
Visual analytics for job candidates

HESAM MASHHADI MOHAMMAD

Supervisor: Prof. VALENTINA GATTESCHI

Master’s Degree in Computer Engineering

Master’s Degree Thesis

POLITECNICO DI TORINO

April 2023

i

Abstract

The hiring process could be complicated and result in wrong decisions if only the

raw data is available to the people responsible for assessing potential new employees.

A more efficient and organized way for hiring managers to evaluate job applicants

is using data visualization tools to improve the hiring process experience, leading

to more reliable results. This work uses web application technologies and data

visualization tools to present job applicants’ information visually and interactively.

Web applications allow consumers to access and interact with services and information

on the internet via a web browser, which has become increasingly crucial in today’s

digital landscape. Aside from being simple to access from anywhere with an internet

connection, they also have fewer infrastructure costs than traditional desktop apps

and better scalability to handle big user bases. The system’s design uses several

visualization techniques, including graphs and charts, to display information on

applicants’ skills, work experience, education, and other factors. A new feature in this

application lets job applicants be compared with the team members already working

in the company. This way, the hiring manager can determine how each candidate

will fit into the team. Using this web application has the advantages of decreasing

the time and effort needed to search through resumes and improving the effectiveness

and efficiency of the hiring process. This project uses the latest web application

technologies, including Reactjs, Expressjs, and REST API.

Keywords – Data Visualization, Hiring process, web application, job applicants

ii Contents

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goal of this work . 2

1.3 Document Structure . 2

2 Background 3

3 Realized System 9

3.1 Architecture . 9

3.1.1 Back-end . 11

3.1.1.1 Dataset . 15

3.1.1.2 Conclusion Back-end 17

3.1.2 Front-end . 19

3.1.2.1 Design Criteria . 27

3.1.2.2 Data Visualization 30

3.2 How the application works . 31

4 User Interface 52

5 Evaluation 57

6 Conclusion 59

References 61

List of Figures iii

List of Figures

3.1 Overview of the system’s architecture 9

3.2 Database Entity Relation Diagram 31

3.3 Overall ranking of candidates . 33

3.4 Team comparison table . 41

3.5 Overall ranking of the candidates . 46

3.6 Candidates skills bar chart . 46

3.7 Team comparison pie chart . 47

3.8 Candidates skills bubble chart . 48

3.9 Candidates languages bubble chart 49

3.10 Candidates experience to overall score scatter plot 50

3.11 Candidates experience to skills scatter plot 51

4.1 list of all positions in the system . 52

4.2 Adding a new position . 53

4.3 Adding a new team member . 53

4.4 Adding a new team . 54

4.5 Position’s information page . 55

4.6 Comparing candidates window . 55

4.7 Candidate’s details window . 56

4.8 Team comparison table . 56

5.1 Time needed to complete tasks . 57

5.2 Results of questionnaire . 58

1

1 Introduction

1.1 Context

One of the biggest problems many firms confront is hiring employees. Shortlisting

applicants from a prominent prospective candidate is one of the crucial stages of

recruitment, but it may be a time-consuming and challenging task in significant

corporations.

Tens of thousands of job applications are frequently submitted monthly to large firms,

and manually analyzing such huge applicant volumes is time-consuming, costly, and

prone to mistakes. Manual screening could pick a select group of candidates for an

interview from those who apply initially and fit the job requirements. missing out on

possibly better applicants, and This is because it uses a sequential selection approach.

An inadequate pool of candidates is produced by this powerful ad hoc method (1).

Organizations typically manage such tasks using an Applicant Tracking System (ATS),

which manages a candidate application from its submission to the final hiring decision.

However, such systems facilitate some aspects of the hiring process.

However, the usually used approaches may lead to non-accurate results. Because they

only rely on the information provided in the job description and the job candidates’

resumes. Although this approach could seem logical, it is not complete without

considering external factors.

For example, there are some external factors such as whether the job candidate

graduated from a top university and, if yes, how this could affect the final result of

2 1.2 Goal of this work

its evaluation.

Also, another aspect of the hiring process that is not considered in the other works is

taking into account that the possible employee, in most cases, will work in a team.

Because work teams, in the opinion of many firms, are an efficient way to address

employee motivation difficulties and accomplish performance targets (2), it is essential

to understand better how to fit a job candidate in the related team in the company.

1.2 Goal of this work

The aim of this work is trying to cover and consider what has not been considered

by other works to beside providing better analytics also give the user visualization

of the data in a way which helps him to make an accurate decision. In this system,

for example, there are teams containing team members for each job position. By

comparing each job candidate with the whole team members, valuable data will be

produced to help the final user decide who is more eligible for that position.

1.3 Document Structure

The remaining sections of the paper are structured as follows.

• Section2 : Background

• Section3: Realized System

• Section 4: Evaluation

• Section 5 : Conclusion

3

2 Background

Data visualization is essential to computer science and has been used in different

fields and applications.

Every day, organizations produce a considerable amount of data. Massive volumes of

data need to be presented in a way that is intelligible and accessible. As a result,

there is now far more data available online. Users find it challenging to visualize,

study, and utilize this vast data. For scientific research to be successful, data

visualization is essential. Computers can now process large volumes of data. The

design, creation, and use of computer-generated graphics to display data are all

aspects of data visualization. Decision-makers can see analytics in a visual format as

a result, which makes it simple for them to interpret the data. It aids in pattern

recognition, information comprehension, and opinion formation (3).

Information visualization and scientific visualization are other terms used to describe

data visualization. In order to make messages or information survive throughout

time, humans have always used visualization techniques. It can depict things that

cannot be felt, tasted graphically, or smelled (4).

Data visualization is the technique of using a computer to portray information

visually. In contrast to static data visualization, interactive data visualization allows

users to select the format in which data is shown. Visualization techniques containing

(3) :

• Line graph: This depicts how many things are related. It can be applied to

4

contrast changes over time.

• Bar chart: This is employed to compare the amounts of several categories.

• Scatter plot: This two-dimensional plot illustrates how two items can vary.

• Pie chart: The components of a whole are compared using this.

As a result, graphs and charts can be presented in various ways, including bar

charts, pie charts, and line graphs. Knowing the graph or chart to utilize data is

crucial. Data visualization uses computer visuals to demonstrate patterns, trends,

and connections between various data elements.

Data visualization techniques are common approaches used in previous studies(5; 6; 7).

(6) used a semantic thesaurus to depict the key similarities and differences among

qualifications visually. Without reading all the textual information connected to

them, users might rapidly learn the critical differences between one training course

and the others by using such a depiction. They presented a semantically based

graphical depiction of similarities and differences between qualifications. In order

to convey the relevance of the main concepts of qualifications, they were organized

into clusters based on their semantic similarity and represented by circles of varying

diameters. Without reading all the information linked to them, consumers could

immediately understand the critical differences between one training course and

the others by using this representation. A few users tested the suggested remedy

after being integrated into a Web platform created as part of the TAMTAM

"Exploiting the TIPTOE platform by transferring ECVET and EQF semantic tools

in a Multisectoral perspective" project.

5

As mentioned above, one of the techniques in data visualization is a Bar chart. Bar

charts have been utilized for visualization because of their capacity to swiftly express

quantitative data and important values (8).

In a study by (9), a system for evaluating learners’ resumes, stated in terms of

Learning Outcomes (LOs) and their matching with available job offers, was presented.

This system was aimed at learners but may also be utilized by recruiters. The

suggested remedy used semantics to carry out intelligent automatic processing of

documents in natural language. A software system could go beyond a simple keyword

comparison using semantics since it could comprehend relationships between concepts.

The proposed solution computed a numeric value summarizing positive and negative

gaps concerning available job offers, considered the level of each LO (explicitly

specified or automatically extracted from textual descriptions), and displayed the

comparison’s findings in a bar chart-based view. Because reasoning from aggregate

results might occasionally lead to false conclusions, it was decided to offer the users a

numeric result function of the semantic similarity of the LOs and their levels instead.

In an interesting study by (10), tag clouds were used to compare qualifications,

resumes, and job profiles. The LO-MATCH platform, a web-based tool used as

part of the MATCH "Informal and Non-Formal Competencies Matching Device for

Migrant Employability and Active Citizenship" project, was introduced. Due to

the use of non-shared vocabularies, the platform relied on semantic technologies to

address heterogeneity issues in the descriptions of qualifications/résumés and labor

market needs. Additionally, it used a tag cloud-based visualization technique to

quickly illustrate factors to be considered during the mobility and job search phases.

6

In particular, tag cloud properties like font size and distance from the cloud’s center

were used to give a quick overview of a given qualification’s critical features about a

particular learner’s needs as well as to highlight necessary job seeker attitudes toward

a given job offer (from both the job seekers and the employer’s points of view).

In a study by (11), An approach for selecting effective visualization methods for

dynamic graph visualization scenarios that visualization specialists can use is

suggested. It provided a method for balancing application requirements with the

properties of dynamic graph presentation. Its objective was to help experts choose

the most effective visualization technique. Both the application requirements and the

visualization approaches are described in the methodology for presenting dynamic

graphs as profiles that address critical aesthetic criteria. The application profile

was made using the task and graph features. The most appropriate visualization

technique was probably the one whose profile matches the desired application profile

the closest. It provided a mechanism for gathering illustrative visualization profiles

for examples of dynamic graph visualization approaches in a case study.

One of the beneficial uses of data visualization is in the field of hiring and recruitment.

Some studies (7; 12) have used data visualization methods to facilitate hiring.

An article by (7) to mine and analyze resume data suggests using the visual analytics

system ResumeVis. First, a text-mining strategy for extracting semantic data is

provided. After that, a collection of visualizations is created to portray the semantic

data from various angles. The following activities can be completed through interactive

investigation on ResumeVis carried out by subject-matter experts: tracking individual

7

career evolution, mining latent social relationships among people, and holding the

complete picture of huge resumes’ joint mobility.

Another study by (12) introduces Selection Central, a candidate profile visualization

and ranking system that offers the user (for example, the hiring manager) two novel

features. First, it provided an interface for visually comparing various aspects of

candidates’ profiles; second, a candidate profile ranking method and interface captured

the hiring manager’s perspective by letting her adjust the ranking using relevance

feedback. Beyond the system-provided candidate ranking, the first feature enabled

the user to shortlist candidates by rapidly digging deeper into the candidate profile.

The second feature, on the other hand, enabled the user to modify the ranking

according to her preferences to get around the effects of vague or ambiguous job

descriptions. To produce the best appropriate rating, it let the user add her prejudices

or preferences in making decisions. The article offered a thorough usability analysis

to gauge Selection Central’s effectiveness.

An article by (13) shortlisted candidates for job positions with the help of a system

called "PROSPECT". This system tried to extract structured data from resumes

and job descriptions written in natural languages, such as skills, experience, and

information about education. However, extracting data from this kind of document

was the main challenge this project faced.

From the previous works mentioned in this section, it could be understanded that

data visualization is an essential tool in various use cases and provides a better

understanding of extensive data. Although the works mentioned above offer intriguing

approaches to visualizing data and comparing individual qualifications, to the best of

8

our knowledge, they do not compare the competencies of the job seekers with the

members of the teams within the organization. Contrarily, the present study has the

advantage of using various data visualization techniques, including tables, bubble

charts, scatter plots, bar charts, and pie charts, at once. Another advantage of this

approach is that it allows users to compare job candidates’ qualifications with those

currently employed by the organization and in various teams.

9

3 Realized System

3.1 Architecture

Figure 3.1: Overview of the system’s architecture

The Architecture of the "Resume Visualization" web application combines a front-end

and a back-end. The choice of the web application for this project is based on the

fact that nowadays, almost everywhere, people have access to the internet using

different devices.

A web application designed responsively is not limited to a specific device. It is

accessible wherever there is an internet connection. To develop this web application,

there were different combinations of technologies available.

After doing some research and based on the previous developing experiences, a set of

technology was selected.

10 3.1 Architecture

The leading technologies for this project are Reactjs + Bootstrap for developing the

client side and expressjs and SQLite for the server side. The application’s front-end is

built using ReactJS, Bootstrap, and D3JS JavaScript libraries for creating dynamic

and interactive user interfaces.

On the back-end side, the application is powered by Expressjs and SQLite. Expressjs

is a popular framework for Node.js, used for building web applications. SQLite is a

lightweight, file-based database system that stores and retrieves data.

The Rest API communicates between the front-end and back-end, allowing data

exchange in a standardized format. The API acts as an intermediary between the

two, allowing the front-end to request data from the back-end, and vice versa, in a

structured and organized manner.

The combination of these technologies provides a robust and scalable architecture for

the web application. ReactJS and Bootstrap in the front-end provide a rich user

experience, while using Expressjs and SQLite in the back-end allows for efficient data

management and processing.

The architecture of this web application also allows for easy maintenance and

scalability. Separating the front-end and back-end into distinct components means

that updates and changes to one side do not affect the other, allowing for smoother

and quicker development cycles. Additionally, using Rest API enables easy integration

of new features and functionality.

In conclusion, the architecture of this web application is a well-designed and efficient

combination of front-end and back-end technologies, providing a robust and scalable

3.1 Architecture 11

solution for web development. ReactJS, Bootstrap, D3JS, Expressjs, SQLite, and

Rest API result in a user-friendly and efficient web application.

3.1.1 Back-end

Working on server-side software, or what the end user of a website cannot see, is

known as back-end development. Back-end developers ensure the website functions

correctly by concentrating on databases, back-end logic, application programming

interfaces (APIs), architecture, and servers.

They employ code to assist browsers in interacting with databases and storing,

comprehending, and erasing data.

This application’s server-side uses Expressjs, SQLite, and REST API as the primary

technologies. The server receives and responds to client requests through the HTTP

request, which follows the RESTful principles, and the server fetches data from

SQLite, the database management system, and sends them to the client.

Open-source server environment Node.js is cross-platform and works with various

operating systems, including Windows, Linux, Unix, macOS, and more. JavaScript

code can be executed outside of a web browser using Node.js, a back-end runtime

environment that uses the V8 JavaScript Engine.

Developers can use JavaScript to create server-side scripts and command-line tools

using Node.js. The server-side script functionality creates the dynamic web page

content before the page is sent to the user’s web browser.

As a result, Node.js represents a "JavaScript everywhere" paradigm,[6] bringing web

12 3.1 Architecture

application development under one programming language rather than segregating it

among server-side and client-side scripting languages.

Expressjs is used to implement the application’s server. Expressjs is a Node.js web

application framework that offers tools for creating and managing HTTP requests.

This framework was selected because of its widespread use, simplicity of use, solid

structure, ability to communicate with many databases, and ability to use Rest

API to transfer data between the system’s front-end and back-end. This framework

enables the construction of various endpoints or functions that handle routes.

SQLite has been selected as the project’s database. An open-source relational

database management system is called SQLite. Data for the program is stored,

managed, and retrieved using it.

Using a library like sqlite3, the Expressjs application can communicate with the

SQLite database by running SQL queries to insert, edit, or retrieve data as needed.

On this project’s database, ten tables store all the data used in this project. There

are also relations between some of the tables in this database. For example, the

table which is called "applications" has one primary key, "ID," and two foreign keys,

"candidateId" and "positionId" which are used to relate each row of this table to

a specific candidate in the "candidates" and a specific position in the "positions"

tables.

In each of these rows, foreign keys in the "application" table are the primary key in

their table. These relations between the tables are beneficial when a query needs to

join two or more tables to fetch the requested data.

3.1 Architecture 13

A web service can be built using the REST API architectural style, which adheres to

a set of rules and uses HTTP methods (such as GET, POST, PUT, and DELETE)

to perform activities on resources indicated by URIs.

By establishing endpoints that correspond to the CRUD activities (Create, Read,

Update, Delete) for a given resource, the Expressjs application can implement REST

API.

Expressjs gets a request from a client, matches it to the correct endpoint, and then

invokes the relevant route handler. In order to provide the client with the proper

answer, the route handler can use the information from the request and communicate

with the SQLite database. Data in a format like JSON should be provided as part of

the answer.

It is an example of an API REST request handling in the expressjs:

1 app.get("/API/teams/: teamId", async (req , res) => {

2 const teamId = req.params.teamId

3 try {

4 const teamMembers = await dao.getTeamMembers(teamId);

5 res.status (200).json({ teamMembers });

6 } catch (err) {

7 console.log(err);

8 res.status (400).end();

9 }

14 3.1 Architecture

10 });

Listing 1: Async REST API calling in expressjs

This request is used to return the team members of a team. As each team is

identified with a unique id, in the body of the request, there is a field "teamId"

which the front-end should define. This teamId is passed to the proper function

"getTeamMembers()"; based on that, the query will be sent to the database and

returns the team members whose teamId is equal to the value passed to the function.

After having the data ready as requested, it will be stored in a JavaScript object.

For each kind of request, there is a proper JavaScript object already defined on the

system, which improves the integrity between the back-end and front-end of the

project, as the front-end knows what kind of object it expects to receive.

When the request’s status is equal to 200(the server runs the request successfully), the

data will be sent to the front-end side of the application in JSON format. JSON is a

free and open-source file format and data exchange format that employs text humans

can read to store and send data objects made up of arrays and attribute-value pairs.

As shown in this example, the type of request is "GET".

While the server is running, it constantly listens for new requests from the other side

of the application. After receiving and processing them, respond to those requests

with the proper results. The functioning of the server in this matter has been tested

during the development phase using a tool which is called POSTMAN API client.

In this way, we could be sure that the APIs are working fine and returning the

correct results before developing and calling these APIs from the front-end.

3.1 Architecture 15

3.1.1.1 Dataset

One of the challenges during this project was finding a reliable dataset. To test

the system and check its functionality, we needed a proper dataset with specific

characteristics that fulfill the needs of our system.

There are not a lot of public datasets about resumes because companies usually keep

this kind of information internal to themselves and tend not to make them public.

To have reliable results, a dataset with this information is required:

• Skills set of the applicant

• Years of experience of the applicant

• Field of work of the applicant specific on the resume

• The university that they graduated from

• Languages they speak

• Preferably link to their social pages(medium, GitHub, LinkedIn,. . .)

Some data sets were reviewed and tested for this project; each could have advantages

and disadvantages.

The first dataset considered was a dataset of resumes categorized into different fields.

Some of the drawbacks of this dataset were a wide variety of areas. Since each of

the resumes provided by this dataset had to be cleaned and prepared for use by our

system, there was not enough knowledge to properly filter the data, and if it were

done, it would take much time.

Also, the data provided by this dataset was related to about 10 – 30 years ago, and

16 3.1 Architecture

in the evolving environment of the job market, they could not provide precise results.

The second dataset also included 2296 resumes from different sectors.

The problem with this dataset is that the information on the resumes is insufficient

as there was no specific set of skills for most applicants, and they included only

general information. Furthermore, the second disadvantage of this data set was being

outdated for our usage.

After searching for a suitable dataset, a dataset was found that could provide most of

the required information. The project needed more information about the candidate,

such as their workplace name, age, gender, and email address. Nevertheless, it was

figured out that this information is usually not publicly available. Hence, it was

decided to make some changes to the project to receive the best of the available data

we have about each candidate.

The data set used in this project was suitable for our use case because it was :

• Categorized in a different field (mostly related to Computer Science)

• Skills set of each candidate was available

• Years of experience of each candidate could be calculated in most cases

• The university of their graduation was specified

• The data was recent and similar to the most recent job position’s requirement

• In some cases, link to their social pages was provided

3.1 Architecture 17

• The languages they speak could be specified

The information provided on this dataset needed to be cleaned and organized for

this thesis’s purposes. To achieve this goal, a section of this dataset related to the

resumes in the field of computer science was chosen. One of the time-consuming

parts of this project was extracting useful data in a proper format from this data set,

which had to be done manually.

For example, in this project, the years of experience of each candidate were needed,

but this kind of information was not provided explicitly in this data set. For some

candidates, there was a list of past experiences, including starting and ending years.

For each candidate, the total years of experience must be calculated manually.

However, in some cases, the year of experience of each candidate had to be estimated

from the number of years mentioned for each skill in the candidate’s resume.

After data cleaning and getting the required information from this data set, this

information had to be added to the database. For this thesis, SQLite was used as the

database system. All the extracted information was added to the related table on

the database. The number of tables and their relation were decided by analyzing the

system’s requirements and structure.

3.1.1.2 Conclusion Back-end

A set of possible combinations of different technologies was considered to implement

the server side of this application. However, by looking at the advantages and

disadvantages of other technologies, it was figured out that because of some reasons

such as: being well-documented, having a sizeable supportive community, providing

18 3.1 Architecture

a robust structure, and all working with one programming language, this set of

technologies and frameworks are a better fit to our use case.

In conclusion, Expressjs offers a framework for processing client requests, SQLite offers

a system for data storage and management, and the REST API offers a standardized

mechanism for the client and server to communicate, all of which combine to produce

a full-stack web application.

3.1 Architecture 19

3.1.2 Front-end

Front-end web development creates a website’s graphical user interface using HTML,

CSS, and JavaScript so visitors can view and interact with it.

ReactJS, Bootstrap, D3JS, and REST API were used to build the front-end of the

"Resume Visualization" online application, which can assist users in various ways.

ReactJS offers a straightforward and adaptable framework for constructing user

interfaces, while Bootstrap offers a responsive design that makes creating attractive

and practical web pages simple.

With the help of the powerful data visualization toolkit D3JS, users may build

interactive graphs, charts, and other visualizations. The application can connect to

external data sources over REST API and retrieve data uniformly.

The foundation of any website creation process is HyperText Markup Language

(HTML), without which a web page would not exist. Hypertext refers to writing that

contains links, also known as hyperlinks.

A user will be taken to another web page when they click on a word or phrase that

has a hyperlink. Using a markup language, text can be represented as graphics,

tables, links, and other things

. The HTML code outlines the general layout of the website. Tim Berners-

Lee created HTML. The W3C announced a recommendation for HTML5

on October 28, 2014, making it the most recent version of HTML. This version

includes new and effective methods for handling components like audio and video files.

20 3.1 Architecture

CSS, which manages the presentation part of the site, gives the website its distinct

appearance. It keeps track of style sheets triggered by other inputs, such as the screen

size and resolution of the device, and sits on top of other style rules. CSS can be

added externally or internally as an HTML tag embedding.

Different styles can be created using Cascading Style Sheets or CSS. Any element

can be changed, including the padding, margin, font-color, border, and shadow.

Classes, which compile rules about things that may be identified by their class, kind

of HTML component, or identity, are the fundamental units of CSS. CSS can apply

these criteria repeatedly to keep visually related objects with semantic relationships

consistent.

As in this project, Reactjs is used as the main framework for developing the web

application’s front-end; some CSS rules should be used differently. For example use

of CSS classes in Reactjs is like this:

1 function Navigation () {

2 return (

3 <>

4 <div className="navbar">

5

6 <Link to="/">

7 <li className="active">Home

8 </Link >

9

10 </div >

11 <Outlet />

12 </>

3.1 Architecture 21

13);

14 }

Listing 2: Css classes usage in Reactjs

It is part of the code which is used in the Navigation component. As shown, the div

uses a custom CSS class with the keyword of "className" which is a standard way

of using CSS classes in Reactjs.

A static HTML page can be turned into a dynamic interface using JavaScript, an

event-based imperative programming language (as opposed to HTML’s declarative

language model).

The Document Object Model (DOM), made available by the HTML standard, can be

used by JavaScript code to modify a web page in response to events like user input.

React is a front-end JavaScript library for creating user interfaces based on UI

components that are free and open-source. React is often referred to as React.js

or ReactJS. A community of independent developers and businesses manages it,

including Meta (previously Facebook).

When creating single-page, mobile, or server-rendered applications with frameworks

like Next.js, React can be the foundation. React mainly focuses on state management

and presents that state to the DOM, necessitating other libraries for routing and

specific client-side functionality when developing React apps.

JSX is a JavaScript extension for user interface design. The XML-based, extensible

language JSX can handle HTML syntax with a few tweaks. User interfaces can be

created using React Elements, which can be generated using JSX.

The use of JSX in this project lets to use HTML tags combined with some functionality

22 3.1 Architecture

from JavaScript. This feature provides many opportunities for developing a more

dynamic web application which also needs less coding and leads to cleaner and more

understandable code. The below lines are a use case of JSX in the project.

1 <Button

2 variant="primary"

3 style ={{ position: "absolute", right: "200px" }}

4 onClick ={ doComparison}

5 disabled ={ comparisonList.length === 2 ? false : true}

6 >

7 {comparisonList.length === 2

8 ? "Compare candidates"

9 : "Add 2 candidates to compare"}

10 </Button >

Listing 3: using JSX for creating a Button

It is a use case in which the Button component from the Bootstrap framework is

used inside the code. This component is a regular HTML tag in this section and can

have some attributes. Bootstrap defines the "variant" attribute to give the button

some specifications, such as its color.

The "style" is used to give the component some CSS styles which should be written

in a JavaScript object. The "onClick," which is the Reactjs version of the "on click,"

is used to define the system’s behavior when this button is clicked. After clicking on

the button, a function called "comparison" is called.

Furthermore, for the last attribute, "disabled," one of the most valuable features of

Reactjs is used. For providing value to the "disabled" attribute, a "ternary condition"

3.1 Architecture 23

is used. A ternary condition is a short form of an "If-else" statement that allows

returning different values if the condition is met. In this example, if the length of

"comparisons" is equal to two, "false" will be returned, and for any other values,

"true" will be returned.

As explained, using JSX enables the developer to combine HTML, JavaScript, and

CSS code to have a more robust and cleaner code that is also easier to maintain.

A React component is the primary building block of a React application. It uses JSX

and React components to build its user interface. A React component is fundamentally

either a JavaScript class (which extends the React. component class) or a JavaScript

function.

A React component has all its characteristics, state management, life cycle, and

event handler. React components can be used to do both simple and complicated

reasoning. The following are just a few ways that React architecture helps with web

development:

• React contributes to developing component-based software architecture,

facilitating code reuse and maintenance.

• It permits the maintenance of a global state variable using state management

tools like Redux.

• Since the React design allows for component building, more code may be added

more effectively as the project grows.

• Because the React architecture is component-based, unit testing is more

effortless.

24 3.1 Architecture

In this project, using Reactjs components leads to a better structuring of the

application and easier data management. Reactjs components are described below by

an example from the project.

1 import Container from "react -bootstrap/Container";

2 import Row from "react -bootstrap/Row";

3 import API from "../ API/API";

4

5 import { useEffect , useState } from "react";

6 import PositionsList from "./ PositionsList";

7

8 function Home() {

9 const [positions , setPositions] = useState ([]);

10 useEffect (() => {

11 API.getPositions ()

12 .then((positionsInfo) => {

13 setPositions(positionsInfo);

14 })

15 .catch((err) => console.log(err));

16 }, []);

17 return (

18 <>

19 <Container fluid >

20 <Row >

21 <PositionsList

22 positions ={ positions}

23 ></PositionsList >

24 </Row >

25 </Container >

3.1 Architecture 25

26 </>

27);

28 }

29

30 export default Home;

Listing 4: Function Component in Reactjs

it is the code related to the Home component of the project. This component is

the first page of the application, which shows a list of available job positions. Some

components, functions, and Reactjs features are imported on the first five rows of this

component. Reactjs components are of two types: Class components and Function

components.

Class components are not used widely anymore because of their complexity. It is

a function component that provides features to let the user handle the data better.

The most important feature of function components is the Hooks. Hooks are some

built-in functions of Reactjs which let the user manage the code in different lifecycles.

The most used hooks are "useState" and "useEffect".

Reactjs’ useState hook enables the user to include a state variable in the components.

Components will be updated whenever a state is updated, or its data is changed.

Another used hook in this component is "useEffect". useEffect is a Reactjs built-in

function that will be run whenever its dependency changes or only in some lifecycles

of the component.

For example, in this component, the useEffect is used without any dependency,

meaning it only runs the first time the component is mounting. These hooks useState

26 3.1 Architecture

and useEffect, are used in this way.

One state in this component is " positions", and one function to update this state

is called "setPositions". In the useEffect hook, a function from the API module is

called to retrieve all positions from the database. After receiving the positions’ data,

the setPositions function is called.

A list of the positions fetched using the API is passed to this function, and new

values will be set to the related state, which is positions. This useEffect only runs

the first time the component renders, as the data related to the positions will not

change inside the component. Finally, the data stored in the state is passed to the

PositionList component as a prop

3.1 Architecture 27

3.1.2.1 Design Criteria

This project aimed to have a reliable and clean visual design that provides information

to the user in an understandable way. In this project, a large amount of data and

information is shown to the user, such as different charts, tables, and windows.

Hence Having a visual design that can show all this information to the user and

prevent him from becoming confused is essential. To approach this goal, the visual

design should follow some specific rules in the field of user experience in the user

interface.

The user experience (UX) describes how a person engages with and utilizes a system,

product, or service. It encompasses how useful, simple, and effective something is in

someone’s eyes. There are some examples of UI and UX that a proper design must

follow. For example, the distance between elements, the variety of colors, and many

other factors. Several tools and libraries provide a framework and components that

make designing a web page easier.

Bootstrap is selected as the framework for this project to design the whole application.

Because of its familiar design for the users, it is used in many different projects

(19.2 percent of websites utilize Bootstrap, according to W3Techs.), and because it

improves the whole user interface and user experience.

Bootstrap is A free, open-source CSS framework designed for front-end web

development that prioritizes mobile responsiveness. It includes design templates

for typography, forms, buttons, navigation, and other interface elements in HTML,

CSS, and (optionally) JavaScript.

An HTML, CSS, and JS package called Bootstrap makes it easier to create educational

28 3.1 Architecture

web pages than online applications. Applying Bootstrap’s color, size, font, and layout

selections to that project is the primary goal of adding it to a web project. Therefore,

the main determinant is whether the responsible developers like those options.

All HTML components have basic style declarations once Bootstrap is introduced to

a project. As a result, texts, tables, and form components appear consistently in all

web browsers. In order to further modify the look of their content, developers can

use the CSS classes defined in Bootstrap. For instance, Bootstrap offers tables in

light and dark colors, page headings, pull more noticeable quotes, and content that is

highlighted.

The layout components of Bootstrap are the most noticeable since they have an

impact on the entire web page. Every other element on the page is contained in the

fundamental layout element, which is referred to as the "Container." A fixed-width

container or a fluid-width container are the two options for developers. The former

employs one of the five predetermined fixed widths based on the size of the screen

displaying the page, whereas the latter always fills the width with the web page:

• Smaller than 576 pixels

• 576–768 pixels

• 768–992 pixels

• 992–1200 pixels

• Larger than 1200 pixels

Following the placement of a container, other Bootstrap layout elements build a CSS

Flexbox layout by specifying rows and columns. One CSS file, three JavaScript files,

3.1 Architecture 29

and a precompiled version of Bootstrap are readily available for use in any project.

However, developers can apply additional customization and size optimizations using

Bootstrap in its raw form. The developer can delete unnecessary components, apply

a theme, and alter the uncompiled Sass files because this raw form is modular.

30 3.1 Architecture

3.1.2.2 Data Visualization

The main goal of this project is to visualize data for the user to help him better

understand them. One of the approaches for visualizing data is using charts and

plots as they graphically present data, making it easier to understand the relationship

between them. One of the most used tools for creating charts in web applications

using JavaScript is D3.js.

A JavaScript library called D3.js (often called D3, short for Data-Driven Documents)

is used to create dynamic, interactive data visualizations in web browsers. It adheres

to the Cascading Style Sheets (CSS), HTML5, and Scalable Vector Graphics (SVG)

standards. It is the framework that replaces the earlier Protovis one.

Version 2.0.0 was launched in August 2011, and its development was recorded that

year. D3 was transformed from a single library into a collection of smaller, modular

libraries that can be used independently with version 4.0.0 in June 2016.

To choose items, create SVG objects, style them, or add transitions, dynamic effects,

or tooltips, the D3.js package uses pre-built functions. Additionally, CSS can be used

to style these objects. D3.js routines can build text/graphic charts and diagrams

from large datasets tied to SVG objects. The data can be in various forms, including

JSON, CSV, or geoJSON, although JavaScript utilities can be built to read other

data formats if necessary.

D3.js array operations are designed to supplement JavaScript’s array support, which

includes iteration methods like filter, every, forEach, map, some, reduce, and

reduceRight, as well as mutator methods like sort, reverse, splice, shift, and unshift.

3.2 How the application works 31

3.2 How the application works

A list of job positions is stored in a table named positions in the database. Each

position includes data such as required skills, minimum experience, the related team

to this position, and other information. There is another table in the database called

"candidates," which includes data about each candidate.

Figure 3.2: Database Entity Relation Diagram

On the other hand, a table called applications works as a bridge between the positions

table and the candidates’ table—each row in the applications table shows which

candidates have applied for which position. On the main page of the application,

there is a list of all the positions in the system, This list of positions is fetched from

the server using a Rest API, which receives the latest positions available on the

database.

Some information related to that position is shown to the user. This information

32 3.2 How the application works

includes the number of applicants for this position, the status (if it is active or

closed), required skills, minimum experience, and the position description.

On this page, some functionalities are provided for the user, such as creating a new

position, creating a new team, and adding new team members to each team. As each

position is connected to a team in this system and each team includes some team

members, these features help the user manage the positions better.

First, the user needs to add a new team to the system. Adding a new team is easy

as the user only needs to click the related button "Add a new team". On the new

window shown, provide the team’s name. after clicking on the "Submit" button, the

provided information by the user will be stored on the database on the "team" table.

After adding a new team user needs to add a new position. In this case, the user

can click the related button "Add a new position." After clicking on this button, a

new window will be shown to the user. In this window, there is a form that consists

of some fields. These fields are information about the new position that the user is

adding. After clicking on the "Submit" button, the provided information by the user

will be stored in the database on the "positions" table.

Also, the user can add some members to each team he has created already. This

feature will be helpful when each candidate’s information is compared with the team

members. The user must click the "Add a new team member" button to add team

members. After clicking on this button, a new window will be shown to the user. In

this new window, there is a form that lets the user put the information about the

team member. After clicking on the "Submit" button, the provided information by

the user will be stored in the database on the "teammemebrs”table.

3.2 How the application works 33

The user can click on the "details" button and see a list of all the candidates who

have applied for this position.

The new page contains detailed information about all the applicants for this job

position. The page could be separated into three parts: a table of candidates ranked

by their score, a table of candidates ranked based on their Match to the team members

of the company, and some charts and plots for visualizing the candidates’ information.

The first table includes some information about the candidates, In each row, there

are nine columns.

Figure 3.3: Overall ranking of candidates

• In the first and second columns are row numbers and names of the candidates.

• 3rd column is called "Top University Match." As for companies in different

countries, it could be important to know from which university the applicant

graduated. Sometimes, they give priority to the people coming from some

specific universities this field is provided. In this field, besides showing the

name of the university from which the candidate graduated, we also check

34 3.2 How the application works

on the university. There is a list of 400 top universities around the world

provided in the system. The name of the candidate’s university is compared

with this list, and if there is a match between them, a given score will be given

to the candidate. It could be helpful for job positions and companies looking to

hire people who graduated from top universities or the university local to the

company. There is a number in percentage and the name of each candidate’s

university. This number could vary between 10 to 100. There is a formula

for calculating this number. The application compares the university which

the candidate has graduated from with a list of 400 top universities and gives

different scores based on the results of this comparison:

– 100 points if the university is among the top 50 universities on the list.

– 90 points if the university is ranked between 50 and 100 on the list.

– 80 points if the university ranks 100 and 150 on the list.

– 70 points if the university ranks 150 and 200 on the list.

– 60 points if the university ranks 200 and 250 on the list.

– 50 points if the university ranks 250 and 300 on the list.

– 40 points if the university is ranked between 300 and 350 on the list.

– 30 points if the university ranks 350 and 400 on the list.

• 4th column in the first table is called "Language Match. There are preferred

languages for each position in this application. As different companies in an

international environment have some preferences on the number of languages

3.2 How the application works 35

the applicant can speak, it is essential to provide this information to the user.

For example, a company working with clients from foreign countries needs a

person familiar with specific languages, which could be an advantage for the

applicant. In this field, the preferred languages of the position are compared

with the candidates’ languages and based on that, a point is given to each

candidate. The formula to calculate this number is as below for each language

match between the candidate and the job position:

Language point = (candidate’s languages)*(100/number of preferred

languages)

For example, if there are three preferred languages for this position and the

candidate only knows two of those languages, the language point would be :

Language point = 2*(100/3) => 66.66

• 5th row in the table is called "Experience Match, " a number is shown as a

percentage. As mentioned, each position has a "minimum experience" field

that offers the minimum experience required for this job position. Different job

positions need different levels of experience, and the company needs to hire a

person who best fits that position. In this field, the experience years of the

applicant are compared to the minimum required experience of the position.

Based on a formula explained below, a score is given to the candidate. A higher

number means a better match.

– 100 points if the candidate has two or more years of experience than the

required experience years for the position.

36 3.2 How the application works

– 90 points if the candidate has one year of experience more than the required

experience years for the position.

– 80 points if the candidate has years of experience equal to the experience

years necessary for the position.

– 60 points if the candidate has one year of experience less than the required

experience years for the position.

– 40 points if the candidate has two years of experience less than the necessary

experience years for the position.

– 10 points if the candidate has three or more years of experience less than

the required experience years for the position.

• The 6th column shows the "Skills Match," a percentage number. As mentioned

earlier, each position requires some skills, and each candidate has a set of skills.

The application compares two candidates’ skill sets and the position with each

other. Based on the result of this comparison, a specific amount of points are

given to the candidate. A higher score means the candidate has more skills than

the position’s required skills. This number is calculated based on the below

formula:

Skills point = (candidate’s matched skills)*(100/number of required

skills)

For example, if the position requires four skills and the candidate has 3 of them

in his skill set, the Skills point would be calculated as below:

3.2 How the application works 37

Skills point = 3 * (100/4) => 75

The final number is shown as a percentage that indicates the Match between

the candidate’s skills and the position’s required skills.

• 7th column is called "Overall Match." In this column, a number is shown. This

number is the average of all the last columns. It shows the overall Match of the

candidate with the position based on the different factors present in the table:

University Match, Experience Math, Languages Match, and Skills Match.

As it is visible in the table, each column in this table has an input field that is

called "weight." The "weight" is one of the features that could be useful for the

user as the user can give different weights to each of the columns that affect

the final results of the other comparison.

When calculating the average of these different factors to get the value, By

default, the overall Match’s weight of each factor is equal to one. However, as

different users for different positions might have other priorities, there is this

possibility to change the importance of each element to recalculate the score of

the candidates. Changing the weight for each factor affects the final results, as

it is shown in the formula below:

1 overallMatch += (uniMatch / 4) * weight.uni;

2 overallMatch += (expMatch / 4) * weight.exp;

3 overallMatch += (skillsMatch / 4) * weight.skills;

4 overallMatch += (langMatch / 4) * weight.lang;

5

6 overallMatch =

7 overallMatch /

38 3.2 How the application works

8 ((parseInt(weight.uni) +

9 parseInt(weight.exp) +

10 parseInt(weight.skills) +

11 parseInt(weight.lang)) /

12 4);

Listing 5: The code to calculate overallMatch compared to the position’s info

As seen from the code’s screenshot, each score calculated before is divided by

4, which is the number of factors included in calculating the average(overall

Match). The result will be multiplied by the weight of each element which the

user could modify.

After that, the result will be divided by the sum of all weight values of different

factors divided by 4. This way, it could be sure that the final result would be

a number below 100 and could be shown as a percentage. Whenever the user

changes each element’s weight in the table, the calculations will be rerun, and

the new results will be shown to the user in real time.

The order of candidates shown in the table could be changed. By default, the

candidates are ordered by their "overall Match" score in an Ascending mode,

which means whoever has more "overall match" score is placed higher in the

table.

After modifying the user’s weight of each table column, the table will be sorted

again to ensure that it is shown the correct result. Also, the user can change

the order of the table to see different results. By clicking on each column, the

table will be automatically sorted based on the outcome of that specific column.

3.2 How the application works 39

For example, if the user clicks on the "University Match" column, the table

will be sorted so that the candidates with a higher score of "University Match"

are placed at the top. This feature helps the user to sort the table based on

his preferences and gives him the ability to get the most out of the data which

is shown to him. as for each position, some of the elements might be more

important than others, and this feature is provided to answer to this need of

the user.

• In the 8th column, there is a button called "Details." This button is supposed to

the information related to each candidate in a pop-up window. A new window

will appear on the screen by clicking on this button. There are details about

the selected candidate on a table in this window, such as his skills, languages,

overall score, github id, and link to his Medium page.

On the skills and languages row, there is a feature that distinguishes the items

which match the job position requirements. For example, all the skills and

languages of the candidate, by default, are shown in a blue pill. Nevertheless,

the items that match the position’s requirements are shown in a green pill.

In this way, we provided a visualized way for the user by a quick scan of the

information displayed on the screen to understand which skills and languages

of the candidate match the job position requirement. Also, two rows show the

GitHub id of the candidate and are linked to the candidate’s GitHub profile if

the applicant’s GitHub id is available.

Moreover, the other row shows the Medium username, which is connected to

the URL of his Medium page if available. By providing this information, the

40 3.2 How the application works

user can assess all the details of the applicant quickly and easily. As for many

IT and Computer Science positions, this information could demonstrate the

candidate’s real-world skills.

• In the 9th column, a button is provided for the user to add candidates to

a comparing table. Each comparison could be made between two different

candidates. After adding two candidates to the comparison, the related button

on the top of the page will be enabled. Furthermore, let the user see the

information about the two selected candidates beside each other, which helps

him to have a better idea of which candidate could be a better fit for this

position.

In the comparison window, which will be appeared after clicking on the

"Compare Candidates" button, the information of two candidates will be shown

in the same format as the details window and let the user see the result cleanly

and efficiently.

That was all functionality and details about the first section of this page, which was

about scoring and sorting the candidates and comparing them with each other. In

the next section of the page, there is a table with different usage. In a real-world

situation, each person a company hires is likely to work in a team, and we can

conclude that each published job position is related to a team inside the company.

3.2 How the application works 41

Figure 3.4: Team comparison table

The idea was to let the hiring people compare the job applicants with their team

members already working in the company. It could be said that each job position

and each company has its priorities. There are cases in which the new person who is

adding to the team should have the same set of skills and experience as the other

team members, and there are cases that the company needs someone who has a

different set of skills and knowledge. Imagine hiring a new intern to work with a

team of seniors.

The candidate is not supposed to have the same years of experience as the team

members. So to answer different needs and respond to different possible situations,

in this section, we tried to provide the information so that the user can have a

better choice and view of all candidates. For this reason, for each job position in

the system, there is a team related to that, and each team has some team members

whose information is stored in the database in case we need to compare them with

the job applicants.

Each column in this table has an input field that lets the user give them weight. As

different users and positions might have other priorities, this feature enables them

to provide each factor of the comparison differently, leading to different results and

42 3.2 How the application works

helping the user make a better decision. Each field of this table is explained here.

• The first and second columns show the candidate’s row number and name.

• 2nd column is called "University Match." In this column, the candidate’s

university is compared with all team members. to see if they graduated from

the same university. If they graduate from the same university, some points

will be added to the University Match of the candidate. This number is

calculated below for each Match between the candidate’s university and each

team member’s university:

University Match = (number of matched university) * (100/ number

of team members) The final result will be shown as a percentage.

• 3rd column is called "Experience Match." In this column, the candidate’s years

of experience are compared with all the team members’ years of experience. If

the team member’s years of experience are equal to or less than the candidate’s

years of experience, some points will be added to the Experience Match. The

formula which is used to calculate this number is shown below:

Experience Match = (number of matched experience) * (100 / number

of team members)

• 4th column shows the "Skills Match." It is a number that indicates the Match

between the candidate’s skills and all the team member’s skills. To calculate

this number, in the first step, all the skills of team members are added to an

array. Then each candidate’s skill is compared with this array of skills, and for

each Match, some points will be added to the Skills Match. The Skills Match is

3.2 How the application works 43

calculated as below:

Skills Match = (number of matched skills) * (100 / number of team

members)

• 5th column, "Skills Miss Match" shows the exact opposite of the Skills Match

value. In this column, we decided to show how different the skills set of the

candidates are compared to the skills set of the team members. It could be

helpful for the user to decide if the selected person for this position needs to

have the same skills as his team members or if he needs to bring new insights

and a bunch of skills to the team.

• The 6th column shows the "Languages Match" In this column, the languages of

the candidate will be compared with the languages of all team members to see

how similar their languages are and if the new team member can communicate

with each other appropriately.

This kind of information and insights could be helpful for companies that hire

people from different nationalities and must be sure that the new people joining

the company can communicate effectively with the other people in the teams

and company.

To calculate "Languages Match" score, all team members’ languages are first

added to an array, and then the candidate’s languages are compared to them

one by one. The formula to calculate this number is :

Languages Match = (number of matched languages) * (100 / number

of team members)

44 3.2 How the application works

• 7th field on the table shows the Overall Match. This number shows how

matched this candidate is to the other team members he might work with.

After calculating all the different comparison fields, it is time to show the user

the candidate’s overall score in this comparison. To calculate this number, we

need to consider the weight of each field that could be modified by the user and

is one by default. The formula to calculate this number is as bellow:

1 overallMatch += (uniMatch / 4) * teamWeight.uni;

2 overallMatch += (expMatch / 4) * teamWeight.exp;

3 overallMatch += (skillsMatch / 4) * teamWeight.skills;

4 overallMatch += (langMatch / 4) * teamWeight.lang;

5 overallMatch =

6 overallMatch /

7 ((parseInt(teamWeight.uni) +

8 parseInt(teamWeight.exp) +

9 parseInt(teamWeight.skills) +

10 parseInt(teamWeight.lang)) /

11 4);

Listing 6: The code to calculatie overallMatch compared to team members

The overall Match is the average of all the other elements, calculated before,

then each element’s weight is multiplied by the result to apply the user choice.

• The 8th field on this table shows the "Overall Miss Match." This field is the

exact opposite of the Overall Match Value. This field is for cases where the

user needs to see how different the candidate is compared to the other team

members in all functional aspects.

3.2 How the application works 45

As mentioned before, sometimes a company needs to add a new person to a

team who has a different skill set, experience, education, and language to fulfill

this kind of need in this field is provided. As explained above, we provided user

information about comparing candidates to team members in this section. As

in most cases, the selected candidate will work in a team. It is helpful for the

user to understand better how this possible team member will fit into the team.

The first part of the page was about two tables showing the results of different

comparisons between candidates and the position requirements. The third section is

a place to visualize the data we have crafted from each candidate to help the user

explore all available information and decide better.

This section provides the user with seven different plots and diagrams, each showing

another part of the data.

• 1st plot here is a bar chart. This bar chart shows the overall ranking of the

candidates sorted from higher to lower based on each candidate’s Overall Match

score, which has been calculated before. This plot is provided to give the user a

quick and easy way to review all the candidates in a chart and better understand

the job applicants’ situation.

46 3.2 How the application works

Figure 3.5: Overall ranking of the candidates

• 2nd plot is a bar chart. This bar chart shows all the candidates’ skills in one

place. This chart shows how many candidates have a specific skill, giving the

user a better view of all applications for this job. This chart is sorted, and the

higher values are shown on the left side of the chart.

Figure 3.6: Candidates skills bar chart

• 3rd plot is a pie chart. This pie chart shows the data related to the team

comparison. In this pie chart, the user can see each candidate’s name and their

relative overall match score compared to the other team members. The data

plotting this pie chart is sorted from the highest to the lowest. As a result, the

3.2 How the application works 47

candidate with the highest score is shown in the first part of the pie chart.

Also, another pie chart in this section shows the overall miss match value of each

candidate compared to the team members. This way, the user has a complete

view of the candidate’s situation compared to the team members.

Figure 3.7: Team comparison pie chart

• 4th plot is a bubble chart. This bubble chart shows the skills of all the candidates

in a way that the skills most repeated in the different applicants’ skills are

shown in larger bubbles with the number of candidates who have this skill in

their skill set. This bubble chart provides information to the user graphically

and interestingly, which is also more understandable.

48 3.2 How the application works

Figure 3.8: Candidates skills bubble chart

3.2 How the application works 49

• 5th plot is a bubble chart. This bubble chart shows the languages of all the

candidates in a way that the languages most repeated in the different candidates’

languages are shown in larger bubbles with the number of candidates who have

this language in their set of languages. This bubble chart provides information

to the user graphically and interestingly, which is also more understandable.

Figure 3.9: Candidates languages bubble chart

50 3.2 How the application works

• 6th plot is a scatter plot. This plot provides information about the relationship

between the experience years of the candidate and each candidate’s overall

score. This plot shows some important results to the user. For example, the

user can see how years of experience affect the overall score of all candidates

for this position.

Figure 3.10: Candidates experience to overall score scatter plot

• 7th plot is a scatter plot. This scatter plot shows information about the

relationship between the experience years and the skills match score of each

candidate. Using this plot, the user can understand how a candidate’s years

of experience could be related to his skills Match score and the overall trend

among all the applicants for this job position.

3.2 How the application works 51

Figure 3.11: Candidates experience to skills scatter plot

As the above lines explain, some plots and charts are provided for the user in this

section. Each focuses on different aspects of the available data about the candidates,

as data visualization is one of the essential tools when working with different kinds of

data. Plots could be helpful for the user to understand better the situation of all the

candidates for each job position and make them able to select the person who has

the most requirements for the job position.

52

4 User Interface

In designing different sections of this application, the main focus has always been

on ease of use and straightforward design. Different sections of the application are

designed so that most of the information the user needs will be shown at a glance.

The first page of the application contains a list of all the job positions available on

the system. When this page loads, an API is called and a request is sent to the server.

The server fetches the requested data, which is a list of positions and their related

information, and returns it to the client. A list of all positions with their details will

be shown in a table to the user.

Figure 4.1: list of all positions in the system

There are also three different buttons on the top of the page. The first button is for

adding a new position. By clicking on this button, a new window will be popped out,

and the user can create a new position by filling out the form, which also includes

setting the "Related Team" and "Field" of the position and clicking on the "Submit"

button.

53

Figure 4.2: Adding a new position

The second button is for adding a new team member. A new window will be popped

out by clicking on this button, and the user can add a new team member to one of

the existing teams by filling out the form and clicking on the "Submit" button.

Figure 4.3: Adding a new team member

The last button is also for adding a new team to the system. By clicking on this

button, the user can provide the name of the new team in a form that is popped out

54

and add this new team.

Figure 4.4: Adding a new team

For saving the above information, three different APIs are called separately. This way,

whenever the user creates a new element, the database will be updated immediately,

and the data will be consistent throughout the system.

This page shows the position’s information, which includes a list of people who have

applied for this job and some charts and tables. The first section shows a table of

candidates’ scores in different fields.

55

Figure 4.5: Position’s information page

Also, there is a functionality in this section for comparing two different candidates

with each other.

Figure 4.6: Comparing candidates window

The "Details" button in front of each candidate opens a pop-up window. This window

shows all the information related to the selected candidate. In the "Skills" and

"Languages" fields, functionality is implemented, which makes the items that match

56

the position’s description in a green color to distinguish them from those that are

not a match and provides better visualization for the user.

Figure 4.7: Candidate’s details window

The second table shows the results of the comparison between each candidate and

related team members of the company (which means people already working in the

same team this position is related to).

Figure 4.8: Team comparison table

On the bottom of the page, there are different buttons for showing different charts

and bars, which visualize data in a way that is more understandable and interesting

for the user and helps the user make a better decision.

57

5 Evaluation

Six volunteers (1 student, five employed), each with a different educational background

(1 with a BSc and 5 with an MSc), were requested to use the system for evaluation

reasons.

Everyone was supposed to do a set of tasks defined the same for everyone. After briefly

introducing the system and how different functionalities work, each person started

to use the system and complete different tasks. To better compare the system’s

performance, some tasks had to be done both using the system and without the

system. All volunteers were monitored while completing each task, and their time

was written separately. The task chart shows the time to complete each task with

and without the system. The difference between the time taken to complete a task

with the system is noticeable.

Figure 5.1: Time needed to complete tasks

58

After each person completed the defined tasks, a questionary was given to them.

They were asked to give a score between 1 to 10 to different questions related to

the system’s functionality. the questionnaire chart, shows the average answers of all

volunteers to the questionnaire, it is evident that working with the system has been

easy for the users by considering the fact that was the first time they were using the

system. Also, it is noticed that most volunteers prefer to use such a system for the

hiring process.

Figure 5.2: Results of questionnaire

59

6 Conclusion

This paper offers a system for comparing and rating job applicants based on two

critical criteria. The first consideration is the job offer’s description, which includes

details on the needed skills, minimal experience, and, in some cases, the languages

needed. The second aspect depends on how well each applicant complements the

other team members already employed by the organization.

The suggested tool is based on a data set that contains information about various

job candidate credentials, including educational background, skill sets, and years of

experience. Recruiters in businesses are the system’s primary target users. Using this

system, many qualifications of applicants for a particular employment vacancy could

be quickly analyzed by companies. Additionally, the end user may read a summary

of each candidate’s standing concerning other candidates and alter the importance of

each relevant component in the comparison results based on the requirements of each

job position.

On the one hand, the user is given helpful information about the possible candidate’s

suitability in the team by comparing each candidate to each team member inside

the organization connected to the job post. Additionally, by utilizing various data

visualization tools like bar charts, pie charts, bubble charts, and scatter plots, users

can get a quick overview of the comparison’s key characteristics of interest and get

an overall view of all candidates.

The system could benefit from a more extensive data set in future works by considering

more aspects of relevance between each job candidate and job positions. On the

60

other hand, work will be done to create a team-building tool the companies may

use to create an effective team for each position by considering various applicant

characteristics.

References 61

References
[1] S. Mehta, R. Pimplikar, A. Singh, L. R. Varshney, and K. Visweswariah, “Efficient

multifaceted screening of job applicants,” in Proceedings of the 16th International
Conference on Extending Database Technology, pp. 661–671, 2013.

[2] J. R. Hackman, The psychology of self-management in organizations. American
Psychological Association, 1986.

[3] M. Sadiku, A. E. Shadare, S. M. Musa, C. M. Akujuobi, and R. Perry, “Data
visualization,” International Journal of Engineering Research And Advanced
Technology (IJERAT), vol. 2, no. 12, pp. 11–16, 2016.

[4] J. V. Sancho, J. C. Domínguez, and B. M. Ochoa, “An approach to the taxonomy
of data visualisation,” Revista Latina de Comunicación Social, no. 69, p. 486,
2014.

[5] S. Yuan, A. Tabard, and W. Mackay, “Streamliner: A general-purpose interactive
course-visualization tool,” in 2008 IEEE International Symposium on Knowledge
Acquisition and Modeling Workshop, pp. 915–919, IEEE, 2008.

[6] V. Gatteschi, F. Lamberti, and C. Demartini, “A graphical approach
for comparing qualifications,” in 2014 IEEE Global Engineering Education
Conference (EDUCON), pp. 361–366, IEEE, 2014.

[7] C. Zhang and H. Wang, “Resumevis: A visual analytics system to discover
semantic information in semi-structured resume data,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 1, pp. 1–25, 2018.

[8] W. S. Cleveland and R. McGill, “Graphical perception: Theory, experimentation,
and application to the development of graphical methods,” Journal of the
American statistical association, vol. 79, no. 387, pp. 531–554, 1984.

[9] V. Gatteschi, F. Lamberti, G. Paravati, A. Raso, and C. Demartini, “Which
learning outcomes should i acquire? a bar chart-based semantic system for
visually comparing learners’ acquirements with labor market requirements,”
in 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 774–779, IEEE, 2016.

[10] V. Gatteschi, F. Lamberti, A. Sanna, and C. Demartini, “Using tag clouds to
support the comparison of qualifications, résumés and job profiles,” in 2011 9th
International Conference on Emerging eLearning Technologies and Applications
(ICETA), pp. 57–61, IEEE, 2011.

[11] F. Beck, M. Burch, and S. Diehl, “Matching application requirements with
dynamic graph visualization profiles,” in 2013 17th international conference on
information visualisation, pp. 11–18, IEEE, 2013.

[12] J. Mahapatra, A. Metrewar, A. Tripathi, and P. Dutta, “Selection central:
Candidate profile enhancement and feedback based ranking,” 10 2014.

62 References

[13] A. Singh, C. Rose, K. Visweswariah, V. Chenthamarakshan, and N. Kambhatla,
“Prospect: a system for screening candidates for recruitment,” in Proceedings
of the 19th ACM international conference on Information and knowledge
management, pp. 659–668, 2010.

	Introduction
	Context
	Goal of this work
	Document Structure

	Background
	Realized System
	Architecture
	Back-end
	Dataset
	Conclusion Back-end

	Front-end
	Design Criteria
	Data Visualization

	How the application works

	User Interface
	Evaluation
	Conclusion
	References

