
POLITECNICO DI TORINO
MASTER’s Degree in INGEGNERIA

INFORMATICA (COMPUTER ENGINEERING)

MASTER’s Degree Thesis

Single-click recording and playback via
Alexa for oral narratives

Supervisors

Prof. GIANPIERO CABODI

Prof. LUCIANO LAVAGNO

Candidate

LUDOVICO MULATERO

APRIL 2023

Abstract

The project of this thesis is the research and development of an Alexa skill, a voice
assistant, which queries the tiraccontounastoria.org server and then handles the
different requests in the most appropriate way. The server contains stories told and
experienced in first person, where anyone can listen to public stories and can tell
new ones if they register.

The aim is to be able to carry out an initial search via Alexa for the stories
on the website and finally listen, always via Alexa, to the audio file saved on the
server. When Alexa receives a request from a user, the voice assistant processes
the task and sends a specific request to the server, based on what the user wants,
and then receives an answer to provide to the user who asked a specific question.

Server side, various requests are made to different URLs, depending on the type
of requirement desired. Each kind of request will query the database on the basis
of the information obtained and create a response. The server extracts, analyzes,
filters and reorders the correct data based on the intent request from the skill and
serializes these data to be sent to the back-end on Alexa that create a dedicated
answer for the user.

Alexa side, one has to define the various intents: the set of example sentences
that a user usually says. Some of these intents are accompanied by slots: extra
information that is provided for a specific fact. After that, Alexa route the voice
command to the most appropriate intent and the developer handle each intent so
that Alexa give the appropriate response.

When starting the skill, the user can request a specific topic, check which public
stories are present and which stories are told by a narrator. When Alexa plays the
requested list, that list is divided into groups so as not to create a list that is too
long. Cases of homonymy are handled, such as stories told by one person, and the
stories reproduced are not repeated until all homonyms are listed. It is possible to
listen to the audio by directly asking for the track title or number in the list. Once
playing, it is possible to use the playback and positioning commands for a preset
time by the developer.

Table of Contents

1 Introduction 1
1.1 Ti Racconto Una Storia . 1
1.2 Amazon and Alexa . 2

1.2.1 What is a skill? . 3
1.2.2 Automatic Speech Recognition and Natural Language Un-

derstanding . 4
1.2.3 Amazon Developer and AWS 4

2 The idea 6
2.1 Record and playback audio using Alexa 6

2.1.1 How to make it possible . 6
2.2 How they can communicate - ngrok 7

3 Implementation server-side 8
3.1 HTTP request & JSON response 10
3.2 Transfer data using ngrok . 11

4 Implementation Alexa-side 13
4.1 New dependencies required . 15

5 Limitations, problems and (some) solutions 17
5.1 Problem: Response delay . 17
5.2 Problem: Speech-To-Text (and some solutions) 17
5.3 Problem: Audio file . 18
5.4 Limitation: Playback controller . 18
5.5 Limitation: Reload mp3 file . 19

6 How to create a skill for Alexa using JavaScript 20
6.1 First step . 20
6.2 Build . 22

6.2.1 Invocations . 22

ii

6.2.2 Interaction Model - Intents 22
6.2.3 Interaction Model - JSON Editor 24
6.2.4 Interfaces . 31
6.2.5 Evaluate Model . 31
6.2.6 Tools . 31

6.3 Code . 31
6.3.1 Some hints . 32
6.3.2 CloudWatch Logs . 33
6.3.3 S3 Storage . 33

6.4 Test . 33
6.4.1 Development - Alexa Simulator 33
6.4.2 Development - Manual JSON 34

7 Export-Import an existing project 35
7.1 How to export an existing project 35
7.2 How to import an existing code . 35

8 Conclusion 37

A Acknowledgments 39

iii

Chapter 1

Introduction

1.1 Ti Racconto Una Storia

A website named tiraccontounastoria.org is an idea where everyone can
save a story using their voice and permits to make public their stories, so that
anyone can hear them in the future.
In the website, some stories are already uploaded on a server and ready to be
played. Here, it’s possible to find true stories by true people, because it’s the story
teller that choose the arguments, what to say and for how many time speak about.

The front-end and the back-end are built with Django, a framework for web
development in Python, and exploits the Django Rest Framework library to create
RESTful APIs.

1

tiraccontounastoria.org

Introduction

At the first time, a new user need to be signed in and only after that the user
can record and save his own stories.

A story is recorded by the user as short or long voice messages and sent to the
server of the website using the Telegram app. When the audio arrives, the same
server extract and transcribe the keywords to have also the possibility to user to
read the audio. This function require more or less time based on how long is the
recorded story. Once it’s ended, there is also the possibility to modify the text for
a better matchmaking. This action is possible for the creator directly in his private
area on the website.
When a new voice message is created, the server set it automatically as private,
then it’s possible to switch to public so everyone can listen the recorded story.
For example, people with the same story can provide different point of view of the
same thing. It can be also useful to permits to grandparents to be remembered
and for the new generations to listen to the voice of their parents.

1.2 Amazon and Alexa

Alexa is a virtual assistant technology largely based on a Polish speech syn-
thesizer named Ivona, bought by Amazon in 2013. In 2014 the first device was
released by Amazon and it’s now called Amazon Echo or, simply, Echo. Not
only Echos, but more device’s manufactures can connect to Alexa. It is capable
of voice interaction, music playback, making to-do lists, setting alarms, streaming
podcasts, playing audio-books, and providing weather, traffic, sports, and other
real-time information, such as news. Alexa can also control several smart devices
using itself as a home automation system.

2

Introduction

Alexa works using a cloud service divided in Alexa Voice Service and Alexa
Skill Kit. The Alexa Voice Service needs only a WiFi connection and a microphone,
it means that any device can be Alexa-enabled. The other side of Alexa is the
Alexa Skill Kit. Once that Alexa is connected, the content that a user has access
to is called skill.

1.2.1 What is a skill?
Skills are functionalities that the developer gives to Alexa to be able to do different
things. When a user say a wake word, the device recognizes that is invoked and
sends all the sentences to the Alexa Service. Using the Automatic Speech
Recognition, it converts the audio to text, then Alexa sends the request to the
back-end using Natural Language Understanding to know the meaning of the
sentence, so the developer can create a dedicated answer to be returned for the
user.
There are two sides to building an Alexa skill: Voice Interaction Model and
Programming Logic. Originally, the programming logic was build on a external
hosted-service or every other back-end, but now both are available on developer.
amazon.com.

Voice Interaction Model

Basically, this is the main part of what is related with the voice. The skill and the
back-end of the skill are JSON request and JSON response.
To start the interaction and open a skill, at first, it’s required to activate the device
using a wake word (typically Alexa). After that, it’s possible to open the skill
itself using words like open, launch, start, followed by the invocation name.
The invocation name is the name that the developer decides and which the user
will need to say to open the skill. This name, generally, is made by 2-3 words and
can contain generic words. Furthermore, it’s possible to open the skill and access
directly a specific functionality (a command) using utterance.

The various utterances map to intents, because there are various way to say the
same thing with the same meaning. For each intent created, a developer can create
some example of common sentences and it’s up to Alexa to route the user to the

3

developer.amazon.com
developer.amazon.com

Introduction

right intent. But it’s not enough, in a utterance a user can provide extra information
for specific facts. That is called slot. Slot is the Alexa’s voice equivalent of a
variable used by developer to fulfill that specific intent. It’s possible to divide
slots in built-in and custom. Some built-in intents are mandatory to help the
developer and are not required to set the most frequently used sentences and make
the skill more user-friendly.

Programming Logic

Here it’s defined how to manage each intent that elaborates the request and provides
a specific answer, in other words this is the back-end. A skill is an implementation
of code mainly based in JavaScript or Python, it’s possible to choose one of them
at the creation, but, if a developer doesn’t want to use a supported language,
it’s possible to use other languages not supported directly by Alexa and handle
the JSON. Most skill run on cloud on the Amazon’s AWS Lambda that is a
Computing Service that runs code in response to events and automatically manages
the computing resources required by that code.

1.2.2 Automatic Speech Recognition and Natural Language
Understanding

Once Alexa is activated, the Automatic Speech Recognition will take care of
turning the sound it receives into text. We speak of sound as voice is also a sound
for Alexa. Once the text is obtained, the Natural Language Understanding
will take care of understanding and routing the text to the correct intent. This
whole process uses AI to transform sound into phonemes, then into words, then
into sentences and finally into intents. The process will return a JSON with the
text to be spoken by Alexa itself, this part is called Text-To-Speech (TTS).

1.2.3 Amazon Developer and AWS
Previously, an external hosting service was required for the back-end part (such as
AWS or other back-end services or servers available), whereas now Alexa-Hosted
skills, a back-end hosted by Alexa, simplified and based on AWS, is made available.

4

Introduction

Now, Amazon Developer is the only site where you can find the Voice
Interaction Model and the Programming Logic in amazon.developer.com and
everything will be done here. So, there is no separate back-end to develop the code.

Among the products offered by AWS, one of them is S3 (Amazon Simple Storage
Service), which allows a data/object storage service. Among the data that is stored
within S3, we find, for example, the URL containing the audio that was previously
stopped.

5

amazon.developer.com

Chapter 2

The idea

2.1 Record and playback audio using Alexa

The idea is to bring together the stories recorded in a website and use an
automated system that to get back the correct response, to see if they could become
something more.
The aim of this project is to create a skill in Alexa that permits to the people to
search in some way a story and playback the registered mp3 file already saved on
the server.

2.1.1 How to make it possible
At this moment, related on what it is possible to build using Alexa, the skill can do
different types of search and, also, receives the audio to be played. This is possible

6

The idea

adding code in the back-end part on the server that extracts and manipulates the
correct data based on the intent request from the skill, then the server serializes
and sends these to the back-end on Alexa to create a dedicated answer for the user.

When the skill is started, it’s possible to ask for a specific argument, check what
are the all public stories present and who are the story teller of the different stories
presents.

Below it’s shown how the code works in the back-end of server-side and of the
Alexa-side.

2.2 How they can communicate - ngrok
To enable communication between the server and Alexa, the server must be online.
However, since this runs locally and in the absence of a domain, a tunnel is what
would allow the connection.
ngrok is an installable tool that does just that.
As said at https://ngrok.com/docs/secure-tunnels/:

ngrok Secure Tunnels work by using a locally installed ngrok agent to establish a
connection to the ngrok service. Once the connection is established, you get a public
endpoint that you or others can use to access your local service.

Ngrok is a necessary tool in the test phase for verifying the correct passage of data.
By creating a tunnel, only those who have access to the tunnel are able to know
what serialized data are being transferred. When the skill is ready to be made
available to everyone, this tool will no longer be required.
This tool uses port 443 for communication between nodes on the network and using
that port is precisely a requirement of Alexa to allow the transfer and then the
listening of mp3 audio. Once installed on the device, using the command ngrok
http 8000 from the terminal, a direct communication between outside and inside
can be established on port 8000.

7

https://ngrok.com/docs/secure-tunnels/

Chapter 3

Implementation server-side

In order to be able to send data to Alexa, these data must be serialized in a JSON
object, because this is the format in which Alexa wants them. The main steps
before sending the data are:

• extracting the data from the database according to the request made on the
Alexa side

• checking and filtering the data so that it is congruent with the request made

• creating the minimal object by adding only the attributes Alexa needs to be
able to generate a response in the best way.

The server-based back-end is based on the Django REST framework. Developed
in Python, the main files in the project that will be worked on are:

• serializers.py located in ../storyteller-master/st/serializers.py;

• views.py located in ../storyteller-master/st/views.py;

• urls.py located in ../storyteller-master/st/urls.py.

The only import required in the serializers.py file is from rest_framework
import serializers. This import permits to use a shortcut, use ModelSerializer
to create a serialized class that creates an automatic set of fields and a simple
default implementation of create() and update() methods.

In this way, using the various models already written, it’s possible to return the
serialized response in the views.py file calling this function.

As shown in the code below, model contains the model to serialize and fields
contains all the data about the columns of the table present in the database that
the developer wants to use.

8

Implementation server-side

1 class AnswerStorySerializer (serializers . ModelSerializer):
2 class Meta:
3 model = Answer
4 fields = ['id ', 'text ', 'answerStatus ', 'answerType ',

'audio ']

In the views.py file, there is the main part of the developed code. These
functions send the JSON response to Alexa as a object that contain all the
needed information. Here, the serialized data has been manipulated to create a
response with only the essential data and sorted in a way that permits, some-
times, the best possible matchmaking. In this way, the data are accessible in
serializerTitle.data.

1 del allTitleStory (request):
2 storyTitle = Story. objects .all ()
3 serializerTitle = StoryTitleSerializer (storyTitle , many =

True)

If an identification (ID) is passed as a parameter in the function for a specific
request, it is possible to get the single object that contains only the required
information. This ID is part of the URL that send the request.

1 del storyOfAPerson (request , story):
2 song = Answer . objects .get(id = story)

In the urls.py file, there is the list of the all accessible links that a user can
use to access a specific page of the website or see the JSON response for a specific
request. The developer sets the different URLs.

1 url (r'^ person /', views. personList),

Sometimes a parameter is added at the end to provide a specific set of data:
(?P<parameter>[a-zA-Z_0-9=]+) where in the square parenthesis it is defined
what kind of characters are permitted or not. It’s required to set the import of the
views.py file.

9

(?P<parameter>[a-zA-Z_0-9=]+)

Implementation server-side

1 url (r'^ searchStoryAbout /?P<words >[A-Za -z_0 -9= -]+) ', views.
searchStoryAbout),

3.1 HTTP request & JSON response
At server-side, only few functions are created and used. To make a search on what
is present in the database, it’s possible to have a JSON object that contains all the
persons that have told a story, which stories a single person has told, which stories
are present in the database (only the public stories) and a general search about
some keywords. There is another function that returns the mp3 file that contains
the story chosen by the user to be listened.

Serialized data also contains fields that do not need to be sent, because those
fields serve only as a control and filter. Consequently, it is possible to reduce the
serialized data to be sent that contain only useful and necessary information.

To know the contents of a specific variable, it’s required to parse the JSON data
using JSONRenderer().render(field["column"]).decode("utf-8"), where the
name field is the iterator’s value and column is one of the fields added in the
serializer.

The different functions are:

• allTitleStory: in this case, it’s not enough to return back the serialized data
because the stories must be filtered to know if these are public or private.

• personList: the idea is similar to the title story, moreover the list of persons
is filtered on who already have a story saved. The object is also sorted by the
number of stories for each author, to have a list that starts on who is more
famous.

• storyTitleOfAPerson: to ask for a specific story teller, using the ID, the
function returns back only his public stories.

• searchStoryAbout: here the function returns all the story tellers that match
exactly with the first name or the last name with the words that are passed.
Moreover, it makes a deep research on every title and inside each story to
match with the required words. All the words are passed as a single parameter
at the end of the URL. The words are concatenated by an underscore to be
passed as a single parameter to the function.
First of all, split the parameter, there is a research in the text of the story to
match every single word and count how many times these word are contained.
For each story, divided for ID, there is the final sum of how many times

10

Implementation server-side

every word is found in the text and these ID are sorted by this final sum in
descending order. To make more real the final result, only words longer than
3 characters are considered, otherwise another possible solution should be a
self-created stop words list.
After that, it makes a research to obtain an exact match with the first name
or last name to save the story teller. Subsequently, the algorithm checks and
counts how many times the parameters are contained in the title and then
the different title are sorted by sum in descending order.
There will then be an object containing the titles sorted in descending order,
with the titles will be added based on the word search within the various
stories sorted previously.
Only a single object can be returned, so there is an array that contains all the
person and title found.

• storyOfAPerson: using the ID of the story that a user want to listen to,
this function return directly the mp3 file to be played.

3.2 Transfer data using ngrok
Briefly, ngrok is a useful tool for creating a tunnel in the network for the secure
transfer of information. It will create a link to be able to access a local server
remotely.

How to install ngrok on Linux

The installation of this tool is rather quick. Once the account has been created
and logged into https://dashboard.ngrok.com/login, simply open the terminal
on a Linux server and enter the command:
curl -s https://ngrok-agent.s3.amazonaws.com/ngrok.asc | \
sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null && \
echo "deb https://ngrok-agent.s3.amazonaws.com buster main" | \
sudo tee /etc/apt/sources.list.d/ngrok.list && \
sudo apt update && sudo apt install ngrok
and press enter. Finally, you only need to link the previously created account with
the command ngrok config add-authtoken TOKEN, replacing TOKEN with
what is generated on
https://dashboard.ngrok.com/get-started/your-authtoken.

How to use ngrok

Once you have done this, you can start ngrok with the command ngrok http 8000
and use the URL provided. That link generated must be added to the list of links

11

https://dashboard.ngrok.com/login
https://dashboard.ngrok.com/get-started/your-authtoken

Implementation server-side

allowing access to the server back-end in the variable ST_ALLOWED_HOST in the file
/storyteller-master/.env. In the back-end of Alexa, the same URL must be
passed as the first part of the parameter to the axios function concatenated with
the specific path to execute the HTTP request.

Enable communications

Once the tool is installed, a further package must be installed from the command
line and then add some row in the file /StoryTeller/settings.py’.

The first step is to install CORS from the root directory. CORS (Cross-origin
resource sharing) is a mechanism to request the reserved resources of a web page
from another domain than the one from which the first resource was served.
The command line to use is: python -m pip install django-cors-headers.

Within the settings.py file, in INSTALLED_APPS, this must be indicated as
even though our new app exists within the Django project, Django does not “know”
about it until we explicitly add it.

A new line containing corsheaders.middleware.CorsMiddleware must also
be added in MIDDLEWARE.

Finally, at the end of the file, add CORS_ALLOW_ALL_ORIGINS=True.

12

Chapter 4

Implementation Alexa-side

The back-end used to develop the skill is based on Node.js, but let’s proceed by
steps.
The creation of intent takes place in the Build part. Each intent has a specific
function. There are intents that have no slots to worry about, they only receive
basic commands (searchStoryTellerIntent, searchTitleStoryIntent,
OtherPersonOrStoryIntent), other intents have to work with slots. Each slot
must be identified by a type, the ones used in this project are:

• AMAZON.Person is a slot dedicated to receive a first and last name
(SaveStoryTellerIntent);

• AMAZON.Number is dedicated to receive any number (TellStoryIntent).
By opening the slot in question, in the Validations page it is possible to
provide a range for which the said number may be valid, so as to avoid possible
errors. In this case it is useful to consider only positive numbers;

• AMAZON.SearchQuery retrieves all that is said, it is not possible to have
another slot in the same utterance (SaveStoryTellerIntent,
TellStoryIntent, SearchStoryAboutIntent, AllPersonOrStoryIntent)

At the creation (see How to create a skill, Chapter 4), a pre-filled workspace is
ready in the Code page. The first intent is dedicated to the first action the skill
must take when it is invoked. It is usually a welcome or welcome back message,
followed by what the skill itself can do.
In this skill, the new developed intents are:

• SearchStoryAboutIntent: Once the intent has received the slot containing
what is to be searched for, the words in question are all concatenated with
underscores. This new parameter is passed to a function that makes an HTTP
request and receives a JSON object containing all the information for which

13

Implementation Alexa-side

the search was made. An initial check is made to ensure that something is
present in it, otherwise Alexa will say that the search produced no results. If
the object is not empty, an initial list of people and stories present will be
provided;

• AllPersonOrStoryIntent: With this intent, the user can define how many
names or titles Alexa should list, otherwise it’s possible to ask to hear them
all;

• OtherPersonOrStoryIntent: A separate intent will allow the user to continue
listening to the previously started list or have Alexa tell you that no more
items are available;

• SearchStoryTellerIntent: Another possibility is to allow searching by story
teller, i.e., to know who has reported something. An HTTP request will be
sent and a JSON containing the first and last names will be received. Alexa
will list them in groups, with the possibility of hearing the next ones exploiting
the intent described above in OtherPersonOrStoryIntent;

• SearchTitleStoryIntent: As for the story tellers, the execution is the same
for the stories;

• SaveStoryTellerIntent: It allows for the user to search specifically for a
particular person and find out what stories they have told. An initial check
immediately verifies whether the person requested is among those existing in
the database. If present, their titles will be listed. The case of homonymy is
also handled: an author is randomly chosen and excluded for a subsequent
query for the same name. The operation will continue until the last homonym
or another person is requested;

• TellStoryIntent: There are two ways of deciding which story to listen to:
by saying the number in the list or by specifying the title. A first check
is made on the basis of the number said, if this is zero or greater than the
number of stories present, Alexa will generate a random number and execute
it. Otherwise, based on how the user says the utterance, anything that is not
representable as a number the speech recognition will interpret it as text, thus
without symbols, or replies that the entered number is not valid.
If the user says the title, several attempts will be made to find the best possible
association with the request. The use of stop-words on both (the request and
the available stories) added with the comparison on the word count manages
to give the best possible matchmaking. In the case of homonymy on titles and
imperfect comparisons, titles will be chosen randomly one at a time until they
are exhausted. Instead, if the number is said, Alexa will automatically play

14

Implementation Alexa-side

the story in that position.
For greater certainty that Alexa chooses the audio correctly, it will repeat the
title and author;

• StartOverIntentHandler: It allows the skill to start playing audio again and
will only be valid if there is already an mp3 playing;

• NextIntentHandler: It skip ahead a set time in listening;

• PreviousIntentHandler: On the contrary, it allows one to go back a set time
in listening;

• PauseAudioIntentHandler: It pauses the audio;

• PlayAudioIntentHandler: It allows the audio to be resumed from where it
had stopped, whether it was only momentarily stopped or if resumed at a later
time. If the audio is already playing, the request for this intent is ignored.

Finally, there remain only the last intentions dedicated to errors, i.e., intentions
that should not be invoked but will be in the event of a malfunction somewhere in
the code.

4.1 New dependencies required
• ask-sdk-s3-persistence-adapter: S3 is an AWS service that stores more

information and objects. Alexa-hosted skills uses S3 to store our key value
pairs using the persistent adapter of S3. S3 is an available database ready for
the users by Alexa-hosted skills;

• ask-sdk-dynamodb-persistence-adapter: At the creation of a new skill,
the developer gets access to an Amazon DynamoDB table for persisting data.

• i18next: Used to have multiple languages answer at the same time. It’s
also possible to have more languages (e.g. English-UK and English US) that
redirect to the same response, otherwise it is possible to add a new object for
a specific language to overwrite the same sentence.

• axios: A Node library for the HTTP request. It returns JSON data. This
library also has a timeout, which can be useful because the skill has 8 seconds
to respond, so a response (which can be empty) is set anyway.

15

Implementation Alexa-side

1 var config = {
2 timeout : 6500 ,
3 headers: { 'Accept ': 'application /json ' }
4 }
5 return axios.get (url , config)
6 .then(result => result.data)
7 . catch ((error)=>{
8 console.log (error);
9 });

10

Alexa-Hosted is based on JavaScript that use Node.js so, for each new dependency
added in the package.json, an npm install is done automatically when the
developer click on the Deploy button and this will take longer when running the
program, precisely because it will have to perform the installation.

16

Chapter 5

Limitations, problems and
(some) solutions

5.1 Problem: Response delay
Problem:
As introduced in the axios explanation, Alexa has 8 seconds to provide a response.
Sometimes the answer comes immediately, other times it will take a little longer to
get it.
Solution:
The progressive response allows itself to travel in parallel with the real response
and only if the response does not come immediately does it intervene to avoid
leaving silences and not knowing whether the command has been acquired or not.

5.2 Problem: How Alexa convert the sentences

Figure 5.1: What the user can
say

Figure 5.2: What Alexa returns

17

Limitations, problems and (some) solutions

Problem:
When a slot is filled, Alexa will fill that variable using the slot type it was declared
with. With the slot AMAZON.SearchQuery, everything is translated into text
form, except for numbers which are transcribed into numeric form, i.e. digits. In
particular, in the Italian language everything that resembles the word ’uno’ is
proposed as ’1’, i.e. un, uno, una, un’ will be recognised as numerical digit
’1’. The problem arises when one wants to listen to a certain title containing one
of these words but the algorithm requires a 1-1 correspondence in order to play the
story.

Possible solutions:

• The use of stop-words would exclude less relevant words within the string, but
this would also lead to a greater number of possible associations with other
titles. It could be reduced by counting all words in the passed string and in
the comparative string.

• (version valid for Italian) The use of an algorithm capable of replacing the
number ’1’ with all its article variants and performing the comparison. Fast
but with low probability of success.

• (valid version for Italian) The use of simple permutations with the intention
of trying all the different possibilities. Much more effective, but unsuitable for
large amounts of data.

5.3 Problem: Audio file
For the playback of an audio file, Alexa imposes constraints. These include an
HTTPS end-point accessible on port 443, the server must have a valid and trusted
SSL certificate. The file format must be AAC/MP4, MP3, PLS, M3U/M3U8 or HLS,
and with bit-rates between 16kbps and 384kbps.
Problem:
The files saved on the server are in a WAV format because this was required by the
synthesizer for transcription into text.
Solution:
Save a second copy of the audio file in a format required by Alexa.

5.4 Limitation: Playback controller
Problem:
Once the mp3 file is loaded and executed, Alexa will only allow more commands

18

Limitations, problems and (some) solutions

related to audio and the possibility of exiting the skill. This means that Alexa will
not allow a second search while a file is playing.

The only possible solution is to stop the skill, re-execute it and finally be able
to perform a second search.

More specific commands, such as going forwards or backwards in song playback,
are only possible by a set amount in the code. It is not the user who defines this
precisely because it is no longer part of the directives.

As specified in https://developer.amazon.com/en-US/docs/alexa/custom
-skills/playback-controller-interface-reference.html:

Note: When responding to any PlaybackController request, you can only respond with
AudioPlayer directives. The response cannot include any of the standard properties
such as outputSpeech, card, or reprompt. Sending a response with these unsupported
properties causes an error

5.5 Limitation: Reload mp3 file
A limitation of listening to audio is that it is reloaded every time you move through
the track. A new request will be made to the server to resume from the requested
point. Having to reload the audio file each time a request is made to move to the
track, requires that there be a stable and reliable connection, otherwise the time
spent waiting for the jump could be longer than listening to the audio in the same
period of time. Linked to this, the impossibility of not being able to let the user
decide how far to move forward or backward in the track is underperforming. For
stories that are too short, a jump of a few minutes is a very big time. Conversely,
for such long stories, a jump of about a few seconds is little.

19

https://developer.amazon.com/en-US/docs/alexa/custom
-skills/playback-controller-interface-reference.html

Chapter 6

How to create a skill for
Alexa using JavaScript

6.1 First step
By logging in at https://developer.amazon.com/alexa/console/ask, you can
create a new account or use an existing Amazon account. Initially the page will be
empty, as new skills are created they will be added to this page. There is a limit
of 75 skills set by Amazon that can be added, to add new skills you must delete
previous ones.

At first, click on the blue create a skill button.

20

https://developer.amazon.com/alexa/console/ask

How to create a skill for Alexa using JavaScript

Decide on a name for the skill and the main language you want to use.
Click on next in the top right hand corner.

For this skill, the choice will be other. Leave the custom model for greater
flexibility. Choose the programming language from JavaScript and Python where
Alexa-Hosted will create a back-end for the developer directly in the back-end for
developer. Instead, provision your own the developer define his back-end.
To reduce latency, the nearest host region should be chosen and click on next
button.

In the templates section, there is no need to edit, then click next again and
finally Create Skill. It will take a couple of minutes to create.

21

How to create a skill for Alexa using JavaScript

6.2 Build

6.2.1 Invocations

At the beginning it provides the name of the skill, but it’s possible to change to
anything the developer want. The invocation name that will be chosen will be the
one used to execute the skill. Finally, click on Save Model.

6.2.2 Interaction Model - Intents

Here we have the intents, that are the function that the skill has. Some are
predefined and already set. It’s possible open them and add other hints to make
more comfortable what the function can do. Here the developer can add the intents
that he want.
In the Intent section within Interaction Model it’s possible to create the intents
needed. By clicking on + Add Intent, the developer can choose from one of
the already existing intents or create a new one with a specific name and finally
click on create custom intent. In the sample utterances, it’s also possible to
indicate which sample sentences will direct Alexa to that specific intent. For each
phrase one or more slots can be added, it’s useful if these are needed in the code
part. The syntax for creating a slot is: {slot}. It will be automatically created
and then the developer must indicate the type of slot from those present.

22

How to create a skill for Alexa using JavaScript

Slot

Dialogs: By clicking on the slot, it is possible to define whether it is mandatory
and to demand that it be filled.
Validations: Depending on the type of slot created, only certain values can be
accepted. In the case of a slot of type number, it is possible to make the user only
receive numbers greater than zero (useful when he wants to listen to a song in a
certain position).

23

How to create a skill for Alexa using JavaScript

Intent validation

Only when the entire Dialog Delegation is completed, Alexa resumes the intent
with the required slot and asks for a confirm. Only after a confirm by the user, the
intent has been activated and the JSON is created.

6.2.3 Interaction Model - JSON Editor
In the JSON Editor it’s possible to find what is previously said, so the developer
can easily modify only the JSON and everything will be automatically updated
once the build is done.
The code below shows the creation of the intents for this project.

1 {
2 "interactionModel": {
3 "languageModel": {
4 "invocationName": "storia di prova",
5 "intents": [
6 {
7 "name": "AMAZON.CancelIntent",
8 "samples": []
9 },

10 {
11 "name": "AMAZON.HelpIntent",
12 "samples": [
13 "cosa puoi fare",
14 "aiutami",
15 "cosa posso fare",
16 "help",
17 "aiuto"
18]
19 },
20 {
21 "name": "AMAZON.PauseIntent",
22 "samples": []
23 },
24 {
25 "name": "AMAZON.ResumeIntent",
26 "samples": []
27 },
28 {
29 "name": "AMAZON.StopIntent",
30 "samples": [
31 "basta",
32 "stop"

24

How to create a skill for Alexa using JavaScript

33]
34 },
35 {
36 "name": "HelloWorldIntent",
37 "slots": [],
38 "samples": [
39 "chi ha sempre ragione",
40 "ciao",
41 "come stai",
42 "dí ciao",
43 "salutami",
44 "salutarmi"
45]
46 },
47 {
48 "name": "AMAZON.NavigateHomeIntent",
49 "samples": []
50 },
51 {
52 "name": "SearchStoryTellerIntent",
53 "slots": [],
54 "samples": [
55 "chi ha raccontato cosa",
56 "quali persone ci sono",
57 "quale persona ha raccontato qualcosa",
58 "chi c'é ",
59 "chi ha raccontato una storia"
60]
61 },
62 {
63 "name": "SaveStoryTellerIntent",
64 "slots": [
65 {
66 "name": "persona",
67 "type": "AMAZON.Person"
68 }
69],
70 "samples": [
71 "che cosa ha raccontato {persona}",
72 "voglio sapere i titoli delle storie di {persona}",
73 "voglio sapere le storie di {persona}",
74 "quali storie ha raccontato {persona}",
75 "scegli tu quella di {persona}"
76]
77 },
78 {
79 "name": "TellStoryIntent",
80 "slots": [
81 {

25

How to create a skill for Alexa using JavaScript

82 "name": "numero",
83 "type": "AMAZON.NUMBER"
84 },
85 {
86 "name": "titolo",
87 "type": "AMAZON.SearchQuery"
88 }
89],
90 "samples": [
91 "voglio sentire {titolo}",
92 "sentiamo {titolo}",
93 "scelgo la numero {numero}",
94 "scelgo {titolo}",
95 "fammi ascoltare {titolo}",
96 "quella dal titolo {titolo}",
97 "fammi ascoltare la numero {numero}",
98 "fammi ascoltare la {numero}",
99 "voglio sentire la storia che si intitola

{titolo}",
100 "vai con la {numero}",
101 "sentiamo la {numero}",
102 "racconta la numero {numero}"
103]
104 },
105 {
106 "name": "SearchTitleStoryIntent",
107 "slots": [],
108 "samples": [
109 "quali storie mi proponi",
110 "Proponimi qualche storia",
111 "Proponi qualche storia",
112 "Elencami le storie disponibili",
113 "Quali storie ci sono",
114 "I titoli delle persone",
115 "Quali sono i titoli disponibili",
116 "Quali titoli ci sono",
117 "Quali storie sono disponibili"
118]
119 },
120 {
121 "name": "SearchStoryAboutIntent",
122 "slots": [
123 {
124 "name": "argomentoo",
125 "type": "AMAZON.SearchQuery",
126 "samples": [
127 "{argomentoo}",
128 "su {argomentoo}"
129]

26

How to create a skill for Alexa using JavaScript

130 }
131],
132 "samples": [
133 "raccontami una storia di {argomentoo}",
134 "cosa mi sai dire su {argomentoo}",
135 "trovami qualcosa su {argomentoo}",
136 "cercami qualcosa su {argomentoo}",
137 "proponimi qualcosa su {argomentoo}",
138 "raccontami qualcosa su {argomentoo}",
139 "cerca qualcosa su {argomentoo}",
140 "cosa proponi su {argomentoo}",
141 "voglio sentire qualcosa su {argomentoo}",
142 "qualcosa su {argomentoo}",
143 "dove si parla di {argomentoo}",
144 "fammi ascoltare qualcosa su {argomentoo}",
145 "quali storie ci sono sulla {argomentoo}"
146]
147 },
148 {
149 "name": "AllPersonOrStoryIntent",
150 "slots": [
151 {
152 "name": "argomento",
153 "type": "AMAZON.SearchQuery"
154 }
155],
156 "samples": [
157 "fammi sentire tutte le {argomento}",
158 "elenca tutti i {argomento}",
159 "sentiamo la prima {argomento}",
160 "elenca la prima {argomento}",
161 "elenca tutte le {argomento}",
162 "sentiamo le prime {argomento}",
163 "elenca le prime {argomento}",
164 "sentiamo tutte le {argomento}"
165]
166 },
167 {
168 "name": "OtherPersonOrStoryIntent",
169 "slots": [],
170 "samples": [
171 "mostra i prossimi risultati",
172 "mostrami i risultati successivi",
173 "mostrami altri risultati",
174 "Dimmi le successive",
175 "Quelle dopo",
176 "Dopo cosa c'é",
177 "Le prossime",
178 "Dimmene altre"

27

How to create a skill for Alexa using JavaScript

179]
180 },
181 {
182 "name": "AMAZON.StartOverIntent",
183 "samples": []
184 },
185 {
186 "name": "AMAZON.NextIntent",
187 "samples": []
188 },
189 {
190 "name": "AMAZON.PreviousIntent",
191 "samples": []
192 }
193],
194 "types": []
195 },
196 "dialog": {
197 "intents": [
198 {
199 "name": "AllPersonOrStoryIntent",
200 "confirmationRequired": false,
201 "prompts": {},
202 "slots": [
203 {
204 "name": "argomento",
205 "type": "AMAZON.SearchQuery",
206 "confirmationRequired": false,
207 "elicitationRequired": false,
208 "prompts": {}
209 }
210]
211 },
212 {
213 "name": "SearchStoryAboutIntent",
214 "confirmationRequired": false,
215 "prompts": {},
216 "slots": [
217 {
218 "name": "argomentoo",
219 "type": "AMAZON.SearchQuery",
220 "confirmationRequired": false,
221 "elicitationRequired": true,
222 "prompts": {
223 "elicitation":

"Elicit.Slot.1483798665032.217800179993"
224 }
225 }
226]

28

How to create a skill for Alexa using JavaScript

227 },
228 {
229 "name": "TellStoryIntent",
230 "confirmationRequired": false,
231 "prompts": {},
232 "slots": [
233 {
234 "name": "numero",
235 "type": "AMAZON.NUMBER",
236 "confirmationRequired": false,
237 "elicitationRequired": false,
238 "prompts": {},
239 "validations": [
240 {
241 "type": "isGreaterThanOrEqualTo",
242 "prompt":

"Slot.Validation.1395478475284.1573965218901.1548188764617",
243 "value": "0"
244 }
245]
246 },
247 {
248 "name": "titolo",
249 "type": "AMAZON.SearchQuery",
250 "confirmationRequired": false,
251 "elicitationRequired": false,
252 "prompts": {}
253 }
254]
255 }
256],
257 "delegationStrategy": "ALWAYS"
258 },
259 "prompts": [
260 {
261 "id": "Elicit.Slot.250658637082.644736003049",
262 "variations": [
263 {
264 "type": "PlainText",
265 "value": "Devo sapere se tutte o il numero di

storie o persone da farti conoscere"
266 }
267]
268 },
269 {
270 "id": "Elicit.Slot.1483798665032.217800179993",
271 "variations": [
272 {
273 "type": "PlainText",

29

How to create a skill for Alexa using JavaScript

274 "value": "Devo conoscere almeno l'argomento"
275 }
276]
277 },
278 {
279 "id": "Elicit.Slot.1049738387051.291288904675",
280 "variations": [
281 {
282 "type": "PlainText",
283 "value": "Ritenta"
284 }
285]
286 },
287 {
288 "id": "Elicit.Slot.932451633348.1161941290713",
289 "variations": [
290 {
291 "type": "PlainText",
292 "value": "devo conoscere almeno l'argomento"
293 }
294]
295 },
296 {
297 "id":

"Slot.Validation.1395478475284.1573965218901.1548188764617",
298 "variations": [
299 {
300 "type": "PlainText",
301 "value": "Inserisci un numero maggiore di zero"
302 }
303]
304 },
305 {
306 "id":

"Slot.Validation.1172069686837.1461406282166.589840667553",
307 "variations": [
308 {
309 "type": "PlainText",
310 "value": "Inserisci un valore corretto"
311 }
312]
313 }
314]
315 }
316 }

30

How to create a skill for Alexa using JavaScript

6.2.4 Interfaces
This is a fundamental step in listening an audio. The developer must enable Audio
Player to give Alexa the ability to play external audio.

6.2.5 Evaluate Model
After clicking on Build Model, an initial test can be carried out to check whether
the main commands work. At the top right, Evaluate Model offers the possibility
of interaction so as to know whether the text is understood and whether the slots
are identified correctly. It allows interaction without the use of the back-end.

6.2.6 Tools
Permissions: there is the list of the permission to have. There is no save button to
build that part, all is automatic updated. Developing the code,
[‘alexa::profile:given_name:read‘] is the address from the request’s Alexa API.
To load the data, the function will use the UPSclient (User Profile Service) that
is a client that aggregate all this type of request. If that permission is not enabled,
the code will works anyway but without these information. Final user-side, in
the Alexa app a popup will appear to ask to the user if he want to enable these
permission or not.

6.3 Code
The Alexa object is created at the beginning using the ask-sdk-core. At the end
of the program is Alexa object is instantiated and the handler are registered in
.addRequestHandler() and all terminated using .lambda().
The button for compiling the code is in the top right-hand corner and is named
Deploy.

1 const Alexa = require('ask-sdk-core');
2

3 const IntentHandler = {
4 canHandle(handlerInput) {
5 return Alexa.getRequestType(handlerInput.requestEnvelope) ===

'IntentRequest'
6 && Alexa.getIntentName(handlerInput.requestEnvelope) ===

'Intent';
7 },
8 handle(handlerInput) {

31

How to create a skill for Alexa using JavaScript

9 const speakOutput = "Hi";
10 return handlerInput.responseBuilder
11 .speak(speakOutput)
12 .reprompt('add a reprompt if you want to keep the session open

for the user to respond')
13 .getResponse();
14 }
15 };
16 exports.handler = Alexa.SkillBuilders.custom()
17 .addRequestHandlers(
18 IntentHandler)
19 .lambda();

How a handler work:

• First function: canHandle() know if a handler is the correct one to use the
request. It returned only true or false.

• Second function: if the first is true, determines what needs to be done, once
the request is coming in.

6.3.1 Some hints
• Inteceptors: they run with each request or response. The RequestInte-

ceptors run just after the request arrives at Alexa and before the handlers
handle the response, while the ResponseInterceptors run just before the
response is sent to Alexa.

• Session Attributes: it’s a short-term memory. Those attributes that are
persistent only during the session, when the skill is stopped that attributes
are deleted. The session attributes are called using
handlerInput.attributesManager.getSessionAttributes() that returns
an object that can be already filled or empty object, if not defined.

• Persistent Attributes: long-term memory. Attributes that can be used for
more than one session are retrieved using an async function called attributes-
Manager.getPersistentAttributes() and set in the sessionAttributes using
attributesManager.setPersistentAttributes. To save the session at-
tributes, instead, the first step is write them in the persistent attributes using
attributesManager.setPersistentAttributes(sessionAttributes) and
using an async function save them using
attributesManager.savePersistentAttributes(). The lambda function
add a new line .withPersistentAdapter(persistentAdapter) to say that
it’s used the persistent adapter.

32

How to create a skill for Alexa using JavaScript

• Progressive response: CallDirectiveService is a request to something
external, it may require time. Starting form the user when asks something to
the skill until the skill will response, may pass until 8 seconds because after
that the skill stop to work. Waiting 8 seconds for an answer, so the Progressive
Response permits us to insert a message to say while the skill elaborate the
truth answer. The progressive response is queued and, only if the message in
the queue arrives before the real answer, Alexa will start with the progressive
response and then with the answer. Otherwise only the answer will said by
Alexa and the progressive response will be ignored.

6.3.2 CloudWatch Logs
Sometimes it is useful to be able to know the value of variables, to understand how
they are changed by the code and to fix new errors. CloudWatch is a tool that
collects console.logs and keeps track of them, just like on a black screen. It also
has a history of previous printouts. It is not very intuitive to use, but the history
displayed is in chronological order and is constantly updated during testing, so the
developer can keep track of how the data is changed. Each time a deployment is
made, this creates a new log stream.

6.3.3 S3 Storage
Having spoken of persistent attributes, there is also a database in which this
data is stored. There is no way to change or view the saved data, the only possible
action is to delete the content. When the dedicated page is opened, it will be
empty and devoid of content. In order to be able to delete the present data, it is
necessary to step back into the directory by pressing on the name following Amazon
S3 > Bucket > so that the object in question can be selected and deleted.

6.4 Test
Once the deployment has been completed, the developer can test the operation in
the Test section.
At the first access to the test page, the whole page will be greyed out. The developer
will have to switch from Off to Development in the top left-hand corner and
then you can start interacting.

6.4.1 Development - Alexa Simulator
With the provided simulator it is possible to have a first interaction with Alexa,
being able to interact either via keyboard or vocally if equipped with a microphone.

33

How to create a skill for Alexa using JavaScript

The only limitation that this simulator has is that actual audio playback is not
possible, so for this type of test it is necessary to opt for an Echo dot or by
downloading the application on the smartphone. Since the developer owns the
skill, it is automatically installed and ready to use on the device. Thanks to the
simulator, it is possible to see the JSON object being sent and received by Alexa.

6.4.2 Development - Manual JSON
The same JSON object sent can be copied and modified within this section. In
this way, it is possible to modify part of the request made and see how Alexa’s
response behaves.
The object that is created will only be sent when the required slots are correctly
filled, if present in a given intent. There will therefore be no empty or partial
request.

34

Chapter 7

Export-Import an existing
project

7.1 How to export an existing project
To export a skill, after a first login phase and selected the skill to export, simply go
to the Code section, click on Download Skill then Continue. A zip file will be
downloaded containing a folder with a JSON file containing all the various intents,
a folder with the back-end and a skill.json file.

7.2 How to import an existing project
To import a skill the developer needs to choose which skill to modify (or create
a new one as explained above), in the Code section click on Import Code and
add the desired zip file. A window will open and the affected files can be added.
Finally press on Next and Import. Some requirements on the zip file concern the
total size which must not exceed 50MB, UTF-8 encoded, no more than 100 files
together can be uploaded and must be in JavaScript or Python language in the
lambda folder.

35

Export-Import an existing project

36

Chapter 8

Conclusion

In this project, the aim is to combine a website containing oral stories with the
potential offered by the voice assistant Alexa. tiraccontounastoria.org offers an
audio recording service via a telegram bot with saving on the server and listening
to the previously recorded stories directly from the URL.

Alexa allows interaction with the user without the help of a PC to make it easier
to search for potential stories to listen to.

The Python code development on the back-end of the server receives the requests
and manages the data to be processed to be sent in JSON format to Alexa.

In the Alexa part, there is a first part where intents have to be created, i.e.,
sentences that the user potentially says depending on the type of request made.
The second part concerns the handling of these intents, i.e. what Alexa will say
according to the invoked intent, and is developable in JavaScript or Python.
It is possible to play an mp3 file by searching for information on the people present
or the stories available, or to search for a specific topic of one or more words.
Furthermore, using the basic and suitably modified functionality, it is possible to
manage the playback and pause of the audio file.

There are some limits that are imposed directly by Alexa and others that are
somehow solvable. It is possible that, in the future, these will be somewhat im-
proved in the AI or other mechanisms will be introduced/updated (such as new
types of slots, a single integration between all the various intents or whatever) for
a much more user-friendly use than it already is.

The work done is only the beginning. Listening to an audio message is now
possible, interaction with Alexa is the basis of everything, but what is possible from
the site is much more. What this part of the project involves is listening to stories
that are public and audible to everyone. But some of these stories can go back

37

Conclusion

to being private, others always have been. A login phase also on the Alexa app
will be necessary so that the private part of that user can also communicate with
the hidden stories. A better interaction for searching stories when they are shared.
The title of the story is always the same, but not who is telling it. A possible future
implementation could also be in the graphical user interface. Improving the way
the users can view, choose, interact on devices that have a display showing the
results. For example, providing the user’s display with a cover of the image used
for that story, flanked by the person who told it. This is something that should
always be reviewed over time, as the improvements being made on these devices
are constantly evolving.

38

Appendix A

Acknowledgments

Mi è doveroso dedicare questo spazio della mia tesi a tutte le persone che mi hanno
supportato nel mio percorso di crescita universitaria e professionale.
Innanzitutto, un grande ringraziamento al mio relatore Cabodi Gianpiero e al mio
correlatore Lavagno Luciano, pronti a guidarmi in ogni fase della realizzazione della
tesi. Un grazie anche al Dott. Pasini Paolo, con il quale ho accresciuto le mie
conoscenze e le mie competenze.

Un doveroso ringraziamento anche ai miei genitori, senza loro sicuramente non
sarei arrivato così lontano. Un ringraziamento a mia sorella Lucrezia, perchè anche
quando era più lontana era sempre vicina nei miei giorni più bui. Non voglio
dimenticare entrambe le mie due fantastiche nonne, che si occupavano di sfamarmi
e che senza loro non avrei avuto la forza di portare a casa questi risultati.

Un ringraziamento anche a Max, compagno universitrario che si rivelato molto
di più. Un vero amico nei momenti di bisogno e un buon alleato nello studio, tra
le mille risate e gli infiniti pianti. Non voglio dimenticare anche i miei amici della
triennale e magistrale: Ale, Beppe, Cri, Fra, Luca e Albi.

Poi gli amici di sempre, quelli che non hai bisogno di sentirli sempre ma ci sono
nel momento del bisogno. Davide, Riccardo, Brusco, Dani e pochi altri. Un infinito
grazie va anche a loro che mi hanno sopportato (ma anche supportato) dal primo
giorno in cui ho stretto loro la mano.

Non voglio dimenticare tutto il vicinato che ha sempre e costantemente creduto
in me, incoraggiandomi sempre più nell’arrivare al mio traguardo e a farmi pesare
meno i giorni passati in casa.

Infine volevo ringraziare anche coloro che non hanno creduto in me, per di-
mostrare loro che, a volte, la perseveranza e insistere su ciò che si ritiene corretto e
giusto per se stessi porta al risultato ottenuto.

39

	Introduction
	Ti Racconto Una Storia
	Amazon and Alexa
	What is a skill?
	Automatic Speech Recognition and Natural Language Understanding
	Amazon Developer and AWS

	The idea
	Record and playback audio using Alexa
	How to make it possible

	How they can communicate - ngrok

	Implementation server-side
	HTTP request & JSON response
	Transfer data using ngrok

	Implementation Alexa-side
	New dependencies required

	Limitations, problems and (some) solutions
	Problem: Response delay
	Problem: Speech-To-Text (and some solutions)
	Problem: Audio file
	Limitation: Playback controller
	Limitation: Reload mp3 file

	How to create a skill for Alexa using JavaScript
	First step
	Build
	Invocations
	Interaction Model - Intents
	Interaction Model - JSON Editor
	Interfaces
	Evaluate Model
	Tools

	Code
	Some hints
	CloudWatch Logs
	S3 Storage

	Test
	Development - Alexa Simulator
	Development - Manual JSON

	Export-Import an existing project
	How to export an existing project
	How to import an existing code

	Conclusion
	Acknowledgments

