
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering - Embedded

systems

Master’s Degree Thesis

Post-Quantum Cryptography
Acceleration through Near-Memory

Computing Architectures

Supervisors

Prof. Massimo PONCINO

Dott. Emanuele VALEA

Candidate

Kristina ROGACHEVA

Academic year 2022-2023

Summary

FrodoKEM is a robust quantum-resistant key encapsulation mechanism that is
based on the Learning with Errors problem. Unfortunately, one of the signifi-
cant computational bottlenecks in FrodoKEM is the product between matrices
of integers. However, recent advances in computing architectures such as Near-
Memory Computing (NMC) offer a promising approach to accelerate and improve
the efficiency of matrix multiplication. NMC drastically reduces the transfer of
data between the CPU and memory, thereby increasing the overall computational
efficiency. The primary goal of this thesis is to develop a novel acceleration strat-
egy for FrodoKEM based on NMC, implemented on traditional SRAM memories.
Through the use of a Computational SRAM and an innovative architecture, the
proposed solution reduces the time required for matrix multiplication, resulting
in a fourfold improvement in performance with respect to the reference software
implementation. Although the current application does not provide all the features
offered by the FrodoKEM scheme, it is possible to extend the optimizations to all
the cryptographic functions. As the need for post-quantum cryptography continues
to grow, the development of novel acceleration strategies such as this one will be
crucial to ensure the security of sensitive information in the future.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Thesis outline . 2

2 Background and State of The Art 4
2.1 Cybersecurity . 4
2.2 Post-Quantum Cryptography . 6

2.2.1 What are quantum computers? 6
2.2.2 Post-Quantum Cryptography 8
2.2.3 FrodoKEM . 10

2.3 Near Memory Computing . 15
2.3.1 Different architecture types 15
2.3.2 Near Memory Computing 17
2.3.3 C-SRAM and system description 17

2.4 State of The Art . 20

3 Implementation 23
3.1 Implementation of the algorithm on RISC-V 23
3.2 First implementation on C-SRAM: matrix multiplication optimization 26
3.3 Second implementation on C-SRAM: matrix multiplication and

addition optimizations . 34

4 Discussion of the results and conclusion 37
4.0.1 Conclusion . 39

A Reference implementation 42

B First implementation 44

iv

C Second implementation 46

Bibliography 49

v

List of Tables

2.1 FrodoKEM different levels of security 10
2.2 Main parameters of FrodoKEM . 14
2.3 Keys and ciphertext sizes of FrodoKEM 15
2.4 Near-Memory-Computing instructions that can be executed on the

C-SRAM. 18

3.1 Hierarchical design area before and after the modifications. 28
3.2 Power report results before and after the modifications. 29
3.3 Timing report before and after the modifications 30
3.4 NLINES parameter with respect to the sizes of FrodoKEM 31

4.1 FrodoKEM-640 Reference Implementation 37
4.2 FrodoKEM-640 NMC based Implementation 38
4.3 State-of-the-art implementations of the FrodoKEM-640 key generation 39

vi

List of Figures

2.1 Mosca’s theorem. 9
2.2 Public Key Encryption based on a Learning With Errors problem. . 12
2.3 FrodoKEM functions . 14
2.4 Three different types of architecture: scalar, vector and C-SRAM. . 16
2.5 C-SRAM instruction pipeline. 17
2.6 Simple system composed of the processor and the C-SRAM. 19
2.7 C-SRAM instruction set format. 19
2.8 Block diagram of CV32E40P RISC-V processor. 20

3.1 Multiply and Accumulate operation scheme 28
3.2 Data organization for the first implementation on the C-SRAM . . 30
3.3 Example of the matrix multiplication optimization with on the

C-SRAM . 33
3.4 Data organization for the second implementation on the C-SRAM . 34

vii

Chapter 1

Introduction

This thesis is the result of the collaboration with CEA - Alternative Energies
and Atomic Energy Commission, a French research organization. I worked for six
months in their research center in Grenoble, where I had the honor of collaborating
with two teams: Cybersecurity and Memory Design.

This experience allowed me to make use of the knowledge acquired during my
university studies, learn new concepts in Cybersecurity, and improve my skills in
Digital Design and program development. Collaboration with both teams offered
me the opportunity to meet specialists and engineers from different fields, who
inspired me and helped me to conclude the work presented in the following docu-
ment.

The Cybersecurity team is specialized in Post-Quantum Cryptography, in other
words, their main field of study is the protection of digital systems against quantum
computers. The Memory Design team, on the other hand, works on the develop-
ment of advanced custom memories. The purpose of this thesis is to exploit the
computational memories to improve the performance of Post-Quantum Cryptogra-
phy algorithms.

The objective of this thesis is to enhance the performance of FrodoKEM, a
Post-quantum Cryptography algorithm, by utilizing advanced memory, C-SRAM,
based on a Near Memory Computing approach. Whereas the software and hardware
used in this work were developed by cybersecurity and hardware design experts, this
thesis aims to exploit the computational memory to improve the performance of a
computationally heavy algorithm like FrodoKEM. The idea is to modify the existing
algorithms to perform challenging operations, such as matrix multiplication, inside
the C-SRAM. Although FrodoKEM is composed of three primary functions, Key

1

Introduction

Generation, Encryption, and Decryption, this work focuses solely on the first func-
tion leaving the other two for potential future improvements (detailed in Chapter 4).

1.1 Thesis outline
• Chapter 2 is an introduction to the hardware and software background on

which this work is based, and describes the state of the art;

• Chapter 3 introduces the approach and the different implementations of the
algorithms;

• Chapter 4 analyses the obtained results, draws the conclusions and presents
possible ways to continue this work.

2

Chapter 2

Background and State of
The Art

2.1 Cybersecurity
Cybersecurity refers to the set of techniques, technologies, and processes aimed
at protecting computer systems, networks, and digital data from theft, damage,
or unauthorized access. This approach employs advanced technology, well-defined
processes, and robust policies to protect digital assets and prevent cyber attacks,
which can include malicious activities such as hacking, malware, phishing, and
other forms of exploitation. The primary objective of cybersecurity is to maintain
the confidentiality, integrity, and availability of digital information and systems.
This includes protecting sensitive data, ensuring the reliability and functional-
ity of critical systems, and mitigating risks posed by cyber threats. The use of
cryptography plays a crucial role in achieving these goals, as it provides secure
communication channels and protects data privacy. Cryptography enables the
encryption of sensitive data, thereby ensuring that only authorized parties can
access and utilize it. As cybersecurity is a constantly evolving field, cryptography
requires continuous vigilance and proactive measures to stay ahead of potential
attackers.

Cryptography is a field of study concerned with the techniques used to ensure
secure communication. The term Cryptography originates from the Greek words
kryptós, meaning secret, and graphein, meaning towrite. The objective of cryp-
tography is to encrypt and decrypt messages in such a way that their content
remains confidential to everyone except the sender and the intended recipient.

Cryptography has a long history, dating back to ancient civilizations, where the

4

Background and State of The Art

first ciphers, such as transposition and substitution ciphers, were invented. These
ciphers involve rearranging the order of letters in a message or substituting letters
with others. Cryptographers and mathematicians have been studying methods and
strategies for centuries to improve the security of their transmissions and decipher
the enemy’s intercepted messages.

With the advent of electronic communication in the computer era, cryptography
has become increasingly complex, relying on mathematical algorithms and compu-
tational complexity to provide security. Modern cryptographic algorithms must
provide confidentiality, authentication, integrity, and non-repudiation.

• Confidentiality: ensures that data and information are protected from
unauthorized readings.

• Authentication: allows verification of the identity and origin of data and
information.

• Integrity: ensures that data and information are protected against manipula-
tions performed by unauthorized parties.

• Non-repudiation: ensures that a sender cannot deny being the author of
the message.

A plaintext message is a message in a readable form. The process of concealing
a message to hide its content is called encryption, and the resulting message is
called ciphertext. The reverse process, which takes ciphertext as input and restores
the original plaintext, is called decryption. An encryption function E operates on
plaintext P to produce ciphertext C, while the decryption function D operates on
ciphertext C to produce plaintext P.

E(P) = C (1)

D(C) = P (2)

A cipher is a mathematical function used for encryption and decryption of
information. All modern encryption algorithms use a key denoted by K, which
affects the encryption and decryption functions.

E(K, P) = C (3)

D(K, C) = P (4)

5

Background and State of The Art

Symmetric-key encryption uses just one key that must be kept secret. The
sender and the receiver use the same algorithm to encode and decode with the
same key. This type of encryption is fast and efficient, and it is nearly impossible to
decipher the message at reasonable times. Examples of symmetric key algorithms
include Advanced Encryption Standard (AES) and Data Encryption Standard
(DES). The only downside is that the sender and receiver need a secure way to
exchange the secret key.

Asymmetric-key encryption, on the other hand, uses two different keys, one
for encryption and another for decryption. The exchange is performed in three
stages: key generation, encryption, and decryption. In the first phase, the receiver
generates two keys: one kept secret and one shared with the sender. The sender uses
the public key to encrypt their message, generating a ciphertext. The ciphertext is
then sent to the receiver, who can recover the original message using the private
key. Asymmetric encryption is slower and more complex, as it requires three stages
and two different keys to complete. The security of asymmetric cryptography
depends on the mathematical relationship between the public and private keys. In
addition to confidentiality, asymmetric cryptography also provides authenticity and
non-repudiation. Examples of asymmetric key algorithms include RSA, Elliptic
Curve Cryptography (ECC), and Diffie-Hellman key exchange.

Both encryption techniques have different advantages and disadvantages, so hy-
brid encryption schemes are often used, combining both symmetric and asymmetric
cryptography to provide the benefits of both approaches.

2.2 Post-Quantum Cryptography
2.2.1 What are quantum computers?
In the early 20th century, physicists made groundbreaking discoveries about the
behavior of matter at the quantum level. This branch of physics defied classical
mechanics and revealed strange, counterintuitive properties of particles and waves
at the subatomic scale. Physicists like Werner Heisenberg, Erwin Schrödinger, and
Paul Dirac developed a mathematical framework called quantum mechanics that
can describe these peculiar behaviors and interactions.

It wasn’t until 1982 that physicist Richard Feynman proposed the idea of a
quantum computer [1]. Feynman suggested that a quantum computer could sim-
ulate quantum systems more efficiently than classical computers. However, this
idea remained mostly theoretical at the time due to a lack of practical methods

6

Background and State of The Art

for building a quantum computer. Nonetheless, physicists continued to propose
quantum algorithms that could solve problems that classical computers could not.

The first quantum computers were relatively simple and could only perform
small-scale computations. However, they demonstrated the feasibility of building a
quantum computer and laid the groundwork for future research and development.
Today, the scientific community is especially interested in the potential of quantum
computing to solve complex problems that classical computers cannot solve within
a reasonable amount of time. Quantum algorithms like the Quantum Approximate
Optimization Algorithm (QAOA) can provide faster and more accurate solutions
to optimization problems than classical algorithms, which could lead to better
decision-making, resource optimization, and increased productivity.

Quantum computers are based on the laws of quantum mechanics, a branch of
theoretical physics that replaces classical mechanics at the atomic and subatomic
levels. Information in a quantum computer is encoded in qubits, single atoms in
different physical states based on the spin of an electron. The two possible states
of a qubit are the ground state |0> with the spin up and the excited state |1> with
the spin down. Unlike classical bits, which can only exist in one of two states (0 or
1), qubits can exist in multiple states simultaneously. This property is known as
superposition and is one of the fundamental principles of quantum mechanics that
makes quantum computers so powerful.

Another key property of qubits is entanglement, a phenomenon where two or
more qubits become correlated in such a way that their properties are linked,
regardless of the distance between them. This enables quantum computers to
perform certain computations in parallel and exploit interference between qubits
to achieve computational speedup.

Quantum gates are used to manipulate the state of qubits. These gates are
analogous to the logic gates used in classical computing, but they operate on
quantum bits instead of classical bits. Quantum gates can be combined to create
quantum circuits, which perform specific computations on qubits. For example,
the Hadamard gate creates a superposition of the 0 and 1 states, and it is used
to initialize qubits and create quantum states that can be manipulated by other
gates. Another important gate is the CNOT gate, which performs a conditional
operation on two qubits.

Despite the potential of quantum computers, they are still in the early stages of
development. Building and operating a quantum computer is a challenging task, as
qubits are very fragile and sensitive to errors from noise and other environmental

7

Background and State of The Art

factors. Nonetheless, the potential applications of quantum computing are vast,
ranging from cryptography and chemistry to material science and beyond. With
further research and development, quantum computers have the potential to revo-
lutionize the way we approach complex problems in various fields.

2.2.2 Post-Quantum Cryptography
The potential of quantum computers to exponentially accelerate certain types of
computations poses a substantial threat to modern cryptographic protocols [2].
Traditional cryptographic methods rely on complex mathematical problems that
classical computers cannot solve within reasonable time frames. For instance, the
RSA algorithm, a widely used public-key cryptographic algorithm, is based on
the difficulty of factoring large numbers. In 1994, Peter Shor developed efficient
algorithms for factoring integers in polynomial time on a quantum computer [3],
jeopardizing asymmetric cryptography . In 1996, Grover’s quantum algorithm
accelerated the process of breaking cryptographic keys, effectively treating 128-bit
keys like 64-bit ones [4], making symmetric cryptography easily breakable. In the
case of symmetric cryptography, the security level can be augmented by choosing
larger key sizes. It has been estimated that doubling the key size is enough to be
resistant to quantum attacks.

Post-Quantum Cryptography is a branch of cybersecurity that seeks to de-
velop new asymmetric cryptography algorithms that remain challenging even for
quantum computers. Researchers worldwide are studying and implementing new
cryptographic systems based on different kinds of problems, such as lattice-based
cryptography, code-based cryptography, hash-based cryptography, and multivariate
cryptography, to protect the systems before this threat becomes real. Lattice-based
cryptography depends on the computational complexity of solving specific problems
within the realm of lattice theory, including the challenge of determining the short-
est vector in a given lattice. Code-based cryptography is based on the difficulty
of solving specific problems in coding theory, such as decoding random linear
codes. Hash-based cryptography relies on the characteristics of hash functions,
with a particular emphasis on their ability to resist collisions. Lastly, multivariate
cryptography is grounded in the ability to solve systems of multivariate polynomial
equations [5].

At this moment, we don’t have quantum computers powerful enough to break
current cryptographic constructions. However, as soon as they become available,
there will be severe consequences for individuals and organizations. All sensitive
data, such as personal data, financial data, and government secrets, will be easily

8

Background and State of The Art

accessed, leading not only to minor crimes, like fraud and theft but also to national
security threats.

Although it is not possible to predict precisely when this threat will become
a real problem, it is crucial to prepare for it as soon as possible. It takes time
not only to develop new algorithms but also to test them to ensure their security,
adapt them to work correctly on existing digital systems, develop new hardware to
support and optimize the new algorithms, and update all existing infrastructures
with new protocols. This transition can take years to complete, emphasizing the
importance of working on it now.

In 2019 Google disclosed that a quantum computer solved a problem in 200
seconds when a classical computer would take 10000 years to do the same [6]. At
the moment the threat is just theoretical, as the current quantum computers are
not powerful enough for this kind of computation, but how soon do we have to worry?

Dr. Michele Mosca, a mathematician at the University of Waterloo in Canada,
answers this question with this theorem (see Figure 2.1): given that certain informa-
tion must be secure for x time, that y is the time needed to convert infrastructure to
a quantum-safe one, and that z is the time to build a powerful quantum computer,
if x + y > z, then we need to worry [7].

Figure 2.1: Mosca’s theorem.

For this reason, in 2016, the National Institute of Standards and Technologies
(NIST) of the USA initiated a standardization process that will conclude by 2024.
This procedure aims to identify several algorithms that provide security and effi-
ciency.

9

Background and State of The Art

2.2.3 FrodoKEM
The algorithm we are interested in is FrodoKEM [8], a Key Encapsulation Mecha-
nism (KEM) algorithm that has garnered significant attention due to its ability
to ensure high levels of security and performance while also minimizing failure
probability. The algorithm was selected by NIST as an alternate algorithm in the
third round of the standardization process. FrodoKEM is based on the Learning
With Errors (LWE) problem and has been developed through a collaboration
between leading researchers and engineers at major companies such as Google,
NXP Semiconductors, and Microsoft research, as well as prominent universities
such as Stanford University and the University of Michigan.

FrodoKEM has three different levels of security described in the table below:

Level Name Security Description
I FrodoKEM-640 At least as hard to break as AES128
III FrodoKEM-976 At least as hard to break as AES192
V FrodoKEM-1344 At least as hard to break as AES256

Table 2.1: FrodoKEM different levels of security

While FrodoKEM is simple and secure, it is also computationally heavy. As
a result, it was selected as one of the alternates in the third round of the NIST
standardization process. However, despite not being selected as the new standard
in July 2022, FrodoKEM continues to be recommended by security agencies of
several countries, including the Netherlands National Communications Security
Agency (NLNCSA), German Bundesamt für Sicherheit in der Informationstechnik
(BSI), and French Agence Nationale de la Sécurité des Systèmes d’Information
(ANSSI).

FrodoKEM belongs to the Lattice-based cryptography family, which is a rela-
tively new area of cryptography that uses mathematical structures called lattices
to create secure cryptographic systems that are believed to be computationally
difficult for classical and quantum computers. Lattices are geometric structures
that can be used to represent a wide range of mathematical objects, including
vectors, matrices, and polynomials, made up of a set of points arranged in a
regular pattern. In lattice-based cryptography, encryption keys are generated by
selecting a random lattice and a random point within that lattice. The lattice
is then made public, while the random point is kept secret. The message to be
encrypted is then encoded as a point within the same lattice, and the encryption
process involves adding the random point to the message point to produce the
ciphertext. Decryption involves subtracting the secret point from the ciphertext

10

Background and State of The Art

point to recover the original message.

One of the fundamental lattice problems that form the basis for several cryp-
tosystems is the Shortest Vector Problem (SVP), which involves finding the shortest
nonzero vector in a given lattice. The SVP can be formally defined as follows:

Theorem 1 Given a lattice L in n-dimensional space, find the nonzero vector v in
L with the smallest Euclidean norm ||v||.

In other words, find the shortest vector in the lattice. The SVP is an important
problem in cryptography, as the security of several cryptosystems relies on the
assumption that the SVP is hard to solve. An attacker who is able to solve the
shortest vector problem would be able to recover the secret point and thus decrypt
the ciphertext. Thus, one of the main challenges in implementing lattice-based
cryptography is choosing an appropriate lattice.

There are several families of lattices that are commonly used, each with its
own strengths and weaknesses. One such family is the NTRU lattice (Nth Degree
Truncated Polynomial Ring Units), which is generated from polynomial rings and
is particularly well-suited for use in cryptographic systems because it has good
properties with respect to the shortest vector problem. Another commonly used
family is the Learning With Errors (LWE) lattice, which is generated from a set of
random linear equations with small noise terms and is particularly well-suited for
use in homomorphic encryption systems, which allow computations to be performed
on encrypted data without first decrypting it, making it useful in scenarios where
data needs to be processed in a secure manner but cannot be decrypted due to
privacy concerns.

The main concern of the Learning With Errors problem is finding a random
vector that is close to a set of linear equations modulo some value q. To comprehend
the LWE problem, we can consider a set of m linear equations with n variables
that take the form:

a1x1 + a2x2 + ... + anxn = b mod q
a′

1x1 + a′
2x2 + ... + a′

nxn = b′ mod q
· · ·

amx1 + amx2 + ... + amxn = bm mod q

Here, ai and bi are randomly selected from the set 0, 1, 2, ..., q-1. The main
goal of the LWE problem is to determine the values of x1, x2, ..., xn with only the
knowledge of ai, bi, and q. However, this problem becomes challenging to solve due

11

Background and State of The Art

to the introduction of noise, which is achieved by adding a small random value, e,
to each equation. Consequently, the actual set of equations becomes:

a1x1 + a2x2 + ... + anxn = b + e1 mod q
a′

1x1 + a′
2x2 + ... + a′

nxn = b′ + e2 mod q
· · ·

amx1 + amx2 + ... + amxn = bm + em mod q

The values of e1, e2, ..., em are chosen from a distribution that closely approxi-
mates a Gaussian distribution. This noise makes it difficult to recover the values of
x1, x2, ..., xn.

Given a set of LWE equations, an attacker cannot recover the values of x1, x2,
..., xn without first solving the Shortest Vector Problem (SVP). This difficulty
implies that LWE-based cryptographic schemes have several advantages over other
post-quantum cryptographic schemes since they are efficient, easy to implement
and provide a high level of security.

Figure 2.2: Public Key Encryption based on a Learning With Errors problem.

Figure 2.2 provides an illustrative example of a public key encryption algorithm
that is built on the Learning With Errors (LWE) problem. The algorithm is com-
posed of three key functions that are executed by Alice and Bob: Key Generation,
Encryption, and Decryption. During the first function, Key Generation, Alice
generates the public and secret keys by creating a matrix A and two vectors S
and E, all existing in the Zq domain where their elements are integer numbers

12

Background and State of The Art

modulo q. The matrix A is uniformly distributed, while the vectors S and E are
generated from a Gaussian distribution. The function then computes the product
A ∗ S + E = B, where the secret key is represented by the array S and the public
key is represented by both A and B. Alice sends the public key to Bob to begin
the encryption of the secret message.

Bob then uses the second function, Encryption, to create the ciphertext by
computing two elements: U = S ′ ∗ A + E ′ and V = S ′ ∗ B + E” + M . Here, A
and B are parts of the public key, S ′, E ′, and E” are vectors generated from a
Gaussian distribution, and M is the message Bob wishes to encrypt and send to
Alice. These operations have different types of multiplication. The first operation
involves matrix multiplication similar to the one in the key generation function,
resulting in a vector of the same size as S. The second operation involves scalar
multiplication, which results in an integer number added to E” and the message
M . Once U and V are computed, they are sent back to Alice.

The final function, Decryption, is used by Alice to recover Bob’s message. The
operation executed to decrypt the message is V − S ∗ U = M + error, where U
and V are separate parts of the ciphertext sent by Bob, and S is the secret key
computed previously by Alice. The result of this operation is the message M ,
contaminated by an error term caused by all the noise arrays added in the previous
steps. It is crucial to keep the error term as low as possible, or else it may be
impossible to retrieve the original message even with the secret key. However, there
is always a certain probability of decryption failure with these algorithms, which is
guaranteed to be less than 2−128.

This algorithm faces two main bottlenecks: matrix multiplication and sampling
of the matrices. The complexity of the first problem is directly proportional to
the number of multiplications (scalar or matrix) required for each function, which
is dependent on the parameter N that defines the size of the matrix A (N x N)
and the length of the various vectors. Regarding the sampling of the matrices,
it involves several complex stages. Firstly, a True Random Number Generator
(TRNG) generates a random string of bits, the seed. This random string is then
sent to the Pseudo-Random Number Generator (PRNG), which is capable of gen-
erating uniformly distributed streams of bytes to generate matrix A. However, the
other elements of the algorithm are sampled from a Gaussian distribution, which
requires an extra step: the Gaussian Sampler. This phase is dependent on the
standard deviation of the distribution, which must not be too large as it negatively
impacts the algorithm’s performance and failure probability, nor too small as it
may compromise security.

13

Background and State of The Art

The LWE problem is at the base of FrodoKEM, but some changes have been
made to make this algorithm more efficient. Until this point, the message M was a
single number. However, to send larger messages, certain elements’ sizes must be
adjusted. Figure 2.3 demonstrates how the size of the algorithm components has
changed; all the vectors have been transformed into matrices with a width of 8. E,
V , and the message M have become square 8x8 matrices. Additionally, the entire
A matrix need not be transmitted to Bob. A is a public matrix that can be easily
generated by any Pseudo Random Number Generator (PRNG), so sending only
the seed is sufficient. The algorithm’s functionality remains the same as described
above.

Figure 2.3: FrodoKEM functions

Frodo-640 Frodo-976 Frodo-1344
n 640 976 1344
B 2 3 4
q 215 216 216

Table 2.2: Main parameters of FrodoKEM

Table 2.2 outlines the other parameters that depend on the algorithm’s security
level. n is critical to Frodo’s security level, as the matrix size directly affects the
number of multiplications required. The higher the matrix size, the higher the
security. q also increases with Frodo-640 working on 15 bits while Frodo-976 and
Frodo-1344 work on 16 bits. The most interesting parameter is B, which represents

14

Background and State of The Art

the number of bits used to encode each element of the matrices. As the security
level rises, the standard deviation used to generate the matrices varies, making
them smaller and smaller. However, this doesn’t impact the algorithm’s security,
as the matrix size and PRNG functions maintain their complexity.

The only disadvantage of this algorithm is the size of the keys and the ciphertext,
as shown in Table 2.3. The public key and ciphertext require significant bandwidth
for exchange between Alice and Bob. Meanwhile, the secret key only impacts the
memory usage by Alice, who needs to store the key to decrypt Bob’s messages.

Scheme Secret Key Public Key Ciphertext
Frodo-640 3.13KB 9.39KB 9.49KB
Frodo-976 4.77KB 15.27KB 15.38KB
Frodo-1344 5.25KB 21.02KB 21.13KB

Table 2.3: Keys and ciphertext sizes of FrodoKEM

2.3 Near Memory Computing

2.3.1 Different architecture types
Currently, most hardware systems are based on the Von-Neumann architecture,
which is named after Jon von Neumann, a renowned computer scientist who
invented it in the 1940s [9]. This architecture is composed of several essential
components, including the Central Processing Unit (CPU), which is responsible for
executing instructions and consists of two primary units - the Control Unit (CU)
and the Arithmetic-Logic Unit (ALU). In addition to the CPU, this architecture
also includes memory, which stores both data and instructions and input/output
devices that enable interaction with the external world.

The ability to store and manipulate both data and instructions in the same
memory space is a significant advantage of this architecture, as it allows for greater
flexibility and efficiency in the execution of programs. However, this scalar comput-
ing approach creates a performance bottleneck in data-dependent applications due
to the large amount of data that must be transferred between the processing unit
and the memories, as it increases the power consumption, slows down the data
transfer rate and consequently the execution time of such applications.

One way to improve speed and efficiency is to implement vector computing, for

15

Background and State of The Art

example, Single Instruction Multiple Data (SIMD). This parallel processing archi-
tecture enables the simultaneous processing of multiple data using one instruction.
The data is organized into vectors, and each element of the vector is processed in
parallel by a vector processing element, but the number of accesses to the memory
remains high.

To further improve energy efficiency, the CEA has developed a low-latency
memory through Near-Memory Computing (NMC), the Computational SRAM
(C-SRAM) [10].

Figure 2.4: Three different types of architecture: scalar, vector and C-SRAM.

Figure 2.4 describes various approaches to perform the same operation: the
sum of vectors A and B to obtain the vector C. The first method employs scalar
computing, where a single instruction is performed per clock cycle. To compute
the sum of two vectors using scalar processors, each element of the vectors must be
transferred from memory to the processor, the addition must be executed, and the
result must be written back to memory. This process necessitates n instructions
and n memory accesses for each array, where n is the number of elements in each
array.

The second technique, on the other hand, uses vector computing, which requires
a vector processor capable of executing the same operation on multiple data. While
this type of processor requires only one instruction to add two vectors, the vectors
must still be moved from memory to the processor for computation, resulting in
the same number of memory accesses as before.
The NMC approach, as implemented in the C-SRAM, doesn’t require special types
of processors or data movement to complete the addition of vectors. This method
processes the operation using a small local Arithmetic Logic Unit (ALU) inside
the memory, enabling the operation to be performed on the entire memory line
simultaneously.

16

Background and State of The Art

2.3.2 Near Memory Computing
The Near Memory Computing approach on which the Computational SRAM is
based allows the execution of arithmetic and logic operations without the need to
transfer data on the system bus, which is the most energy-consuming step in the
computation of an instruction [11].
The aim of this technique is to improve performance and energy efficiency by
adding an additional processing element close to the memory. As opposed to the
traditional architectures, computations are performed directly on the data stored in
memory, reducing the need for data movement. This architecture can be achieved
through a variety of techniques, such as using either volatile memories such as
Static Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM) or on Non-Volatile Memories (NVM).

Figure 2.5: C-SRAM instruction pipeline.

2.3.3 C-SRAM and system description
The Computational SRAM is composed of two main parts: the SRAM memory
and the Digital Wrapper, as shown in Figure 2.5. The SRAM memory is a reg-
ular memory that can be written or read by the CPU through load and store
instructions, while the Digital Wrapper is a processing element that contains the
vector Arithmetic and Logic Unit. With high parallel computation capabilities,
operations can be performed on the entire memory row at once, and a five stage
pipeline is used. The C-SRAM system has a single instruction flow for both scalar

17

Background and State of The Art

and vectorial instructions, making compilation and execution simpler and reducing
energy consumption.

Category Name Operation Width(bits)

Logic not Logic NOT Line

Logic and Logic AND Line

Logic or Logic OR Line

Logic xor Logic XOR Line

Logic nand Logic NAND Line

Logic nor Logic NOR Line

Logic xnor Logic XNOR Line

Logic slli Logic shift left 8 / 16 / 32 / Line

Memory copy Copy entire line Line

Memory bcast Broadcast 8 / 16 / 32

Memory nop - -

Arithmetic add Addition 8 / 16 / 32

Arithmetic sub Subtraction 8 / 16 / 32

Arithmetic abs Absolute value 8 / 16 / 32

Arithmetic cmp Compare 8 / 16 / 32

Arithmetic mulhi Multiply, keep highest bits 8

Arithmetic mullo Finite Field Multiplication 8

Arithmetic maclo Finite Field Multiply and Accumulate 8

Table 2.4: Near-Memory-Computing instructions that can be executed on the
C-SRAM.

Table 2.4 describes the different Near-Memory-Computing operations that can
be executed on the C-SRAM, such as logic, arithmetic, and memory instructions
on vectors of data of different length as operands.

18

Background and State of The Art

Figure 2.6: Simple system composed of the processor and the C-SRAM.

A communication protocol has been added to integrate the C-SRAM into a more
conventional system, as shown in Figure 2.6, which displays a simple architecture
consisting of a scalar RISC-V processor, a memory and the C-SRAM. The processor
utilized in the experiments described in this dissertation is the CV32E40P based
on the RISC-V architecture, a four-stage, 32-bit pipelined processor. The Open
Bus Interface (OBI) protocol is used for the bus interface.

Figure 2.7: C-SRAM instruction set format.

To enable the integration of the C-SRAM instruction set into the existing design
of the CPU and the 32-bit bus, a concatenated bus system has been implemented,
composed of both the address and data segments. As a result, the instruction
set architecture of the C-SRAM is aligned on 64 bits (32-bit data bus + 32-bit
address bus) in length. The instruction set is composed of three base formats,
namely R/I/U, each corresponding to a distinct set of instructions, as illustrated in
Figure 2.7. The R-type format includes instructions that operate on two memory
lines for operands, while the I-type format involves instructions that operate on a

19

Background and State of The Art

16-bit immediate value and one memory line. Lastly, the U-type format includes
instructions that operate on a 32-bit immediate value for one memory line. The
opcode field specifies the operation to be performed in the C-SRAM, and is encoded
over 8 bits, providing the capacity to execute up to 256 operations.

Figure 2.8: Block diagram of CV32E40P RISC-V processor.

2.4 State of The Art
This chapter clarified the importance of post-quantum cryptography and the
functioning of the FrodoKEM algorithm, a lattice-based algorithm based on the
Learning With Errors problem. The algorithm faces a significant bottleneck in
the form of matrix multiplication, which is time-consuming and can be directly
observed by profiling the reference software implementation. According to the
reference specifications and documentation [8], more than 60% of the execution time
is spent on this operation. To address this challenge and enhance the algorithm’s
performance, we propose to exploit an innovative computational memory that
can conduct certain operations within it thanks to the Near Memory Computing
approach on which is based.

It is worth noting that our solution is not the first attempt at using hardware to
accelerate such algorithms. For instance, in 2016, the first hardware implementation
of the LWE scheme in its original form was proposed [12]. The proposal featured

20

Background and State of The Art

an area-optimized hardware architecture implemented on an FPGA that employed
one digital signal processor (DSP) to accelerate matrix multiplication.

Subsequently, in 2018, a low-power implementation was introduced [13]. It was
an innovative development because standard lattice-based schemes were deemed
impractical on embedded devices, given their large parameters. The architecture is
based on a multiplier and an operation scheduling optimized towards low memory
usage. Moreover, the matrix generation process is speed up by dedicated hardware
accelerators. The FPGA is the target platform for this design.

In 2021, a parallel implementation of FrodoKEM was developed, which relied
on multiple digital signal processors (DSPs) to maximize performance [14]. The
objective was to concentrate on high throughput by parallelizing the matrix multi-
plication operations within the cryptographic scheme. Additionally, the sampling
of matrices was optimized to feed the multipliers at their maximum capacity. The
fastest proposed implementation can feed 16 DSPs in parallel, and the matrix
generation process is altered to employ a stream cipher instead of the SHAKE
function used in the reference implementation of FrodoKEM [8].

In contrast to the mentioned works, this study proposes a distinct approach to
improve matrix multiplication. The parallelism of the computation is intrinsically
obtained by processing data directly in the memory. This implies that all matrix
elements stored on the same memory line are simultaneously multiplied by the
processing unit located adjacent to the memory itself. It is important to note that
this solution is not a hardware accelerator. Hardware accelerators are application-
dependent, they lack flexibility and versatility, all of which a computational memory
possesses.

21

Chapter 3

Implementation

Chapter 2 provides an overview of cybersecurity, cryptography, and quantum com-
puters, with a particular focus on symmetric and asymmetric cryptography, on
which modern cryptosystems are based. We have examined the benefits of the new
computing paradigm based on quantum mechanics, while also acknowledging the
potential threats that it poses to cryptographic systems. The exponential speedup
brought by quantum computers is a major concern that has led to the development
of new algorithms capable of running and protecting both classical and quantum
computers. In addition, innovative hardware architectures are being explored to
improve the performance of these algorithms.

This chapter presents several different implementations: one that computes
the key generation function entirely inside the RISC-V, one that delegates the
matrix multiplication to the C-SRAM, and finally, one that performs both matrix
multiplication and error addition inside the C-SRAM. With the help of C-SRAM,
we can boost the performance of FrodoKEM, making it much more efficient in
real-world use cases.

3.1 Implementation of the algorithm on RISC-V
Before beginning to work with the C-SRAM, we first had to adapt the imple-
mentation of the FrodoKEM key generation function to run on a RISC-V CPU
architecture. Our experimental setup utilized a 32-bit RISC-V CPU, with the
C-SRAM serving as data memory. Load and store instructions were used to interact
with the C-SRAM as if it was a traditional memory. Our starting point for this
implementation was the original C code of FrodoKEM developed by Microsoft
Research and the FrodoKEM team, which can be found on GitHub [15].

23

Implementation

As illustrated in Table 2.1, FrodoKEM has three distinct security levels. In our
implementation, we utilized the FrodoKEM-640 version of the Key Generation
function, where the variable n is set to 640 and all matrix elements are encoded on
16-bit variables. Both matrices, S and E, are composed of eight columns that each
contain 640 values.

The primary objective of the key generation function in FrodoKEM Algorithm
1 is to produce a public-private key pair for the encryption system. The public
key is made available to anyone wishing to transmit an encrypted message to the
holder of the secret key. The secret key, meanwhile, is kept confidential and used
to decode messages that have been encrypted utilizing the associated public key.

Algorithm 1 Reference implementation of the FrodoKEM key generation.
Choose uniformly random seed seedSE
Generate a pseudorandom seedA with SHAKE
Sample error matrices S and E
Generate the matrix A ∈ Z
Compute B← A*S + E
Return secret key S and public key seedA + B

To begin the key generation process, it is first essential to generate a random
secret value, known as seed, one for matrices S and E, and another one for matrix
A. These seeds are subsequently used to create two n by 8 Gaussian random
matrices, S and E, where S is the secret key and E is the error. The public key is
constructed by concatenating the seed of matrix A and the public matrix B, such
that B = A ∗ S + E. To perform this matrix multiplication, the function initially
generates matrix A using SHAKE128, which is a cryptographic hash function that
produces a fixed-length output for an arbitrary-length input. SHAKE128 is a
member of the SHA-3 family of hash functions and is designed to provide a high
degree of security against all known attacks. The matrix is generated by hashing a
sequence of values using the provided seedA as the input to the hash function.

Following the generation of matrix A, the function proceeds to multiply it with
S using a standard matrix multiplication algorithm. For each row i of A and each
column k of S, the function computes the dot product of the corresponding row of
A and the corresponding column of S, and adds the result to the corresponding
element of E, the error. Algorithm 2 illustrates the pseudo-code of the matrix
multiplication A ∗ S as it is implemented in the reference implementation. The
vector B is initialized with values from E, onto which the result of the product is

24

Implementation

accumulated in order to derive the final public key.

Algorithm 2 Reference implementation of the FrodoKEM matrix product
Generate s, e
b← e
for i 0→ 640 do

Generate A[i]
for j 0→ 8 do

for k 0→ 640 do
b[i][j] += A[i][k]× s[k][j]

end for
end for

end for
Return b

The execution time of this matrix product is largely dominated by the load
instructions required to fetch the values of A and S from memory, the MAC
instructions, and the storage of the elements of B back into memory.

While the original FrodoKEM library was compatible with numerous platforms
running Linux, Windows, or MacOS, our system was bare-metal. This meant that
there was no operating system or other abstraction layer between the software
application and the hardware. Bare metal programming is commonly used in
applications where performance and control are crucial, and where the overhead of
an operating system or other abstraction layer would be too high. To adapt the
software application to this structure, several changes were necessary.

As the code was running directly on the hardware, we had to rewrite several C
functions in a low-level format, simplifying some functions and completely rewriting
others. However, one important function, the rand() function in C, could not
be updated. This function is a pseudo-random number generator that returns a
random integer within a specified range, but the system we were working with
lacked any hardware-based random number generation functions. To temporarily
overcome this obstacle, we removed the use of the rand() function in the seed
generation for the matrices, at the cost of the security of the algorithm. For these
experiments, the random seed was hard coded.

In the original code, the matrix A was fully generated before proceeding with
the matrix multiplication. However, the memory present in the system was not
large enough to contain Frodo-640 A matrix. To work around this issue, we decided

25

Implementation

to rewrite the function and generate the A matrix row-wise. Each row was then
filled with random values and multiplied by all the columns of the S matrix. As
each element of the matrices is 2 bytes, this reduced the memory usage from 2N2

to 2N bytes.

This initial implementation of the Key Generation function serves as the bench-
mark against which subsequent implementations utilizing the C-SRAM are evalu-
ated.

3.2 First implementation on C-SRAM: matrix
multiplication optimization

After completing the modifications on the Key Generation function, we proceeded
with the development of an NMC-based implementation that replaces some com-
putations executed by the CPU with NMC operations performed directly inside
the C-SRAM. Our target architecture features a C-SRAM with 256KB and 128-bit
memory lines, enabling the multi-lane ALU to operate on 128-bit vectors. Matrix
multiplication, one of the primary bottlenecks of the FrodoKEM algorithm, was
the operation we aimed to improve.

To clarify, matrix multiplication involves multiplying each element of each row of
matrix A by each element of each column of matrix S and subsequently adding the
products to obtain a new matrix with dimensions equal to the number of rows of A
and the number of columns of S. For example, to compute Bi,j with B = A∗S + E
using matrices A and S, we must sum the following products:

B1,1 = A1,1S1,1 + A1,2S2,1 + A1,3S3,1 + ...

This process is repeated for each element of matrix B.

We can leverage the C-SRAM’s Multiply-And-Accumulate (MAC) instruction to
perform this operation. However, upon analyzing the code, we discovered that the
required instruction for matrix multiplication was the Multiply-and-Accumulate
operation on 16 bits, which was absent in the Digital Wrapper’s ALU. While it is
possible to execute 16-bit operations with 8-bit instructions, this approach creates
an overhead that makes pointless the use of a powerful tool such as the C-SRAM.
To solve this hardware constraint, we decided to apply some design changes to the
ALU of the C-SRAM.

26

Implementation

Hardware modification

The Multiply-and-Accumulate (MAC) operation is a fundamental arithmetic oper-
ation that involves the multiplication of two numbers and the addition of the result
to an accumulator. In hardware, the MAC unit is composed of two components,
a multiplier, and an adder. The multiplier takes two input values and generates
their product as the output. The adder takes two input values and produces their
sum as the output. The MAC unit combines these two operations into a single
unit that can multiply two numbers, add the result to an accumulator, and output
the updated value of the accumulator in two clock cycles.

To execute a MAC operation, the input values are initially multiplied together
using the multiplier. The resulting product is then added to the accumulator using
the adder. The updated value of the accumulator is subsequently produced as the
updated outcome of the MAC operation. This process can be repeated several
times to perform multiple MAC operations sequentially.

Before implementing the Finite Field Multiply-and-Accumulate (FFMAC) op-
eration, a modular multiplication on 16 bits had to be designed. Two different
multiplication operators have been added to the instruction set of the C-SRAM
as shown in Table 2.4. The first instruction, known as MULLO, performs the
modular multiplication of two 16-bit operands, and truncates the result to the
lowest 16-bits. The resulting operation can be represented as

Ai ∗Bi(mod 216)

The second instruction, known as MULHI, performs the multiplication of two
operands on 16 bits, but truncates the outcome to the highest 16 bits. The resulting
operation can be represented as

(Ai ∗Bi >> 16)(mod 216)

The MAC instruction (illustrated in Figure 3.1) is executed in two clock cycles:
one cycle is used to multiply the values with MULLO and store the 16 least
significant bits of the outcome in an internal register. The second clock cycle is
used to execute the accumulation. The resulting operation is

NØ
i=1

(Ai ∗Bi)(mod 216)

27

Implementation

and requires three sources: A and B for the multiplication and C, which represents
the partial sum. The operands and the result are represented in 16 bits, as this is
a modular operation.

The new operations can have different addressing modes, depending on the
origin of the sources or on the destination of the results: internal registers or
the memory. To perform the FFMAC operation correctly, two instructions with
different addressing modes are required. If we assume that we need to multiply
and accumulate N times, for N - 1 times, we require RMM, which implies that the
sources of the multiplication must be taken from memory, while the partial sum
must be stored in an internal register inside the C-SRAM. For the N-th MAC
operation, however, we need to store the final result back in the memory, and hence
the addressing mode will be MMM.

Figure 3.1: Multiply and Accumulate operation scheme

Simulations were conducted to validate the behavior of the new instructions,
and a synthesis was performed to analyze the impact of the modifications on the
original architecture. The first metric evaluated was the area. Table 3.1 illustrates
the difference between the two designs. The impact of the modifications on the
ALU shows an increase of the area by 44.59%, but for the entire C-SRAM memory,
this change represents just a 0.27% increase in the area, as the Digital Wrapper
area is the 5% of the C-SRAM memory.

Design abs. area before abs. area after % area increase

C-SRAM controller 595808.96 597440.28 0,27%
alu 5699.00 8240.13 44,59%

Table 3.1: Hierarchical design area before and after the modifications.

28

Implementation

The second metric that has been analyzed is power consumption. The two
designs have been evaluated separately, and a summary of the results can be
observed in Table 3.2. The power consumption was assessed based on the Internal
Power, Switching Power, Leakage Power, and Total Power Consumption. Internal
power denotes the power that a device consumes due to the flow of current through
its internal circuitry. Switching power, on the other hand, is the power that a
device consumes when its transistors switch between states. Leakage power refers
to the power that a device consumes when its transistors are inactive but still allow
a small amount of current to flow. It is worth noting that some slight variations
between the two designs were observed during the analysis. Specifically, there was
a minor decrease of the Internal Power by 0.20%, a decrease of the Switching Power
by 26.98%, and an increase of the Leakage Power by 0.32%.

Power Internal P.[mW] Switch. P.[mW] Leak. P.[mW] Tot. P.[uW]
before 4.5945 0.3058 3.727e+03 8.6282
after 4.5852 0.2233 3.7388e+03 8.5473

Table 3.2: Power report results before and after the modifications.

Moreover, we conducted an analysis of the differences in the timing between the
two implementations. Timing is a crucial aspect of hardware design that determines
how fast a device can operate and how quickly it can respond to input signals.
Table 3.3 provides a summary of the results of the timing report. The data required
time and data arrival time both increased by approximately 3%. However, this
slight change had a drastic impact on the slack, which decreased by 93.65%.

Numerous factors can contribute to timing differences between the two architec-
tures, such as differences in clock frequency, clock distribution, and clock skew. In
this case, timing was affected by the addition of new operators, which modified the
critical path of the memory. The critical path refers to the path through a circuit
that has the longest delay time, namely the time it takes for a signal to propagate
through the path, and it is influenced by various factors, such as the capacitance
and resistance of the wires and the gate delay of the transistors.

29

Implementation

Timing Before After
Data required time 4829.15 4984.53
Data arrival time 4821.59 4984.05

slack 7.56 0.48

Table 3.3: Timing report before and after the modifications

Software modification

Before modifying the matrix multiplication function, it is essential to address a
crucial matter, which is the arrangement of data within the C-SRAM. To achieve
optimal results and minimize the number of transitions to and from the memory,
careful consideration is required. Fortunately, an ideal solution has been developed,
which is illustrated in detail in Figure 3.2. This strategy makes sure that the way
data is arranged in the C-SRAM is improved to make the matrix multiplication
function work better and faster.

Figure 3.2: Data organization for the first implementation on the C-SRAM

To achieve efficient matrix multiplication, the entire matrix S is loaded into
the C-SRAM since every line of matrix A needs to be multiplied by the entire
matrix S. As with the previous implementation, matrix A is generated one row
at a time and loaded into memory for the matrix multiplication. However, to
perform the multiplication, we needed to consider the size of the C-SRAM and
compare it with the size of the rows of matrix A (which is the same as the size of
each column of matrix S). The current size of the C-SRAM has a width of 128
bits, which means that one line of matrix A for FrodoKEM-640 occupies 80 lines
inside the memory. Therefore, we added NELEMENT S and NLINES parameters to

30

Implementation

the existing parameters to make it easier to adapt the code to different memory sizes.

The NELEMENT S and NLINES parameters play important roles in determining
the performance of the matrix multiplication algorithm. NELEMENT S refers to the
degree of parallelism or the number of elements that can be accommodated on a
single line of the C-SRAM, which, for our implementation, is always 8 since the
width of the memory remains fixed at 128 bits, and all elements are 16 bits in size.
On the other hand, NLINES is a critical parameter that determines the number of
lines in memory occupied by each line of matrix A. This parameter varies with
each implementation of Frodo, depending on the size of the matrices being used,
as summarized in Table 3.4. Careful adjustment of NLINES is essential to ensure
that it is optimized for the specific size of the matrices being used.

FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344
NLINES 80 122 168
NELEMENT S 8 8 8

Table 3.4: NLINES parameter with respect to the sizes of FrodoKEM

Figure 3.2 illustrates the modifications made to the code. The matrix multipli-
cation operation was replaced with a series of calls to a function that executes the
C-SRAM 16-bit Finite Field Multiply and Accumulate operation, i.e., nmc_mac16.
Initially, the matrix S is loaded into memory, after which the multiplication process
is initiated. A new line of A is generated and saved in memory, while the internal
register of the C-SRAM is set to zero. The Multiply-And-Accumulate operation
is executed N_LINES − 1 times, with each iteration processing 8 elements of A
and 8 elements of the first column of S. Eight MAC operations can be executed
in parallel with a single NMC instruction. Since many consecutive accumulations
must be done, the results of the MAC instructions are stored in the internal register.
For the final MAC operation, the result is saved in the C-SRAM, occupying a single
memory line and containing 8 values that are yet to be summed. To calculate the
final result, the values are read from memory and added. Subsequently, the error
is added to the multiplication, and the process is repeated for each column of S,
followed by each line of A.

Algorithm 3 presents the pseudo-code of the NMC-based FrodoKEM imple-
mentation. It is worth noting that the number of iterations of the inner loop is
reduced by a factor of eight, corresponding to the number of variables processed
simultaneously with the nmc_mac16 instruction. Moreover, the nmc_mac16 opera-
tion requires only three CPU instructions, namely one move immediate instruction

31

Implementation

for writing the address field of the nmc_mac16 instruction on a CPU register, one
move immediate instruction for writing the data field of the nmc_mac16 instruction
on another CPU register, and one store instruction that uses the two previously
set registers as address and data for sending the command corresponding to the
nmc_mac16 instruction to the C-SRAM.

Algorithm 3 C-SRAM implementation of the FrodoKEM matrix product
Generate S, E
Load S in the C-SRAM
b← E
for i 0→ 640 do

Generate A[i]
for j 0→ 8 do

for k 0→ 640/8 do
nmc_mac16(reg, A[i][k/8], s[k/8][j])

end for
for l 0→ 8 do

b[i][j] += reg[l]
end for

end for
end for
Return b

In the original reference implementation, the CPU executed 640 loops, each con-
taining two load, one MAC, and one store instruction. The proposed NMC-based
implementation reduces the number of loops to 640/8 = 80, each containing only
one store instruction and two move instructions for initializing CPU registers.

32

Implementation

Figure 3.3: Example of the matrix multiplication optimization with on the C-
SRAM

Figure 3.3 illustrates a simple example of the operations inside the C-SRAM.
Suppose we seek to perform the matrix multiplication of two matrices: A, an n by
n matrix, and S, an 8 by n matrix, where n is equal to 24. Following Algorithm 3,
we first generate the matrices S and E, and proceed to load S into the C-SRAM.
Subsequently, we generate the first row of A, and also load it into the C-SRAM.

Each memory line of the C-SRAM is 128 bits wide and capable of storing 8
elements, where each element occupies 16 bits. Hence, each column of the S matrix
and each row of the A matrix occupies 3 memory lines. Before performing the
matrix multiplication, the internal register of the C-SRAM is set to zero. The first
multiply-and-accumulate (MAC) operation is then executed, wherein the first 8
elements of A and S are multiplied, and the result is stored in the internal register.
Next, we extract the second set of 8 elements from both matrices and execute
another finite field multiplication. The resulting value is then added to the previous
value stored in the internal register. These steps are repeated once more for the
last set of 8 elements, after which the resulting value is written back into a new
memory line in the C-SRAM. This memory line contains only a partial result of
128 bits, as it is composed of 8 elements.

Finally, this memory line is transmitted to the processor’s CPU to perform the
last sum of these 8 values and obtain the first number of the resulting matrix.
The entire process is then repeated for each column of S and for each row of A.
Once the new matrix is computed it is possible to add the error and complete the
operation.

33

Implementation

3.3 Second implementation on C-SRAM: matrix
multiplication and addition optimizations

The previous section described all the modifications made to implement the
FrodoKEM Key Generation algorithm onto a Near Memory Computing architec-
ture. Although we took advantage of the C-SRAM memory to speed up the matrix
multiplication, this memory is not limited to this operation alone. To improve the
results even more we decided to perform also the error addition inside the C-SRAM.

Figure 3.4: Data organization for the second implementation on the C-SRAM

The pseudo-code of this implementation is presented in Algorithm 4. Notably,
the central portion of the algorithm remained identical to Algorithm 3, up to the
last stage of adding the partial result of each MAC within the RISC-V. In this
stage, the values are read from the memory and added together to obtain the
ultimate result. This sequence of instructions is subsequently repeated for each
column of S, generating a vector that contains the first 8 values of the new matrix.
This vector is saved in the C-SRAM memory so we are able to perform an NMC
addition between 2 lines and add the first row of the new matrix to the first row of
the E matrix, previously stored in the C-SRAM memory after the S matrix.

34

Implementation

Algorithm 4 C-SRAM implementation of the FrodoKEM matrix product with
the error addition inside the C-SRAM

Generate S, E
Load S, E in the C-SRAM
for i 0→ 640 do

Generate A[i]
for j 0→ 8 do

for k 0→ 640/8 do
nmc_mac16(reg, A[i][k/8], S[k/8][j])

end for
for l 0→ 8 do

tmp[l] ← reg[l]
end for

end for
Load tmp in the C-SRAM
nmc_add16(reg, tmp, E[i])
b[i] ← reg

end for
Return b

35

Chapter 4

Discussion of the results and
conclusion

Results

Chapter 4 provides a detailed exposition of the distinct implementations and alter-
ations made to both hardware and software components, with the aim of improving
the performance of the FrodoKEM Key Generation algorithm. To evaluate the
resultant outcomes, it was necessary to establish specific metrics, serving as quanti-
tative measures to evaluate the efficacy or efficiency of the developed system. This
facilitated an objective and uniform approach to measuring the performance of the
system and comparing different versions of the same.

The initial metric that was considered was the execution time, referring to the
total time taken to run a given program or algorithm. The quicker the execution
time, the better the performance. In order to make a comparison between the out-
comes of various implementations, we measured the execution time of the reference
matrix product implementation of FrodoKEM, adapted for the target CPU. Table
4.1 provides details of the execution time of the B = A × S + E operation, in
terms of clock cycles and the number of CPU instructions.

Table 4.1: FrodoKEM-640 Reference Implementation

Clock Cycles CPU instructions
Matrix multiplication 39,383,040 29,545,600

37

Discussion of the results and conclusion

Upon obtaining the golden model or benchmark, we proceeded to alter the
reference implementation of FrodoKEM, in order to make use of the Computational
SRAM (as demonstrated in Algorithm 3). C macros were utilized to automatically
construct NMC instructions, while at the same time, permitting the programmer
to use an assembly-like syntax. This method simplified software support for the
C-SRAM, without necessitating any modifications to the compilation toolchain.
Table 4.2 illustrates the execution time performance of the B = A×S+E operation,
in terms of clock cycles and the number of CPU instructions, when utilizing the
NMC approach.

Clock Cycles CPU instructions
Matrix multiplication 9,597,440 5,485,440
Performance Gain 76% 81%

Table 4.2: FrodoKEM-640 NMC based Implementation

The present study has determined that the NMC architecture offers a notable
improvement in computational efficiency, with a 76% reduction in clock cycles
required for computation when compared to the reference implementation. This
acceleration of computational speed results in a reduction of the execution time
required for computation by a factor of approximately four. Furthermore, the
study found that the NMC architecture resulted in a significant improvement
in performance, with the number of executed instructions being reduced by a
factor of approximately five. It is notable, however, that while the theoretical
expectation would be a factor of eight improvements in computational speed, the
practical implementation is impacted by certain overheads. In particular, when
eight Multiply-and-Accumulate (MAC) operations are performed in parallel on the
same C-SRAM line, eight partial results are obtained on the destination line. These
intermediate values must then be summed together by the CPU to obtain the
final result. This post-processing of the MAC results adds additional computation
overhead, which partly explains the difference between the theoretical and practical
gains in computational efficiency observed in this study.

38

Discussion of the results and conclusion

Execution time (CC)
SW ARM M4 [13] 85,585,315

SW RISC-V [this work] 82,500,000
SW NMC [this work] 72,610,000

HW (1 DSP) [13] 3,276,800
HW (8 DSPs) [14] 408,988

Table 4.3: State-of-the-art implementations of the FrodoKEM-640 key generation

The NMC-based implementation outperforms the implementations on both
RISC-V and ARM microprocessors. Specifically, a 15% improvement in execution
time is observed compared to the ARM M4 software implementation in [12], and a
12% improvement compared to the RISC-V software implementation used as the
reference in this work. Table 4.3 displays the execution times, in clock cycles, of all
the implementations considered in this comparison. The number of employed digital
signal processors (DSP) for hardware implementations is also shown, providing an
indication of the number of MAC operations performed in parallel.

Although hardware accelerators [12, 14] perform better than the NMC solution,
they are customized for the FrodoKEM application, accelerating both the matrix
product and the matrix generation.

The solutions presented in [12] and [14] strongly optimize the pseudo-random
generation required to produce A, S and E. In [14], a lightweight stream cipher is
used to significantly enhance the matrix generation.

Moreover, the NMC approach differs structurally from hardware accelerators,
as it avoids the overhead of implementing dedicated memories. For instance, the
hardware implementation proposed in [12] employs a total of 13.5KB of extra RAM
memory dedicated to the accelerator.

This proposal allows us to gain a performance advantage over software imple-
mentations while incurring only a small overhead on the periphery of the data
RAM. It is worth noting that the Processing Unit inside the C-SRAM is versatile
and can be utilized to accelerate any other application that can benefit from the
provided level of parallelism.

4.0.1 Conclusion
In today’s world, the protection of sensitive information is of utmost importance.
With the advent of quantum computing, traditional cryptographic methods may
no longer be secure, and this could have alarming consequences for individuals
and organizations alike. Therefore, the adoption of Post-Quantum Cryptography

39

Discussion of the results and conclusion

(PQC) is essential to ensure the security of sensitive information. One promising
PQC scheme is FrodoKEM, which boasts a high level of security. However, due to
its complexity, it requires the handling of large matrices and a significant amount of
computations to solve matrix products. Software implementations can be especially
time-consuming due to the need to transfer data between the CPU and memory.

To address this issue, this work proposes an implementation of FrodoKEM
on a Near-Memory Computing (NMC) architecture. By using a Computational
SRAM, which can perform arithmetic operations directly on data stored on the
same line of the data RAM, this architecture can accelerate the matrix product
of FrodoKEM by a factor of four in terms of clock cycles. The performance gain
on the whole key generation function is 12%. Despite the minimal area overhead
that comes with adding some digital logic at the periphery of the data RAM,
this architecture remains flexible and can accelerate general-purpose operators,
benefiting any application that could benefit from NMC.

While the improvement in the performance of the FrodoKEM Key Generation
function is impressive, it only solves one of the algorithm’s main bottlenecks. Future
work could expand to optimize not only the FrodoKEM key generation function
but also the encryption and decryption processes. In addition, it is possible to
implement new functionalities in the C-SRAM to optimize the matrix generation
and possibly the generation and storage of the secret key, thus further improving
the algorithm’s security. By reducing the need to move the secret key through the
busses from the CPU to the memory, we can make the algorithm more robust and
secure. Therefore, investing in research and development to enhance post-quantum
cryptography is critical to ensure the protection of sensitive information in the
future.

40

Appendix A

Reference implementation

1 i n t frodo_mul_add_as_plus_e (uint16_t ∗out , const uint16_t ∗ s , const
uint16_t ∗e , const uint8_t ∗seed_A) {

2

3 i n t i , j , k , m;
4 int16_t A[PARAMS_N] ; //

work with one row at time , do not save the e n t i r e matrix
5

6 uint8_t seed_A_separated [2 + BYTES_SEED_A] ;
7 uint16_t ∗ seed_A_origin = (uint16_t ∗) &seed_A_separated ;
8

9 f o r (i = 0 ; i < BYTES_SEED_A; i++)
10 seed_A_separated [i +2] = seed_A [i] ;
11

12 f o r (i = 0 ; i < PARAMS_NBAR PARAMS_N∗ s i z e o f (uint16_t) ; i++)
13 out [i] = e [i] ;
14

15 f o r (i =0; i<PARAMS_N; i++) {
16 f o r (m = 0 ; m(PARAMS_N) ; m++) //

i n i t i a l i z e to 0 the array
17 A[m] = 0 ;
18

19 seed_A_origin [0] = (uint16_t) (i) ;
20 shake ((unsigned char ∗) (A) , (unsigned i n t) (2∗ PARAMS_N) ,

seed_A_separated , 2 + BYTES_SEED_A) ;
21

22 f o r (k = 0 ; k < PARAMS_NBAR; k++) {
23 uint16_t sum = 0 ;
24 f o r (j =0; j < PARAMS_N; j++)
25 sum += A[j] ∗ s [k∗ PARAMS_N + j] ;
26 out [i ∗ PARAMS_NBAR + k] += sum ;
27 }

42

Reference implementation

28 }
29 re turn 1 ;
30 }

43

Appendix B

First implementation

1 i n t frodo_mul_add_as_plus_e (uint16_t ∗out , const uint16_t ∗ s , const
uint16_t ∗e , const uint8_t ∗seed_A) {

2

3 i n t i , j , k , m;
4 int16_t A[PARAMS_N] ; //

work with one row at time , do not save the e n t i r e matrix
5

6 uint8_t seed_A_separated [2 + BYTES_SEED_A] ;
7 uint16_t ∗ seed_A_origin = (uint16_t ∗) &seed_A_separated ;
8

9 f o r (i = 0 ; i < BYTES_SEED_A; i++)
10 seed_A_separated [i +2] = seed_A [i] ;
11

12 f o r (i = 0 ; i < PARAMS_NBAR PARAMS_N∗ s i z e o f (uint16_t) ; i++)
13 out [i] = e [i] ;
14

15 f o r (i =0; i<PARAMS_N; i++) {
16 f o r (m = 0 ; m(PARAMS_N) ; m++) //

i n i t i a l i z e to 0 the array
17 A[m] = 0 ;
18

19 seed_A_origin [0] = (uint16_t) (i) ;
20 shake ((unsigned char ∗) (A) , (unsigned i n t) (2∗ PARAMS_N) ,

seed_A_separated , 2 + BYTES_SEED_A) ;
21

22 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Matrix m u l t i p l i c a t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

23 /∗−−− Write A l i n e in CSRAM > f o r each l i n e o f A N_LINES in
CSRAM −−−∗/

24 f o r (k=0; k<N_LINES; k++) {
25 f o r (j =0; j <(PARAMS_N/N_LINES) ; j++){

44

First implementation

26 csram_write16 (CSRAM_BASE_ADDR, (uintptr_t) a [k] , j , A
[k∗N_ELEMENTS + j]) ;

27 }
28 }
29

30 f o r (k = 0 ; k < PARAMS_NBAR; k++) {
31 _cm_bcast8_r (0) ; //

i n t e r n a l reg i n i t i a l i z e d to 0
32

33 /∗ MAC N−1 times , r e s u l t in i n t e r n a l r e g i s t e r ∗/
34 f o r (j =0; j <(N_LINES 1) ; j++) {
35 _cm_ffmac16_rmm ((uint32_t) (h2_cxram_line_t ∗) s [(k∗

N_LINES + j)] , (uint32_t) (h2_cxram_line_t ∗) a [j]) ;
36 }
37 /∗ MAC f o r the l a s t time , r e s u l t wr i t t en in the CSRAM ∗/
38 _cm_ffmac16_mmm ((uint32_t) (h2_cxram_line_t ∗) res , (

uint32_t) (h2_cxram_line_t ∗) s [k∗N_LINES + (N_LINES 1)] , (uint32_t
) (h2_cxram_line_t ∗) a [(N_LINES − 1)]) ;

39

40 f o r (j =0; j<PARAMS_N/N_LINES; j++){
41 out [i ∗ PARAMS_NBAR + k] += csram_read16 (

CSRAM_BASE_ADDR, (uintptr_t) res , j) ;
42 }
43 }
44 }
45 re turn 1 ;
46 }

45

Appendix C

Second implementation

1 i n t frodo_mul_add_as_plus_e (uint16_t ∗out , const uint16_t ∗ s , const
uint16_t ∗e , const uint8_t ∗seed_A) {

2

3 i n t i , j , k , m;
4 int16_t A[PARAMS_N] ; //

work with one row at time , do not save the e n t i r e matrix
5 uint16_t mac_res [PARAMS_NBAR] ;
6

7 uint8_t seed_A_separated [2 + BYTES_SEED_A] ;
8 uint16_t ∗ seed_A_origin = (uint16_t ∗) &seed_A_separated ;
9

10 f o r (i = 0 ; i < BYTES_SEED_A; i++)
11 seed_A_separated [i +2] = seed_A [i] ;
12

13 f o r (i = 0 ; i < PARAMS_NBAR PARAMS_N∗ s i z e o f (uint16_t) ; i++)
14 out [i] = e [i] ;
15

16 f o r (i =0; i<PARAMS_N; i++) {
17 f o r (m = 0 ; m(PARAMS_N) ; m++) //

i n i t i a l i z e to 0 the array
18 A[m] = 0 ;
19

20 f o r (m = 0 ; m < (PARAMS_NBAR) ; m++) //
i n i t i a l i z e to 0 the array

21 mac_res [m] = 0 ;
22

23 seed_A_origin [0] = (uint16_t) (i) ;
24 shake ((unsigned char ∗) (A) , (unsigned i n t) (2∗ PARAMS_N) ,

seed_A_separated , 2 + BYTES_SEED_A) ;
25

46

Second implementation

26 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Matrix m u l t i p l i c a t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

27 /∗−−− Write A l i n e in CSRAM > f o r each l i n e o f A N_LINES in
CSRAM −−−∗/

28 f o r (k=0; k<N_LINES; k++) {
29 f o r (j =0; j <(PARAMS_N/N_LINES) ; j++){
30 csram_write16 (CSRAM_BASE_ADDR, (uintptr_t) a [k] , j , A

[k∗N_ELEMENTS + j]) ;
31 }
32 }
33

34 f o r (k = 0 ; k < PARAMS_NBAR; k++) {
35 _cm_bcast8_r (0) ; //

i n t e r n a l reg i n i t i a l i z e d to 0
36

37 /∗ MAC N−1 times , r e s u l t in i n t e r n a l r e g i s t e r ∗/
38 f o r (j =0; j <(N_LINES 1) ; j++) {
39 _cm_ffmac16_rmm ((uint32_t) (h2_cxram_line_t ∗) s [(k∗

N_LINES + j)] , (uint32_t) (h2_cxram_line_t ∗) a [j]) ;
40 }
41

42 /∗ MAC f o r the l a s t time , r e s u l t wr i t t en in the CSRAM ∗/
43 _cm_ffmac16_mmm ((uint32_t) (h2_cxram_line_t ∗) res , (

uint32_t) (h2_cxram_line_t ∗) s [k∗N_LINES + (N_LINES 1)] , (uint32_t
) (h2_cxram_line_t ∗) a [(N_LINES − 1)]) ;

44

45 f o r (j =0; j<PARAMS_N/N_LINES; j++){
46 mac_res [k] += csram_read16 (CSRAM_BASE_ADDR, (

uintptr_t) res , j) ;
47 }
48 }
49

50 /∗ Write p a r t i a l r e s u l t s in CSRAM and sum to E ∗/
51 f o r (j =0; j<PARAMS_NBAR; j++){
52 csram_write16 (CSRAM_BASE_ADDR, (uintptr_t) part_res , j ,

mac_res [j]) ;
53 }
54

55 // add in csram
56 _cm_add16_mmm((uint32_t) (h2_cxram_line_t ∗) res , (uint32_t)

(h2_cxram_line_t ∗) e [i] , (uint32_t) (h2_cxram_line_t ∗) part_res)
;

57

58 // read r e s u l t l i n e from CSRAM and wr i t e f i n a l r e s u l t in out
array

59 f o r (k = 0 ; k < PARAMS NBAR; k++)
60 out [i ∗ PARAMS_NBAR + k] = csram_read16 (CSRAM_BASE_ADDR,

(uintptr_t) res , k) ;
61 }

47

Second implementation

62 re turn 1 ;
63 }

48

Bibliography

[1] Richard P Feynman. «Simulating physics with computers, 1981». In: Inter-
national Journal of Theoretical Physics 21.6/7 (1981) (cit. on p. 6).

[2] John Mulholland, Michele Mosca, and Johannes Braun. «The Day the Cryp-
tography Dies». In: IEEE Security Privacy 15.4 (2017), pp. 14–21. doi:
10.1109/MSP.2017.3151325 (cit. on p. 8).

[3] P. W. Shor. «Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer». English. In: SIAM Journal on Computing
26.5 (1997). Cited By :4523, pp. 1484–1509. url: www.scopus.com (cit. on
p. 8).

[4] L. K. Grover. «A fast quantum mechanical algorithm for database search». En-
glish. In: Proceedings of the Annual ACM Symposium on Theory of Computing.
Vol. Part F129452. Cited By :4223. 1996, pp. 212–219. url: www.scopus.com
(cit. on p. 8).

[5] Daniel J. Bernstein. «Introduction to post-quantum cryptography». In: Post-
Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes Buchmann, and
Erik Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–
14. isbn: 978-3-540-88702-7. doi: 10.1007/978-3-540-88702-7_1. url:
https://doi.org/10.1007/978-3-540-88702-7_1 (cit. on p. 8).

[6] Frank Arute et al. «Quantum supremacy using a programmable supercon-
ducting processor». In: Nature 574.7779 (2019), pp. 505–510 (cit. on p. 9).

[7] Michele Mosca. «Cybersecurity in an Era with Quantum Computers: Will
We Be Ready?» In: IEEE Security Privacy 16.5 (2018), pp. 38–41. doi:
10.1109/MSP.2018.3761723 (cit. on p. 9).

[8] Erdem Alkim et al. «FrodoKEM learning with errors key encapsulation». In:
NIST PQC standardization: Round 3 (2020) (cit. on pp. 10, 20, 21).

[9] J. von Neumann. «First draft of a report on the EDVAC». In: IEEE Annals
of the History of Computing 15.4 (1993), pp. 27–75. doi: 10.1109/85.238389
(cit. on p. 15).

49

https://doi.org/10.1109/MSP.2017.3151325
www.scopus.com
www.scopus.com
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/85.238389

BIBLIOGRAPHY

[10] Maha Kooli, Antoine Heraud, Henri-Pierre Charles, Bastien Giraud, Roman
Gauchi, Mona Ezzadeen, Kevin Mambu, Valentin Egloff, and Jean-Philippe
Noel. «Towards a Truly Integrated Vector Processing Unit for Memory-bound
Applications Based on a Cost-competitive Computational SRAM Design
Solution». In: ACM Journal on Emerging Technologies in Computing Systems
(JETC) 18.2 (2022), pp. 1–26 (cit. on p. 16).

[11] P Prinz, T Crawford, JL Hennessy, and DA Patterson. Computer Architecture:
A Quantitative Approach. 2018 (cit. on p. 17).

[12] J. Howe, C. Moore, M. O’Neill, F. Regazzoni, T. Güneysu, and K. Beeden.
«Lattice-based encryption over standard lattices in hardware». In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2016, pp. 1–6.
doi: 10.1145/2897937.2898037 (cit. on pp. 20, 39).

[13] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. «Standard
Lattice-Based Key Encapsulation on Embedded Devices». In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2018.3 (Aug. 2018),
pp. 372–393. doi: 10 . 13154 / tches . v2018 . i3 . 372 - 393. url: https :
//tches.iacr.org/index.php/TCHES/article/view/7279 (cit. on pp. 21,
39).

[14] James Howe, Marco Martinoli, Elisabeth Oswald, and Francesco Regaz-
zoni. «Exploring Parallelism to Improve the Performance of FrodoKEM in
Hardware». In: Journal of Cryptographic Engineering 11 (Nov. 2021). doi:
10.1007/s13389-021-00258-7 (cit. on pp. 21, 39).

[15] Microsoft. PQCrypto-LWEKE. https://github.com/Microsoft/PQCrypto-
LWEKE (cit. on p. 23).

50

https://doi.org/10.1145/2897937.2898037
https://doi.org/10.13154/tches.v2018.i3.372-393
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://doi.org/10.1007/s13389-021-00258-7
https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/Microsoft/PQCrypto-LWEKE

	List of Tables
	List of Figures
	Introduction
	Thesis outline

	Background and State of The Art
	Cybersecurity
	Post-Quantum Cryptography
	What are quantum computers?
	Post-Quantum Cryptography
	FrodoKEM

	Near Memory Computing
	Different architecture types
	Near Memory Computing
	C-SRAM and system description

	State of The Art

	Implementation
	Implementation of the algorithm on RISC-V
	First implementation on C-SRAM: matrix multiplication optimization
	Second implementation on C-SRAM: matrix multiplication and addition optimizations

	Discussion of the results and conclusion
	Conclusion

	Reference implementation
	First implementation
	Second implementation
	Bibliography

