
– lim

|x|→∞
V = ∞

Generally V (x) is chosen similar to a kinetic energy like function:

V (x) = 1
2x2

The first method is a sufficient but not necessary condition. Is very immediate, for
example given the system: {︄

ẋ1 = x2

ẋ2 = −x2 − sin x1

The linearization around the origin equilibrium point can be computed with the jacobian
matrix: [︄

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]︄
13

Guidance, Navigation and Control Systems

[︄
0 1

−1 0

]︄

After the linearizaion teh Kalman method discussed for linear system can be simply used,
and it allow to conclude that the previous non-linear system is stable at the origin. If
the Linearization method does not allow any conclusion, it is possible then to try use the
Lyapunov Direct method.

0 1 2 3 4 5 6 7 8 9 10
t

-3

-2

-1

0

1

2

3

4

5

x

x1
x2

Figure 2.5. initial states x1 = 3 x2 = 4

2.3.2 Controllability

Controllability describes the possibility of action of the u(·) function to influence the
states trajectory. It can be portrayed as the possibility to move the state from an initial
value to a desired goal by acting on the command u(·). In LTI systems it can be easily
proved by performing an easy matrix computation:

[︂
B AB A2B · · · An−1B

]︂
(2.4)

Where n is the system dimension, it depend on the A matrix. If the matrix (2.4) is full
rank, so that each row of the matrix is linearly independent from the others, then the
system is said to be controllable, this is the so called kalman method. An example of a
controllable system is the one in Eq. (3.1). In the case of nonlinear systems, is hard to
define a global concept of controllability. A local evaluation can be done by linearizing the
nonlinear system around an equilibrium point x0. As an example the following nonlinear
system form is taken:

14

2.3 – Control systems main concepts

0 1 2 3 4 5 6 7 8 9 10
t

0
10
20
30
40
50
60
70
80
90

100

x

x1
x2

Figure 2.6. initial states x1 = 3 x2 = 4

ẋ = f(x) +
m∑︂

i=1
g(x)ui (2.5)

Where f(x) is called drift vector field while g(x) is the control input vector field. It can
be linearized around an x0 point performing partial derivatives:

∆ẋ =
[︂

∂f
∂x

]︂
∆x +

m∑︂
i=1

g(x0)ui (2.6)

After linearization the kalman method can be applied to the matrix:[︃
g1, · · · , gm,

[︂
∂f
∂x

]︂
g1, · · · ,

[︂
∂f
∂x

]︂
gm,

[︂
∂f
∂x

]︂n−1
g1, · · · ,

[︂
∂f
∂x

]︂n−1
gm

]︃
Is important to state, as explained here [8], that this method represent a sufficient but
not necessary condition, so if the kalman requirement is not meet, the system could still
be controllable, another way to analyze it is with the so called Lie Algebraic Rank Con-
dition (LARC). It defines the concept of accessibility, which is similar to controllability.
Local accessibility means that a system can be steered from x0 to a non-empty set of
reachable point around x0. For driftless systems where f(x) = 0, for example the case
of non-holonomic kinematic models, accessibility is equivalent to controllability, the only
difference is that inputs could be strictly positive, in that case, accessibility contain the

15

Guidance, Navigation and Control Systems

controllability set. Accessibility can be evaluated calculating the so called lie brackets.
For two V1 and V2 vectors, lie brackets are defined as:

[︂
V1, V2

]︂
= ∂V2

∂x
V1 − ∂V1

∂x
V2 (2.7)

For the Eq. (2.5) accessibility can be calculated by applying the kalman method to the
matrix (2.8):

[︂
g1, · · · , gm, [f, g1], · · · , [f, gm], · · · , [adn−1f, g1], · · · , [adn−1f, gm]

]︂
(2.8)

2.3.3 Observability

Until now only systems with all known states have been considered, like in case (3.1),
where the matrix C was considered of all ones. In real world cases, not all states are always
measured, for many reasons, for example sensors may be expensive and used for large
scale production. If some states are not measured the interdependence between the states
variables of the model may provide the possibility to reconstruct the non measured states.
This is the concept of Observability, a state is observable if is possible to reconstruct its
value by the knowledge of other states. The reconstruction of a state can be also used for
ensuring fault tolerance in a devices. As for the Controllability concept, in LTI systems
the observability is very simple to verify, again the Kalman method can be used:

Obs =

⎡⎢⎢⎢⎢⎢⎢⎣
C

CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎦
It depend only on A and C, and if the rank(Obs) matrix is equal to n the system is fully
observable, so is possilbe to reconstruct all the states. The easiest example in LTI systems
is the Luenberg observer/estimator, it is implemented as a simple L matrix. In Fig. 2.7
a description of its positioning in control scheme block. The hat simbol is to recall that
the state is estimated:

ẋ̂ = Ax̂ + Bu + LC[x − x̂] (2.9)

L matrix is defined analyzing the error estimation x̃ = x − x̂, which time derivative
becomes ẋ̃ = ẋ − ẋ̂, by substituting then Eq. (2.9) and (2.1):

ẋ̃ = (A − LC)x̃ (2.10)

16

2.3 – Control systems main concepts

Figure 2.7. Representation of a Luenberg Observer in a control system

If the system is observable, the eigenvalues, as discussed for stability, can be placed
arbitrarly to be negative so that the error x̃ goes to zero in a finite time, and x̂ = x. A
simple example is proposed, the folowing LTI system is used as example:

ẋ =
[︄
−1 1
0 −3

]︄
x +

[︄
1
0

]︄
u (2.11)

The system is observable, so is possible to chose arbitrary eigenvalues, in this example
λ1 = −5,λ2 = −8. The L matrix is then chosen as L =

[︂
9 10

]︂
. Simulations are shown

on Fig. 2.8, where can be seen as x̂1 reach x1 after neither 1 second, and then x̂2 reach
x2. For non-linear systems, as discussed for controllability, the situation is way more
complex. In very low cases is possible to say that a system is observable in a global
definition, most of the times concepts of locality are used. Given a nonlinear system in
the generic form:

{︄
ẋ = f(x, t) + g(x, t)u
y = h(x,t)

(2.12)

Since observability depend on states relations and measured states g(x, t) can be put to
zero, and then it is possible to verify observability aound some x0 states. For nonlinear
systems a general method to verify controllability does not exist. There are many the-
orems and methods for specific nonlinear system forms, it’s all about choosing which is
applicable to a desired system. As explained in [9], a system is locally weakly observable
if taken the lie derivatives with respect of the output function:

H = d
dx

⎡⎢⎢⎣
L0

f h
...

Lk−1
f h

⎤⎥⎥⎦
17

Guidance, Navigation and Control Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

x(
t)

x1
x2
x1hat
x2hat

Figure 2.8. Luenberg observer simulation, x1hat is x̂1 x2hat is x̂2

If the rank(H) = n then the system (2.12) is locally weakly observable at x0.

2.4 Classical control algorithm
In this section some largely used control methods are described.

2.4.1 PID

Proportional-Integral-Derivative control is probably the most common control algorithm
used in industrial application. It’s popularity can be attributed to it’s low cost and
simplicity still allowing good performances. The closed loop application of the PID can
be represented as in Fig. 2.9. The control law u(t) is defined as [10]:

u(t) = Kpe(t) + Ki

∫︂ t

0
e(t)dt + Kd

de(t)
dt

(2.13)

The aim is to chose the three values to obtain:
• Fast rise time

• Minimal overshoot

• Zero steady-state error
A way to achieve that is to define the three constants Kp,Ki,Kd by analyzing the closed
loop transfer function, so that the poles are < 0 in absolute value as discussed in stability
section 2.3.1. In a practical case a that is not enough, a trial-and-error process is necessary.

18

2.4 – Classical control algorithm

Figure 2.9. Representation of a closed loop PID application

2.4.2 Extended Kalman Filter

Is a non-linear example of a states estimator. Until now only ideal systems have been
considered, a more precise representation of a system account also the influence of dis-
turbances, both from the sensors and specific of the system model. For the description
of the EKF a discrete time explanation is made, it can be easily obtained with a simple
Euler’s method:

ẋ can be written as xk+1−xk
T s Ts is the sampling time.

A non linear system in a discrete-time generic form can be written as:

{︄
xk+1 = f(xk, uk) + dx

yk = h(xk, u) + dy
(2.14)

dx is a disturbance while dy is the measurement noise. Both can be considered as Gaussian
noises with a certain variance. In many cases the sensor noise is known a priory. The
EKF algorithm is based on two phases [7]:

• Prediction phase, the model is used to make a prediction of the xp
k value

xp
k = f(x̂k−1, uk−1)

P p
k = Fk−1Pk−1F T

k−1 + Qd

The function f(x̂k−1, uk−1) represent the known model, Pk is the so called covariance
matrix. Fk is the Jacobian ∂f

∂x matrix, it represent the linearization of the f function.
Qd is the covariance matrix of dx, generally it is defined with dx values in its
diagonal.

19

Guidance, Navigation and Control Systems

• Update phase, the prediction is corrected using output informations and noise con-
sideration to improve the predicted value

Sk = HkP p
k HT

k + Rd

Kk = P p
k HT

k S−1
k

∆yk = yk − h(xp
k)

x̂k = xp
k + Kk∆yk

Pk = (I − KkHk)P p
k

In this case Rd is the covariance matrix of dy, is defined as the Qd matirx for the
output disturbance, instead Hk is the jacobian matrix of the output function. The
updated value is then again used for the next prediction. The value ∆yk = yk − ŷk

is the estimation error, the aim is to bring it to zero.

2.4.3 Low-pass filters

Low-pass filters are not properly, controller devices, but their use in a control systems
are very important, so they can find a space in this chapter. A low-pass filter is a device
that is used to pass signals with a frequency lower that a chosen cutoff frequency while
attenuates higher frequencies. A very simple example is the first order LPF, it is defined
by the following transfer function:

H = 1
(1 + Tf s) (2.15)

The transfer function can be discretized and rewritten as:

y(k) = (1 − α)y(k − 1) + αu(k)
α = h

Tf +h

Where h is the sampling time u is the input noisy signal, and y the output of the filter.
The aim is to chose α given h to cut a certain frequency:

1
Tf

= fc = α
h(1−α)

Considering a signal with mean value equal to zero, given α it is possible to calculate the
ratio between the input variation and output variation as:

σy

σu
=

√︂
α

2−α

σ is the standard deviation, so for a zero mean value signal, Var = σ2, then:
V ar(y)
V ar(u) = α

2−α

To make an example, given a normally (Gaussian) distributed random signal with variance
equal to 10−2, sampling time equal to 0.1, choosing α = 0.1, the filtering result is showed
in Fig. 2.10. The output signal variance becomes then:

V ar(y) ≈ 0.0526 · 10−2 ≈ 5.2 · 10−4

20

2.4 – Classical control algorithm

0 1 2 3 4 5 6 7 8 9 10
t

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

sig
na

l

u
y

Figure 2.10. y is the filtered signal

The filter generates an output time delay, so in general is important to balance cut-
frequency and time delay. Generally variance and mean value of the noise sensor is
known, in any case is possible to evaluate those values, by collecting a large number of
data of the sensor.

21

22

Chapter 3

Sliding mode theory

Sliding Mode Control (SMC) is a non-linear control technique that owns remarkable
properties of robustness, accuracy, and is known to be easy to implement. This method
consist in defining a so called sliding surface, to drive the states along this surface and
maintaining them in its neighbour. The sliding surface is defined so that a relation
between states and inputs explicitly appear. One of the first studies of the sliding method
can be found here [11].

3.1 First Order Sliding Mode
A very simple example of how it works can be made by considering again the control
problem (3.1). In this case a non-linear bounded disturbance is considered:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ1 = x2

ẋ2 = f(x, t) + u1

ẋ3 = x4

ẋ4 = f(x, t) + u2

(3.1)

The function f(x, t) is a sinusoidal bounded disturbance 2sin(t) <= |2|. The Fig. 3.4
shows that the first control method used (2.3) does not compensate the non-linear dis-
turbance effect. The position oscillates around the origin without reaching it Fig 3.5. To
apply the sliding mode algorithm [3], first of all a sliding variable has to be chosen. In
this case s1 = x1 and s2 = x3 are the two sliding variables, then two constrain functions
are defined as σ1 = s1 + ṡ1 and σ2 = s2 + ṡ2. In order to achieve asymptotic convergence
to zero of all the states, the two sliding variables s1, s2 must converge to zero in a finite
time by means of the two control variables u1, u2. The stability with a non-linear dis-
turbance can be analyzed with Lyapunov theory, so a lyapunov function must be chosen
such that, given:

V = 1
2s2

1 (3.2)

23

Sliding mode theory

The following two rules are satisfied:

• V̇ < 0 for s1 /= 0

• lim
|s1|→∞

V = ∞

The second rule is obviously satisfied, the first one can be rewritten as:

V̇ <= −αV
1
2 , α > 0 (3.3)

Its integration between time 0 <= τ <= t gives:

V
1
2 (t) <= −1

2αt + V
1
2 (0)

The "energy" dissipates in a finite time:

t <= 2V
1
2 (0)
α

To achieve this, u1 (same for u2, the control problem is mirrored) can be chosen, from ṡ1
as:

u1 = −x2 − ρsign(s1)

The time derivative of (3.2) becomes:

V̇ = s1ṡ1 = s1(x2 + f(x, t) + u1) = s1(x2 + f(x, t) − x2 − ρsign(s1)) (3.4)

It is not important to know the function f(x, t), what is important is its bounds limits.
In this case its limit is defined as <= 2, so is possible to approximate the dynamic (3.4)
as:

V̇ <= 2|s1| − s1ρsign(s1)

Where

sign(x) =
{︄

1 x > 0
−1 x < 0

Then the disequation becomes:

V̇ <= 2|s1| − |s1|ρ

And taking into account (3.3), ρ has to be chosen as:

ρ >= 2 + α√
2

(3.5)

24

3.2 – Higher Order Sliding Mode

The equation (3.5) assert that, to stay in the sliding surface, and attenuate the non-
linear effect of the disturbance the value of ρ has to be chosen greater than the maximum
bounded value of the disturbance. To make a simulation, the disturbance is chosen as
a sinusoidal function, but it is not important to know how it is modeled. The Fig. 3.1
shows that the disturbance effect can be compensated by choosing ρ1 = 2.1 and ρ2 = 2.1,
the control law is then: {︄

u1 = −x2 − 2.1sign(s1)
u2 = −x4 − 2.1sign(s2)

The sliding variables s1 and s2 in this case, stay near zero Fig. 3.6. This other figure
3.2, instead, shows what happen if the disequation (3.5) is not verified. In this case is
clear that the non-linear disturbance effect is not compensated, so the sliding variables
does not stay close to zero. The sliding surface, instead can be seen as the straight line
between the states, when the sliding variable goes to zero. By increasing the values ρ the
sliding surface convergence is faster, with a side effect, it increases a "zig-zag" dynamic,
called chattering that depend on the switching sign function Fig. 3.3.

0 5 10 15 20 25 30
t

-1

0

1

2

3

4

5

6

7

8

st
at

es

x
y

Figure 3.1. With the sliding mode control, choosing ρ1 = 2.1 , ρ2 = 2.1 the states converge
to zero, compensating the sinusoidal disturbance.

3.2 Higher Order Sliding Mode
As explained in the first order, sliding mode is a technique that allows to maintain to
zero a certain constrain. Given a non-linear system in the form:

ẋ = f(x, t) + g(x, t)u
y = h(x, t)

(3.6)

25

Sliding mode theory

0 5 10 15 20 25 30
t

-1
0
1
2
3
4
5
6
7
8
9

st
at

es

x
y

Figure 3.2. With the sliding mode control, choosing ρ1 = 1 , ρ2 = 1 the states
does not stay near zero.

15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8
t

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Sl
id

in
g

Va
ria

bl
es

s1
s2

Figure 3.3. Example of chattering phenomenon.

In many cases the aim is to define an error e = h(x, t) − hr(x, t) (r means reference) so
the sliding variable can be chosen as s = e. The constrain then is s, and driving it to zero
allows to reach the required reference so that e = 0. To explain the difference between
a first order sliding mode and higher order sliding modes, two important definitions are
described:

26

3.2 – Higher Order Sliding Mode

0 5 10 15 20 25 30
t

-1

0

1

2

3

4

5

6

7

8

st
at

es

x
y

Figure 3.4. The states oscillates around the zero value without compensating the
sinusoidal disturbance.

Figure 3.5. The (0,0) position canno’t be reached with this linear control method.

• Sliding Order: given the sliding variable s, by computing n time derivatives of s,
[ṡ, s̈, . . . , sn]. The sliding order is the derivative order n of s that contains a "sliding
discontinuity", for example the sign function.

• Relative degree: the relative degree, in general, is a propriety of the system to
control. It depend on the states relationships of the system. By computing the

27

Sliding mode theory

0 5 10 15 20 25 30
t

-1

0

1

2

3

4

5

6

7

8

Sl
id

in
g

Va
ria

bl
es

s1
s2

Figure 3.6. The sliding variables s1 and s2 stay close to zero.

Lie Derivatives of (3.6), with respect to the output h(x, t) function, the following
relation is obtained:

d(Ln−1
f

h(x))
dt = Ln

f h(x) + LgLn−1
f h(x)u

The relative degree is the first n where LgLn−1
f h(x)u /= 0 In short words, is the

first n value of time derivatives of the outputs [ḣ, ḧ, . . . , hn] in which the command
explicitly appears.

The first order sliding mode allows to drive, but not maintain exactly equal to zero, sliding
variables of relative degree equal to one. The example (3.1) was chosen on purpose, in
that case is easy to verify that the relative degree of the constrain is 1:

s1 = x1 + ẋ1 = x1 + x2

ṡ1 = x2 + u1

s2 = x3 + ẋ3 = x3 + x4

ṡ1 = x4 + u2

The commands u1 and u2 appear in the first time derivative. A first order sliding mode
allows to drive to zero s but not it’s derivative ṡ, this causes the chattering of Fig. 3.6,
where the sliding variables oscillates very close to zero. To ensure that the constrain
converge to zero, and stays there, without chattering, the sliding order must be greater

28

3.2 – Higher Order Sliding Mode

than the relative degree of the constrain. For the previous example at least a second
order sliding mode algorithms is necessary.

σ̇

3.2.1 Supertwisting algorithm

The super-twisting algorithm is a second order sliding mode technique. It allows to drive
to zero s = ṡ = 0, avoiding chattering, in a system with relative degree 1.

u = −λ|σ|
1
2 sign(σ) + v (3.7)

v̇ =
{︄

−u |u| > Um

−αsign(σ) |u| <= Um

(3.8)

Um comes from teh following relations from the time derivative of the function constrain:

σ̇ = h(x) + g(x)u (3.9)

By considering h(x) and g(x) as bounded functions, then:

|ḣ| + Um|ġ| <= C, 0 < Km <= g(x) <= KM , |h/g| < qUm, 0 < q < 1

From these relations, then λ can be chosen as [3]:

λ >
√︂

2
(Kmα−C)

(Kmα+C)KM (1+q)
K2

m(1−q)

A super-twisting algorithm is now applied to the example (3.1), to show that in this case,
not only s1 = 0, but also its time derivative ṡ1 = 0, and chattering is absent. The control
law is defined as: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1 = −x2 − 1.5
√︁

2|s1|sign(s1) + v1

u2 = −x4 − 1.5
√︁

2|s2|sign(s2) + v2

v̇1 = −2.2sign(s1)
v̇2 = −2.2sign(s2)

The results are shown in Fig. 3.7.

29

Sliding mode theory

0 5 10 15 20 25 30
t

-1

0

1

2

3

4

5

6

7

8

Sl
id

in
g

Va
ria

bl
es

s1
s2

Figure 3.7. With super-twisting algorithm, s1 and s2 converge to zero and stays
there without chattering.

3.3 Sliding Mode Observers
As discussed, the purpose of an observer is to estimate the unmeasured states using the
states relationships of the model. The linear Luenberger observer defined in Eq. (2.9),
usually fails estimating the states in the presence of an unknown signal or disturbances.
Sliding mode observers, as in the control case, make use of a discontinuity function, like
the sign(x) function, to drive the estimation error along a sliding surface to make the
estimate states converge to the real values. Generally this types of observers are defined
considering dynamical systems in a so called triangular input form [4]. A triangular input
form can be represented as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x3
...
ẋn−1 = xn

ẋn = f(x) + g(x)u

Generally if a system is not in this form, there is a way to put it in a triangular form
performing some transformations. Given a generic non-linear system:⎧⎪⎪⎨⎪⎪⎩

ẋ = f(x) +
m∑︂

i=0
gi(x)ui

y = h(x) = [h1, h2, . . . , hp]T

if all the following three rules are satisfied, then it can be made a transformation into a
triangular form:

30

3.3 – Sliding Mode Observers

• k1 >= k2 >= · · · >= kp >= 0

•
p∑︂

i=0
ki = n

• rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1(x)
dLf h1(x)

...
dLk1−1

f h1(x)
...

dhp(x)
...

dL
kp−1
f hp(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= n

It means that the system is Locally Weakly Observable, and exists p integers (k1, k2, . . . , kp)
that form the smallest p-tuple with respect to the lexicographic ordering. In that case
the transformation can be performed as:

η̇i = Aiηi + Fi(η) + Gi(η)u

yi =
[︂
1 0 . . . 0

]︂
ηi

Where:

Ai =

⎡⎢⎢⎢⎢⎣
0 1 0 . . . 0
...

... 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦∈ Rki·ki

Fi =

⎡⎢⎢⎢⎢⎣
0
...
0

Lki
f hi(x)

⎤⎥⎥⎥⎥⎦∈ Rki

Gi =

⎡⎢⎢⎢⎢⎣
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
Lg1Lki−1

f hi(x) Lg2Lki−1
f hi(x) LgmLki−1

f hi(x)

⎤⎥⎥⎥⎥⎦∈ Rki·m

Since Higher Order Sliding Mode concept has already been discussed, this chapter will di-
rectly jump to the definition of a second order sliding mode observer the Super-Twisting
Observer.

31

Sliding mode theory

3.3.1 Super-Twisting Observers

Is one of the most popular second-order sliding mode observers technique [3]. Given the
relation: ⎧⎪⎪⎨⎪⎪⎩

ẋ1 = x2

ẋ2 = f(t, x1, x2, u)
y = h(x) = x1

It means x1 is measured, and x2 is its velocity. This structure is in a triangular input
form, so a simple super-twisting algorithm can be written as:{︄

ẋ̂1 = x̂2 + λ|x1 − x̂1|1/2sign(x1 − x̂1)
ẋ̂2 = f(t, x1, x̂2, u) + αsign(x1 − x̂1)

Where the "hat" symbol means that the state is an estimation. Now taking x̃1 = x1 − x̂
and x̃2 = x2 − x̂2, as the estimation errors, and performing the time derivative:{︄

ẋ̃1 = x̃2 − λ|x̃1|1/2sign(x̃1)
ẋ̃2 = f(, t, x1, x2, u) − f(t, x1, x̂2, u) + ϵ(t, x1, x2, y) − αsign(x̃1)

The function ϵ is a disturbance, then if all the states are bounded, then the existence of
a constant f+ is ensured, such that:

|f(, t, x1, x2, u) − f(t, x1, x̂2, u) + ϵ(t, x1, x2, y)| < f+

Then is the system is Bounded Input Bounded States (BIBS), as demonstrated on this
work [12], the parameters α and λ can be chosen as:

λ = 1.5
√︂

f+

α = 1.1f+

This values ensure the convergence of the estimated states to the real states. In mechan-
ical systems, generally, f+ is defined as 2 sup |acceleration|.

32

Chapter 4

Kinematic Model

Kinematics a is field of physics that describes the motion of a rigid body in the space,
without any consideration of the forces involved. The Kinematic relations depend on
the body structure, and this influence the space of possible movement solutions for a
fixed time coordinate. The kinematic model of a mobile robot is determined by its
locomotion structure, in this case only a "wheeled" structure is considered. The main
wheeled structures are [5]:

• Fixed

• Steering

• Caster

• Omnidirectional

The combination of this types of wheel in a rigid body structure generates some typical
Kinmatic structures, which are:

• Unicycle: can be seen as a chassis with a single wheel, from a physical point of view
there are obviously stability problems, but it will be shown that it can approximate
more complex structures Fig. 4.1.

• Bicycle: is a vehicle with a fixed wheel and a turning wheel Fig. 4.2.

• Tricycle: is a vehicle with two fixed wheels in the rear axle, and a steering wheel
in the front axle.

• Differential drive: is a vehicle with two rear differential actuated wheels, and a
front caster wheel.

• Synchronized drive: approximate a vehicle with three steering wheel actuated
synchronously with two engines, one for traction and one for wheel orientation.

• Car: approximate the structure of a car, with two front steering wheel and two
rear fixed wheels.

33

Kinematic Model

Figure 4.1. Unicycle representation

Wheeled vehicles are subjects to constraints to local mobility. Is easy to understand that
a car can’t move orthogonally, so the space of reachable points is locally limited. This
tho does not preclude the possibility of reaching any point of the space. This constraints
are classified as:

• Equalities called also bilateral constraints

• Disequlities called also Unilateral contraints

And can depend on time, in that case are called Rehonomic otherwise Scleronomic. In
this case only Bilateral Scleronomic constraints are considered. Another classification
is between Holonomic and Non-holonomic constraints:

• Holonomic: given a system with generaziled coordinates q, a constaint is defined
as Holonmic if it is integrable and writtable as:

hi(q) = 0

It does not depend on time derivatives of q. This type of constraint reduce the acces-
sible space of possible configurations. A system is Holonomic if all the constraints
are holonomic.

• Non-holonomic: a non-holonomic constaint, instead, is written as:

a(q, q̇) = 0

34

Kinematic Model

Figure 4.2. Bicycle representation, L is the distance between the two wheels,
and the two angles are with respect to the inertial space. The position (x,y)
can be chosen as the point in L/2.

So depend on velocities, ans can be brought to a so called Pfaffian form:

dh(q)
dq q̇ = 0

It is not integrable, so can’t be brought back to a holonomic form. This type of
constraints does not reduce the accessibility configuration space. It means that each
point of the space can be reached, also if not instantaneously. An example is the
pure rolling constaint.

The pure rolling constraint can be applied to the unicycle model. Given q =
[︂
x y θ

]︂
It assert that the wheel can’t move orthogonally to its asset, obviously in absence of
slipping force, it is represented in Fig. 4.1 by the red line. It is wrtitten as:

dy
dx = tan θ

And can be brought to a Pfaffian form this way:

dy
dx = dy

dt · dt
dx = ẏ

ẋ = sin θ
cos θ =⇒ −ẏ cos θ + ẋ sin θ = 0

It can be rearranged in a matrix form as:[︂
sin θ − cos θ 0

]︂
q̇ = 0

35

Kinematic Model

A nullspace of the previows matrix can be defined by two vectors:

g1(q) =
[︂
cos θ sin θ 0

]︂
g2(q) =

[︂
0 0 1

]︂
It is possible then to define a kinematic model, for the unicycle "vehicle", that represent
the space of possible locally reachable points as:

q̇ =
m∑︂

j=1
gj(q)uj = G(q)u

G(q) =

⎡⎢⎣cos(θ) 0
sin θ) 0

0 1

⎤⎥⎦
So m inputs u are defined. In the case of the unicycle m = 2 so:

q̇ =

⎡⎢⎣cos(θ)
sin(θ)

0

⎤⎥⎦ u1 +

⎡⎢⎣0
0
1

⎤⎥⎦ u2 (4.1)

Where u =
[︂
v w

]︂
that are the body linear velocity and angular velocity of the vehicle.

Now one can question, how can a "wheel" model be useful for a more complex mobile
robot? The unicycle kinematic model can be extended to approximate more complex
kinematic structures, for example a two wheeled differential robot as in Fig. 4.3. It is
possible to approximate the two wheeled vehicle kinematic by choosing:

v = r(wr + wl)
2

w = r(wr − wl)
d

Where wr is the right wheel velocity and wl is the velocity of the left wheel. For a control
approach, it is useful to rewrite this kinematic relation to enhance a reference trajectory
error [13]. Given a reference trajectory, defined by the system:⎧⎪⎪⎨⎪⎪⎩

ẋr = vr cos(θr)
ẏr = vr sin(θr)
θ̇r = wr

36

Kinematic Model

Figure 4.3. A simple two wheeled robot representation

A graphical representation is showed in Fig. 4.4. From the scheme of the previous figure,
the error coordinates can be expressed, by performing a rotation with respect to z axis,
and a translation: ⎡⎢⎣xe

ye

θe

⎤⎥⎦ =

⎡⎢⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎥⎦
⎡⎢⎣xr − x

yr − y
θr − θ

⎤⎥⎦
Then by performing a time derivative of the states, and making some trigonometric
substitutions, the error dynamic differential equation can be expressed as:⎡⎢⎣ẋe

ẏe

θ̇e

⎤⎥⎦=

⎡⎢⎣wye − v + vr cos θe

−wxe + vr sin θe

wr − w

⎤⎥⎦
From this form is possible to design a controller to drive to zero the error states, so that
the reference is reached.

37

Kinematic Model

Figure 4.4. Reference trajectory representation

38

Chapter 5

Observer and Controller design

This chapter show the two algorithms design from a mathematical point of view, then
the translation in python code will be shown in Appendix.

5.1 Observer Model
The Observer was designed to estimate two states, the velocity of the robot and its
orientation. To achieve this, the kinematic model defined in Eq. 4.1 has been considered.
It can be rewritten in a more explanatory form as:

⎧⎪⎪⎨⎪⎪⎩
ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(5.1)

As already explained, the super-twisting sliding mode algorithm was selected for this
purpose, it is generally defined starting from a triangular form model. By performing
two simple time derivatives of vx = ẋ and vy = ẏ the kinematic relations presented, can
be rearranged in two triangular relations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ = vx = v cos θ

v̇x = a cos θ − vw sin θ

ẏ = vy = v sin θ

v̇y = a sin θ + vw cos θ

(5.2)

Where a is the body velocity of the robot. The velocity can be considered as v =√︂
vx

2 + vy
2. The acceleration a and the angular velocity in this case are considered as

known from sensors, while θ and vx, vy and consequence v are estimated. Since the angle
θ never appears isolated from cosine and sinus functions, cos θ and sin θ are considered
as two state to estimate, then the angle θ is computed as arctan(sin θ, cos θ). From now

39

Observer and Controller design

on, the following change of variable is considered C = cos θ, S = sin θ. At this point the
model can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx =
√︂

vx
2 + vy

2C

v̇x = aC −
√︂

vx
2 + vy

2wS

ẏ = vy =
√︂

vx
2 + vy

2S

v̇y = aS +
√︂

vx
2 + vy

2wC

θ = arctan(S, C)

(5.3)

To be more clear, the states are chosen as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
vx
C
y
vy
S

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the known outputs are

[︄
y1
y2

]︄
=

[︄
h1
h2

]︄
=

[︄
x
y

]︄
from encoders

The observability is reached by writing the relations in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx

v̇x = aC −
√︂

vx
2 + vy

2wS

ẏ = vy

v̇y = aS +
√︂

vx
2 + vy

2wC

ż1 =
√︂

vx
2 + vy

2C

ż2 =
√︂

vx
2 + vy

2S

(5.4)

Obviously z1 = x and z2 = y are redundancies to respect the rank condition explained
in the Observability section, and some examples of applications are here [4]. Those two
redundant relations increase the states relations. This way the rank of the jacobian matrix
associated to the lie derivatives is equal to 6, which is the states dimension, and this can
be achieved by adding two fictitious outputs h3 = ẋ and h4 = ẏ:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
ḣ1
ḧ1
h2
ḣ2
ḧ2
h3
ḣ3
h4
ḣ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒ rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 vxC√

vx
2+vy

2 −
√︂

vx
2 + vy

2S 0 vyC√
vx

2+vy
2 0

0 0 0 0 0 0
0 vxS√

vx
2+vy

2 0 0 vyS√
vx

2+vy
2

√︂
vx

2 + vy
2C

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

40

5.1 – Observer Model

Now from Eq. 5.3 the super-twisting observer has been developed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ̂ = v̂x + λ11|x − x̂|1/2sign(x − x̂)
v̇̂x = aĈ −

√︂
v̂x

2 + v̂y
2wŜ + λ12sign(x − x̂)

ẏ̂ = v̂y + λ21|y − ŷ|1/2sign(y − ŷ)
v̇̂y = aŜ +

√︂
v̂x

2 + v̂y
2wĈ + λ22sign(y − ŷ)

(5.5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż̂1 =
√︂

v̂x
2 + v̂y

2Ĉ + λz1|x − ẑ1|1/2sign(x − ẑ1)
Ċ̂ = −wŜ + α1sign(x − ẑ1)
ż̂2 =

√︂
v̂x

2 + v̂y
2Ŝ + λz2|y − ẑ2|1/2sign(y − ẑ2)

Ṡ̂ = wĈ + α2sign(y − ẑ2)

(5.6)

Now a stability analysis will be made, using lyapunov theory. Tendentially the two brack-
ets above can be seen as to observers, 5.5 is the velocity observer, and 5.6 is the orientation
observer. For the stability analysis a Lyapunov technique is used. The equation 5.5 can
be divided in two triangular mirrored sub-relations, so analysis is performed along the x
axis relation. The estimation errors are defined as:

x̃ = x − x̂
ṽx = vx − v̂x

(5.7)

The time derivatives allow to analyze the error dynamic:

ẋ̃ = ṽx − λ11|x̃|1/2sign(x̃)
v̇̃x = a(C − Ĉ) + v̂wŜ − vwS − λ12sign(x̃) (5.8)

The stability analysis requires that the function F (t, X, X̂, u) = a(C − Ĉ)+ v̂wŜ −vwS is
bounded. In this case capital X refers to the states, not inertial position. To simplify the
stability validation from now on, the equation 5.5 is modified considering C = cos θ and
S = sin θ so that the influence of the orientation observer is considered bounded, because
cosine and sinus are bounded no matter how θ oscillates, while the same hypothesis can’t
be made about S and C treated as states values. Then a is the acceleration, so can be
assumed bounded for a physical reason, same consideration for w (angular velocity). For
the body velocity a very rough assumption is used, if |v̂x| ≤ 2 sup |vx| and |v̂y| ≤ 2 sup |vy|
holds [13], and as said all other inputs are bounded, then exist for sure a constant value
f+:

|F (t, X, X̂, u)| < f+ (5.9)

41

Observer and Controller design

Then λ values can be taken as:

λ11 = 1.5
√︂

f+

λ12 = 1.1f+

λ21 = 1.5
√︂

f+

λ22 = 1.1f+

Tendentially, the same upper value can be considered for both x, y dynamics. This tuning
values, ensures that the Lyapunov functions associated to the estimation errors, have first
time derivative with negative sign, so that the energy of the error dynamics goes to zero
in a finite time:

V1 = 1
2 x̃

V2 = 1
2 ṽx̃

V̇ 1 = x̃(ṽx − λ11|x̃|1/2sign(x̃))
V̇ 2 = ṽx(F (t, X, X̂) − λ12sign(x̃))

This mean that after a time t, v̂x → vx and vy → vy, this implies that v̂ → v. With the
same reasonings already made, choosing:

λz1 = 1.5
√︂

fz
+

α1 = 1.1fz
+

λz2 = 1.5
√︂

fz
+

α2 = 1.1fz
+

The orientation error dynamics becomes:

ż̃1 = vC − v̂Ĉ − λz1|z̃z|1/2sign(z̃1)

The tuning value ensure to drive ż̃1 = 0 and z̃1 = 0, and after a finite time t when v̂ = v:

0 = vC − vĈ =⇒ C = Ĉ

42

5.2 – Controller Model

Same for Ŝ, all is specular. The model can be seen as two nonlinear Globally Asymp-
totically Stable (GAS) cascaded observers Fig. 5.1, and as explained in this study [14],
nonlinear cascaded GAS systems are stable. The model can be then discretized using
Euler’s method, it can be rearranged as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x̂k+1 = x̂k + Tf (v̂xk + λ11|x − x̂|1/2sign(x − x̂k))
v̂xk+1 = v̂xk + Tf (a cos θ̂k −

√︂
v̂xk

2 + v̂yk
2w sin θ̂k + λ12sign(x − x̂k))

ŷk+1 = ŷk + Tf (v̂y + λ21|y − ŷk|1/2sign(y − ŷk))
v̂yk+1 = v̂yk + Tf (a sin θ̂k +

√︂
v̂xk

2 + v̂yk
2w cos θ̂k + λ22sign(y − ŷk))

(5.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẑ1k+1 = ẑ1k + Tf (

√︂
v̂xk

2 + v̂yk
2Ĉk + λz1|x − ẑ1k|1/2sign(x − ẑ1k))

Ĉk+1 = Ĉk + Tf (−wŜk + α1sign(x − ẑ1))
ẑ2k+1 = ẑk + Tf (

√︂
v̂xk

2 + v̂yk
2Ŝk + λz2|y − ẑ2k|1/2sign(y − ẑ2k))

Ŝk+1 = Ŝk + Tf (wĈk + α2sign(y − ẑ2k))

(5.11)

θ̂k+1 = arctan Ŝk, Ĉk (5.12)

Tf is the working step time of the observer, for 100Hz it means Tf = 0.01s.

Figure 5.1. Cascaded observers

5.2 Controller Model
Also in this case a second order super twisting sliding mode algorithm was chosen. The
reference kinematic model is the trajectory error dynamic:

43

Observer and Controller design

⎡⎢⎣ẋe

ẏe

θ̇e

⎤⎥⎦=

⎡⎢⎣wye − v + vr cos θe

−wxe + vr sin θe

wr − w

⎤⎥⎦
As explained in Chapter 3, the first thing to do consist in defining the sliding variables.
The following three sliding variables are chosen:

s1 = xe

s2 = ye

s3 = θe

Those three variables defines the error states between actual and reference trajectory,
as showed in Fig. 2.2. The sliding variables are of relative degree of 1, it means that
the control variables appear in the first time derivatives. The aim is to drive si to zero
and keep them there. The control inputs of the kinematic model are two, so two sliding
surfaces are chosen to explicitly derives relations between states and inputs. The sliding
surfaces are defined as:

σ1 = ṡ1 + k1s1

σ2 = s2 + k2s3

Computing the time derivatives:

σ̇1 = (ẇye + w(−wxe + vr sin θe) − a + v̇r cos θe − vr(w − wr)sinθe) + k1(wye − u1 + vr cos θe)
σ̇2 = (−u2xe + vr sin θe) + k2(u2 − wr)

Usually this form is chosen σ1 = ṡ1 + k1s1, but it is more adapt to acceleration control,
because in this case acceleration appears in the first time derivative. In this thesis a
velocity control is instead considered. So σ1 is changed:

σ1 = s1

σ2 = s2 + k2s3

σ̇1 = wye − u1 + vr cos θe

σ̇2 = (−u2xe + vr sin θe) + k2(u2 − wr)

The algorithm input is defined as:{︄
u = −λ|σ|1/2sign(σ) + v

v̇ = −αsign(σ)

44

5.2 – Controller Model

Then to drive σ1̇ → 0, σ2̇ → 0, σ1 → 0, σ2 → 0 the control commands are:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1 = wye + vr cos θe + λ1|σ1|sign(σ1) + v1

v̇1 = −α1sign(σ1)
u2 = vr

(xe+k2) sin θe + k2
(xe+k2)wr + λ2|σ2|sign(σ2) + v2

v̇2 = −α2sign(σ2)

(5.13)

Also in this case the differentiator tuning variables used for observer is considered:

λ1 = 1.5
√︂

f1
+

α1 = 1.1f1
+

λ2 = 1.5
√︂

f2
+

α2 = 1.1f1
+

(5.14)

This helps because the problem is then just to find three good values of f1
+,f2

+ and k2.

45

46

Chapter 6

Results

This chapter will introduce the experimental robot used, then a first simulation section
will show the results obtained from the algorithms implemented in a simulink/matlab
environment. The observer and the controller will be tested singularly, then a closed loop
result is shown. The last section consider the experimental results obtained from the real
on board implementation.

6.1 Devastator robot

The robot present two boards:

• FRDM-K64F: This board contains a firmware that manages sensor data and
communicate with the other board via a User Data Protocol (UDP).

• LattePandaDelta432: this board contain the Robotic Operator System (ROS)
that is a largely used robotic programming environment. All the control algorithms
are defined in this board, it contain the Artificial Potential Field (APF), used to
generate a reference to reach a goal and at the same time avoid obstacles. A
ROS package called robot_localization that is an implementation of an Extended
Kalman Filter. A controller to substitute. The output of the controller (PWMs) is
sent via UDP to the FRDM board that interact with actuators.

For data acquisition, the robot hold the following sensors:

• Realsense d435 a depth and RGB camera that can be used for visual odometry.
It is not used for the aim of this thesis.

• encoders are used to measure the inertial x,y position.

• IMUk64 an IMU (Inertial Measurement Unit) sensor that works as accelerometer
and magnetometer, inside the FRDM-K64 board.

• IMUext an external IMU, that connects thtough an I2C protocol to the FRDM-
K64 board, it works as Gyroscope and accelerometer.

47

Results

The ROS system works with nodes, that are coded modules which communicate with
topics. The overall already built in structure in ROS is showed in Fig. 6.1. The main
goal of this thesis is to remove the Robot_localization algorithm (EKF) and substitute
it with a super-twisting sliding mode observer to estimate θ (angle) and v the body
velocity of the robot. Also the controller is substituted with a new super-twisting sliding
mode controller. Changes are represented in Fig. 6.2.

Figure 6.1. The yellow blocks are teh nodes, the blue one are the topics

Figure 6.2. This is the final block diagram idea, the observer substitute the
Robot_localization node and the controller is substituted with a new Sliding
Mode Controller

6.2 Simulated results

For the simulations, a model of the robot dynamic was used. It contains three main
modules, an APF to define a trajectory reference, a plant of the robot, simulated with a
system identification module and a sensor module to create a more realistic environment.
The sensor module applies a random Gaussian noise to the input variables with the
following variance values (mean value equal to zero):

⎡⎢⎢⎢⎣
x
y
w
a

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1e − 04
1e − 04
1e − 06
1e − 06

⎤⎥⎥⎥⎦
The Controller is implemented as in the Eq. 5.13, of the previous chapter:

48

6.2 – Simulated results

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1 = wye + vr cos θe + λ1|σ1|sign(σ1) + v1

v̇1 = −α1sign(σ1)
u2 = vr

(xe+k) sin θe + k2
(xe+k)wr + λ2|σ2|sign(σ2) + v2

v̇2 = −α2sign(σ2)

(6.1)

The tuning variables are chosen as:

λ1 = 1.5
√

0.001
α1 = 1.1(0.001)
λ2 = 1.5

√
0.005

α2 = 1.1(0.005)
k = 0.8

The controller is tested to drive the robot from an initial position (0,0) to a desired goal
position (4,8), while avoiding some obstacles. The trajectory results are showed in Fig.
6.3. The robot reach the final destination while avoiding the obstacles. The velocity

0 1 2 3 4 5 6 7 8 9 10
X [m]

0

1

2

3

4

5

6

7

8

Y
[m

]

Trajectory

Figure 6.3. The blue line is the robot trajectory, while the orange point are the obstacles
and the circunference is the obstacles range of influence for the APF algorithm

and angle reference chase is showed in Fig. 6.4. The chase of references is not perfect
probably because the APF gives very brusque reference changes that makes it hard to
the controller to align. A second simulation shows the effect of the tuning variables, this

49

Results

0 10 20 30 40 50 60
Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
[m

/s
]

Vx
Reference

Velocity

Figure 6.4. In the first image Vx is the linear velocity of the robot, while the second
shows the angle trajectory chase

time the values are set as:

50

6.2 – Simulated results

λ1 = 1.5
√

0.01
α1 = 1.1(0.01)
λ2 = 1.5

√
0.15

α2 = 1.1(0.15)
k = 0.8

The values λ and α are increased, the results shows that the goal is still reached but
with a more oscillating trajectory Fig. 6.5. Those are limit values, a further increase on

0 1 2 3 4 5 6 7 8 9 10
X [m]

0

1

2

3

4

5

6

7

8

Y
[m

]

Trajectory

Figure 6.5. A more uncontrolled dynamic with respect to the first simulation.

tuning variables does not allow to reach the final goal. As already explained, a non-linear
closed loop system is hard to analyze. For this reason the Observer implementation
approach, was to first of all test it outside of the closed loop, then to run it in feedback
with the APF and Controller. As explained in the previous chapter, the Observer is
implemented as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ̂ = v̂x + λ11|x − x̂|1/2sign(x − x̂)
v̇̂x = a cos θ̂ −

√︂
v̂x

2 + v̂y
2w sin θ̂ + λ12sign(x − x̂)

ẏ̂ = v̂y + λ21|y − ŷ|1/2sign(y − ŷ)
v̇̂y = a sin θ̂ +

√︂
v̂x

2 + v̂y
2w cos θ̂ + λ22sign(y − ŷ)

(6.2)

51

Results

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż̂1 =
√︂

v̂x
2 + v̂y

2Ĉ + λz1|x − ẑ1|1/2sign(x − ẑ1)
Ċ̂ = −wŜ + α1sign(x − ẑ1)
ż̂2 =

√︂
v̂x

2 + v̂y
2Ŝ + λz2|y − ẑ2|1/2sign(y − ẑ2)

Ṡ̂ = wĈ + α2sign(y − ẑ2)

(6.3)

θ̂ = arctan (S, C)

v̂ =
√︂

v̂x
2 + v̂y

2

Where v̂ and θ̂ are the two estimated states. The sensors variables a, w, x, y are simulated
with a frequency of 20Hz, while the observer works at a frequency of 100Hz. The first
simulation shows the results with the following initial conditions and tuning variables:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
ŷ
vx

v̂y

Ĉ

Ŝ
ẑ1
ẑ2
θ̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2
0.2
0.2
0.2
1
1

0.1
0.1
0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11
λ12
λ21
λ22
λz1
α1
λz2
α2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5
√

0.06
1.1(0.06)
1.5

√
0.06

1.1(0.06)
1.5

√
0.3

1.1(0.3)
1.5

√
0.3

1.1(0.3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The figure 6.6 shows the velocity estimation with respect V real that represent the real
velocity dynamics. Initial states of the observer are different from the real ones, so it takes
some time for the algorithm to stabilize to the real states. Then the Fig. 6.7 shows the
angle estimation and Fig 6.8 the known states (x,y) estimation. The idea is that taking
initial conditions different from the real ones, the integrative model part won’t drive to
the real dynamics. This can be visualize in Fig. 6.9, that consider the same previous case
but with tuning variables equal to zero, this mean the observer is "turned off". As can be
seen the two dynamics are translated, and the (x,y) position reconstruction fails 6.10, so
the idea behind the observer algorithm is to chase the known variables (x,y) to correct
the integrative part of the model and drive it back to the real dynamic. To reduce the

52

6.2 – Simulated results

0 10 20 30 40 50 60
t[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ve
lo

ci
ty

[m
/s

]

Vreal
Vhat

Figure 6.6. The estimated velocity reaches the real one.

0 10 20 30 40 50 60
t[s]

-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

an
gl

e[
ra

d]

psireal
psihat

Figure 6.7. After some time the estimation follow the real state.

convergence time of the figure 6.6, it is possible to increase the tuning variables as:

53

Results

0 10 20 30 40 50 60
t[s]

-1

0

1

2

3

4

5

6

7

8

po
sit

io
n[

m
]

xr
xhat
yr
yhat

Figure 6.8. The inertial position estimation reaches the real values.

0 10 20 30 40 50 60
t[s]

0

0.1

0.2

0.3

0.4

0.5

0.6

ve
lo

ci
ty

[m
/s

]

Vreal
Vhat

Figure 6.9. This figure shows what happen without using the observer, with non-zero
initial conditions. The role of the observer is then to drive Vhat to the real function.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11
λ12
λ21
λ22
λz1
α1
λz2
α2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5
√

0.3
1.1(0.3)
1.5

√
0.3

1.1(0.3)
1.5

√
0.5

1.1(0.5)
1.5

√
0.5

1.1(0.5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
54

6.2 – Simulated results

0 10 20 30 40 50 60
t[s]

-10

-5

0

5

10

15

20

25

po
sit

io
n[

m
]

xr
xhat
yr
yhat

Figure 6.10. With non-zero initial conditions the solutions of the dynamics evolves differently.

Unfortunately this increases the chattering phenomenon, Figs. 6.11, 6.12. The oscil-

0 10 20 30 40 50 60
t[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ve
lo

ci
ty

[m
/s

]

Vreal
Vhat

Figure 6.11. Increasing tuning values force a faster convergence, but increases the chattering.

lations (chattering) can be reduced using low-pass filters or by changing the switching
sign(·) function with the tangent hyperbolic function tanh(·), and by defining a new con-
stant n inside the function tanh (n ∗ (e)). Using n = 10 in the previous example this is the
new velocity estimation Fig. 6.13. The next simulation consider The whole dynamic with

55

Results

0 10 20 30 40 50 60
t[s]

-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

an
gl

e[
ra

d]

psireal
psihat

Figure 6.12. higher oscillations from previous simulation.

0 10 20 30 40 50 60
t[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

ve
lo

ci
ty

[m
/s

]

Vreal
Vhat

Figure 6.13. Oscillations are smaller, but quality of estimation is worse.

the Observer in feedback with APF and Controller, with initial conditions and tuning
variables of the observer chosen as:

56

6.3 – Experimental results

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
ŷ
vx

v̂y

Ĉ

Ŝ
ẑ1
ẑ2
θ̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1
0.1
0.1
0.1
1

0.1
0.1
0.1
0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11
λ12
λ21
λ22
λz1
α1
λz2
α2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5
√

0.03
1.1(0.03)
1.5

√
0.03

1.1(0.03)
1.5

√
0.1

1.1(0.1)
1.5

√
0.1

1.1(0.1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The tuning variables of the controller are the same of the first example. Despite the non-
zero initial conditions, the observer’s states reaches the real states and the robot arrive
at the final goal in position (10,7) while avoiding all obstacles. The results are in Figs.
6.14, 6.15.

6.3 Experimental results
The Matlab/simulink models are translated directly into python, the translated code is
showed in the Appendix section. A first order Low-pass filter was applied to the acceler-
ation and angular velocity input states (from IMU). Firstly mean value and variance are
evaluated from sensor data sampling. The obtained values are:

V ar(a) = 1.5e − 04
Mean(a) = −0.2924
V ar(w) = 4.31e − 06
Mean(w) = −0.0170

The acceleration is more "problematic" with higher variance and a Mean value not neg-
ligible. Those values was used to define a very simple low-pass filter, defined as:

af = (1 − α1)aold + α1anew

wf = (1 − α2)wold + α2wnew

57

Results

0 1 2 3 4 5 6 7 8 9 10
X [m]

0

1

2

3

4

5

6

7

Y
[m

]

Trajectory

Figure 6.14. Caption

The filtering results are showed in Fig. 6.16. As should be clear the data refers to the
robot stopped. For the Controller test a very simple experiment has been performed.
The goal is set to the position (1,1) (meters), and no obstacles are considered. The results
refers to the data obtained from the encoders. The next figure shows the trajectory
followed by the robot, and it is made a comparison between real case and the simulative
one Fig. 6.17. The robot doesn’t get to the final point becasuse the APF has a tolerance
value of 10cm, this means that when the robot get inside a 10cm ray from the goal it
stops. But is clear the tendency of the robot to reach the final point, the experiment can
be considered successfully completed. The states estimation of the Observer refers to

58

6.3 – Experimental results

0 10 20 30 40 50 60
t[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

ve
lo

ci
ty

[m
/s

]

Vreal
Vhat

0 10 20 30 40 50 60
t[s]

-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

an
gl

e[
ra

d]

psireal
psihat

Figure 6.15. Caption

the same experiment. Since no sensor for body velocity and orientation was available on
the robot, the observer estimation is compared with an Extended Kalman Filter already
built in the robot. The following figure shows the comparison results 6.18. The sign(·)
function was substituted with the tanh(·) function to try reduce chattering. The velocity
estimations are comparable, the observer unfortunately present the chattering problem.
For the angle the two estimation differ remarkably. But analyzing the trajectory on Fig.
6.17, assuming as zero degree the x axis direction, the observer estimation seems to be
more realistic.

59

Results

0 50 100 150 200 250 300 350 400
t[s]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ac
ce

le
ra

tio
n[

m
/s

]

af
a

0 50 100 150 200 250 300 350 400
t[s]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

an
gu

la
r

ve
lo

ci
ty

[ra
d/

s]

wf
w

Figure 6.16. wf and af are the filtered values, while a and w are those from the sensors.
The oscillations are reduced and the functions stay close to zero.

60

6.3 – Experimental results

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
X[m]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Y
[m

]

Real
Simul

Figure 6.17. Caption

61

Results

0 5 10 15 20 25
Time[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

Ve
lo

ci
ty

[m
/s

]

V ekf
Vhat

0 5 10 15 20 25
Time[s]

-20

0

20

40

60

80

100

120

140

A
ng

le
[d

eg
re

es
]

Psi ekf
Psihat

Figure 6.18. Comparison between Observer and EKF estimations. On top body velocity
of the robot. Bottom the orientation estimation.

62

Chapter 7

Conclusions

The aim of this work was to challenge the robustness of the sliding mode technique
in a real mobile robotic context, in particular it was used to develop two important
modules in the robotic context, the Controller and the Observer. The two algorithms
showed remarkable results in a simulated environment. The experimental results proof the
algorithms work also in the real context, but with more evident fragility. It is important to
emphasize that the algorithms are applied to a very simple and approximate kinematic
model, the unicycle. The model does not consider any force involved in the dynamic
such as friction with ground or slipping. This approximation, and data noise makes
it challenging to obtain very robust solutions. To reduce the noise a first order low-
pass filter is implemented. The Observer was designed with the aim of substitute the
already built in Extended Kalman Filter (EKF). Unfortunately due to some technical
problems, the work was not completed, the observer was tested in the robot, but not
in closed loop with the controller. This could be one of the reasons why the controller
performance wasn’t so good. Analyzing the two figures 6.17 and 6.18, is clear that the
estimated angle from the EKF does not match up with the trajectory, this means that,
probably the controller try to drive to zero the reference angle from the APF while the
EKF estimation opposes. This could be why the controller draw a large curve to get to
the goal. The angular estimation of the Observer, instead, seems to be more coherent
with the encoders trajectory, but is hard, without having tried the feedback dynamic, to
conclude that this observer is a better candidate. Overall the sliding mode technique can
be considered a very strong option for vehicle control systems. It is very versatile, and
easy to implement also for more complex mathematical models. As cons, the problem
of chattering could become instead a great limitation in more precise context, such as
surgical robots where any sort of small oscillation must be avoided. A further work could
consider the application of previous techniques to a dynamical model of the robot, that
consider stronger mathematical relations. Furthermore would be interesting to test the
controller in an environment with obstacles.

63

64

Appendix A

Observer Code

The observer in this case is showed with message filters implementation. It means all the
sensors are assumed to work at the same velocity. For a stronger consistency on data
access, some locks are used. The idea is that the observer function constantly iterates at
100Hz, when sensors data are collected, an interrupt is triggered and the callback function
is called.

1 #!/ usr/bin/env python3
2

3 from multiprocessing import Lock
4 import threading
5 import message_filters
6 import rospy
7 import math
8 import numpy
9 from prova_one .msg import Obsrv_cmd

10 from sensor_msgs .msg import Imu
11 from nav_msgs .msg import Odometry
12

13 class Obsrv ():
14 def __init__ (self):
15 rospy. init_node (" SMObserver ",anonymous = True)
16 self.hz = 100
17 self.rate = rospy.Rate(self.hz)
18 self. Init_var ()
19 sub_Enc = message_filters . Subscriber (" encoder ",Odometry , queue_size

= 10)
20 sub_ImuExt = message_filters . Subscriber (" imu_ext ",Imu , queue_size =

10)
21 sub_Imuk64 = message_filters . Subscriber (" imu_k64 ",Imu , queue_size =

10)
22 ts = message_filters . ApproximateTimeSynchronizer ([sub_Enc ,

sub_ImuExt , sub_Imuk64], queue_size =10, slop =0.01)
23 ts. registerCallback (self. callback)
24 pub_Obsrv = rospy. Publisher (" Obsrv2_out ",Odometry , queue_size = 10)
25 while not rospy. is_shutdown ():
26 self. Observer (pub_Obsrv)
27 self.rate.sleep ()
28

65

Observer Code

29 rospy.spin ()
30

31 def Observer (self , pub_Obsrv):
32 F = 0.18
33 F2 = 0.35
34 h11 = 1.5* math.sqrt(F)
35 h21 = 1.1*F
36 h12 = 1.5* math.sqrt(F2)
37 h22 = 1.1* F2
38 F1 = 0.3
39 hz11 = 1.5* math.sqrt(F1)
40 hz21 = 1.1*F
41 hz12 = 1.5* math.sqrt(F1)
42 hz22 = 1.1*F
43 Ts = 0.01
44 n1 = 250
45 n2 = 150
46 self.lock. acquire ()
47 ## Vxhat
48 zhat1_new = self.zhat1 + Ts*(self.Vxhat + h11*math.sqrt(abs(self.

xreal -self.zhat1))*numpy.tanh(n1*(self.xreal -self.zhat1)))
49 Vxhat_new = self.Vxhat + Ts*(self.a*math.cos(self. psihat) -self.

Vhat*self.w*math.sin(self. psihat) + h21*numpy.tanh(n1*(self.xreal -self
.zhat1)))

50

51 ## Vyhat
52 zhat2_new = self.zhat2 + Ts*(self.Vyhat + h12*math.sqrt(abs(self.

yreal -self.zhat2))*numpy.tanh(n2*(self.yreal -self.zhat2)))
53 Vyhat_new = self.Vyhat + Ts*(self.a*math.sin(self. psihat) + self.

Vhat*self.w*math.cos(self. psihat) + h22*numpy.tanh(n2*(self.yreal -self
.zhat2)))

54

55

56 ## Cos(psi)
57 xhat_new = self.xhat + Ts*(self.Vhat*self.Chat + hz11*math.sqrt(

abs(self.xreal -self.xhat))*numpy.sign ((self.xreal -self.xhat)))
58 Chat_new = self.Chat + Ts*(- self.w*self.Shat + hz21*numpy.sign ((

self.xreal -self.xhat)))
59

60 ## Sin(psi)
61 yhat_new = self.yhat + Ts*(self.Vhat*self.Shat + hz12*math.sqrt(

abs(self.yreal -self.yhat))*numpy.sign ((self.yreal -self.yhat)))
62 Shat_new = self.Shat + Ts*(self.w*self.Chat + hz22*numpy.sign ((

self.yreal -self.yhat)))
63

64

65 self.Vhat = math.sqrt(Vxhat_new **2 + Vyhat_new **2)
66 self. psihat = numpy. arctan2 (Shat_new , Chat_new)
67

68 self.Vxhat = Vxhat_new
69 self.Vyhat = Vyhat_new
70 self.zhat1 = zhat1_new
71 self.zhat2 = zhat2_new
72 self.Chat = Chat_new
73 self.Shat = Shat_new

66

Observer Code

74 self.xhat = xhat_new
75 self.yhat = yhat_new
76

77 self.msg.twist.twist. linear .x = Vxhat_new
78 self.msg.twist.twist. linear .z = self.Vhat
79 self.msg.twist.twist. linear .y = Vyhat_new
80 self.msg.pose.pose. position .x = zhat1_new
81 self.msg.pose.pose. position .y = zhat2_new
82 self.msg.pose.pose. orientation .z = self. psihat
83 pub_Obsrv . publish (self.msg)
84 self.lock. release ()
85

86 def callback (self ,sub_Enc ,sub_ImuExt , sub_Imuk64): ##posso sostituire
con la camera , che usa rtabmap

87 self.lock. acquire ()
88 alpha1 = 0.1
89 alpha2 = 0.1
90

91 self.xreal = sub_Enc .pose.pose. position .x
92 self.yreal = sub_Enc .pose.pose. position .y
93

94 a_new = sub_Imuk64 . linear_acceleration .x + 0.2924
95 w_new = sub_ImuExt . angular_velocity .z + 0.0170
96

97 self.a = (1- alpha1)*self.a_old + alpha1 *a_new
98 self.w = (1- alpha2)*self.w_old + alpha2 *w_new
99

100 self.a_old = self.a
101 self.w_old = self.w
102 self.lock. release ()
103

104

105 def Init_var (self):
106

107 self.lock = Lock ()
108 self.a_old = 0
109 self.w_old = 0
110 self.xreal = 0
111 self.yreal = 0
112 self.Vxhat = 0
113 self.Vyhat = 0
114 self.xhat = 0
115 self.w = 0
116 self.a = 0
117 self.yhat = 0
118 self.zhat1 = 0
119 self.zhat2 = 0
120 self. psihat = 0
121 self.Vhat = 0
122 self.Chat = 1
123 self.Shat = 0
124 self.msg = Odometry ()
125

126

127 if __name__ == ’__main__ ’:

67

Observer Code

128 try:
129 Obsrv ()
130 except rospy. ROSInterruptException :
131 pass

68

Appendix B

Controller Code

1 # py_controll .py
2

3

4 from numpy import linalg as LA
5 import numpy as np
6 import math
7 import queue
8 import rospy
9 import message_filters

10 from nav_msgs .msg import Odometry
11 from geometry_msgs .msg import Pose
12 from sensor_msgs .msg import Imu
13 from visual_odometry .msg import PWM_cmd , APF_cmd
14 from scipy. spatial . transform import Rotation as R
15

16

17

18 class SMC ():
19

20

21 def __init__ (self):
22 rospy. init_node (’SMC ’,anonymous =True)
23 self.rate = rospy.Rate (10) # 10hz
24 self.init ()
25 sub_APFout = message_filters . Subscriber ("/ APF_output ", APF_cmd ,

queue_size = 10)
26 sub_goal = message_filters . Subscriber ("/goal", Pose , queue_size =

10)
27 sub_odometry = message_filters . Subscriber ("/ odometry / filtered ",

Odometry , queue_size = 10)
28 self. PIDpub = rospy. Publisher (’SMC_super_cmd ’, PWM_cmd , queue_size

=10)
29 self.msg = PWM_cmd ()
30 ts = message_filters . ApproximateTimeSynchronizer ([sub_APFout ,

sub_odometry , sub_goal], queue_size =10, slop =0.5 , allow_headerless =True
)

31 ts. registerCallback (self. Control)
32 rospy.spin ()

69

Controller Code

33

34 def get_rotation (self ,Odom):
35 orientation_q = Odom.pose.pose. orientation
36 orientation_list = [orientation_q .x, orientation_q .y,

orientation_q .z, orientation_q .w]
37 r = R. from_quat (orientation_list)
38 EuAn = r. as_euler (’zyx ’, degrees =False)
39 return EuAn
40

41 def init(self):
42 self.v1 = 0
43 self.v2 = 0
44 self. psid_prec = 0
45

46

47 def Control (self ,sub_APFout , sub_odometry , sub_goal):
48 k = 0.8
49 Ts = 0.1
50 F1 = 0.01
51 F2 = 0.05
52 h1 = 1.5* math.sqrt(F1)
53 alfa1 = 1.1* F1
54 h2 = 1.5* math.sqrt(F2)
55 alfa2 = 1.1* F2
56

57 vx = sub_odometry .twist.twist. linear .x
58 vy = sub_odometry .twist.twist. linear .y
59 xr = sub_odometry .pose.pose. position .x
60 yr = sub_odometry .pose.pose. position .y
61 wr = sub_odometry .twist.twist. angular .z
62 vd = sub_APFout .Vref
63 psid = sub_APFout . Psiref
64 wd = (psid -self. psid_prec)/0.1
65

66 xd = xr + vd *0.1* math.cos(psid)
67 yd = yr + vd *0.1* math.sin(psid)
68 [psir , _, _] = self. get_rotation (sub_odometry)
69 vr = (vx+vy)/(math.cos(psir)+math.sin(psir))
70

71

72

73

74 # errors definition
75

76 xe=math.cos(psir)*(xd -xr)+math.sin(psir)*(yd -yr)
77 ye=-math.sin(psir)*(xd -xr)+math.cos(psir)*(yd -yr)
78 psie=psid -psir
79

80 if math.fabs(psie) > math.pi:
81 psie=psie -2* math.pi*np.sign(psie)
82

83 # smc - surfaces
84 s1=xe
85 s2=ye + k*psie
86

70

Controller Code

87 v1_new = self.v1 + Ts*(- alfa1*np.sign(s1))
88 U1 = -h1*math.sqrt(abs(s1))*np.sign(s1) + v1_new
89 u1 = -U1 + wr*ye + vd*math.cos(psie)
90

91

92 v2_new = self.v2 + Ts*(- alfa2*np.sign(s2))
93 U2 = -h2*math.sqrt(abs(s2))*np.sign(s2)
94 u2 = -U2 + vd/(xe + k)*math.sin(psie) + k/(xe + k)*wd
95

96

97

98 if u1 >0.45:
99 u1 = 0.45

100

101 if u1 <0:
102 u1=0
103

104 if u2 > 0.1:
105 u2 = 0.1
106

107 if u2 < -0.1:
108 u2 = -0.1
109

110 PWM_R = 20000*(u1+u2)
111 PWM_L = 20000*(u1 -u2)
112

113 if PWM_R >20000:
114 PWM_R = 20000
115

116 if PWM_R < -20000:
117 PWM_R = -20000
118

119 if PWM_L >20000:
120 PWM_L = 20000
121

122 if PWM_L < -20000:
123 PWM_L = -20000
124

125 self. psid_prec = psid
126

127 self.msg.u1 = u1
128 self.msg.u2 = u2
129 self.msg. PWM_left = PWM_L
130 self.msg. PWM_right = PWM_R
131 self. PIDpub . publish (self.msg)
132

133

134 if __name__ == ’__main__ ’:
135 try:
136 SMC ()
137 except rospy. ROSInterruptException :
138 pass

71

72

Bibliography

[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts,
methods, theoretical framework, and applications,” International Journal of Ad-
vanced Robotic Systems, vol. 16, no. 2, pp. 172988141983959–14, 2019.

[2] K. Adamiak and A. Bartoszewicz, “Novel power-rate reaching law for quasi-sliding
mode control,” Energies, vol. 15, no. 15, 2022.

[3] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, et al., Sliding mode control and
observation, vol. 10. Springer, 2014.

[4] T. Floquet and J. P. Barbot, “Super twisting algorithm-based step-by-step sliding
mode observers for nonlinear systems with unknown inputs,” International Journal
of Systems Science, vol. 38, no. 10, pp. 803–815, 2007.

[5] M. Indri, “Sistemi robotici,” Master Degree Computer Engineering, 2021-2022.
[6] S. Malan, “Automotive control systems,” Master Degree Computer Engineering,

2022.
[7] C. Novara, “Nonlinear control and aerospace applications,” Master Degree Computer

Engineering, 2022.
[8] A. M. Hassan and H. E. Taha, Geometric Nonlinear Controllability Analysis for

Airplane Flight Dynamics.
[9] “Nonlinear observability via koopman analysis: Characterizing the role of symme-

try,” Automatica (Oxford), vol. 124, pp. 109353–, 2021.
[10] K. J. Åström and B. Wittenmark, “Computer-controlled systems: Theory and de-

sign,” 1984.
[11] V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on

Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.
[12] J. Davila, L. Fridman, and A. Levant, “Second-order sliding-mode observer for me-

chanical systems,” IEEE transactions on automatic control, vol. 50, no. 11, pp. 1785–
1789, 2005.

[13] N. M’Sirdi, A. Rabhi, L. Fridman, J. Davila, and Y. Delanne, “Second order sliding-
mode observer for estimation of vehicle dynamic parameters,” Int. J. Vehicle Design
Int. J. Vehicle Design, vol. 48, pp. 190–207, 07 2008.

[14] Zs. Lendek, R. Babuška, and B. De Schutter, “Stability of cascaded fuzzy systems
and observers,” IEEE Transactions on Fuzzy Systems, vol. 17, pp. 641–653, June
2009.

73

	Introduction
	Guidance, Navigation and Control Systems
	Guidance
	Artificial Potential Fields

	Navigation
	Control systems main concepts
	Stability
	Controllability
	Observability

	Classical control algorithm
	PID
	Extended Kalman Filter
	Low-pass filters

	Sliding mode theory
	First Order Sliding Mode
	Higher Order Sliding Mode
	Supertwisting algorithm

	Sliding Mode Observers
	Super-Twisting Observers

	Kinematic Model
	Observer and Controller design
	Observer Model
	Controller Model

	Results
	Devastator robot
	Simulated results
	Experimental results

	Conclusions
	Observer Code
	Controller Code
	Bibliography

