
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Evaluating a side-channel simulation tool
against real power traces of cryptographic

software

Supervisor

Prof. Danilo BAZZANELLA

Co-Supervisor

Matteo BOCCHI

Candidate

Matteo CATTANEO

APRIL 2023

Summary

Side-channel attacks are a type of attack that involves the physical outputs of
embedded devices while cryptographic operations are running on them to recover
some secrets. In this work, we refer to power analysis due to the exploitation of
power consumption. By studying it and using suitable techniques, it is possible to
recover the secret key used for the encryption.

The thesis aims to the comparison of the traces generated by an emulator and by
a real device, evaluating if the emulator can be a valid alternative to the generation
of real traces. The emulator is Rainbow while the real target is an ARM Cortex-M4
microcontroller with the help of the NewAE Technology ChipWhisperer tool.

The comparison is based on the use of two AES implementations, one in C
language and one in assembly, considering, for each of the analyses and imple-
mentations adopted, the difference between simulated and real. The benefits and
limitations of the emulator will be discussed highlighting some improvements and,
in the end, some possible future works to continue what is done here.

ii

Acknowledgements

Un ringraziamento a tutto il gruppo di Agrate per avermi accolto, in particolare
Matteo Bocchi per il supporto costante durante tutto il periodo di svolgimento di
questo lavoro. Un altro ringraziamento al piccolo ufficio di Torino dove ho passato
parte di questi mesi

Matteo

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Thesis outline . 2

2 Side Channel Analysis 3
2.1 Power Analysis . 4

2.1.1 Simple Power Analysis . 4
2.1.2 Differential Power Analysis 5
2.1.3 Correlation Power Analysis 6
2.1.4 CPA Power Consumption Model 8

2.2 Advanced Encryption Standard . 9
2.2.1 AddRoundKey and SubBytes steps 10

3 Trace acquisition setup 13
3.1 Hardware and software . 13
3.2 ChipWhisperer . 15

3.2.1 Communication and firmware 15
3.2.2 Data capture workflow . 17

3.3 Rainbow . 18
3.3.1 Basic usage . 18
3.3.2 Power models . 20

4 Analysis results 23
4.1 Analysis context . 23

4.1.1 DPA implementation . 24
4.1.2 CPA implementation . 25

v

4.2 TinyAES - C implementation . 25
4.2.1 Simulated traces analysis . 26
4.2.2 Real traces analysis . 30

4.3 Cortexm-AES - Assembly implementation 34
4.3.1 Simulated traces analysis . 35
4.3.2 Real traces analysis . 38

5 Improvements and hints 45
5.1 VisPlot . 45
5.2 LASCAR . 46

5.2.1 Acquisition and analysis from Chipwhisperer 47
5.2.2 Acquisition and analysis from Rainbow 49

5.3 Rainbow viewer . 50

6 Conclusion 52

A Basic capture script from CW 54

B Target firmware 56
B.1 TinyAES . 56
B.2 Cortexm-AES . 57

C Capture script from Rainbow 59
C.1 TinyAES . 59
C.2 Cortexm-AES . 60

D Python script for analysis 62
D.1 DPA . 62
D.2 CPA . 63

E Lascar integration 66
E.1 with Chipwhisperer . 66
E.2 with Rainbow . 69

Bibliography 72

vi

List of Tables

2.1 Power Consumption Model of CMOS Transition 9

4.1 DPA of 600 simulated traces - TinyAES 28
4.2 CPA of 50 simulated traces - TinyAES 29
4.3 DPA of 300 real traces - TinyAES 32
4.4 CPA of 50 real traces - TinyAES 33
4.5 DPA of 1500 simulated traces - Cortexm-AES 36
4.6 CPA of 50 simulated traces - Cortexm-AES 39
4.7 CPA of 40000 real traces - Cortexm-AES 42

vii

List of Figures

2.1 Side channel monitoring . 3
2.2 SPA trace showing AES-128 encryption operation 4
2.3 First 5000 samples of AES encryption 6
2.4 DPA traces, one correct and two incorrect 7
2.5 AES algorithm scheme . 10
2.6 S-box . 11
2.7 AddRoundKey step . 11
2.8 SubBytes step . 12

3.1 CW 1200 ChipWhisperer-Pro . 14
3.2 CW 308 UFO . 14
3.3 CW308T-STM32F . 15

4.1 S-Box output: the point exploited in the attacks 23
4.2 Simulated power trace of TinyAES implementation 27
4.3 DPA of 600 simulated traces - TinyAES 28
4.4 CPA of 50 simulated traces - TinyAES 29
4.5 Real power trace of TinyAES implementation 30
4.6 DPA of 300 real traces - TinyAES 31
4.7 CPA of 50 real traces - TinyAES 33
4.8 Average of simulated power traces of Cortexm-AES implementation 35
4.9 DPA of 1500 simulated traces - Cortexm-AES 37
4.10 CPA of 50 simulated traces - Cortexm-AES 39
4.11 CPA of 50 simulated traces - Cortexm-AES 40
4.12 Average of real power traces of Cortexm-AES implementation . . . 40
4.13 Correlation progression - Cortexm-AES 42
4.14 Rank progression - Cortexm-AES 43
4.15 CPA of 40000 real traces - Cortexm-AES 44

5.1 VisPlot example . 46
5.2 Viewer example . 51

viii

Acronyms

SPA
Simple Power Analysis

DPA
Differential Power Analysis

CPA
Correlation Power Analysis

HW
Hamming Weight

HD
Hamming Distance

SD
Switching Distance

AES
Advanced Encryption Standard

x

Chapter 1

Introduction

Side-channel attacks are a real threat to embedded devices running cryptographic
software. They are techniques in charge of measuring the physical outputs of
a device running cryptographic operations and to find a relationship between
them and those operations. The physical outputs can be, for example, power
consumption, heat or electromagnetic radiation. Particularly, power analysis takes
advantage of the power consumption information of a device in order to retrieve
secret data involved in cryptographic computations, for example the secret key.
There are mainly three kinds of power analysis techniques: simple power analysis
(SPA) which directly interprets the power traces, differential power analysis (DPA)
which is a step forward and it exploits statistical methods to recover the secret
key, correlation power analysis (CPA) that exploits a hypothetical power model
emulating the real power consumption and then computing the correlation between
it and the real traces.

Some simulation tools have been developed to help with the analysis of those
vulnerabilities, simplifying the process with respect to running on real embedded
targets that require special and expensive tools to acquire the traces. The thesis
aims to analyse how much the simulated traces produced by the simulation tool, in
this case Rainbow, are comparable to real power consumption traces, and how much
using these simulators can help in finding and removing side-channel vulnerabilities.
The real traces are acquired on the ARM Cortex-M microcontroller, thanks to the
NewAE Technology ChipWhisperer tool.

The following steps will be addressed:

1. Study the basic techniques of SPA, DPA and CPA

2. Understand how Rainbow and the Chipwhisperer work, trying to identify their
benefits and limitations

3. Compute power analyses on simulated and real traces looking for differences

1

Introduction

4. Develop a framework allowing better usability with ST embedded targets

The cryptographic protocol that will be attacked and analyzed is AES-128 in two
implementations, one in C language and one in assembly. The C implementation
is scholastic and not a very optimized version while the assembly implementation
is an optimized version, with performance and security features aligned with the
state-of-the-art.

1.1 Thesis outline
• Chapter 2: Overview about the power analysis techniques, with a detailed

description and figures of the three different types of analysis. There is also
an explanation of AES and its steps exploited by the attacks.

• Chapter 3: For the simulated traces the tool utilized is Rainbow while for
the real acquisition it is the Chipwhisperer-Pro kit. This chapter explains
all the software and hardware needed to replicate these analyses but also an
explanation of how they work.

• Chapter 4: This is the main chapter because it includes all the results of the
attacks. They are illustrated using a lot of charts and tables. The first section
explains the context of the analyses and how to implement DPA and CPA
providing the script in pseudo-code. The second and third section regards two
different AES implementations where, for each one, the attacks tested make
use of both simulated and real traces.

• Chapter 5: This is the chapter designated to the explanation of some
improvement and some hints. These suggestions can be applied to any analysis
and they can avoid waste of time.

• Chapter 6: The conclusions and some starting points for future works are
explained here.

• Appendix: All the appendices are scripts that help the reader during the
lecture of the work, but they can also be useful to the reader who wants to
replicate the experiments on their own.

2

Chapter 2

Side Channel Analysis

Nowadays, cryptography has an essential role in everyday life, almost every elec-
tronic device uses it. Research has demonstrated that there are often relationships
between the device’s physical output like power consumption, heat and sound
emanated, electromagnetic radiation and the encryption taking place on the device.
This field of study, which has spread in recent years, is called Side-channel Analysis.
This type of analysis is in charge of monitoring the external outputs of a device
when some cryptographic operations are running on it. By analysing this data
and using specific algorithms, is possible to recover, for example, the encryption
key. The fundamental and starting hypothesis is that the physical outputs of a
cryptographic device are correlated with the internal state of a device running some
cryptographic operations.

Figure 2.1: Side channel monitoring

3

Side Channel Analysis

2.1 Power Analysis
Power analysis is based on monitoring the power consumption on a cryptographic
device [1]. Every electronic device manipulates data in terms of ones and zeros
thanks to the transistors and the electric current. Adding or removing current from
a transistor can change from one to zero or vice versa. The power consumption of
a device reflects the data processed so it can reveal pieces of information about the
processes running on it.

In this way, in the cryptographic field, when a cryptographic device is running
some cryptographic operations, its data-dependent power consumption can expose
secrets to attack. Common hardware used to monitor the device is an oscilloscope.
Briefly, to measure the power consumption of a circuit, a known fixed stable resistor
is introduced in series with the power input. Ohm’s law I = V

R
says that the voltage

is directly proportional to the current, so recovering the change in voltage in time is
very easy. In the following sections, there will be an explanation of three different
types of power analysis techniques.

2.1.1 Simple Power Analysis
Simple power analysis (SPA) is the most basic power analysis technique, as said
by Kocher et al. «SPA is a technique that involves directly interpreting power
consumption measurement collected during cryptographic operations» [2, p.2].

Figure 2.2: SPA trace showing AES-128 encryption operation

The basic element of the analysis is the trace, which represents the power

4

Side Channel Analysis

consumption measurement of a device performing a cryptographic operation. Figure
2.2 is an example: the AES-128 performs 10 rounds and they are clearly visible in
the SPA trace. Different instructions involve variations in power consumption so,
using SPA is difficult to recover the secret key but, only looking at the trace, can
be very useful to understand the type of algorithm.

2.1.2 Differential Power Analysis
SPA is not easy to use to recover the secret key. There is often a lot of noise in
the measurement and the analysis becomes more complicated. To reduce this fact
there are some statistical methods, Differential power analysis (DPA) is based on
these and permits to reach optimal results. DPA was first introduced by Kocher et
al. in 1999 in an article entitled “Differential Power Analysis” [2].

The essential part to compute DPA is the selection function D(Ci, Kn), it is
necessary to group the collected traces in two sets related to the returned value of
D(Ci, Kn) (generally it is 0 or 1). The selection function has two parameters: Ci

which is the known plaintext or the ciphertext relative to the ith trace, Kn which
is the guessed key at the nth byte (for example, if the key is 16-byte length, n is
between 0 and 15). The purpose of the DPA is to find when the hypothetical key
Kn is correct, so there is some kind of relationship with the real power consumption.

The process of conducting a DPA attack should be resumed in the following
steps:

• Observe m encryption operations and capture at the same time as many traces
T1..m, store also the plaintexts or the ciphertexts C1..m.

• Choose a statistical method to compare the two groups (created using the
selection function) and to decide, thanks to the statistic if they differ in some
way. A classic statistical method is the mean: each group is reduced to only
one trace that represents the average point-to-point.

• Once the statistical method has been applied, the two remaining traces are
subtracted obtaining the final trace which is the one that will be analyzed
looking for special patterns (peaks or nadirs).

∆D[j] is the final trace at sample j. The equation 2.1 is the mathematical form
of what was previously explained: the first fraction is the first set of traces while
the second one is the other set.

∆D[j] =
qm

i=1 D(Ci, Kn)Ti[j]qm
i=1 D(Ci, Kn) −

qm
i=1(1 − D(Ci, Kn)Ti[j])qm

i=1(1 − D(Ci, Kn)) (2.1)

Now there are two possible ways:

5

Side Channel Analysis

• Kn is incorrect: the selection function has generated a subdivision of the
traces that differs for about half from the correct target. Doing the mean and
then the difference, the final result ∆D[j] should approach values around zero.
There is no correlation between the subdivision of the selection function and
the values processed by the device.

• Kn is correct: the selection function has generated a subdivision correct
entirely, hence doing the mean and then the difference, the final result ∆D[j]
should present spikes where there is a correlation with the values processed
by the device.

Figure 2.3 shows the first 5000 samples of AES encryption and can be used as
power reference while figure 2.4 shows three different results of DPA analysis. On
top there is the trace of a correct key guess: a spike is visible approximately at
sample 1500 and it is the proof of the correct guess. The lower two traces represent
an incorrect key guess, a spike is again visible but it is significantly shorter.

Figure 2.3: First 5000 samples of AES encryption

2.1.3 Correlation Power Analysis
Correlation Power Analysis was first introduced by Brier et al.[3] in 2004 and
it is a further step forward the DPA. The main hypothesis for the CPA is that
there is a correlation between the real measured power traces and the processed
values by the device in time. This technique is based on a hypothetical power
model, it must represent in the possible best way the power consumption of the
cryptographic device under attack. As in DPA, analyzing the consumption, it
should be possible to recover the secret key. An efficient and widespread way to
compute the correlation between the measured traces and the power model is the
Pearson correlation coefficient (eq. 2.2). This attack will make use of this function,
looking for the highest correlation.

6

Side Channel Analysis

Figure 2.4: DPA traces, one correct and two incorrect

Given N known plaintexts or ciphertexts, P the predicted power calculated by
the hypothetical power model and W the equivalent traces of real consumption,
the Pearson correlation coefficient ρ is defined as:

ρ(W, P) = Cov(W, P)
σW σP

(2.2)

Where Cov is the covariance and σ is the standard deviation. The Pearson
coefficient result always has a value between -1 and +1, when the absolute value of
ρ close to 1 means there is a high correlation while close to 0 means there is no
correlation.

The process of conducting a CPA attack is the following:

• Choose an intermediate point of the cryptographic algorithm that must depend
on the known variable and the secret keys

• Measure the real power consumption of the device with an oscilloscope and
store the traces

• Calculate the predicted power consumption using a hypothetical power con-
sumption model

• Compute the correlation between the real power trace and the predicted one

• The value with the highest correlation coefficient will be, with a high proba-
bility, the correct key guess

7

Side Channel Analysis

2.1.4 CPA Power Consumption Model
The power consumption model has the task to predict the power consumption
trying to be as much as possible close to the real. In this type of attack, the
choice of a valuable power model has a direct impact on the performance of the
attack. Scientific literature reports three power models: the Hamming Weight, the
Hamming Distance and the Switching Distance. The Hamming Distance and the
Switching Distance are quite similar, both are based on the relation between the
power consumption and switching activity in CMOS devices, therefore the CMOS
consumption is data-dependent [4, p.3]

Hamming Weight

The Hamming weight of a binary string is the number of bits equal to 1. For
example in the string “00101101” the hamming weight is 4 and for “11110001” it is 5.
If D = qm−1

j=0 dj2j is the m-bit binary data with dj=0 or 1, the HW (D) = qm−1
j=0 dj

will be the hamming weight.
The Hamming Weight model (HW) is the most basic consumption model, it is

based on the fact that only a 1 involves a significant amount of power consumption
while a 0 does not involve extra power consumption. In practice, using this model,
the power consumption is proportional to the total number of bits set to 1 in the
processed data.

Hamming Distance

The Hamming distance between two binary strings of equal length is the number
of bits that change their value comparing the first string with the second one. For
example, given the two strings “00101101” and “11110001”, the hamming distance
is 5 because there are five bits that change value. Given two m-bit binary string
S1 and S2, the Hamming distance can be computed as HD = HW (S1 ⊕ S2).

The Hamming Distance model (HD) was proposed by Brier in [3], it is propor-
tional to the number of transitions from 1 to 0 and vice versa. It is assumed that
both transitions have the same amount of power consumption. Given D the data
word and R its reference state, the power model is:

W = aHW (D ⊕ R) + b (2.3)

where a is a scaling factor between the Hamming distance and the power consumed
(W), b is everything not related to the cryptographic operations. Note that if
R is taken to be zero, this model collapses in the Hamming weight. Indeed, the
Hamming distance model is a generalization of the Hamming weight

8

Side Channel Analysis

Switching Distance

The Switching distance model (SD) has been introduced in 2007 by Peeters et
al. [5]. It is an evolution of the Hamming distance because it considers that the
energy values required to flip the bits from one state to the other are different. The
Switching distance of the transition 0→1 is assigned 1 but for the transition 1→0
is assigned Φ which is the Switching Distance factor.

Some studies have revealed that CPA attack with the Switching distance model
performs better than other models and generally requires fewer traces to recover
the entire secret key [4] [6].

The table 2.1 summarizes the behaviour of the three power models presented.

Transitions HW HD SD
0→0 0 0 0
0→1 1 1 1
1→0 0 1 Φ
1→1 1 0 0

Table 2.1: Power Consumption Model of CMOS Transition

2.2 Advanced Encryption Standard
Advanced Encryption Standard “or simply AES” is an encryption standard. It is a
symmetric block cipher that processes a data block of 128 bits using keys of 128,
192 or 256 bits length [7]. In general, the key used is specified in the name, for
example with the key of 256 bits the algorithm’s name will be AES-256. The blocks
are called state and they are 4x4 column-major order matrix where each value is
one byte. The AES is a round-based encryption algorithm, the number of rounds
Nr can be 10, 12 or 14 when the key length is 128, 192 or 256 bits, respectively.
Before the encryption, the cipher key needs to be expanded and it is called round
key, the routine named Key Expansion is in charge of doing that. The encryption
phase performs, in each round except the final one, four functions: AddRoundKey,
SubBytes, ShiftRows and MixColumns, while the final round does not have the
MixColumns transformation. The generic execution flow is shown in figure 2.5.

In the continuation of this work, AES-128 is used, but the theory may also
be valid for other implementations (AES-192 and AES-256). AddRoundKey and
SubBytes steps are the only relevant functions for this work and the following part
describes how they work.

9

Side Channel Analysis

Figure 2.5: AES algorithm scheme

2.2.1 AddRoundKey and SubBytes steps
The first function executed is AddRoundKey, then the algorithm moves into the
first round and performs SubBytes step (see figure 2.5). The algorithm takes two
input parameters, the plaintext (the data to be encrypted) and the round key (the
expanded cipher key).

During the first step, the AddRoundKey step, each plaintext value is XOR’d
with a round key value at the same position in the block. The equation 2.4 shows,
more simply, how it works, where Pi is the plaintext and Ki the round key at ith
position.

[P0 ⊕ K0, P1 ⊕ K1, P2 ⊕ K2 . . . P15 ⊕ K15] (2.4)

[Pi ⊕ Ki] i=0. . . 15
Now, the SubBytes step takes the result of the previous step and performs a

lookup for a value stored in the S-box. In other words, the input of this step is
Pi ⊕ Ki, and it is used for a lookup in the S-box that returns one byte value. The
equation 2.5 represents the operation where S is the S-box lookup and Oi is the
output.

10

Side Channel Analysis

Oi = S[Pi ⊕ Ki] i=0. . . 15 (2.5)

The S-box is a 16x16 matrix of one byte values that remains constant for
every AES implementation. Its purpose is to mix data and ensure the property
of confusion, making the algorithm difficult to break. The S-box used in the AES
algorithm is in figure 2.6.

Since Pi ⊕ Ki is one byte, the lookup is performed taking the first 4 bits as the
column and the others as the row. For example if P = C3 and K = 67, Pi ⊕ Ki

will be A4 then the S-box lookup will return 49. The following part provides a
complete example of the execution of AddRoundKey and SubBytes steps using
plaintext P=[01, 02, 03, 04, 08, 07, 06, 05, 09, 09, 0B, 0B, 06, 05, 06, 06] and
cipher key K=[C0, C1, C2, C3, C4, C5, C6, C7, CA, CB, CD, CE CC, CC, CE,
CF]. The figures 2.7 and 2.8 shown, respectively, the AddRoundKey and SubBytes
function executed on an entire block.

The analysis that will be discussed exploits the monitoring of power consumption
at the point the S-box lookup is completed, hence this point is at the end of the
SubBytes function for each byte.

Figure 2.6: S-box

Figure 2.7: AddRoundKey step

11

Side Channel Analysis

Figure 2.8: SubBytes step

12

Chapter 3

Trace acquisition setup

As mentioned in the introduction, the purpose of this work is to evaluate a side-
channel simulation tool against real power traces. It is clear that for the same
AES-128 implementation there will be two acquisitions of traces, one for the real
and one for the simulated. Both traces will be analysed using the same procedures
and algorithms. This section explains how the acquisition environment was set and
how to replicate the experiments in other places, also the code will be provided,
resulting in a better understanding. For some aspects, the Lo et al. article [8] does
a similar work for the real traces acquisition but on a different board.

3.1 Hardware and software
The hardware used for the analyses is the following:

• CW 1200 ChipWhisperer-Pro: The capture board controlled by PC using
python. Its role can be compared with a classic oscilloscope to gather power
traces. It can perform power analysis synchronous to the target’s clock helping
the attacks succeed at much lower sampling frequencies than a conventional
oscilloscope [9]

• CW 308 UFO: The base board is compatible with a lot of embedded target
boards [10]

• CW308T-STM32F4: The target board, equipped with a Arm Cortex-M4
running the AES-128 algorithm [11]

• Laptop: Generic laptop to interface with the CW-Pro, save and elaborate
traces

The software used for the analyses is the following:

13

Trace acquisition setup

• ChipWhisperer API: The python library needed to control the ChipWhis-
perer’s boards from the laptop [12]

• Rainbow: The open-source side-channel simulation tool [13]. It is written
in python and based on Unicorn Engine that is a lightweight multi-platform,
multi-architecture CPU emulator framework [14]

• Lascar: Open source python library designed to help with side-channel
analysis. It will be used to create an easy way to acquire and compare the
two kinds of traces [15]

• Text editor: Generic text editor to write the scripts for the attacks

Figure 3.1: CW 1200 ChipWhisperer-Pro

Figure 3.2: CW 308 UFO

14

Trace acquisition setup

Figure 3.3: CW308T-STM32F

3.2 ChipWhisperer
ChipWhisperer is a collection of many tools useful for embedded security research,
including side-channel power analysis and fault injection but this work will focus
only on the first one. It includes all the tools and no external tools are needed.

There are mainly two types of hardware devices: the capture board and the
target board. The capture board is the device in charge of being the channel of
communication between the target board and the user, it performs the capture
of traces and can be seen as a sort of oscilloscope. In our case it is the CW-Pro
(fig. 3.1). The target board, instead, is the device under test (DUT) where specific
algorithms run on it. In our case there are two boards: the CW 308 UFO (fig. 3.2)
that stands as a baseboard and another board, the CW308T-STM32F4 (fig. 3.3),
which will be connected to the baseboard.

3.2.1 Communication and firmware
The communication between the target and the capture board is done through the
SimpleSerial protocol and it is always initiated by the capture board. This board
is controlled using Python while the firmware of the target board is written in C
and there are specific C functions to use. All the standard functions used in the
communication are provided in the following list:

• simpleserial_write(cmd, data): The function to start the communication, it is
called from the capture side. Cmd is a char that says which command to use
and data is the bytearray to send to the target board.

15

Trace acquisition setup

• simpleserial_read(cmd, paylen): The function at the end of the communication
to receive data sent from the target, it is called from the capture side. Cmd
is the command (generally ‘r’) and paylen is the expected byte length of the
received data

• simpleserial_addcmd(cmd, len, func): C function declared in the firmware of
the target. It adds a listener to the target for a specific command. Cmd is
the letter for identifying the command, len is an integer and it is the amount
of data bytes expected and func is the handler related to cmd

• simpleserial_put(cmd, len, data): Writes data to the serial port which should
send a packet from the target board to the capture board. Cmd is the
command for the capture board, len is an integer and it is the size of the data
buffer and data is the data buffer

• simpleserial_get(): It is used at the end of the code (in the target firmware) to
keep checking if a known command is sent. When a packet from the capture
board is found relevant, the appropriate callback function is called

Listing 3.1: Capture function example
1 #d e f i n e number o f t r a c e s
2 N = 100
3 f o r i in range (N) :
4

5 #send p l a i n t e x t to the t a r g e t
6 t a r g e t . s i m p l e s e r i a l _ w r i t e (’p ’ , p l a i n t e x t)
7

8 # . . . sn ip (capture t r a c e s)
9

10 #r e c e i v e the r e s u l t back
11 re sponse = t a r g e t . s imp l e s e r i a l_r ead (’ r ’ , 16)

Listing 3.2: Target firmware example
1 #inc lude " s i m p l e s e r i a l . h "
2

3 uint8_t encrypt_pla intext (uint8_t ∗ p la in t ex t , uint8_t data_len)
4 {
5 t r i gge r_h igh () ;
6 // . . . sn ip (do the encrypt ion o f p l a i n t e x t) .
7 t r igger_low () ;
8

9 // Send the r e s u l t back to the capture board .
10 s imp l e s e r i a l_put (’ r ’ , 16 , r e s u l t _ b u f f e r) ;
11

12 re turn 0 ;

16

Trace acquisition setup

13 }
14

15 // Add a l i s t e n e r
16 s impleser ia l_addcmd (’p ’ , 16 , encrypt_pla intext) ;
17

18 // Keep check i f a command was send f i t t i n g one o f the l i s t e n e r s .
19 whi le (1)
20 s i m p l e s e r i a l _ g e t () ;

The two codes above are a simple example to understand how the communication
between the boards works. In practice, the target board encrypts the text sent
from the capture board (the user) and returns the respective ciphertext. The code
3.2 is the target firmware.

Let’s make an example using these scripts and trying to follow the communication
flow. First, we want to encrypt some plaintext so, from the laptop, we send the
plaintext associated with the command p to the target(line 6, 3.1). Then, thanks to
simpleserial_get in the target firmware (line 20, 3.2), the command p is received and
an associated function can handle the data. The encrypt_plaintext function will
execute the encryption and returns the ciphertext to the user (line 10, 3.2). Now,
the user with simpleserial_read (line 11, 3.1) can obtain the ciphertext relative to
the data sent at the beginning.

3.2.2 Data capture workflow
As written in section 3.1, what is needed for capturing real traces is a laptop and
the three boards included in the Chipwhisperer-Pro kit. This section provides a
step-by-step description of the workflow:

1. The target is programmed to run AES-128 encryption when receiving some
data. From the capture board 16 random bytes are sent through the serial
communication and the target calculates the ciphertext. Two functions are
used in the target firmware to delimit trace capture: trigger_high() and
trigger_low(). The first function signals the point to start the acquisition
that runs until a specific number of samples are collected (scope.adc.samples).
Trigger_low() is used to set the trigger pin low so it can be ready for another
capture

2. The capture board is set to start capturing at trigger_high() and, as default
setup, it acquires 4 samples per clock cycle. What the board measure is the
voltage at the ends of a shunt resistor so the unit of the points is Volt

3. The previous two steps are repeated as many times as there are traces to be
collected. The traces and the random plaintext are saved into the disk for
later analyses

17

Trace acquisition setup

4. After having gathered and saved the traces and the plaintext, some kind of
offline analysis can then take place

Appendix A and B.1 provide real and working scripts as examples for a better
understanding, moreover, there is a better explanation of the functions not explained
in this section. For more details refer to the provided links or the chipwhisperer
whitepaper [16].

3.3 Rainbow
Unicorn is a lightweight multi-platform, multi-architecture CPU emulator frame-
work. It is implemented in pure C language with a lot of bindings for other
languages and the performance is very good.

Rainbow is built on Unicorn and written in Python, it aims to provide an
easy scripting interface to emulate embedded binaries and trace them to perform
side-channel attacks. It has been created to have an easy and fast way to check
the presence of side-channel vulnerabilities in the code and help the developers.
Rainbow only produces an execution trace, without applying any processing on
the values. This is left as some post-processing so that the user can apply its own
leakage model and simulate various conditions from the same traces.

3.3.1 Basic usage
The basic usage is very intuitive, there are mainly some compulsory functions and
others depending on the final purposes. For this work the following list contains
the essential ones:

• e=rainbow_arm(sca_mode=True, sca_HD=True): Compulsory, defines the
architecture to emulate, others architecture are available. sca_mode=True for
HW power model, sca_HD=True for HD power model, there is an appropriate
explanation of the Rainbow power model in section 3.3.2

• e.load(‘firmware.elf’, typ=‘.elf’): Compulsory, loading the binary to emulate,
the loader supports elf, hex and bin extensions

• e.start(start_address, stop_address, count=number_of_instructions): Com-
pulsory, starts the emulation from the first address and stops it at the second
address or when the count is reached

• e.start(functions[‘function_name’], stop_address, count=number_of_
_instructions): Another way to start the emulation but this time specifying
the function’s name instead of the address

18

Trace acquisition setup

• e[address] = value: Write value in memory at address

• e[‘reg_name’] = value: Write value in the specific register

• value = e[addr_start:addr_end]: Read memory from addr_start to addr_end
and put what read in value

• e.sca_values_trace: The array containing the points of the simulated trace.
Each point corresponds to an instruction

Suppose we have the following little program (3.3) that encrypts the text and
we want to emulate it. The first step is to compile the script with an appropriate
compiler which depends on the architecture to simulate. We are using arm indeed
the correct compiler is arm-none-eabi-gcc with the flags -mthumb -mcpu=cortex-m4
-mfloat-abi=soft –specs=nosys.specs -Os. Once we have generated the elf binary we
are ready to set the Rainbow emulation. The binary contains only one function
which is the one we want to emulate and requires one parameter, the plaintext.

Listing 3.3: Basic Rainbow firmware example
1 i n t main () {
2

3 //16 bytes o f p l a i n t e x t
4 uint8_t input []={ " aabbccddeef fgghh " } ;
5

6 encrypt_pla intext (input) ;
7

8 re turn 0 ;
9 }

The first two lines in the emulation script are the declaration of the architecture
and the loading of the binary. Then, there is the setup of the function parameters.
In arm architecture, the first four parameters are passed in the first four registers
(r0, r1, r2, r3) therefore, in this case, the only parameter is passed in register r0.
Lines 4, 5 and 6 do the following: an address is assigned to the variable buf_in,
at the address pointed by buf_in is written the plaintext and finally, buf_in is
assigned to r0. Now the emulation can start specifying either the function’s name
or the exact address and collecting the trace in sca_values_trace. The script 3.4 is
the python form of what just described above.

Listing 3.4: Basic Rainbow emulation script
1 e = rainbow_arm (sca_mode=True)
2 e . load (" f irmware . e l f ")
3

4 buf_in = 0xCAFE1000
5 e [buf_in] = b" abcdefabcdef1234 "
6 e [" r0 "] = buf_in

19

Trace acquisition setup

7

8 e . s t a r t (e . f u n c t i o n s [" encrypt_pla intext "] , 0)
9

10 t r a c e= e . sca_values_trace

3.3.2 Power models
Rainbow, by default, has two power models, one based on the hamming weight
and one on the hamming distance. For each instruction, both models sum the HW
or the HD of all written registers. For example, if we choose the HW power model,
each point will be the sum of the HW of all written registers by that instruction.
Let’s see a practical example with some values.

Listing 3.5: Rainbow HW power model example
1 8000242: c9 f0 ldmia r1 ! , { r4 , r5 , r6 , r7 }
2 8000244: e8bc 000 f ldmia .w ip ! , { r0 , r1 , r2 , r3 }
3 8000248: 4044 eo r s r4 , r0
4 800024a : 404d eo r s r5 , r1
5

6 0x8000244 [R12 , R0 , R1 , R2 , R3] HW_sum=74
7 r0 =73736170 r1 =64726 f77 r2 =73736170 r3 =64726 f77 r4=aa42 f3 f 5 r5=7

e1c9b60 r6=d4bc705c r7=b3e5e9d4 r12 =90001010 r13=a f f f f f d 4 r14
=20000000 r15 =08000248

8

9 0x8000248 [R4] HW_sum=14
10 r0 =73736170 r1 =64726 f77 r2 =73736170 r3 =64726 f77 r4=d9319285 r5=7

e1c9b60 r6=d4bc705c r7=b3e5e9d4 r12 =90001010 r13=a f f f f f d 4 r14
=20000000 r15 =0800024a

The first four lines are instructions as example, line 6 contains the written
registers by the instruction 0x8000244 and line 7 contains the values of the registers
for the same instruction after it has been executed. Lines 9 and 10 are relative to
the instruction 0x8000248. 0x8000244 writes five registers so the HW sum is 74
because it corresponds to the sum of the HW of each of the five registers. The next
instruction writes only one register and the HW sum is 14 which corresponds to
the HW of the value in r4.

The HD power model works in the same way but, instead of the HW, it calculates
the HD. For this model there is an array that contains the last value of each register.

Listing 3.6: Rainbow HD power model example
1 8000242: c9 f0 ldmia r1 ! , { r4 , r5 , r6 , r7 }
2 8000244: e8bc 000 f ldmia .w ip ! , { r0 , r1 , r2 , r3 }
3 8000248: 4044 eo r s r4 , r0
4 800024a : 404d eo r s r5 , r1
5

20

Trace acquisition setup

6 Last va lue : r12 =90001000 r0=0 r1 =90002010 r2 =90003000 r3 =900010a0
7 0x8000244 [R12 , R0 , R1 , R2 , R3] HD_sum=74
8 r0 =73736170 r1 =64726 f77 r2 =73736170 r3 =64726 f77 r4=8b4ad833 r5=6514

e7 f1 r6=2f 6 5 f 7 f d r7=c3d8d079 r12 =90001010 r13=a f f f f f d 4 r14
=20000000 r15 =08000248

9

10 Last va lue : r4=8b4ad833
11 0x8000248 [R4] HD_sum=16
12 r0 =73736170 r1 =64726 f77 r2 =73736170 r3 =64726 f77 r4=f839b943 r5=6514

e7 f1 r6=2f 6 5 f 7 f d r7=c3d8d079 r12 =90001010 r13=a f f f f f d 4 r14
=20000000 r15 =0800024a

Comparison between the power models

Since there are two power models, we need to decide which one to adopt for the
analyses. This little section shows a light comparison between the two models and
explains why we have chosen the HW power model. The implementation of AES
used is the Cortexm-AES but it will be described in detail in the next chapter, for
the moment we don’t need further information about it.

The first idea to compare the models is to do the same analysis with the same
number of traces but generated using the two different power models. For the
traces generated with the HW power model, the results are the following:

• CPA

– 25 traces ⇒ 95% key recovered
– 50 traces ⇒ 100% key recovered
– 100 traces ⇒ 100% key recovered

• DPA

– 1000 traces ⇒ 95% key recovered
– 2000 traces ⇒ 100% key recovered

For the HD power model, instead, the results are below:

• CPA

– 25 traces ⇒ 65-70% key recovered
– 50 traces ⇒ 95% key recovered
– 100 traces ⇒ 100% key recovered

• DPA

21

Trace acquisition setup

– 2000 traces ⇒ 70-75% key recovered
– 3000 traces ⇒ 75% key recovered
– 5000 traces ⇒ 75% key recovered

If we have to base our choice on these data, it seems the HW model is better
than the HD model. Using the same amount of traces the key recovering is easier
for the key related to the traces generated with the HW model. This is the reason
why we adopted it for the generation of all the simulated traces.

22

Chapter 4

Analysis results

This chapter wants to explain how the analyses have been done, their approaches,
compare the results and provide scripts to replicate or improve this work.

4.1 Analysis context
As mentioned in section 2.2 the cryptographic algorithm used is AES-128 which
works with 16 bytes blocks: for 16 bytes of plaintext it retrieves 16 bytes of
ciphertext related to a 16 bytes key. There are a lot of AES implementations,
written in several languages and with different performances. We have chosen to use
two implementations: one written in C and one in assembly. Both implementations
were performed on a real ARM microcontroller (STM32F4) and both were emulated
using Rainbow. Every time, the traces were collected and saved on disk to make
analyses at a later stage. Again, for both implementations, two types of analyses
were done: DPA and CPA.

At the level of AES, the attacks exploit the S-Box output in the first round
which corresponds to the SubBytes function and, for the success of the attack, the
plaintext and the trace are mandatory to know (fig. 4.1).

Figure 4.1: S-Box output: the point exploited in the attacks

23

Analysis results

At the level of the attacks carried out, the DPA model used is the difference of
means and the selection function is based on the least significant bit (LSB). For
the CPA the power consumption model used is the HW model.

The last important details are the sampling rate for the real traces which
corresponds to 4 samples per clock cycle and for the simulated traces which is 1
sample per instruction.

4.1.1 DPA implementation
To implement the difference of means attack, we apply the fundamental hypothesis
of the power analysis: there is a significant difference in power consumption if a bit
of an output is 0 or 1. In particular, for this attack the bit considered is the LSB
and the output is the output of the S-Box lookup. In order to predict the outputs,
the script or software for the analysis replicates a model of the S-Box doing the
same thing that the AddRoundKey and SubBytes functions do. Since we know
the plaintext used by the AES algorithm, we can sort each S-Box output against a
key guess into two sets: set 1 where LSB is 0 and set 2 where LSB is 1. This is
done one byte at a time, testing all the possible values of the key (0-255) against
the known plaintext. Then, the correct key should produce the highest significant
difference.

A pseudocode is provided and can be adapted to any language.

1 f o r byteIndex 0 to 16 :
2 f o r keyGuess 0 to 255 :
3 f o r t race Index 0 to N:
4 sbox_output = sbox [keyGuess XOR p l a i n t e x t [t race Index] [

byteIndex]]
5

6 i f (LSB(sbox_output) == 1)
7 add t ra c e r e l a t i v e to t race Index to s e t1
8 e l s e i f (LSB(sbox_output) == 0)
9 add t ra c e r e l a t i v e to t race Index to s e t0

10

11 ca l cu la t eAverage (s e t1)
12 ca l cu la t eAverage (s e t0)
13 ca l cu l a t ePo in tToPo in tD i f f e r ence (set1 , s e t0)

The key to recover is 16 bytes long, N is the number of traces acquired, sbox[]
is the array of 256 bytes for the lookup, plaintext is the array containing the
plaintext associated to every trace, each entry is 16 bytes long but the total entries
are N, LSB() is the function to get the LSB, set0 and set1 are the two sets where
the traces are divided. The first for loop is to cycle over all the 16 bytes of the key,
recovering one byte at a time, the second one iterates over all the possible values of

24

Analysis results

a byte and the third one iterates over all the acquired traces to make possible the
classification in two sets. Appendix D.1 shows a working python implementation
of the attack.

4.1.2 CPA implementation
For this attack, as in DPA, we want to predict the output of the SubBytes step of
AES. Rather than splitting the traces into two groups, the goal of this technique is
to use a power model to predict the S-Box output. Using the HW power model
the thing to predict is the number of bits set to 1 in the SubBytes output. The
correlation coefficient can then be calculated against the real power trace and the
predicted power model against all the possible key values. Once the correlation is
computed, the highest value should correspond to the correct key.

A pseudocode is provided and can be adapted to any language.

1 f o r byteIndex 0 to 16 :
2 f o r keyGuess 0 to 255 :
3 hw_array [] = 0
4 pos = 0
5 f o r t race Index 0 to N:
6 sbox_output = sbox [keyGuess XOR p l a i n t e x t [t race Index] [

byteIndex]]
7 hw_array [pos] = HW(sbox_output)
8 pos= pos + 1
9

10 t races_array [] = getAl lAcqui redTraces ()
11 c a l c u l a t e P e a r s o n C o e f f i c i e n t (traces_array , hw_array)

The key to recover is 16 bytes long, N is the number of traces acquired, sbox[] is
the 256-byte array for the lookup, plaintext is the array containing the plaintext
associated with every trace, each entry is 16 bytes long but the total entries are
N, HW() is the function to compute the HW and the result is put in the array
hw_array. The first for loop is to cycle over all the 16 bytes of the key, recovering
one byte at a time and the second one iterates over all the possible values of a byte.
Appendix D.2 shows a working python implementation of the attack.

4.2 TinyAES - C implementation
The first implementation that is attacked is TinyAES [17], a small and portable
AES implementation in C language. In the following analyses a slightly different
version is used but the core is the same, it is the same used by the ChipWhisperer’s
tutorial.

25

Analysis results

The firmware programmed into the target board is the one presented in appendix
B.1 where only the encryption function is captured. The firmware is compiled with
the optimization flag -Os, for more details about the optimization options using
GCC see [18]. The capture script in appendix A is good and can be adopted by
changing only the number of traces to acquire. It is important to save into an
appropriate format the traces to avoid a new capture each time you want to make
an analysis, in the script it is not specified but an easy way is using the NumPy
[19] Python library.

About the simulation with Rainbow, we must create a small firmware in C
language and compile it with the following line arm-none-eabi-gcc -mthumb -
mcpu=cortex-m4 -mfloat-abi=soft –specs=nosys.specs -Os. The C script must
contain only the two functions needed by the AES to encrypt some text, one
function is the one to expand the key and the other one is the proper encryption.

Listing 4.1: Rainbow firmware to emulate TinyAES
1 #inc lude " aesTiny . h "
2

3 i n t main () {
4

5 uint8_t input []={ " t e s t c i f r a t u r a 1 2 3 " } ;
6 uint8_t key [16]={0 x70 , 0x61 , 0x73 , 0x73 , 0x77 , 0x6F , 0x72 , 0x64 ,

0x70 , 0x61 , 0x73 , 0x73 , 0x77 , 0x6F , 0x72 , 0x64 } ;
7

8 AES128_ECB_indp_setkey (key) ;
9

10 AES128_ECB_indp_crypto (input) ;
11

12 re turn 0 ;
13 }

The parameter must be set but then they will be overwritten by Rainbow. Both
functions will be emulated but only the second one will be traced. Appendix C.1
shows the correct python script to set the emulation parameter and to capture N
traces.

For the encryption, in the real and simulated case, the key is always the same
and it is [0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7,
0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c].

4.2.1 Simulated traces analysis
Figure 4.2 shows the entire execution trace of the encryption of 16 random bytes.
The 10 rounds are clearly visible and the total length is 5000 samples, which
corresponds to 5000 instructions. The results are provided in two manners: textual,

26

Analysis results

with a table containing the values computed with the scripts, and graphic, with a
diagram.

Figure 4.2: Simulated power trace of TinyAES implementation

DPA results

The first analysis done is the DPA, and the entire key is recovered with 600 traces.
Table 4.1 is the textual view of the result, while figure 4.3 is the plotted data. Axis
X is the number of samples and axis Y is the difference of means, each key byte
corresponds to a colour and there is a legend to help in the consultation.

In the figure, it is possible to distinguish three groups of peaks related to
different steps of AES. It means that DPA finds leakage in other points of the
AES in addition to the SubBytes output that is the point we attack, as said at
the beginning of the chapter. The first group, as expected, is the SubBytes step,
where each spike corresponds to the load instruction from the S-Box for a total
of 16 spikes. The second group is the ShiftRows step: there are only 12 peaks
but they correspond again to a load instruction. The final group is related to the
MixColumns: it is divided into 4 subgroups and each spike corresponds to a load
instruction.

CPA results

The CPA finds the entire key with 50 traces. Table 4.2 is the textual view of the
result while figure 4.4 is the plotted data. Axis X is the number of samples and axis
Y is the correlation. The plotted data is similar to DPA, the points where there is

27

Analysis results

Byte Key 1° guess 2° guess
Value Avg diff Value Avg diff

0 2B 2B 0,894 B7 0,689
1 7E 7E 0,738 9C 0,720
2 15 15 0,865 38 0,698
3 16 16 1,205 E4 0,703
4 28 28 1,118 8F 0,742
5 AE AE 0,946 94 0,743
6 D2 D2 0,992 57 0,735
7 A6 A6 1,073 2A 0,792
8 AB AB 0,943 69 0,744
9 F7 F7 0,960 63 0,725
10 15 15 1,017 0F 0,794
11 88 88 1,092 11 0,774
12 09 09 1,079 E5 0,768
13 CF CF 0,971 AE 0,705
14 4F 4F 0,982 12 0,739
15 3C 3C 0,933 E8 0,767

Table 4.1: DPA of 600 simulated traces - TinyAES

Figure 4.3: DPA of 600 simulated traces - TinyAES

leakage follow the same pattern: there are three groups of leakage corresponding

28

Analysis results

to three steps of AES and also the instructions that leak are the same.

Byte Key 1° guess
Value Correlation

0 2B 2B 0,8824
1 7E 7E 0,9005
2 15 15 0,8140
3 16 16 0,8423
4 28 28 0,7873
5 AE AE 0,8267
6 D2 D2 0,8253
7 A6 A6 0,8306
8 AB AB 0,8252
9 F7 F7 0,8501
10 15 15 0,8533
11 88 88 0,8388
12 09 09 0,8632
13 CF CF 0,8241
14 4F 4F 0,8598
15 3C 3C 0,8741

Table 4.2: CPA of 50 simulated traces - TinyAES

Figure 4.4: CPA of 50 simulated traces - TinyAES

29

Analysis results

Using different optimization flags

The analyses done before used a firmware compiled with the option -Os which
produce a trace of about 5000 samples. What about using other flags? If we change
the optimization we expect that the traces will change. With -O0 we remove any
optimization and we obtain a trace of 25000 samples, five times the traces obtained
with -Os. If we want to optimize at the maximum level the correct flag is -O3 and
the resulting trace has 3500 samples. Since it is the highest optimize option, it is
correct to obtain the shortest trace.

4.2.2 Real traces analysis
Figure 4.5 shows the entire trace of the execution of 16 random bytes encryption.
The 10 rounds are clearly visible and the total length is 31000 samples that
correspond to 31000/4 = 7750 clock cycles due to the CW sampling rate.

Figure 4.5: Real power trace of TinyAES implementation

DPA results

DPA recover the entire key with 300 traces, half the simulated case. Table 4.3 is
the textual view of the result while figure 4.6 is the plotted data.

As we expected, the correct key byte produces the highest value and the 16
peaks are clearly visible (between sample 1500 and 2400), these peaks are related
to the SubBytes function, while the others about 2500 samples are related to the

30

Analysis results

function ShiftRows. In the table we can notice the gap between the first guess (the
correct byte) and the second guess (incorrect byte), for all the correct bytes their
values are bigger, reflecting what the theory says.

For the simulated case we are able to know which instruction corresponds to
each peak since there is a relationship sample-instruction, this fact is Rainbow
dependent because it generates one point for each emulated instruction. For the
real case, it is slightly different: we know that four samples represent 1 clock
cycle but there is no direct relationship with the instructions. Moreover, some
instructions take 1 clock cycle while others require 2 clock cycles. For example, if
there are 40 samples they correspond to 10 clock cycles but we do not know the
exact number of instructions executed, maybe ten or maybe less. This is why the
manual counting of the samples to deduce the instruction is not feasible and we
need another way to find where is the leakage. One possible method and the one
we used is manually moving trigger_high() in the code in order to start the trace
capture around the point we think there is the instruction that leaks. Capturing
some traces and then computing DPA or CPA, we expect the first peak at the
beginning of the trace. Counting the number of samples from the beginning to the
first peak, we can estimate how many instructions correspond to that samples and
if the leaking point is quite the same. Once we did some tests, the instructions
seem to be the same as the simulated case with a gap of only a few clock cycles,
hence all the peaks correspond to the load instruction.

Figure 4.6: DPA of 300 real traces - TinyAES

31

Analysis results

Byte Key 1° guess 2° guess
Value Avg diff Value Avg diff

0 2B 2B 0,0164 5 0,0138
1 7E 7E 0,0226 15 0,0145
2 15 15 0,0207 0B 0,0160
3 16 16 0,0209 8F 0,0144
4 28 28 0,0175 4B 0,0161
5 AE AE 0,0208 C5 0,0145
6 D2 D2 0,0207 B6 0,0137
7 A6 A6 0,0209 CE 0,0151
8 AB AB 0,0228 16 0,0166
9 F7 F7 0,0207 58 0,0139
10 15 15 0,0301 83 0,0153
11 88 88 0,0217 1E 0,0163
12 09 09 0,0220 47 0,0128
13 CF CF 0,0231 25 0,0148
14 4F 4F 0,0269 F2 0,0166
15 3C 3C 0,0193 77 0,0150

Table 4.3: DPA of 300 real traces - TinyAES

CPA results

For CPA analysis only 50 traces are necessary to recover the key and the correlation
is almost perfect. Again, table 4.4 shows the textual results and figure 4.7 the
plotted results that reflect what was found through the DPA with very little
differences due to the different analysis.

Using different optimization flags

The firmware used in the real board was compiled with the flag -Os, the same flag
utilized for the simulated case analyses. For that case, we have seen that different
optimization flags impact in terms of the number of instructions executed by the
microcontroller. With the option -Os the trace produced has about 30000 samples
corresponding to 7750 clock cycles. The option -O0 produces the longest traces, it
has about 180000 samples. The option -O3 produces, instead, the shortest trace
with only 18000 samples. The results follow the same behaviour found in the
simulated case, more optimization produces shorter traces and less optimization
longer traces.

32

Analysis results

Byte Key 1° guess
Value Correlation

0 2B 2B 0,9949
1 7E 7E 0,9940
2 15 15 0,9945
3 16 16 0,9941
4 28 28 0,9957
5 AE AE 0,9840
6 D2 D2 0,9940
7 A6 A6 0,9967
8 AB AB 0,9937
9 F7 F7 0,9938
10 15 15 0,9919
11 88 88 0,9950
12 09 09 0,9934
13 CF CF 0,9944
14 4F 4F 0,9947
15 3C 3C 0,9931

Table 4.4: CPA of 50 real traces - TinyAES

Figure 4.7: CPA of 50 real traces - TinyAES

33

Analysis results

4.3 Cortexm-AES - Assembly implementation
The second implementation that is attacked is Cortexm-AES [20], an implementa-
tion written in assembly and optimized for real world cortex-m microcontrollers.
The repository includes implementations for several architectures, for our purposes
we use CM3_IT that can be used for cortex-m4. In particular the files used are:
lookup_tables.c which contains the S-Box, CM3_1T_AES_128_keyschedule_enc.S
and CM3_1T_AES_encrypt.S.

The firmware programmed into the target board is the one presented in appendix
B.2 where only the encryption function is captured. It is compiled with the optimize
option -Os. The rules described and suggested for the other implementation are as
valid for this one.

About the simulation with Rainbow, we must create again a small firmware
in C language and compile it with the following line arm-none-eabi-gcc -mthumb
-mcpu=cortex-m4 -mfloat-abi=soft –specs=nosys.specs -Os. An example of a C
script is provided below.

Listing 4.2: Rainbow firmware to emulate Cortexm-AES
1 extern void CM3_1T_AES_128_keyschedule_enc(uint8_t ∗ rk , const uint8_t

∗key) ;
2 extern void CM3_1T_AES_encrypt(uint8_t ∗ rk , const uint8_t ∗ in ,

uint8_t ∗ out , s i z e_t rounds) ;
3

4 i n t main () {
5

6 const uint8_t key [16]={0 x70 , 0x61 , 0x73 , 0x73 , 0x77 , 0x6F , 0x72 ,
0x64 , 0x70 , 0x61 , 0x73 , 0x73 , 0x77 , 0x6F , 0x72 , 0x64 } ;

7 uint8_t rk [1 1 ∗ 1 6] ;
8 const uint8_t in [16]={0 , 0 , 0 , 0 , 1 , 2 , 3 , 1 , 2 , 4 , 1 , 2 , 5 , 1 , 2 , 6} ;
9 uint8_t out [1 6] ;

10

11 CM3_1T_AES_128_keyschedule_enc(rk , key) ;
12

13 CM3_1T_AES_encrypt(rk , in , out , 1 0) ;
14

15 re turn 0 ;
16 }

The parameter must be set but then they will be overwritten by Rainbow. Both
functions will be emulated but only the second one will be traced. Appendix C.2
shows the correct python script to set the emulation parameter and to capture
N traces. Comparing the two emulation scripts, this one requires more manual
settings due to the more parameters of the functions.

For the encryption, in the real and simulated case, the key is always the same
and it is [0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7,

34

Analysis results

0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c].

4.3.1 Simulated traces analysis
The figure 4.8 shows the entire execution trace of the encryption of 16 random
bytes. It is the average of 50 traces so in this way the 10 rounds are visible. The
total length is about 550 samples that correspond to 550 instructions.

Figure 4.8: Average of simulated power traces of Cortexm-AES implementation

DPA results

The DPA finds the entire key with 1500 traces. Table 4.9 is the textual view of the
results while figure 4.9 is the plotted data.

In the figure there are four groups of peaks but the first two are related to the
same bytes (0, 4, 8 and 12). The point of AES we attack is the SubBytes output
and we expect the peaks correspond to some instructions around that point. The
code 4.3 shows which are the exact instructions and the following section does
a deeper analysis, but now the question is: why there are two instructions that
leak only for the bytes 0, 4, 8 and 12? Normally, as seen in the other analyses, it
is always the load instruction that leaks. Doing some tests we found that these
unusual spikes correspond to four eor.w instructions starting at address 0x8000278.
Before that address, the registers r8, r9, r10 and r11 contain four bytes of the
expanded key each one. The four eor.w do the xor between these values and the
returned values from the S-Box lookup contained in the register r0, r1, r2, r3. The

35

Analysis results

next eor.w instructions no longer work with registers containing values of the
expanded key. This is the reason why we can see leakage only in the first eor.w
instructions and not in the others.

Byte Key 1° guess 2° guess
Value Avg diff Value Avg diff

0 2B 2B 2.145 B2 1.508
1 7E 7E 1.892 3C 1.760
2 15 15 2.067 87 1.699
3 16 16 2.215 8F 1.808
4 28 28 2.193 B1 1.851
5 AE AE 1.841 37 1.534
6 D2 D2 1.956 90 1.826
7 A6 A6 1.566 34 1.393
8 AB AB 2.177 32 1.755
9 F7 F7 2.344 3A 1.599
10 15 15 1.973 8C 1.590
11 88 88 2.130 D1 1.415
12 09 09 2.192 90 1.635
13 CF CF 2.010 1F 1.886
14 4F 4F 1.882 BD 1.687
15 3C 3C 1.922 65 1.776

Table 4.5: DPA of 1500 simulated traces - Cortexm-AES

CPA results

The CPA finds the entire key with only 50 traces. Table 4.6 is the textual view
of the results while figure 4.10 is the plotted data. Figure 4.11 represents in a
different way the results of the analysis where each key byte has a single plot. If we
zoom in around the peaks we can see at which sample they occur and consequently,
thanks to Rainbow, we can retrieve the instruction corresponding to that sample.
Finding the exact instruction means finding the exact point in the code where the
leakage occurs. From Rainbow, during the emulation, we can know the state of the
registers, the number of samples and also the instruction address corresponding to
every sample. Thanks to these informations it is easy to identify all the leakage
points. For example for byte 0, if we zoom in, the peak happens at sample 15 and
we know that at this sample the corresponding instruction address is 0x8000258.
Now, we have to inspect the code below looking for the instruction at address
0x8000258. At this point the instruction is ldr.w r0, [lr, r0, lsl #2], it is a

36

Analysis results

Figure 4.9: DPA of 1500 simulated traces - Cortexm-AES

load word from the S-Box table, the output of the SubBytes function, the exact
point we exploit for the attack. For the other bytes we have to repeat this process
and the results are shown in the code below where each byte is associated with the
instruction that generates the leakage. Figure 4.10 has three groups of peaks, two
of four and one of eight. This fact is confirmed by the assembly code where the
load instruction are arranged in the same order.

Listing 4.3: Snippet of code of the encryption function - Cortexm-AES
1 08000230 <CM3_1T_AES_encrypt>:
2 8000230: eb00 1303 add .w r3 , r0 , r3 , l s l #4
3 8000234: e92d 4 f f c stmdb sp ! , { r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 ,

s l , fp , l r }
4 8000238: f240 0e00 movw l r , #0
5 800023 c : f 2 c2 0e00 movt l r , #8192 ; 0x2000
6 8000240: 4684 mov ip , r0
7 8000242: c9 f0 ldmia r1 ! , { r4 , r5 , r6 , r7 }
8 8000244: e8bc 000 f ldmia .w ip ! , { r0 , r1 , r2 , r3 }
9 8000248: 4044 eo r s r4 , r0

10 800024a : 404d eo r s r5 , r1
11 800024 c : 4056 eo r s r6 , r2
12 800024 e : 405 f eo r s r7 , r3
13 8000250: b2e0 uxtb r0 , r4
14 8000252: b2e9 uxtb r1 , r5
15 8000254: b2f2 uxtb r2 , r6
16 8000256: b2fb uxtb r3 , r7
17 8000258: f 85e 0020 l d r .w r0 , [l r , r0 , l s l #2] //BYTE_0
18 800025 c : f 85e 1021 l d r .w r1 , [l r , r1 , l s l #2] //BYTE_4

37

Analysis results

19 8000260: f 85e 2022 l d r .w r2 , [l r , r2 , l s l #2] //BYTE_8
20 8000264: f 85e 3023 l d r .w r3 , [l r , r3 , l s l #2] //BYTE_12
21 8000268: f8dc 9004 l d r .w r9 , [ip , #4]
22 800026 c : f8dc a008 l d r .w s l , [ip , #8]
23 8000270: f8dc b00c l d r .w fp , [ip , #12]
24 8000274: f 85c 8b10 l d r .w r8 , [ip] , #16
25 8000278: ea88 4830 eor .w r8 , r8 , r0 , ro r #16
26 800027 c : ea89 4931 eor .w r9 , r9 , r1 , ro r #16
27 8000280: ea8a 4a32 eor .w s l , s l , r2 , ro r #16
28 8000284: ea8b 4b33 eor .w fp , fp , r3 , ro r #16
29 8000288: f a 5 f f095 uxtb .w r0 , r5 , ro r #8
30 800028 c : f a 5 f f196 uxtb .w r1 , r6 , ro r #8
31 8000290: f a 5 f f297 uxtb .w r2 , r7 , ro r #8
32 8000294: f a 5 f f394 uxtb .w r3 , r4 , ro r #8
33 8000298: f 85e 0020 l d r .w r0 , [l r , r0 , l s l #2] //BYTE_5
34 800029 c : f 85e 1021 l d r .w r1 , [l r , r1 , l s l #2] //BYTE_9
35 80002 a0 : f 85e 2022 l d r .w r2 , [l r , r2 , l s l #2] //BYTE_13
36 80002 a4 : f 85e 3023 l d r .w r3 , [l r , r3 , l s l #2] //BYTE_1
37 80002 a8 : ea88 2830 eor .w r8 , r8 , r0 , ro r #8
38 80002 ac : ea89 2931 eor .w r9 , r9 , r1 , ro r #8
39 80002b0 : ea8a 2a32 eor .w s l , s l , r2 , ro r #8
40 80002b4 : ea8b 2b33 eor .w fp , fp , r3 , ro r #8
41 80002b8 : f a 5 f f0a6 uxtb .w r0 , r6 , ro r #16
42 80002 bc : f a 5 f f1a7 uxtb .w r1 , r7 , ro r #16
43 80002 c0 : f a 5 f f2a4 uxtb .w r2 , r4 , ro r #16
44 80002 c4 : f a 5 f f3a5 uxtb .w r3 , r5 , ro r #16
45 80002 c8 : 0 e3 f l s r s r7 , r7 , #24
46 80002 ca : 0 e24 l s r s r4 , r4 , #24
47 80002 cc : 0e2d l s r s r5 , r5 , #24
48 80002 ce : 0 e36 l s r s r6 , r6 , #24
49 80002d0 : f 85e 0020 l d r .w r0 , [l r , r0 , l s l #2] //BYTE_10
50 80002d4 : f 85e 1021 l d r .w r1 , [l r , r1 , l s l #2] //BYTE_14
51 80002d8 : f 85e 2022 l d r .w r2 , [l r , r2 , l s l #2] //BYTE_2
52 80002 dc : f 85e 3023 l d r .w r3 , [l r , r3 , l s l #2] //BYTE_6
53 80002 e0 : f 85e 7027 l d r .w r7 , [l r , r7 , l s l #2] //BYTE_15
54 80002 e4 : f 85e 4024 l d r .w r4 , [l r , r4 , l s l #2] //BYTE_3
55 80002 e8 : f 85e 5025 l d r .w r5 , [l r , r5 , l s l #2] //BYTE_7
56 80002 ec : f 85e 6026 l d r .w r6 , [l r , r6 , l s l #2] //BYTE_11
57 80002 f0 : ea80 6037 eor .w r0 , r0 , r7 , ro r #24
58 80002 f4 : ea81 6134 eor .w r1 , r1 , r4 , ro r #24

4.3.2 Real traces analysis
Figure 4.12 shows the entire trace of the execution of the encryption of 16 random
bytes. It is the average of 10000 traces so in this way the 10 rounds are visible.
The total length is about 3100 samples which corresponds to 3100/4 = 750 clock
cycles due to the CW sampling rate. Since it is an assembly implementation, it is

38

Analysis results

Byte Key 1° guess
Value Correlation

0 2B 2B 0.822
1 7E 7E 0.940
2 15 15 0.872
3 16 16 0.881
4 28 28 0.874
5 AE AE 0.871
6 D2 D2 0.919
7 A6 A6 0.877
8 AB AB 0.895
9 F7 F7 0.798
10 15 15 0.905
11 88 88 0.862
12 09 09 0.900
13 CF CF 0.922
14 4F 4F 0.846
15 3C 3C 0.819

Table 4.6: CPA of 50 simulated traces - Cortexm-AES

Figure 4.10: CPA of 50 simulated traces - Cortexm-AES

39

Analysis results

Figure 4.11: CPA of 50 simulated traces - Cortexm-AES

faster about 10 times than the C implementation and this fact is confirmed by the
total samples. The analyses are performed in the same manner as before to have a
direct comparison of the results, moreover, more diagrams are presented to have a
better understanding of the analyses and their limitations.

Figure 4.12: Average of real power traces of Cortexm-AES implementation

40

Analysis results

DPA results

DPA for this implementation was not very good. It requires a lot of traces and the
bytes recovered are very few. For example with 20000 traces only three bytes were
recovered and using 40000 traces only five were. This is the reason why the results
are not provided and the focus is given only on CPA that finds more bytes. Despite
the analyses have not been conducted, we tried to understand if the leakage pattern
is similar to what was found for the simulated case. Moving trigger_high() in order
to start the trace capture around the point we think there is the instruction that
leaks, we found that the leakage points correspond only to load instructions and
not also to some xor as we saw in the other case.

CPA results

In the previous implementation, CPA required only 50 traces but now there is a
totally different behaviour. Using 50 traces zero bytes of the key are recovered and
we need to acquire at least 2000 traces to recover about half of the key. Increasing
the number of acquisitions reaching 40000 traces, the recovered key is about 75%.
To better understand the analysis, in addition to the usual graphics, more will be
presented and discussed.

The first results are presented in the table 4.7 and the recovered byte are
highlighted. The correlation is generally higher for the correct byte but it is not the
rule because for other bytes it is very low as well as incorrect ones. This behaviour
can be seen in bytes 4, 6 and 9 where the correlation is comparable to that of the
wrong bytes.

The following chart 4.13 shows the correlation progression in function of the
traces acquired. The black line is the correlation of the correct byte, the coloured
lines are the correlation of the other 255 bytes (the incorrect ones) and the four
yellow highlighted are the not recovered key byte. In an ideal case the correlation
of the correct byte should be the highest and remain stable, while for the wrong
bytes, it decreases with the number of traces. For example, the first 4 bytes have
the ideal behaviour because there is a significant gap between the black line and
the coloured ones, the correlation even with few traces is the highest and remains
constant until the end. For other bytes, for example 4, 6 and 9, at the beginning
their correlation follows the trend but, when about 20000 traces are captured, the
black line starts to separate from the other lines and it assumes the highest value,
indeed these key bytes are recovered.

Another interesting view is the one below (fig. 4.14), it is the rank progression
in function of the traces acquired. In other words, tell us how many ranks (1 to
256) away from the top (rank 1) the actual subkey is in our table of guesses. Rank
1 associated with a byte means this byte has the highest correlation. Again, some
bytes are steady to rank 1 from the beginning while others reach the top with the

41

Analysis results

Byte Key 1° guess
Value Correlation

0 2B 2B 0.282
1 7E 7E 0.184
2 15 15 0.300
3 16 16 0.163
4 28 28 0.033
5 AE AE 0.167
6 D2 D2 0.038
7 A6 A6 0.294
8 AB B2 0.027
9 F7 F7 0.035
10 15 15 0.277
11 88 88 0.399
12 09 86 0.079
13 CF 4B 0.057
14 4F F2 0.068
15 3C 3C 0.289

Table 4.7: CPA of 40000 real traces - Cortexm-AES

Figure 4.13: Correlation progression - Cortexm-AES

42

Analysis results

increasing number of traces acquired.

Figure 4.14: Rank progression - Cortexm-AES

The last diagram is the correlation plot, the figure 4.15 represents the correlation
for each key byte. Where there is the peak, that point corresponds to the spot of
the algorithm where there is leakage. It is easy to distinguish the recovered bytes
because they have one peak isolated and the rest of the trace is flat with values
close to zero, see for example byte 0. The others recovered as the number of traces
collected increases (bytes 4, 6 and 9) have a bit more confusion, they have again
the peaks but with a correlation close to zero. The not recovered bytes, instead,
have more peaks and the chart is less clear than the previous one.

As done for TinyAES implementation, we want to know if the leakage in the
real and simulated traces corresponds to the same instructions. We adopted the
same technique, manually moving trigger_high() in order to start the trace capture
around the point we think there is the instruction that leaks. In the simulated case
the leakage was generated by the load word instructions, we expect the same for
the real case. We expect also to find a similar pattern of the position of the peaks:
two groups of four and one of eight (see fig. 4.10).

The first test done was putting the trigger before the instruction at line 9 (code
4.3). We computed CPA on 5000 traces and plotted the results: the peaks follow
the expected pattern, two groups of four and one of eight and the first peak is not
at the beginning because before the first load there are eight instructions which
require at least 8 clock cycles (32 samples). The second test done was putting the
trigger before the instruction at line 17, just before the first load, while the third

43

Analysis results

Figure 4.15: CPA of 40000 real traces - Cortexm-AES

test putting the trigger before line 21, just after the fourth load. The results of
these two tests did not show the first group but confirmed what was discovered in
the first test: the leakage seems to be generated by the load word instructions, the
same as the simulated case.

44

Chapter 5

Improvements and hints

This fifth chapter has the role to provide the reader with hints and improvements
that can be applied to the analyses presented in the previous chapter. Some of them
are strictly related to the computation of the results, Lascar, for example. Other
improvements are new ways of plotting data, for example VisPlot and Rainbow
viewer.

5.1 VisPlot
The first hint is about VisPlot [21]. VisPlot is a useful tool created by the same
team of Rainbow and provides a new way of plotting data. It is based on VisPy
[22], a high-performance interactive 2D/3D data visualization library and it has
been customized to be a side-channel trace visualizer. The most common python
library to plot data is Matplotlib [23], all the diagrams in this work have been
made using it. It has a lot of functionality and it is easy to use but on the contrary,
it is slow when a lot of data need to be plotted. Citing the description of VisPlot
on GitHub «Matplotlib is cumbersome to use during result analysis - when one
needs to look around to find what’s going on».

The main features are the fast display, responsive pan zoom and traces drawn
with smooth colours until you select them. Selection is done with a click and
holding CTRL for the multiple traces selection.

An example of how VisPlot makes the chart is the figure 5.1 where it is possible
to see the multiple selections (in the example three lines are selected and are
distinguishable).

At the python level, just two lines of code are requested: one to say the data to
plot and one to open a new window with the diagram.

1 from v i s p l o t import p l o t

45

Improvements and hints

2 # compute data . . .
3 v = p lo t (data_you_want_draw , dontrun=True)
4 v . run ()

Figure 5.1: VisPlot example

5.2 LASCAR
Lascar (Ledger’s Advanced Side Channel Analysis Repository) is a fast, versatile,
and open-source python library designed to facilitate Side-Channel Analysis. It
has already been mentioned in 3.1 as the software used during the analyses. There
are many pros to the use of this tool:

• Openness: Lascar library is open source and can be customized for own
purposes

• Simplicity: The script is easy and there are enough tutorials and examples to
understand how it works

46

Improvements and hints

• Compatibility: It is written in python and relies on mainstream python
libraries

• Flexibility: Implement your classes (for your already existing trace format,
your specific attacks, and the way you want your output to be)

To understand better how to work with this tool, we need to define some basic
objects that are fundamental for the correct use.

The first one is the Container object, it is role is to deliver side-channel data.
Most of the time, side-channel data arises from several inputs for example a direct
acquisition from a target board, an acquisition campaign already saved on the disk,
simulated traces, an array of data and many others. In practise the Container
class is the ad hoc class that collects the origin data in a standard way, you must
implement the correct methods, but then it will represent your data who will be
accessed by Lascar during the side-channel analysis.

The second fundamental object is Session, it is the class that will manage the
reading of the Container traces by batch (to avoid loading all in RAM as much
as possible), all the statistical computations that you would like to process on
them (for example DPA or CPA) and finally the output that you seek from your
analysis (simply graphic and textual format). All the traces are processed by the
Engine class that does some computation as the mean (MeanEngine), the variance
(VarEngine), the DPA (DPAEngine), the CPA (CPAEngine) and others. Once the
entire computation is done we want to see the results in some way, OutputMethod
is the class in charge of doing this. There are several methods: to store the
result you can use DictOutputMethod or Hdf5OutputMethod, to see directly on
the console ConsoleOutputMethod, to see graphically MatPlotLibOutputMethod,
ScoreProgressionOutputMethod or RankProgressionOutputMethod. The last
three methods were used in 4.3.2 to show the result in many ways instead of using
a unique chart. Once the session class is set, it has the method run() which starts
the whole process.

5.2.1 Acquisition and analysis from Chipwhisperer
This part describes how to perform the acquisition and the analysis of traces
captured from the Chipwhisperer tool. In particular are shown the customized
container that interacts with the CW and the setup for CPA analysis. The example
is about CPA but with little modifications, the script is suitable for any other
analysis or statistical computation.

The first five lines are variables needed by CW, the firmware must be in .hex
format and PLATFORM says who is the target board. AcquisitionSetupContainer
is the ad hoc class for our purposes that interact with CW. As a parameter there is
the variable requested by CW, then it initialises the board and set the parameters

47

Improvements and hints

for the acquisition, finally defines a method for capturing traces. CPAengine is the
class to make CPA analysis and must be declared for each byte indeed the array
CPAengines contains all 16 engines. This class requires the selection function that
for CPA is the HW power model of the S-Box output, generate_guess_function()
is in charge of doing this. In case we wanted to perform DPA, we should use
DPAengine and as a selection function take the LSB of the S-Box output. About
the output method, the example shows three types: the first one prints the results
directly on the console while the others make a chart. Batch_size defines how
many traces to acquire and to analyse at a time. Appendix E.1 contains the entire
code of the AcquisitionSetupContainer

Listing 5.1: Lascar and CW
1 KEY = [0 x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0 xf7 , 0

x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c]
2 PLATFORM = ’CW308_STM32F4 ’
3 SS_VER=’SS_VER_1_1 ’
4 FIRMWARE_PATH=" path/ to / f irmware . hex "
5 NUM_TRACES=10000
6

7 de f generate_guess_funct ion (byte) :
8 de f guess_funct ion (value , guess) :
9 re turn hamming_weight (sbox [va lue [" p l a i n t e x t "] [byte]^ guess])

10 re turn guess_funct ion
11

12 conta ine r = Acqui s i t ionSetupConta iner (NUM_TRACES, key=KEY, plat form=
PLATFORM, ss_ver=SS_VER, firmware_path=FIRMWARE_PATH) #acqu i r e
r e a l t r a c e s from the t a r g e t board

13

14 CPAengines = [
15 CpaEngine ("CPA_{} " . format (byte) , #the name
16 generate_guess_funct ion (byte) ,
17 range (256) , #the va lue s f o r the guess
18 s o l u t i o n=KEY[byte]) f o r byte in range (16)]
19

20 s e s s i o n = Ses s i on (
21 conta iner ,
22 eng ine s=CPAengines ,
23 name=" cpa on 16 bytes " ,
24 output_method=[
25 ConsoleOutputMethod (∗ CPAengines) ,
26 MatPlotLibOutputMethod (∗ CPAengines , so lut ion_only=True) ,
27 ScoreProgressionOutputMethod (∗ CPAengines) ,
28] ,
29 #output_steps =1000 , #i f you want p a r t i a l r e s u l t s or the p l o t

output method
30) . run (batch_size =1000)

48

Improvements and hints

5.2.2 Acquisition and analysis from Rainbow

This part is very similar to the previous one, the only change is the container
class RainbowContainer that simulates and traces the input firmware. At the
beginning there are some declarations of variables for the simulation which will
be passed as parameters in the container. The further code is the same as before
because it depends on the analysis. Appendix E.2 contains the entire code of the
RainbowContainer

Listing 5.2: Lascar and Rainbow
1 FILE=" path/ to / f irmware . e l f "
2 KEY = [0 x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0 xf7 , 0

x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c]
3 FUNCTION_KEY_EXP_NAME="CM3_1T_AES_128_keyschedule_enc "
4 FUNCTION_ENCRYP_NAME="CM3_1T_AES_encrypt"
5 NOISE=0.5
6 NUM_TRACES=1000
7

8 de f generate_guess_funct ion (byte) :
9 de f guess_funct ion (value , guess) :

10 re turn hamming_weight (sbox [va lue [" p l a i n t e x t "] [byte]^ guess])
11 re turn guess_funct ion
12

13 conta ine r = RainbowContainer (NUM_TRACES, no i s e=NOISE, key=KEY,
b i n a r y _ f i l e=FILE , key_func=FUNCTION_KEY_EXP_NAME, encr_func=
FUNCTION_ENCRYP_NAME)

14

15 CPAengines = [
16 CpaEngine ("CPA_{} " . format (byte) ,
17 generate_guess_funct ion (byte) ,
18 range (256) ,
19 s o l u t i o n=KEY[byte]) f o r byte in range (16)]
20

21 s e s s i o n = Ses s i on (
22 conta iner ,
23 eng ine s=CPAengines ,
24 name=" cpa on 16 bytes " ,
25 output_method=[
26 ConsoleOutputMethod (∗ CPAengines) ,
27 MatPlotLibOutputMethod (∗ CPAengines , so lut ion_only=True) ,
28 ScoreProgressionOutputMethod (∗ CPAengines) ,
29] ,
30 output_steps =100 ,
31) . run (batch_size =100)

49

Improvements and hints

How to emulate Chipwhisperer firmware

Until now, a special code for Rainbow has always been simulated, but it might be
useful to emulate the same firmware running on the target board. For example,
if we want to emulate the firmware using the cortexm-AES implementation, we
can use the script provided for Rainbow in appendix C.2. If we use it without
any changes we obtain a Rainbow error. This is caused because the S-Box table is
not loaded in memory and when an instruction tries to read at its hypothetical
address it reads an incorrect and unpredictable value. The simplest solution is
to load manually the table and map the memory space with the script provided
below. The memory addresses and the size of the table might be different but the
procedure is always this. These few lines of code should be put immediately after
Rainbow initialization and loading binary (example: put it at line 7 of appendix
C.2).

1 s e l f . dev i c e . map_space (0 x20000000 , 0 x20001000) #map space manually
2 f w f i l e = open (’ s i m p l e s e r i a l −cor texaes −CW308_STM32F4. bin ’ , " rb ") #open

the . bin f i l e
3 ROM_START = 0x8000000
4 AES_Te2_ADDR=ROM_START+0x12E0
5 f w f i l e . seek (0 x12E0) #move the f i l e ob j e c t p o s i t i o n to the beg inning

o f the t ab l e
6 AES_Te_2=f w f i l e . read (1024) #read the e n t i r e t ab l e
7 f w f i l e . c l o s e ()
8 s e l f . dev i c e . emu . mem_write (0 x20000000 ,AES_Te_2) #wr i t e t ab l e in

memory

5.3 Rainbow viewer
By default, Rainbow generates traces with one point per instruction. A helpful
function could be associating each point to the corresponding instruction so, in
this way, plotting the results of an analysis it is possible to recover the peak and
to what instruction it is associated. Manually it is a bit tricky but there is a
tool inside Rainbow that is useful for our purpose. The tool is Viewer and is
called like a function: viewer(instructions, data_to_trace) where the first
parameter is the list of instructions computed by Rainbow and the second one is
the data to trace. The instructions list is provided by Rainbow so no external tools
are needed. Viewer builds a Qt application showing the instructions list next to
VisPlot. Clicking an instruction, a vertical white line appears in the plot indicating
at which point it corresponds. The figure below shows an example: instruction
827E corresponds to point 223 where there is a vertical white line.

50

Improvements and hints

Figure 5.2: Viewer example

51

Chapter 6

Conclusion

The purpose of this thesis project is the evaluation of the traces produced by
Rainbow, the embedded binaries emulator, against real power traces produced
by a real board thanks to the NewAE Technology ChipWhisperer tool. For each
implementation and type of analysis we defined four criteria for comparison:

1. Is the leakage generated by the same instruction?

2. Is the number of peaks the same?

3. Each peak corresponds to a key byte, are they in the same order?

4. Evaluation of the ratio between the distance from the first to the second peak
and the total length of the 16 peaks (the distance from the first to the last
peak)

The first criterion is satisfied, for both implementations the leakage between
simulated and real corresponds, it is generated by load instructions. The second,
instead, is not satisfied: in the C implementation, Rainbow generates more leakage
because the analyses produce peaks related to the MixColumns step that there are
not in the real scenario. About the assembly implementation is more difficult to do
the same comparison but for example, DPA on simulated traces generates leakage
associated with eor instructions for only one-quarter of the total bytes. The third
criterion is again not satisfied, the comparison is only feasible for the TinyAES
implementation because for the other one the entire key was not recovered. Only in
the ShiftRows step the order of the spikes is different. The fourth and last criterion
is satisfied, the ratios are not perfectly the same but they do not differ much: for
TinyAES real it is 48/768 = 0,0625 and for simulated 6/102 = 0,0588, this shows
that the pattern of the leakage is similar.

There are other things of Rainbow to consider that are not directly connected
to the analyses, for example, the simplicity to set a script for the emulation of

52

Conclusion

binaries but also, since it is based on Unicorn Engine, the several architectures that
it can simulate. On the contrary, trace generation is very dependent on the total
instructions that it must emulate. Generally, the trace generation rate is always
higher for Chipwhisperer with an average of 30 traces per second. For Rainbow,
instead, for traces with 5000 points the generation rate is 10/15 traces per second
while with 25000 points the rate drops to 2/3 traces per second. One possible
improvement is to use directly Unicorn in Python and as a last chance Unicorn in
C if the maximum performance is necessary.

Future work

To improve or extend this work some aspects can be evaluated. The first one is how
Rainbow generates the traces: actually there are only two basic models described in
section 3.3.2 but other better models can be developed. The second one is related
to the analyses: the CPA power model was the HW power model but others should
be better, HD or SD power model described in section 2.1.4, for example. About
DPA, the selection function was always based on the LSB bit, but evaluating other
bits or combinations of them can produce interesting results.

53

Appendix A

Basic capture script from
CW

The following script is a working example on how to use Chipwhisperer to capture
traces. There are some useful notes in the code.

1 import ch ipwhi spere r as cw
2

3 SCOPETYPE = ’OPENADC’
4 PLATFORM = ’CW308_STM32F4 ’
5 CRYPTO_TARGET=’TINYAES128C ’
6 SS_VER=’SS_VER_1_1 ’
7

8 #i n i t i a l i a z e the Chipwhisperer
9 scope = cw . scope ()

10 target_type = cw . t a r g e t s . S imp l eSe r i a l
11 t a r g e t = cw . t a r g e t (scope , target_type)
12 prog = cw . programmers . STM32FProgrammer
13

14 scope . de fau l t_setup ()
15

16 #program the t a r g e t with s p e c i f i c f irmware
17 cw . program_target (scope , prog , " path/ to / f i rmare . hex ")
18

19 #s e t p l a i n t e x t and key . The key used i s a d e f a u l t key
20 #key=[0x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0 xf7 , 0

x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c]
21 ktp = cw . ktp . Bas ic ()
22 trace_array = []
23 text in_array = []
24 key , t ex t = ktp . next ()
25 t a r g e t . set_key (key)

54

Basic capture script from CW

26

27 #number o f t r a c e s
28 N = 100
29 f o r i in range (N) :
30

31 #arm the Chipwhisperer
32 scope . arm ()
33

34 #wri t e p l a i n t e x t to the t a r g e t
35 t a r g e t . s i m p l e s e r i a l _ w r i t e (’p ’ , t ex t)
36

37 #capture the t r a c e s
38 r e t = scope . capture ()
39 i f r e t :
40 pr in t (" Target timed out ! ")
41 cont inue
42

43 #Read the c i p h e r t e x t back from the t a r g e t
44 re sponse = t a r g e t . s imp l e s e r i a l_r ead (’ r ’ , 16)
45

46 #the ac tua l t r a c e i s conta ined in " scope . get_last_trace () "
47 trace_array . append (scope . get_last_trace ())
48 text in_array . append (text)
49

50 #c r e a t e new p l a i n t e x t
51 key , t ex t = ktp . next ()
52

53 #. . . save t r a c e and p l a i n t e x t . . .

55

Appendix B

Target firmware

B.1 TinyAES
The following script is a working example of an AES firmware. Looking at this
and appendix A, the user can have a full view about the workflow and how to
customize for own purposes.

1

2 uint8_t get_key (uint8_t ∗ k , uint8_t l en) {
3 AES128_ECB_indp_setkey (k) ;
4 re turn 0x00 ;
5 }
6

7 uint8_t get_pt (uint8_t ∗ pt , uint8_t l en) {
8

9 // t r i g g e r to s e t the s t a r t i n g po int o f a c q u i s i t i o n
10 t r i gge r_h igh () ;
11

12 // encrypt ing the data block
13 AES128_ECB_indp_crypto (pt) ;
14

15 // t r i g g e r to r e s e t the t r i g g e r pin
16 t r igger_low () ;
17

18 s imp l e s e r i a l_put (’ r ’ , 16 , pt) ;
19 re turn 0x00 ;
20 }
21

22 i n t main (void) {
23 uint8_t tmp [KEY_LENGTH] = {DEFAULT_KEY} ;
24

25 p la t fo rm_in i t () ;

56

Target firmware

26 i n i t_uar t () ;
27 t r i gge r_se tup () ;
28

29 AES128_ECB_indp_setkey (tmp) ;
30

31 s i m p l e s e r i a l _ i n i t () ;
32 s impleser ia l_addcmd (’ k ’ , 16 , get_key) ;
33 s impleser ia l_addcmd (’p ’ , 16 , get_pt) ;
34 whi le (1)
35 s i m p l e s e r i a l _ g e t () ;
36 }

B.2 Cortexm-AES
This is the working firmware of cortexm-AES implementation for the target board.
It is like the TinyAES firmware with only the new functions.

1 #d e f i n e ROUNDS 10
2 #d e f i n e DEFAULT_KEY 0x2b , 0 x7e , 0 x15 , 0 x16 , 0 x28 , 0 xae ,
3 0xd2 , 0 xa6 , 0 xab , 0 xf7 , 0 x15 , 0 x88 , 0 x09 , 0 xcf , 0 x4f , 0 x3c
4 #d e f i n e KEY_LENGTH 16
5

6 extern void CM3_1T_AES_128_keyschedule_enc(uint8_t ∗ rk , const uint8_t
∗key) ;

7 extern void CM3_1T_AES_encrypt(uint8_t ∗ rk , const uint8_t ∗ in ,
uint8_t ∗ out , s i z e_t rounds) ;

8

9 uint8_t round_key [1 1 ∗ 1 6] ;
10

11 uint8_t get_key (uint8_t ∗ key , uint8_t l en)
12 {
13 CM3_1T_AES_128_keyschedule_enc(round_key , key) ;
14 re turn 0x00 ;
15 }
16

17 uint8_t get_pt (uint8_t ∗ pt , uint8_t l en)
18 {
19 uint8_t output [1 6] ;
20

21 t r i gge r_h igh () ;
22 CM3_1T_AES_encrypt(round_key , pt , output , ROUNDS) ;
23 t r igger_low () ;
24

25 s imp l e s e r i a l_put (’ r ’ , 16 , output) ;
26 re turn 0x00 ;
27 }

57

Target firmware

28

29 i n t main (void)
30 {
31 uint8_t tmp_key [KEY_LENGTH] = {DEFAULT_KEY} ;
32

33 p la t fo rm_in i t () ;
34 i n i t_uar t () ;
35 t r i gge r_se tup () ;
36

37 CM3_1T_AES_128_keyschedule_enc(round_key , tmp_key) ;
38

39 s i m p l e s e r i a l _ i n i t () ;
40

41 s impleser ia l_addcmd (’ k ’ , 16 , get_key) ;
42 s impleser ia l_addcmd (’p ’ , 16 , get_pt) ;
43

44 whi le (1)
45 s i m p l e s e r i a l _ g e t () ;
46 }

58

Appendix C

Capture script from
Rainbow

C.1 TinyAES
This is the working capture script for TinyAES implementation using Rainbow.

1 import numpy as np
2 from rainbow . g e n e r i c s import rainbow_arm
3

4 #d e f i n e the a r c h i t e c t u r e
5 e = rainbow_arm (sca_mode=True)
6 e . load (" path/ to / f irmware . e l f " , typ=" . e l f ")
7

8 de f encrypt (key , p l a i n t e x t) :
9 # Reset the emulator s t a t e

10 e . r e s e t ()
11

12 key_addr = 0xDEAD0000
13 e [key_addr] = bytes (key)
14 # AES128_ECB_indp_setkey (key) ;
15 e [" r0 "] = key_addr
16 e . s t a r t (e . f u n c t i o n s [" AES128_ECB_indp_setkey "] | 1 , 0)
17

18 buf_in = 0xDEAD1000
19 e [buf_in] = p l a i n t e x t
20 # AES128_ECB_indp_crypto (input) ;
21 e [" r0 "] = buf_in
22 e [" l r "] = 0
23 #r e s e t t r a c e to c o l l e c t only the ones r e l a t e d to the encrypt ion

func t i on

59

Capture script from Rainbow

24 e . t r a c e_re s e t ()
25 e . s t a r t (e . f u n c t i o n s ["AES128_ECB_indp_crypto "] | 1 , 0)
26

27 #add some no i s e to make t r a c e s more r e a l i s t i c
28 t r a c e= e . sca_values_trace + np . random . normal (0 , 0 . 5 , (l en (e .

sca_values_trace)))
29 re turn t r a c e
30

31 de f generate_trace (key) :
32 p l a i n t e x t = np . random . rand int (0 , 256 , (16 ,) , np . u int8)
33 l eakage = np . array (encrypt (key , p l a i n t e x t . tobytes ()))
34 re turn leakage , p l a i n t e x t
35

36 N = 100 #number o f t r a c e s
37 KEY = [0 x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0 xf7 , 0

x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c]
38 p la intext_array =[]
39 trace_array =[]
40

41 f o r i in trange (N) :
42 trace_t , pla in_t=generate_trace (KEY)
43 p la intext_array . append (pla in_t)
44 trace_array . append (trace_t)
45

46 #. . . save t r a c e and p l a i n t e x t . . .

C.2 Cortexm-AES
This is the working capture script for Cortexm-AES implementation using Rainbow.

1 import numpy as np
2 from rainbow . g e n e r i c s import rainbow_arm
3

4 #d e f i n e the a r c h i t e c t u r e
5 e = rainbow_arm (sca_mode=True)
6 e . load (" path/ to / f irmware . e l f " , typ=" . e l f ")
7

8 de f aes_encrypt (key , p l a i n t e x t) :
9 # Reset the emulator s t a t e

10 e . r e s e t ()
11

12 key_addr = 0x90000000
13 e [key_addr] = key
14 rk_addr = 0x90001000
15 e [rk_addr] = key
16 # CM3_1T_AES_128_keyschedule_enc(rk , key)

60

Capture script from Rainbow

17 e [" r0 "] = rk_addr
18 e [" r1 "] = key_addr
19 e . s t a r t (e . f u n c t i o n s ["CM3_1T_AES_128_keyschedule_enc "] | 1 , 0)
20

21 buf_in = 0x90002000
22 buf_out = 0x90003000
23 e [buf_in] = p l a i n t e x t
24 e [buf_out] = b" \x00 " ∗ 16 # Need to do t h i s so t h i s b u f f e r i s

mapped in to unicorn
25 # CM3_1T_AES_encrypt(rk , buf_in , buf_out , rounds)
26 e [" r0 "] = rk_addr
27 e [" r1 "] = buf_in
28 e [" r2 "] = buf_out
29 e [" r3 "] = 0xa #number o f rounds
30 e [" l r "] = 0
31 #r e s e t t r a c e to c o l l e c t only the ones r e l a t e d to the encrypt ion

func t i on
32 e . t r a c e_re s e t ()
33 e . s t a r t (e . f u n c t i o n s ["CM3_1T_AES_encrypt"] | 1 , 0)
34

35 #add some no i s e to make t r a c e s more r e a l i s t i c
36 t r a c e= e . sca_values_trace + np . random . normal (0 , 0 . 5 , (l en (e .

sca_values_trace)))
37 re turn t r a c e
38

39 de f generate_trace (key) :
40 p l a i n t e x t = np . random . rand int (0 , 256 , (16 ,) , np . u int8)
41 l eakage = np . array (aes_encrypt (key , p l a i n t e x t . tobytes ()))
42 re turn leakage , p l a i n t e x t
43

44 N = 100 #number o f t r a c e s
45 KEY = [0 x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0 xf7 , 0

x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c]
46 p la intext_array =[]
47 trace_array =[]
48

49 f o r i in trange (N) :
50 trace_t , pla in_t=generate_trace (KEY)
51 p la intext_array . append (pla in_t)
52 trace_array . append (trace_t)
53

54 #. . . save t r a c e and p l a i n t e x t . . .

61

Appendix D

Python script for analysis

D.1 DPA
This is a basic script to compute DPA. It requires the traces and the plaintext to
be previously saved in some way, for example numpy array.

1 import numpy as np
2

3 sbox = [
4 #. . . f i l l with sbox va lue s . . .
5]
6

7 de f ae s_ inte rna l (inputdata , key) :
8 re turn sbox [inputdata ^ key]
9

10 de f c a l c u l a t e _ d i f f s (guess , byteindex , bitnum) :
11 " " " Perform a s imple DPA on two t race s , uses g l o b a l ‘ text in_array ‘

and ‘ traces_array ‘ " " "
12

13 one_l i s t = []
14 z e r o _ l i s t = []
15

16 f o r trace_index in range (numtraces) :
17 hypothet i ca l_ leakage = aes_ in te rna l (guess , text in_array [

trace_index] [byte index])
18

19 #Mask o f f the reques ted b i t
20 i f hypothet i ca l_ leakage & (1<<bitnum) :
21 one_l i s t . append (traces_array [trace_index])
22 e l s e :
23 z e r o _ l i s t . append (traces_array [trace_index])
24

62

Python script for analysis

25 one_avg = np . asar ray (one_ l i s t) . mean(ax i s =0)
26 zero_avg = np . asar ray (z e r o _ l i s t) . mean(ax i s =0)
27 re turn abs (one_avg − zero_avg)
28

29 #array conta in ing r e a l t r a c e s p r e v i o u s l y saved
30 t races_array=np . load (" path/ to / t r a c e s . npy ")
31 #array conta in ing p l a i n t e x t s p r ev i ou s l y saved
32 text in_array=np . load (" path/ to / p l a i n t e x t . npy ")
33

34 numtraces = np . shape (t races_array) [0] #t o t a l number o f t r a c e s
35 numpoints = np . shape (t races_array) [1] #samples per t r a c e
36

37 #Store your key_guess here
38 key_guess = []
39

40 #Which b i t to t a r g e t
41 bitnum = 0
42

43 f u l l _ d i f f s _ l i s t = []
44

45 f o r subkey in range (0 , 16) :
46

47 max_diffs = [0] ∗ 2 5 6
48 f u l l _ d i f f s = [0] ∗ 2 5 6
49

50 f o r guess in range (0 , 256) :
51 f u l l _ d i f f _ t r a c e = c a l c u l a t e _ d i f f s (guess , subkey , bitnum)
52 max_diffs [guess] = np . max(f u l l _ d i f f _ t r a c e)
53 f u l l _ d i f f s [guess] = f u l l _ d i f f _ t r a c e
54

55 #Make copy o f the l i s t
56 f u l l _ d i f f s _ l i s t . append (f u l l _ d i f f s [:])
57

58 #Get argument sort , as each index i s the ac tua l key guess .
59 sorted_args = np . a r g s o r t (max_diffs) [: : − 1]
60

61 #Keep most l i k e l y
62 key_guess . append (sorted_args [0])
63

64 #Print r e s u l t s
65 pr in t (" Subkey %2d − most l i k e l y %02X"%(subkey , key_guess [subkey])

, end=" ")

D.2 CPA
This is a basic script to compute CPA. It requires the traces and the plaintext to
be previously saved in some way, for example numpy array.

63

Python script for analysis

1 import numpy as np
2

3 sbox = [
4 #. . . f i l l with sbox va lue s . . .
5]
6

7 de f ae s_ inte rna l (inputdata , key) :
8 re turn sbox [inputdata ^ key]
9

10 de f mean(X) :
11 re turn np . mean(X, ax i s =0)
12

13 de f std_dev (X, X_bar) :
14 sum=np . sum(np . square (X−X_bar) , ax i s =0)
15 re turn np . s q r t (sum)
16

17 de f cov (X, X_bar , Y, Y_bar) :
18 re turn np . sum (((X−X_bar) ∗(Y−Y_bar)) , ax i s =0)
19

20 HW = [bin (n) . count (" 1 ") f o r n in range (0 , 256)]
21

22 #array conta in ing r e a l t r a c e s p r e v i o u s l y saved
23 t races_array=np . load (" path/ to / t r a c e s . npy ")
24 #array conta in ing p l a i n t e x t s p r ev i ou s l y saved
25 text in_array=np . load (" path/ to / p l a i n t e x t . npy ")
26

27 numtraces = np . shape (t races_array) [0] #t o t a l number o f t r a c e s
28 numpoints = np . shape (t races_array) [1] #samples per t r a c e
29

30 t_bar = np . sum(traces_array , ax i s =0)/ l en (t races_array)
31 o_t = np . sq r t (np . sum ((traces_array − t_bar) ∗∗2 , ax i s =0))
32

33 c p a r e f s = [0] ∗ 16 #put your key byte guess c o r r e l a t i o n s here
34 bes tgue s s = [0] ∗ 16 #put your key byte gue s s e s here
35

36 f o r bnum in range (0 , 16) :
37 maxcpa = [0] ∗ 256
38 f o r kguess in range (0 , 256) :
39 hws = np . array ([[HW[ae s_ inte rna l (t e x t i n [bnum] , kguess)] f o r

t e x t i n in text in_array]]) . t ranspose ()
40

41 hws_bar = mean(hws)
42 o_hws = std_dev (hws , hws_bar)
43 cov_xy = cov (traces_array , t_bar , hws , hws_bar)
44 cpaoutput = cov_xy /(o_t∗o_hws)
45 cpaoutput [np . i snan (cpaoutput)] = 0
46 maxcpa [kguess] = max(abs (cpaoutput))
47

64

Python script for analysis

48 bes tgue s s [bnum]=np . argmax (maxcpa)
49 c p a r e f s [bnum]=max(maxcpa)
50

51 pr in t (" Best Key Guess : " , end=" ")
52 f o r b in be s tgue s s : p r i n t ("%02x " % b , end=" ")
53 pr in t (" \n " , c p a r e f s)

65

Appendix E

Lascar integration

E.1 with Chipwhisperer
This is the working script to use Lascar to capture traces from CW and analyse
them.

1 import numpy as np
2 import ch ipwhi spere r as cw
3 from l a s c a r import (
4 AbstractContainer ,
5 Trace ,
6 CpaEngine ,
7 Sess ion ,
8 MatPlotLibOutputMethod ,
9 ConsoleOutputMethod ,

10)
11 from l a s c a r . t o o l s . leakage_model import hamming_weight
12 from l a s c a r . t o o l s . aes import sbox
13

14 # the O s c i l l o s c o p e :
15 c l a s s ChipwhispererSetup :
16 de f __init__(s e l f , key =[40]∗16 , p lat form=None , ss_ver=None , path=

None) :
17

18 s e l f . key=bytes (key)
19

20 #i n i t i a l i z e the ch ipwhi spere r
21 t ry :
22 i f not scope . connectStatus :
23 scope . con ()
24 except NameError :
25 scope = cw . scope ()

66

Lascar integration

26 t ry :
27 i f ss_ver == "SS_VER_2_1" :
28 target_type = cw . t a r g e t s . S imp l eSe r i a l 2
29 e l i f ss_ver == "SS_VER_2_0" :
30 r a i s e OSError ("SS_VER_2_0 i s deprecated . Use

SS_VER_2_1")
31 e l s e :
32 target_type = cw . t a r g e t s . S imp l eSe r i a l
33 except :
34 ss_ver="SS_VER_1_1"
35 target_type = cw . t a r g e t s . S imp l eSe r i a l
36 t ry :
37 t a r g e t = cw . t a r g e t (scope , target_type)
38 except :
39 pr in t ("INFO: Caught except ion on reconnec t ing to t a r g e t −

attempting to reconnect to scope f i r s t . ")
40 pr in t ("INFO: This i s a work−around when USB has died

without Python knowing . Ignore e r r o r s above t h i s l i n e . ")
41 scope = cw . scope ()
42 t a r g e t = cw . t a r g e t (scope , target_type)
43

44 pr in t ("INFO: Found ChipWhisperer ")
45

46 i f "STM" in plat form or plat form == "CWLITEARM" or plat form
== "CWNANO" :

47 prog = cw . programmers . STM32FProgrammer
48 e l i f p lat form == "CW303" or p lat form == "CWLITEXMEGA" :
49 prog = cw . programmers .XMEGAProgrammer
50 e l i f " neorv32 " in plat form . lower () :
51 prog = cw . programmers . NEORV32Programmer
52 e l s e :
53 prog = None
54

55 s e l f . scope=scope
56 s e l f . t a r g e t=t a r g e t
57 s e l f . prog=prog
58 s e l f . p lat form=plat form
59 s e l f . path=path
60

61 de f de fau l t_setup (s e l f) :
62 t ry :
63 s e l f . scope . de fau l t_setup ()
64 #s e t here your c o n f i g u r a t i o n i f you don ’ t want the

d e f a u l t
65 s e l f . scope . adc . samples=3200
66 except :
67 pr in t ("ERROR: d e f a u l t setup ")
68

69 de f f l a sh_dev i c e (s e l f) :

67

Lascar integration

70 #program the dev i c e with the appropr ia t e f irmware
71 t ry :
72 cw . program_target (s e l f . scope , s e l f . prog , s e l f . path)
73 except :
74 pr in t ("ERROR: programming t a r g e t ")
75

76 de f get_trace (s e l f) :
77 # return the s ide −channel l eakage
78 ktp = cw . ktp . Bas ic ()
79 t ex t = ktp . next_text ()
80 t r a c e = cw . capture_trace (s e l f . scope , s e l f . ta rget , text , s e l f .

key)
81 re turn t r a c e #This t r a c e i s namedtuple o f f our p i e c e s o f data

(wave , t ext in , textout , key)
82

83 # Then the AbstractContainer :
84 c l a s s Acqu i s i t ionSetupConta iner (AbstractContainer) :
85 de f __init__(s e l f , number_of_traces , key =[40]∗16 , p lat form=None ,

ss_ver=None , firmware_path=None) :
86 " " "
87 : param number_of_traces : how many t r a c e s f o r the l a s c a r

conta ine r
88 : param key : key to be used by the subbytes func t i on . Defau l t

i s [4 0] ∗ 1 6
89 : param plat form : needed by the CW. I t i d e n t i f i e s the base

board and the t a r g e t dev i ce (es . CW308_STM32F4)
90 : param ss_ver : needed by the CW. I t i d e n t i f i e s the ve r s i on o f

the S imp l eSe r i a l p ro to co l
91 : path firm_path : path o f the f irmware to load in to the t a r g e t

board
92 " " "
93 s e l f . key=key
94 s e l f . p lat form=plat form
95 s e l f . s s v e r=ss_ver
96 s e l f . path=firmware_path
97

98 s e l f . o s c i l l o s c o p e = ChipwhispererSetup (s e l f . key , s e l f .
platform , s e l f . s sver , s e l f . path)

99 s e l f . o s c i l l o s c o p e . de fau l t_setup ()
100

101 #f l a s h only the f i r s t time then comment the l i n e
102 s e l f . o s c i l l o s c o p e . f l a sh_dev i c e ()
103

104 # This part i s l a s c a r dependent :
105 # We d e f i n e what w i l l be the type o f the value generated at

each t r a c e
106 # (here , 16 bytes o f p l a i n t e x t + 16 bytes o f key)
107 value_dtype = np . dtype (

68

Lascar integration

108 [(" p l a i n t e x t " , np . uint8 , (16 ,)) , (" key " , np . uint8 , (16 ,))
,]

109)
110 s e l f . va lue = np . z e r o s (() , value_dtype)
111 s e l f . va lue [" key "] = key
112 AbstractContainer . __init__(s e l f , number_of_traces)
113

114 de f generate_trace (s e l f , index) :
115 " " "
116 generate_trace i s the only method needed by

Acqu i s i t i onSetupConta iner to work proper ly
117 : param index : index o f t race , not used here .
118 : r e turn : Trace with l eakage from o s c i l l o s c o p e , and value

from the dut p l a i n t e x t / c i p h e r t e x t
119 " " "
120

121 s e l f . l o g g e r . debug (
122 " Generate t r a c e %d" , index
123) # The conta ine r l o gg e r can be used !
124

125 CW_trace = s e l f . o s c i l l o s c o p e . get_trace ()
126

127 l eakage=CW_trace . wave #on CW Trace . wave re turn the array o f
power t r a c e captured

128 s e l f . va lue [" p l a i n t e x t "]=CW_trace . t e x t i n
129 re turn Trace (leakage , s e l f . va lue)
130

131 i f __name__ == "__main__" :
132

133 #f i l l here with the code presented in the Lascar and CW s e c t i o n
and the s c r i p t w i l l work

E.2 with Rainbow
This is the working script to use Lascar to capture traces from Rainbow and analyse
them.

1 import numpy as np
2 from rainbow . g e n e r i c s import rainbow_arm
3 from l a s c a r import (
4 AbstractContainer ,
5 Trace ,
6 CpaEngine ,
7 Sess ion ,
8 MatPlotLibOutputMethod ,
9 ConsoleOutputMethod ,

69

Lascar integration

10)
11 from l a s c a r . t o o l s . leakage_model import hamming_weight
12 from l a s c a r . t o o l s . aes import sbox
13

14 c l a s s RainbowContainer (AbstractContainer) :
15 " " "
16 RainbowSubBytesContainer i s a c l a s s that w i l l d e f i n e a l a s c a r

conta ine r us ing a rainbow dev i ce .
17 " " "
18

19 de f __init__(
20 s e l f , number_of_traces , key =[40] ∗ 16 , no i s e =2, b i n a r y _ f i l e=

None , key_func=None , encr_func=None , ∗∗ kwargs
21) :
22 " " "
23 : param number_of_traces : how many t r a c e s f o r the l a s c a r

conta ine r
24 : param key : key to be used by the subbytes func t i on . Defau l t

i s [4 0] ∗ 1 6
25 : param no i s e : Noise added to the s imulated l eakage
26 : param b i n a r y _ f i l e : the f i l e used by rainbow . Must be an arm

compiled . e l f f i l e conta in ing a " subbytes " funct ion , MUST BE SET
27 : param key_func : the key schedu le func t i on name i n s i d e the

binary f i l e , MUST BE SET
28 : param encr_func : the encrypt func t i on name i n s i d e the binary

f i l e , MUST BE SET
29 " " "
30

31 # I n i t i a l i z e rainbow dev i c e :
32 s e l f . dev i c e = rainbow_arm (sca_mode=True)
33 s e l f . dev i c e . load (b i n a r y _ f i l e)
34 # This part i s l a s c a r dependent :
35 # We d e f i n e what w i l l be the type o f the value generated at

each t r a c e
36 # (here , 16 bytes o f p l a i n t e x t + 16 bytes o f key)
37 value_dtype = np . dtype (
38 [(" p l a i n t e x t " , np . uint8 , (16 ,)) , (" key " , np . uint8 , (16 ,))

,]
39)
40 s e l f . va lue = np . z e r o s (() , value_dtype)
41 s e l f . va lue [" key "] = key
42 #the name o f the two func t i on to s imulate
43 s e l f . func_1=key_func
44 s e l f . func_2=encr_func
45 s e l f . no i s e = no i s e
46 AbstractContainer . __init__(s e l f , number_of_traces , ∗∗ kwargs)
47

48 de f generate_trace (s e l f , idx) :
49 # We prepare the value f o r t h i s t r a c e :

70

Lascar integration

50 s e l f . va lue [" p l a i n t e x t "] = np . random . rand int (0 , 256 , (16 ,) , np
. u int8)

51 s e l f . dev i c e . r e s e t () # dev i c e must be r e s e t /parametred at
each func t i on execut ion

52

53 key_addr = 0xDEAD0000
54 s e l f . dev i c e [key_addr] = bytes (s e l f . va lue [" key "])
55 rk_addr = 0xDEAD1000
56 s e l f . dev i c e [rk_addr] = bytes (s e l f . va lue [" key "])
57

58 # CM3_1T_AES_128_keyschedule_enc(rk , key)
59 s e l f . dev i c e [" r0 "] = rk_addr
60 s e l f . dev i c e [" r1 "] = key_addr
61 s e l f . dev i c e [" l r "] = 0xdeac
62 s e l f . dev i c e . s t a r t (s e l f . dev i c e . f u n c t i o n s [s e l f . func_1] | 1 , 0

xdeac)
63

64 s e l f . dev i c e . t r a c e_re s e t () #r e s e t the array "
sca_values_trace "

65 buf_in = 0xDEAD2000
66 buf_out = 0xDEAD3000
67 s e l f . dev i c e [buf_in] = bytes (s e l f . va lue [" p l a i n t e x t "])
68 s e l f . dev i c e [buf_out] = b" \x00 " ∗ 16 # Need to do t h i s so

t h i s b u f f e r i s mapped in to unicorn
69

70 # CM3_1T_AES_encrypt(rk , buf_in , buf_out , rounds)
71 s e l f . dev i c e [" r0 "] = rk_addr
72 s e l f . dev i c e [" r1 "] = buf_in
73 s e l f . dev i c e [" r2 "] = buf_out
74 s e l f . dev i c e [" r3 "] = 0xa #number o f rounds
75 s e l f . dev i c e [" l r "] = 0xdeac
76 s e l f . dev i c e . s t a r t (s e l f . dev i c e . f u n c t i o n s [s e l f . func_2] | 1 , 0

xdeac)
77

78 #generate t r a c e va lue s and add no i s e to make them s i m i l a r to
r e a l power t r a c e s

79 l eakage= s e l f . dev i c e . sca_values_trace + np . random . normal (0 ,
s e l f . no i se , (l en (s e l f . dev i c e . sca_values_trace)))

80 re turn Trace (leakage , s e l f . va lue)
81

82 i f __name__ == "__main__" :
83

84 #f i l l here with the code presented in the Lascar and Rainbow
s e c t i o n and the s c r i p t w i l l work

71

Bibliography

[1] Mark Randolph and William Diehl. «Power side-channel attack analysis: A
review of 20 years of study for the layman». In: Cryptography 4.2 (2020),
p. 15 (cit. on p. 4).

[2] Paul Kocher, Joshua Jaffe, and Benjamin Jun. «Differential power analysis».
In: Annual international cryptology conference. Springer. 1999, pp. 388–397
(cit. on pp. 4, 5).

[3] Eric Brier, Christophe Clavier, and Francis Olivier. «Correlation power anal-
ysis with a leakage model». In: International workshop on cryptographic
hardware and embedded systems. Springer. 2004, pp. 16–29 (cit. on pp. 6, 8).

[4] Hassen Mestiri, Noura Benhadjyoussef, Mohsen Machhout, and Rached Tourki.
«A comparative study of power consumption models for cpa attack». In:
International Journal of Computer Network and Information Security 5.3
(2013), p. 25 (cit. on pp. 8, 9).

[5] Eric Peeters, François-Xavier Standaert, and Jean-Jacques Quisquater. «Power
and electromagnetic analysis: Improved model, consequences and compar-
isons». In: Integration 40.1 (2007), pp. 52–60 (cit. on p. 9).

[6] Hongying Liu, Guoyu Qian, Satoshi Goto, and Yukiyasu Tsunoo. «AES key
recovery based on Switching Distance model». In: 2010 Third International
Symposium on Electronic Commerce and Security. IEEE. 2010, pp. 218–222
(cit. on p. 9).

[7] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced Encryption Standard (AES).
en. Nov. 2001. doi: https://doi.org/10.6028/NIST.FIPS.197 (cit. on
p. 9).

[8] Owen Lo, William J Buchanan, and Douglas Carson. «Power analysis attacks
on the AES-128 S-box using differential power analysis (DPA) and correlation
power analysis (CPA)». In: Journal of Cyber Security Technology 1.2 (2017),
pp. 88–107 (cit. on p. 13).

72

https://doi.org/https://doi.org/10.6028/NIST.FIPS.197

BIBLIOGRAPHY

[9] NewAE Technology Inc. CW1200 ChipWhisperer-Pro. [Online: 30-December-
2022]. url: https://rtfm.newae.com/Capture/ChipWhisperer-Pro/ (cit.
on p. 13).

[10] NewAE Technology Inc. CW308 UFO. [Online: 30-December-2022]. url:
https://rtfm.newae.com/Targets/CW308%20UFO/ (cit. on p. 13).

[11] NewAE Technology Inc. CW308T-STM32F. [Online: 30-December-2022]. url:
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F/ (cit.
on p. 13).

[12] NewAE Technology Inc. ChipWhisperer API Documentation. [Online: 30-
December-2022]. url: https : / / chipwhisperer . readthedocs . io / en /
latest/index.html#api (cit. on p. 14).

[13] Ledger Donjon. Rainbow. [Online: 30-December-2022]. url: https://github.
com/Ledger-Donjon/rainbow (cit. on p. 14).

[14] Unicorn engine. Unicorn-Engine. [Online: 30-December-2022]. url: https:
//www.unicorn-engine.org/ (cit. on p. 14).

[15] Ledger Donjon. LASCAR. [Online: 30-December-2022]. url: https://githu
b.com/Ledger-Donjon/lascar (cit. on p. 14).

[16] Alex Dewar, Jean-Pierre Thibault, and Colin O’Flynn. NAEAN0010: Power
Analysis on FPGA Implementation of AES Using CW305 & ChipWhisperer.
2020 (cit. on p. 18).

[17] kokke. Tiny-AES. [Online: 20-January-2023]. url: https://github.com/
kokke/tiny-AES-c (cit. on p. 25).

[18] Free Software Foundation. GCC Optimization Options. [Online: 23-February-
2023]. url: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.
html#Optimize-Options (cit. on p. 26).

[19] NumPy. NumPy Python library. [Online: 20-January-2023]. url: https :
//numpy.org/ (cit. on p. 26).

[20] jnk0le. Cortexm-AES. [Online: 24-January-2023]. url: https://github.com/
jnk0le/cortexm-AES (cit. on p. 34).

[21] Ledger Donjon. VisPlot. [Online: 26-January-2023]. url: https://github.
com/Ledger-Donjon/visplot (cit. on p. 45).

[22] VisPy developers. VisPy. [Online: 26-January-2023]. url: https://vispy.
org/ (cit. on p. 45).

[23] The Matplotlib development team. Matplotlib. [Online: 26-January-2023]. url:
https://matplotlib.org/ (cit. on p. 45).

73

https://rtfm.newae.com/Capture/ChipWhisperer-Pro/
https://rtfm.newae.com/Targets/CW308%20UFO/
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F/
https://chipwhisperer.readthedocs.io/en/latest/index.html#api
https://chipwhisperer.readthedocs.io/en/latest/index.html#api
https://github.com/Ledger-Donjon/rainbow
https://github.com/Ledger-Donjon/rainbow
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://github.com/Ledger-Donjon/lascar
https://github.com/Ledger-Donjon/lascar
https://github.com/kokke/tiny-AES-c
https://github.com/kokke/tiny-AES-c
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://numpy.org/
https://numpy.org/
https://github.com/jnk0le/cortexm-AES
https://github.com/jnk0le/cortexm-AES
https://github.com/Ledger-Donjon/visplot
https://github.com/Ledger-Donjon/visplot
https://vispy.org/
https://vispy.org/
https://matplotlib.org/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis outline

	Side Channel Analysis
	Power Analysis
	Simple Power Analysis
	Differential Power Analysis
	Correlation Power Analysis
	CPA Power Consumption Model

	Advanced Encryption Standard
	AddRoundKey and SubBytes steps

	Trace acquisition setup
	Hardware and software
	ChipWhisperer
	Communication and firmware
	Data capture workflow

	Rainbow
	Basic usage
	Power models

	Analysis results
	 Analysis context
	DPA implementation
	CPA implementation

	TinyAES - C implementation
	Simulated traces analysis
	Real traces analysis

	Cortexm-AES - Assembly implementation
	Simulated traces analysis
	Real traces analysis

	Improvements and hints
	VisPlot
	LASCAR
	Acquisition and analysis from Chipwhisperer
	Acquisition and analysis from Rainbow

	Rainbow viewer

	Conclusion
	Basic capture script from CW
	Target firmware
	TinyAES
	Cortexm-AES

	Capture script from Rainbow
	TinyAES
	Cortexm-AES

	Python script for analysis
	DPA
	CPA

	Lascar integration
	with Chipwhisperer
	with Rainbow

	Bibliography

