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Summary

With the technological progress in multiple fields of research, there are ever more
application cases where technology has proven to both improve human work
conditions and serve the public interest; in particular, the development of Artificial
Intelligence and Machine Learning methods has gained impressive momentum in
the later years, especially with regards to visual and data problems.

Among others, a topic of trending interest in the computer science world is the
automatic detection of suspicious events from surveillance videos. The challenges
of this task are several, from the mere definition of an abnormal act to the problem
description, which could be tackled from different perspectives, to the generalization
complexity due to the variety of human behavior and the trade-off between accuracy
and available resources.

In this thesis, some of the prevalent methods available in the literature for
the problem of anomaly and fight detection have been analyzed, with particular
attention on the most exhaustive available collections of surveillance videos, namely
UCF-Crime and RWF-2000. These two datasets have been thereby used in the con-
struction of a novel light architecture, posing the problem as a binary classification
task and employing a dual representation of the input, leveraging the informative
aspect of the optical flow.

The novelties that this work carries are threefold: the introduction of a novel
convolutional block that aims to improve the Inflated 3D architecture, at present
a de-facto standard in the field; an adaptive cropping strategy to minimize the
information loss in the resize processing; the fine-tuning of a lightweight CNN-model
for the optical flow estimation to reduce the pre-processing and inference times.
Moreover, a basic interactive system has been developed for helping the operator
experience, which produces both a visual output and a textual log by applying the
trained model on the prompted files.

The achieved results improve the state of the art with an accuracy on the
validation set of 90.45%, an upgrade of +0.7%. Nevertheless, this work still
showcases some limitations and the problem remains definitely open; further
improvements stemming from this project are therefore envisaged, following the
path taken by the author.
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“Qualche volta il destino assomiglia a una tempesta di sabbia che muta
incessantemente la direzione del percorso. Per evitarlo cambi l’andatura.

E il vento cambia andatura, per seguirti meglio. Tu allora cambi di nuovo, e subito
di nuovo il vento cambia per adattarsi al tuo passo. Questo si ripete infinite volte,

come una danza sinistra col dio della morte prima dell’alba.
Perché quel vento non è qualcosa che è arrivato da lontano, indipendente da te.

È qualcosa che hai dentro. Quel vento sei tu.

Perciò l’unica cosa che puoi fare è entrarci, in quel vento, camminando dritto,
e chiudendo forte gli occhi per non far entrare la sabbia.

Attraversarlo, un passo dopo l’altro.

Poi, quando la tempesta sarà finita, probabilmente non saprai neanche tu
come hai fatto ad attraversarla e a uscirne vivo.

Anzi, non sarai neanche sicuro se sia finita per davvero.
Ma su un punto non c’è dubbio.

Ed è che tu, uscito da quel vento, non sarai lo stesso che vi era entrato.”

Haruki Murakami
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Chapter 1

Introduction

The history of mankind has been marked by technological advances to such an
extent that, nowadays, every aspect of human life is affected by and blended with
technology. The increase in computational and parallel power in processing units
has accompanied research progress, allowing the computer science world to better
cope with the more and more large and complex collections of digital data available,
extracting knowledge and insights and utilizing them to provide new and efficient
services.

Long considered one of the greatest challenges for Artificial Intelligence methods,
videos are now becoming ever-increasing relevant as one of the most effective and
pervasive information mediums. It is estimated that, in 2022, 82% of the whole
consumer Internet traffic would be made up of video traffic, up from 73% in 2017,
with a compound annual growth rate of 34% [1]. A great factor in the present rise
is the enormous quantity of User Generated Content available online: to provide an
overview, each day over 720,000 hours of new video content are uploaded second the
esteem [2] to YouTube, which is only one of the many social platforms widespread
today.

A separate analysis should be made on the rising of autonomous cameras, which
today are essentially mounted and spread in each corner of our cities. People’s
actions are silently recorded every day by webcams, surveillance systems, cars,
door phones, and even drones in the sky and robots in industrial estates; an
average person in the United Kingdom is estimated to be filmed by a Closed-Circuit
Television (CCTV) camera at least 70 times per day [3].

The act of processing and extracting useful knowledge from videos presents
several criticalities due to the peculiar characteristics of such a medium which
merges together spatial and temporal information. Nevertheless, the applied fields
of use are extremely varied, indicating its potential, ranging from context awareness
(e.g., for autonomous driving systems) to value extraction (for social media and
market analysis) to visual searching, and several other complex tasks.
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Introduction

The specific research field of the present work is the automatic detection of
"abnormal activities" in videos recorded by surveillance cameras. This problem,
depending on the precise formulation and implementation, can be considered
pertaining to the video classification, crowd action detection, or human activity
recognition area. Notwithstanding the specifics, the need for algorithms of this kind
is dependent on the great deficiency between the burgeoning amount of surveillance
camera videos to be analyzed and the available human labor force. The most recent
statistics estimate a 15% decrease in crime rate in case of active monitoring (i.e.,
CCTV cameras actively watched by trained staff) with respect to CCTV systems
with no active monitoring [4], and while fully automatic mechanisms for threats
detection are still not considered acceptable, various supporting methods have
proven to aid the operators’ work, making it less exhausting [5].

The project’s final aim is to produce a simple but effective interactive interface
that allows the extraction of video portions considered to be "suspicious" from
customized video surveillance videos uploaded by the user. In this way, the goal is
to rationalize the workload of exploring documentary evidence, in a mostly off-line
methodology, by providing the operator with a large but not definitive projection
of video fragments.

In this prefatory chapter, a brief theoretical overview of the project background
scope is given, starting from the mathematical model of digital images and videos
in Sect. 1.1, with an explicit deepening on data compression. Sect. 1.2 contains a
concise historical survey on Computer Vision techniques and tasks; an introduction
to Machine Learning and Deep Neural Networks is provided in Sect. 1.3, whereas
some of the Computer Vision descriptors and methods applied to digital videos are
examined in Sect. 1.4. This discussion has been regarded as fundamental by the
author in order to fully comprehend the techniques and architectures implemented
in the subsequent work, yielding a coherent and extensive theoretical framework
and preventing any possible misapprehensions. Nevertheless, the following sections
have not to be considered a thorough dissertation since the descriptions deemed
unnecessary have been omitted.

1.1 Theoretical Framework
Vision is widely considered to be the most advanced of the human senses: using
the eyes, the optic nerve, the optic tract, and the visual cortex, humans are able to
see and interpret the surrounding environment. The world, the natural phenomena,
and the inputs perceivable from it are analog, that is continuous in time, and with
continuous values.

Conversely, computers are digital: the information is represented as discrete

2
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in time (i.e., sampled) and in amplitude (i.e., quantized) [6], in a process called
"digitization". Finally, the discrete signals are coded into the binary number system,
encoding the data in bit strings according to leading standards like ASCII for
characters in electronic communication or PCM for digital audio.

1.1.1 Digital Images
As defined in [7],

A digital image is a representation of a real image as a set of numbers
that can be stored and handled by a digital computer.

There exist two types of digital images: raster images and vector graphics. The
subsequent treatise will focus exclusively on raster images.

A raster image is a matrix data structure composed of m rows and n columns
having pixels (picture elements) as its smallest addressable element. Therefore, each
pixel is characterized by a row index i and a column index j, and they are arranged
in a regular - usually rectangular - grid on a Cartesian coordinate system. Every
pixel is also distinguished by an integer number called "Digital Number" (DN),
which usually refers to the brightness level measured for the ground resolution cell
represented by that specific pixel [8]. In Fig. 1.1, a raster image of the number 8 is
visualized, together with its matrix representation.

(a) (b) (c)

Figure 1.1: A digital image of the number 8 and its matrix representation: a DN
of 0 corresponds to total black, whereas the maximum brightness level achievable
in this example, representing pure white, is 255. Images from [9].
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As every color perceived by the cone cells in the human eye can be defined by a
linear combination of the three primary colors, red, green, and blue [10], likewise
a digital color image is formed by a combination of individual 2-D images, often
following the same trichromacy principle. The two most common color models,
respectively used in digital media visualization and ink printing, are RGB (red,
green, and blue), which is an additive model, and CMYK (cyan, magenta, yellow,
and black), a subtractive model1. In the following dissertation and work, the RGB
schema, unless otherwise stated, is mainly employed.

In this system, a color image consists of three individual matricial images, one
for each channel: each pixel’s DN of the conjunct image is in fact a vector of three
numbers (i.e., the brightness level for each color). The number of bits destined to
represent each color channel is referred to as "color depth": assuming a standard
color depth of 8 bits, a total number of 256 intensity levels for each of the three
channels for a count of ≈ 16.777 millions of different colors can be represented2.
Therefore, a single pixel can be defined as a vector function:

p(i, j) = [r(i, j), g(i, j), b(i, j)] (1.1)
with r, g, b : {0, ..., h} × {0, ..., w} → {0, ...,255} the distinct scalar functions

associating a single-channel brightness value to the bi-dimensional position (i, j).
In Fig. 1.2, a digital image decomposed in its distinct color channels is represented
as an illustration.

Figure 1.2: A digital image of a cat, decomposed in the RGB channels.

Altogether, a raster digital image can be defined as a tensor Ih×w×c, where h

1Additive models function by summing the numeric representations of the single component
colors to form the final color, while a subtractive color mixing works in the opposite way leveraging
the absorbing power of materials on a reflecting or transparent, thus white, surface.

2This standard is known as True Color model.
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stands for height (i.e. the number of pixels for each row of the grid), w for width
(i.e., columns), with the product h × w known as resolution, and c = 3 the number
of color channels of the image.

An important contribution made by computer graphics researchers in the 1970s
has been the introduction of HSL (hue, saturation, and lightness) and HSV (hue,
saturation, and value) as an alternative color representation models with respect
to the RGB and CMYK: in particular, their hallmark is to treat the color shades
of each hue via coordinates of cylindrical slices, as shown in Fig. 1.3. They are
classified as user-oriented models as the aim is to better approximate the human
perception of colors [11].

(a) (b)

Figure 1.3: The comparison between the RGB cube (a) and the HSV cylinder
(b), via [12].

1.1.2 Videos
As defined in [13],

A digital video is an electronic representation of moving visual images
(video) in the form of encoded digital data.

Without loss of generality, a digital video can be described as the sequence of
digital images (called "frames"), shown in succession at a rate termed fps, which
stands for "frames per second". Typical fps values are in the range of 20 − 30,
although, depending on the field of usage, values from as few as 5 to as many as
60 and 120 are widely used. To date, the fastest digital camera available on the
market is the Phantom v2512, which achieves up to 1 million frames per second at
a limited resolution.

A video signal contains information in three dimensions, modeled as spatial (x, y)
and temporal (t) domains. It is also frequent to have digital videos encapsulating
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audio information (e.g., a digital audio track), extending the domain to a fourth
informative time-dependent dimension in the form of a digitized sound wave.
However, this possibility is left unexamined for the purpose of the present thesis
since uncommon in the applicative field of use.

In consistency with the treatise on digital images, a single frame is characterized
dimensionally by the width w and the height h of the frame and by the color depth:
therefore, as far as memory usage is concerned, a raw digital video occupies fps times
the number of bytes required to represent a still image of the same characteristics.
It stands to reason that the compression of digital videos is an essential process
when there exists a limit on the computational resources at disposal.

1.1.3 Compression
Data compression is the process of encoding information using fewer bits with respect
to the original representation. In the context of digital videos, the operation of video
compression is of paramount importance due to the substantial storage occupation
and bandwidth needed to record, process, and transfer raw video. The term codec
has been coined as a portmanteau of both words "coder" and "encoder", and it is
used to define the software methods and standards for converting analog signals
into digital signals and, in the context of digital images and videos, implementing
data compression (or source coding, often used as a synonym).

There exist two types of data compression codecs: lossless methods, which
preserve all the starting information, and lossy compression algorithms, which
tend to maximize the storage and bandwidth savings at the cost of quality (thus,
information) loss while still achieving good fidelity with respect to the original
video3. A benchmark study performed by Dmitriy Vatolin et al. [15] in 2007 has
estimated the lossless codecs compression rate to be in the 5 to 12 interval, while
lossy methods usually have a compression factor of 20-200.

The rationale for preserving information while performing video compression is
the high temporal correlation among consecutive frames. For instance, a standard
rate of 25 frames per second signifies having one still image every 40 milliseconds:
therefore, there exists a non-negligible redundancy since few objects can significantly
move in a real-world scenario in such a short time.

The main technique that follows this principle is Motion Compensation, which
has as its first step the computing of the differences between consecutive frames,
that is, the brightness variation in each pixel for each color channel. With this
coding mechanism, a video can be transformed into a stream of a limited number of
full frames (which are called "reference frames"): all the frames in between can be

3The constraint to comply with, depending on the specific application, usually can be a quality
index of the compressed video or a bandwidth/storage threshold [14].
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obtained using the encoded MC information, transforming a single object and/or
the entire scene depending on the object and camera movement.

In the following figures, it is reported an example of the Motion Compensation
method applied on a frame from the 2006 Dutch computer-animated movie "Ele-
phants Dream", taken from [16]: the Mean Absolute Differences (MD) between
two consecutive frames are computed in Fig. 1.5, and a right-shift by 2 pixels is
then applied in Fig. 1.6 in order to take into account the camera movement. The
significantly less amount of codified information in the latter frame with respect to
the original frame in Fig. 1.4 is self-evident.

Figure 1.4: The original
frame.

Figure 1.5: Differences
between the original frame
and the successive frame.

Figure 1.6: Camera-
compensated differences.

The most used video codecs, like MPEG [17] and H.26x [18] standards, en-
capsulates Motion Compensation into Discrete Cosine Transform (DCT) coding,
which is a transformation technique similar to the Discrete Fourier Transform that
formulates a finite sequence of data points as a sum of cosine functions at different
frequencies [19]. Moreover, in this representation each frame is usually segmented
into macroblocks, typically consisting of 8 × 8 or 16 × 16 pixels, and individual
predictions and specific handling can occur sub-partitioning by this means the
picture as opposed to treating each frame as a whole.

The most recent extension has been the HEVC standard (High-Efficiency Video
Coding) [20] which achieves the best performance in several quality metrics accord-
ing to De Cock et al. in [21]. As shown in Fig. 1.7, which represents a schema
of the HEVC codec standard functioning, the amount of signal processing imple-
mented is very significant and requires higher-than-ever compressing capabilities
with respect to previous standards. Nevertheless, by additionally adopting larger
Coding Tree Unit (CTU) sizes4 up to 64 × 64 pixels, overall higher coding efficiency
and a reduced decoding time have been reached compared to previous standards,
including H.264/MPEG-4 Advanced Video Coding [22].

4The HEVC equivalents of the macroblock units used in the antecedent codecs.
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Figure 1.7: The block diagram functioning of HEVC, as illustrated in [23].

1.2 Computer Vision
Starting from the early 70s, there has been an increasing interest in the computer
science world in mimicking the visual perception ability of human beings, with
digital image processing aptly considered to be the cornerstone for endowing
robots with the necessary 3D scene understanding for more ambitious higher-level
reasoning starting from a 2-D picture [24].

A primal development has been inventing automated feature extraction methods,
which seek the intrinsic and invariant characteristics of the relevant objects in the
image: the attributes they have to possess are to be ideally informative, distinct,
and accurate. These methods could be used stand-alone or as a preliminary step
to reduce the input data, filtering out unproductive binary information while
preserving the global structure of the image for successive tasks.

The first typology of features is represented by the so-called key-point features or
interest points, which are a set of points or small patches of pixels usually sparse in
the entire image yet robust for correspondences matching in the case of orientation
changes, occlusions, and scale variance. It is useful to note that in literature, the
term corner is used alike to express such features if identified as the intersection
of two edges, and redundancy has to be promoted to cope with the possibility of
noisy errors affecting the recognition task.

Some algorithms that perform such operations are Moravec’s corner detection
algorithm [25], Harris and Stephens’ [26], and FAST (Features from Accelerated
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Segment Test) [27]. In particular, the latter is of particular significance since it
has been traditionally used for real-time video processing applications due to its
high-speed performance, hence the name: it applies the Bresenham’s Midpoint
Circle Algorithm [28] with a fixed radius of 3 to compare the brightness level of the
midpoint i (the center of the circle) with the circumference points, thus classifying
the former as a corner if a certain amount of contiguous pixels in the circle are all
brighter or all darker than |DNi ± threshold|.

A more semantic typology comprises the full extent of edges and curves, which
are usually characterized by abrupt brightness and/or color changes. As a matter
of fact, it is proven that, under general conditions [29], discontinuities in brightness
values correspond to one or a combination of variations of illumination, depth,
surface orientation, and material properties changes. Nevertheless, the complexity
of the real world and the challenging working conditions under which digital images
are often taken, render this problem non-trivial. Single edgels5 could be linked
together into chains, forming lines and contours, with low-strength contour segments
possibly filtered out depending on a defined threshold. The prevalent state-of-art
edge detector, since its introduction in 1986, is John F. Canny’s algorithm [30],
reported with an example in Fig. 1.8. It consists of four main steps: the noise
reduction via a Gaussian filter which smooths the image; the computation via the
Sobel–Feldman operator [31] of the edge gradient and edge direction for each pixel
in the blurred image; a non-maximum suppression step to remove any erroneous
pixel classified as edge and finally a hysteresis threshold with two tunable filtering
values to discard "weak edges" and noise pixels.

Other feature extraction techniques that adopt differing distinct approaches
include the Hough transform, Blob Detectors, Affine Region Detectors such as
Harris or Hessian [32], and Ridge Detectors.

At the turn of the 20th and 21st centuries, some of these techniques have been
implemented in computer vision algorithms able to not only detect relevant features
from an image but also of extracting the feature descriptors, namely vectors
encoding a distinguishable numerical fingerprint of that feature. Finally, the act
of matching two or more feature descriptors mined from distinct images can be
performed in order to achieve multifaceted tasks like object recognition, robot
localization, 3D scene modeling, and image stitching. Two notable algorithms of
such class are SIFT (Scale-invariant Feature Transform) and SURF (Speeded Up
Robust Features) [33][34], whose computing is parallelizable and thereby suitable
for modern multi-core CPUs and GPUs systems. A relevant application of the
latter in the field of surveillance video monitoring, among the others, has been [35]
by Jiang et al. which employs the SURF algorithm for annotating the color and

5i.e., pixels in an image recognized as an edge.
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(a) Original image (b) Grayscale (c) Canny’s Algorithm

Figure 1.8: An application of the Canny Edge Detector in a highly complex
real-world scenario, such as a public park: the hysteresis threshold parameters can
be tuned to filter out less or more information; in this case, the Python OpenCV
library with sample filtering values has been used.

texture features of the fire in video footage for the construction of a real-time fire
detection method.

The more recent rise of Machine Learning first, and then Deep Learning, has
transformed to a great extent and stretched the boundaries of the Computer Vision
research field towards new frontiers.

1.3 Machine Learning
Machine Learning is a branch of Computer Science and Artificial Intelligence (AI),
with the latter being the study of techniques that enables computers, machines, or
agents to mimic, reproduce or outperform human behavior and decision-making to
solve tasks independently or with minimal human intervention [36].

The term Machine Learning was coined by Arthur Samuel, and the first formal
definition, credited to him6, is the following:

6The reported definition is generally [37][38] cited as from his 1959 paper "Some studies in
Machine Learning using the game of checkers" [39], although it is not explicitly written in the
aforecited work. The closest quotes are considered to be "A computer can be programmed so that
it will learn to play a better game of checkers than can be played by the person who wrote the
program" and "Programming computers to learn from experience should eventually eliminate the

10



Introduction

Machine Learning is the field of study that gives computers the ability
to learn without being explicitly programmed.

A more rigorous definition is due to Tom Mitchell in [40]:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

The vast range of applications and the diverse techniques to implement Machine
Learning, accounting for the most diversified tasks, hinder the possibility of giving
a thorough overview of the topic in these pages; nevertheless, a common stylized
pattern of functioning can be detected and drawn from all of them. The core
way most of these methods and algorithms learn is via sample data referred to as
training data: in general, given a specific assignment, the objective is to have the
computer (machine) extract automatically the algorithm to solve it. An intelligent
system, capable of learning, adapting to changing conditions, and nonetheless being
able to perform the prefixed task, divests the need for the system designer to foresee
and provide solutions for all possible situations [41].

Formally [42], three are considered to be the main approaches of Machine
Learning:

• Supervised Learning: The training data is labeled, i.e., all the samples from the
data source have already been assigned to them the correct classification; the
model learns having the ground truth as a reference to compare the predicted
output with, to the point of generalizing the acquired knowledge.

• Unsupervised Learning: The training data is not labeled; therefore, the model
tries to learn hidden patterns in the input data, clustering together datasets
with shared attributes or discovering connections based on association rules.

• Reinforcement Learning: The agent learns via trial-and-error the policy,
potentially optimal or sub-optimal, that maximizes the total rewards assigned
via a suitable policy function designed by the programmer to encourage
correct decisions; the main challenge is to find the best trade-off between the
exploitation of effective strategies and the exploration of new actions.

A simple example of a supervised Machine Learning model is a predictor, which
is a function that produces an output when given a vector of features as inputs:
the objective of the learning phase of the model, in this case, is to have a good

need for much of this detailed programming effort". Nevertheless, Dr. Arthur Samuel is widely
regarded as the father of ML.
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performance according to suitable metrics on unseen data. This training phase
is also referred to as parameters estimation phase; nevertheless, it is often the
case that some characteristics such as the number of components or some training
configuration variables have to be manually fixed by the programmer at the
beginning of the training. These are called the "hyper-parameters" of the model
and are usually set by the rule of thumb, via trial and error or determined by
an optimization routine (hyper-parameter tuning). In Fig. 1.9, three main ML
applications are reported.

(a) Binary Classification (b) Regression (c) Clustering

Figure 1.9: Graphical representations of three ML problems: a) and b) are two
forms of supervised learning, whereas c) is an example of unsupervised learning.

An important additional technique that aims to alleviate the hand-labeling
process is the Weakly Supervised Learning or Semi-Supervised Learning [43], which
is a hybrid of the aforementioned ones: according to it, noisy sources and low-quality
annotations are used in the training sessions, which resembles a Supervised setting.
As a matter of fact, in various applications, a strong and robust predictive model
can still be obtained, notwithstanding the use of imperfect labels. By this means,
it can be avoided having as a bottleneck the need for precisely annotated data
points, which could depend on either insufficient domain experts’ availability, time
constraints for a proper dataset collection, or as a trade-off choice between larger
quantities of data of lower quality [44].

1.3.1 Artificial Neural Networks
The family of Artificial Neural Networks, ANNs for short, groups several variants
of ML algorithms of particular interest for many applications.

The development foundation of ANNs is the functioning, at a conceptual level, of
the human brain (hence the term neural). Avoiding excessive specifics, unnecessary
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for the purpose of this discussion, the processing abilities of the brain mainly lie
in the connecting pattern of neurons, which are its small computational units. A
brain is composed of a very large (≈ 1011) number of them, approximately the same
number of stars in the Milky Way, all operating in parallel: each one is connected
via synapses, branched out from its unique axon, to roughly 104 other neurons.

The artificial analog of a biological neuron is a summing junction q of several
synaptical inputs xi: the values are modeled by individual weights wi and the
result of the addition supplies an activation node, in its simplest and earliest
implementation [45] a threshold logic function with two possible outputs (0,1).

As in the real neurons the synaptic strengths may be modified in order to
adapt the behavior of each neuron in response to a particular stimulus input, in
an artificial neuron (or perceptron) the experience, or training, could modify the
weight values [46].

A supplementary term that is generally present is the bias b, which is a value
added to the node and acts as a shift for the activation function, which more
commonly is a non-linear function such as a sigmoid or a hyperbolic tangent: the
non-linearity is needed in order to access to a vaster set of possible functional
solutions, referred to as hypothesis space; otherwise, the neurons could only learn
linear (or affine) transformations of the input data. In Fig. 1.10 a standard
visualization of both neurons is provided, whereas in Fig. 1.11 some of the most
widespread activation functions are represented.

In an Artificial Neural Network, a number ranging from a few to thousands of
these nodes are arranged in a layered structure, forming a directed acyclic graph:
the layer (or layers, if in greater numbers) other than the input and the output is
called hidden layer, since it produces intermediate results which are not directly
visible as an output of the model. These networks could extend in depth as the
number of input transformations (thus, the number i of hidden layers) grows: since
the information flows from the input x to the output y through the intermediate
computations f (i), with no feedback connections (i.e., no cycles or loops are present),
they are referred to as Feedforward Neural Networks.

The training phase is modeled as an optimization problem, namely finding the
set of parameters for every connection that minimizes a defined loss function on
the input data, or training set: one algorithm that is commonly adopted is the
stochastic gradient descent or SGD [48]. As a matter of fact, although the inputs
are propagated from the first to the output layer flowing in a forward pass, as
the network error signal L or the scalar cost J(θ) is computed, the information
flows backward in order to iteratively compute the gradient (i.e., the derivative
of the L-function with respect to the weights and biases of the network) with the
aim of finding a local minimum of the function. Most Neural Networks use the
back-propagation algorithm [49], which relies on the chain rule already introduced
by Leibniz in 1676, to efficiently calculate the gradient since numerically evaluating
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Figure 1.10: A representation of a biological neuron (a) and an artificial neuron
(b), as illustrated in [47].

its analytical expression could be computationally very expensive.
For the assessment of a model’s performance, the most well-established guidelines

especially in the field of supervised learning provide to evaluate the network on
out-of-sample data, that is, input similar to the training data yet left excluded from
the training samples: some common practices include building an ad-hoc test set
on which to evaluate the selected accuracy metric, and the k-fold cross-validation
technique [50]. In fact, the challenging goal of the training phase ultimately is
making the model able to generalize the acquired knowledge to new data, and the
best performing model is the one having the lowest generalization error (i.e., the
lowest expected value of the error on a new input, with the expectation usually
taken across the samples in the test set).

Other quality measures may also be extremely relevant, depending on the specific
task and on the application usability, like computational resources, the average
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(a) Sigmoid

S(x) = 1
1 + e−x

(b) Rectified Linear Unit

ReLU(x) = max(0, x)

(c) Leaky ReLU

LReLU(x) = max(0.1x, x)

Figure 1.11: Graphics and formulas of three sample activation functions.

cost for prediction, memory usage, and the interpretability of the results and of
the model, with a suitable trade-off among those insights chosen by the business.

1.3.2 Deep Neural Networks
A Deep Neural Network is a particular type of ANNs characterized by many hidden
layers so that it progressively extracts higher-level features from the raw input
in an automatic fashion called feature learning [51]; the word "deep" emphasizes
the more extensive depth of the architecture, in contrast with the shallowness of
preceding ANNs, and it is applied as a descriptive adjective for the entire set of
techniques and methods, referred to as Deep Learning, which follows this paradigm.

Furthermore, neurons inside a DNN layer are often more complex or use more
advanced operations (e.g., convolutions, multiple activations, etc.) with respect to
the schematization in Fig. 1.10; therefore, these models are usually employed with
success in high-dimensional data input problems, such as those involving speech,
images, audio data, and videos, where they have proven to outperform previous
ML algorithms [48], or those in which the handcrafted feature engineering process
results too much time-consuming.

The peculiarities of Machine Learning and Deep Learning are schematized
and compared with the classic explicit programming in Fig. 1.12 with particular
emphasis on the feature extraction phase, which in Regular Machine Learning
is handcrafted via feature extraction techniques within an application-specific
engineering process.

Albeit a deeper and more elaborate architecture renders the model flexible
enough to the point of capturing non-linear regularities and relevant patterns for
the learning task, which could be of extreme intricacy, an adverse effect of having
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Input

Input

Input

Handcrafted model building Output

Output

Explicit 
programming

Machine
learning

Deep
learning

Handcrafted
feature engineering

Automated
model building

Feature learning + automated model building Output

Data input Feature extraction Model building Model assessment

Figure 1.12: The process of a model building according to three different pro-
gramming methods, as shown in [40]; here, the term Machine Learning has to
be interpreted as pre-Deep Learning ML, sometimes also referred to as Classic,
Regular, or Shallow ML.

more complex models is the increased risk of overshooting the model’s capacity,
that is, providing it with a vaster than needed hypothesis space. This may lead
to the model adhering too precisely to the training samples, and on the noise and
particular representations they have, rather than being able to properly generalize
on unseen data, a flawed behavior referred to as overfitting, obtainable and to be
avoided in general in all Machine Learning applications. In Fig. 1.13 a visualization
of this problem is provided, together with its opposite, underfitting, that is a model
too simple to capture the data structure: without loss of generality, a simple
polynomial function has been chosen as the underlying function of a regression
problem in order to have a convenient interpretation of the matter.

While acting directly on some training parameters (e.g., training time or full
dataset passes) or reducing the data samples may help to avoid overfitting, another
possibility, often more in tune, is to act on the hypothesis space of the model by
forcibly reducing it during the training phase: this process is called "regularization",
and encompasses any modification made on the algorithm that is intended to reduce
its test error even at the cost of slightly worsening the training error [48]. A simple
but effective method is dropping some nodes for one or more layers, randomly
selected at every training iteration with an adjustable probability p, together with
their connections, thus creating a child network with fewer parameters in order
to prevent co-adaptation and improve the model’s generalization. In Fig. 1.14
an example of a simple Deep Neural Network adopting this dropout technique is
represented.
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(a) Underfitting (b) Fitting (c) Overfitting

Figure 1.13: In blue, the fit of three regression models to a training set (green)
obtained by a polynomial function (orange) with added random statistical noise:
while a) represents a simple linear function unable to grasp its curvature, c) adheres
exactly to the data points and has a smaller mean absolute error with respect to
b), which however reproduces far better the real polynomial. The code used for
these graphs has been readapted from the Python Scikit-learn library.

Figure 1.14: A Deep Neural Network with three hidden layers (blue): the
unconnected nodes in red with dashed contour indicate a dropout rate of 20% in
each layer. No dropout is applied on the input layer (orange) and on the output
(green).
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1.3.3 Convolutional Neural Networks
Neural Networks are proven to perform well in several fields: however, high-
dimensional data inputs still represent a significant problem when accounting for
the computational resources available. According to the notation in Sec. 1.1, an
image of size 200 × 200 × 3 would lead to neurons each having 120.000 weights to
estimate, with the total number of model parameters to train quickly adding up as
the number of hidden layers grows. Moreover, the fully-connectivity pattern of the
standard hidden layers (i.e., each neuron in one layer is connected to all neurons in
the subsequent layer) may often result problematic even if regularization is applied.
The advent of Deep and Feature Learning has greatly affected this research field,
with the triumph of the newly proposed AlexNet architecture in the 2012 ILSVRC7

being usually considered the fuel of this revolution [52].
AlexNet is a Convolutional Neural Network, i.e. a typology of an ANN that

presents in at least one of its hidden layers the mathematical operation of convolution
in place of general matrix multiplication: in particular, AlexNet is characterized by
having 5 of these layers.

The convolution, from a mathematical point of view, is an integral that blends
together two functions, by expressing the amount of overlap of one function g as it
is shifted over a function f , and it is indicated with the expression f ∗ g or f ⊛ g.
In the context of a Convolutional Neural Network, a convolution consists of the
multiplication of a relatively small two-dimensional array of weights, called kernel8,
with the input, that is for the input layer the image tensor.

The result of this sliding sequence of dot-products is referred to as activation
map or feature map and it is itself a two-dimensional array due to the fact that the
filter is systematically applied multiple times to the input array. The size of the
activation map is given, in the simplified case of one-channel square matrix input,
by the following dimensional formula:

[(W +P )×(W +P )]∗[K ×K] = [(W − K + 2P )
S

+1]×[ (W − K + 2P )
S

+1] (1.2)

where W is the input width and height, K is the kernel dimension, nc the
number of channels, P is the padding (i.e., the number of zero-pixels added at the
contours of the image) and S is the stride (i.e., the step-size shift of the filter over
the input matrix). An example of this computation is illustrated in Fig. 1.15.

In a more precise and realistic application, the input image has a number nc of
color channels, and, accordingly, the filter must have the same depth as the input;

7ImageNet Large Scale Visual Recognition Challenge
8Or filter.
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Figure 1.15: A trivial example of edge detection in a 6 × 6 × 1 image using a
3 × 3 handcrafted kernel for vertical lines detection with no padding: the brightness
difference (e.g., a contour of an object) in the left image is magnified in the resulting
4 × 4 × 1 feature map.

furthermore, it has to be noted that, once the first convolutional layer is applied
to the input image, the subsequent layers would have as input an intermediate
activation map. This process leads to a hierarchical decomposition of the input
image, in full compliance with the feature learning paradigm: the convolutional
layer n°1 acts on raw pixel values, identifying low-level features such as edges and
corners, whereas the successive layers learn the more and more complex high-level
features of the image to the point of entire meaningful parts, relevant textures,
shapes, and finally objects [53].

To date, the most commonly used activation function in CNN models is the
ReLU [54] since it is simple to implement, less susceptible to the problem of
vanishing gradients (which prevents deep models from properly learning), and has
proven effective in a variety of applications.

The learning phase of the network consists in finding the values for every filter
that activate the detection of some features at some spatial position in the input to
the point of minimizing the defined loss function of the specific task to perform, and
it is usually performed by processing the extensive input data parted in "batches"
(i.e., the number of samples processed before the update of the model weights)
over several "epochs" (i.e., the number of passes over the whole dataset), with each
epoch consisting of a number of iterations equal to the ratio between the number
of the data samples and the batch size.

The building blocks of a CNN include two other types of layers:
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• Pooling layers: they perform a down-sampling of the activation map by
summarizing and combining the outputs of clusters of neurons into a single
neuron in the subsequent layer; the two common types are average pooling,
which uses the average value of each cluster, and max pooling, which takes
the maximum value. No learnable parameters are associated with this layer
typology since it has solely a dimensionality reduction purpose.

• Fully Connected layers: in the context of a CNN, they are also referred to as
Dense, and they usually are inserted at the end of the network, taking the
activations as inputs, flattened in a 1-D vector, and generating a n elements-
long vector as output. With a proper design of a sequence of FC layers and
using a softmax activation function, the final output of the network is a set of
class probabilities for solving a classification problem.

In this respect, a fundamental contribution has been made in 2014 by Christian
Szegedy et al. [55], with the introduction of the Inception block, named after the
famous Christopher Nolan movie: since the information in an activation map at
a certain layer i may be clustered in informative patches of various sizes, they
proposed a new architectural module which consists of several convolutional layers
characterized by filters of various dimensions (namely 1 × 1, 3 × 3, and 5 × 5) in
order to cover all the clusters, with their outputs concatenated together with the
output of a pooling layer in order to form a single output vector, which would be
the input map of the layer i + 1. This naive implementation (Fig. 1.16a), which
allows the increasing of the number of units at each stage (in width instead of
in-depth), has been improved afterwards by applying the 1 × 1 convolution before
the larger ones, and also after the pooling operation (see Fig. 1.16b): this greatly
reduces the dimensionality of the problem, resulting in improved performance,
memory usage, and speed.

Finally, the same authors in a successive work [56] presented several improve-
ments on this architecture, including the factorization of computationally complex
convolutions (n × n) into the combination of several simpler ones (1 × n followed
by a n × 1), as shown in 1.16c, with a computational cost saving proved to increase
almost exponentially to n.

To date, CNN models are considered to be the de-facto standard for addressing
several computer vision problems, especially those whose starting inputs are digital
images, such as object classification, facial recognition, object detection, image
captioning, and object segmentation; in particular, among the best performing
architectures on benchmark datasets in the object classification field, several adopt
the Inception module or some variants of it, like Xception and InceptionResNetV2
[57][58].
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(a) Naive Inception Block

(b) Inception Block

(c) InceptionV3 Block with 3 × 3 and 5 × 5 one-time factorization

Figure 1.16: Graphical visualization of three main implementations of the Incep-
tion module, in ascending order of performance and computational savings.
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1.3.4 Model Explainability and Ablation Studies
Due to the intrinsic complexity of Deep Neural Networks, an emerging challenge in
this research field is how to explain the model functioning in a deeper and more
understandable fashion than the mere re-proposition of the functional mechanisms
of the network, like the units and the activation functions. Several tools and
methods have been over time introduced to aid the unveiling of the black box that
is the model itself.

A worth-mentioning technique that permits to investigate the causality of a
model in its modularity is the so-called "ablation", from the Latin ablatus which
means "carried away" and has lexical application in the medical field, indicating
the surgical removal of a biological structure or functionality from the body. The
core idea is to remove one or more component(s) of a Deep Learning network at a
time, therefore analyzing the contribution of an individual module to the overall
model by studying the performance worsening in the case of its removal [59].

Additionally, in the case of a Convolutional Neural Network, the study of the
filters of the convolutional layers is possible. Nevertheless, while the first layer
kernels can be visualized immediately and provide direct legibility, due to their
function of capturing edges and opponent colors, for the subsequent layers more
complex approaches are needed. Among the others, an important approach that
delivers a visually attractive understanding of the higher-level feature maps is the
deconvolutional network, first proposed by Zeiler et al. in [60].

1.4 Computer Vision Techniques for Videos
There are numerous challenges in computer vision techniques applied to digital
videos: a video, first and foremost, is a collection of frames in which the temporal
order is an essential informational component, thus a serious source of difficulties
is finding how to capture the temporal relationship among the frames and codify
it in utilizable features; also the time interval choice for the observation is non-
trivial and severely task-dependent. Another main challenge is due to the sheer
storage and bandwidth occupation of such a medium, which has made it difficult to
operate on many input data and also to produce large-scale benchmarks datasets,
commensurable in the number of instances and variety with the available image
datasets, in comparison with which for a long time video datasets have appeared
dwarfed [61].

In order to cope with the latter problem, several dimensionality reduction
techniques could be applied: data compression (Sect. 1.1.3) is one of the most
popular methods. Another approach is the smart resolution reduction, which
stems from how the human fovea and peripheral vision work: each frame could be
represented by an inferior bits amount with a non-uniform quality between the
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central patches, where most of the important information is supposed to be present,
and the edges of the image, at low resolution. Finally, fps rate reduction may also
be considered.

A technique extensively researched has been the keyframe9 extraction: as a
book is divided into chapters, a video can be partitioned into distinct scenes, i.e.,
semantically coherent parts as far as subjects and environment are concerned; each
of these scenes or stories could be summed up by one shot to represent them
altogether [62]. This technique, which can be applied with both a supervised and
an unsupervised learning approach, has been applied in a variety of applications,
including video browsing, that is the summarizing of a video as a sequence of
keyframes, video indexing for retrieval systems, video analysis or segmentation [63],
and many others.

Furthermore, in the pre-Machine Learning era, many of the standard classifiers
have been adopted in the literature to solve problems such as video classification.
Among the others, there can be found visual-based approaches with Bayesian
Networks in works like [64], Support Vector Machines (SVMs) for genre classification
[65], with a feature extraction process of color, shape, and motion, Hidden Markov
Models (HMMs) for gesture recognition [66] with key-point frames extraction and
modeling of the problem as a Markov process, and Gaussian Mixture Models
(GMMs) [67], expressing the unknown probability distribution function as a linear
combination of k Gaussian distributions.

1.4.1 Features and Video Descriptors
Over the past few decades, several handcrafted or automatic visual descriptors
have been introduced to describe and represent visual characteristics of a video
in a similar manner to the digital images feature extraction methods, explicating
elementary characteristics such as color and shape, or more complex, and identifying
ones like location and motion. Hereunder, a brief illustration of some of them is
presented, with some associated examples in the figures from 1.17 to 1.20.

Motion Vector (MV) is mainly used in compression standards and has partially
been introduced in Sect. 1.1.3 in the context of Motion Compensation: the
differences between consecutive frames can be encoded in vectors that provide an
offset that represents the movement of the objects, usually with a granularity of
8 × 8 or 16 × 16 pixels corresponding to the macroblocks in which the single frame
is partitioned; the process of matching the macroblocks in a video sequence is called
Block Matching [68].

Optical Flow (OF) captures the apparent velocities of movement of brightness

9Shortcut name for key-point frames.
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patterns between two successive frames, caused by the movement of the object or
the camera: the underlying assumption is that the brightness of a moving pixel
has to remain constant over time [69]. Similar in concept to MV, and sometimes
used interchangeably10, is in point of fact a more complex and denser descriptor, a
motion field describing the deformation of all pixels from a shot to the corresponding
locations in the second image.

Whilst MV and OF are representations of where the motion happened, Motion
History Images (MHIs), introduced by Davis and Bobick in [71], represent the how
of the motion: they are gray-scale images, where dominant motion information is
represented in a compact way expressing pixels brightness intensity as a function
of the temporal history of the motion. The result is extremely expressive in the
case of a still camera, like in surveillance applications, engraving the moving parts
of a video sequence (longer with respect to the MV and OF 1-frame window) in a
single image; due to its sliding window approach, the history of temporal changes
at each pixel location then decays over time, to the point of having a black image
in case of no succeeding movement [72].

Feature Trajectories are represented as sequences of log-polar quantized velocities,
and they are usually obtained by means of the Kanade–Lucas–Tomasi (KLT) feature
tracker or by matching SIFT descriptors between consecutive frames. Wang et
al. [73] in 2011 proposed Dense Trajectories (DT), obtained by tracking densely
sampled points11 and using a particular optical flow fields solution called MBH
(Motion Boundary Histogram), which represents the gradient of the optical flow,
to remove camera motion. Improved DT [74] compensate for camera motion by
determining the homography between consecutive images, before computing the
optical flow, thus avoiding to codify non relevant information.

1.4.2 Deep Learning Architectures
The rise of Deep Learning and the state of art performances achieved in most of the
image analysis tasks have prompted the research for adapting the existing networks
or creating new architectures more suitable for image sequences, i.e., videos.

A first approach by Karpathy et al. in [61] has been utilizing a Convolutional
Neural Network as a backbone network for extracting features and then fusing the
information extracted from consecutive frames to effectively exploit the temporal
dimension for an action recognition problem. Several connectivity patterns have

10More precisely, it is possible to distinguish "Sparse Optical Flow" for methods as the Lucas-
Kanade algorithm, where motion is encoded in pixels blobs like in MV, and "Dense Optical Flow",
which is computed on all the points, with the Gunnar Farnebäck’s algorithm as the de-facto
standard in literature since its introduction [70].

11Video blocks sampled at regular positions and scales in space and time.
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Figure 1.17: Motion Vector of a dancing girl with macro-block visualization,
using the FFmpeg suite. Images from [75].

Figure 1.18: Dense Optical Flow visualized by the OpenCV library with the HSV
color scheme: the displacement coordinates are converted into polar coordinates
as magnitude (Value) and angle (Hue) for every pixel, while Saturation remains
constant. Images from [76].

Figure 1.19: Motion History Image of a man waving his arms, as shown in [71].

Figure 1.20: Dense Trajectories of frames from the Hollywood2 dataset, reported
from [73].

25



Introduction

been studied in the aforementioned work: an early fusion, which consists in stacking
together a number T of frames, accordingly modifying the filter of the first level
to operate with an input of dimension W × H × 3 × T ; a late fusion, placing two
identical single-frame branches in parallel with shared parameters at a distance of
N frames apart, merging them in the fist Fully Connected layer of the classifier;
a slow fusion, a balanced mix of the two previous patterns, which obtained the
best results of the group on the benchmark dataset UCF101 [77] and on the at
the time newly proposed video dataset Sports.1M (Fig. 1.21). Nevertheless, the
ever-so-slight improvement in the performance metric over the single-frame CNN
denoted a sub-optimal and improvable approach.

Figure 1.21: An overview of the Sports.1M Dataset, a dataset of 1 million
videos mined by YouTube belonging to a taxonomy of almost 500 classes of sports,
introduced by [61].

Another proposal [78] has been an Encoder+Decoder end-to-end-trainable frame-
work, combining a CNN for extracting visual features (Encoder) with a Long
Short-Term Memory network (LSTM) for capturing temporal features (Decoder).
An LSTM is a special type of a Recurrent Neural Network (RNN), that is an ANN
with connections between nodes that form an undirected graph along a temporal
dimension in order to process input data sequences, usually text or speech; in an
LSTM, each node of the chain has three typologies of gates that regulate the flow of
information and avoid to incur into the problem of losing long-term dependencies.
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An important contribution has been the introduction of 3D ConvNets (C3D),
which are an extension in which convolutions and pooling involve all spatio-temporal
dimensions and the processing of a video volume produces a volume [79], whereas
a standard 2D convolution on a stack of frames produces a 2D output. The main
characteristic of the C3D features is that they model appearance and motion
simultaneously, and this approach has been applied extensively, also in combination
with an RNN [80].

The inspiration for another framework came, yet again, from the human brain,
namely the visual cortex: a model of the neural processing of vision distinguishes it
in a ventral stream (also known as the "what pathway") for object recognition and
visual identification, and a dorsal stream ("where pathway") for spatial processing
and visually guided actions [81]. The Two-Stream models implement a similar
strategy, naturally decomposing the video into a spatial part, in the form of a single
frame appearance, and a temporal component, modeled as a multi-frame OF [82],
processing them separately via a two-path Convolutional Neural Network. In Fig.
1.22 a visualization of this architecture is reported.

Figure 1.22: Two-Stream model for video classification, as proposed in [82].

Other recent proposals include Temporal Segment Network (TSN) with sparse
sampling [83], feature aggregation models such as ActionVLAD [84]; notably, among
the others, a Two-Stream architecture with two parallel 3D ConvNet called Inflated
3D, stemming from the aforementioned C3D, has also been proposed in [85].

Altogether, this non-extensive survey demonstrates the burgeoning interest and
activity in the research field of Deep Learning applications for videos, and the
variety of useful tasks to accomplish has prompted the following project work on a
particular, yet of extreme significance, utilization.
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Chapter 2

Methods and Techniques

In the following section, a survey on the topic of Anomaly Detection in the context
of surveillance videos is presented in order to provide an in-depth guide on the
subject.

A rigorous description of the thesis project is given in Sect. 2.2, highlighting the
causes and the goals to accomplish, whereas Sect. 2.3 is dedicated to a thoughtful
description of the two benchmark datasets used in the work, which are UCF-Crime
[86] and RWF-2000 [87]. Due to the different visual descriptors used in the pre-
processing of the two datasets, a more meticulous dissertation upon them with
respect to the general introduction paragraph is rendered in Sect. 2.4.

The baseline architectures from which this work stems are reported in Sect. 2.5,
in order to enlighten the reader with the associated mathematical descriptions of
the frameworks and of the adopted loss functions; the discussion on the framework
to adopt together with the final problem definition is reserved in Sect. 2.6. Finally,
Sect. 2.7 together with the quality metrics for evaluating the achieved performance.

2.1 Literature review on Anomaly Detection

Anomaly Detection in real-life videos is a trending topic in the Computer Science
world, due to the increasing interest and demand for public security issues, backed
by the more widespread presence of CCTV cameras in the public and private spaces
of our cities to the point of being referred to as "surveillance cameras ubiquity" [88].
In Fig. 2.1 the number of publications on this issue is reported for the last decade:
the graph shows a distinct and more sloping than linear trend as a consequence of
the advent of Deep Learning, with an overall decennial growth rate of 383.9%.

The primal challenge of this task is defining what anomaly is: in contrast with
other computer vision tasks, such as object recognition, wherein staple formulations
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Figure 2.1: Number of publications on the "Anomaly Detection in video" topic
published in the Google Scholar database per year in the last decade; in black, a
2nd degree polynomial trend curve is represented, highlighting the steepest increase
after the advent of DL.

apply, and no ambiguity is present1, the boundaries of the definition of "anomalous
event" are far more unclear, as well as dependent, in some cases, on the ethical and
specific cultural environment. It should be enforced that the just outlined point
is not a mere linguistic issue since the modeling of the problem is of paramount
importance in the investigation for a framework to address it.

It should be no surprise that an initial method of tackling the issue has been
to provide a statistical description, juxtaposing the meanings of anomalous and
abnormal, thus treating the rare events or the outliers [88] as the ones to detect.

Kratz et al. in 2009 [89] proposed, in the context of extremely crowded scenes,
a statistical model to compactly represent a video volume by detecting the re-
lationships between local spatio-temporal motion patterns2, and constructing a
distribution-based HMM to capture the temporal relationship between local spatio-
temporal motion patterns and a coupled HMM to capture its stationary structure:
"standard" motion patterns would model usual events within the scene like people
normally walking, so atypical events, like individuals obstructing traffic, reversing

1e.g., an object of the class "apple" is definitely an apple and clearly distinguishable from an
object of the class "bottle"

2i.e., describing motion in terms of local dominant directions of movement using cuboids of
predetermined size
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walking direction or a sudden absence of people in a part of a frame, were identified
as (statistical) anomalies.

Another work in this sense has been [90] by Li et al., who in 2012 proposed
a statistical scene modeler founded on Bayesian theory and GMMs for anomaly
detection in uncrowded scenes with background subtraction using feature clustering.

The second trod approach is to explicitly represent the events, rendering the
model able to distinguish different activities and therefore identify the abnormal
event. Chan et al. in 2004 proposed an HMM of this kind [91]: after having defined
the objects in the scene, a multiple-states Markov chain was built for describing
each and every event of interest based on prior knowledge (in the specific case,
cargo load and unload cycles in an airport), enabling the detection of rare (i.e.,
abnormal) events like, for example, the utilization of an unscheduled route by a
trailer cart.

On a similar note, in 2010, an abnormal traffic detector was presented by
Sultani et al. [92], which explicitly extracted 3-dimensional patterns of driver
behaviors, classifying as abnormal the series of patterns (called document) with
very low likelihood with respect to a baseline "intelligent behavior", also granting
an abnormality localization feature.

With the advent of Deep Learning, a similar twofold method could be identified.
Several works proceed by taking an unsupervised (or weakly supervised) learning
approach, pointing to making the model able to generalize to a variety of anomalous
events with little to minimum supervision [86]. On the other hand, other projects
rely on the supervised learning technique, creating more specialized models like
violence detectors [87] on par with classification frameworks. A more in-depth
analysis of two frameworks representative of both concepts is presented in the
following Sec. 2.4.

In parallel with model deployment, a great development has concurrently hap-
pened in the production of footage datasets in the anomaly detection field of
research, increasingly tackling the specific challenges of such tasks, which include
clutter, complicated occlusions, blur due to movement or resolution, and more.

One of the first works in this regard has been the Hockey Fight Detection Dataset
by Nieval et al. [93] in 2011, which helped to start the shift of the action recognition
community’s focus from detecting simple actions like clapping, walking, or jogging,
to the detection of aggressive behaviors. It is a set of 1000 sequences divided
into two even-numbered groups, Fights and Non-Fights, taken from real-world
professional hockey matches in which brawls and altercations occurred: each video
clip consists of 50 video frames with resolution 360 × 288 × 3 and a frame rate
of 25 fps. In concomitance with the same work, they also produced the Movies
Fight Dataset, which accounts for 200 clips with a length of 1.6 to 2 seconds and
frame dimension of 720 × 480, extracted from Hollywood-distributed action movies
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containing trimmed acted violent scenes.
Moreover, several Human Activity Recognition datasets were developed and

used also for violence detector training. One example has been the SBU Kinect
Interaction Dataset [94], introduced in 2012 and containing eight types of two-
person interactions, both pacific (like a hug or a handshake) or violent (e.g, a staged
karate kick, a pushing or punch): the data was collected using both a stationary
camera with a depth map and the Microsoft Kinect sensor. Worth mentioning is
also the BEHAVE Video Dataset [95], a multi-person action classification database
with bounding box level annotations, which included also the "Fight" label among
other behavior types: still, the portion of frames containing (staged) violence
was only a small fraction of the total (1751 frames out of 29.196), hindering the
training feasibility for a specific violence detection task due to the skewed class
representation.

An important contribution has been the BOSS dataset [96], originally developed
as part of Eureka’s Celtic Initiative "BOSS : On Board Wireless Secured Video
Surveillance BOSS" for October 2006 to June 2009. It consists of video and audio
recordings by ten surveillance cameras mounted on-board inside a moving train
and, in 2017, it was manually annotated by Velastin et al. to distinguish the overall
poses of the people (e.g., "standing" or "sitting"), individual actions (e.g., "walking",
"laying down") and interactions, like fighting, harassment or helping. Formed with
the general aim of improving the security inside public trains, it had as its main
limitation the total length of only 27 minutes.

Capitalizing on the ever-extending diffusion of videos online, particularly on
YouTube, in the same year Tal Hassner et al. [97] assembled the Crowd Violence
Database, for use in both violence classification and violence detection tasks. The
distinctive traits of this dataset with respect to the previously available databases
are twofold. Firstly, the scenario of violence definition is more challenging and
relevant to reality: the "violent activity" is no more an acted scene of violence in
the spotlight, or a distinct brawl in a controlled environment like a hockey field,
but rather outbreaks of violence by one or more people in crowded scenes which
also comprehend spatially unconstrained human motion. Secondly, it captures a
wide range of challenging real-world viewing conditions, including uncontrolled,
in-the-wild footage, therefore presenting a diversified variety of scene types and
video qualities. All the 246 collected videos were resized to 320 × 240 pixels, with
the average length of a video clip being 3.60 seconds. Fig. 2.2 contains some
graphical representations of the Crowd Violence Database, together with other
aforementioned datasets, to highlight its peculiarities.

Finally, the first baseline CCTV dataset for fight detection, the CCTV-Fights
dataset, was presented by Mauricio Perez et al. [98] in 2019: it contains 280 CCTV
untrimmed videos characterized by different types of fights, ranging in length from
5 seconds to 12 minutes, for a total of over 8 hours of footage. All the videos were
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(a) Hockey Fight Dataset

(b) SBU Kinect Interaction Dataset

(c) Crowd Violence Database

Figure 2.2: Examples of the different violence depictions in three of the described
datasets: a) presents brawls and altercations in a controlled environment; b) depicts
staged actions in a static setting; c) displays diverse and in-the-wild footage with
uncontrolled violent actions usually by more than one person.
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annotated at a frame level, i.e., each fight instance in a video was labeled with its
specific start and end points: since the exact beginning and end-points of a fight
could be to some extent subjective, some good practices and a strict annotation
method were adopted in the labeling phase, and a suitable flexibility degree was
accounted for in the prediction of the temporal localization.

2.2 Project Description and Goal
The project’s scope is to contribute to creating an interface with an associated
and automated workflow in order to rationalize the workload of legal personnel
exploring documentary evidence in the form of visual footage. The envisaged
scenario of the application is a mostly offline environment, without the strict timing
constraint of real-time processing: the goal is to provide the user with a large but
not definitive projection of video fragments, confidently containing the "abnormal"
or "violent" portions in them, starting from a long sequence of untrimmed videos,
possibly prompted by the user or automatically extracted from a previous ETL
process.

The path followed in the model building has been to replicate two reference
studies, one constituting an anomaly detector with an unsupervised learning
approach and the second one a supervised violence binary detector. The two have
been handpicked among the alternatives to show the differences in the adopted
techniques, but also for the important and concomitant contribution of reference
large-scale benchmark datasets. In this way, different architectures have been tried
and several models have been trained.

Secondly, the model which has been considered as the most promising according
to the obtained accuracy on the training set and to the intrinsic functioning with
respect to the application has been extensively explored, introducing architec-
ture novelties and exploring the hyperparameters space, in order to better the
performance in the study case.

Finally, it has been produced a basic interactive interface that allows the
extraction of video portions considered to be "suspicious" from customized video
surveillance videos uploaded by the user by implementing the best-performing
model trained.

2.3 Datasets
Stemming from the outline presented in Sect. 2.1, in this Section the two datasets
deepened in the following work are presented: both can be considered to be among
the most advanced and prevalent available databases to date.
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2.3.1 UCF-Crime

The UCF-Crime dataset [86] is a large-scale dataset of 128 hours of videos, published
in 2019 following a collaboration between the Information Technology University
of Pakistan and the University of Central Florida (UCF). It is composed of 1900
untrimmed real-world surveillance videos of varying lengths, representing 13 realistic
anomalies being labeled as follows: Abuse, Arrest, Arson, Assault, Burglary,
Explosion, Fighting, Road Accident, Robbery, Shooting, Stealing, Shoplifting, and
Vandalism. These categories were selected considering the significant impact on
public safety, according to the authors, with a number ranging from 50 to 150
videos for each abnormal category.

All the videos have been retrieved via web scraping using text search queries in
different languages, and only unedited, real, and fixed-camera videos have been
selected, leaving out pranks, edited videos, and also those filmed by a hand-held
camera. In Fig. 2.3 an overview of the dataset is presented, with sample frames
for each of the labeled anomalies.

The peculiarities of this contribution are several: firstly, the sheer size of the
dataset is vastly unparalleled with respect to previous works, with a total length of
128 hours and an average of 7267 frames per video, for a duration circa 8 times
greater than the most extensive video dataset for anomaly detection presented
beforehand.

Secondly, the variety of the depicted events is of great interest, due to the
distributed representation of diverse abnormal activities pertaining to more than a
dozen of macro categories. Although an unmitigated presentation of every possible
abnormal behavior by one or more people remains still today hardly practicable,
this publication proposed a first categorization of various anomalous behaviors:
therefore, the UCF-Crime dataset has the twofold intent of allowing the training of
an anomaly detector model and of an abnormal activity classificator.

Finally, the labeling procedure has been performed following the principle of
weak labeling, enabling a semi-supervised approach in addition to a supervised
one. In this direction, the videos constituting the dataset are relatively long and
most importantly untrimmed: that is, each video containing one or more abnormal
activity depictions is also characterized by normal activity before it and in the
aftermath, hence the unprecedented average length of the clips. This has been a
deliberate choice by the authors, not only to economize the available time needed
for the dataset building thus collecting more videos, but also with the aim of
creating a more robust model capable of better generalizing on unseen violent
outbreaks. Since in a real-world scenario, the depicted episodes could greatly vary
in settings and unfolding, it is of paramount importance to aid the model during the
training phase in capturing the intrinsic characteristics of the abnormal activities
with respect to normal behavior.
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Figure 2.3: Screenshots from the UCF-Crime Dataset.

2.3.2 RWF-2000
RWF-2000 is a dataset containing 2,000 videos captured by surveillance cameras
in real-world scenarios, published by [87] for performing violence detection; RWF
is an acronym for Real-World Fighting. Similarly to the previously introduced
UCF-Crime, it contains only real and unmodified CCTV footage collected from
the YouTube platform, using scraping techniques and prompt keywords in several
languages.

The only additional edit, according to the authors, has been the trimming of
the clips into a constant duration of 5 seconds at 30 FPS: therefore, the total
counting is 300.000 frames. Fig. 2.4 shows sample frames from it, whereas Fig. 2.5
represents the resolution distribution of the videos.

Each clip is characterized by a binary label:

• Fight (1): if containing violent abnormal activity; several events, including
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Figure 2.4: Sample overview of the RWF-2000 Dataset.

shooting, robbery, fistfight, explosion, and assault, are depicted, all under the
same class.

• Non-Fight (0): otherwise; it can be either a pre-fight scene or a CCTV filming
of normal human activity, like people walking on the street or talking in a bar.

The main purpose of this separation is therefore to train a unique anomaly
detector with the ability to bundle the various depictions of anomalous activity.

As a matter of fact, a handcrafted distinction in different classes could in some
cases prove to be problematic for the labeling crew and for the generalization error
of the model, since ambiguity and unsubstantial definitions severely affect this
research field. On the other hand, also this precise binary demarcation, apparently
simple, could be far from self-evident given the fact that it characterizes altogether
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Figure 2.5: Resolution distribution of the videos from the RWF-2000 Dataset: the
proportion is balanced, with significant clusters surrounding the standard definition
formats of 240P, 320P, 720P, and 1080P; small random noise is added to the original
data points in order to obtain a clearer visualization. Image from the original
paper.

5 full seconds of actions: a thorough refinement has been necessary for the different
phases of the dataset collecting to achieve a cohesive collection.

2.4 Feature Descriptors

2.4.1 Gunnar Farnebäck’s Optical Flow
In the context of Gunnar Farnebäck’s algorithm for computing the dense optical
flow [69], a polynomial expansion3 refers to the approximation of the neighborhood
of a certain pixel with a quadratic polynomial expression of the following type:

f(x) ≈ xT Ax + bT x + c (2.1)

where A is a symmetric matrix, b a vector, and c a scalar: the values are
estimated via weighted least squares fit to the signal values in the neighborhood of
the pixel. The weights follow two principles: certainty, which refers to the exclusion

3This dissertation strictly follows the algorithm’s description included in the original
publication.
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of the points in the neighborhood but outside of the image, and applicability, which
usually determines a Gaussian weighting where the center of the neighborhood has
the highest weight.

The modeling of the movement of an object in a video is as an ensemble
of affine transformations: assuming that the pixel intensities4 are constant, an
elementary object occupying 1 pixel in a frame characterized by I(x, y, t), that is
the pixel intensity of the pixel in position (x, y) at the time t, in the next frame is
characterized by I(x+dx, y +dy, t+dt): this hypothesis is referred to as brightness
constancy.

Therefore, under an ideal affine translation d of the signal f1:

f1(x) = xT A1x + bT
1 x + c1 (2.2)

a new signal f2 is determined:

f2(x) = f1(x − d) = (x − d)T A1(x − d) + bT
1 (x − d) + c1

= xT A1x + (b1 − 2A1d)T x + dT A1d − bT
1 d + c1

= xT A2x + bT
2 x + c2

(2.3)

In an ideal scenario, the coefficients should equate; however, in a realistic
environment with relaxed and less strict assumptions, by defining A(x) as the
average of the two A(i) matrices and generalizing the displacement d with the
variable field d(x), we obtain the right-hand side of the following expression to
solve:

b2 = b1 − 2A1d =⇒

∆b(x) = −1
2 (b2(x) − b1(x))

A(x)d(x) = ∆b(x)
(2.4)

Instead of simply solving the second equation point-wise, with the additional
assumption that b(x) is slowly varying, we can include information on the neighbor-
hood I of the pixel weighting its contribution with a suitable vector w; therefore,
to the equation of (2.4) we add the following minimization problem:

Ø
∆x∈I

w(∆x)∥A(x + ∆x)d(x) − ∆b(x + ∆x)∥2 (2.5)

which has its minimum for the following expression of the displacement field:

d(x) =
1Ø

wAT A
2−1Ø

wAT ∆b (2.6)

4That is, the vector of the intensity for the three color channels
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The very assumption of this algorithm is that the polynomial expansions in the
two signals are identical except for the displacement field d(x); however, small errors
in the expressions would appear, especially for larger displacements. Therefore, it
is useful to incorporate a priori knowledge of the displacement field to have a first
estimate of it, and then compute the relative displacement between the estimate
and the real value, which should be small. With this additional component, the
loop of the algorithm is closed and it can be iterated: at step i, the estimated
displacements from the step i − 1 are used as its a priori displacement knowledge,
with d(x) equal to zero in the first step, and each successive iteration being a
better estimate of the displacement vector. The stopping criteria could either be a
measurement threshold or a specific number of iterations [99].

Since its introduction, this method has been the reference standard for the
computation of the dense optical flow in a digital video. By implementing this
procedure in video footage, the final output for every successive frame is a 2-
dimensional array with optical flow vectors (u, v) for each pixel of coordinates (x, y)
with u = dx

dt
and v = dy

dt
, and each component representing the magnitude of the

flow in that direction.
A supplementary step in this algorithm could be the subtraction of the mean

optical flow between pairs of frames, in order to cancel out the camera movement:
this becomes discretionary in most anomaly detection cases, due to the fixed stance
of the majority of surveillance cameras, although IP cams equipped with the PTZ
functionality are increasingly diffused5.

Usually, an HSV rendering is delivered to provide a better visual understanding,
as shown in Fig. 2.6 with an example.

2.4.2 CNN-Based Optical Flow Estimation
The main difficulty of the optical flow computation is intrinsic in its definition and
it is referred to as the "aperture problem": the a priori knowledge on the relative
displacement is a limited source of information when, for example, a moving object
is seen through a small aperture or, in the case of real-world security video footage,
occlusions and off-screen movements occur [100]. Therefore, it is possible to locally
encounter ambiguous motion signals and, consequently, problems in the outlined
algorithm due to the restricted nature of the local evidence used to estimate the
optical flow. In addition, Gunnar Farnebäck’s algorithm could be in some real-world

5Internet Protocol cameras are digital video cameras which communicate via an IP network;
PTZ is the acronym for Panning (horizontal movement), Tilting (vertical motion) and Zooming
(movement on the z axis), with some commercial IP cams having the internal motors to carry out
these to focus on specific areas of the total field of view automatically or remotely controlled by
the user.
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(a) Original Frame (b) Dense OF

Figure 2.6: Gunnar Farnebäck’s Optical Flow of a sample frame of a video from
the RWF-2000 dataset presenting a scuffle, computed and visualized in the HSV
space using the Python cv2 library, with a neighborhood size of 5 pixels: the Hue
indicates the angle (direction) of the flow, the Value the distance (magnitude) of
the movement whereas the Saturation is fixed to 255; the background areas and
the parts of the frame without movement are therefore black.

applications, with low latency required, too computationally expensive.
A recent field of research has been the use of Convolutional Neural Networks

for optical flow estimation, with FlowNet by Philipp Fischer et al. [101] often cited
as one of the pioneering architectures [102].

The main concept is to construct a suitable architecture that takes two images,
naturally being two consecutive frames, as input, and train it in order to produce an
estimate of the movement of every pixel from the frame fi to the frame fi+1. This
process could logically be iterated over each successive pair of frames of a videotape,
yielding as output its estimated dense optical flow. It should be noted that the
network could well have no understanding of what the optical flow actually is: its
objective is simply to emulate as well as possible the ground truth information,
which is the actual optical flow of the clip traditionally computed via Gunnar
Farnebäck’s algorithm or already available, hence the usage of the word "estimate".

It is important to add that also unsupervised networks like UFlow [103] have
been lately submitted, which leverage the burgeoning amount of videos available
online, incomparably greater with respect to the lesser number of clips associated
with their dense optical flow at disposal, imperative for a supervised learning
approach. However, due to model availability and performance reasons, these
models are left undiscussed since unexploited in the present work.

The fundamental ideas in most end-to-end trainable CNNs for this task are,
firstly, to exploit the natural ability of convolutional layers to learn features at
multiple levels of representation, and secondly, to render the network able to match
them at the different locations of appearance in the two images. The correlation is
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mathematically defined, for two informative patches of center x1 and x2, respectively
for the first and second image, and square size K := 2k + 1, as follows:

c (x1, x2) =
Ø

o∈[−k,k]×[−k,k]
⟨f1 (x1 + o) , f2 (x2 + o)⟩ (2.7)

Notably, the expression is identical to the convolution operation, as treated in
Sect. 1.3.3, with the only difference in having data convolving with other data
instead of with a trainable filter. Therefore, no learnable weights are associated
with this type of layer; however, due to a large amount of computation needed,
that equals to c · K2 · w2 · h2 multiplications for comparing all patch combinations,
a maximum displacement d ≪ k is introduced to limit the neighborhood of search
to D := 2d + 1.

Since the correlation and convolution of two inputs have the effect of spatially
shrinking the feature maps, aggregating information over large areas of the input
images, which is indeed enforced by pooling layers in order to make network
training computationally feasible, the problem of enlarging the final representation,
to produce an output of spatial size w × h, arises.

Consequently, upconvolutional layers are introduced and utilized in the latter
part of the architecture: they are made of the sequence of a convolutional layer
with an unpooling layer, which has the goal of extending the feature maps by
upsampling, as opposed to pooling, with each step final step increasing each spatial
dimension twice. Thus, the comprehensive structure resembles a species of an
encoder-decoder model, as shown in Fig. 2.7.

Figure 2.7: The encoding (compressing) and decoding (expanding) structure of
an Optical Flow CNN, as shown in [101].
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The reference dataset for model training and to benchmark the performances,
are: KITTI Vision Benchmark Suite [104], which is obtained via a system of color
and gray-scale video cameras together with a laser scanner and a GPS localization
system mounted on a moving station wagon, thus capturing pedestrians, cars, and
background movements; MPI Sintel Dataset [105], which is a naturalistic open
source movie with ground truth optical flow (albeit rendered), and Flying Chairs
[106], a synthetic dataset made of random Flickr photos with renderings of 3D
chairs moving over the background. Fig. 2.8 shows the results of applying Flownet
on a pair of frames from the Sintel movie.

(a) Original frames (b) Flownet OF Estimate (c) Real OF

Figure 2.8: The estimated (b) and the ground truth optical flow (c) of a pair of
Sintel’s frames - shown overlapped in (a).

2.4.3 C3D Features
As briefly recounted in Sect. 1.4.2, C3D Features refer to the output vector
representation of a particular CNN architecture, named 3D ConvNet, whose main
hallmark is the spatio-temporal performing of convolution and pooling operation
as opposed to its standard 2D counterpart [79]. This model, as its introduction,
reached a state-of-art performance on the Sports-1M dataset among other short-
clips competitors: as outlined in its architecture in Tab. 2.1, the starting video
clips have to be pre-processed, randomly extracting from them 16 representative
frames, in order to be fed to the input layer.

To be more precise, the C3D features stem from the activation maps of the
FullyConnected_6 layer, extracted by feeding to the network 16-frames long clips,
trimmed from the original video (from which to extract the descriptor) with an
overlapping factor of 50%: therefore, a video of length n frames is characterized
by floor( n

16) + (floor( n
16) − 1) activation maps. These are successively averaged

to form a unique video descriptor vector of dimension 1 × 4096 and, finally, by
applying an L2-normalization to this vector, we have as a result the representation
formalized as C3D features of the input video.

By using the deconvolution method described by Zeiler and Fergus in [60] it
is possible to comprehend the informative aspect encoded into the C3D features:
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Layer Size (nc× frames × height × width)
Input 3 × 16 × 112 × 112
Conv_1a (64) 64 × 16 × 112 × 112
Pool_1 64 × 16 × 56 × 56
Conv_2a (128) 128 × 16 × 56 × 56
Pool_2 128 × 8 × 27 × 27
Conv_3a (256) 256 × 8 × 27 × 27
Conv_3b (256) 256 × 8 × 27 × 27
Pool_3 64 × 4 × 14 × 14
Conv_4a (512) 512 × 4 × 14 × 14
Conv_4b (512) 512 × 4 × 14 × 14
Pool_4 512 × 2 × 7 × 7
Conv_5a (512) 512 × 2 × 7 × 7
Conv_5b (512) 512 × 2 × 7 × 7
Pool_5 512 × 1 × 4 × 4
FullyConnected_6 1 × 4096
FullyConnected_7 1 × 4096
Softmax

Table 2.1: 3D ConvNet architecture: all 3D convolution kernels are 3 × 3 × 3
with stride 1 in both spatial and temporal dimensions, whereas all pooling kernels
are 2 × 2 × 2 except for Pool_1 which is 1 × 2 × 2. In parentheses, the number of
kernels is indicated for the convolutional layers; nc in this notation stands also for
the number of color channels for the input layer (3 as in the RGB standard).

as shown in Fig. 2.9, the last convolutional layer’s feature maps have varying
high-activation patches for the different frames.

In particular, the feature begins by capturing the subject of the video in the first
frame, and as the motion occurs, it tracks it over the rest of the frames: therefore,
C3D features are able to retain and focus on appearance and motion at different
instants of a video segment, codifying it in an informative descriptor. On the
contrary, the filters of standard 2D ConvNets applied to video footage could only
focus on appearance, with the temporal information and peculiarities of each frame
simply averaged out across all of them.

Moreover, it has been demonstrated, by projecting the features into lower
dimensions, that C3D features are also a more compact and discriminative descriptor
with respect to previous ones: in fact, it is possible to achieve a better performance
using C3D features even if there exists a dimensionality cap to be respected [107].
The better semantic separability of the different action classes observed on the
UCF-101 dataset is also worth mentioning, as shown in Fig. 2.10.
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For further deepening, the reader is referred to the original publication [79].

2.5 Baseline Networks

2.5.1 Supervised Learning Approach
The combined use of RGB frames and Dense Optical Flow as dual input for a
neural network architecture has achieved considerable success in recent publications
[82][85] in the most diverse domains. As a consequence, it should be no surprise
that this framework has been applied also to the anomaly detection task.

The approach is to separately work on the two input media, via 3D-convolutional
blocks6 that progressively extract higher-level features and informative patches, and
then merge together the two obtained representations. This structure is illustrated
in Fig. 2.11.

Although rather straightforward, this path is in fact non-trivial, in the sense
that several architectural choices must be addressed and made.

Firstly, the structure of the 3D convolutional blocks has to be chosen: among
the several solutions proposed over the years, this framework has been applied
relying on the so-called pseudo-3D blocks introduced by Zhaofan Qiu et al. in [108],
which in their turn stem from the 2D Residual blocks, ushered by Kaiming He et
al. for the task of image recognition in [109].

A Residual block, or unit, could be described by the expression:

xt+1 = H (xt) + F (xt) , (2.8)

with xt denoting the input of the t-Residual block, xt+1 its output, H (xt) = xt

being an identity mapping, and F being a non-linear additive residual function.
The expression can be rewritten, using I as the identity operator, as follows:

(I + F) · xt = xt + F · xt := xt + F (xt) = xt+1, (2.9)

which better highlights that the input xt essentially follows a forked path: a
shortcut connection, that is, a connection skipping one or more layers, towards
an additive node, and the normal sequence of weight layers F (xt), usually two
convolutional layers, linearly followed by the same additive node where the two
paths are joined back together. It is important to note that the identity shortcut
connections add no extra parameter to the model, thus no additional computational
complexity, and that the end-to-end trainability of the architecture according to
the stochastic gradient descent and back-propagation methods remains unaltered.

6That is, combinations of 3D-convolutional layers and 3D-pooling layers,
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(a) Pole Vault Action

(b) Apply Makeup

Figure 2.9: Feature maps of the Conv_5b layer for two sample videos from the
UCF-101 dataset: while in the first frame of both videos, the focus of the features is
the global subject (the gymnast and the human face, respectively), in the successive
frames the features focus more on the salient motion occurring in the footage,
encoding it. Images from [79].
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(a) Imagenet (b) C3D

Figure 2.10: T-distributed Stochastic Neighbor Embedding (tSNE) visualization
of the feature embedding of Imagenet features (a) and C3D features (b): the
better separability of videos pertaining to the same classes, indicated via dots of
identical color, is self-evident in the latter, whereas Imagenet features are more
sparse therefore less suitable for video descriptor extraction. Images from [79].

Figure 2.11: The two-stream architecture used in [87], from which this work
stems.

At this point, it is convenient to recall the principle that 3D convolutions are able
to simultaneously model the spatial information and construct temporal connections
among successive frames.

Denoting the size of a 3D convolutional filter as d × k × k with d being the
temporal depth of the kernel of spatial size k×k, it could be consequently decoupled
into a spatial convolution S with a filter of dimension 1 × k × k, equivalent to
a standard 2D convolution, and a temporal convolution T with a kernel of size
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d × 1 × 1, with an ensuing benefit in the computational complexity of the operation.
Hence, the two aforementioned tenets could be united in the following expression,

which represents the mathematical formulation of a pseudo-3D block7 according to
the previously introduced notation:

(I + T · S) · xt := xt + T (S (xt)) = xt+1 (2.10)

A visualization of both a standard Residual block and a pseudo-3D block is
provided in Fig. 2.12.

(a) Residual block (b) Pseudo-3D block

Figure 2.12: A standard Residual block (a) is characterized by two (or more, as
suggested by the dotted line) weight layers, followed by the summing point where
the path of the identity function is combined; its 2D convolutional filters in the
original implementation [109] are of size 3 × 3. A pseudo-3D block (b) decomposes
a single 3D convolution in its temporal and spatial components, with the simple
succession of the two - hence, the application of the d × 1 × 1 convolution on the
output of the spatial 1 × k × k one - heuristically [108] being the best performing
fusion method; the dotted lines suggest the expansibility of this block to a 1 × 1 × 1
factorization for computational purposes and dimensionality restoration. In both
cases, the ReLU function applies after the additive joint.

7More specifically, using the nomenclature provided by Zhaofan Qiu et al. in [108], of a
Pseudo-3D Block of type A.
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Secondly, a paramount decision to be taken is the fusion method of the two
informative flows. The simplest and main approach, used in several aforementioned
solutions like the two-stream ConvNet in [82] and the Two-Stream Inflated 3D
ConvNet (I3D) [85] is to perform a mere average of the outputs of the two paths,
with them being usually a class function score for an action recognition task.

In this case, a more thoughtful method has been applied, referred to by the
authors as a temporal pooling gate, by leveraging two different nonlinear activation
functions and a combination of two layers, one of which is a pseudo-layer due to
the absence of learnable parameters. In particular, the RGB channel has as its
final activation function the Rectified Linear Unit, hence it produces an output
representation ranging in the interval y = [0, +∞[. On the other hand, at the end
of the Optical Flow channel, the sigmoid function is placed, which scales the x in
input to the interval y = [0, +1].

Therefore, by multiplying the output of the RGB channel with the output of
the Optical Flow channel, and following it with a 3D-Max Pooling layer of kernel
size = 8 × 1 × 1, the obtained representation is the result of a self-learned pooling
strategy which utilizes the Optical Flow information as a scaling factor to better
retain and drop the informative features of the RGB channel. This procedure is
similar to the gate strategies adopted in several architectural models to elaborate a
sequential or temporal input, such as an LSTM [87][78].

Finally, three additional sequences of pseudo-3D Convolutional layers and 3D-
Max Pooling layers have been appended after the aforesaid merging node, in order
to have hundreds and thousands of further weights and parameters to learn the
highest-level feature of the whole representation. The comprehensive architecture
is schematized in Tab. 2.2 and envisages also the presence of two Fully-Connected
layers.

Overall, the general framework is the following:

• Video pre-processing: each video is resized and cropped to a fixed resolution
of 224 × 224;

• Gunnar Farnebäck’s Optical Flow computation between each pair of frames
for every video via the Python cv2 library, as described in 2.4.1, obtaining
for each video a 2-dimensional vector of size 2 × 300, with 300 being the total
number of frames and 2 being the two - vertical and horizontal - components
of the Optical Flow;

• RGB frames extraction via the Python cv2 library, obtaining for each video a
3-dimensional vector of size 3×300, with 3 being the number of color channels;

• Creation of 5-dimensional NumPy arrays by concatenating the two representa-
tions;
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Block Layer Filter
Conv3d 1 × 3 × 3@16

RGB and Conv3d 3 × 1 × 1@16
Optical Flow MaxPool3d 1 × 2 × 2

Channels Conv3d 1 × 3 × 3@32
(×2) Conv3d 3×1×1@32

MaxPool3d 1 × 2 × 2
Fusion Multiply
Pooling MaxPool3d 8 × 1 × 1

Conv3d 1 × 3 × 3@64
Conv3d 3 × 1 × 1@64
MaxPool3d 2 × 2 × 2
Conv3d 1×3×3@64

Merging Block Conv3d 3×1×1@64
MaxPool3d 2 × 2 × 2
Conv3d 1 × 3 × 3@128
Conv3d 3 × 1 × 1@128
MaxPool3d 2 × 2 × 2

Fully Connected FC_Layer 128
Layers FC_Layer 128

Softmax 2

Table 2.2: The architecture used in [87]; the number after the at symbol @
corresponds to the number of filters for that specific convolutional layer; the
number 2 in line with the Softmax layer indicates the 2 possible outputs (0,1) of
the binary classification task of violence detection.
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• Sparse sampling of 64 frames out of the 300 for dimensionality reduction;

• Passing of the 64 × 224 × 224 × 5 input through the architecture as visualized
in Fig. 2.11, with the first three components following the RGB channel and
the last two the Optical Flow channel;

• Computing of the binary class for the analyzed video, with 1 representing a
Fight instance whereas 0 stands for Non-Fight footage.

This architecture is end-to-end trainable using the techniques described in Sect.
1.3.

2.5.2 Semi-Supervised Learning Approach
The method proposed by Sultani et al. in [86] falls into the specific category of
Multiple Instance Learning (MIL), which relies on weakly labeled data and deals
with bags of instances instead of single instances [110].

In this context, a bag is defined as an invariant set X of data points:

X = {x1, . . . , xK} , (2.11)

that is as a whole characterized by a single label Y , as follows:

Y =
0, iff q

k yk = 0
1, otherwise

=⇒ Y = max
k

{yk} , (2.12)

with yk being the individual binary label yk ∈ {0,1} for a given data point
xk that is assumed to be inaccessible at training time and, possibly, completely
unknown, thus relaxing the assumption of having accurate high-level annotations.

According to this MIL formulation, the precise temporal locations of the ab-
normal activities in the videos are not needed: only video-level labels on the
entire video are required, simply specifying if the untrimmed footages present some
anomalies are present or not. Therefore, a positive video is a bag Bp of instances,
i.e., temporal segments (p1, p2, . . . , pm), where m is the total number of snippets in
which the original video is split, altogether characterized by the label Y = 1. On
the other hand, a negative bag Bn is a video whose n fragments (n1, n2, . . . , nn)
are all negative instances, i.e., Y = 0.

Bearing in mind the expression of the hinge loss, which is used especially in
Support Vector Machines or in general in classification problems that incorporate
the distance (margin) from the classification boundary, penalizing even correct
prediction but with small margins [111], and for an intended output y = ±1 and a
classifier score ŷ is:
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L(y) = max(0,1 − y · ŷ), (2.13)

the objective function of the described problem to be minimized, for the classifier
w to be learned, is:

min
w


1
z

zØ
j=1

1⃝ú ýü û
max

A
0,1 − YBj

A
max
i∈Bj

(w · ϕ (xi)) − b

BB+ ∥w∥2, (2.14)

with 1⃝ being the hinge loss, YBj
the bag-level label, yi the label of each instance,

ϕ(x) the feature representation of the video segment, b a bias, and k the total
number of bags.

The innovative formulation proposed is to pose the problem of anomaly detection
as a regression one, using a modification of the ranking loss due to the absence of
segment-level annotations: in particular, the objective function has to compare the
segment featuring the highest anomaly score from the positive bag Bp with the
corresponding snippet from the negative bag Bn:

max
i∈Bp
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2
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2
, (2.15)

where Vp and Vn represent anomalous and normal video snippets. It is of
paramount importance to note that, since the positive bag also contains negative
videos, it is not guaranteed that the V i

p selected actually is an anomalous segment,
although it remains very likely [112].

The following is the formulation of the adopted hinge loss that implements the
ranking loss:

Lr (Bp, Bn) = max
3

0,1 − max
i∈Bp

f
1
V i

p

2
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f
1
V i

n

24
, (2.16)

to which two extra constraints for the positive videos V i
p are added, to form the

final formulation:

L (Bp, Bn) = Lr (Bp, Bn) + λ1
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222
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1
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p

2
,

(2.17)

with 1⃝ being a smoothness term which minimizes the difference scores of
successive segments, to reinforce the insight that the anomaly score should vary
gracefully during the video, and 2⃝ being a sparsity constraint, due to the fact that
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typically abnormal events last for a short amount of time with respect to the total
length of the untrimmed videos, and λi with i = 0,1 two tunable weights.

Therefore, the total objective function inclusive of the model’s weights W is:

L(W) = L (Bp, Bn) + ∥W∥F (2.18)
Overall, the comprehensive framework is the following:

• Video pre-processing: each video is resized to a fixed resolution of 320 × 240
and 30 fps;

• Segmentation of each video into a fixed number of not-overlapping clips (32 is
the heuristic number used), with the subsequent formation of two bags, one
positive and one negative, each with 32 segment instances, as shown in Fig.
2.13;

• Extraction of the C3D features, as described in Sect. 2.4.3, for each bag
instance;

• Computing of the anomaly score for each instance using the Fully Connected
Feedforward Neural Network outlined in Tab. 2.3;

• MIL Ranking Loss computation between the highest-score video segments
from each bag, as visualized in Fig. 2.14;

Figure 2.13: The second step of the video processing according to the Semi-
Supervised approach proposed by Sultani et al.: the cutting of a negative (normal)
and of a positive (anomaly) video into a fixed number of temporal segments, and
the bags’ construction. Image from the original publication.
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Layer Dimension
Input 1 × 4096
FullyConnected_1 (ReLU) 1 × 4096
Dropout_1 0.6
FullyConnected_2 1 × 512
Dropout_2 0.6
FullyConnected_3 (Sigmoid) 1 × 32
Dropout_3 0.6
Output 1

Table 2.3: The simple architecture of the Fully Connected Feedforward Neural
Network which predicts the anomaly score of a video starting from its pre-computed
C3D features. Each segment of the two bags is processed first by the standard C3D
illustrated in Tab. 2.1 and then by this architecture: the comprehensive output is
a score for each segment.

 MIL Ranking Loss

Negative BagPositive Bag
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Figure 2.14: The final step of the framework: the highest-score segments from
each bag (in this visualization, the positive is in red, whereas the negative thus
normal is in red dots) are matched, maximizing their separation using the Loss
defined in Eq. 2.17.

53



Methods and Techniques

2.6 Technical Considerations
Both the presented approaches have their merits, which have been extensively
expanded by researchers, and, being the problem open, there is not a perfect
solution. In general, the methods following a semi-supervised or an unsupervised
learning path usually provide more generalization potential at the cost of major
added complexity and higher computational needs.

More in detail, as deepened by [112], a problem of most MIL-based methods in
this application is the high sensibility to label noise: the possibility of the mistaken
selection of a normal snippet as the top abnormal event in an anomaly video is a
present risk in the positive bag construction. Moreover, the normal snippets may
on the contrary be relatively easy to fit, undermining the training convergence.

Additionally, and more importantly, the assumption of each positive video
containing only one abnormal snippet could in fact prove to be incorrect. For
example, it should be reminded that the positive videos of the UCF-Crime dataset
have median duration in the order of several minutes, though they present widely
sparse lengths, from the 4 seconds of Assault_038 to the over 35 minutes of
Arrest_047: nevertheless, according to this framework, all of the videos in the
pre-processing phase are indistinctly divided into a fixed amount of 32 clips.

This entails two main drawbacks: the chance of having a more effective training
process containing more abnormal snippets per video is missed, making the more
lengthy videos only burdensome from a computational and storage point of view
and not exploiting their informative specificity; the selection by the model of
the least relevant of the abnormal snippets among the various possible abnormal
snippets in a positive bag.

Therefore, for the combination of these technical reasons and the limitedness of
the available resources, the problem has been tackled following the same approach
as the one in Sect. 2.5.1, although it may result more simplistic.

2.7 Metrics
Having posed the problem of anomaly and violence detection as a binary classifica-
tion task, the metric of reference is accuracy.

Definition 2.7.1 (Accuracy). The accuracy of a classification algorithm is
defined as the number of true positives and true negatives divided by the sum of
the number of true positives, true negatives, false positives, and false negatives,
and represents the number of correctly predicted data points:

accuracy = (TP + TN)
(TP + TP + FP + FN) (2.19)
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Another relevant metric used in this work, in particular in the optical flow
computation discussion, is the Average Endpoint Error.

Definition 2.7.2 (Endpoint Error). The End-to-end point error, or Endpoint
Error in brief, between two optical flow vectors of the same dimensions, Vtruth and
Vest, is a vector of equal dimensions as the original, in which each point is defined
as the Euclidean distance between the two:

EPE = ||Vtruth − Vest|| (2.20)
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A Novel Architecture

In this chapter, the proposed architecture for solving the problem of anomaly
and violence detection on the RWF-2000 dataset is illustrated, with each section
specifically dedicated to its threefold main innovative peculiarities.

Finally, Sect. 3.4 is reserved for its whole structure: the adopted framework,
following the previous works on this task, has been the construction of a two-stream
architecture with RGB frames and estimated optical flow vectors as the dual inputs.
It is important to note that all the code implementation of the said model has been
done leveraging the Keras API [113], which is built on top of TensorFlow 2 [114].

3.1 Improved 3D-Inflated Inception Block
The first contribution of this novel architecture is the proposal of an innovative
convolutional block, which stems from the aforecited Inception Convolutional 2D
block (extensively described in Sect. 1.3.3 and visualized in Fig. 1.16).

This architecture has been already expanded in [85] to being applicable to
video inputs, therefore starting with a 2D block and inflating the filters of the
convolutional and pooling layers which is composed of an additional temporal
dimension. Due to the fact that filters are usually square, the result is the usage of
cubic filters of size N × N × N .

In Fig. 3.1 a representation of such a block compared with the original 2D
implementation is offered: the main difference between the two implementations,
apart from the obvious one less axis in the 2D version, is the absence of the 5 × 5
convolution in its 3D counterpart, deemed unnecessary by the authors with respect
to the dimensionality of the inputs, and replaced by an additional parallel 3 × 3 × 3
convolution.

This inflating process could thereupon be applied also on the more recent and
optimized InceptionV3 block [56], which integrates a 1×1 convolutional block before
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(a) Original Inception block (b) Inflated Inception block

Figure 3.1: The comparison between the 2D Incpetion block (left) and of the
Inflatet 3D Inception block as presented in [85]: note the replacement of the 5 × 5
convolution with an extra 3 × 3 × 3 convolution.

the so-called one-time factorization of the convolutions, that is the decomposition
of the computationally more complex convolutions of kernel size N × N into the
sequence of two simpler ones, i.e., a convolution with a 1 × N filter followed by a
N × 1 one. In the 2D application, this has proven to cause a computational cost
saving almost exponential to N .

Moreover, this factorization and optimization principle follows the core tenet of
the pseudo-3D block illustrated in Sect. 2.5.1, that is, to decouple the temporal
convolution and the spatial convolution. As demonstrated in [108], the mere
sequence of the two decoupled convolutions offers also the best performance with
respect to the other more complex proposals, which include the concatenation of
the output of the S-convolution and T-convolution applied to the same input and
the cascade of the two convolutions with an additional shortcut connection in order
to enable a direct connection between S and the final output

Finally, the presence of the 5 × 5 convolution has been restored: in particu-
lar, it has been re-instituted but replaced by factorizing it into two consecutive
3 × 3 convolutions, as suggested by the principles in [56] which ensures a relative
gain of ≈ 28% in computational costs. Self-evidently, these 2D convolutions have
been in turn inflated and decoupled, for a total sequence of five convolutions
with respective filters of size 1 × 1 × 1 (for dimensionality reduction), 1 × 3 × 3,
3×1×1, 1×3×3, and 3×1×1, in accordance with the other branches of the block.

Overall, the block proposed in this work is the concatenation of four branches
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presenting the following characteristics:

• A convolution filter of size 1 × 1 × 1;

• The sequence of three convolutions with respective kernels of dimensions
1 × 1 × 1, 1 × 3 × 3, and 3 × 1 × 1;

• The series of five convolutions with respective filters of size 1 × 1 × 1, 1 × 3 × 3,
3 × 1 × 1, 1 × 3 × 3, and 3 × 1 × 1;

• The sequence of a Max Pooling layer with the kernel of size 1 × 3 × 3 and of a
convolution 1 × 1 × 1.

All the convolution blocks have as kernel initializer the "He Normal" [115] with
the Rectified Linear Unit as the activation function; the other features of these
layers are a stride factor of 1×1×1 and the padding option set to "same", therefore
having the output size equal to the input size, except for the convolutions used
to reduce the dimensionality (the ones with filter = 1 × 1 × 1) which have a
zero-padding.

Having used the Keras framework, by concatenation of the four branches it is
meant the use of the Concatenate layer, which is a class of layers that takes as
input a list of tensors, in this case, the four outputs of the respective four branches,
and returns a single tensor that is the chain of all inputs. The block is illustrated
in Fig. 3.2

3.2 Optical Flow-based Intelligent Video Crop-
ping

As mentioned throughout the present thesis, the primal issue in working with video
footage as data input is the ensuing memory occupation and consumption, which
clashes with the resource constraints and with some low-latency and/or real-time
scenarios. Notwithstanding the used compression formats and strategies illustrated
in Sect. 1.1.3, the approach followed in nearly every work on the subject is the
sparse sampling of the video clips, leveraging once again the great correlation
among frames close in time.

However, other dimensionality reduction strategies could be still needed, one
among all the reduction of width and length of the videos to a uniform size: this
also addresses the problem of having video footage of different dimensions, whereas
a Deep Learning model, whatever it might be, needs a staple and precise input
dimension. However, the act of resizing the whole frame could entail a non-negligent
loss of information which could severely affect the model’s performance.
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Figure 3.2: The structure of the proposed block, here named Iv3D block.

Therefore, in this work, a novel method for a sensible dimensionality reduction
of the input data, named Intelligent Video Cropping, is outlined. The intuition
behind this proposal is the fact that not all the region captured by a CCTV camera,
which usually covers a large area due to its strategic location, may be relevant for
the anomaly detection task: this tenet is ever more enforced when the clips are of
short temporal length since it becomes more implausible, although not impossible,
that the significant actions happen all over the entire frame.

Hence, the core idea is to use the computation of the optical flow over a sparse
sample of the video frames to construct an Intensity Map by stacking together the
features extracted by the OF calculation (or estimate). This is done by computing
the norm of each vector indicating the motion displacement intensity, therefore
forming a map, and then by summing all the intensity maps to form a final
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representation.
Subsequently, a Region of Interest (RoI) is determined if the final intensity map

encloses an area occupying a fraction of the whole frame. In this case, the cropping
of the video is conducted, pairing it with a suitable additional resizing procedure if
the obtained resolution is nonetheless greater than the required input dimensions;
therefore, all the procedure is intelligent in the sense that it is entirely adaptive
and dependent on the specific clip case1. On the other hand, if the movement
features of the samples are more diffused, a standard resizing of the whole clip is
performed.

Altogether, the complete algorithm of this procedure, visualized in Fig. 3.3, is
the following:

• Sparse sampling of 10 pairs of frames from the video, each one at a time
distance of 0.5 second - thereby 15 frames - from the previous couple, with a
random coefficient determining the initial frame in the frame interval [0 − 14];

• Computation of the optical flow between each pair of frames, hence obtaining
5 bi-dimensional motion maps;

• Production of 5 intensity maps by computing the norm of each vector;

• Sum of the 5 intensity maps to obtain the final intensity map and calculation
of its centroid;

• A three-way forked path is then envisaged:

– If the Region of Interest is localized in an area equal or smaller than
220 × 220 pixels, cropping of the entire video centering in the centroid of
the RoI, as in Fig. 3.3a with a padding of 2 pixels on each extremity to
reach 224 × 224 pixels; an exception to this centering staple is foreseen
with the purpose to avoid to chop beyond the frame boundaries when
the movement is localized near the edges of the scene, in which case the
center of the cropped frames would not correspond to the centroid of the
RoI;

– If the Region of Interest is localized in an area smaller than the 60% of
the whole frame with empty vertical and horizontal bands of at least 15%,
cropping of the clip centering in the centroid of the RoI to fully contain

1For the sake of exhaustiveness, it should be noted that a similar approach was theorized by
Ming Cheng et al. in [87], although it was not applied in their final implementation publicly
available on GitHub [116]; moreover, the cropping strategy proposed by them had fixed the
cropping region dimensions, therefore encountering problems in the case of diffuse movement.
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it with a 2 pixels padding per side, and subsequent adaptive resizing to
obtain a square of height and width each equal to 224 pixels;

– Otherwise, standard resizing of the whole clip to final dimensions of
224 × 224 pixels, as in Fig. 3.3b.

The final result of this strategy is having clips of the desired width and length
224 × 224 encapsulating more relevant information, which means a less compressed
representation of the region of interest of the task, than clips with standard data
pre-processing, at the cost of a slight additional computation.

3.3 Fine-Tuned LiteFlowNet2 for Optical Flow
Estimation

The Gunnar Farnebäck’s algorithm for the Optical Flow extraction, outlined in
Sect. 2.4.1, is computationally very expensive. Moreover, the just outlined method
calls for additional computation of the optical flow, although to a lesser scale
and less impactful to the overall performance. Among the various approaches
available, relevance has been bestowed in this work to the CNN-based methods for
the estimation of the optical flow.

In particular, the model named LiteFlowNet2, proposed by Tak-Wai Hui et al.
in [102] and visualized in Fig. 3.4, has been picked among the alternatives: while
for a more deep understanding of its working flow the reader is referred to the
original implementation [117], it is important to underline the main characteristics
that render this choice suitable for the task.

Firstly, compared to other architectures, it is extremely fast: it requires 6.42 M
parameters, while for comparison the original FlowNet2 has 162.49 M learnable
weights; therefore, it reaches an impressive real-time inference performance on
full-sized 1024 × 436 images when an NVIDIA GPU as the GTX 1080 is adopted,
i.e., an fps processing superior to 24fps with less than 40ms of runtime for each
pair of frames [102].

Secondly, and equally relevant, it has a first-rate trade-off between being
lightweight and performing well: after being trained on the Flying Chairs and
Things3D [118] datasets, the measured Average end-point error of the model on
the two reference benchmark datasets on which it has been tested, i.e., Sintel and
KITTI 2012, are respectively of 3.85 and 3.77, at the time the state of art perfor-
mances and still to date among the best results regardless of the computational
heaviness.

Instead of using the provided model with its off-the-shelf weights, a global
fine-tuning procedure of the LiteFlowNet2 pre-trained model has been performed,
to further strengthen its performance in the application case.
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(a)

(b)

Figure 3.3: Two different application cases from the RWF-2000 dataset: in the
first one, the intensity map obtained by the stacking of the computed optical
flows encloses a localized and relatively small area of the clip, which is therefore
adaptively cropped; in (b), the movement is diffused, hence it is applied only the
resize of the video footage.
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Figure 3.4: A broad representation of the architecture of LiteFlowNet2 from
[102]: the main takeaway is that the network possesses a dual pyramidal feature
descriptor, which is the encoder, here with a design of only a 3-level pyramid
for easing the understanding, and a cascaded module, which is the decoder, for
inferring the optical flow starting from a pair of feature maps from the encoder;
several additional peculiarities, regularizers, and optimizers are here not displayed.

A random subset of the UCF-Crime videos for a total of 10000 frame pairs has
been used in this respect, with the optical flows computed via Gunnar Farnebäck’s
algorithm employed as ground truth for the optical flow estimation task. This
choice has been done due to the similarities in appearance and portrayed movement
between the UCF-Crime and the RWF-2000 datasets; the latter could not have
been used for this purpose otherwise it would have caused data leakage [119]. It is
important to add also that the randomly selected frames respected the resolution
distribution of the RWF-2000 dataset as visualized in Fig. 2.5.

In order to ease the work, the TensorFlow-based re-implementation of Lite-
FlowNet2 provided by [120], instead of the original Caffe one in [117], has been
used as the pre-trained model. This fine-tuning procedure has been accomplished
by setting all the layers weights to learnable, with initial learning rate = 6e-5
as done by the same authors in their fine-tuning trials and reducing it by half for
every increment of 10K iterations, for a total of 50K iterations.

The results of this model, hereinafter referred to as FT-LiteFlowNet2, are
reported in Tab. 3.1: the improvement of the performance on the UCF-Crime
subset is small but non-negligible.
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Model Sintel Final KITTI 2012 UCF-Crime*
LiteFlowNet2 3.85 3.77 11.31
FT-LiteFlowNet2 3.88 4.11 9.88

Table 3.1: Comparison of the AEE of the original model and of the fine-tuned
one on the two benchmark datasets and on the reduced subset, hence the asterisk,
of the UCF-Crime dataset used in the fine-tuning procedure; the best values are
reported in bold.

3.4 Architecture
The architecture of the proposed model is visualized in Fig. 3.5 and extensively
deepened in Tab. 3.3, 3.4, and 3.2.

Figure 3.5: Graphical representation of the proposed architecture: the orange
blocks represent a pseudo-3D block, the red blocks exemplify the Concatenate
layers, the green block is the Multiply layer, the yellows blocks are the two final
Fully Connected layers, whereas the illustration of the four employed Improved
Inceptionv3 3D blocks is consistent with the visualization in Fig.3.2.

Comprehensively, it is a two-stream model with input size 64 × 224 × 224 × 5,
that is, 64 × 224 × 224 × 3 for the RGB channel and 64 × 224 × 224 × 2 for the OF
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channel. The number 64 indicates the sparse sample of 64 frames from each video
for dimensionality reduction, done in coherence with [87].

Each channel is composed of a pseudo-3D block, i.e., the sequence of a S-
convolution, a T-convolution, and of a Max Pooling 3D layer, to which follows the
first of the two novel Improved Inceptionv3 3D blocks adopted for each channel.
After two successive pseudo-3D blocks and the second Improved Inceptionv3 3D
block, the two branches are then multiplied, by leveraging the use of the sigmoid
activation function in the last convolutional layers of the OF channel, as indicated
in Tab. 3.4.

It is important to add that, for dimensionality compatibility, the Max Pooling 3D
layer of the last pseudo-3D block of the optical flow channel, named OF Block_3,
has filter of size 1 × 3 × 3 instead of 1 × 2 × 2 as in all the other pseudo-3D blocks
for both the optical flow and the RGB branches. In this way, the outputs of the last
Concatenate layers of the second Improved Inceptionv3 3D block of each channel
are equal, 64 × 18 × 18 × 112, thus enabling the product of these two feature maps
using the optical flow branch as a temporal pooling gate by leveraging the sigmoid
activation function in the last OF convolutional layers in place of the Rectified
Linear Unit.

After the fusion block, which is also composed of a Max Pooling 3D layer, three
successive pseudo-3D blocks follow, with the main features being the presence
of 64 filters for each convolutional layer and the cubic nature of the three Max
Pooling layers. This choice has been made in order to reach a proper dimensionality
reduction of the feature maps, with the output dimension of the last layer of the
Full_Block_3 being 1 × 2 × 2 × 128.

Finally, a Flatten layer has been introduced to unroll the map into a flat shape
of 512 elements, with 512 = 2 × 2 × 128. Three Fully Connected layers, or, as
defined in Keras, Dense layers, conclude the architectures, with the first one being
characterized by a Dropout regulator of 0.25 at training time, the second one with
no regularization due to the smaller dimensionality, and the third one being the
prediction layer.

Since the problem is issued as a binary problem, the sigmoid activation function
should have naturally been used to obtain as the final output the binary label.
However, by implementing the softmax activation function, it is possible to act on
the output of the form (P(Fight),P(Non-Fight)) with P(Fight)+P(Non-Fight)= 1
with a different threshold operator: this possibility has been therefore left open in
this work.

Comprehensively, the model is composed of a total of 536,370 learnable parame-
ters for a file size in the .h5 format equal to just 2.9 MB.
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Block Layer Filter Size or Output Dimension Parameters
Input Lambda 64 × 224 × 224 × 5

RGB Channel see Tab. 3.3 108656
OF Channel see Tab. 3.4 108512

Fusion Multiply 64 × 18 × 18 × 112
Pooling MaxPool3d 8 × 1 × 1

Conv3d 1 × 3 × 3@64 64576
Full_Block_1 Conv3d 3 × 1 × 1@64 12352

MaxPool3d 2 × 2 × 2
Conv3d 1 × 3 × 3@64 36928

Full_Block_2 Conv3d 3 × 1 × 1@64 12352
MaxPool3d 2 × 2 × 2
Conv3d 1 × 3 × 3@64 73856

Full_Block_3 Conv3d 3 × 1 × 1@64 49280
MaxPool3d 2 × 2 × 2
Flatten 1 × 512

Final_Block Dense 128 with Dropout=0.25 65664
Dense 32 4128

Prediction Dense 2 66

Table 3.2: Full model’s architecture.

3.4.1 Ablation Study
In order to analyze the contribution of each of the presented components to the
final model’s performance, an ablation study has been carried out, involving a total
of 4 models, as follows:

• Full_Model (or FT-LFN-Full_Model), that is the model as described before-
hand and in the tables below;

• GF-Full_Model, that is the same architectural network as the previous one,
with the exception of using Gunnar Farnebäck’s algorithm for the optical flow
calculation in place of the Fine-Tuned LiteFlowNet2;

• FT-LFN-RGB_Model, which is a reduced version of the Full_Model involving
only the RGB channel;

• FT-LFN-OF_Model, which is a reduced version of the Full_Model involving
only the OF branch.

In conclusion, in all the experiments the FT-LiteFlowNet2 model has been used
for the sparse optical flow estimation necessary for the newly introduced intelligent
cropping strategy described in this chapter since little relevance would have had a
more fine-grained ROI construction via a point-wise elaborate computation.
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Block Layer Filter Size or Output Dimension Parameters
Input Lambda 64 × 224 × 224 × 3

Conv3d 1 × 3 × 3@16 448
RGB Block_1 Conv3d 3 × 1 × 1@16 784

MaxPool3d 1 × 2 × 2
Branch_1 Conv3d 1 × 1 × 1@16 272
Branch_2 MaxPool3d 1 × 3 × 3

Conv3d 1 × 1 × 1@32 544
Conv3d 1 × 1 × 1@16 272

Improved Branch_3 Conv3d 1 × 3 × 3@32 4640
Inceptionv3 Conv3d 3 × 1 × 1@32 3104
3D Block_1 Conv3d 1 × 1 × 1@16 272

Conv3d 1 × 3 × 3@32 4640
Branch_4 Conv3d 3 × 1 × 1@32 3104

Conv3d 1 × 3 × 3@32 9248
Conv3d 3 × 1 × 1@32 3104

Branches_Fusion Concatenate 64 × 74 × 74 × 112
Conv3d 1 × 3 × 3@32 32288

RGB Block_2 Conv3d 3 × 1 × 1@32 3104
MaxPool3d 1 × 2 × 2
Conv3d 1 × 3 × 3@32 9248

RGB Block_3 Conv3d 3 × 1 × 1@32 3104
MaxPool3d 1 × 2 × 2

Branch_1 Conv3d 1 × 1 × 1@16 528
Branch_2 MaxPool3d 1 × 3 × 3

Conv3d 1 × 1 × 1@32 1056
Conv3d 1 × 1 × 1@16 528

Improved Branch_3 Conv3d 1 × 3 × 3@32 4640
Inceptionv3 Conv3d 3 × 1 × 1@32 3104
3D Block_2 Conv3d 1 × 1 × 1@16 528

Conv3d 1 × 3 × 3@32 4640
Branch_4 Conv3d 3 × 1 × 1@32 3104

Conv3d 1 × 3 × 3@32 9248
Conv3d 3 × 1 × 1@32 3104

Branches_Fusion Concatenate 64 × 18 × 18 × 112

Table 3.3: Structure of the RGB Channel.
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Block Layer Filter Size or Output Dimension Parameters
Input Lambda 64 × 224 × 224 × 2

Conv3d 1 × 3 × 3@16 304
OF Block_1 Conv3d 3 × 1 × 1@16 784

MaxPool3d 1 × 2 × 2
Branch_1 Conv3d 1 × 1 × 1@16 272
Branch_2 MaxPool3d 1 × 3 × 3

Conv3d 1 × 1 × 1@32 544
Conv3d 1 × 1 × 1@16 272

Improved Branch_3 Conv3d 1 × 3 × 3@32 4640
Inceptionv3 Conv3d 3 × 1 × 1@32 3104
3D Block_1 Conv3d 1 × 1 × 1@16 272

Conv3d 1 × 3 × 3@32 4640
Branch_4 Conv3d 3 × 1 × 1@32 3104

Conv3d 1 × 3 × 3@32 9248
Conv3d 3 × 1 × 1@32 3104

Branches_Fusion Concatenate 64 × 112 × 112 × 112
Conv3d 1 × 3 × 3@32 32288

OF Block_2 Conv3d 3 × 1 × 1@32 3104
MaxPool3d 1 × 2 × 2
Conv3d 1 × 3 × 3@32 9248

OF Block_3 Conv3d 3 × 1 × 1@32 3104
MaxPool3d 1 × 3 × 3

Branch_1 Conv3d (sigmoid) 1 × 1 × 1@16 528
Branch_2 MaxPool3d 1 × 3 × 3

Conv3d (sigmoid) 1 × 1 × 1@32 1056
Conv3d 1 × 1 × 1@16 528

Improved Branch_3 Conv3d (sigmoid) 1 × 3 × 3@32 4640
Inceptionv3 Conv3d (sigmoid) 3 × 1 × 1@32 3104
3D Block_2 Conv3d 1 × 1 × 1@16 528

Conv3d 1 × 3 × 3@32 4640
Branch_4 Conv3d 3 × 1 × 1@32 3104

Conv3d (sigmoid) 1 × 3 × 3@32 9248
Conv3d (sigmoid) 3 × 1 × 1@32 3104

Branches_Fusion Concatenate 64 × 18 × 18 × 112

Table 3.4: Optical Flow Channel: the use of the sigmoid activation function in
the last convolutional layers is emphasized.
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Chapter 4

Experimental Results

4.1 Data Preparation

As previously mentioned, the RWF-2000 dataset, outlined in Sect. 2.3.2, has been
used in its integrity for all the experiments carried out in the present work. Since
at the time, it was not directly and publicly available, access to its usage has been
granted for this purpose by the authors, Ming Cheng et al., via a suitable request
documentation to the Speech and Multimodal Intelligent Information Processing
(SMIIP) lab at the Duke Kunshan University, China.

The original 80% − 20% split into Training and Validation set has been kept, to
render the performance evaluation comparable with the state of the art, precisely
due to being delivered under the same conditions. Moreover, since the 2000 clips
of which it is composed are extracted from about 1000 unique videos, a considered
approach has been carried out by the authors of the dataset in the partition, which
this work has not the intention to alter.

As a matter of fact, having clips from the same video present in both the training
and the validation sets would have caused data leakage, an undesirable problem to
avoid at all costs in a model training insofar as the network would have had already
available information extremely similar to what it is trying to predict, undermining
both the fairness of the obtained results and the model’s generalization capability.

The first pre-processing operation performed has been the conversion of all the
2000 clips from the original .avi format into a more common and web-friendly
MPEG-4 codec, coherently with the assumption of the model being used on clips
at the disposal.

Secondly, the intelligent video cropping technique described in Sect. 3.2 has
been operated, using the estimated optical flow information via the fine-tuned
LiteFlowNet2 model. After this step, all the 2000 videos had a spatial resolution of
224 × 224 pixels, as required by the architecture, either by the cropping procedure
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or by simply resizing the whole frame.
The selection of 64 frames from the 150 of which each clip is composed has

been performed via uniform sampling, that is sampling under a uniform probability
distribution. After the selection of their indices, in the RGB channel, the frames
were simply extracted via the cv2 library and the VideoCapture functionality.

On the other hand, for the OF branch also the frame at interval i + 5 was
extracted for each fi with i being the original index of the frame in the global clip;
afterward, the pairs of frames were converted into an 8-bit grey-scale color method
and finally, the optical flows were computed via the fine-tuned LiteFlowNet2 or
via Gunnar Farnebäck’s algorithm, obtaining 128 vector maps (64 for each axis),
stored in the same .npy vector as the RGB frames.

The constitution of a Data Generator was made necessary in order to parallelize
the work; moreover, all the data augmentation techniques have been processed at
runtime via the aforementioned Data Generator class.

The augmentation methods implemented with their respective ranges were the
following:

• Random horizontal flips of the whole video with a probability of 0.5;

• Random color jitters of the whole video in the HSV space, that is the variation
of the saturation of the whole clip with uniform distribution in the interval
[-0.2,0.2] and of the hue value in the interval of [-30°,30°]; additional suitable
controls of the final value of saturation and hue have been added to avoid going
out of scale, as follows: s|s<0 = 0, s|s>1 = 1; h|h<0◦ = 0◦, and h|h>360◦ = 360◦;

• Random video horizontal shears of the whole video, that is the appliance
of a transformation matrix with a probability of 0.5 which transforms each
pixel (x, y) into (x + α · y), hence forming a "parallelogrammed" frame video;
the filling of the blank portion of the frame has been made via the "nearest"
method, that is, the horizontal application for each row of the same pixel
value as the last pixel on that edge in the deformed image;

• Random pixels shifts of the whole video, with the range in the interval of [0,4]
pixels to comply with the padding envisaged by the cropping strategy;

• Gaussian blur of the whole video with σ = [0,3];

• Random noise of the type "salt and pepper" [121] via the random_noise
function with argument value = 0.5 which means an equal ratio of salt and
pepper noise;

• Random brightness shifts in the range of [-30,30] with a probability of 0.5 for
each frame, thus not illuminating or darkening the whole video clip but simu-
lating flash effects and lights switching on/off; this augmentation procedure
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has been carried out only in the RGB channel to refrain from interfering with
the optical flow estimation.

4.2 Model Training
Before discussing the training parameters, it is important to note that, for time-
saving reasons, the deeper hyper-parameter tuning has been performed relying only
on the Full Model’s performance, adapting the obtained observations on the other
tested models. This could have resulted in slightly under-optimal performance
results of the latter, yet fully maintaining the validity of the experiments.

As far as the hyper-parameters are concerned, the tested optimizers have been:

• Adam optimizer, which stands for Adaptive Moment Estimation and calculates
an exponential moving average of the gradient and the squared gradient,
controlled in their decay rates by two parameters β1 and β2, usually chosen
close to 1.0 and specifically put equal to 0.9 and 0.999, respectively;

• SGD optimizer with momentum, which is a component that accelerates the
gradient descent in the relevant direction and dampens fluctuations, equal to
0.9 and weight decay rate equal to 1 · 10−6;

In both cases, the reported values have been the result of a random search
technique to explore the hyper-parameters space: several starting values for each of
the aforementioned hyper-parameters have been handpicked leveraging the empirical
best practice available in the literature, which also suggested fixing ϵ = 1 · 10−8 for
the Adam optimizer, and the results of the arising random combinations have been
studied to choose the best combination in each case.

The starting learning rate has been then put equal to 1 · 10−2 with two possible
callbacks for its adaptation:

• A fixed scheduler, which reduced the learning rate to 1
10 of the original every

10 epochs;

• An adaptive scheduler via the ReduceLROnPlateau callback supplied by the
Tensorflow API, with factor =0.5 and "patience" equal to 3 epochs, thus
halving the learning rate if the observed metric (i.e., validation loss) has
stopped improving over the last observation window parameterized with the
patience value.

No particular improvement has been noted with the use of the latter, therefore
the fixed scheduler has been chosen for its computational lightweight.

Finally, four batch size dimensions have been tested, namely 32, 16, 8, and
4, with a consequent number of processes to spin up due to the process-based
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threading procedure, in Keras, workers, equal to half of the respective batch size.
Moreover, since a Data Generator has been used, the maximum queue of the
generator had to be picked: despite the default value being 10, it was found that
setting maxqueuesize=8 proved to be more performing.

In conclusion, the final choice has been the use of the Adam optimizer and of a
batch size equal to 8, therefore a number of concurrent processes equal to 4.

The number of epochs has been set to 30, with 200 iterations per epoch for a
total of 320000 steps, with the best model on the validation loss being saved before
the occurrence of the eventual overfitting phenomenon.

The selected loss function has been the categorical cross-entropy loss, which
is constituted of a softmax activation function on top of a softmax loss, and it is
perfectly suitable for one-hot encoded label vectors as in this case. Needless to say,
the only relevant measured metric has been the accuracy of the prediction.

All the model training has been performed on the Google Colab platform, mainly
leveraging the NVIDIA® T4 and NVIDIA® V100 GPUs, with 52GB of RAM and 2
virtual CPUs, that are physical CPUs assigned to a virtual machine, with processors
Intel® Xeon® @2.20 GHz. On these conditions, the training time took a median of
≈ 449 seconds per epoch.

Fig. 4.1 shows the full model training results for the training and validation sets,
whereas in Fig. 4.2 the same representation is delivered for the two single-branch
models.

(a) (b)

Figure 4.1: The performance of the Full model.
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(a) (b)

(c) (d)

Figure 4.2: The performance of the two single branch models over the training
and validation set: the slight sub-optimal hyper-parameter tuning is evident in the
more noisy graphs with respect to Fig. 4.1.
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4.3 Performance Evaluation
The results are reported in Tab. 4.1 with a comparison with the state of art models
available and tested on the same dataset. The performance values of these reference
models and their specifications have been obtained from the dedicated publications
reported inside the table, or via the PapersWithCode benchmark table for the
dataset [122] excluding the ones trained with additional data1.

Model Accuracy (%) Parameters (M)
C3D [79] 82.75 94.8
I3D (RGB Only) 85.75 12.3
I3D (OF Only) 75.50 12.3
I3D [85] 81.50 24.6
Flow Gated Network (RGB Only) 84.50 0.248
Flow Gated Network (OF Only) 75.50 0.248
Flow Gated Network (C3D Fusion) 85.75 0.507
Flow Gated Network [87] 87.25 0.273
SepConvLSTM-C (RGB Only) 83.75 0.186
SepConvLSTM-M [124] 89.75 0.333
SPIL ConvNet [125] 89.30 -
FT-LFN-Model (RGB Only) 87.75 0.428
FT-LFN-Model (OF Only) 81.40 0.427
FT-LFN-Full Model 90.45 0.536

Table 4.1: Results compared with the state of the art; the best result overall is
reported in bold; regarding the SPIL ConvNet model, no detailed information on
the weights count or on the FLOPS complexity was possible to extract from the
reference paper, nor the code implementation was made available by the authors,
hence the absent number.

As shown, the Full Model has outperformed the state of the art best performing
networks on the RWF-2000 dataset, reaching an impressive 90.45% accuracy on
the validation set, for an increase of +0.7% with respect to the second best model,
SepConvLSTM-M, in the performance.

Just as important, it is to note that the complexity of the model is in the same
order of magnitude with two of the best-performing networks, SepConvLSTM-M
and Flow Gated Network, and way more lightweight than the de-facto standard
architectures C3D and I3D (respectively, ≈ 177 and ≈ 46 times bigger).

1It is the case of the two-stream SSHA network by Hamid Mohammadi and Ehsan Nazerfard
in [123], which reaches a 90.3% accuracy by training on another dataset together with RWF-2000.
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The results of the single branch models are equally as impressive, with the
RGB-Only model being the best performing model among those using only the
extracted frames as input, with an out-performance of +2% in accuracy. At the
same time, the OF-Only model has crushed the competition, reaching a +5.9% in
the evaluated metric, proving the quality of the proposed architecture and of the
fine-tuned LiteFlowNet2 for optical flow estimation.

For good measure, the fusion procedure is effective to the extent that the Full
Model is clearly the most precise of the three, therefore gaining more insight with
the optical flow branch acting as a temporal pooling gate, and further processing
the obtained feature maps. For thoroughness, compare this behavior with the I3D
case, where the Fusion model formed of the simple average of the output of the two
branches experiences a performance degradation with respect to the RGB-Only
model.

The visualization of the application of the FT-LFN-Full Model on a first-time
video footage is presented in Fig. 4.3, with both cases of correct and incorrect
predictions, to demonstrate its generalization capabilities and straits.

Finally, Tab. 4.2 shows the pre-processing speed and the inference time (on
an already pre-processed clip) of the two Full Model versions, the one using the
fine-tuned LiteFlowNet2 for optical flow estimation and the one adopting Gunnar
Farnebäck’s algorithm. This data has been collected under the same conditions, i.e.,
making the model run on Google Colab with NVIDIA® T4 GPUs, and averaged
over several runs on the validation set.

Model Accuracy (%) Pre-processing (s) Inference (s)
FT-LFN-Full Model 90.45 0.63 1.25
GF-Full Model 90.46 4.35 1.26

Table 4.2: Speed comparison of the two models: by the pre-processing time it is
referred to the transformation of a 5-second clip into the suitable 64 × 224 × 224 × 5
input format, while the inference time is the time for predicting the output label of
an already pre-processed input clip.

While no significant difference can be encountered in the accuracy percentage
and in the inference time, the pre-processing speed of the two models greatly differs,
to the benefit of the FT-LFN-Full Model, which shows potential for being used in
a real-time scenario.
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Figure 4.3: Qualitative results of the proposed FT-LFN-Full Model for violence
detection on a new, unseen video, retrieved from the YouTube platform: the first
two rows contain examples of correctly predicted clips; the last row presents a
failure case, where probably the compound movement of the subjects, in particular
the shadow-boxing of one of them, may have led the model towards an incorrect
prediction despite the absence of violence in the clip.
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4.4 Interactive Utility
A basic interface to aid the usability of the trained model has been produced: it
consists of a utility by which a video clip can be uploaded and it is automatically
pre-processed and evaluated. It has been built on the Google Colab platform
mainly leveraging the same pre-processing as the dataset preparation, with the
additional use of the ffmpeg and cv2 library to perform the necessary supplemental
transformations (namely, the measurement of the length of the video and the split
into 5-second clips).

After each clip is passed through the model and the predicted output label has
been obtained, the user is presented with two types of output:

• A log file having name structure as "video_name_log.txt" containing the
moments of time of the whole video where some violent action has been
detected (e.g., in the form of "Detected violence starting at 0:15:10
and ending at 0:15:15);

• The clips labeled as containing abnormal activities for further manual investi-
gation and skimming; the "normal" clips, on the other hand, are discarded.

Obviously, in the case of continuative violence, that is, consecutive clips all
labeled as "1-Fight", their single outputs are merged into a unique video file and
aggregate starting and ending points in the textual log. This procedure is as a
whole visualized in Fig. 4.4.

Figure 4.4: The application framework of the trained model on a new unseen
video.
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Chapter 5

Conclusions

This work had the aim of creating an interface with an automated workflow to
help rationalize the workload of legal personnel exploring documentary evidence
in the form of visual footage. The envisaged scenario of the application was a
mostly offline environment, forecasting a subsequent human manual intervention
after the model provided the user with a large but not definitive projection of
video fragments, confidently containing the "abnormal" or "violent" portions in them.

The proposed framework reflects the expectations that prompted this project,
and it is coherent with respect to the methods and techniques of reference in the
case study. Moreover, the simple envisaged ETL architecture only requests the
manual prompt of the video file or folder from the user, with the remainder of
operations being all automatized and the final production of both a visual and a
textual output log.

The availability of two extensive benchmark datasets, UCF-Crime and RWF-
2000, has been key in pursuing this objective, relieving the need for the construction
of a novel one via techniques such as web scraping and extraction from online public
video-sharing platforms. Although mostly automatic, this process would have still
required attention, programming expertise, and significant manual intervention in
the cleaning and preparation phase, which altogether would have shortened the
time available for the other phases of the work.

In-depth, the proposed final model stemmed from the intuition that, among
the endless architectural alternatives, two-stream networks could still be relevant
in the anomaly detection task if the problem is modeled in a supervised learning
scenario and could outperform the other solutions. Additionally, the fusion strategy
of the two informative branches has proven to be effective, in coherence with the
latest findings in literature: the consequent re-elaboration of the feature maps via
successive additional pseudo-3D blocks has enabled the achievement of satisfying
results which improve the current state-of-the-art performance among the publicly
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available models on the same dataset.
In this regard, it is important to underline that the "recurrent" informative aspect,

which is core in a frame sequence and is explicitly enforced in other proposals such
as RNNs and LSTMs, in this architectural schema is provided by the optical flow
itself, since it actually performs, mathematically speaking, an iterative optimization
for the flow fields over time. The utilization of a CNN-based estimation in place
of the proper algorithm computation turned out to be equally effective and with
great time and computational savings.

Additionally, it is possible to claim that the feature maps representation coming
from the last layers of the model are a very compact and informative descriptor
in the manner of the C3D features, albeit being definitely more space-saving
and, according to the results, of higher expression quality, summoning up the
characteristics of the moving elements of a short clip in a tensor and even possibly
exploitable as an input for other processing procedures.

Finally, the innovative intelligent optical flow-based cropping strategy and the
improved Inception 3D block both had their merits in the achievement of the
satisfactory results of the present project.

However, some critical issues have still emerged and have to be properly ad-
dressed.

First of all, from a global point of view, some ethical issues in performing
automatic anomaly detection arise, in particular for the legal applications of deep
learning models and how these may affect humans’ well-being. It is demonstrated
in literature by several researchers, such as Kate Crawford in [126], that networks
trained on biased datasets encode and reproduce the bias in their predictions,
therefore procuring damage to the already more exposed social groups.

In the specific case of violence detection, the social implications of an inappropri-
ate use of a such model, for example leveraging the model by itself to automatically
persecute the depicted subject dismissing the human approval part of the matter,
could be of extreme interest and to avoid at all costs.

Secondly, the framework is not as it is directly applicable for run-time monitor
aiding: although the starting objective was an off-line application, and from this
point of view the work has succeeded, as of now the need for humans intervention
in the setting phase and file selection could be of great limitation, which collides
with a real-time scenario. Even in the projected study case, which does not require
the automatizing of the prompt command, it could still be a sub-optimal solution.

Finally, the generalization capabilities of the proposed model are dependent on
the representations provided at training time, which, although made as extensive
as possible, could not be really fully exhaustive in the depiction of abnormal
phenomena due to the intrinsic extremely diversified nature of them: therefore, in
the reality, this problem remains open.

79



Conclusions

5.1 Future Works
Several future expansions to this work could be envisaged: hereinafter, a few of
them are reported.

Firstly, a more user-friendly interface, with the aid of some powerful solutions
available to date such as PowerBI Desktop or Microsoft Azure, could be produced.
Additionally, without the need for third-party software, several Python libraries
exist for the construction of more complete dashboards or web applications whose
usage could facilitate the user experience in this application case. The textual log
could be likewise enhanced.

On another note, the model itself could be improved, especially in the fine-
tuning of the LiteFlowNet2 architecture utilized for the optical flow estimation;
although the results suggest that the improvement that could be brought by such
a more extensive procedure are marginal and not really relevant for the significant
improvement of the accuracy of the model, it could still be performed since even a
slight model performance improvement could be in a specific setting important.

However, more significantly, the UCF-Crime dataset could be transformed, that
is, elaborated in order to obtain 5-sec clips, with the binary label applied on the
basis of the ground truth timing of the anomaly action in the "positive" videos.
This operation, which the author recognizes as really intensive and time-consuming,
could nevertheless be the most practical idea to further improve this model, by
supplying a gargantuan comprehensive dataset resulting from the combination of
the two. This process would improve also the generalization capabilities of the
model, leveraging the most varied actions depicted in the UCF-Crime dataset with
respect to the RWF-2000 dataset. Of course, the need for suitable computational
resources should be addressed, which was a key down-factor limitation in this
work’s boundaries.

Additionally, the framework could be extended in order to create a pipeline to
function at almost-real-time, that is with a small delay in the range of a few seconds,
to aid the active monitoring of security footage: this delay corresponds to the sum
of the pre-processing phase and of the inference time, and it is for a single clip in
the reported results acceptable, compliant with this reasonable range. However, at
present, it is realistically under-reported in this work, since the presented timings
do not take into account the output presentation, which occurs only at the end of
the last clip: therefore, although the prediction for the first clip would be made
after 1 or 2 seconds, its output would be made available only after the processing
of the entire length of the video. It is possible to imagine that, by pipelining the
entire framework and possibly leveraging different computational units for each
assignment, this issue could be significantly lessened. Likewise importantly, with
this procedure, the final delay could remain in this order of magnitude even with
a large number of CCTV cameras concomitant transmissions. It is important to
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note that, in order to address this issue, the structure of the model itself needs to
be slightly modified, possibly avoiding leveraging the Generator class, which puts
an input strain on the evaluation phase.

Lastly, this work has not approached the industrial solutions in the private-
security field, notably intelligent automated CCTV cameras, possibly integrated
with PTZ capabilities. Important improvements could be done in this sector, by
adapting the solution to the technology in the field of use: a possible application
could be, as an example, to dictate the movement of the camera via real-time
violence estimation, for example enlarging (i.e., zooming out) the scene or automat-
ically tilting the camera if suspicious actions occur in the proximity of the edges of
the frame, making possible to track them and the possible perpetrators and not
making them go off-screen.
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