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Abstract

Recently, autonomous navigation in indoor environments has received increasing
attention from the research community. In fact, different autonomous systems such
as UAVs are going to be adopted also in these environments to support various
applications, for instance, for logistic operations to perform some inspection and
monitoring tasks in industrial plants as well as in greenhouses. In these scenarios,
it is fundamental to know not only the target’s position but also its attitude.
Regarding the position estimation, usually the Ultra-Wideband (UWB) technology
is employed providing accurate Time of Arrival (ToA) measurements while for the
attitude estimation, Inertial Measurement Units (IMU) sensors are typically used
allowing to estimate roll and pitch of the UAV. However, the estimation of the yaw
angle employing a compass sensor is too inaccurate because the Earth’s magnetic
field in indoor environments is heavily affected by electric and electronic devices as
well as surrounding metallic objects and structures. To overcome this limitation,
the UWB technology is becoming also a promising solution to estimate the angle
with which the transmitted UWB signal arrives at the receiver, thus, exploiting
this type of measurement, it is possible to estimate the yaw angle of the target. In
particular, the UWB technology can be used to perform Angle of Arrival (AoA)
measurements employing antenna arrays at the receiver.

The focus of this thesis is to design different real-time localization solutions
for indoor environments based on Ultra-Wideband (UWB) technology that enable
autonomous navigation. The UWB technology can be used to perform Time of
Arrival (ToA) and Angle of Arrival (AoA) measurements to estimate the position
and the orientation of the tag. These measurements can be merged through an
Extended Kalman Filter (EKF) to obtain a more accurate estimator. In this thesis
after a comprehensive overview of the localization problem, first two localization
solution that uses only ToA measurements will be designed and then a hybrid
solution that combines ToA and AoA measurements. Lastly, real PDoA and ToA
measurements will be presented to analyze real measurement errors.
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Chapter 1

Overview of localization in
indoor environments

Over the past few decades, indoor device localization has been extensively studied,
mostly in industrial settings and for wireless sensor networks and robotics. A
positioning system allows a mobile device to estimate its location and makes that
location available for position-based services like navigation and other monitoring
and tracking functions. Global Navigation Satellite System (GNSS), such as the
Global Positioning System (GPS), are the standard for outdoor localization with a
clear sky view. However in indoor environments line-of-sight transmission between
receivers and satellites is not possible, thus GPS can not be used. Indoor environ-
ments are more complex than outdoor ones. The propagation of electromagnetic
waves is influenced by obstacles, such as walls, objects, and people, which create
multi-path effects. In fact, the accuracy of positioning is affected by some interfer-
ence and noise sources from other wired and wireless networks. There are multiple
paths and environmental consequences as a result of the building’s shape, human
motion, and atmospheric conditions.

For location-based applications, location data typically provides absolute, rel-
ative, or proximity information. The absolute location information provides an
estimate of the position [xT , yT ] of a target with respect to a map of the locating
area that should be available before the estimation of the position. The relative
location information is measured with respect to a reference node and gives an
estimate of the distance. To determine the position of a target at least three
relative measures are necessary. The last type of position data is the proximity
location information which specifies an area where a target is. When a tracked
target is detected by a detector, the position of the target is considered to be in
the proximity area centered in the detector location but this technique can not
give absolute position estimations. In [1][2][3] different indoor ranging techniques
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are described, such as Received Signal Strength (RSS), Time of Arrival (ToA),
Time Difference of Arrival (TDoA), Angle of Arrival (AoA). These solutions rely
on radio communication technologies, such as WiFi, Bluetooth, Radio-Frequency
Identification (RFID), Ultra-Wideband (UWB), Infrared (IR), acoustic sounds and
ultrasounds. In [3] the four main techniques for indoor localization are presented:
triangulation, fingerprinting, vision analysis and proximity. Except for the last one,
all these strategies can provide absolute location.

• Triangulation, if the coordinates of three reference nodes are known, measures
the absolute location of a target by using the three lengths or directions of
the distances between the target and the reference nodes. To calculate these
distances can be used the RSS, the AoA or the ToA.

• Fingerprinting positioning technique is proposed to increase the accuracy of
indoor position measurements by acquiring first location-related data (generally
RSSI) of the location estimation area in the offline training phase and then
during the online position determination phase, the location of a target object
is measured and compared with the data collected in the first phase.

• The vision analysis estimates a location from the image received by one or
multiple points. Since no additional tracked devices must be carried by the
tracked persons, vision positioning provides comfort and efficiency to users.

• Proximity positioning techniques can not estimate with high accuracy the
target position but specify only if a target is in a proximity area or not.

1.1 Ranging techniques
1.1.1 Received Signal Strength (RSS)
The RSS is one of the simplest approaches for indoor localization. Generally
measured in decibel-milliwatts (dBm) or milliWatts (mW), the RSS is the actual
signal power strength received at the receiver. A transmitter (Tx) and a receiver
(Rx) device’s distance can be estimated using the RSS; the greater the RSS value,
the smaller the distance is between Tx and Rx. With the knowledge of the
transmission power or the power at the reference location, the distance can be
estimated using a variety of different signal propagation models. RSS indicator, or
RSSI, is a relative RSS measurement with arbitrary units that is usually specified
by each chip maker.

RSSI = A− 10nlog10(d) (1.1)

Where A is the RSSI value at a reference distance from the receiver and n is the
path loss exponent (which varies from 2 in free space to 4 in indoor environments).
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The RSSI and a straightforward path-loss propagation model can be used to
estimate the distance d between Tx and Rx as:

d = 10
1

A−RSSI
10n

2
(1.2)

The RSS-based approach is simple and cost-efficient but suffers from poor local-
ization accuracy due to additional signal attenuation resulting from transmission
through big obstacles and RSS fluctuation due to multipath fading and indoor
noise. It is not likely to obtain high localization accuracy without using complex
algorithms but to mitigate these effects, a variety of filters or averaging mechanisms
can be used.

1.1.2 Time of Arrival (ToA)
Time of Arrival (ToA) or Time of Flight (ToF) is the measured signal propagation
time at which a signal first arrives at the receiver Rx from the transmitter Tx. The
distance between Tx and Rx can be calculated by multiplying the ToA value by
the speed of light, c = 3 · 108 m/s.

Dij = (t2 − t1) · c (1.3)
Where t1 is the time at which the TXi sends a message to the RXj and t2 is
the time at which the RX receives the message. ToA estimation accuracy mainly
depends on the signal bandwidth and the sampling rate. A larger bandwidth
increases the resolution of the ToA estimation in a multipath indoor environment
as well as a low sampling rate reduces the ToA resolution since the signal may
arrive between the sampled intervals.

1.1.3 Time Difference of Arrival (TDoA)
Differently from the ToA where the absolute signal propagation time is measured,
Time Difference of Arrival (TDoA) uses the difference in signal propagation time
from different transmitters, measured at the receiver. Multiplying the TDoA
measurements τij by the speed of light we obtain physical distance measurements.

dij = di − dj = c · τij (1.4)
Where τij is the TDoA measured at the receiver RX from a pair of Transmitters
TXi and TXj, di is the distance between the RX and TXi.

The ranging measurement dij is the difference of the distance of the transmitters
from the receiver and defines a hyperboloid where the receiver is located as shown
in the equation (2.19).

dij =
ñ

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 −
ñ

(Xj − x)2 + (Yj − y)2 + (Zj − z)2

(1.5)
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Where (Xi, Yi, Zi) and (Xj, Yj, Zj) are the coordinates of the transmitters and
(x,y,z) are the coordinates of the receiver to be estimated. In 1.1 is shown the
TDOA measurement configuration.

The receiver position is estimated as the intersection of three hyperboloids, thus
at least the TDoA measurements from three different transmitters are needed. It
is possible to solve the system of hyperbola equations using either Taylor-series
expansion or linear regression. TDoA approach requires strict synchronization but
only between transmitters contrary to the TOA approach that requires synchro-
nization between transmitter and receiver. TDoA measurement accuracy is affected
mainly by the signal bandwidth, the signal rate at the receiver and the presence of
a direct line of sight between the transmitters and the receiver.

Figure 1.1: TDOA measurement configuration

1.1.4 Angle of Arrival (AoA)

The Angle of Arrival (AoA) gives an estimate of the angle of rotation of the object
to be tracked with respect to a reference node. This approach requires an antenna
array at the receiver since AoA is based on the calculation of the phase difference
α of a single signal received at two different antennas. The distance d between two
antennas is chosen to be less than half the signal’s wavelength λ. The receivers
receive the signal with a path difference p ranging from 0 to d that can be obtained
from the phase difference α as

p = α · λ
2π (1.6)
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Based on the path difference p we can calculate the angle of rotation of the receiver
as:

θ = arcsin p

dANTENNA
(1.7)

In 1.2 is shown the AOA measurement configuration.

Figure 1.2: AOA measurement configuration.

1.2 Localization Technologies
In this section, the mostly used localization technologies are presented. This section
presents the main localization technologies. Radio-frequency Positioning systems
are described in more detail because they are the most widely used.

• Infrared (IR) Positioning Systems
Different positioning systems based on Infrared (IR) were proposed in the
past [4][5]. IR-based positioning systems provide a very accurate position
estimation, though have some limitation that makes them not really suitable
for positioning systems. In fact, they need a direct line of sight between
transmitter and receiver and strong light sources interfere with communication.
Moreover, although the IR emitters are cheap, the whole positioning system
is expensive.

• Ultra-sound Positioning Systems
In ultra-sound positioning systems [6] distances are mainly calculated by
measuring the ToA of ultrasound signals (>20 KHz). Differently from RF
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signals, the sound velocity varies significantly depending on humidity and
temperature condition, thus temperature sensors are often deployed to take
into account these changes. Usually ultrasound signals are combined with RF
signals, which are required for synchronization.

• Vision-Based Positioning Systems
In vision-based positioning systems [7], a low price camera can cover a large
area to track the location of a target or to identify persons through image
processing algorithms in a complex indoor environment. This technology
increases the comfort of the tracked person, because it is not necessary to
carry any device but does not guarantee people’s privacy. The position
estimations are based on images saved in a database that needs to be updated
due to changes in the environment. For this reason, this method suffers in
dynamic environments that change rapidly.

• Audible Sound Positioning System
Acoustic signal-based positioning systems [8] work by transmitting modulated
acoustic signals containing some time-related information such as time stamps,
that are received by a microphone sensor for ToA estimation. The transmitted
power should be kept low enough to prevent noise pollution and to increase
low power detection at the receiver, sophisticated signal processing methods
are required.

• Radio-Frequency Positioning Systems
Since radio waves have the advantage to travel through the walls and human
bodies easier, positioning systems based on this kind of signal have a larger
coverage area and require less hardware with respect to the other systems
presented before. Technologies such as RFID, WiFi, Bluetooth and UWB are
the most used radio-frequency positioning systems and are described in detail
in the following paragraphs.

1.2.1 Radio-Frequency Identification (RFID)
RFID (RF Identification) is a means of storing and retrieving data through electro-
magnetic transmission. An RFID system consists of a reader that can communicate
with RFID tags [9]. Each reader has a pre-determined power level, thus defining a
certain range in which it can detect RFID tags. RFID systems can be either active
or passive depending on whether the tags include an internal power source or are
powered only by the electromagnetic energy transmitted from the RFID reader. By
properly placing the readers in known locations, the whole region can be divided
into a number of sub-regions, where each sub-region can be uniquely identified
by the subset of readers that cover that subregion. The range measurements are
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impacted by a variety of factors, including both static obstacles and dynamic
human movement. Even a static object could occasionally be recorded in multiple
sub-regions as a result of these dynamic interferences. To overcome these issues, in
[10] it is suggested to include additional fixed location reference tags to help location
calibration. Since the reference tags are sensitive to the same environmental effects
as the tags to be identified, this method helps counteract many environmental
influences that cause fluctuations in the detected range.

1.2.2 WiFi
The IEEE 802.11 standard, also referred to as WiFi, is primarily used to provide
networking capabilities and Internet connections to various devices. However,
since existing WiFi access points can also be used as reference points for signal
collection, simple localization systems can be built without the need for additional
infrastructure, reducing the cost of positioning services. Efficient algorithms are
required to improve localization accuracy because existing WiFi networks are
not deployed for localization purposes but to maximize data throughput and
network coverage for communication purposes. WiFi-based localization systems
can use different ranging techniques, although Received Signal Strength (RSS) is
the most common, often used in conjunction with fingerprinting algorithms as in
the COMPASS system [11]. Usually a radio map of an indoor area is constructed
to model RSS values at predefined reference points and then a tag position can be
determined in real-time using the model and the current WiFi signal values.

1.2.3 Bluetooth
Bluetooth consists of the MAC and physical layer specifications for connecting
wireless devices in a particular area [1]. Bluetooth chipsets are low cost and in
addition allow the reuse of Bluetooth-enabled devices when used for location sensing
since Bluetooth technology has been implanted in various types of devices. However,
The system can only give precision from 2 to 3 meters away with a latency of
roughly 20 seconds, which is a drawback of bluetooth-based locating systems. The
more advanced versions of Bluetooth, such as Bluetooth Low Energy (BLE) can
be used with different localization techniques such as RSS, AoA and ToA, but
the first is certainly the most used. iBeacons (by Apple Inc.) [12] and Eddystone
(by Google Inc.) [13] are two BLE-based protocols that have been proposed for
context aware proximity based services. Any BLE-enabled device with a dedicated
application for listening to beacons can pick up the beacon messages and use RSSI
to determine how close the beacon device is to the user. In the case of iBeacon
[12], based on the strength of the RSSI, the user is classified in immediate (<1m),
near (1-3m), far(>3m) and unknown regions.

7
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1.2.4 Ultra-Wideband (UWB)
The Ultra-Wideband(UWB) was initially developed and extensively used for mil-
itary purposes and was not used for commercial communication until the U.S.
Federal Communications Commission (FCC) permitted the use of unlicensed UWB
communications. Firstly UWB was used in the context of short-range, high data
rate communications in personal area networks (PANs), but recently has emerged as
a prominent technology for indoor localization that can react a centimeter accuracy
[14]. In UWB, pulses which have a short duration (< 1ns), are transmitted in the
frequency range from 3.1 to 10.6 GHz over a large bandwidth (>500 MHz) [1].
UWB sensors are cheap and provide a high data rate, making them an efficient
solution in terms of costs. The very short duration of UWB pulses allows to
filter the reflected signals from the main signal, making them less sensitive to
multi-path distortion of radio signals reflected by walls in indoor environments
differently from other RF positioning systems that suffer on this aspect and in
many cases need complex time delay estimation algorithms. Furthermore, the large
bandwidth decreases the small-scale fading and the power spectral density, which
in conjunction with having a big difference in the radio spectrum with respect to
most of the other signals, reduces interference to other systems and the possibility
of interception. However, due to the short duration of UWB pulses, clock jitter
and drifts in the target and the reference nodes have an impact on the estimation.
In UWB communication, in addition to the multipath effect, both multiple access
interference (MAI) and non-line-of-sight (NLOS) propagation are a source of error.
MAI happens when signals from other nodes interfere with the signal of a given
node and can be alleviated using different time slots to transmit from different
nodes. Instead, when there is no direct LOS between two nodes, the receiving
node is reached only from reflections of the original UWB pulse, thus accurate
localization is impossible without any information about NLOS errors. In these
cases, some pattern recognition techniques can be adopted but in real systems, it
is usually possible to obtain some statistical information about the NLOS error.
Using Kalman filters, it is possible to precisely estimate the location of a mobile
user in a wireless system.

1.3 Comparative analysis of different localization
systems

The presented localization technologies can be compared under different aspects,
although some features such as the cost and the complexity can vary widely
depending on the specific requirements of the application and the level of accuracy
required. However, for a general discussion a comparative table is presented.
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Positioning
system

Maximum
Range

Power
Con-
sump-
tion

Accuracy Limitations

RFID-
based 10 m Low 2-3 m

Inaccurate.
Need numerous
infrastructure
components
installed and
maintained

WiFi-based 100 m Moderate up to 1 m Not very accu-
rate

Bluetooth-
based 70-100 m Low 2-3 m

Inaccurate. The
delay of calculat-
ing the position
of a tag is long
(10s-30s)

Ultra-
Wideband-
based

20-30 m Moderate Tens of cen-
timeters

Short range. Re-
quire infrastruc-
ture

Infrared-
based Few meters Low Few Millime-

ters

Line of sight
requirement.
Influenced by
light sources. IR
waves can not
penetrate walls.

Ultrasound-
based

Couple-
tens of
meters

Low-
moderate

Centimeter ac-
curacy

Highly influ-
enced from
reflected ultra-
sound signals

Vision-
based Few meters Low-

moderate

Accuracy can
not be guar-
anteed due to
multiple inter-
ference sources

Not reliable in a
dynamic chang-
ing environment.
People’s privacy
issues

Audible
Sound-
based

Couple of
meters

Low-
Moderate up to 0.4 cm

Influenced by
sound sources in
the same place

Table 1.1: Comparison between the proposed localization technologies
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Chapter 2

Localization and Orientation
Estimation using Extended
Kalman Filter

As presented in the previous chapter, the range measurements are influenced by
numerous noise sources (mainly NLOS and Multipath Effect). In this chapter,
the Extended Kalman Filter (EKF) is proposed as a solution to counteract these
effects and to improve the position estimates. A proper choice of the model that
represents the system dynamic and the measurements is crucial to obtain good
performance by the EKF, thus for this reason different choices for the state model
and the measurement model of the system are presented in the following sections.
Furthermore, in Appendix A can be found a brief overview of the Extended Kalman
Filter.

2.1 State Models for Low Dynamics Scenarios
The formulation of a state model that appropriately describes system dynamics
is the first step in the design of the EKF. The models presented are developed
for n = 2 (2-dimensional), where the parameter n = 1,2,3 indicates the space
dimension, but can be easily extended to the 3D case.

2.1.1 P Model
The P Model is the most straightforward approach to represent the system dynamics
and its state vector is composed only of the target’s position coordinates, see
equation 2.26. This model practically performs only the Measurement Update
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because in the Time Update the a priori state estimate at each time step equals the a
posteriori state estimate of the previous time step as can be seen in equation 2.2. The
process noise is modeled as an independent random velocity åv normally distributed
with zero mean and covariance matrix Qk as a function of the interval of time
between two measures ∆tk. The process noise covariance matrix’s dimensioning is
crucial in the EKF design: low variance values ensure smooth tracking but lengthen
settling times of the tracking output.

x =
è
x y

éT
(2.1)

x̂−
k = f(x̂+

k−1,0) = In×nx̂
+
k−1 (2.2)

Qk = [∆tkIn×n][∆tkIn×n]Tσ2
v (2.3)

where σv is the standard deviation of a Gaussian distributed velocity vector.

2.1.2 PV Model

The PV Model is a dynamic model that works as long as the target moves at a
nearly constant velocity between two adjacent intervals ∆tk. The state vector is
composed of the target’s position coordinates and velocity components as reported
in equation 2.4. A motion with constant speed is described by the transition
function in equation 2.5. The covariance matrix Qk (equation 2.6) of the normally
distributed process noise permits us to take into account friction and other forces
that might temporally impact the target’s dynamics. Again the process noise,
modeled in this case as a random acceleration åa, is a key factor of the design
of the EKF. Zero or small variance allows smooth tracking but slows down the
filter response and may lead to divergence when the target performs non-linear
maneuvers and so the velocity is no longer constant within the interval ∆tk.

x =
è
x y vx vy

éT
(2.4)

x̂−
k = f(x̂+

k−1,0) =
C
In×n ∆tkIn×n
0n×n In×n

D
x̂+
k−1 (2.5)

Qk =
C

1
2∆t2kIn×n
∆tkIn×n

D C
1
2∆t2kIn×n
∆tkIn×n

DT
σ2
a (2.6)

where σa is the standard deviation of a Gaussian distributed acceleration vector.
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2.1.3 PVA Model
PVA Model includes also the acceleration in the state vector, see equation (2.7).
In this way, it improves the capability of the filter to track the target during near-
constant acceleration maneuvers. However, considering low dynamics scenarios,
this model produces no benefit and simpler models provide better performance.

x =
è
x y vx vy ax ay

éT
(2.7)

x̂−
k = f(x̂+

k−1,0) =

In×n ∆tkIn×n
1
2∆t2kIn×n

0n×n In×n ∆tkIn×n
0n×n 0n×n In×n

 x̂+
k−1 (2.8)

Qk =


1
2∆t2kIn×n
∆tkIn×n
In×n




1
2∆t2kIn×n
∆tkIn×n
In×n


T

σ2
a (2.9)

where σa is the standard deviation of a Gaussian distributed acceleration vector.

2.2 Measurements Models
The measurement model is a mathematical description of the relationship between
the measurements (z) and the state vector (x), as shown in equation 2.10. Mea-
surements and their additive noise are physically referred to a specific coordinate
system (often in spherical coordinates) that can differ from the coordinate system
that better describes the target motion model. As a result, measurement models
in several coordinate systems have been developed. The most popular and natural
measurement models are in mixed coordinates, where the target state x and the
process noise are in a reference Cartesian coordinate system, but measurement z
and its additive noise are in the local sensor coordinate system.

zk = h(xk) + v (2.10)

The relation between measurements and process in mixed coordinates is non-linear
and a non-linear estimator such as EKF is needed for the position estimation. How-
ever, in some cases measurements are directly expressed in the Cartesian reference
system, using some sensor systems can happen that the direct measurements are
not available or when more localization algorithms referred to the same coordinate
system are used sequentially to improve accuracy. For sake of simplicity, the
observation models presented in the following are defined according to the P model.
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2.2.1 Position Measurements
When position measurements are accessible directly in the same reference coordinate
systems used for the state vector (equation 2.11), the measurement equation 2.10
seems to assume a "linear" form according to equation 2.12, but due to non-linear
dependency of the noise v on the state x this measurement model is in fact
non-linear and EKF is still preferable to the classical linear Kalman Filter. The
covariance matrix of the measurement noise vector is typically chosen as a k ×m
diagonal matrix that has the variances of the component of the measurements as
elements, see equation (2.13), where k is the number of components of a single
measurement while m is the number of measurements.

z =
è
x y

éT
(2.11)

h(x̂−
k ) = In×n x̂−

k (2.12)

Rk = diag(
C
σ2
x 0

0 σ2
y

D
) (2.13)

2.2.2 Distance Measurements

Figure 2.1: Distance measurement model

For many ranging techniques, such as ToA the EKF estimates the target position
by processing distance measurements between the target and a set of anchors located
at known positions, as can be seen in 2.14. The measurement function h(xk) is
non-linear and looking at the figure 2.1 it is clear that it can be easily defined as
the Euclidean distance between the target and the reference nodes (equation 2.15).
The Jacobian matrix Hk is computed around the a priori state x̂−

k (equation 2.17),
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since h(xk) is non-linear. In equation 2.17 the covariance matrix Rk is a diagonal
matrix with the variances of the component of the measurement as elements.

z =
è
dref1 dref2 . . .

éT
(2.14)

h(x̂−
k ) =


ñ

(x̂−
k − xref1,k)2 + (ŷ−

k − yref1,k)2ñ
(x̂−

k − xref2,k)2 + (ŷ−
k − yref2,k)2

...

 (2.15)

Where (xref1,k, yref1,k) are the coordinates of the first anchor

Hk = ∂h
∂x

-----
x=x̂−

k

=


x̂−

k
−xref1,k

dref1,k

ŷ−
k

−yref1,k

dref1,k
0 0

x̂−
k

−xref2,k

dref2,k

ŷ−
k

−yref2,k

dref2,k
0 0

... ... ... ...

 (2.16)

Rk = diag(
è
σ2
dref1 σ2

dref2 . . .
é
) (2.17)

Where dref1,k =
ñ

(x̂−
k − xref1,k)2 + (ŷ−

k − yref1,k)2

2.2.3 Angle of Arrival Measurements

Figure 2.2: AOA measurement model.

For completeness, this paragraph describ a measurement model that estimates
the target position processing AoA measurements of the target with respect to
some reference nodes (equation 2.18). In order to do that it is necessary to know
the rotation angle ψ between the reference frame and the local tag frame where
measurements are performed and then h(xk) can be obtained from geometrical
consideration as shown in Figure 2.2. If the tag is not rotating this angle is
constant otherwise if ψ is time-varying, it has to be added to the state vector.
AoA measurements can be combined with distance measurements to estimate both
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target location and orientation since the EKF is a very useful tool to merge different
kinds of measurements.

z =
è
α1 α2 . . .

éT
(2.18)

h(x̂−
k ) =


tan−1

2
yref1,k−ŷ−

k

xref1,k−x̂−
k

− ψ

tan−1
2

yref2,k−ŷ−
k

xref2,k−x̂−
k

− ψ

...

 (2.19)

Where (xref1,k, yref1,k) are the coordinates of the first anchor

Hk = ∂h
∂x

-----
x=x̂−

k

=


−(ŷ−

k
−yref1,k)

(dref1,k)2
(x̂−

k
−xref1,k)

(dref1,k)2

−(ŷ−
k

−yref2,k)
(dref2,k)2

(x̂−
k

−xref2,k)
(dref2,k)2

... ...

 (2.20)

Rk = diag(
è
σ2
α1 , σ2

α2 , . . .
é
) (2.21)

Where dref1,k =
ñ

(x̂−
k − xref1,k)2 + (ŷ−

k − yref1,k)2

2.2.4 Hybrid ToA-AoA Measurements
Considering both ToA and AoA measurements (equation 2.23), it is possible to
estimate respectively the localization and the orientation of a target. The EKF is
a very useful tool to merge different kinds of measurements, thus is sufficient to
add the angle ψ to the state vector (equation 2.22).

x =
è
x y ψ

éT
(2.22)

z =
è
dref1 dref2 . . . α1 α2 . . .

éT
(2.23)

h(x̂−
k ) =



ñ
(x̂−

k − xref1,k)2 + (ŷ−
k − yref1,k)2ñ

(x̂−
k − xref2,k)2 + (ŷ−

k − yref2,k)2

...
tan−1

2
yref1,k−ŷ−

k

xref1,k−x̂−
k

− ψ

tan−1
2

yref2,k−ŷ−
k

xref2,k−x̂−
k

− ψ


(2.24)
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Where (xref1,k, yref1,k) are the coordinates of the first anchor

Hk = ∂h
∂x

-----
x=x̂−

k

=



x̂−
k

−xref1,k

dref1,k

ŷ−
k

−yref1,k

dref1,k
0

x̂−
k

−xref2,k

dref2,k

ŷ−
k

−yref2,k

dref2,k
0

... ... ...
−(ŷ−

k
−yref1,k)

(dref1,k)2
(x̂−

k
−xref1,k)

(dref1,k)2 −1
−(ŷ−

k
−yref2,k)

(dref2,k)2
(x̂−

k
−xref2,k)

(dref2,k)2 −1
... ... ...


(2.25)

Rk = diag(
è
σ2
dref1, σ2

dref2, . . . , σ2
α1 , σ2

α2 , . . .
é
) (2.26)

Where dref1,k =
ñ

(x̂−
k − xref1,k)2 + (ŷ−

k − yref1,k)2.
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Chapter 3

Simulation results

This chapter reports the results of the Matlab simulation of a localization system
that uses the EKF to track a target moving on a certain trajectory at constant
velocity. Ten anchors are assumed to be distributed in the space in fixed and
known positions to perform the measurements. Three different simulations were
executed using different State models and Measurements models of those discussed
in the previous chapter: in the first simulation the filter uses the P model and
acquires only distance measurements, in the second the filter uses the PV model and
still collects only distance measurements, while in the third is simulated a hybrid
ToA-AoA measurements model that estimates both the position and the orientation
of the tag and uses the P model with the addition of the angle of rotation of the
tag in the state vector as shown in 2.22. In Matlab, the shape of the trajectory of
the tag is defined in a file .txt where for every segment of the tag path is declared
the direction, the coordinates of the start and finish points and the speed of the
target. From these data, the exact position of the tag is sampled at every time step
∆T = 0.5s adding to the tag position the space traveled between two consecutive
time steps at every cycle. The result is a vector with k sample of the exact tag
position and knowing the position of the anchors, n distance measurements dMEAS

are computed for every sample, where n is the number of anchors that are in the
proximity (<12m) of the tag and so can estimate correctly its position:

Dk(n) =
C
xtag,k
ytag,k

D
−

C
xanch,n
yanch,n

D

dMEAS,k(n) =
ñ
Dk ·DT

k

(3.1)

A random normally distributed noise with zero mean and standard deviation
σdrefk

= 0.2m is added to the exact distance measurements dMEAS to simulate the
uncertainty of a real measurement. Finally, after obtaining the initial guess of the
a priori estimate of the position following a linear least square approach [15], the
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EKF is iteratively applied to the measurements step by step.

3.1 P Model with distance measurements
The first simulation takes just distance measurements and estimates the position of
the tag. The State model and the measurement model used are those in equation
(2.26)-(2.3) and in (2.14)-(2.17).

• Parameters used for simulation
To simulate the Kalman Filter, certain parameters still need to be adjusted.
The covariance P0 of the first a priori estimate was obtained by tuning the
standard deviations for the two axes component of the position estimated (3.2).
The process noise vector is modeled as a random velocity and so in order to
compute its covariance as shown in (2.3) is needed to set the standard deviation
σv of the random velocity (3.3). Lastly, the observation noise covariance Rk

is obtained as a diagonal vector containing at each entry the variance σ2
drefk

of the ranging measurements. These choices lead to good results but real
measurements should be considered to check if they fit well for the real scenario
considered. The selection of the parameters is shown below:

P0 =
C
σ2
x 0

0 σ2
y

D
,

σx = σy = 0.3m
(3.2)

σv = 2m/sü ûú ý
Qk

(3.3)

σdref = 0.2mü ûú ý
Rk

(3.4)

• Results
As each attempt produces slightly different outcomes due to measurement
noise, the estimation of the tag location by the EKF is repeated ten times in
order to evaluate the results. In the following figures, each sample is the mean
of the results of ten trials. Every estimation has two components one on the
x-axis and one on the y-axis, thus it is appropriate to evaluate the error and
the RMSE on the singular axis:

ϵx = x̂tag,k − xtag,k (3.5)

ϵy = ŷtag,k − ytag,k (3.6)

RMSEx =
ñ
µ2
ϵ,x + σ2

ϵ,x (3.7)
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RMSEy =
ñ
µ2
ϵ,y + σ2

ϵ,y (3.8)

Where (x̂tag,k, ŷtag,k) is the position of the target estimated by the EKF,
(xtag,k, ytag,k) is the exact position of the target, µϵ,x and σϵ,x are the mean
value and the standard deviation of ϵx while µϵ,y and σϵ,y are the mean value
and the standard deviation of ϵy.
Then the 2D localization error and its RMSE are computed as follows:

ϵ =
ñ
ϵ2
x + ϵ2

y (3.9)

RMSE =
ñ
µ2
ϵ + σ2

ϵ (3.10)

Where µϵ is mean value of ϵ, and σ2
ϵ its variance.

For this configuration of the EKF, we get:
µϵ,x = −0.005m, σϵ,x = 0.153m, RMSEx = 0.153m,
µϵ,y = 0.000m, σϵ,y = 0.143m, RMSEy = 0.143m,
µϵ = 0.182m, σϵ = 0.104m, RMSE = 0.209m.
Figure 3.1 reports in green the samples estimated by the EKF and how can
be seen they track pretty well the trajectory. Figure 3.2 shows the average
error on the axes and for every sample report the maximum, the minimum
and the average error over 10 trials.

Figure 3.1: Tag trajectory (continuous line) and tag position sample estimated
by the EKF (green dots)
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Figure 3.2: Average Measurement Error on the axes (red line), maximum, mini-
mum and average error over 10 trials (red dashes, green dashes and blue dots)

3.2 PV Model with distance measurements
The second simulation is similar to the first one, but this time the speed of the
tag is included in the state vector instead of considering only the position of the
tag (P model). The State model and the measurement model used are those in
equation (2.4)-(2.6) and in (2.14)-(2.17).

• Parameters used for simulation The parameters to be tuned are the same
as the previous simulation but with the PV model the covariance P0 of the
a priori estimate contains obviously 4 columns, one for each state vector entry
and the process noise vector this time is modeled as a random acceleration
and not as a velocity. The selection of the parameters is shown below:

P0 =


σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
vx

0
0 0 0 σ2

vy

 , σx = σy = 0.3m,σvx = σvy = 0.1m/s

σa = 0.5m2/sü ûú ý
Qk

σdref = 0.2mü ûú ý
Rk
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• Results
In figures 3.3 and 3.4 are shown the results of this simulation. It can be seen
that the trajectory is not tracked very well when the tag changes its direction
of motion.

Figure 3.3: Tag trajectory (continuous line) and tag position sample estimated
by the EKF (green dots)

Figure 3.4: Average Measurement Error on the axes (red line), maximum, mini-
mum and average error over 10 trials (red dashes, green dashes and blue dots)
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For this configuration of the EKF, we get:
µϵ,x = 0.092m, σϵ,x = 0.726m, RMSEx = 0.732m,
µϵ,y = −0.004m, σϵ,y = 0.247m, RMSEy = 0.247m,
µϵ = 0.740m, σϵ = 0.221m, RMSE = 0.772m.

3.3 Hybrid algorithm with both distance and
AoA measurements

The last simulation estimate both the location and the orientation of the tag
modifying the P model as shown in section 2.2.4.

• Parameters used for simulation
The selection of the parameters is shown below:

P0 =

σ
2
x 0 0

0 σ2
y 0

0 0 σ2
ψ

 , σx = σy = 0.3m,σψ = 2◦

σv = 1m/s, σω = 40◦/sü ûú ý
Qk

σdref = 0.2m,σα1 = 5◦ü ûú ý
Rk

• Results For this configuration of the EKF, we get:
µϵ,x = −0.010m, σϵ,x = 0.150m, RMSEx = 0.151m,
µϵ,y = 0.011m, σϵ,y = 0.130m, RMSEy = 0.131m,
µϵ,θ = −0.037◦, σϵ,θ = 2.420◦, RMSEθ = 2.420◦,
µϵ = 0.174m, σϵ = 0.097m, RMSE = 0.199m.
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Figure 3.5: Average Measurement Error on the axes (red line), maximum, mini-
mum and average error over 10 trials (red dashes, green dashes and blue dots)

Figure 3.6: Average Measurement Error on the axes (red line) and on the
estimation of the orientation θ, maximum, minimum and average error over 10
trials (red dashs,green dashs and blue dots)
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3.4 Discussion
The results show significantly better results for the hybrid configuration. This
configuration offers good accuracy in the estimation of the orientation, in fact,
σϵ,θ = 2.429◦ starting from a standard deviation on the AoA measurements σα1 = 5◦.
Also the estimation of the tag position is very accurate and better than the other
two configurations because considering more measurements, also of different types,
the EKF predicts better the tag. Instead, the simulation that gives the worst
results is the second where the accuracy collapses when the tag changes its direction.
Even worse results would have been obtained if the speed of the tag had not been
completely constant because the filter corrects the position estimation on the basis
of the velocity but it does not measure it.
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Chapter 4

Real PDoA-ToA
Measurements using 3
antennas

In this chapter a possible setup to acquire real ToA and AoA measurements will
be discussed and then the measurement error will be analyzed.
In fact, while in the previous chapters the measurements were derived starting from
the exact estimation and adding an additive White Gaussian Noise (AWGN) with
known variance, in this section a UWB kit produced by Mobile Knowledge was
used to take the measurements. It includes a battery-powered tag and an anchor
with an antenna array placed on it that allows to estimate the AoA (α), in addition
to the ToA and the RSSI, deriving it from PDoA measurements as seen in section
1.1.4. Substituting all the terms, we get:

α = arcsin PDoA · c
2π · Adist · f

(4.1)

Where:
c = 299792458m/s is the speed of light,
Adist = 0.0187m is the distance between the antennas of the anchor,
f = 6489600000Hz is the frequency of the signal.
To evaluate the measurement error, the measurements estimated by the UWB kit
will be compared with those of VICON, a very accurate Infra Red camera-based
localization system installed in the lab.
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4.1 Anchor Calibration

Although the equation in 4.1 provides the AoA, this is an indicative estimate that
in many cases does not accurately represent the true relationship between AoA and
PDoA which is different for every anchor. For this reason, is needed a calibration
for each anchor used. The idea is to place the anchor with a known orientation,
collect the corresponding PDoA measurement, and then repeat with different angles
to obtain a lookup table. To do this, With the aid of a robotic hand in the lab the
anchor was rotated about the vertical axis between −85◦ and +85◦ changing the
orientation of the anchor every 30 seconds, while the tag was placed on a tripod at
the same height as the anchor (1.52m) at a horizontal distance of 2.66m. Since
the measurements are less accurate in the extremes of this range, for α < −60◦

and α > +60◦ the anchor rotates by 5◦ every time step in order to collect more
samples, while for −60◦ < α < +60◦ the anchor rotates by 10◦. In figure 4.1 can
be seen the PDoA measured for the 23 orientations considered.

Figure 4.1: PDoA measurements in the range [-85°,+85°]

Then, a LUT as the one in figure 4.2 can be constructed, where the items in the first
column are the mean values of the PDoA measured at each of the 23 orientations
of the anchor, while those in the second column are the corresponding expected
PDoA values calculated with the formula in 4.3.
The data points in the LUT are then linearly interpolated finding the lines passing
through each pair of consecutive points of the LUT to obtain a piecewise linear
function that corrects the PDoA measurements.
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Figure 4.2: PDoA LUT

4.2 Compensate the difference in height between
the tag and the anchor

The measured distance dMEAS is the length of the direct path that connects the
tag and the anchor, and so if the tag and the anchor are placed at different heights
it does not correspond to the projection of the distance on the x-axis. Since we
are interested in a 2D localization of the target on the floor some geometrical
corrections must be included as shown in figure 4.3. The corrected distance dCORR

Figure 4.3: Distance corrections

can be simply calculated applying the Pythagorean theorem.

dCORR =
ñ
d2
MEAS − h2

TAG (4.2)

For the same reason, also the AoA measurements need to be projected on the
x-axis. In fact, in figure 4.4 it can be seen that the AoA α is measured on the plane
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where lies dMEAS. After some geometrical consideration, is possible to obtain the
formula in 4.3 to correct α.

αCORR = arcsin dCORR
dMEAS · sinα (4.3)

Figure 4.4: AoA corrections

4.3 Measurements feasibility at different eleva-
tion angles

At this point, it is important to understand if the calibration of the anchor and
the projection correction are sufficient to guarantee an accurate estimation for any
difference in height between the tag and the anchor or better, for any elevation
angle θE defined as shown in figure 4.3.
The results in figure 4.5 show that increasing the elevation angle, the accuracy of
the estimation gets worse until in the extremes of the range the PDoA saturates.
This means that in the extremes, the same PDoA value corresponds to different
orientations making them indistinguishable and so reducing the range in which the
estimation made by the anchor is reliable. The simulations show that the elevation
angle must not exceed 20◦ to guarantee a reliable range of [−60◦,+60◦].
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Figure 4.5: PDOA measurements in the range [-85°,+85°] with an elevation angle
equals to 16◦ (top left), 21◦ (top right),26◦ (bottom left), 34◦ (bottom right)

4.4 360◦ measurements coverage
A single anchor at the same height as the tag can accurately perform measurements
in the range [−82◦,+82◦], and as seen in the previous paragraph this range decreases
as the elevation angle increases. Thus, more than one anchor must be integrated
to allow a 360◦ localization of a certain target. Assuming that the elevation angle
does not exceed 20◦, a single antenna can cover a range of 120◦ where it can reliably
measure the AoA and so three anchors are required for 360◦ coverage. In figure 4.6
is shown a possible configuration of the three anchors.

Depending on the orientation of the three anchors with respect to the tag, the
anchor that is best directed toward the tag will produce the measurement. In the
limit case shown in figure 4.7, two anchors can perform the measurement because
they are both rotated by 60° with respect to the tag, so is possible to combine the
two observations via data fusion.

4.5 RSSI measurements
To find the anchor that effectively is most pointed towards the tag, the RSSI
measurements produced by the anchors can be used. In fact, an anchor with its
front side directed toward the tag will receive a stronger signal with respect to
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Figure 4.6: Anchors configuration to allow 360◦ coverage.

Figure 4.7: Limit case suitable for data fusion

an anchor reached by the signal from behind. For any configuration, finding the
maximum RSSI among those measured, it is possible to select the anchor that
must produce the AoA measurements. To take these measurements in the lab,
a radio-absorbent paper was placed on the back of the anchors to maximize the
difference between the RSSI received by the antenna in front of the tag and the
other and then, the three antennas were placed on a Turtlebot3 connected to
the integrated Raspberry Pi which ran a firmware that sequentially collects the
measurements of the anchors. The tag, placed on a tripod at a known height, was
moved each time to test different configurations of the system. The cage in which
the anchors were tested is equipped with VICON, a very accurate camera-based
tracking system that can individuate the Turtlebot recognizing a certain number of
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markers uniquely arranged on it and estimate its position and orientation with an
accuracy of about 0.1◦. The VICON measurements can be considered as a ground
truth to calculate the accuracy of the localization via UWB. In figure 4.8 it can be
seen the setup of the instrumentation in the lab and the arrangement of anchors
and markers on the Turtlebot, while in figure 4.9 is reported a screenshot of the
software interface of the VICON system.

Figure 4.8: On the left the three anchors shifted of 120◦, in the center is possible
to see the VICON cameras in the corners of the cage and on the right the TurtleBot
with the anchors and the marker placed on.

Figure 4.9: Screenshot of the software interface of VICON. It can be seen the
arrangement of the cameras and the Turtlebot3
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Four static orientations of the TurtleBot3 (shown in figure 4.10) were considered
to evaluate the difference in RSSI between the anchors. The measurements were
collected for one minute to have different samples for every static configuration.
The results are shown in figure 4.11, where on the x-axis are reported the angles
of rotation expressed in degrees corresponding to the four orientations of the
TurtleBot3 shown in figure 4.10 and on the y-axis the RSSI values obtained from
the three antennas. It can be seen that in the first configuration, anchor 2 is
perfectly aligned with the tag while anchor 1 and anchor 3 are both directed with
their back to the tag with an angle of rotation of 120◦, in fact in the graph it is
possible to see that the RSSI measured by anchor 2 is the highest, while the other
two anchors measure a similar and much lower RSSI because they are rotated by
the same angle with respect to the tag. Passing from one configuration to another,
the RSSI measured by anchor 1 increases as it becomes more oriented toward the
tag. In the third configuration, the limit case discussed before in which two anchors
are oriented in such a way that they can both carry out the measurement occurs.
Anchor 1 and anchor 2 have a similar RSSI, therefore it is not possible to select
one of them just on the basis of the RSSI. However, both of them can carry out the
measurements and so the choice can be made arbitrarily or a data fusion strategy
can be considered.

Figure 4.10: 4 orientation of the TurtleBot3
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Figure 4.11: 3 Anchors RSSI measurements, with tag-anchor distance = 3.6m
and elevation angle θE = 16◦

4.6 Static Measurements

Lastly, the accuracy of the ToA and AoA estimates produced by the UWB kit
was evaluated through several static measurements. In fact, it was not possible to
carry out real-time measurements of a moving object because the firmware collects
the measurements of the three anchors sequentially and was not able to achieve
a delay of less than 500 ms between the collection of the measurements of two
consecutive anchors. As was already stated, it is necessary to have access to all three
antennas’ RSSI measurements since only the data generated by the anchor with
the highest RSSI value are picked. Thus, if the localization target moves when the
algorithm is still waiting to collect all the measures, it makes no sense to compare
the RSSI of the three anchors because they are referred to different locations and
orientations of the target. In static conditions, the accuracy of the measurements
depends on different factors. First of all, the measurement accuracy decreases as
the angle of rotation of the anchor with respect to the tag increases, if the anchor
is directed exactly toward the tag the measurements will be significantly more
accurate. Regarding the AoA measurements, the elevation angle has an impact
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on the accuracy of AoA measurements since, above 20°, the calibration of PDoA
measurements performed with the tag and anchor at the same height is no longer
valid. Furthermore, since the ToA measurements are utilized to adjust the AoA
measurements to account for the height difference between the tag and the anchor
using the calculation in 4.3, the accuracy of AoA measurements is highly dependent
on the accuracy of ToA measurements. The ToA and AoA measurements were
evaluated as done before for the RSSI measurements, connecting the anchors to the
TurtleBot3, collecting several samples for each of the four static orientations shown
in figure 4.10 and selecting the anchor with the highest RSSI. Looking at the graph
shown in figure 4.11 it can be seen that, for every orientation of the TurtleBot3,
the anchor with the greatest RSSI is always the one that is more directed toward
the tag, and there is no overlap between the samples produced by the anchor with
the highest RSSI and the others. Nonetheless, it is possible that overlap will arise
if the tag-anchor distance is decreased or the elevation angle is changed. It’s crucial
to prevent this as it indicates that for some configurations the anchor that should
be chosen does not have the highest RSSI. Figures 4.12 and 4.13 show the ToA and
AoA estimation errors achieved in each of the four TurtleBot orientations taken
into account, as well as at various distances from the tag. For each anchor in each
configuration, only one sample was taken into account, and only the measurements
recorded by the anchor with the highest RSSI were shown.

Figure 4.12: ToA measurement error

In the figures on the x-axis is reported the exact tag-anchors distance while on
the y-axis the measurement error. The samples corresponding to the different
orientations of the TurtleBot3 are overlaid and indicated with different colors.
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Figure 4.13: AoA measurement error

At the bottom right of the figures are printed the anchors selected to collect the
measurements for each configuration and it is possible to see that is always chosen
the proper anchor. In the limit case when the TurtleBot is rotated by 60◦, the
algorithm sometimes chooses anchor 1 and other times anchor2 since both have a
high and comparable RSSI, and this is the configuration for which data fusion could
be applied, even because correspond to the configuration with the least accurate
measurements. The distance estimation seems to be quite accurate ensuring an
error of about ±0.1m for every configuration after adding a bias computed across
all the samples and not only the ones plotted in the figures. The mean, the standard
deviation of the ToA measurement error and the Root-Mean-Square Error (RMSE)
calculated for the sample in the graph are reported in the following:
0°:Mean 0.0098985m Std 0.015706m RMSE 0.018565m,
30°:Mean -0.0089283m Std 0.031766m RMSE 0.032997m,
60°:Mean -0.01176m Std 0.050299m RMSE 0.051656m,
90°:Mean 0.00052823m Std 0.03788m RMSE 0.037883m.
The AoA measurements, instead, are less accurate with an error of about ±10◦.
This is due to the fact that most of the configurations under study were made at
high elevation angles, as well as the fact that the projection correction propagates
the distance error to the AoA. The mean, the standard deviation of the AoA
measurement error and the Root-Mean-Square Error (RMSE) are reported in the
following:
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0°:Mean 0.0070597° Std 0.77592° RMSE 0.77596°,
30°:Mean 7.0527° Std 3.5657° RMSE 7.9029°,
60°:Mean 3.1974° Std 6.0148° RMSE 6.8118°,
90°:Mean -3.7338° Std 2.8642° RMSE 4.7058°.
Analyzing the graphs and the RMSE values obtained for the AoA measurements,
it can be seen that the error increases as the rotation angle of the TurtleBot3 with
respect to the tag increases.
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Chapter 5

Conclusion

The aim of this thesis was to design different real-time localization solutions for
indoor environments based on UWB technology that enable autonomous navigation.
Three distinct designs that varied for the building of the state and the measure-
ment model were used to simulate an EKF in Matlab that combined the UWB
measurements. It was discovered that the hybrid approach that included both ToA
and AoA measurements had the best results in terms of estimation errors.
Then, in order to evaluate real measurement errors, real PDoA and ToA mea-
surements were obtained in the lab using a UWB kit for different static positions
and orientations of the anchors to evaluate real measurement errors. In fact, the
firmware that manages the anchors is not able to collect the data fast enough to
permit the target to move during the measurements. For this reason and for the
lack of availability of more than one tag it was not possible to simulate the EKF
with the real measurements acquired in the lab. When the measurement errors
were examined, it was found that the ToA measurement had a fairly high degree of
accuracy while the AoA measurements had a lower degree of accuracy for various
reasons related to the placement of the antennas with respect to the tag and the
propagation of noise during the correction of the AoA measurements to account for
the height difference between the tag and the anchors. The RSSI-based selection of
the anchor was tested in a variety of tag and anchor positions, and it consistently
produced positive results.

5.1 Further Work
In order to implement the hybrid algorithm based on the EKF is necessary to
acquire the measurements of the three anchors simultaneously for every time step.
A solution could be the implementation of a Time Division Multiple Access (TDMA)
based protocol, in fact, interferences are prevented using a scheduling algorithm,
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therefore is not necessarily essential to acquire the measurements sequentially and
with a high latency.
A further step to improve the performances of the EKF it can be to use also IMU
measurements in addition to the UWB measurements used so far. In fact, IMU
measurements are typically acquired at a higher rate than UWB measurements, but
their accuracy degrades rapidly over time compared to more precise UWB measure-
ments. Therefore, it is feasible to combine the benefits of both the measurement
models and lessen their drawbacks by using both IMU and UWB measurements in
the EKF.
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Appendix A

The Extended Kalman Filter

The Kalman Filter is an efficient solution to the least-squares estimator problem
introduced by R.E. Kalman in 1960. It estimates recursively the state of a process
solving the minimum least-squares error problem for applications that can be
represented as a linear system driven and disturbed by Gaussian noise. The
Kalman Filter work for process that can be modeled as a linear system affected
by Gaussian distributed noise. However, if the process to be estimated or the
measurement relationship to the process is non-linear the Kalman Filter can be
extended with some linearizations and approximations to his version suitable for
non-linear systems, referred as Extended Kalman Filter (EKF). The discrete EKF
estimates recursively the state of a dynamic system modeled by a discrete-time
state equation:

xk = f(xk−1) + wk,

p(wk) ∼ N (0,Qk),
(A.1)

Where xk is the state vector at time k, f is the state transition function that prop-
agates the state in time given the previous state xk−1. The process noise vectorwk

takes into account the unknown deviations from the system model, assumed to
be a vector of random noise normally distributed with zero mean and covariance
matrix Qk.
The system is observed through the measurement equation:

zk = h(xk−1) + vk,
p(vk) ∼ N (0,Rk),

(A.2)

Where zk is the measurement vector at time k, h is the observation function
that estimates the expected measurements at the true state xk and vk is the
observation noise vector modeled by a vector of random noise normally distributed
with zero mean and covariance matrix Rk.
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The EKF iteratively tracks the state evolution of the system in two phases by
using a form of feedback control: the predict phase propagates the state and the
error covariance in time to obtain the a priori estimates, while the update phase
is responsible for the feedback because correct the a priori estimate integrating a
new measurement to obtain an improved a posteriori estimate.

Figure A.1: The discrete Kalman Filter cycle

A.1 Predict Phase
In this phase the a priori state vector estimation x̂−

k and its covariance P̂
−
k are

computed at time k on the basis of the previous a posteriori state estimate x̂+
k−1 at

time k-1, its covariance P̂k−1 and the process noise covariance matrix Qk :
x̂−
k = f(x̂+

k−1, ûk−1) (A.3)

P̂
−
k = FkP̂

+
k−1FT

k + Qk (A.4)

Where Fk = ∂f
∂x

---
x=x̂−

k

is the Jacobian matrix of the state transition function f
computed around the previous estimates.

A.2 Update Phase
First of all, in this phase when a new measurement zk become available the
innovation vector yk is calculated as the residual between the observed measurement
zk and the expected measurement h(x̂−

k ), while its covariance matrix Sk as the
expected measurement estimation error due to the a priori state error covariance
plus the measurement covariance Rk :

yk = zk − h(x̂−
k ) (A.5)
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Sk = HkP̂
−
k HT

k + Rk (A.6)

Where Hk = ∂h
∂x

---
x=x̂−

k

is the Jacobian matrix of the observation function h computed
around the previous estimates. Then, the filter computes the a posteriori state
vector estimate x̂+

k and its covariance P̂
+
k , correcting the a priori estimates x̂−

k and
P̂

−
k :

x̂+
k = x̂−

k + Kkyk (A.7)

P̂
+
k = (I − KkHk)P̂

−
k (A.8)

Where Kk is the optimal Kalman Gain :

Kk = P̂−
k H

T
k S

−1
k (A.9)
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Appendix B

Coordinate systems

Various coordinate systems have been used in target tracking, such as Earth-
Centered Earth-Fixed Frame (ECEF), Inertial Frame (i-frame), Local Geodetic
Frame (t-frame) and Body Frame (b-frame). In this section is presented a brief
overview of the most used ones.

Figure B.1: ECEF (e-frame), local geodetic (t-frame), and inertial (i-frame) frame
relationships.
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B.1 Earth-Centered Earth-Fixed Frame (ECEF)
The ECEF coordinate system, also referred to as geocentric coordinate system is a
Cartesian spatial reference system that represents locations close to the Earth. It
has its origin at the center of mass of the Earth and rotate with the Earth. The
axes are directed as follows: the x-axis points towards the intersection between the
prime meridian and the equator, the z-axis is the line between the North and South
Poles, with positive values increasing northward and the y-axis is in the plane of
the equator and complete the right-handed coordinate system.

B.2 Inertial Frame
An inertial frame is a coordinate system that can be in linear motion but is not
accelerating and so Newton’s laws of motion can be applied. The origin of the
system and the directions of the axes are arbitrary as long as the right-hand rule is
respected. Usually, it is preferable to consider the origin in the center of mass of
Earth, the z-axis pointing toward the North Pole, the x-axis and y-axis lying on
the equator plane. In this way, this coordinate frame is consistent with the ECEF
and differs from it only because does not rotate with the Earth.

B.3 Local Geodetic Frame (NED, ENU)
This coordinate system has its origin in a fixed point of the Earth surface, the
z-axis point towards the earth’s interior (down), the x-axis and the y-axis lie on a
plane tangent to the origin and point toward the local North direction and the local
South direction. This coordinate configuration is referred to as North-East-Down
(NED), but another right-handed variant exists and is called East-North-Up (ENU).

B.4 Body Frame
The Body Frame is the coordinate system attached to the vehicle. Its origin is at
the center of gravity of the vehicle, the x-axis points in the forward direction, the
z-axis down through the vehicle and the y-axis completes the right-hand coordinate
system.

B.5 Platform Frame
The Platform Frame is the coordinate system of the platform where the sensors
that acquire measurements are mounted on. This frame is needed in applications
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where the platform is not aligned with the body frame and so the two coordinate
system are not coincident.
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