
Politecnico di Torino

Computer Engineering
A.y. 2022/2023

Graduation session April 2023

CoolVision: Innovative Web
Application for automated

budgeting and staffing

Supervisor:

Luigi De Russis

Gaspare Pappalardo

Candidate:

Stefano Rainò

Table of Contents

List of Figures iv

1 Introduction 1
1.1 Context . 1
1.2 Final goal of the thesis . 3
1.3 Work organization . 4

2 Preliminary analysis 5
2.1 Company starting point . 5
2.2 Analysis of the current solution . 6

3 Requirements analysis and planning 8
3.1 Interviews with project managers 8
3.2 Drafting of functional requirements 9
3.3 Potential use case . 10
3.4 Identification of development methodology 10

3.4.1 Semi-Agile approach . 11
3.4.2 Version prioritization . 12
3.4.3 Build and testing . 14

4 Evaluation of technological alternatives 16
4.1 Database management . 16
4.2 Jira integration . 17
4.3 Front-end and Back-end libraries 18

5 Implementation 20
5.1 Project management . 20

5.1.1 Creating a project . 20
5.1.2 View the details of the projects 23
5.1.3 Search for a project . 27
5.1.4 Testing phase . 28

ii

5.2 Management and assignment of the effort 30
5.2.1 Adding effort to a project 30
5.2.2 Monthly visualization of the effort 32
5.2.3 Testing phase . 33

5.3 Staffing management of individual projects 33
5.3.1 Assigning resources to a project 33
5.3.2 Use of DataGrid for assigning working days 35
5.3.3 Testing phase . 41

5.4 Worklogs and Staffing visualization 42
5.4.1 Visualization of the history of the worklogs 43
5.4.2 View staffing for a project in the current and previous/next

month . 44
5.4.3 Testing phase . 48

5.5 Visualization of report statistics . 49
5.5.1 Consultation of Worked vs Estimated monthly for each project 49
5.5.2 Testing phase . 51

5.6 Login and security management with last updates 51
5.6.1 Login via Google . 52
5.6.2 Update a project . 54
5.6.3 Navbar navigation menu . 55
5.6.4 Testing phase . 56

6 Conclusions 57
6.1 End results and final interviews . 57
6.2 Application usage analysis . 58
6.3 Potential future changes . 60

Bibliography 62

iii

List of Figures

1.1 Example of a Jira software board 2
1.2 Agile vs Waterfall approach regarding project management 3

2.1 Example of composition of the first sheet for employee and project
monitoring populated with dummy data 6

2.2 Example of composition of the workforce allocation sheet on projects
populated with dummy data . 7

2.3 Example of composition of sheet associated with individual employee
allocation statistics populated with dummy data 7

3.1 Status of the CoolVision releases board, during development, on the
Coolshop Jira server . 12

3.2 Implementation progress of version 3 of the application monitored
via the Jira server . 13

3.3 Example of the Gitlab pipeline used for the code pushed into the
project repository . 14

3.4 CoolVision docker image running on port 27017 14
3.5 Gitlab commits history with pipeline applied on merge request . . . 14

4.1 Example of a document structure in MongoDB 17
4.2 Schema related to how the integration with Jira server through

REST APIs was performed . 18

5.1 Screen with the list of all projects and graphics associated with the
daily worklogs . 23

5.2 Project details visualization . 26
5.3 Components used related to the creation of a project. Steps and

subsequent alerts in case of successful or unsuccessful check jira code 28
5.4 New screen relating to the list of projects with graphics associated

with the monthly worklogs of the reference month 29
5.5 Form associated with the addition of effort for a given project . . . 30
5.6 Effort list visualization for a single project 32

iv

5.7 Visualization screen of Commercial vs Estimated vs Assigned for
projects in November 2022 . 34

5.8 Table related to the possible assignments for the CoolVision project
for November 2022 . 37

5.9 Visualization screen of Commercial vs Estimated vs Assigned for
projects with the new section for previous/next month 42

5.10 Graph showing the history of working hours paid for a specific project
divided into categories . 43

5.11 Visualization of assignments on individual projects in the reference
months . 44

5.12 Data stored on the MongoDB side regarding the CoolVision project
and the sales referring to CoolVision 46

5.13 New project details view with piecharts for commercial and estimate
statistics . 48

5.14 Report of CnhApp project for November 2022 50
5.15 Report page with statistics regarding previous/next month 51
5.16 Login interface . 54
5.17 Navbar and drawer in coolvision web app with logo of the application 56

6.1 Main features related to the v1.0.1 of Coolvision stored in Coolshop’s
Jira server . 60

v

Chapter 1

Introduction

Project management is critical to the success of any organization. In particular, it
is important that all those involved have a clear and complete vision of the projects
that follow, as well as an accurate understanding of deadlines and costs. In order to
improve this aspect and obtain greater efficiency, Coolshop S.r.l decided to develop
an internal web application dedicated to project management

1.1 Context
Corporate project management refers to the process of managing projects within a
company, including planning, organizing, and executing projects to meet specific
goals and objectives. Effective corporate project management involves the use of
project management tools and techniques to ensure that projects are completed
on time, within budget, and to the desired level of quality. There are several
applications available for managing corporate project management, such as Mi-
crosoft Project [1], Asana [2], Trello [3], and Jira [4]. These tools allow project
managers to schedule tasks, allocate resources, track progress, and collaborate with
team members.

Effectively managing business projects requires ensuring that they are aligned
with business objectives and that resources are allocated appropriately. This
involves identifying project stakeholders, developing a comprehensive project plan,
and establishing a clear communication plan to ensure effective collaboration with
all parties involved. Additionally, project managers must regularly monitor and
evaluate project progress and manage project risks to ensure successful project
outcomes. To achieve these goals, it is important for project managers to regularly
review and update project schedules and budgets, making necessary adjustments
to keep them on track. Following best practices in corporate project management
can help ensure that projects are executed efficiently and effectively.

1

Introduction

Figure 1.1: Example of a Jira software board

Currently, many organizations still use traditional project management ap-
proaches, such as the Waterfall [5] methodology. However, there is a growing
trend towards more agile project management methodologies, such as Scrum [6] and
Kanban [7], which prioritize flexibility, collaboration, and iterative development.
In particular:

• Waterfall is a linear, sequential approach to project management. It involves
completing one phase of the project before moving on to the next, with no
room for iteration or changes. This approach is best suited for projects that
have well-defined requirements and are not likely to change during the project
lifecycle. Waterfall methodologies are known for their predictability, as each
phase has clearly defined deliverables and timelines.

• Scrum and Kanban are iterative and incremental Agile methodologies [8].
They are best suited for projects where requirements are likely to change
or evolve during the project lifecycle. Agile methodologies involve breaking
the project down into smaller, more manageable pieces and working on them
in short iterations or sprints. This approach allows for more flexibility and
adaptability throughout the project lifecycle, as changes and feedback can be
incorporated into the project as it progresses.

2

Introduction

Figure 1.2: Agile vs Waterfall approach regarding project management

1.2 Final goal of the thesis
The new application, which will be described in detail in the following sections,
has been developed with the aim of providing an intuitive and effective solution for
managing corporate projects. In particular, it will be integrated with Jira software
to provide real-time information on worklogs, deadlines and costs. The use of this
new application will reduce the workload required to manage budgets, and will also
help team leaders to keep development costs and deadlines under control compared
to initial estimates.

In this thesis, the functionalities of the new application will be described in detail,
as well as the development and testing processes that led to its implementation.
Furthermore, analysis will be provided on the performance and impact of the new
application on project management within Coolshop S.r.l. The goal is to provide
all stakeholders with a comprehensive view of the projects they are involved in, so
that they can have a clear understanding of their progress. By creating this web
application, the company expects to increase efficiency and productivity in the
management of projects, as well as improve communication between all stakeholders
involved. Additionally, it will provide an accurate picture of project budgets and
staffing, enabling more informed decision-making.

In conclusion, the final goal of this thesis is to develop a web application that
streamlines project management, simplifies budget and staffing management, and
provides stakeholders with the information they need to make informed decisions.
The aim is to create a solution that helps the company to reach its goals more
effectively and efficiently, with the ultimate goal of driving business success.

3

Introduction

1.3 Work organization
In this section, it will be discussed the expected work organization for the develop-
ment of the web application called CoolVision. The focus will be on the analysis
of requirements and the development of the application itself. The main points
covered will be:

• Chapter 2, Preliminary Analysis: The starting point for the application
development is the current manual process of budget management using excel
sheets. The objective of this project is to streamline this process and provide
a centralized platform for project management, budget tracking, and staffing.

• Chapter 3, Requirements: The analysis of requirements will involve gathering
information and feedback from various stakeholders within the company.
This information will be used to define the functional and non-functional
requirements of the application. Based on these requirements, a functional
specification plan will be created, outlining the expected functionality of the
application.

• Chapter 5, Development: The development of the application will involve
the use of React [9] for the front-end and Node.js [10] for the back-end. The
development will follow a Continuous Integration/Continuous Deployment
(CI/CD) process, using GitLab [11] for version control.

• Chapter 5 and 6, Testing: The application will be developed in iterative
sprints, with regular check-ins with stakeholders to ensure that the application
meets their needs and requirements. The application will be tested thoroughly
before deployment, to ensure that it meets the quality standards set out in
the functional specification plan.

In conclusion, the work organization for the development of this web application
will be structured and focused on delivering a high-quality product that meets the
needs of the project managers at Coolshop. The process will involve a thorough
analysis of requirements, iterative development, and regular check-ins to ensure
that the final product meets the expectations.

4

Chapter 2

Preliminary analysis

The preliminary analysis phase is essential to then identify and outline the key
requirements and objectives of the project. This phase sets the foundation for the
entire project and helps to ensure that the project aligns with the expectations.
This chapter discusses the key components of the preliminary analysis phase and
provides insight into how was approached this critical stage of the project.

2.1 Company starting point
Prior to the implementation of a web application for project staffing management,
Coolshop relied on the use of spreadsheets to manage its projects. The company’s
starting point was characterized by a manual and fragmented approach to project
staffing. The process started with project managers manually creating spreadsheets
to track the allocation of resources to each project. These spreadsheets would then
be shared with the relevant stakeholders for review and approval. Once approved,
the spreadsheets would be used to track the progress of the project, including the
number of hours worked by each team member and the overall budget. Despite
being a common method for project management, using spreadsheets to manage
project staffing had several disadvantages.

Firstly, the manual process was time-consuming and prone to errors. It was
also challenging to access real-time data, making it difficult for managers to make
informed decisions. In addition, the use of spreadsheets lacked the transparency and
accountability required to ensure effective collaboration between team members.
Furthermore, the lack of a centralized platform made it challenging to track the
progress of multiple projects simultaneously. This resulted in duplication of effort
and a significant amount of time spent on manual data entry. As the company
grew, it became increasingly difficult to manage the increasing number of projects
and resources using this manual process. In conclusion, the use of spreadsheets

5

Preliminary analysis

to manage project staffing is a suitable starting point for Coolshop, but it is clear
that a more efficient and effective solution is required.

2.2 Analysis of the current solution
The current solution is composed of several sheets, each with a specific purpose.

The first sheet is dedicated to monitoring employees and projects. It lists
all the projects and employees, divided by their department of belonging. The
department of belonging represents an internal division that refers to developers
(Heroes), UX/UI designers (Jedis), and functional roles (Paladins). This
sheet provides an overview of the allocation of employees between different projects,
and it is also taken as a starting point for the composition of the following ones
since the presence of projects, employees and different departments in the following
sheets refer to the lists present here. An example of sheet composition can be seen
in 2.1

Figure 2.1: Example of composition of the first sheet for employee and project
monitoring populated with dummy data

The second sheet is dedicated to the allocation of individual employees. Each
row represents a pair of (employee, project), while the various columns represent
the months of the year. The columns are divided into sub-columns: To Check,
Allocation, To Allocate, Days, and Notes. In the Days column, it is possible
to enter the number of days to allocate for that employee in that project for that
month. Automatically, the Allocation column will be populated with the percentage
of allocation made relative to that project in that month on the total working
days available to the employee. The To Allocate column will also be automatically
populated with the remaining percentage of days to allocate to that person in
that month relative to the total number of days in the month (working days). An
example of the composition of this second sheet can be seen in 2.2

The third sheet keeps track of the total working days and holidays of
employees belonging to specific departments for each project and month. This sheet

6

Preliminary analysis

Figure 2.2: Example of composition of the workforce allocation sheet on projects
populated with dummy data

provides an overview of the workload for each department and how much time is
allocated to each project. While, the fourth sheet keeps track of the percentage of
days allocated to each employee for each month.

Figure 2.3: Example of composition of sheet associated with individual employee
allocation statistics populated with dummy data

One of the main disadvantages of this solution is that it is difficult to manage
allocations on different projects and months for each employee. For example, if an
employee needs to work on two different projects in the same month, it is challenging
to allocate the correct number of days to each project while ensuring that the total
number of working days is not exceeded. Moreover, since the solution is based on
an Excel file, there is a risk of errors due to manual data entry. For example, if the
number of working days for an employee is not entered correctly, this can lead to
incorrect allocations and inaccurate workload calculations. Furthermore, it is also
difficult to manage the vacation periods of individual employees in the reference
months. In fact, as can be seen from the sheets, holidays are considered as if they
were a full-fledged project, creating confusion in allocation and monitoring. In the
next chapter, will be described the implementation of CoolVision solution and how
it addresses these issues.

7

Chapter 3

Requirements analysis and
planning

The requirements analysis involves identifying, analyzing, documenting, and pri-
oritizing the requirements of a software project. This chapter will discuss the
techniques used in the requirements analysis process. Additionally, the chapter
will highlight the importance of project planning and how it helps in allocating
resources and managing project timelines. Overall, it aims to provide a comprehen-
sive understanding of the requirements analysis and planning process, and how it
sets the foundation for the success of the development.

3.1 Interviews with project managers
In order to better understand the needs and wants of the project managers within
Coolshop, a series of interviews were conducted. The goal of these interviews
was to determine what the project managers are looking to improve in their
current budgeting and staffing processes, and what they would like to see in a web
application that could assist them. The following are some of the key insights that
were gained from these interviews:

• Streamlined Processes: Many of the project managers noted that the
current budgeting and staffing process is quite manual, and takes a significant
amount of time to complete. They expressed a desire for a more streamlined
process, where data can be easily input and accessed, and calculations can be
done automatically.

• Improved Collaboration: Many of the project managers stressed the im-
portance of better collaboration and communication between all stakeholders
involved in the project. They expressed a desire for a web application that

8

Requirements analysis and planning

could provide real-time access to information and allow for easy collaboration
between team members.

• Accurate Reporting: The project managers emphasized the importance of
accurate and up-to-date reporting in order to effectively manage the project.
They stated that they would like a web application that can provide accurate
and comprehensive reporting, making it easier to track progress and make
informed decisions.

• User-Friendliness: The project managers expressed a desire for a web
application that is user-friendly and easy to navigate, with a simple and
intuitive interface. They stated that this would help to minimize the learning
curve, making it easier for all stakeholders to get up to speed and start using
the application quickly.

These insights provide valuable information about what the project managers
within Coolshop are looking for in a web application to assist with budgeting and
staffing. By understanding their needs, it is possible to create an application that
meets their requirements and helps them to manage their projects more effectively.

3.2 Drafting of functional requirements
Based on the insights gathered from the interviews with the project managers, it
was possible to establish a list of functional requirements, to then be translated
into implementation features, which can be considered focal points for the creation
of the web app. They can be summarized in:

1. Budgeting and Cost Tracking: The application should provide the ability
to track and manage project budgets, including the ability to allocate resources
and track expenses. This will help to ensure that the project stays within
budget.

2. Resource Allocation: The application should provide the ability to easily
allocate resources to each project, including both personnel and equipment.
This will help to ensure that the team is able to work effectively and efficiently,
and that the project stays on track.

3. Project Scheduling: The application should provide the ability to schedule
and manage project timelines, making it easier to track progress and make
informed decisions about how to allocate resources.

4. Performance Tracking: The application should provide the ability to track
the performance of each team member, allowing for continuous improvement
and the ability to identify areas for improvement.

9

Requirements analysis and planning

These are the main features that emerged from the analysis carried out and represent
the starting points on which the programming of the application development was
built. Thanks to them it was possible, as will be seen in the following chapters, to
prioritize the development and focus the work on these requirements.

3.3 Potential use case
Once the main features that an application of this type must be able to support
have been identified, a potential use case has been drawn up that can be used as a
reference during development. From the point of view of a project manager:

• He/She logs into the application through his corporate account and creates a
project within the web application.

• He/She can decide to indicate the estimated and commercial days for the
realization of each project.

• He/She can view the list of projects created and present within the app and
for each of them he/she can see the details relating to:

1. List of allocations made for each single period.
2. List of estimated resources for each single period.
3. List of associated worklogs for each single period.

• He/She can allocate resources to individual projects on the basis of their
availability in the reference periods.

Considering this use case it has been possible to develop a working methodology
that can meet the requirements and allow to recreate this use case. The following
sections will explain how.

3.4 Identification of development methodology
The development methodology for the CoolVision web application was a critical
decision that needed careful consideration. After reviewing the project require-
ments, it was clear that an Agile approach would be the best fit for the project.
However, given the project constraints and the need to balance flexibility with
predictability, an semi-Agile approach was chosen. One of the main reasons
for choosing a semi-Agile approach was to accommodate the needs of the project
managers while ensuring the project’s success. This approach provided a structured
framework for the development while also allowing for flexibility and adaptation to
changing requirements. This balance was achieved through the implementation of a

10

Requirements analysis and planning

modified Agile methodology, which would enable to remain focused on the project’s
objectives while remaining responsive to changing needs. Another important factor
in the decision-making process was the need to deliver the project within the
allocated budget and timeline. A fully Agile approach can be challenging to
manage, particularly when it comes to delivering projects within a fixed budget
and timeline. A semi-Agile approach, on the other hand, provides the team with
the necessary structure and guidelines to manage costs and timelines effectively
while remaining flexible enough to incorporate feedback and changes as needed.

3.4.1 Semi-Agile approach
Considering the semi-Agile approach, the development of the application was
divided into six different versions, each associated with a specific sprint. Each
of these versions includes different features of the application that are prioritized
in the next section. The development process requires that each version/sprint be
developed over a period of one week, with a particular breakdown of 3 working
days for development and 2 working days for testing and fixing. This
approach was chosen for several reasons. Which are:

1. It allowed for the rapid development of the application in a short time frame.
The semi-Agile approach also provided flexibility, as each sprint was focused
on specific features and could be adjusted as needed based on feedback and
changing requirements.

2. Breaking down the development into smaller, manageable chunks allowed for
better tracking of progress and easier identification of potential issues.

3. The approach allowed for greater collaboration between the development team
and other stakeholders, including the project managers and end-users, who
were able to provide feedback on the functionality of each sprint.

11

Requirements analysis and planning

Figure 3.1: Status of the CoolVision releases board, during development, on the
Coolshop Jira server

3.4.2 Version prioritization
The features that have been identified for the development of CoolVision have
emerged from the chapter 3.2, where the needs of the project managers were
analyzed. Based on their feedback and requirements, a list of features was compiled
and prioritized to develop the application in a way that meets their needs. The
version prioritization and testing plan is as follows:

• Version 1 (Sprint 1):

1. Creating a project
2. View the details of a project
3. Search for a project by name/jira code

• Version 2 (Sprint 2):

1. Adding effort to a project
2. Monthly visualization of the effort of each project

• Version 3 (Sprint 3):

1. Assigning resources to a project
2. Display of the list of employees with remaining days for each single month

• Version 4 (Sprint 4):

1. Visualization of the history of the worklogs within the details of each
individual project

12

Requirements analysis and planning

2. View staffing for a project in the current/previous/next month

• Version 5 (Sprint 5):

1. Consultation of Worked vs Estimated man days monthly for each project

• Version 6 (Sprint 6):

1. Google login authentication

For each version, as said before, it will be worked on the prioritized features for
three days and then dedicate two days to testing and fixing any issues discovered
during testing. The project manager will be responsible for overseeing the testing
phase and making sure that all features are functioning as expected before the
release of the new version. To ensure the quality of each release, the project
manager will create test cases and checklists for each feature, and assign specific
team members to perform the tests. Any bugs or issues discovered during testing
will be logged and prioritized for fixing in future sprints or in the same. By following
this process, the project manager can ensure that each version of CoolVision is
fully functional and meets the requirements of the users, while also allowing for
flexibility in the development process to address any unforeseen issues that may
arise.

Figure 3.2: Implementation progress of version 3 of the application monitored
via the Jira server

13

Requirements analysis and planning

3.4.3 Build and testing
The complete build of the CoolVision application runs on the Coolshop company
servers. This approach allows for a more secure and reliable deployment of the
application, ensuring that it meets the company’s standards and requirements.
Additionally, the use of the company servers ensures that the application is easily
accessible by all team members involved in the development process, regardless
of their physical location. To ensure a smooth and efficient deployment process,
the project team decided to use GitLab pipelines 3.3. A GitLab pipeline is a
set of automated processes that allow for the building, testing, and deployment of
code changes. The pipeline is triggered by the push of new code changes to the
Git repository, and it follows a predefined set of steps to build the application and
ensure that it is working correctly.

Figure 3.3: Example of the Gitlab pipeline used for the code pushed into the
project repository

Figure 3.4: CoolVision docker image running on port 27017

Figure 3.5: Gitlab commits history with pipeline applied on merge request

14

Requirements analysis and planning

The use of a GitLab pipeline allows the team to automate much of the testing
and deployment process, reducing the likelihood of errors and inconsistencies during
the deployment phase. Additionally, it provides a clear and structured process for
testing and deploying the application, ensuring that all team members are following
the same procedures and guidelines. The application build process was supported
by the use of Docker [12]. Docker is a powerful tool for creating, managing,
and deploying containerized applications. Docker containers provide an isolated
environment that encapsulates all the dependencies and libraries required to run an
application, allowing it to be run on any system that supports Docker, regardless
of the underlying hardware and software configuration.

Using Docker for CoolVision provides several benefits, including simplified appli-
cation deployment and portability, improved resource utilization, and streamlined
development and testing processes. By packaging the application and all its de-
pendencies into a single Docker image, the team can easily deploy and manage
the application across multiple environments, including local development/build
and testing machines, staging servers, and production systems. Furthermore, the
integration of Docker with GitLab pipelines allows to automate much of the testing
and deployment process. The Docker image can be built and tested within the
pipeline, ensuring that it is consistent and error-free before being deployed to the
target environment. This automated approach reduces the likelihood of errors and
inconsistencies during the deployment phase and provides a clear and structured
process for testing and deploying the application.

15

Chapter 4

Evaluation of technological
alternatives

The process used for selecting the technological alternatives involved researching
and evaluating several technologies that could be used for both the front-end and
back-end of the application. It was reviewed several factors such as functionality,
scalability, community support, and ease of development and maintenance.
After careful evaluation, it was decided to use React for the front-end and Node.js
for the back-end. They were chosen because:

• React: It provides flexibility, high-performance and extensive documentation.
It also has a large community of developers and a vast number of libraries and
tools that can be used to create complex user interfaces.

• Node.js: It provides scalability, efficiency, and ability to handle a high volume
of requests. It also provides a vast number of libraries and tools, making it
easier to develop and maintain the application.

4.1 Database management
For the database management of CoolVision, the team decided to use MongoDB
[13] as the database and GraphQL [14] as the query language. There were several
factors that led to this decision.

Firstly, MongoDB is a NoSQL document-oriented database, which means
it stores data in JSON-like documents instead of in tables with rows and columns
like traditional SQL databases. This makes it more flexible and scalable, especially
for applications with rapidly changing data structures. Additionally, MongoDB’s
ability to handle large amounts of data and its built-in replication and sharding
capabilities make it a popular choice for modern web applications.

16

Evaluation of technological alternatives

Figure 4.1: Example of a document structure in MongoDB

Secondly, GraphQL was chosen as the query language for its ability to efficiently
retrieve data from the database. GraphQL allows developers to specify exactly
what data they need from the database, reducing the amount of data returned and
increasing the performance of the application. This is particularly useful for mobile
applications or other low-bandwidth environments where data transfer speed is
critical.

Furthermore, GraphQL’s type system provides a clear and structured way
of defining the data model, making it easier for developers to understand and
maintain the application codebase. Additionally, GraphQL’s ability to join data
from multiple sources and its support for real-time subscriptions make it a powerful
tool for building interactive and dynamic web applications. Overall, the combination
of MongoDB and GraphQL provides a flexible, scalable, and performant solution
for managing the data of CoolVision.

4.2 Jira integration
Integrating Coolvision with Coolshop’s Jira server was a crucial requirement for
the success of the project. The Jira server is the primary tool used by Coolshop’s
employees for tracking their work and progress on various projects. Therefore,
having the ability to access and manipulate this data from within Coolvision was
essential for the application’s success. To achieve this integration, it was explored
various options, including the use of Jira’s REST API [15] and webhooks.
Ultimately, it was decided to use the REST API to fetch data from the Jira server,
as it provided more flexibility and control over the data retrieval process.

There were identified two key pieces of information that were needed to be re-
trieved from Jira: project data and worklogs. Project data includes information
such as project name, project description, project lead, and start and end dates.
Worklogs, on the other hand, contain information about the time spent by each
developer on a particular project.

17

Evaluation of technological alternatives

To retrieve this data, the Jira REST API were used and integrated it into the
GraphQL schema used by the application. Custom resolvers have been written
that would fetch the necessary data from the Jira server, and then transformed and
returned it to the GraphQL client. The APIs are responsible for retrieving data
related to projects and worklogs from the Jira Server instance and transforming
them into the format expected by Coolvision. The integration will be implemented
using Node.js and the Express.js [16] framework.

Figure 4.2: Schema related to how the integration with Jira server through REST
APIs was performed

4.3 Front-end and Back-end libraries
The first approach taken with the development of the application was associated with
the search for possible libraries that could have been useful for the implementation
of the features associated with the individual versions. In particular, the following
main libraries were identified (and subsequently used):

• Front-end libraries:

1. Recharts [17]: It is a charting library for React that makes it easy
to create beautiful and responsive charts for data visualization. It was
chosen because it is highly customizable and has a wide range of chart
types to choose from, which allowed for the creation of the monthly effort
visualization feature in CoolVision.

2. Material UI [18]: It is a React-based UI library that provides a set of
ready-to-use components and styles based on Google’s Material Design
guidelines. It was chosen for its ease of use, high-quality components,
and the fact that it integrates well with React. Material UI was used
extensively throughout CoolVision for building the user interface.

18

Evaluation of technological alternatives

• Back-end libraries:

1. Mongoose [19]: It is a MongoDB object modeling library for Node.js
that provides a higher-level API for interacting with MongoDB databases.
It was chosen for its ease of use, flexibility, and robust features, including
validation and middleware. Mongoose was used extensively throughout
Coolvision for managing database interactions.

2. Express-GraphQL [20]: It is a GraphQL server library for Node.js
that allows for building GraphQL APIs with ease. It was chosen for the
fact that it integrates well with other Node.js libraries like Mongoose.
Express-GraphQL was used for building the GraphQL API for Coolvision.

3. Jira.js [21]: It is a JavaScript library that provides a simple and consistent
interface for interacting with the Jira REST API. It was chosen for its
robust features, including support for authentication and error handling.
Jira.js was used for integrating CoolVision with the Jira server at Coolshop,
allowing for the retrieval of project and worklog data.

19

Chapter 5

Implementation

The objective of this chapter is to analyze in detail the implementation phase of
the project. Here it will be described the development process of the application
starting from version 1, tracking the progress of the features that were developed.
It will be explained the challenges encountered during the development phase
and how they will be solved to achieve the final product. Additionally, it will be
provide a detailed overview of the various technologies and tools utilized during
the development process.

5.1 Project management
This section is dedicated to the development of the first version of the application.
It is related to the implementation of the features: creation of a project, displaying
the details of a project and searching for it. The methods and technologies used
to develop these features will be analyzed, as well as an analysis and examination
linked to their testing phase.

5.1.1 Creating a project
As mentioned before, the main feature of this version is represented by the creation
of a project. For this first feature it was decided to use the Modal component,
imported by default from mui/material library. It provides the insertion of two
fields, namely: Project name and Jira code. The first field refers to the name
for which the project will be stored within the database on the MongoDB side,
while the second represents the code associated with the project stored in the
corporate Jira server. This last field will be of fundamental importance as regards
the developments of subsequent features, because thanks to it and to the Jira REST
API, it will be able to monitor the days worked by the employees. The code for

20

Implementation

adding the project to the database is as follows:

1 async function addProject (project : Project) {
2 return new Promise ((res , rej) => {
3 graphQlQuery (addProjectQuery (project .name , project .jira))
4 .then(_ => res(" Project inserted successfully ..."))
5 .catch(err => rej(err));
6 });
7 }

Listing 5.1: addProject function in ./client/src/API.ts

1 const addProjectQuery = (name: String , jira: String) => {
2 return (‘ mutation {
3 addProject (name: "${name}", jira: "${jira}") {
4 _id ,
5 name ,
6 jira ,
7 sold {month , assignments {_id_user , assigned }}
8 }
9 }‘

10)}

Listing 5.2: addProjectQuery function in ./client/src/Queries.ts

As can be seen from the Query, it refers to a mutation. A mutation in GraphQL
represents a convention used to establish that the operation being performed will
cause a write to the reference database. In particular, it is translated into code
thanks to the use of the GraphQL library, which prepares the mutation, and thanks
to the resolver that translates this mutation into asynchronous operations to be
performed by the server. The name of the mutation in this case is addProject,
and it takes the project name and its Jira code as parameters. It returns the data
associated with the project just entered, also with reference to the "sold" for that
project, which in this case is empty. The following snippets instead explain the
flow of adding the new project:

1 addProject : {
2 type: Project ,
3 args: {
4 name: {type: GraphQLString },
5 jira: {type: GraphQLString }
6 },
7 resolve : async (_, args) => {
8 return addProject (args as AddProjectProps)
9 }}

Listing 5.3: addProject mutation in ./server/graphql/mutation.ts

21

Implementation

1 const addProject = async function ({name , jira }: AddProjectProps){
2 const project = new ProjectSchema ({
3 name: name ,
4 jira: jira ,
5 sold: []
6 });
7 return await project .save ();
8 }

Listing 5.4: addProject resolver in ./server/resolvers/resolver.ts

Once the mutation has been defined, it is possible to indicate how it should
be resolved through the corresponding resolver. The resolver refers to the schema
called ProjectSchema, which is a new schema specially created by Mongoose
that describes the characteristics of the new object which is going to be saved. For
every API that makes a MongoDB call, like this one, all these functions have been
implemented for the build and proper handling of stored and returned individual
data.

1 const projectSchema = new Schema ({
2 name: {
3 type: String ,
4 required : true ,
5 },
6 jira: {
7 type: String ,
8 required : true ,
9 },

10 sold: [
11 {
12 month: { type: String , required : true },
13 assignments : [
14 {
15 _id_user : { type: String , required : true },
16 assigned : { type: Number , required : true }
17 }
18]
19 }
20]
21 });

Listing 5.5: projectSchema mongoose schema in ./server/schemas/project.ts

22

Implementation

5.1.2 View the details of the projects
The next step was to create the screen for displaying the details of a project. To
do this it started from the screen displaying all the projects stored in the
database. The figure 5.1 shows that it was decided to implement this screen by
dividing it into two parts:

• The first concerning the daily statistics related to the worklogs recorded
on Jira, up to that moment

• The second relating to the list of projects stored in the database

Figure 5.1: Screen with the list of all projects and graphics associated with the
daily worklogs

This type of visualization was chosen for two reasons: the first to have an
immediate view of the percentage and quantity of working hours recorded by
the employees (on the relevant day of reference) and the second to display one
more information that would otherwise have been lost. For the creation of the
graphs, the AreChart and PieChart components of the Recharts library were
chosen. The first allows to have a quantitative view of the reference data, split into
different areas associated with the type of project with respect to the worklogs refer,
and related to the different hours for which these worklogs were registered. The
second because allows to have a global view of how these worklogs are divided into
individual project types. To create both graphs, the server-side getJiraWorklogs

23

Implementation

API was used, which takes two dates as parameters, and returns all the worklogs
in the form of an object containing:

• The hour in which this worklog was registered

• The worked hours in the form of the so called Man Days (a man day represent
8 worked hours)

• The type of the project with respect the worklog is referred

To create this type of API, the Version2Client object associated with the
Jira.js library was used, which first of all allows to establish a connection with the
reference Jira server, and secondly provides a series of methods for creating search
queries associated with any aspect of the referring server. The following snippets
show the realization procedure of what has been explained:

1 const client = new Version2Client ({
2 host: env. external .jira.host ,
3 authentication : {
4 oauth: {
5 consumerKey : env. external .jira.oauth. consumerKey ,
6 consumerSecret :
7 " -----BEGIN PRIVATE KEY -----\n" +
8 ‘${env. external .jira.oauth. consumerSecret }\=\n‘ +
9 " -----END PRIVATE KEY -----",

10 accessToken : env. external .jira.oauth. accessToken ,
11 tokenSecret : env. external .jira.oauth. tokenSecret
12 },
13 },
14 });

Listing 5.6: client created with Version2Client in ./server/src/dao.ts

To establish a connection with the server it is necessary to set various security
parameters, which have been stored in a private .env file. These parameters
were generated on the Jira server side using an account with reference server
administrator privileges.

1 async function getJiraWorklogs (startDate : string , endDate : string)
2 {
3 return new Promise (async (res , _) => {
4 let worklogs : DailyWorklog [] = []
5 let start = 0
6 let newWorklogs = await client . issueSearch
7 . searchForIssuesUsingJql ({
8

24

Implementation

9 jql:
10 ‘worklogDate >= "${ startDate }"
11 AND worklogDate <= "${ endDate }"‘
12 ,
13 fields : [’components ’, ’worklog ’],
14 startAt : start ,
15 maxResults : maxResults
16 })
17 while (start < Number (newWorklogs .total)) {
18 newWorklogs . issues ?. filter (issue => {
19 return issue. fields . worklog . worklogs . length > 0)
20 . forEach (issue => {
21 issue. fields . worklog . worklogs
22 forEach (worklog => {
23 if (dayjs(worklog . started) <= dayjs(endDate)
24 && dayjs (worklog . started) >= dayjs(startDate)) {
25 worklogs .push ({
26 hour:
27 dayjs(worklog . created). format (’HH :00 ’),
28 worked :
29 Number (worklog . timeSpentSeconds)/ manDay
30 ,
31 type:
32 issue. fields . components . length > 0 ?
33 issue. fields . components .pop ()?. name
34 : ’Project ’
35 })
36 }
37 })
38 })
39 })
40 start += maxResults
41 newWorklogs = await client . issueSearch
42 . searchForIssuesUsingJql ({
43 jql: ‘
44 worklogDate >= "${ startDate }"
45 AND worklogDate <= "${ endDate }"‘
46 ,
47 fields : [’components ’, ’worklog ’],
48 startAt : start ,
49 maxResults : maxResults
50 })
51 }
52 res(worklogs)
53 })
54 }

Listing 5.7: getJiraWorklogs in ./server/src/dao.ts

25

Implementation

After doing this, the list of projects was instead managed through the use of
the Table component of the mui library, which presents in the third column the
rendering of a button that refers to the project detail page, which can be viewed in
figure 5.2.

Figure 5.2: Project details visualization

The first version of the screen includes the presence of a Card containing
the basic information of the project. In particular, there are the name, the Jira
code (both editable) and a button for adding any commercial/estimated working
days for the current project. Obviously, in this first version of the app the two
functions had not yet been implemented but the design began to be outlined
which was then subsequently adapted for the next versions. In order to create
a card of this type, the resolver associated with the reference query was imple-
mented on the GraphQL side. In particular, it takes the ID of the associated
project as input and extracts the information by invoking the findById func-
tion, offered by mongoose, in relation to the schema of the project being referenced:

1 const getProjectById = async function ({ id_project }) {
2 const project = await ProjectSchema . findById (id_project);
3 if (! project)
4 throw new Error(’Project not found ... ’);
5 return {
6 _id: project ._id ,
7 name: project .name ,
8 jira: project .jira ,
9 sold: project .sold.map(sold => {

10 return {
11 month: sold.month ,

26

Implementation

12 assignments : sold. assignments .map(assignment => {
13 return {
14 _id_user : assignment ._id_user ,
15 assigned : assignment . assigned
16 }
17 })
18 }
19 })
20 }
21 }

Listing 5.8: getProjectById in ./server/resolvers/resolver.ts

5.1.3 Search for a project
At this point, the last feature relating to the search for a project, has been imple-
mented through the use of a search bar. Every time it is typed, it changes a state
that is used to filter on the individual rows of the table. Translated into code the
implementation is as follows:

1 <Search >
2 <SearchIconWrapper >< SearchIcon /></ SearchIconWrapper >
3 <StyledInputBase
4 onChange ={(e) => setSearch (e. target .value)}
5 placeholder =" Search ..."
6 />
7 </Search >
8 ...
9 projects . filter (

10 project => search === "" ? true :
11 project .name. toLowerCase (). includes (search . toLowerCase ()) ||
12 project .jira. toLowerCase (). includes (search . toLowerCase ())
13).map ((project , idx) =>
14 <TableRow key ={ idx}>
15 <TableCell >{ project .name }</ TableCell >
16 <TableCell >{ project .jira }</ TableCell >
17 <TableCell >
18 <Button size="small" onClick ={() =>
19 navigate (‘/ project /${ project .id}‘)
20 }>
21 Details
22 </Button >
23 </TableCell >
24 </TableRow >
25)

Listing 5.9: Projects.tsx in ./client/src/components/List/Table

27

Implementation

5.1.4 Testing phase
During the testing phase prior to the official release of the first version, some
usability issues were identified. The first issue was related to the display of
working hours in the project overview page. Instead of displaying the progress of
working hours based on the current day, it was deemed more useful to display it
based on the month. This would allow for a quick and easy overview of the overall
progress of work for the month without having to go through individual projects.
The second issue was related to the Jira code field’s fill during the project creation
process. Indeed, there was no check to ensure that the Jira code entered
was valid and corresponded to an existing project in the company’s internal Jira
server. To address this issue, a preliminary check was added to verify the Jira
code before it was accepted and added as a project in the system. This would
prevent the creation of projects with invalid Jira codes that do not correspond to
any existing project in the server.

Both issues were fixed prior to the official release by implementing the necessary
changes in the codebase. By taking user feedback seriously and proactively ad-
dressing usability issues, it was possible to deliver a more robust and user-friendly
solution to the company’s staffing needs. In particular, for the first problem it was
decided to equip the modal with a stepper, in such a way as to break the process
of inserting a new project into two phases. The first phase relating to the choice
of the name and the second relating to the check of the inserted jira code, which
will enable or not the creation, based on the presence or absence of the same code
inserted on the jira server. The new component can be seen in the figure 5.3, while
the code that made it possible to carry out this check is as follows:

Figure 5.3: Components used related to the creation of a project. Steps and
subsequent alerts in case of successful or unsuccessful check jira code

28

Implementation

1 async function checkJiraCode (jira: string) {
2 return new Promise (async (res , _) => {
3 client . projects . getProject ({ projectIdOrKey : jira })
4 .then(_ => {
5 res(true)
6 })
7 .catch(_ => {
8 res(false)
9 });

10 })
11 }

Listing 5.10: checkJiraCode in ./server/src/dao.ts

For the second problem instead it was enough to change the display paradigm,
in such a way that the object returned from the worklogs referred to a specific
day of the month passed as input. In this way the visualization of both the
AreaChart and the PieChart will refer to the month for which the data are being
visualized and the progression on the X-axis of the Areachart refers to the different
days of the month instead of the different hours of the day. The modified version
can be seen in the figure 5.4

Figure 5.4: New screen relating to the list of projects with graphics associated
with the monthly worklogs of the reference month

29

Implementation

5.2 Management and assignment of the effort
Once the development, the test phase and the release of version 1 of the application
were completed, it was carried the development of the features associated with the
second version. Therefore, this section will indicate and explain the methodologies
adopted for the development of features that allow to add effort to a project
and the ability to view these reference efforts.

5.2.1 Adding effort to a project
As mentioned before, this second stage of app development is about adding com-
mercial/estimated values for the projects. First of all, it is necessary to clarify
what is meant by commercial and what by estimated. Commercial means the
value relating to what has been sold (in terms of Man Day) for the development of
a feature, or a list of features, for a single project in a certain established period of
time. Estimated, on the other hand, means how much Man Days are estimated by
the project managers and developers, in order to develop a certain functionality.
After having clarified this, the first step was moved towards the screen that could
allow the addition of this data for the single project.

Figure 5.5: Form associated with the addition of effort for a given project

The development was once again carried out using the Modal component made
available to mui. In particular, an addition form was created which provides the
possibility of choosing: the type of effort that is going to be added, that represents
the macro-category of the functionality that will have to be developed, the total
commercial and total estimated value (to be spread on months) and the start
and end month to which the effort refers. Once again, all this is managed via
a stepper, in such a way as to break up the insertion process, also in this case.
In fact, the second step is related to the management of a dynamic table with
three columns: month, commercial and estimated. Each row of this table
refers to a month which is between the two previously selected months which act

30

Implementation

as extremes. The purpose of this table is to enter values (for both the trade and
estimated columns) for each month displayed. The form will automatically guide
the user to enter the values with messages and on-screen highlights of the progress
of the compilation. Of course nothing can be added until these errors/warnings
are manually fixed by the user. An example associated with completing the form
can be seen in the figure 5.5. Also in this case, after clicking on the Create but-
ton, a mutation on the GraphQL side is called, which refers to the following snippet:

1 mutation {
2 addSold (soldInput : {
3 _id_project : "${sold. _id_project }",
4 type: "${sold.type}",
5 initial_month : "${sold. initial_month }",
6 final_month : "${sold. final_month }",
7 total_valued : ${sold. total_valued },
8 total_commercial : ${sold. total_commercial },
9 planning : [

10 ${sold. planning .map(p =>
11 ‘{
12 month: "${p.month}",
13 year: "${p.year}",
14 valued : ${p. valued },
15 commercial : ${p. commercial }
16 }‘
17).join(",")}
18]
19 }) {
20 _id ,
21 _id_project ,
22 initial_month ,
23 final_month ,
24 type ,
25 total_valued ,
26 total_commercial ,
27 planning {month , year , commercial , valued }
28 }
29 }

Listing 5.11: addSoldQuery in ./client/src/Query.ts
As can be seen from the composition of the mutation, the addition is handled

through the use of an input type (soldInput). The input type, in a GraphQL
schema, is a special object type that groups a set of arguments together, and can
then be used as an argument to another field. In the reference case, for adding effort,
this type of input was created which expects to receive the parameters mentioned
above. In particular, for the plan associated with the spread of commercial and
estimated on individual months, it was decided to manage everything through an

31

Implementation

array of Planning-type objects, which expects to receive as input: the reference
month and year, the estimated value and the commercial value for that month and
that specific project.

5.2.2 Monthly visualization of the effort
As regards the visualization of the monthly effort for each individual project, it
was decided, also in this case, to use the Table component offered by mui, as
can be seen from the figure 5.6. Each row of the table provides the presence of an
accordion which, if opened, shows both through a graph and through another table,
the trend for the individual months to which the effort refer, of the commercial
and estimated values entered by the projects manager. In addition to this, a fixed
row has been provided relating to the total, both as regards the commercial and
as regards the estimated, of each effort present for that project. For the creation
of the graph it was decided to use the BarChart component of the Recharts
library, which is able to allow a visualization divided into two bars (commercial
and estimated) for each month to which the effort refers. In this way it is possible
to have a quantitative and qualitative view of the difference between commercial
and estimated in each single month.

Figure 5.6: Effort list visualization for a single project

32

Implementation

5.2.3 Testing phase
During this phase, the main objective was to identify any kind of usability problem
in the developed features. Fortunately, no problems in these terms have been
encountered, but it have been begun to think about how to make the sections of
the application navigable through the use of a Navbar, in order to make any new
pages related to subsequent features easily accessible. In fact, once this new need
emerged, this new feature was included as a developable feature in version 6 of the
app. In order to realize it once there is the complete picture of the various sections.

5.3 Staffing management of individual projects
In this sub-chapter it will be analyzed the development of the features related
to the third version of the application. In particular, the focus will be on the
possibility of assigning resources (employees) to a project in a given month and on
the management of individual employees, in relation to the days available to be
staffed, net of holidays/permits, in the various months of reference. Also in this
case the aim will be to develop these features with a certain care regarding the
user experience and the usability of the application.

5.3.1 Assigning resources to a project
This part of the application, had the objective of help project managers to assign
working days (the so called "man days") to individual company employees, for
each project present in the Coolvision database. To do this, it was created a
monthly view, in which for each single project present, the number of estimated
and commercial days for that project in that month, and the working days assigned
to individual employees, were highlighted. The display screen can be seen in the
figure 5.7.

The conception of the page is quite simple. It was decided to use a MonthSlider
custom component for choosing the month with respect to view the data of the
individual projects. It has been implemented using the LocalizationProvider
component made available by the mui library. It provides for an interaction
either directly with a click or through the appropriate arrows placed on the side.
However, for the data, it was decided to use the mui Table component and it
was organized into five columns:

1. The first provides for the presence of an arrow that could transform the
single line into a real accordion, in such a way as to be able to display (later)
additional information regarding the assignments

33

Implementation

Figure 5.7: Visualization screen of Commercial vs Estimated vs Assigned for
projects in November 2022

2. The second provides an estimate of the commercial value entered for the single
project in the reference month

3. The third provides an estimate of the estimated value entered for the single
project in the reference month

4. The fourth provides an estimate of the assigned value entered for the single
project in the reference month

5. The fifth provides for the presence of a component that allows, if clicked, to
carry out the individual assignments

To ensure that the second and third columns are filled, the getSoldsByMonth
query has been implemented. It returns an array of objects that include the
reference project, the type of value associated with the commercial/estimated for
that project, and the total commercial and estimated value. All these data are
obviously related to the month passed as input to the query. The code is the one
as following:

1 const getSoldsByMonth = async function ({ month }: MonthProps) {
2 const solds = await SoldSchema .find ()
3 let soldsByMonth : {
4 project : any ,
5 type: String ;
6 total_valued : number ;
7 total_commercial : number ;
8 }[] = []
9 solds. forEach (sold => {

10 sold. planning . forEach (plan => {

34

Implementation

11 if (plan.month === month.split("/")[0]
12 && plan.year === month.split("/")[1])
13 soldsByMonth .push ({
14 project : getProjectInformationById ({
15 id: sold. _id_project
16 }),
17 type: sold.type ,
18 total_valued : plan.valued ,
19 total_commercial : plan. commercial
20 })
21 })
22 })
23 return soldsByMonth
24 }

Listing 5.12: getSoldsByMonth in ./server/resolvers/resolvers.ts

In addition to this, the creation of an extra row in the table was added in order to
enclose the total of the values mentioned up to this moment, of all the projects in
that single month.

5.3.2 Use of DataGrid for assigning working days
At this stage of the development, to realize the possibility of assigning working
days to individual employees, the solution shown in the figure 5.8 was devised. In
particular, everything was managed through the use of a Modal, inside which a
table was inserted in the form of a DataGrid component made available by mui.
The management of the data present inside was carried out through the use of an
API that was able to fetch the data associated with individual employees from the
CoolPlatform application, that is the web application used by the company to
record the associated data to employees. Therefore, the first step was to expose,
on the CoolPlatform side, a rest API that was able to return such data.

Before going into this part of the application development, it is necessary to
introduce the web application called CoolPlatform. It represents an internal
application used by Coolshop employees to monitor the status of their progress (in
terms of personal and corporate Objective and Key Results OKRs), have access
to training material related to the various workshops held by company members
on various topics, and verify the status of the days of holidays/permits that can
be requested and/or have been already requested. Through this application, an
attempt has been made to expose a rest API that was able to return the infor-
mation of all the employees present with the addition of the number of days of
vacation/permits requested by them and correctly approved, in the month in which
they were reporting. The project in question, on the back-end side, uses Symfony
[22] as a framework, and its controllers, to expose the APIs of interest. Symfony

35

Implementation

represents a "set of reusable PHP components and a PHP framework for
web projects". It has been used in CoolPlatform for the development of all the
back-end part of the application, especially thanks to the use of its controllers. In
Symfony, a controller is usually a class method which is used to accept requests,
and return a Response object. When mapped with a URL, a controller becomes
accessible and its response can be viewed. To facilitate the development of con-
trollers, Symfony provides an Abstract Controller. To expose the API of interest,
a special controller was created in CoolPlatform (called ExternalController)
in which the retrieveUsersHolidays method was implemented, which is as follows:

1 public function retrieveUsersHolidays ($month) {
2 $response = new JsonResponse ();
3 if(! $this -> checkAuthorization ()) {
4 $response -> setStatusCode (403);
5 $response -> setContent (
6 " Authentication failed (Bearer token)"
7);
8 } else {
9 $em = $this -> getDoctrine () ->getManager ();

10 $usersHolidays = [];
11 $users = $em
12 -> createQueryBuilder ()
13 ->select (’u.id’, ’u. firstName ’, ’u. lastName ’,
14 ’u. googleProfilePhoto ’, ’d.name as role ’)
15 ->from(’App:User ’, ’u’)
16 ->innerJoin (
17 ’u. department ’, ’d’, ’WITH ’, ’u. department = d.id’
18)
19 ->getQuery () ->getResult ();
20 foreach ($users as $user){
21 $requestsHoliday = $em
22 -> createQueryBuilder ()
23 ->select (
24 "h. startDateTime ", ’h. endDateTime ’,
25 ’h. status ’, ’h.type ’
26)
27 ->from(’App: HolidayRequest ’, ’h’)
28 ->innerJoin (
29 ’h.user ’, ’u’, ’WITH ’, ’h.user = : userId ’
30)
31 ->where(
32 "h. startDateTime between :start and :end"
33)
34 ->orWhere (
35 "h. endDateTime between :start and :end"
36)
37 ->setParameter (

36

Implementation

38 ’start ’, date(’Y-m-d’, strtotime ($month))
39)
40 ->setParameter (
41 ’end ’, date(’Y-m-t’, strtotime ($month))
42)
43 ->setParameter (’userId ’, $user[’id’])
44 ->getQuery () ->getResult ();
45 $userHoliday = new ExternalHoliday ();
46 $userHoliday ->user = $user;
47 $userHoliday -> holidays = $requestsHoliday ;
48 array_push ($usersHolidays , $userHoliday); }
49 $response -> setContent (json_encode ($usersHolidays));
50 }
51 return $response ;
52 }

Listing 5.13: retrieveUsersHolidays in CoolPlatform controller

Figure 5.8: Table related to the possible assignments for the CoolVision project
for November 2022

As can be seen, the exposure of the API was carried out with a protection
mechanism linked to a Bearer token, so that the data returned by it can only
be accessed via authentication. In addition to this, it is possible to verify how the
management of the database query was carried out through the use of Doctrine
[23]. Doctrine ORM is an object-relational mapper (ORM) for PHP 7.1+ that

37

Implementation

provides transparent persistence for PHP objects. It uses the Data Mapper pattern
at the heart, aiming for a complete separation of the domain/business logic from the
persistence in a relational database management system. In this case it was used
to create the query that allows to return the data of interest from CoolPlatform.

At this point, the assignment of working days was done through the use of a
component internal to the display table. In particular, first, through a useEffect,
the array of users was created by referring to the getUsersHolidays API. In this
array, for each user present, the following information is stored: the id, the name,
the number of days of leave/vacation approved for the month in question, the photo
and the role. The useEffect is the following:

1 useEffect (() => {
2 if (month)
3 getUsersHolidays (month).then(users => {
4 let newUsers : User [] = []
5 users. forEach (user => {
6 newUsers .push ({
7 _id: String (user.user.id),
8 name:
9 user.user. firstName + " " +

10 user.user. lastName
11 ,
12 holidays : user. holidays .map ((holiday : any) => {
13 if (holiday . status === ’APPROVED_BY_HR ’) {
14 if (month. startOf (’month ’) >
15 dayjs(holiday . startDateTime .date))
16 return
17 - month. startOf (’month ’)
18 .diff(dayjs(holiday . endDateTime .date)
19 . format (’YYYY -MM -DD’), ’day ’)
20 else {
21 if (month.endOf(’month ’) <
22 dayjs(holiday . endDateTime .date))
23 return month.endOf(’month ’)
24 .diff(dayjs(holiday . startDateTime .date)
25 . format (’YYYY -MM -DD’), ’day ’)
26 else
27 if (dayjs(holiday . endDateTime .date)
28 .diff(dayjs(holiday . startDateTime .date),
29 ’hour ’) > 0)
30 return
31 Number ((dayjs (holiday . endDateTime .date)
32 .diff(dayjs(holiday . startDateTime .date),
33 ’hour ’)/8). toFixed (2))
34 else
35 return 1
36 }

38

Implementation

37 }
38 return 0
39 }). reduce ((day1: any , day2: any) => day1 + day2 , 0),
40 photo: user.user. googleProfilePhoto ,
41 role: user.user.role ,
42 })
43 })
44 setUsers (newUsers)
45 })
46 }, [month])

Listing 5.14: useEffect in AssignedModal.tsx

In this way the users are returned correctly and consequently, another useEffect
was used to render the individual rows of the table which carries out the calculation
associated with the monthly assignments for the individual user and the monthly
working days for the reference month taking into account: Italian public holidays
in that month and permits/holidays correctly approved for the individual user.
Translated into code it is as follows:

1 useEffect (() => {
2 if (users && assignments && month && monthAssignments)
3 setRows (
4 users.map(user => {
5 return {
6 id: user._id ,
7 Name: user.name ,
8 Role: user.role ,
9 Photo: user.photo ,

10 ’Monthly Assigned ’:
11 monthAssignments .find(
12 assignment => assignment . _id_user === user._id
13) ?
14 monthAssignments .find(
15 assignment => assignment . _id_user === user._id
16)?. assigned : 0,
17 ’Project assigned ’:
18 assignments ?. find(assignment =>
19 assignment .user.id === user._id
20) ?
21 assignments .find(assignment =>
22 assignment .user.id === user._id
23)?. assigned : 0,
24 Remaining :
25 monthAssignments .find(assignment =>
26 assignment . _id_user === user._id
27) ?
28 getWeekdaysInMonth (

39

Implementation

29 Number (month ?. get(’year ’)),
30 Number (month ?. get(’month ’))
31) -
32 Number (monthAssignments ?. find(assignment =>
33 assignment . _id_user === user._id
34)?. assigned) -
35 Number (user. holidays) :
36 getWeekdaysInMonth (
37 Number (month ?. get(’year ’)),
38 Number (month ?. get(’month ’))
39) -
40 Number (user. holidays),
41 }
42 })
43)
44 }, [users , assignments , month , monthAssignments])

Listing 5.15: useEffect in AssignedModal.tsx

As can be seen, the calculation was carried out taking into consideration the
so-called monthAssignments, i.e. the assignments in that specific month, filtered
by the reference user ID, and the simple assignments instead which refer to the
assignments for that project of all users present. Once this is done, the only thing
missing is to create the TextField component in an interactive way that is able
to memorize the changes for each individual user in real time. It was made as follows:

1 {
2 field: " Project assigned ",
3 width: 180,
4 filterable : false ,
5 sortable : false ,
6 getApplyQuickFilterFn : undefined ,
7 renderCell : (params : any) => {
8 return (
9 <TextField

10 value ={ params .row[’Project assigned ’]}
11 variant =’standard ’
12 type=’number ’
13 size=’small ’
14 label=’Assign ’
15 error ={ params .row. Remaining < 0}
16 onChange ={(e) => {
17 if (Number (e. target .value) >= 0) {
18 let newRows = rows.map(row => {
19 if (row.id === params .row.id) {
20 if (Number (row. Remaining) -
21 (Number (e. target .value) -
22 Number (row[’Project assigned ’])) < 0)

40

Implementation

23 setDisableSave (true)
24 else
25 setDisableSave (false)
26 return {
27 ... row ,
28 ’Project assigned ’:
29 Number (e. target .value)
30 ,
31 ’Monthly Assigned ’:
32 Number (row[’Monthly Assigned ’]) +
33 Number (e. target .value) -
34 Number (row[’Project assigned ’])
35 ,
36 Remaining :
37 Number (row. Remaining) -
38 (Number (e. target .value) -
39 Number (row[’Project assigned ’]))
40 }
41 } else
42 return row
43 })
44 setRows (newRows)
45 }
46 }}
47 />
48)
49 }
50 },

Listing 5.16: renderCell in AssignedModal.tsx

5.3.3 Testing phase
During the testing phase of the feature relating to assignment, there were no
significant issues identified. On the contrary, the implementation was well received,
and project managers appreciated the ability to manage data using accordion
components. As a result of the positive feedback, it was decided to expand the
functionality to enable users to compare the current month’s assignments with
the previous/next month’s assignments directly from the same page. The aim
of this enhancement is to provide users with a quick and easy way to compare
assignment data without having to manually scroll through multiple months. The
extended feature will allow users to toggle between months and view a side-by-
side comparison of the assignment data for the selected months. The expanded
functionality will require minor modifications to the existing code. The code will
need to be updated to include a new toggle button that allows users to switch
between the current month and the previous/next month. The data for the selected

41

Implementation

months will be displayed in a new section of the page, enabling users to view the
comparison side by side. The result can be seen in the figure 5.9

Figure 5.9: Visualization screen of Commercial vs Estimated vs Assigned for
projects with the new section for previous/next month

In conclusion, the testing phase for the assignment feature was successful, with
positive feedback received from users. The decision to extend the feature to include
the comparison functionality was made based on the feedback received, with the
aim of improving user experience and streamlining the assignment management
process.

5.4 Worklogs and Staffing visualization
In this chapter it will be explained the development of version 4 of the application,
which includes features for visualizing statistics related to worklogs and staffing
for individual projects. This chapter will delve into how the charts were designed
and how they were integrated into the application’s interface. The ability to
visualize worklogs and staffing data is essential for monitoring project progress and
identifying areas that require attention. Therefore, in this version, the focus is on
enhancing the application’s ability to provide users with a clear and concise view
of project-related statistics. To achieve this goal, various charts and graphs have
been designed to display the data in a user-friendly manner. The charts include
bar charts, radar chart, and pie charts, each designed to showcase different aspects
of the data. The color schemes and data representation were carefully chosen
to ensure that the charts are easy to read and interpret. Moreover, these charts
have been integrated into the application’s interface, making it simple for users to
navigate through the various features and access the data they need.

42

Implementation

5.4.1 Visualization of the history of the worklogs

Figure 5.10: Graph showing the history of working hours paid for a specific
project divided into categories

In order to develop the data visualization part, the Recharts library was once
again used. As thanks to it, it was possible to create an area chart that showed the
days of work provided in the individual months divided by category. The graph
created can be seen in the figure 5.10. The categories of interest used to track
employee working days, are the same as the categories that can be selected when
effort is added to the project, with the addition of the ”Other” category which
refers to all the worklogs that refer to differently labeled projects present on Jira.
Also in this case, the getJiraWorklogs API was used to return the worklogs, which
however restricts the selection only and exclusively to a start and end date passed
as a parameter. In fact, the visualization has been designed in such a way as to
keep track of the worklogs on the basis of two months (initial and final) which
can be selected through the use of two components of the DatePicker type. By
default, the display is restricted with respect to the current month and the four
months preceding it, but in this way, using the DatePickers, it is possible to view
the history of the worklogs based on two initial and final dates chosen as desired
by the user. The choice of the place in which to insert this graphic fell on the
project detail page. In such a way as to be able to add more information regarding
the history of the worklogs, together with the history of the effort assigned to
the project in question. In this way it is possible to have a direct and specific
comparison relating to the single project

43

Implementation

5.4.2 View staffing for a project in the current and previ-
ous/next month

Once the graph associated with the history of the worklogs has been created, what
is missing to conclude this version is the visualization of the staffing for a particular
project (assigned through the previously mentioned features). The idea behind the
development was to exploit the accordion created in relation to the single rows of
the table mentioned in section 5.3.1. In this way, by expanding the row, it would
be possible to view a whole series of statistics relating to the project in question in
the reference month. The final result associated with the realization of this feature
can be seen in the figure 5.11. When the accordions are opened, they show the
following data:

• Number of man days related to the commercial and estimated value, for the
selected month and for the project in question, divided by category (AMS,
Project, Investment)

• List of employees assigned to that project in the month in question (divided
by role) with related number of days assigned in that month for that project

In addition to this, it was decided to add a radar chart, for the month displayed on
the right, which can be used to have a more immediate view of how the commercial
and estimated values are distributed in the month in question for that project.

Figure 5.11: Visualization of assignments on individual projects in the reference
months

To achieve all this, first of all it is necessary to understand how the data associ-
ated with assignments and planning on the MongoDB side are stored. As can be

44

Implementation

seen from the image 5.12, for each stored project, the "sold" is an array of objects
containing the reference month and a list of assignments, which contain the id
of the user in question and what has been assigned for that user specific in the
reference month of the assignment. In this way it is possible to keep track of the
assignments made on the specific project for each month and consequently, when
assignments are added, this array will be modified in relation to the month to which
the application is referring. However, for the "planning", what happens is that a
schedule is stored for each single sales added. The schedule is an array of objects
that store: the month referred, the commercial and estimated value associated
with that specific month for that specific project and the specific category of total
sales. In this way it is possible to keep track of the categories of single sales
associated with the projects and the months with respect to which they refer, and
also it is possible to keep track of the assignments for a specific project in a given
month. Once this was explained it was necessary to expose a new rest api on the
CoolPlatform side that could return the information of the employees given the id.
It is the following:

1 public function retrieveUsersByIdIn () {
2 $response = new JsonResponse ();
3 if(! $this -> checkAuthorization ()) {
4 $response -> setStatusCode (403);
5 $response -> setContent (
6 " Authentication failed (Bearer token)"
7);
8 } else {
9 $body = json_decode (file_get_contents (’php :// input ’));

10 if (empty($body)) {
11 $response -> setContent ("Users ids not found");
12 $response -> setStatusCode (404);
13 } else {
14 $users = [];
15 $em = $this -> getDoctrine () ->getManager ();
16 foreach ($body as $user_id) {
17 $user = $em -> createQueryBuilder ()
18 ->select (
19 ’u.id’,
20 ’u. firstName ’,
21 ’u. lastName ’,
22 ’u. googleProfilePhoto ’,
23 ’d.name as role ’
24)
25 ->from(’App:User ’, ’u’)
26 ->innerJoin (
27 ’u. department ’, ’d’, ’WITH ’,
28 ’u. department = d.id’

45

Implementation

29)
30 ->where(’u.id = : userId ’)
31 ->setParameter (’userId ’, $user_id)
32 ->getQuery ()
33 -> getOneOrNullResult ();
34 if($user)
35 array_push ($users , $user);
36 }
37 $response -> setContent (json_encode ($users));
38 }
39 }
40 return $response ;
41 }

Listing 5.17: retrieveUsersByIdIn in ./src/Controller/ExternalController.php

Figure 5.12: Data stored on the MongoDB side regarding the CoolVision project
and the sales referring to CoolVision

As can be sees, the API takes as input from the body a list of ids, which are
the ids associated with individual users that were stored on the MongoDB side
when assignments were made for a given project in a given month. It returns
in response all the information concerning the user in question starting from the
profile photo of the google account and ending with his department (the so-called
"role"). Therefore, in this way, it was easy to start from the assignments made for
that project and build the user table through the following snippet:

1 roles.map ((role , idx) => {
2 if (assignments ?. find(assignment =>
3 assignment .user.role === role)
4)
5 return (
6 <React. Fragment key ={ idx}>
7 <TableHead >

46

Implementation

8 <TableRow >
9 <TableCell size="small">Photo </ TableCell >

10 <TableCell >{ role }</ TableCell >
11 <TableCell >Assigned </ TableCell >
12 </TableRow >
13 </TableHead >
14 <TableBody >
15 {
16 assignments . filter (ass =>
17 ass.user.role === role
18).map ((assignment , key) => {
19 return (
20 <TableRow key ={ key}>
21 <TableCell size="small">
22 <Icon >
23 <img
24 className =’image ’
25 alt=""
26 src ={ ass.user.photo}
27 height ={25} width ={25}
28 />
29 </Icon >
30 </TableCell >
31 <TableCell >
32 {ass.user.name}
33 </TableCell >
34 <TableCell >
35 <Typography >
36
37 { assignment . assigned +" MD"}
38
39 </Typography >
40 </TableCell >
41 </TableRow >
42)
43 })
44 }
45 </TableBody >
46 </ React.Fragment >
47)
48 else
49 return (<React. Fragment key ={ idx }/>)
50 })

Listing 5.18: Table with assignments for a specific project

47

Implementation

5.4.3 Testing phase

During the testing phase for the worklogs and staffing visualization features, it was
not encounter any significant issues. The features developed were well-received
by project managers, and no major bugs were identified. However, a request was
made to enrich the project detail page with a summary chart that could provide an
overview of the commercial and estimated totals for the project in question. This
chart would enable users to get a complete picture of the project statistics directly
from the project detail page. To fulfill this request, it was chosen to implement a
PieChart as the summary chart. This chart was designed to show the percentage
breakdown of the commercial and estimated totals for the project in question. By
integrating this chart into the project detail page, users can quickly and easily see
the overall project statistics and make informed decisions based on this data. The
screen of the new detail page can be viewed in the figure 5.13

Figure 5.13: New project details view with piecharts for commercial and estimate
statistics

In conclusion, the testing phase for the worklogs and staffing visualization
features was successful, with no major issues identified. The request to add a
summary chart to the project detail page was a valuable suggestion, and it could
add significant value to the overall functionality of the application.

48

Implementation

5.5 Visualization of report statistics
In this section, it will be explained how was implemented a new screen in the
application that allows users to visualize the monthly worklog trends for each
individual project. Similar to the staffing visualization feature 5.4.2, this screen
presents these trends through charts that indicate the workload status, based on
the estimated and commercial values associated with the project for each specific
month. The aim of this new feature is to provide users with a comprehensive
view of the project’s worklog statistics, allowing them to analyze and interpret
the data in a meaningful way. This visualization will enable users to identify the
workload distribution across different months and compare it to the commercial and
estimated values, helping them make informed decisions about project management
and resource allocation. This feature, as the other, is designed to be intuitive and
user-friendly, with clear and easy-to-understand charts that enable users to quickly
and easily interpret the data. With this new screen, users will be able to identify
any potential workload imbalances and take proactive measures to address them.

Overall, the visualization of report statistics is a valuable addition to the
application, providing users with a powerful tool for project management and
decision-making. In the following sections, the implementation of this feature will
be detailed, including the design and integration of the charts, and the testing and
refinement process.

5.5.1 Consultation of Worked vs Estimated monthly for
each project

In order to develop this type of screen, detailed above, it was decided to start from
a view similar to 5.4.2. In this case, however, what is highlighted is the comparison
between what has been estimated for the commercial value associated with that
project in that particular month, and the effective worked days. This is why what
can be seen in the figure 5.14 was conceived. In particular, it can be seen how
the conception and construction of the table is very similar with the addition of a
progress bar that highlights the trend of hours worked, which turns red if these
hours exceed those estimates for the commercial in that specific month for that
project. Then, it is possible to immediately have visual feedback on the progress
of the work associated with a project. In addition to this, a table display of the
division of hours associated with sales and hours worked on the basis of the 4
categories of interest has been provided. The same 4 categories featured in the two
graphs below:

• The first represents a transposition of the previously described table, and has
been implemented in order to better highlight the differences that there may

49

Implementation

Figure 5.14: Report of CnhApp project for November 2022

be between the four categories of interest both as regards the commercial and
the worked

• The second represents a graph whose purpose is to highlight the delta between
commercial and worked relative to the individual categories in the month of
interest. It is a bar chart in which each bar represents the difference between
commercial and worked for each individual category. If the difference is greater
than zero the bar will be green and pointing up, otherwise it will be red and
pointing down

In this section, if there were working hours associated with projects not present
in the database, it was decided to add the Missing projects item to the table,
which could include these hours worked in the month in question. This is because
the purpose of this screen is to try to highlight as much as possible to the project
managers the progress of the work and above all the actual correspondence with
what was estimated when adding the sales of the individual projects. In such a way
that if some of them are not present, it can be checked and remedied immediately.
Also in this case, the display has been extended so that the statistics relating to the
previous/next month of the individual projects can also be included on the same

50

Implementation

page. Unlike what was done before, however, the visualization has been restricted
to only the graph relating to the comparison between worked and commercial in
order not to burden the page with data but still allow for a more complete overview
of the progress of the projects. The page can be viewed in the figure 5.15

Figure 5.15: Report page with statistics regarding previous/next month

5.5.2 Testing phase
During the testing phase of this new feature released with the new version of
the application, there were no major problems encountered. In particular, the
development was focused on the aim of making the screen consistent with the
screens previously presented in such a way as to maintain a certain flow of actions
that can be easily understood by the end user. Therefore, the remaining days
before the start of development for the next release were used to optimize parts of
the code in order to make the use of content more fluid in terms of time, given the
large amount of data to be viewed and handle in single screens.

5.6 Login and security management with last
updates

The Login and Security Management chapter focuses on the implementation of a
secure and controlled login process for the application. In this chapter, it will be
explained how the login process was designed and implemented, utilizing Google
APIs and restricting access to the application to only those with a company email
address ending in "@coolshop.it". Moreover, it was also implemented the possibility

51

Implementation

to update an existing project, in order to change the settings like name and jira
code according to an eventually server-side jira modification. And obviously the
new feature concerning the presence of a Navbar, that can act as a navigation
menu between the various pages of the app, as described in 5.2.3

5.6.1 Login via Google
As regards the last phase of the development, what was wanted to achieve was an
authentication system that would allow access, via Google, to accounts belonging
to the internal domain of Coolshop. To do this, first of all, a separate screen was
created that could act as a login interface. It can be seen in the figure 5.16, and
it is a very simple interface, in fact it includes: the logo of the app and the login
button. The login button was developed using the react-google-login library,
which provides a component, namely GoogleLogin, which represents a real button
with specific props for managing login through google services. In particular, the
exploited props are two:

1. clientId: Represents an identifier created through the Google Developers
platform which allows the application in question to be able to use google
services in an appropriate manner (in this case the login service)

2. onRequest: Represents a method that identifies what needs to be done once
the button has been clicked

In this case, what is triggered on button click is the redirection to the /auth/-
google route which is fetched in the back-end via express, using Passport [24] as
middleware. Passport is authentication middleware for Node.js. Extremely flexible
and modular, Passport can be unobtrusively dropped in to any Express-based web
application. A comprehensive set of strategies support authentication using Google
services and more. In particular, passport in this case has been configured in such
a way that it can accept logins via google of accounts associated with the Coolshop
domain, and this type of filtering has been developed as follows:

1 passport .use(new GoogleStrategy (
2 {
3 clientID : env. google .clientID ,
4 clientSecret : env. google . clientSecret ,
5 callbackURL : "/auth/ google / callback ",
6 },
7 function (accessToken , refreshToken , profile , cb) {
8 profile ._json.hd === " coolshop .it" ?
9 cb(null , profile)

10 :

52

Implementation

11 cb(null , false);
12 }
13))

Listing 5.19: Passport strategy in ./server/src/index.ts

As for all the other routes that can be fetched in case of login success/failure or
other, they have been enclosed in a separate file called ./server/src/route.ts and
are as follows:

1 router .get("/login/ success ", (req , res) => {
2 if (req.user) {
3 res. status (200).json ({
4 success : true ,
5 message : "Login successful ",
6 user: req.user ,
7 });
8 }
9 });

10
11 router .get("/login/ failed ", (req , res) => {
12 res. status (200).json ({
13 success : false ,
14 message : "Login failed ",
15 user: null
16 });
17 });
18
19 router .get("/ logout ", (req , res) => {
20 req. logout ((err) => console .log(err));
21 res. redirect (CLIENT_URL);
22 });
23
24 router .get("/ google ", passport . authenticate (" google ", {
25 scope: [
26 " profile ",
27 "https :// www. googleapis .com/auth/ userinfo .email"
28]
29 }));
30
31 router .get(
32 "/ google / callback ",
33 passport . authenticate (" google ", {
34 successRedirect : CLIENT_URL ,
35 failureRedirect : CLIENT_URL ,
36 })
37);

Listing 5.20: Login route in ./server/src/route.ts

53

Implementation

As can be seen, in case of successful login, the application will redirect to the
main page of the app which in turn, through a useEffect, will verify that the fetch
has been successful and will change the login status to true in in such a way that
all the routes of the application can be accessed correctly. The useEffect is as follows:

1 useEffect (() => {
2 fetch(‘
3 ${env. server . scheme }://${env. server .host }:
4 ${env. server .port }/ auth/login/success ‘,
5 {
6 method : "GET",
7 credentials : " include ",
8 headers : {
9 " Accept ": " application /json",

10 "Content -Type": " application /json",
11 "Access -Control -Allow - Credentials ": "true"
12 },
13 }
14).then ((response) => {
15 if (response . status === 200)
16 return response .json ();
17 })
18 .then ((_) => {
19 setLogin (true)
20 })
21 }, [])

Listing 5.21: useEffect in ./client/src/App.tsx

Figure 5.16: Login interface

5.6.2 Update a project
For these phase of the project instead, it is developed a feature left open in previous
versions. In particular, the possibility of modifying the personal data of the project,

54

Implementation

i.e. name and Jira code, has been added within the project detail screen. The
feature has been developed in such a way that once the click on the pencil icon
is triggered, the screen that can be viewed in the figure is visualized. Once this
is done, it will be possible to correctly modify the name and/or the jira code and
save these modifications by clicking on the tick. The code that will make the
modification to the database is the following:

1 const updateProject = async function ({ id_project , name , jira }) {
2 const project = await ProjectSchema . findById (id_project);
3 if (! project)
4 throw new Error(’Project not found ... ’);
5 project .name = name;
6 project .jira = jira;
7 return await project .save ();
8 }

Listing 5.22: updateProject in ./server/resolvers/resolvers.ts

5.6.3 Navbar navigation menu

This section is dedicated to the development of the latest feature of the project,
which is a Navbar able to guide the user between the various pages of the application.
To do this it was decided to use the MuiAppBar component made available by
mui. In particular, it has been drawn up in a personalized way in order to be
used together with the MuiDrawer component, always made available by mui.
In this way it is possible to manage a side menu including 5 different menu items,
namely: Projects, Report, Plan, Add Project and Logout. The first refers to the
screen associated with the list of projects, and represents the home page of the
application. The second refers to the page including the list of assignments made
on individual projects for each reference month. The third instead refers to the
screen including the statistics relating to the work carried out in the single months
compared with the actual commercial sold in those months. The other two menu
items, on the other hand, have been separated from the other three items by a
divider. In particular, it was decided to insert the Add Project menu item in the
personalized drawer in such a way as to be able to add a project in any application
context in which one is located, without necessarily having to be positioned in a
specific page to carry out this creation. The style of the navbar with the side menu
can be seen in the figure 5.17

55

Implementation

Figure 5.17: Navbar and drawer in coolvision web app with logo of the application

5.6.4 Testing phase
During the testing phase of the project, as always, all the features are tested to
ensure their functionality and usability. It was faced a minor issue related to
the JIRA code verification process. When a change is triggered to the code, is
needed to verify the JIRA code associated with the change. While performing this
verification, it was found that the insert of JIRA code was sometimes inconsistent
with the check button present during the creation phase. To resolve this issue, it
was decided to eliminate the possibility to modify the jira code once it is inserted
an checked. In this way, it is avoided the possibility to make errors regarding the
effort and plan management of the projects.

This highlights the importance of continuously monitoring and improving the
processes to ensure the smooth functioning of the project.

56

Chapter 6

Conclusions

In conclusion, the development of CoolVision has successfully achieved the objectives
set for the creation of the application. The implementation of the solution designed
for the management and monitoring of worklogs and staffing has met the specific
requirements and needs identified at the beginning of the project. The solution
proposed by CoolVision has proved to be highly functional and user-friendly,
allowing for a streamlined and efficient management of worklogs and staffing. The
integration of various graphs and charts has allowed for easy visualization of data,
enabling stakeholders to quickly identify workload imbalances and take corrective
action. Compared to the previous spreadsheet-based solution, CoolVision has
provided a significant improvement in terms of usability and ease of use. The
application’s intuitive interface and interactive graphs have made it much easier for
users to navigate and understand the data, resulting in a more efficient and effective
management of worklogs and staffing. Overall, the development of CoolVision
has been a success, providing a much-needed solution for the management and
monitoring of worklogs and staffing. The application’s user-friendly interface and
advanced data visualization features make it an indispensable tool for companies
looking to streamline their workflows and improve their productivity. This section
will analyze the results both in terms of use of the application and in terms of
potential changes that could lead it to improve over time with new features.

6.1 End results and final interviews
The implementation of Coolvision has had a significant impact on the project
management process within Coolshop, resulting in several positive outcomes. After
interviewing the project managers, it became apparent that one of the most
significant benefits of Coolvision has been the improvement in the flow related
to project estimation. They reported that it is now much simpler to make project

57

Conclusions

associations with the use of Coolvision. The system’s user-friendly interface has
made it easier to create new projects and estimate the time and resources needed to
complete them. The system can also help identify and eliminate any discrepancies
in project estimates, which is particularly important for ensuring projects stay
within budget and are completed on time. The project managers also noted that
the presence of various graphs and data associated with each project has led to
an improvement in analysis quality. Coolvision allows project managers to
access real-time data, which enables them to track project progress and identify any
areas that may require attention. The system also provides the project managers
with a better understanding of how projects are progressing compared to their
initial estimates. This has allowed the project managers toadjust their approach
to projects, ensuring they are on track to meet their goals. Another significant
benefit of Coolvision is that it has provided project managers with a 360-degree
view of employees, allowing them to make more informed decisions about
employee allocation. The system provides project managers with an overview of
the availability of each employee, allowing them to assign tasks to individuals who
have the necessary skills and availability to complete them. This has led to more
efficient use of employee time, resulting in projects being completed on time and
within budget. The project managers interviewed reported an overall increase in
the quality of evaluations made since the implementation of Coolvision. They
found that the system provided them with a better understanding of the projects
they were working on, as well as the resources and time needed to complete them.
They also noted that the system’s user-friendly interface and real-time data made
the flow of work more manageable, allowing them to focus on delivering high-quality
projects while still meeting their deadlines.

In conclusion, the implementation of Coolvision has had a significant positive
impact on the project management process at Coolshop. The system’s user-
friendly interface, real-time data, and 360-degree view of employees have resulted in
improvements in project estimation, analysis quality, and employee allocation. The
project managers reported an overall increase in the quality of evaluations made,
indicating that Coolvision has struck a balance between usability and functionality,
making the flow of work enjoyable and manageable.

6.2 Application usage analysis
The application usage analysis is an important part of any development project.
It helps to identify how users are interacting with the application, what features
are being used most frequently, and where improvements can be made. After the
development of the application, the project managers started using it to manage
their projects. The flow of usage revealed several focal points that are worth

58

Conclusions

discussing. They are:

1. Increased Monitoring of Project Statistics: Once a project is created
and effort is added to it, project managers tend to check the statistics related
to the hours worked for that particular project more frequently than before.
This suggests that the application is providing them with valuable information
that they find useful in managing their projects.

2. Preliminary Analysis of Commercial and Estimate: In line with the
first point, project managers are also more likely to perform a preliminary
analysis of commercial and estimate before allocating resources to a new
project. They tend to review the work done in the previous period before
making any decisions about the allocation of resources.

3. Increased Focus on Allocation: There is now more study and analysis
involved in the allocation phase than before. Project managers now check
the monthly report of projects and the progress of work for the project they
want to undertake. Before, allocation was done more instinctively based
on customer requests. This suggests that the application is helping project
managers to allocate resources more efficiently.

4. Resource Allocation: Resource allocation is a fundamental aspect of the
application. In most cases, project managers prefer to check the availability
of resources for a project in a particular month before adding any effort. This
suggests that the application is providing them with a more accurate picture
of resource availability, which in turn helps them to manage their projects
more effectively.

5. Quick Comparison between Estimate and Commercial: The ability
to make quick comparisons between the estimate and commercial is having a
significant impact on project management. Project managers now associates
these two values with wider margins than before, leading to more efficient
and consistent evaluations. This suggests that the application is providing
project managers with valuable insights into the financial aspects of project
management.

The application usage analysis has provided valuable insights into how project
managers are using the application to manage their projects. The patterns identi-
fied suggest that the application is providing project managers with reliable and
useful information that is helping them to make informed decisions about resource
allocation, project monitoring, and financial evaluations. These insights can be
used to improve the application further and make it an even more effective tool for
project management.

59

Conclusions

6.3 Potential future changes
Based on the analysis carried out in the previous chapters and considering the
operational workflow of CoolShop, there are several potential future changes that
could improve the application’s performance and user experience. The following
are the key areas of focus:

Figure 6.1: Main features related to the v1.0.1 of Coolvision stored in Coolshop’s
Jira server

• Resource Management Section: A new section within the application
entirely dedicated to the company’s employees. This section will provide a
comprehensive view of which projects are staffed for each reference month,
helping to reverse the current paradigm of visualization and focus primarily on
resource management. By having a dedicated resource management section,
project managers can manage their team’s allocation and avoid any potential
conflicts or overloading.

• Code Optimization: To improve the user experience, the code could be
optimized to speed up the calculation of statistics. This change will help
to make the application more responsive and fluid, ensuring that project
managers can quickly access the information they need.

• Streamline Monthly Progress Pages: The pages related to monthly
progress can be streamlined by reducing the number of accordions and creating
dedicated modals for each project and month. This approach will allow project
managers to view all relevant statistics in one place, without having to navigate

60

Conclusions

multiple screens. Additionally, by incorporating more graphs and visuals,
project managers can get a better understanding of the project’s progress and
make informed decisions.

These key areas of focus have been appropriately scheduled and prioritized
for inclusion in the release 1.0.1 (figure 6.1) of the Coolvision application. By
implementing these changes, the application will become more user-friendly, and
project managers will be able to manage their resources more effectively.

In conclusion, this thesis has provided an in-depth analysis of the development
and usage of the Coolvision application. By exploring the application’s features
and functionality, as well as its impact on project managers, it has become clear
that the application has the potential to revolutionize the way CoolShop manages
its projects. The future changes proposed in this chapter will further enhance the
application’s capabilities and streamline the project management process. Overall,
the development of the application has been a significant step forward for the
company. The application has demonstrated its value in enabling project managers
to efficiently manage their projects, allocate resources, and track progress. The
results of the usage analysis have shown that the application is providing value
to the company, and there is significant potential for further development. With
continued development and refinement, Coolvision has the potential to become an
essential tool for project managers in the company and help to ensure that projects
are delivered on time and within budget.

61

Bibliography

[1] Microsoft Corporation. Microsoft Project. [Online; accessed 2023]. url: h
ttps://www.microsoft.com/en-us/microsoft-365/project/project-
management-software (cit. on p. 1).

[2] Inc. Asana. Asana. [Online; accessed 2023]. url: https://asana.com (cit. on
p. 1).

[3] Atlassian Corporation Plc. Trello. [Online; accessed 2023]. url: https://
trello.com/home (cit. on p. 1).

[4] Atlassian Corporation Plc. Jira Software. [Online; accessed 2023]. url: https:
//www.atlassian.com/software/jira (cit. on p. 1).

[5] Winston W Royce. «Managing the development of large software systems».
In: Proceedings of IEEE WESCON 26 (1970), pp. 1–9 (cit. on p. 2).

[6] Ken Schwaber. «Agile Project Management with Scrum». In: Microsoft Press
(2002) (cit. on p. 2).

[7] David J Anderson. Kanban: successful evolutionary change for your technology
business. 2010 (cit. on p. 2).

[8] Kent Beck et al. Manifesto for Agile Software Development. Agile Alliance,
2001 (cit. on p. 2).

[9] Meta and community. React. [Online; accessed 2023]. url: https://reactjs.
org/ (cit. on p. 4).

[10] Node.js Foundation. Node.js. [Online; accessed 2023]. url: https://nodejs.
org/ (cit. on p. 4).

[11] GitLab and community. GitLab. [Online; accessed 2023]. url: https://
gitlab.com/ (cit. on p. 4).

[12] Inc. Docker. Docker. [Online; accessed 2023]. url: https://docs.docker.
com/ (cit. on p. 15).

[13] Inc. MongoDB. MongoDB. [Online; accessed 2023]. url: https : / / www .
mongodb.com/ (cit. on p. 16).

62

https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://asana.com
https://trello.com/home
https://trello.com/home
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://reactjs.org/
https://reactjs.org/
https://nodejs.org/
https://nodejs.org/
https://gitlab.com/
https://gitlab.com/
https://docs.docker.com/
https://docs.docker.com/
https://www.mongodb.com/
https://www.mongodb.com/

BIBLIOGRAPHY

[14] Meta and community. GraphQL. [Online; accessed 2023]. url: https://
graphql.org/ (cit. on p. 16).

[15] Atlassian. Jira REST API documentation. [Online; accessed: 2023]. url:
https://developer.atlassian.com/cloud/jira/platform/rest/v3/
intro/ (cit. on p. 17).

[16] StrongLoop TJ Holowaychuk et al. Express.js. [Online; accessed 2023]. url:
https://expressjs.com/ (cit. on p. 18).

[17] Recharts Group. Recharts: A composable charting library built on React
components. [Online; accessed 2023]. url: https://recharts.org/ (cit. on
p. 18).

[18] Material UI SAS. Material-UI: A popular React UI framework. [Online; ac-
cessed 2023]. url: https://material-ui.com/ (cit. on p. 18).

[19] Valeri Karpov and community. «Mongoose». In: (). [Online; accessed 2023].
url: https://mongoosejs.com/ (cit. on p. 19).

[20] GraphQL Foundation. express-graphql. [Online; accessed: 2023]. url: https:
//graphql.org/graphql-js/express-graphql/ (cit. on p. 19).

[21] Atlassian Corporation Plc. Jira.js. [Online; accessed 2023]. url: https :
//mrrefactoring.github.io/jira.js/ (cit. on p. 19).

[22] Stansio Labs. The Symfony PHP framework. [Online; accessed: 2023]. url:
https://symfony.com/ (cit. on p. 35).

[23] Doctrine Project. Doctrine ORM. [Online; accessed: 2023]. url: https :
//www.doctrine-project.org/ (cit. on p. 37).

[24] Jared Hanson. Passport - Simple, unobtrusive authentication for Node.js.
[Online; accessed: 2023]. url: http://www.passportjs.org/ (cit. on p. 52).

63

https://graphql.org/
https://graphql.org/
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/
https://expressjs.com/
https://recharts.org/
https://material-ui.com/
https://mongoosejs.com/
https://graphql.org/graphql-js/express-graphql/
https://graphql.org/graphql-js/express-graphql/
https://mrrefactoring.github.io/jira.js/
https://mrrefactoring.github.io/jira.js/
https://symfony.com/
https://www.doctrine-project.org/
https://www.doctrine-project.org/
http://www.passportjs.org/

	List of Figures
	Introduction
	Context
	Final goal of the thesis
	Work organization

	Preliminary analysis
	Company starting point
	Analysis of the current solution

	Requirements analysis and planning
	Interviews with project managers
	Drafting of functional requirements
	Potential use case
	Identification of development methodology
	Semi-Agile approach
	Version prioritization
	Build and testing

	Evaluation of technological alternatives
	Database management
	Jira integration
	Front-end and Back-end libraries

	Implementation
	Project management
	Creating a project
	View the details of the projects
	Search for a project
	Testing phase

	Management and assignment of the effort
	Adding effort to a project
	Monthly visualization of the effort
	Testing phase

	Staffing management of individual projects
	Assigning resources to a project
	Use of DataGrid for assigning working days
	Testing phase

	Worklogs and Staffing visualization
	Visualization of the history of the worklogs
	View staffing for a project in the current and previous/next month
	Testing phase

	Visualization of report statistics
	Consultation of Worked vs Estimated monthly for each project
	Testing phase

	Login and security management with last updates
	Login via Google
	Update a project
	Navbar navigation menu
	Testing phase

	Conclusions
	End results and final interviews
	Application usage analysis
	Potential future changes

	Bibliography

