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Abstract

This Master’s Thesis presents a visual method based on machine learning to
estimate, from a picture of the Earth, the attitude of a satellite at the moment
it captured that image. Attitude estimation is a crucial task in satellite
operations as it determines the orientation and position of the satellite with
respect to its surroundings. Conventional methods for estimating satellite
attitude require multiple sensors and complex algorithms, making them prone
to errors and limitations, especially in the case of small and low-cost satellites
as CubeSats. In this work, a machine learning-based approach is presented,
to be deployed on-ground, which leverages image data collected by cameras
onboard the satellite to geographically localize the landmarks captured, and
provide an estimation of the spacecraft attitude. In the proposed method we
can identify three main steps: (1) first, the retrieval of a dataset of reference
geolocalized pictures; (2) then, the selection of the best candidate pictures for
the matching by means of a convolutional Siamese neural network, trained on
a large dataset of Sentinel images synthetically modified; (3) finally, a pixel-
level keypoint matching that enables the overlap of the input images and the
geo-localization of the query. Results from the experiments demonstrate the
feasibility of the proposed method and an in-depth study of the literature
allows to point-out possible further developments to enhance its accuracy
and robustness.
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Chapter 1

Introduction

CubeSats, also referred to as nanoSatellites, are miniature satellites that usu-
ally have a standard dimension of 10cm cubes (less than a shoe box), which
gives them a fraction of the mass and cost of traditional satellites (with the
size of a bus to give an idea). Initially designed as teaching aids, Cube-
Sats are now being actively used in orbit for technological demonstration,
research, and always more for commercial objectives too. Their reduced cost
of production and launch, made space accessible not only to big companies
but to private businesses as well, which in turn sparked an ever-growing num-
ber of space tech startups with a focus on Earth-related applications, such
as satellite communications and imagery, Earth monitoring, and geospatial
analytics. Deloitte’s Spacetech Report [11] writes that these startups are
more and more the object of investors, who are betting on their capabilities
to lead the future innovation on Earth, from almost real-time pictures of cli-
mate change effects to the high-speed internet needs of any industry involved
in the IoT. This trend is referred to as New Space Era, which is attracting
more and more the investors attention and is characterised by rapid and dy-
namic innovation. In support of this, the Space Report 2022 [14] shows that
the global space economy reached $469 billion worth in 2021, with a revenue
increase of 6.4% since 2020, while the Spacetech one points out that it is
estimated to surge to over $1tn by 2040.

The multiple sensors mounted on the satellites enable extensive gathering of
data that can be analysed exploiting the power of deep learning algorithms.
The possible applications in this sense are endless, but among these an im-
portant role is played by the fields of robotics and autonomous systems and

7



1 – Introduction

of the so-called "AI at the edge", which consists of the design of optimized
models that can run onboard CubeSats and other small satellites, where the
hardware resources are limited, especially in terms of storage and compu-
tational power. Numerous startups are indeed betting on the key role that
AI will have in the Space sector. For instance, AIKO, a deep tech software
company born in 2019 at the I3P of Politecnico di Torino, develops pioneer-
ing AI technology for the automation of space missions and their operation.
The European Space Agency (ESA), as one of the largest space agencies in
the world, is determined to keep its leading role in the design, deployment,
and operation of missions. To do so, under ESAs Basic Activities, several
studies have investigated the use of artificial intelligence for space applica-
tions and spacecraft operations. In particular, a strong focus is given to the
development of software, concepts, and protocols to push to its limits ESAs
CubeSat OPS-SAT.

OPS-SAT is the world’s first satellite mission entirely dedicated to testing
satellite control technology in orbit, meant to drive innovation and exper-
imentation in this domain [1]. It is a CubeSat, hosting a large number of
high-performance payloads, such as an Altera Cyclone V System-on-Chip
processor, a high-resolution camera and a software-defined radio. Compa-
nies from all around Europe are now able to submit experiments involving
OPS-SAT to the European Space Operations Centre (ESOC) in Germany,
which will be executed at the Special Mission Infrastructure Lab Environ-
ment (SMILE). The project "EagleAI: Estimation of Attitude Geo-localizing
Landmarks on Earth", the object of this thesis and registered as OPS-SAT
Experiment, emerged in this context.

1.1 Thesis outline
This thesis is the result of a work of six months, carried out at ESOC, the
European Space Operation Center of Darmstadt, to support with novel, AI-
enabled approaches the operation of OPS-SAT CubeSat, with a view to the
development of highly autonomous space missions. In particular, the project
aimed to design and build a method to estimate the attitude, i.e. the orienta-
tion in space, of the spacecraft OPS-SAT, determining its pointing on Earth
employing a visual-based system. Results from the experiments demonstrate
the feasibility of the proposed method, showing how it can effectively provide
an accurate estimation of the attitude starting from a picture, its timestamp
and the satellites orbit.
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1.1 – Thesis outline

In Chapter II, we introduce the discipline of attitude determination, with
an overview of the traditional approaches and a summary of the mathe-
matical background required for a basic understanding of this subject. In
addition, we mention some examples of projects presenting visual-based and
AI-enabled attitude estimation methods, followed by the description of the
solution proposed in this thesis.

Being the solution scheme composed of a series of consecutive steps, a dif-
ferent chapter is devoted to each of them: starting with a formal definition
of the task that is going to be addressed, as well as an outline of its specific
challenges and characteristics related to the particular application consid-
ered. They then proceed with a literature review of the state-of-the-art and
an in-depth description of the approach adopted in the proof of concept.
These building blocks consist of the search for geo-localized images to use as
a reference, the retrieval of the candidate images in the database most similar
to the sensed picture, and the finer keypoint matching that enables the geo-
localization of the query image. The former step is the subject of Chapter
III, which includes an overview of Earth Observation (EO) satellites and data
providers. Chapter IV focuses instead on the task of Image Retrieval, with
a thorough definition of the Siamese network implemented and its training
procedure. Finally, Chapter V explains the approach adopted to perform the
overlapping of the selected reference image with the one sensed by OPS-SAT,
commonly referred to as Image Registration.

The core of this work resides in the proof of concept, implemented as a
pipeline of sequential modules, which is exposed in Chapter VI with a curated
explanation of each step of the process. The main goal was the development
of a consistent and functional offline attitude estimator, flexible enough to
become a solid starting point for future research. Its modular design allows an
easy modification and tuning of each element of the framework, as suggested
in the conclusions.
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Chapter 2

Autonomous Attitude
Estimation

Attitude estimation is a crucial task in satellite operations as it determines
the orientation and pointing of the satellite with respect to its surroundings.
In order to enable novel autonomous operations of satellites, and in particular
of CubeSats, the original idea was to develop a method for the autonomous
determination of the attitude of the spacecraft starting from the images cap-
tured by the on-board camera. This would allow to obtain an estimation of
the attitude alternative to the one provided by the cADCS (coarse Attitude
Determination and Control System) by exploiting a cheaper high-resolution
camera. After a preliminary examination of the problem, potential solutions,
and hardware limits on the target machine, it has been decided to relax some
constraints and concentrate on the development of a practical solution run-
ning on-ground, with more computing and storage capabilities. Therefore,
the problem can be reformulated as follows: given a raw query image taken
from OPS-SAT, the goal is to automatically determine the attitude of the
spacecraft at the moment the picture has been taken.

2.1 Attitude determination
The discipline of spacecraft attitude determination has the objective of com-
puting the space orientation of the satellite, based on sensors that can give
measurements of known quantities in the form of 3D vectors.
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2 – Autonomous Attitude Estimation

2.1.1 Traditional approaches
Conventional techniques for estimating satellite attitude require the calibra-
tion, weighting and filtering of multiple sensor inputs and the bespoke tuning
of complex estimation algorithms. The basic approach makes use of various
sensors (such as sun sensor, gyroscope, geomagnetic sensor, magnetometers,
horizon sensor, etc.) to record the 3D variation of a satellite rotation angle.
As a second step, the recorded rotation angles are filtered by a Kalman filter
(or variants), that uses a recursive algorithm to estimate the state variables
of the system based on its mathematical model and on the sensors measure-
ments.

Another method consists of the estimation of the spacecraft orientation based
on preexisting simulation databases. In this case, attitude parameters can
be solved by using optimal search algorithms.

Furthermore, it is possible to use the Start Tracker (SST), which is a very
precise device (it can determine the attitude with an error smaller than 0.1
deg) but it is not always used for its size and weight. Start trackers are
based on image processing; they acquire images of the star field observable
at visible and near-infrared wavelengths and they identify geometric patterns
of potential stars in the captured images. They then compare the geometric
patterns identified with a pre-stored star catalogue and compute the satel-
lite’s attitude in relation to the stars actually observed.

For what concerns OPS-SAT, it is equipped with two Attitude Determination
and Control Systems (ADCS):

• Coarse ADCS: it is provided as part of the bus, and it includes control
algorithms implemented in the nanomind on-board computer. It relies
on magnetotorquers as actuators and on sun sensors and magnetometers
as sensors.

• Fine-pointing ADCS: also riferred to as integrated ADCS, it is part
of the payload and it provides a set of high performance sensors and
actuators (i.e. ST-200 Star Tracker and miniature reaction wheels) that
allows to obtain an accuracy below 1 deg. Moreover, it enable both nadir
pointing and target pointing, which are operations usually only available
on larger spacecrafts.

While the coarse ADCS is always operational, the iACDS is only used when a
precise information on the attitude is required and whenever there is the need
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2.1 – Attitude determination

to point the camera. Therefore, depending on the timestamp, the telemetries
might bring information about only one of the two systems.

2.1.2 Mathematical background
To ease the understanding of the software used to compute the attitude and
of the problem itself, this section introduces some key notions about the
mathematics behind 3D rotations in space.

Recalling the definition of attitude determination, it consists of the study of
methods for estimating the proper orthogonal matrix that transforms vectors
from a reference frame fixed in space to a frame fixed to the spacecraft body.

Reference coordinate frame

Especially in the context of satellite attitude estimation, where multiple coor-
dinate frames can be used, it is very important to understand their difference
and properly defined the one in use.

The reference frames used more often are:

• Spacecraft body frame: it is defined by an origin at a specified point
in the spacecraft body and 3 Cartesian axes. According to this frame,
the camera is pointing towards the -Z axis. It is used to describe the
different magnitudes recorded by the satellite.

• Earth Centered Inertial (ECI): the ECI’s center coincides with the
Earth’s center, and it is fixed with respect to the stars. In fact, its x-
axis points towards the first star of Aries, the z-axis is aligned with the
Earth’s rotation axis and the y-axis follows the right-hand rule. This
reference frame can be considered inertial, thus it is used to express the
orbital motions of objects in Space as well as to specify the direction of
celestial objects (such as the Sun).

• Earth-Centered / Earth-Fixed frame (ECEF): the ECEF’s center
coincides with the Earth’s center, and its axes follow the Earth in its
rotation movement. The x-axis is contained in the equatorial plane and
points to Greenwich meridian, the z-axis is aligned with the Earth’s
rotation axis and the y-axis is defined by the right-hand rule. This
reference frame is not inertial, it is accelerated and it rotates with respect
to stars. It is used to express the motion of objects on the Earth’s surface
and to describe the Earth’s magnetic field.
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2 – Autonomous Attitude Estimation

Figure 2.1: Relation between ECI and ECEF frames. [24]

3D rotations

The parametrization of a 3D rotation is not straightforward, as several dif-
ferent possibilities exists, and many of them can be used at the same time
according to the information to convey. In the context of robotics as well as
spacecraft attitude determination, the two most used representations are:

• Axis/Angle Representation: a rotation can be represented by a ro-
tation axis n̂ and an angle θ, as shown in fig 2.2. This transformation
can be described by a rotation matrix written as a function of n̂ and θ.
It represents the orientation of a rigid body with respect to an inertial
coordinate system describing 3 successive transformations around the
body fixed axis. It is the best option in the case of small rotations, but
in general it is not a unique representation, since it is always possible to
add a multiple of 2π radians to θ and get the same rotation matrix.

• Quaternion Representation: also a quaternion is defined by a ro-
tational axis n̂ and a rotation angle θ, and it consists of a unit length
4-vector whose components can be written as q = (qx, qy, qz, qw). Unit
quaternions live on the unit sphere ||q|| = 1 and antipodal quaternions,
q and -q, represent the same rotation. Other than this duality, the
unit quaternion representation of a rotation is unique. Moreover, this
representation is continuous. The quaternion representation expresses
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2.2 – Related works

the attitude matrix as a homogeneous quadratic function of the quater-
nion’s elements, requiring no trigonometric or trascendental function
evaluation.

Figure 2.2: Axis/Angle representation of a rotation around an axis n̂ by an
angle θ. [30]

Figure 2.3: Unit quaternions live on the unit sphere ||q|| = 1. This figure
shows a smooth trajectory through the three quaternions q0, q1, and q2.
[30]

2.2 Related works
The geo-localization of images has been widely studied and several solutions
can be found, exploiting diverse AI approaches. On the other hand, there
are few evidences of its practical application to provide an autonomous es-
timation of a spacecraft attitude. In the following paragraph we are going
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2 – Autonomous Attitude Estimation

to present a couple of use cases that have already addressed this problem by
means of visual-based Artificial Intelligence techniques.

Both examples deal with onboard applications. The first one, referred to
as the DLAS project, makes use of a deep learning technique for semantic
segmentation. It assumes that the satellite is equipped with a GPS sensor
providing the precise location of the spacecraft, which is not available on
OPS-SAT. The DAT project, instead, proposes a solution embedding one of
the latest deep learning algorithms for edge devices, but its functioning is
assessed only on a limited scenario.

2.2.1 DLAS project
Deep Learning Attitude Sensor (DLAS) [16] is a project that proposes a
method to estimate the attitude of Small Satellites by means of machine
learning techniques applied to image data. It represents one of the first
examples of the implementation of an attitude sensor enabled by image-based
machine learning algorithms.

It has been developed by the Tokyo Institute of Technology in 2018 and
tested a couple of years later with the JAXA’s program of innovative satel-
lite technology demonstration. The aim of this work was to perform atti-
tude estimation using color images taken with a low-cost COTS visible light
camera. The algorithm was developed t be run on the onboard computer,
equivalent to a RaspberryPi 3 Model B. The main idea was to compare the
Earth surface patterns on the pictures with map data preloaded onboard,
reducing the search space with the help of the GPS position. The approach
used in this case to determine the 3-axis attitude of the spacecraft is based
on the following steps:

1. Semantic segmentation: the input image is fed into a light-weight Multi
Layer Perceptron network that categorizes each pixel into 10 classes, by
means of a sliding-window approach.

2. Reference database creation: the system generates imaginary pictures
with all possible angles around the nadir vector, with the help of a
dataset previously stored onboard.

3. Similarity search: it then computes the similarity of the obtained seg-
mented picture with the generated catalogue images by using a template
matching technique.
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2.2 – Related works

4. Finally, it obtains the angle with the highest similarity values among all
the generated catalog images.

The picture 2.4 provides a clear visualization of the approach just described.

Figure 2.4: Deep Learning Attitude Sensor approach

The experimental results reported in 2021 show how the systems was able to
detect the 3-axis attitude under certain conditions (as a low cloud coverage),
and that the accuracy was comparable to the one of a coarse sun sensor (1̃
deg).

2.2.2 Deep Active Tracking project
The Deep Active Tracking (DAT) project is an AI-based system for an active
tracking of Earth features from OPS-SAT pictures, developed by the com-
pany Adatica Engineering and submitted to OPS-SAT as an Experimenter.
The DAT’s goal is to demonstrate the operation of an AI-enabled attitude
control system that can detect a landmark on Earth with the on-board opti-
cal camera and maintain it framed and focused on the target by controlling
the reaction wheels to actively control the attitude of the probe.

The system consists of two main parts: initially, a computer vision algorithm
process the pictures taken by OPS-SAT to detect the presence of a target
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2 – Autonomous Attitude Estimation

landmark and gives as output the corresponding coordinates; then, a sec-
ond algorithm based on Deep Reinforcement Learning determines the best
sequence of actions to position and maintain the target centered on the field
of view of the OPS-SAT optical camera.

Figure 2.5: DAT scheme of target landmark detection and attitude control
process

The first task is the most relevant for us, since it aims to solve the problem of
geolocalizing landmarks on Earth. In this case, it is addressed by means of a
Deep Neural Network trained for object detection with a supervised learning
setup. Specifically, due to the constraints in terms of speed and accuracy in
real-time applications, the selected neural network is the YOLO architecture.
YOLO is a Convolutional Neural Network (CNN) that detects objects as a
regression problem and provides, at the same time, class probabilities of the
detected landmarks as well as their location by means of a bounding box set
of coordinates.

The network has been designed to be trained with a supervised learning
technique, which means that the training dataset must include both the
target landmarks and the corresponding geographical annotations that are
used as ground truth. For the purpose of this Proof of Concept the authors
selected the islands as the target landmark. Limiting the application to
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2.3 – Proposed solution

islands allows in fact to provide an efficient end-to-end system, while leaving
it open to generalizations, i.e. allowing it to be trained to track any other
natural or man-made feature. Since the number of images taken from OPS-
SAT are in a limited number, as an alternative data source for training the
algorithm they used the Sentinel-2 Open database.

2.3 Proposed solution
As previously mentioned, the problem addressed by this project is to au-
tonomously retrieve an estimation of the spacecraft attitude starting only
from the pictures captured by the on-board HD optical camera. Having
considered the examples previously described, this work has been set up to
provide an alternative solution, which is designed to be run on-ground to
avoid the strict constraints in terms of data storage and processing power.
The adaptation of this work for an onboard use is let as a future development.

Given the context of deployment, it is legitimate to assume the position of
the spacecraft along the orbit to be known, since we can retrieve it from the
intersection of the picture timestamp and the TLE1 (Two-Line Element set)
of the satellite. Therefore, the challenge translates in the detection of land-
marks, i.e. geographical objects, in the image and in their geo-localization.
Once we can find the coordinates of at least three pixels of the picture, the
attitude can be retrieved by solving a geometrical problem. We can identify
three main steps:

1. Retrieval of reference images: the first requirement for localizing the
landmark is to find the corresponding reference image equipped with ge-
ographic information. Considering the whole World land as initial search
space is unfeasible: the database of images would be too big to be stored,
and the search would not be efficient. At the same time, restricting the
research to a predefined subset of landmarks, as was done for the DAT
project with the selection of islands, creates a big limitation in the use-
fulness of the application. For these reasons, we chose not to consider
an on-board use, which would add restrictions in terms of memory and
computational resources, but to relax the constraints and focus on the

1The TLE is a data format encoding a list of orbital elements of an Earth-orbiting
object for a given point in time. In this case, it uniquely describes the state of the satellite
at a given epoch.
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2 – Autonomous Attitude Estimation

development of a method running on-ground. Given these assumptions,
it is possible to retrieve the reference pictures from open source satellite
images providers. After considering and comparing several options, as
discussed in the next chapter, the Copernicus Open Access Hub has been
chosen to retrieve Sentinel-2 pictures. Since the spacecraft’s location on
the ground track at the time of the photo’s capture is known, the idea is
to draw an appropriate Area of Interest around that point which covers
the satellite’s field of view. Once the AoI is defined, it is possible to
download lightweight images from the Copernicus Open Access Hub to
perform a first selection of the products and avoid a massive processing
of useless data.

2. Coarse matching step: the second step of the pipeline is to filter,
among the downloaded images covering the AoI, those that actually
represent the same scene as the query picture. Since usually the initial
number of downloaded pictures is around 300-500, the goal is to se-
lect the 5 or 10 candidate reference images that most likely contain the
landmark captured by OPS-SAT, to increase the efficiency of keypoint
matching. The approach we adopted consists of a Siamese Neural Net-
work, trained to automatically detect similarities between two images.
It takes as input a pair of pictures, obtains their feature representations
in the latent space and gives as output the Euclidean distance between
the two feature vectors.

3. Fine keypoint matching: once good candidates for the matching are
obtained, we apply a keypoint matching algorithm, in order to precisely
link at a pixel level the landmarks in the two input pictures. In general,
the main goal of a keypoint matching algorithm is to detect the points
of an image that carry the most information and describe them through
a feature vector. This enables the comparison of feature vectors between
two different images and the matching of the points that are more sim-
ilar to each other. Also in this case, several solutions have been studied
and compared. The more straightforward method is SIFT, which is a
traditional and widely used computer vision algorithm. Thanks to its
robustness it has been chosen as the best candidate to provide an initial
proof of concept for this project. On top of the keypoint matching algo-
rithm, we use the RANSAC algorithm to refine the results, which divides
the keypoints set in inliers and outliers and estimates the geometrical
transformation that links the two images.
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A graphical representation of the entire pipeline is reported in fig 2.6.

From the inliers set of keypoints we then estimate the geometrical transforma-
tion that allows to overlap the image we want to geolocalize with the reference
one. The goodness of the image registration is evaluated by means of a vi-
sual check or by computing the Root Mean Squared Error of the transformed
keypoints. In this way, we can easily obtain the geographical coordinates of
each pixel. To extract the attitude, at this point it is enough to select three
points of the picture and feed them to a python script already implemented
by the OPS-SAT team, that performs the geometric computations to extract
the attitude of the spacecraft.

For the validation of the results it is possible to compare the obtained atti-
tude parameters with those of the fine iADCS (Attitude Determination and
Control System) of OPS-SAT, which can be retrieved from the telemetry his-
tory. Another option is to visually test the transformation of the reference
image such that it matches the query, i.e. the image we want to localize.
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2 – Autonomous Attitude Estimation

Figure 2.6: Diagram of the project architecture
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Chapter 3

Geo-referenced images
retrieval

The data collection is the most important and delicate step in the devel-
opment of a machine learning application, since it will directly affect the
outcome of the algorithm. Specifically, our use case requires two different
datasets:

• One or more query images, that are the ones we are interested to localize

• A dataset of geo-referenced images that we use as basis for the registra-
tion

The query image is provided with a unix timestamp, which allows us to re-
trieve the position of OPS-SAT in the orbit from the historical telemetries
database and its associated point on the ground. Starting with this informa-
tion, in order to geo-localize the picture, we need a set of reference images
covering the whole field of view of the satellite, which can have a diameter of
several hundreds of kilometers, given that the spacecraft lies at 600km orbit
height.

In the case of satellite imagery, there are many potential data sources avail-
able (such as Sentinel-2 of ESA, or Landsat-7 and Landsat-8 of NASA), since
the number of satellites orbiting the Earth is increasing day by day, but each
of them differs in resolution, level of processing, cost and licensing, making
the choice of the right data not straightforward.

Therefore, the first step consists of the choice of the best source of geospatial
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3 – Geo-referenced images retrieval

Table 3.1: Technical details of the OPS-SAT onboard camera

Parameter Value Comment
Spatial Resolution 53 m @ 600km orbit height
Field of View 135x105 km @ 600km orbit height
Channels 3 RGB via on sensor Bayer Pattern
Frame rate 7 / 15 2600x2000 pixels / 1300x1000 pixels

data and of the setup of a pipeline that, given the timestamp of query image,
can retrieve the geographical position of OPS-SAT. Then, it downloads the
reference pictures that cover the desired Area of Interest (corresponding to
the satellite Field of View) around that point.

Since the target of our application is OPS-SAT satellite, or more in general
small satellites, the reference dataset is required to have similar character-
istics with respect to the query. From the specifics of the onboard camera
reported in the table 3.1, we can notice that the resolution is lower with re-
spect to larger Earth Observation satellites. However, the one mentioned is
not the only parameter to consider when comparing pictures from different
sources. Other important parameters that characterise geospatial data are:

• Spatial resolution: also referred to as ground sample distance GSD, it
indicates the size of the ground tile covered by one pixel.

• Temporal resolution: frequency with which data is collected over the
same region (also called ’revisit time’)

• Spectral resolution: the number of spectral bands and width of each
spectral band (e.g. multi-spectral sensors have 3-10 bands, OPS-SAT
captures RGB bands).

In addition to the above mentioned parameters, for the creation of an effi-
cient reference database, the images should be available real-time and they
should be light-weight, allowing to reduce as much as possible the size of the
downloaded data.

In this chapter, guided by the above mentioned requirements, we first present
an overview of satellite imagery ecosystem, then we expose the research done
on the possible data providers, analysing the different platforms and com-
paring the characteristics of the infrastructures.
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3.1 EO Satellites and Data Access Platforms
Geo-referenced data consists of data structures, referred to as raster, combin-
ing the remote sensing information (from a camera or another kind of sensor)
with its geographic location. They can be collected by satellites, aircraft, or
drones.

In recent years, thanks to technological advancements, the amount of geospa-
tial data collected by Earth Observation (EO) satellites has rapidly increased,
allowing to assess the status of the natural and manmade environment as well
as its changes in time. This kind of data enables the extraction of a wide
variety of information useful for monitoring environmental changes, risk de-
tection, and the analysis of urban occupation. Among all the data collected,
petabyte-scale archives of remote sensing data have become freely available
for society and researchers by open data rules set by governments and space
agencies, with the intent to push the development of EO applications. Ex-
amples of these resources are the images from Sentinel satellites, maintained
and operated by Copernicus, i.e. the Earth Observation component of the
European Union space programme [13], the NASA Landsat satellites, and
the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery of
the U.S. Geological Survey (USGS).

However, the large amount of daily collected data comes with a big chal-
lenge for what concerns the access and storage of satellite and aerial remote
sensing data (just consider that, only in 2019, the amount of data collected
by Landsat-7 and -8, Sentinel-1, -2 and -3 and MODIS is around 5PB). As
a consequence, even if satellite images themselves are made freely available,
the storage and processing of a large number of data for further analysis is
anything but easy. To ease the access and management of spatial data, many
companies and institutions developed advanced Spatial Data Infrastructures,
i.e. platforms that serve as an interface between the user and the data sys-
tem and that integrate different kinds of technologies, such as Application
Programming Interfaces (API) and web services [9].

An example of raw spatio-temporal data is reported in fig 3.11, where it is
possible to identify the multiple dimensions of the raster data (space, time
and bands). As indicated, each image is provided with metadata containing
information on the coordinates of each pixel, on the capture time, and in

1Image taken from www.openeo.org
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Figure 3.1: Example of datacube

some cases also a cloud mask; the final product therefore often takes up
hundreds of MBytes.

The following paragraphs report some of the possible platforms providing
satellite imagery.

3.1.1 Sentinel Hub
Sentinel Hub2 (SH) is a private platform owned, developed, and operated
by Sinergise that provide access and visualisation services for satellite data
(from Sentinel, Landstat and other providers).

Based on the functionalities SH offers different payment plans, allowing to
access for free only the visualization, selection and download of data from

2https://www.sentinel-hub.com
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the EO Browser. Under subscription, many different functionalities are made
available, such as higher resource access limits, a user-friendly Dashboard for
the selection of data, and different APIs shaped upon the users needs (OGC
API to directly integrate the data in a GIS application, a RESTful Process
API that allows to easily process data inside a custom script, or a Batch
Processing API for the access to larger amount of information).

3.1.2 Google Earth Engine
Google Earth Engine3 (GEE) is a cloud-based computing platform where
users can perform large-scale geospatial analysis and visualisation supported
by Google’s infrastructure.

GEE was created in 2010 by Google as a proprietary system, ad its services
are made free for any non-commercial use and research projects with small
and medium workloads. The data catalogue it offers is very wide, includ-
ing raw satellite images from Sentinel, Landsat, MODIS and more, as well
as geospatial datasets equipped with environmental variables, weather and
climate forecasts and hindcasts, land cover, topographic and socio-economic
data. To ease the access, it provides a JavaScript API, for which there is
also a web Integrated Development Environment (IDE), and a Python API
for data management and analysis.

The APIs implement a large variety of functions and operators (more than
800 considering both simple mathematical operations and complex machine
learning and geostatistical algorithms), that are automatically executed by
the parallel processing backed system, which subdivides and distributes com-
putations with by means of a MapReduce approach.

As described in [10], Earth Engine is built on top of the Google’s suite of
big data technologies, and it enables their interaction with the final applica-
tion through client libraries that send queries to the system by means of a
RESTful API.

As a down side, the use of GEE for geospatial data analysis makes the appli-
cation dependent from Google technologies and not easily exported. In fact,
all computations must be expressed using the Earth Engine library, which
means that existing algorithms and workflows have to be converted to utilize

3https://earthengine.google.com
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the platform at all. This impedes the user of extending the functionalities of
the library, such as using the processed images as input to custom machine
learning models.

3.1.3 openEO
The limitation just mentioned, of platforms like EEO, often represents an
entry barrier for EO scientists, that might fear of becoming dependent on
the provider of the chosen system. In fact, all these backend providers have
adopted their own customer-driven development paradigm, tailored to their
specific data infrastructures, making it very hard to switch to other service
providers and to compare the results and the performances of different back-
ends [28].

Figure 3.2: OpenEO platform architecture [9]

This issue has been addressed by the open source OpenEO project4, which

4https://openeo.org
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aims to provide a mechanism for researchers to develop their applications
and analyses using a single standard, which hides the architectural differ-
ences between cloud platforms [9]. It consists of a three-year funded by the
EU under the Horizon 2020 project, and developed by a consortium of com-
panies (EODC (AT), VITO (BE), Sinergise (SI), EURAC (IT), EGI (NL)
and University Muenster (DE)). The goal was to design an API composed of
three layers: a Core API for finding, accessing and processing large datasets,
a Driver API to connect to backends operated by European and worldwide
industry, and a Client API for analyzing these datasets using R, Python or
JavaScript. The structure of the OpenEO platform is reported in fig 3.2.

3.1.4 Copernicus Open Access Hub
The vast majority of data and information delivered by the Copernicus space
infrastructure, which includes the Sentinel satellites fleet and in-situ data
gathering as depicted in 3.3, is made freely available and accessible by the
European Commission policies to any citizen and any organisation around the
world.

Figure 3.3: Copernicus system

The platform that makes this possible
is the Copernicus Open Access Hub, a
portal that provides complete and open
access to Sentinel-1, Sentinel-2, Sentinel-
3, and Sentinel-5P user products, with
synchronous access to most recent data
and asynchronous access to historic data
stored in the Long Term Archive (LTA).
It offers either a Graphical User Inter-
face, that allows performing thorough
queries to the database in a user-friendly
way, either two dedicated programming
APIs that can handle a large set of client
tools and enable the creation of scripts
for automatic search and download of
data:

• OData is a data access protocol based on fundamental protocols like
HTTP and widely used techniques like REST. Therefore, it is easily
handled by different client tools and applications, and it can be used to
create input URIs to perform batch data download.
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• OpenSearch is a set of RESTful technologies that can be used to
quickly locate the desired resources, which can then be downloaded by
using OData.

The ODaata an OpenSearch URIs can be combined to create complex queries
to be executed in non-interactive scripts using programs like cURL and Wget.

Additionally, there exists Sentinelsat, a Python library that further simplify
the process of searching, downloading and retrieving the metadata form the
Copernicus Open Access Hub. Sentinelsat offers a user-friendly command
line interface in addition to a python API, that makes it straightforward to
integrate the data retrieval into more complex python projects.

The API provides many functionalities to access the Sentinels data products,
in order to select among the large amount of data hierarchically organized,
only those parts that are actually needed. To give an idea, each Sentinel 2
product refers to a directory folder that contains a collection of information
as described in [12]. The main subfolders are:

1. Auxiliary Data Folder (AUX_DATA), that contains the set of auxiliary
files that can be embedded in the product (e.g. International Earth
Rotation & Reference System bulletin)

2. DATASTRIP, with datastrip level information

3. GRANULE, which includes image data (granules/tiles) in JPEG2000
format as well as quality indicators (quality masky masks, quality re-
ports, etc.). The image data is contained several levels down within the
folder. A granule is a 100x100km2 ortho-image in the UTM/WGS84
projection.

4. User product html data folder (HTML), containing a product presenta-
tion file allowing to display easily the main content of the product

5. A Representation Information Folder (rep_info) with an XSD schema
that describes the product components

6. An INSPIRE.xml file, collecting metadata according to the INSPIRE
Metadata regulation

7. Product Level-1C Metadata File in XML format that describes the phys-
ical organization and the content of the product

8. The Sentinel-2 Manifest file (MANIFEST.safe), which holds the general
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product information in SAFE format, specifically designed as a standard
to archive and convey data within ESA Earth Observation archiving
facilities. The SAFE format wraps a folder containing image data in a
binary data format and product metadata in XML. This flexibility allows
the format to be scalable enough to represent all levels of SENTINEL
products.

9. A preview image in JPEG2000 format.

A new Copernicus Data Space Environment with additional tools for data
processing and visualization has been operational from January 24th 2023,
which is going to replace the current services of the Open Access Hub. This
new platforms is intended to ensure instant data availability to users, offering
real-time availability of the full data archive acquired by the Copernicus
Sentinel satellites. It will still provide OData and OpenSearch APIs and a
newly designed web browser application.

3.2 Sentinel Satellites
Sentinel is a set of Earth Observation satellites controlled and maintained
by ESA and the European Commission under their joint Copernicus initia-
tive. It currently includes six main missions, each of which is equipped with
different sensing instruments to provide high quality data that focus on dif-
ferent aspects of Earth Observation, such as Atmospheric, Oceanic, and Land
monitoring.

For the aim of this project, Sentinel-2 products has been chosen as the best
option for the construction of the reference databases, for the high quality of
the data and for their availability through the Copernicus Open Access Hub.
A brief description of each mission is provided below:

1. Sentinel 1: it is composed by two polar-orbiting satellites performing
synthetic aperture Radar imaging and, that enables them to acquire im-
agery day and night, regardless of the cloud coverage or the illumination.
They have a 12 days repeat cycle, which means that the mission is able
to map the entire world every 6 days. Sentinel-1A launched 3 April 2014,
Sentinel-1B launched 25 April 2016.

2. Sentinel 2 it is a wide-swath, high-resolution, multi-spectral imaging
mission, focused on land monitoring. It provides, as an example, imagery
of vegetation, soil and water cover, since each satellite carries an optical
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instrument payload that samples 13 spectral bands (with different spatial
resolutions). Sentinel 2 has a 290km swath width and a revisit time
of 5 days with 2 satellites. The acquired imagery is projected onto a
UTM/WGS84 grid and made publicly available on 100x100 km2 tiles.
The first Sentinel-2 satellite was launched in June 2015.

3. Sentinel 3: its main goal is marine observation, for which it will measure
ocean and land surface temperature, ocean and land color, and sea-
surface topography. The mission, which consists of three satellites, has
a radar altimeter as its main instrument, although the polar-orbiting
spacecraft will also carry other experiments, such as optical imagers.

4. Sentinel 4: designed specifically to monitor the air quality, Sentinel-4
is equipped with a UVN sensor, which is a spectrometer that allows to
gather information about the composition of the Earth’s atmosphere.

5. Sentinel 5P and 5: is a payload on a MetOp Second Generation satel-
lite that will observe and monitor the atmosphere from a polar orbit.
Sentinel 5P was the precursor, used to fill the gap and provide data
continuity between the retirement of the Envisat satellite and NASA’s
Aura mission and the launch of Sentinel-5.

6. Sentinel 6: particularly designed for operational oceanography and
climate studies, it contains a radar altimeter to to extend the legacy
of sea-surface height measurements. The first Sentinel-6 was launched
into orbit in November 2020 on SpaceX Falcon 9 rocket.
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Figure 3.4: Sentinel family satellites
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Chapter 4

Image Retrieval

Once we collected the images covering as much as possible the satellite field
of view, we need to apply an algorithm that finds, among them, the pictures
that contain the same landmarks represented in the query. This step has been
created to ease the work of the following, more precise, keypoint matching,
by filtering among all possible reference images only those that share at least
one landmark. In the machine learning literature, this problem is classified
as Image Retrieval: given a query image, the aim to find, among a large
database, all the images that contain the same instance, often captured under
different conditions, such as different viewing angles, seasons or illumination.

In the case of landmark detection from satellite imagery, the domain shift is
a sensitive issue, and one of the main obstacles faced in the project develop-
ment. First of all, while it is possible to require the absence of clouds when
collecting Sentinel images, the query picture coming from OPS-SAT often in-
cludes a high percentage of clouds, which can be misleading for the algorithm
and create occlusions of some important reference points. Moreover, another
challenge is represented by the change of perspective concerning the land-
mark: Sentinel-2 always operates at the nadir, which means that the camera
is pointed perpedicular to the Earth’s surface, while OPS-SAT captures the
scenes from different points of view, producing a very distorted reproduction
of the object captured. Last but not least, the resolution of the image is
another problem hard to address. In fact, not only the field of view of the
query pictures changes according to the inclination angle of the camera, but,
at the same time, the images from Sentinel-2 have higher accuracy than the
CubeSat ones.

35



4 – Image Retrieval

Therefore, the design of the algorithm needs to take into account the view-
point invariance for the perspective transformation as well as the appearance
invariance, mostly concerning the colors. A robust and solid image matching
system should deal effectively with changing light conditions (OPS-SAT’s or-
bit follows the shadowed region between the day and the night, which gives
to the pictures a blue hue) and seasonal variations of the land appearance.

This chapter is devoted to the study and implementation of the Image Match-
ing step: first of all it presents an overview of the literature and of the
state-of-the-art approaches; in a second moment, it will focus on the adopted
solution.

4.1 Related Work
Given that the topic of Image Matching very broad, to drive the study of
the literature, at the beginning we define which is the task that most align
with the problem at hand. In the research papers there are many similar
designations used to describe nuances of the Image Retrieval task or some
specific sub-tasks, which make it difficult to visualize a clear map of the
available approaches. In general it is possible to place this case in the context
of Content-Based Image Retrieval (CBIR), a long-established research area,
consisting of the search of semantic matches or similar images in a large
database, given a query image. Its essential stages are shown in Fig 4.1.

However, it is also possible to look at the problem at hand in the light of
Visual-Based Localization, a research direction aiming to retrieve the orien-
tation of the sensor that captured the visual information. In this case, the
proposed methods mostly concern robotic applications, such as the Structure-
from-Motion task, that takes into account the scene around the robot and
tries to map the environment through 2D or 3D data for estimating the pose
of the camera with 6 degrees-of-freedom. Since the input data is very differ-
ent from satellite imagery, most Visual-Based Localization solutions cannot
be applied in this case: the main difference is that the context captured
from the spacecraft is too far to appreciate features that indicate the relative
position of the camera. Another approach, that also applies in this con-
text, is the one of Landmark Retrieval, which is a particular case of Instance
Retrieval concerning only landmarks, i.e. relevant distinguishable objects.
The strategies adopted usually consider supervised approaches, where the
training dataset is composed of labeled samples, with a discrete number of
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Figure 4.1: Architecture of an Image Matching system

distinct landmarks. As an example, this category of task is similar to the
solution proposed for the DAT project: the network is trained on a labeled
dataset, with the goal of recognizing a predefined set of reference objects.
The downsides of this strategy are indeed the fact that the landmarks con-
sidered have to be selected a priori, and that there is often the need for a
labeled dataset, the construction of which is time consuming, especially in
the case of OPS-SAT where the availability of high-quality images is very
low. Furthermore, the rise of available satellite imagery, that is continuously
accumularing Peta/Zetta Bytes of data, created the need of a line of research
specifically dedicated to remote sensing data, that largely differs from nat-
ural images in terms of modality, spectral and resolution [19]. In fact, due
of its wide applications, earth observation data is exploited more and more,
thus making it urgent to develop efficient image retrieval methods to select
the images of interest from the massive RS image repositories.

Being aware of the existing nuances in the research, from now on we will con-
sider the general field of CBIR, with a special attention on RS applications.
CBIR systems usually include three core modules:

1. Feature Detection: it includes all the methods used to first localize
the geometric structures in the image and then describe those features
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by transforming the original local information around the interest point
into a stable and discriminative form.

2. Feature Representation: this step is often included in the feature
extraction algorithms, and it consists of the compact combination of
the features extracted for each input, with the goal of reducing the di-
mensionality of the data while increasing their discriminative abilities.
Embedding and Aggregation

3. Similarity search: it includes the algorithms that can perform a sim-
ilarity search in the descriptors space between the feature vector of the
query image and those of the reference database. Usually, the similarity
is obtained by computing the Euclidean or cosine distance among pairs
of features vectors. The most popular option is to use the k-Nearest
Neighbours (kNN) algortihm.

Before the rise of deep learning, these steps were independent, while nowa-
days many methods integrate feature detection in the entire matching pipeline,
by jointly training with feature description and matching.

In fact, one of the possible classification criteria of CBIR methods is to con-
sider the methodology perspective: on one side there is the set of traditional
approaches, performing feature engineering by means of hand-crafted de-
scriptors and classic shallow machine learning algorithms; on the other side,
more recent data-drive deep learning techniques are rapidly evolving since
their first breakthrough in 2012 with AlexNet [17] winning the ImageNet
competition.

Moreover, the information extracted from a picture can be divided in levels
based on the spatial resolution of the represented feature. To each of these
levels it is possible to associate a set of techniques, which in many taxonomies
correspond to local or global descriptors.

4.1.1 Local descritptors
The methods falling in this category are those responsible for the extraction
of low-level features, and typically correspond to traditional hand-crefted de-
scriptors. Low-level features include for instance the texture, i.e. repeated
structures in the image, and the presence of shapes, lines, or edges, that
depict the outline of objects (geospatial landmarks in our case) but with-
out information on their spatial relationships. One of the most famous local
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features detector is the Scale-Invariant Feature Transform (SIFT) [20], pub-
lished by David Lowe in 1999, which will be extensively described in the
next Chapter. In the following years SIFT has been the object of countless
extensions and modifications, and nowadays it is still widely used in many ap-
plications. Other local descriptors used in the literature are SURF (Speeded
Up Robust Features) [2], BRIEF [3], and ORB (Oriented FAST and Rotated
BRIEF) [25].

Aggregation

After the extraction of visual features from the input image, it is often neces-
sary to aggregate the information into a fixed-length vector representation, to
ease the subsequent similarity search. Yansheng Li describes these represen-
tations [19] as middle-level features, since they embed low-level hand-crafted
descriptors into a feature space and they encode their spatial distribution
to capture the semantic concept of the images. A popular encoding method
is the Bag-of-Words (BoW), that employs k-means clustering algorithm to
construct a visual codebook, and, based on the codebook, computes a his-
togram of local feature descriptors. In addition, the Fisher Vector (FV) has
been proposed, which aggregates local descriptors using the Gaussian Mix-
ture Model (GMM). Based on FV and BoW, the solution scheme proposed in
Vector of Locally Aggregated Descriptors (VLAD) received a lot of attention,
as it considers the cluster center closest to the feature point like Bow, but
additionally counts the distance between local features and cluster centers,
providing a more detailed description of the feature point.

4.1.2 Global descriptors
Global descriptors consists of those methods that can extract high-level fea-
tures to comprehensively represent the visual content of an image, describing
the entire scene without focusing on the individual details. To achieve an
holistic encoding of the picture, traditional approaches adopted as strategy
the subdivision of the image in a grid and the application of a local descrip-
tor to generated patch. While providing a global description, this approach
does not overcome the challenge of the semantic gap between the high-level
and low-level visual features. Instead, the ability to extract high-level vi-
sual features and to encode many level of abstraction is the main strength
of Convolutional Neural Networks (CNN). A great summary of recent deep
learning solutions for CBIR has been done by Chen Liu in [4], and a summary
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is shown in fig 4.2.

Figure 4.2: Relevant methods in deep image retrieval [4]

Many solutions schemes are based on the deep features extraction by means
of Off-the-shelf models, that are used without further updating or finetun-
ing their parameters. Usually these models are CNNs previously trained for
classification tasks on very large datasets, where they learn how to encode
the characteristics of the input image at different levels. For instance, fully
connected layers have a large receptive field, while convolutional layers can
preserve more structural details and high-level features; they can also be
fused together to obtain more expressive representations. Since the dataset
used to train off-the-shelf models mostly concern natural images, their di-
rect application to remote sensing data does not bring great performances.
Another option is represented by autoencoders, that can achieve data com-
pression adn dimensionality reduction through a series of hidden layers and
be exploited for feature representation also in the field of remote sensing.

Aggregation

On top of the feature extraction, it is often suitable to improve the discrim-
inative ability of the obtained activation maps by means of feature aggre-
gation or feature embeddings, considering the deep convolution features as
a description of the local area of an input image. For instance, convolu-
tional feature maps can be directly aggregated by spatial pooling, operation
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that is usually followed by L2 normalization or PCA dimensionality reduc-
tion; but also max-pooling and avg-pooling are widely used, as well as R-
MAC (Regional-Maximum Activation of Convolutions), that performs max-
pooling over regions, SPoC (Sum-Pooled Convolutional), and GeM (Gener-
alized Mean Pooling) [15]. Moreover, also in this case it is possible to apply
the aforementioned embedding approaches, such as BoW or VLAD.

4.1.3 Learning DCNN representations

Beside the previous classification, it is possible to consider the end-to-end
deep learning solutions, that do not distinguish the detection and description
steps and take into account the fact that deep features not always outper-
form the classical hand-crated descriptors. This groups include the finetuning
of deep networks pre-trained on image classifications, that are adapted for
retrieval tasks, and those specifically designed to find similarities or dissim-
ilarities between images. In particular, it is worth mentioning the Siamese
networks, that update their parameters adopting a pairwise constraint in the
loss, and the Triplet networks, trained to detect dissimilar and similar inputs
simultaneously.

4.2 Siamese network

The method chosen to perform image matching based on the similarity of two
input images is the Siamese Neural Network [32]. A Siamese Neural Network
is a type of deep learning architecture that consists of two identical sub-
networks, as shown in fig 4.3 These sub-networks share the same architecture,
parameters, and weights, and are used to process two distinct inputs. The
outputs of the two sub-networks are then compared to produce a similarity
score, which reflects the degree of similarity between the two inputs. The
weights of the Siamese network are trained in a way that minimizes the
difference between the outputs of the two sub-networks for positive pairs
(images of the same landmark) and maximizes the difference for negative
pairs (images of different landmarks). The Siamese architecture is widely
used in object detection applications, such as face recognition or signature
similarity detection, but also in the case if one-shot learning.
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Figure 4.3: Diagram of a Siamese Neural Network

4.2.1 Backbone
In the case of Siamese networks, as we have already mentioned, the goal is
to minimize the distance between similar input pairs, while keeping a high
distance between those that represents different objects. Here it is important
to point out that the object of interest in this case is the semantic similarity
of the inputs rather than the direct distance: in fact, it might be possible
that a distance measure computed directly on two different input images is
smaller than the one computed on a pair of similar pictures. For this reason,
the metric, which is usually a euclidean or cosine distance, is calculated on
the feature representations that embed the semantic features extracted from
a CNN. Therefore, it is very important to select an encoder that maximizes
the semantic representation of the input images, in way to preserve only the
most descriptive and distinctive features.

Some of the pre-trained networks that can be used as backbone are the
following:

• MobileNet: it is a family of computationally efficient neural network
architectures, specifically designed for mobile and embedded devices.
They use a combination of depthwise seaparable convolutions and point-
wise convolutions to reduce the computational cost of the network. Depth-
wise convolutions consist of two separate operations: a depthwise con-
volution, which applies a single filter to each input channel, and a point-
wise convolution, which applies a 1x1 filter to combine the output of the
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depthwise convolution across channels. This second operation is used to
increase the dimensionality of the output, which can then be fed into
subsequent layers.

• VGG: popular for its simplicity and effectiveness, VGG is a widely used
neural network architecture composed by a series of convolutional layers,
followed by fully connected layers (19 layers in total for the version used
in this case). It uses small 3x3 convolution filters with a stride of 1
and padding of 1, which helps to preserve the spatial information in the
input image. It has been designed by the Visual Geometry Group at the
University of Oxford in 2014.

• EfficientNet: it includes different version of deep neural network ar-
chitectures designed in 2019 by a team of Google researchers, who used
NAS (Neural Architecture Search) and a compound scaling method to
achieve high accuracy and efficiency. This method uses a scaling co-
efficient which controls the number of parameters and computational
cost of the network. The architecture consists of a stem, which process
the input image followed by a sequence of blocks, each consisting of a
combination of depthwise separable convolution layers, to reduce the
computational cost, and inverted bottleneck blocks, which increase the
capacity of the network.

4.2.2 Loss function
Choosing the Loss function is one of the most important step in the design
of a neural network. It is, indeed, the function that computes the distance
between the label predicted by the model and the ground truth: this values
needs to be minimised, and it is used as feedback to adjusts the weights of
the model.

To ensure that the model can learn the appropriate feature representations,
the loss function should sufficiently promote the learning of similarities as
well as dissimilarities. In other words, it should encourage the model to
learn better and better representations that encode the semantics of the
images in the support set and bring related concepts close in the feature
space. Let provide a mathematical formulation of the problem: with S =
{(x1, x2, y), (x1, x2) ∈ K} being a dataset composed by N pairs of feature
vectors, such that a binary label y ∈ {0,1} is associated to every pair (x1, x2),
we want z to take the value 0 whenever the feature vectors x1 and x2 are
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semantically similar, and to take value 1 in the opposite case.

As we said, the twin sub-networks behave as feature extractors: both inputs
are forwarded through the convolutional layers to obtain two latent features
representations; those, are then used to compute the distance, which is finally
fed to the loss function L.

The most commonly used loss functions are the Contrastive loss function and
the Triplet loss function, whose goal, in both cases, is to learn representations
that are close in the feature space for positive samples and far apart for
negative samples:

1. Contrastive Loss function: it is defined as the negative log-likelihood
of the predicted similarity between two samples.

L = (1 − Y ) ∗ D2
w + Y ∗ max(m − Dw, 0)2

where Dw is the Euclidean distance between the feature representations
of x1 and x2, Y is the label indicating whether the pairs are positive (1)
or negative (0), and m is the margin, i.e. an hyperparameter that sets
the desired separation between positive and negative pairs in the feature
space (by default is 1, the higher the more we force negative pairs to be
far away).

2. Triplet Loss function: it is defined based on a set of three examples:
an anchor, a positive example (similar to the anchor) and a negative
example (which is dissimilar to the anchor). The loss is calculated as the
difference between the distance of the anchor from the positive example
and the distance of the anchor from the negative example, plus a margin:

L = max(d(a, pos) − d(a, neg) + m, 0)

where d is the Euclidean distance and m is the margin, a hyperparameter
that sets the desired separation between the positive and negative pairs
in the feature space. In this case, we can name the network as Triplet
Network, which optimize similar and dissimilar pairs simultaneously.

4.3 Training and Evaluation
The training of a Siamese Neural network (SNN) is in general slower and
harder than the one of a classic CNN, since for each forward pass both input
images must be processed. The network structure is composed of a backbone
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CNN pre-trained on ImageNet, which extracts deep features from the images,
a couple of Dense layers, used to reduce the dimension of the output and to
aggregate in a vector the feature maps produced by the convolutional layers,
and a final Distance Layer which computes the Euclidean distance between
the latent representations of the input images. For each of these modules,
several configurations have been tried, as described in Chapter 6.3.

The use of a pre-trained network, which is adapted to a task and dataset
different from those it has been trained for, is referred to as Transfer Learning.
The Transfer Learning technique is based on the idea that a model trained
on a large dataset efficiently generalizes over a wide range of visual objects,
being able to encode in the feature maps several levels of visual elements.
Filters learned at lower levels, that detect general patterns (such as lines,
curves, dots, etc.), can be leveraged directly in a custom task different from
the original without the need to train the network from scratch. Pretrained
networks can be used as feature extractors by leaving out the original classifier
layers, like in the case of the Siamese Network backbone, or they can be
adapted to a more specific task by fine-tuning only the last layers, responsible
for higher-order feature representations. In our case, the first 16 layers were
"frozen" in the configurations using VGG19 as a backbone, while only the last
block of convolutions has been fine-tuned. Concerning MobileNet, instead,
the last two convolutional blocks were fine-tuned.

For training the SNN, we chose Adam as optimizer, for its speed and ro-
bustness, and the Contrastive Loss function, to avoid the processing of three
images as input, which heavily affects the computational time. Moreover, a
learning rate scheduler is introduced to modulate the learning value, which is
initially set to 0.0001 and then reduced exponentially after the third epoch.

Given the low number of available pictures from OPS-SAT, it is not pos-
sible to create a dataset big enough to train a neural network. Therefore,
the networks were trained on a different dataset, trying to minimise the per-
formance issues deriving from the domain shift. A challenge, indeed, that is
made even harder by the fact that most pre-trained networks learned features
belonging to everyday objects, which do not match the main characteristics
of remote sensing images. To tackle this problem, as is explained in the next
paragraphs, several computer vision techniques have been used.
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4.3.1 SEN12MS Dataset
Because of the low availability of OPS-SAT pictures provided with a ground
truth on their location, the creation of a dataset ad hoc big enough to train
the network for the task at hand was not possible. Therefore, an alternative
solution to train the network is to use Sentinel-2 pictures and pre-process
them to meet the characteristics of the application scenario.

In general, the construction of a large and diverse dataset able to cover most
kind of landmarks that can be captured from a satellite is not straightforward,
mainly because of the size required and the kind of highly representative
features that different tasks need to focus on. Furthermore, although many
kinds of RS datasets have been publicly released, the scale of available ones
in terms of the volume of samples, the number of categories and the number
of data modalities is still very limited [19].

Thankfully, it is increasing the number of researchers building annotated
datasets that can be exploited in different remote sensing applications. For
instance, the WorldStrat dataset [5] has been built in 2022 With the aim to
provide one of the world largest and most varied public datasets, that tries
to address a wide range of applications. In particular, WorldStrat tackles the
issue of most datasets being only representative for the Global Northen areas,
and provides a wide coverage to ensure more fairness, accountability and
transparency in ML. It covers 10,000km2 of land, in 4000 distinct locations,
including very high resolution multispectral satellite imagery, equipped with
different layers of information.

However, since the resolution of OPS-SAT pictures is lower than the one
of Earth Observation satellites, the WorldStrat dataset is too detailed and
heavy to process for our needs. Therefore, we chose to train the SNN on the
SEN12MS Dataset [27], a curated dataset of georeferenced multi-spectral
Sentinel 1 and 2 imagery composed by 180,662 scenes globally distributed
over all inhabited land masses and each equipped with MODIS (Moderate
Resolution Imaging Spectroradiometer) Land Cover maps. Each scene is
each divided in image patches of 256x256 pixels and represented by triplet in
GeoTiff format, consisting of a Sentinel-1 dual-pol SAR, a Sentinel-2 multi-
spectral raster, and a MODIS land cover map. The dataset is based on
randomly sampled regions of interest, as explained in the paper, resulting
from four different seed values, one for each meteorological season defined
for the northern hemisphere. For training the SNN, we used the "Summer"
set, composed of 65 globally distributed scenes (like in fig 4.4) which are
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divided in 45,753 patch triplets of 256x256 pixels: 80% has been used for
training, while the remaining 20% for testing.

Figure 4.4: Distribution of the SEN12MS Regions of Interest

To generate the input pairs for the Siamese network, the Positive Pairs were
constructed by coupling the RGB bands of a patch with the same figure
transformed with a number of visual modifications, while the Negative Pairs
were made of two randomly selected, non overlapped patches.

4.3.2 Data augmentation
The SEN12MS Dataset, although it is composed of remote sensing images,
does not perfectly match the peculiarities of OPS-SAT pictures. Therefore,
to make the model more robust to this domain shift we apply an extensive
data augmentation, particularly designed to help dealing with colour shifts
and perspective transformations.

In particular, since OPS-SAT orbits follows the Terminator line, i.e. the
spacecraft is always in the shaded part of the Earth between day and night,
the raw pictures appear in gray-blue light.

Moreover, the pixel resolution is lower compared to the images from Sentinel-
2, which is a mission specifically designed for the collection of pictures for
Earth Observation.

Last but not least, the main challenge is given by the change of perspective
that characterize OPS-SAT images, which is the key point of this whole work.
OPS-SAT takes pictures in every direction, by using the iADCS for pointing
the camera over the specific area it wants to capture: based on the relative
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position of the spacecraft, the objects in the image will be distorted by the
angle of the point of view. On the other hand, Sentinel-2 operates always at
the nadir, which means that it always points the camera directly downward
perpendicular to the surface of Earth, minimizing the distortion in the images
it takes.

To tackle these issues, since the heterogeneity of OPS-SAT pictures makes
it difficult to define a single pre-processing pipeline that works effectively
for all of them, it is preferable to use some techniques that make Sentinel-2
pictures comparable to the OPS-SAT ones. In the training of the Siamese
Neural Network, the main goal is to provide a dataset that helps the network
to focus on the geometrical features instead of the brightness or color of the
pictures, providing also some examples in support of perspective projections.
To to this, the construction of the pair of images labeled as similar is done
by randomly selecting a picture from the Sentinel dataset and applying the
following transformations:

• Random flip left/right

• Random flip up/down

• Random brightness change

• Random hue change

• Random affine transformation

Some examples of augmented data are shown in fig 4.5. In particular, it is
possible to notice the application of hue changes, as well as rotations and
stretches of the images. In the third example, a strong change of perspective
is applied: since after the transformation the image has a different shape, we
fill the void part by mirroring the transformed image on its borders, to avoid
the presence of black pixels which could be misleading during the predictions.

4.3.3 Histogram Matching
In many cases the data augmentation performed at training time is not
enough to make the model robust to colour differences, and the Histogram
Matching technique allows to overcome the problem.

In the context of computer vision, an histogram is a plot showing the pixel
distribution of an image in terms of intensity, in black and white pictures,
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Figure 4.5: Examples of data augmentation

or of colours 1. The range of possible pixel values is divided in bins, each
counting the occurrences of that value inside the image. With the histogram
matching procedure, given two images each having their own pixel distri-
bution, we modify one of them such that its histogram matches the other
one, which results in the homogenization of the hue and contrast between
the two pictures 4.6. In the case of multiple channels, the matching is done
separately for each channel.

1https://towardsdatascience.com/histogram-matching-ee3a67b4cbc1
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Figure 4.6: Histogram matching: the query histogram is modified to match
the reference picture

4.3.4 Evaluation
The choice of the best configuration has been done evaluating the networks on
the test set left out from the SEN12MS dataset. As already pointed out, this
means that the comparison of the architecture is made on a common ground,
but that their performances on the OPS-SAT images might not reflect the
scores obtained at this step.

The evaluation of the Siamese Neural Networks is based on the accuracy of
the predictions, defined by means of a threshold on the distance obtained
as output: if its value is below the threshold, the prediction is considered as
positive, i.e. the input images are labeled as similar, otherwise the prediction
is negative. The final accuracy is computed as the percentage of correct
predictions over the whole test set:

acc = TP + TN

TP + FP + TN + FN

where TP = TruePositive, FN = FalseNegative and the others accord-
ingly. The threshold value can be tuned based on the application, in this case
a threshold = 0.5 has been used. In this case, being the classes balanced
and of the same relevance, accuracy is a metric good enough for the given
purpose.

Finally, it must be pointed out that the evaluation based on accuracy is useful
during the choice of the model, while inside the final pipeline the outputs of
the network are sorted in ascending order, without taking into consideration
the label.
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Chapter 5

Image Registration

The key step of this work is the registration of the query image with one
of the Sentinel 2 dataset, which is the process of aligning two pictures of
the same landmark, captured with a different angle, a different illumination
and season or a different resolution. The ultimate goal is to obtain the
geographic coordinates of the query image at a pixel level, according to the
obtained transformation matrix.

Similarly to the image retrieval task, also in this case most of the reviewed
methods were designed and developed taking into account natural object
images, which differs from remote sensing imagery in many aspects: the
shape of the landmarks are often better defined and with higher contrast,
and the granule of the details is bigger than in satellite images.

Therefore, the main challenges are again represented by the need to adapt
the models to remote sensing images and by the deep difference among the
two pictures to overlap. The latter concerns in particular the geometrical
distortion of the landmarks due to the different point of view of the satellite,
and the cloud coverage, which can be misleading for the feature detection
algorithms.

In this chapter, firstly, a review of the literature sheds light on the set of
methods addressing the image registration task, then the selected models are
more carefully described.
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5.1 Related Work
The set of image registration methods includes all the algorithms whose goal
is to alight two or more images, warping the first one to the coordinate of the
reference image. This process can be seen under an algorithmic framework
[18], consisting of six main steps, outlined in fig 5.1:

1. The creation of a Search Space of potential transformations

2. The extraction of most informative features from the two pictures

3. The choice of a similarity metric used to match the two sets of features

4. The definition of a search strategy that finds the optimal transformation

5. The choice of a resampling method, used to produce the corrected image

6. The design of a validation method to evaluate the image registration
algorithm

Figure 5.1: Framework of feature-based image registration

Each of these steps can be addressed by means of a wide variety of approaches,
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and in many cases multiple steps can be aggregated, and solved together with
a single method (for instance, neural networks can easily solve the second and
third step end-to-end). Moreover, it is possible to further divide this pipeline
into two sub-tasks: on one side, keypoint matching techniques are required
to extract a set of pairings between the visual features of the two images, on
the other side, once a set of valid matches is found, different methods can be
used to estimate the transformation matrix.

The estimation of the transformation parameters is inherently an optimiza-
tion problem: in the context of image registration, the most popular method
to solve it is the RANSAC algorithm (RANdom SAmple Consensus), which is
explained later. Nevertheless, many other approaches exist, such as gradient-
based optimization algorithms, end-to-end neural networks, or those referred
to as computational intelligence, which includes among others evolutionary
algorithms, ant colony optimization, and swarm intelligence [31].

A global solution, able to solve the problem of image registration in a single
step is still to be found. In fact, the use of deep learning techniques in end-
to-end image registration solutions is still constrained by a lack of training
data with sufficient geometrical deformations, despite the fact that they have
shown great promise in the detection of features at various levels and in their
representation from linear and nonlinear space [6].

5.1.1 Keypoint Matching
Many surveys [6, 21] agree in the division of image matching methods into two
main categories, both giving as result a transformation matrix that allows to
warp the query image to the coordinates of the reference one:

• Keypoint features detection: in this case the algorithm searches for
local features, also referred to as interest points, that can be described
by the appearance of the pixels in a neighbourhood of the point location.
Good interest points have the quality of being well localised inside the
picture, and of being stable under image perturbations, to guarantee
their computation with high repeatability. The primary feature used is
the keypoint, a punctual region characterized by invariance to geometric
deformations, illumination, etc., and easily located and described, but
in general, local features also include lines, curves, edges, and contours.
These methods are formed by the three steps of feature detection, feature
description, and feature matching.
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• Region-based features detection: these solution schemes, instead of
identifying salient image structures, are based on the comparison of pixel
intensity between the two images, measuring the similarity usually by
means of sliding windows. These methods are, in general, more sensible
to image distortions. The image alignment in this case is obtained by
means of an iterative optimization process, where the sensed image is
transformed several times trying to overlap it to the reference image
until the maximum similarity among them, defined by a specific metric,
is achieved.

Because of the higher performances both in terms of accuracy and speed, from
now on the work will consider only the keypoint feature-based approaches,
and in a particular way those that have shown satisfactory results in the
remote sensing domain.

Traditional methods developed in the past few decades are grounded on
mathematical theory, and consist of handcrafted operators and filters for the
detection of specific class of features. For instance, the Harris Corner De-
tector is a popular gradient-based algorithm for the detection of edges and
corners in an image, that is often used for the extraction of visual features.

Other classical machine learning methods that it is worth mentioning are
FAST (Features from Accelerated Segment Test), an efficient corner detector;
SIFT, a robust method extracting blob feature points, and its variant SURF
(Speeded-Up Robust Features), which relies on integral images and uses an
Hessian matrix-based measure to detect the features. While Harris and FAST
are only feature detectors, the others are both detectors and descriptors.

5.1.2 Learning methods for Keypoint Matching
Since the breakthrough of convolutional neural networks (CNN) in computer
vision, that traces back to 2012 with AlexNet CNN winning the ImageNet
competition, many deep learning methods has been developed, demonstrat-
ing unparalleled performances with respect to previous techniques. These
exceptional results, particularly evident on image-based applications, are
due to the ability of CNNs to extract high-level as well as deep features,
autonomously learning the best filters by means of their training process.
While the hidden layers learn the features, the output layers can be used for
feature extraction and feature matching purposes. Also in the case of image
matching, a popular architecture is the Siamese or pseudo-Siamese network,
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used to find corresponding patches between two input images. However, in
the context of feature based image registration, which is characterized by
the matching of unstructured or non-Euclidean data points, deep CNNs still
struggle to extract the spatial relationships among them [6, 22].

Among the large number of deep learning methods for image matching de-
veloped in the last years, SuperPoint, SuperGlue and LoFTR are worthy
to be mentioned, for the novelty of the approaches they introduced, and as
they can be considered as the current state-of-the-art for the task of image
matching.

Despite the great performances of deep learning, to tackle the specific prob-
lem of remote sensing image registration classical methods as SIFT and SURF
are still widely used, thanks to their robustness and speed, and because of
the difficult adaptation of deep learning solutions, originally developed for
natural images, to satellite imagery. Moreover, another burden in deep learn-
ing models is to prepare annotated training datasets. For these reasons, the
research in this direction remains open, and many applications keep using
traditional techniques.

SuperPoint

SuperPoint is a fully-convolutional model presented by DeTone, Malisiewicz
and Rabinovich [20], that operates on full-size images and jointly computes
pixel-level interest point locations and associated descriptors in one forward
pass. The model architecture is composed by a VGG-style encoder, that
processes and reduces the input image dimensionality, mapping it to an in-
termediate tensor with smaller spatial dimension and greater channel depth,
and by two non-learnable decoders. The Interest Point Decoder exploits a
Softmax layer and a reshape operation to restore the spatial resolution of
the input, while the Descriptor Decoder produces fixed-length descriptors
by applying a bi-cubic interpolation and L2-normalization to the activation
maps. The paper introduces also a self-supervised framework to train the
SuperPoint network and adapt it to the domain of interest. This procedure
includes two main steps:

• Interest Point Pre-training: the first step is the training of a base interest
point detector on synthetic data, consisting of simplified 2D geometries
obtained via synthetic rendering of quadrilateral, triangles and ellipses.
This base detector, called MagicPoint, has great performances on the
synthetic shapes, but it struggle to generalize to real images.
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• Homographic Adaptation: this step is introduced for a self-supervised
training on real-world images. The idea is to generate pseudo-ground
truth interest points to train the interest point detector on the target,
unlabeled domain. To do so, the input image is warped multiple times
with random homographies to help the model see the scene from many
different viewpoints and scales. The resulting model is Super Point.

SuperGlue

If SuperPoint proposed an innovative deep-learning method for the extraction
of keypoint features, SuperGlue introduced an equally pioneering method for
image matching, starting from a set of interest points previously detected.

Presented in 2020 [26], SuperGlue is a neural network that matches two
sets of local features by jointly finding correspondences and rejecting non-
matchable points. Its architecture is based on an Attentional Graph Neural
Network, designed to compute matching descriptors by letting the features
communicate with each other, and by an Optimal Matching Layer, that
solves an optimal partial assignment problem using the Sinkhorn algorithm
to establish pointwise correspondences from the local features of two input
images.

LoFTR

LoFTR (Detector-Free Local Feature Matching with Transformers) [29] is a
novel area-based method for image matching. It is based on Transformers,
a class of models initially developed for Natural Language Processing (NLP)
that have recently been adopted also for computer vision tasks.

The idea of the paper is, in a first moment, to establish pixel-wise dense
matches at a coarse level, using Transformer with self and cross attention
layers to process the dense local features extracted from the convolutional
backbone. Later, the fine-tuning of good matches is done at a finer level,
filtering only the high confidence matches and refining them to a sub-pixel
level with a correlation-based approach.
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5.2 SIFT
The Scale-Invariant Feature Transform algorithm, presented for the first time
by David G. Lowe in 2004 [20] is a popular machine learning method for de-
tecting and describing local features in an image, widely used for its simplicity
and efficiency. As stated in the paper, SIFT algorithm is invariant to trans-
lation, scaling and rotation, and it can handle soft illumination changes and
affine or projective transformations.

The main idea of SIFT is to generate a large collection of features that densely
cover the image over the full range of scales and rotation. Its implementation
is quite articulated, but it is possible to identify 5 main steps:

1. Scale-space extrema detection: it aims to identify location and scale
that can be repeatably assigned under differing views of the same object,
i.e. searching for stable features across all possible scales (for instance, a
curve is well appreciable only at a certain scale). The key locations are
chosen at the maxima and minima of a Difference of Gaussian (DoG)
function applied in the scale-space.

• The scale-space function is defined over different octaves of the in-
put image, where each octave’s image size is half the previous one.
Within an octave, images are blurred at different scales, by means
of a convolution with a Gaussian kernel.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)
where L is the scale space function, G is the Gaussian kernel with σ
as scale parameter, and I is the image.

• This Blurring operation is done for each octave of the Gaussian
Pyramid

• The DoG is computed as the difference between adjacent Gaussian
images, as depicted in fig 5.2

• Finally, a search for local extrema over scale (i.e. across different σ
values) and space (8 neighbors pixels of a point) is performed, which
gives a list of (x, y, σ) values for potential keypoints located in (x,y),
at scale σ.

2. Keypoint localization: it is used to refine the potential keypoints
extracted. Borrowing a concept used in Harris corner detection to re-
duce the effect of DoG high response for edges, SIFT exploits Taylor
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Figure 5.2: Difference of Gaussian between images within an octave

expansions of the scale space function to get a more accurate location
of the extrema, and filters out those below a pre-defined threshold value
(contrast Threshold in OpenCV).

3. Orientation assignment: an orientation is assigned to each point to
achieve invariance to image rotation. To do so, for each point locations
SIFT computes the gradient magnitude and direction of its neighbor-
hood. Then, it creates an orientation histogram with 36 bins covering
360 degrees. Peaks in the orientation histogram correspond to dominant
directions of local gradients.

4. Keypoint descriptor: After taking a 16x16 neighborhood around a
keypoint, it is divided into 16 sub-blocks of size 4x4. For each sub-
block, a 8 bins orientation histogram is created, which means that a
total of 128 bin values are available. A feature vector is then built by
normalizing to unit length the 128 values obtained.

5. Keypoint matching: finally, the keypoints between two images are
matched by identifying its nearest neighbours. The ration between the
closest distance and the second-closest distance can be taken into ac-
count to eliminate false matches.

Although quite old, SIFT is still very popular in computer vision applications,
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mainly because of its robustness and speed. In fact, it can handle changes
in illumination, scale, rotation, and viewpoint with a reduced computational
time. However, in many challenging scenarios its performances are overtaken
by those of deep learning solutions, which are currently the state-of-the-art
in most computer vision tasks.

5.3 RANSAC
RANSAC, also referred to as Random Sample Consensus algorithm, is an
iterative method to estimate the parameters of a model proposed by Fischler
and Bolles [7]. Starting from a list of keypoint matches between two images,
it generates candidate solutions for the parametric transformation by using
the minimum number data points required, and finding the best partition of
those points in inliers and outliers. In this case are referred to as inliers the
points that are conssitent with a dominant motion estimate.

The RANSAC approach of starting from the smallest set possible and pro-
ceeding to enlarge it with consistent point makes it very robust to outliers
(it can deal with situations where more than 50% of the data points are
outliers).

The algorithm is simple to understand, and can be summarized as follows:

Algorithm 1 RANSAC
Define:
S - the number of sampled points required
N - the number of iterations to be done
ϵ - the tolerance threshold used to identify a point with a good fit
τ - the minimum threshold for the fraction of the number of inliers over
the total number points in the set
do

1. Randomly select S data points
2. Compute the model parameters using the sampled data points
3. Determine how many points fit the estimated model within ϵ
if inliers ratio ≥ τ then

Re-estimate the model parameters using all the identified inliers
end if

while The best model is found
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Before running the algorithm, some parameters have to be defined:

• S: is the minimum number of points needed to estimate the parameters
of the chosen model. For instance, when estimating an affine transforma-
tion it is enough to use three points, while a perspective transformation
requires four points. The largest S is, the harder to find a set of inliers.

• e: is the outlier ratio #outliers
#datapoints , i.e. it represents the probability of

having an outlier

• N: is the number of iterations, which should be chosen such that, with
probability p (usually 0.99), at least one random sample set is free from
outliers. To determine it, we can start defining the probability of select-
ing at least one outlier in one trial:

1 − p = 1 − (1 − e)S

The probability to select at least one outlier in all N trials is then:

1 − p = (1 − (1 − e)S)N

Thus, with some manipulation,

log(1 − p) = log(1 − (1 − e)S)N

log(1 − p) = N log(1 − (1 − e)S

N = log(1 − p)
log(1 − (1 − e)S)

RANSAC is a very popular method used on top of keypoint matching al-
gorithms to estimate the transformation that relates two pictures. Its main
strength is that it can robustly deal with outliers, working well in the estima-
tion of models with up to 10 parameters. Moreover, being easy to understand
makes its implementation straightforward.

On the other side, its computational time grows quickly with the fraction of
outliers and with the number of parameters needed to fit the model.

Over the years many variants have been developed, such as PROSAC (PRO-
gressive SAmple Consensus), in which random samples are initially added
from the most "confident" matches, thereby speeding up the process of find-
ing a (statistically) likely good set of inliers. Another version is DSAC,
designed to be differential so that it can be used in end-to-end training of
feature detection and matching pipelines.
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5.3.1 Geometric Transformations Models
Before estimating the parameters of the transformation matrix, the kind
of geometrical function to model must be defined. General categories of
transformation are rigid, similarity, affine, and projective, as exhaustively
explained in [30] (fig. 5.3):

• Rigid: it is a combination of rotation and translation, also referred to
as Euclidean transformation since Euclidean distances are preserved.

• Similarity: it additionally allows the variation in scale. It preserves
angles between lines.

• Affine: it is an operation that preserves parallel lines. It can be written
as x′ = Ax, where A is an arbitrary 2x3 matrix:

x′ =
"
a00 a01 a02
a10 a11 a12

#
x (5.1)

An affine transformation can be estimated starting from 3 control points.

• Projective: it is an operation that preserves straight lines. It is also
known as perspective transform or homography, and it describes the re-
lationship between two images of the same scene that are related by a
perspective or planar transformation. The projective transformation can
be defined as

x′ = H̃x

where H̃ is an arbitrary 3x3 matrix. H̃ is homogeneous, i.e. it is only
defined up to a scale (two matrices that differ only by a scale are equiv-
alent). This transformation can be estimated starting from 4 control
points.

Any remote sensing image inherently present some geometrical distortion
given the altitude of the satellite, which are commonly addressed by the
application of affine transformation on the sensed image. Although from a
more precise geometrical perspective the two sensed images are related by a
perspective transformation, in practice, the affine transformation is generally
used in multi view image registration, where the distance of the camera is
large as compared to the scanned scene.

To compute the parameters of the matrix describing an affine transformation,
at least three pairs of point matches are needed.
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5 – Image Registration

Figure 5.3: Basic set of 2D planar transformations

5.4 Evaluation
The evaluation of an image registration algorithm aims to determine how
precise is the overlap of the two input images in terms of number of pixels.
To briefly recap, the process followed by feature-based methods starts from
the extraction of keypoint features from the reference and sensed images,
it then performs a matching between the features of the two images, and,
after having filtered out the outliers, it uses the remaining inliers points to
estimate the geometrical transformation ϕ that enables the registration.

As pointed out in [23, 8], the most important factors to take into account
are the following:

• Repeatability: it is a criterion that gives a measure of the stability
of the detector. The higher the repeatability, the higher the number of
feature points extracted in the corresponding positions of the two input
images.

• Correct Matching Rate (CMR): clearly, the number of detected
matching pairs should be large, and, more importantly, the inliers ratio
should be as high as possible to guarantee a good accuracy in the reg-
istration. It is defined as the number of correct mathings over the total
number of mathcing pairs. At the same time, it is possible to define the
Matching error as the number of false matches.

• Distribution of Matching Pairs: the features extracted should be
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uniformly distributed over the images, to allow the estiamtion of a trans-
formation model that can handle the local distortions between remote
sensing images.

• Distinctiveness: it represents the uniqueness of the feature descriptor.
The more distinguishable a descriptor is, the better the results in the
image registration.

• Localization error: it is the displacement of the control points coordi-
nates due to their inaccurate detection. Usually there exists a trade-off
between the number of detected matching pairs and the mean localiza-
tion error.

• Alignment error: it is denoted by the difference between the map-
ping model used for the registration and the actual image geometric
distortion. Because of the assumptions done in any case to simplify
the mathematical description of the problem, and because of the intrin-
sic approximation that exists in a model, the alignment error is always
present.
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Chapter 6

Experimental results

Once defined a roadmap to follow for solving the problem of attitude esti-
mation, the first goal is to produce a proof of concept to demonstrate the
feasibilty of the proposed solution and to show how the different steps can
be connected together. The pipeline implemented is not intended as a fi-
nal operative method, but it is rather a baseline well prepared for future
developments.

In this chapter the workflow of the demonstrative pipeline is presented, fol-
lowed by an analysis of its performances with a focus on its strengths and
weaknesses.

6.1 Proof of Concept

The Proof of Concept, created as a Jupyter Notebook, goes through all the
steps required to compute the attitude, from the information retrieval about
the state of the satellite at the moment it captured the picture, to the ob-
taining of the quaternions, computed from three geolocalized points of the
query image.

Each major step of the pipeline is independent, and can be easily replaced
by a different method.
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6.1.1 Satellite State reconstruction
The starting point is a query picture and the related capture timestamp, such
as the one reported in fig 6.1, which is an image of the Australian Carneige
Lake taken by OPS-SAT the 5th of February 2022. Before running the note-
book, it is also necessary to download the satellite telemetries covering a time
window that includes the timestamp of the query picture. In particular, we
need:

• The recorded quaternions, that can be downloaded from the webMUST
software in a csv file format. It is possible to obtain both the quaternions
from the iACDS and the cACDS, but since the iACDS is used only in
precise pointing mode, its data are not always available.

• The TLE, which can be requested from the CelesTrack website.

Figure 6.1: Example of query picture. Carneige Lake, Australia.

From the information about the quaternions, the TLE and the timestamp,
it is possible to retrieve the satellite state at the time the picture has been
taken:

SAT STATE:
Timestamp: 2022-02-05 09:41:34+00:00
Position: [ 4876395.32150191 3809582.2336253 -3067273.74523708]
Lat, Lon, Alt: (-26.366498998277475, 117.08094441258085, 528381.5625)
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Euler attitude (roll, pitch, yaw):
(110.25707277151217, 18.995423411478463, 108.43704784094791)

angle to nadir: 25.360767848928276
pointing to earth: True

In particular, computing the intersection between the Earth geoid and the
axis -Z of the satellite, which is its pointing direction, we get latitude and
longitude of the point captured by the onboard camera, as well as its field
of view. This data comes from the historical telemetries and it is not always
accurate; in fact, the output coordinates of these computations are often
shifted with respect to the actual landmark observed, and sometimes they
are not available or completely off (e.g. reporting that the satellite is not
pointing to Earth). In the case of our example, the axis -Z has the following
values of latitude, longitude and altitude:

ll_minus_z = [ -26.9459838 , 119.63004202, -5670.33333944]

6.1.2 AoI definition
The above information are used to draw the Area of Interest in fig 6.2, shaped
as an ellipse around the position of the satellite on the Ground Track. The
Area of Interest should be as small as possible, but large enough to include
any possible landmark visible on the ground from the position of the satellite.
For this reason, the ellipse shape has been chosen, placed with its longest axis
along the orbit and sloped of 97.5 degrees (the precision of this detail should
be improved by propagating the TLE to understand if OPS-SAT is traveling
in an ascending or descending direction).

6.1.3 Construction of the reference database
At this point, we can download the Sentinel pictures covering the land inside
the AoI from the Copernicus Open Access Hub. The library sentinelsat
allows to shape the query for the database by selecting, in addition to the
target geographical region, the time window we are interested in and the
required cloud cover percentage. As explained in Chapter 3, only more recent
products are available online, while the historical data are saved in a Long
Term Archive, whose access is more time consuming and limited by a per user
quota. Therefore, to create the reference database, in general it is suggested
to define a time window around the timestamp of the query picture, whereas
for older images it is better to select a more recent period.
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Figure 6.2: Area of Interest around OPS-SAT position on the Ground Track

Since each product contains on average more than 1GB of data, at this
step the download is limited to the quicklook images, which are lightweight
versions of the full resolution picture, downsized to 512x512 pixels.

6.1.4 Image Retrieval
Once the reference database is created, we can proceed with the Image Re-
trieval step, which consists of predicting by means of a Siamese Neural Net-
work a similarity score for each pair composed by the query and one of the
reference images. The predictions are then sorted, and only the top K (with
K equal to 5 or 10) are forwarded to the next step of the pipeline. Since the
network is computing the distance between the feature vectors obtained on
the forward pass, the lower the score, the more similar the two input images
are. Practical experiments showed that, despite the data augmentation tech-
niques used during training, the network is very sensible to the colours. This
represents an issue especially in pictures of certain areas such as Australia,
where the land captured by Sentinel-2 appears bright red, while OPS-SAT
pictures are always covered by a blue shadow. To tackle this problem, before
feeding the pair to the model, the histogram of the query image is matched
to the one of each reference as in fig 6.3.

As mentioned before, only the reference images with the lowest difference
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Figure 6.3: Histogram matching technique applied to the query image

score are retained and feed to the Image Matching algorithm, while the re-
maining ones are discarded. The output of the network, sorted by descending
similarity is shown in fig 6.4.

Figure 6.4: Reference images sorted by the similarity score obtained from the
Siamese Neural Network. It is possible to notice that the target landmark
appears in the third most similar figure.

Another way to visualize the output of the Siamese network is to show where
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the top K most similar images are located (fig 6.5) or to display the distri-
bution of the distance score through a heatmap.

Figure 6.5: Location of the top 20 most similar images.

6.1.5 Image Matching
The stage of Image Matching has the goal to find keypoint correspondences
at a pixel level between two pictures and to estimate a transformation that
allows to overlap them. It receives as input a couple of images, composed
by the query and one of the selected references; for each pair it produces
as output a set of keypoint pairs matched between the two scenes and the
corresponding descriptors. This step not only finds precise matches between
the input pairs, but it is also used to refine the similarity search performed
coarsely with the Image Retrieval method, as showed in the results reported
in fig 6.6.

Figure 6.6: Ranking of reference images based on the number of matches
found by SIFT.
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The new ranking presented in fig 6.6 is based on the number of matches found
by the SIFT algorithm, which computes a set of keypoints and descriptors
from the black and white version of each input picture, and then matches
them by means of a KNN algorithm. Also in this case, the outputs proved
that they can benefit from histogram matching, even though the images are
processed in black and white. Moreover, it can be proved that the inter-
mediate step of Image Retrieval is, in general, beneficial for the detection
of the target landmark in the reference database, and necessary in the pro-
posed architecture: the application of SIFT directly on the entire database
to perform a similarity search failed in finding the right match.

On top of SIFT, the RANSAC algorithm is used to filter out spurious matches,
dividing the total set of keypoint pairs in inliers and outliers, as shown in
fig 6.7. Usually, it is applied to the reference image ranked first in the SIFT
output, but a visual check of the correctness and eventual correction might
be required. RANSAC could also be used to directly estimate the trans-
formation matrix to overlap the two images, but the experiments outcome
pointed out the need to add an extra step for a more robust estimation of
the homography matrix.

Being two independent algorithms, it is possible to replace SIFT with any
other keypoint matching method. It is clear that the goal is to produce as
many matches as possible, in order to get a large set of inliers and a robust
estimation of the transformation.

6.1.6 Homography matrix transformation

As discussed in Chapter 6, it is suitable to add an iterative method to eval-
uate the precision of the image registration and find the best transformation
matrix, which abstractly represents the geometric mapping function from the
sensed image to the reference one. Therefore, instead of using the homog-
raphy matrix estimated by RANSAC, the transformation is computed by
means of a function of the skimage library, which provides the affine trans-
formation that best fits the mapping. The obtained matrix is then used to
transform the reference image, so that it can be overlapped with the query,
as well as the keypoints, like in fig 6.8
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Figure 6.7: Set of inliers (above) and outliers (below) obtained with the
RANdom SAmple Consensus algorithm.

6.1.7 Coordinates extraction

Even though the Image Registration is the key step for geo-localizing the
OPS-SAT picture, there is still the need to extract the coordinates of at
least three pixels from the reference image. To lighten the whole process,
at the beginning it has been decided to work on quicklook images, that
are downsampled and, instead of having pixel-wise geographical information,
they are only provided with their corner coordinates. Therefore, two different
approaches are available to obtain the keypoints location:

• Computing them geometrically with reference to the corner coordinates
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Figure 6.8: Overlapping of the reference image onto the query. In the query
(right) the green dots are the reference keypoints transformed, while the red
ones are the keypoints of the query.

• Downloading the complete product from the Copernicus OAH and re-
trieve that info directly from the tiff file.

Downloading the complete product provides better results in terms of preci-
sion, because they are obtained from full resolution images, but it has two
downsides: it requires to run again SIFT and RANSAC since the shapes of
the images are different, and the size of the data to download is very large
(around 1GB), which adds latency in the whole process. For these reasons,
it has been decided to compute the coordinated starting from the quicklook
image boundaries, which provides a coarse but still acceptable accuracy.

To apply the first method proposed, we make the assumption that the land
represented in the picture is flat, that allows us to apply planar gemotry for-
mulas and simplify the computations. The procedure consists of the following
steps:

1. Obtain the resolution in meters of the reference image

2. Identify the upper left corner of the picture/tile

3. Shift South by a number of km proportional to the y pixel of the keypoint

4. Shift east by a number of km proportional to the x pixel of the keypoint

5. Repeat for each keypoint of interest (at least 3)

The algorithm described above has to be intended as a guideline, as it might
require some adaptations in the case the Polygon of the tile is not rectangular.
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For moving in the coordinate reference system, the haversine library proved
to be a very useful tool.

Figure 6.9: Reference tile with info about the geographical coordinates of
the corners as well as three of the matched keypoints.

In the figure 6.9 it possible to identify the four corners of the reference image
and the keypoints geo-localised with the method just explained.

With the help of a python script provided by the OPS-SAT Team, it is
finally possible to retrieve the attitude of the spacecraft. The script requires
as input three points from the query image, equipped with geographical and
pixel coordinates, as well as the TLE, the timestamp of the picture, and its
resolution. It is then able to retrieve, by solving a geometrical problem, the
quaternions of the satellite and its pointing vector.

In Fig 6.10 we can see that our method successfully localize the query im-
age, and allows to obtain attitude values that coherently relate the picture
with the position of the spacecraft in the orbit. The orange mark, which
represents the pointing vector computed from the quaternions recorded in
the telemetries, is clearly shifted from the target, and thus misleading when
there is the need to recognize the landmarks in the picture.
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Figure 6.10: The approach proposed successfully localizes the query image
and provides an attitude value coherent with the position of the spacecraft.

6.2 Failure and Success Scenarios
The proposed method represents a solid and successful basis for developing
an offline visual-based attitude estimator. The proof of concept demonstrates
that the architecture can execute all the steps required to estimate the at-
titude parameters of the spacecraft in relation to a picture taken by the
on-board camera. Moreover, its modularity makes it straightforward to in-
crease the efficiency and the precision of each step independently from the
others, enabling a continuous and eager development of the software.

In particular, the current approach has been proved to produce satisfactory
results on pictures with landmarks well defined, such as the Carneige lake in
Australia, islands or mountains, like the ones depicted in fig 6.11. In those
cases, characterized by high contrast features, both the image retrieval and
keypoint matching algorithms can detect the similarities. The use of his-
togram matching technique helps in those cases where the major obstacle
is represented by the color shift between the two representations. However,
sometimes also the rotation of the landmark can affect the outcome, espe-
cially for what concerns the Siamese network. In fact, it was noted that the
performances of the network increases if the input images are rotated in the
same direction.
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Figure 6.11: Success scenarios.

Nevertheless, the presence of clouds undermines the detection of the right
features, and even the application of masking techniques was not beneficial.
Another obstacle is the geometric transformation caused by the perspective
(fig 6.12: when the satellite point of view is heavily off-nadir, the landmarks
appear distorted and the algorithms struggle to find similarities. This issue
can be partially overcome with a targeted data augmentation, but evidences
prove that this is not enough for a successful keypoint matching.

Figure 6.12: Failure scenarios. The first two images are characterized by the
presence of clouds, which undermines the success of the algorithms; the 2nd
and 3rd, instead, are taken with a large angle, which makes the landmark
very distorted.
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6.3 Methods comparison
This section presents a more detailed analysis of the performances of the dif-
ferent models implemented, explaining the methods used for the evaluation.

6.3.1 Siamese Networks
The Siamese network is an architecture that well suits the problem at hand,
since it has been specifically designed to detect similarities among a pair of
input pictures.

To calibrate the model different backbone networks has been tried, pre-
trained on object detection with ImageNet. On top of the CNN, a couple
of dense layers are used to aggregate the features extracted and reduce the
dimension of the output. The configurations that brought some acceptable
results are described in 6.1. It is important to observe that without hav-
ing a ground truth, and being the OPS-SAT dataset limited in size, it is
not possible to perform an extensive and objective evaluation of the network
performances related to the final application: the one presented in this sec-
tion refer to the test set left out from the SEM12MS dataset, as explained in
Section 4.4.4. From the performances summarised in the table 6.2, we can
verify that Mobilenet, which has half of the parameters of VGG, reaches a
pretty high accuracy on the test set, while the prediction time is compara-
ble to the one of VGG19. This can be explained by the fact that, in terms
of computational time, the bottleneck is the pre-processing applied on the
input pictures. In particular, the data augmentation procedure is the main
responsible of the high latency of the predictions.

The confusion matrices reported in 6.13, instead, show the number of input
pairs that are correctly labeled on the main diagonal, and the mistakes in the
remaining cells. Interestingly, they reveal that the most common mistake is
to label as similar inputs that are instead different. The kind of errors can be
balanced by lowering the distance threshold under which a pair is considered
as similar.

Taking into consideration the scores for the positive class, computed from
the confusion matrix and reported in tab 6.3, the most precise model is also
in this case VGG19 v12, but best trade-off between weight and performances
is the one of Mobilenet as already highlighted. The metrics reported are used
to perform an evaluation by class, and are mainly used when classes have
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Table 6.1: Description of backbone models for the Siamese Neural Network

Model Description

Mobilenet

- 2 dense: 100 + 70
- Augmentation = ’medium’
- Bach_size = 16
- # Frozen layers = 234

VGG19 v10

- 2 dense: 256 + 128 neurons
- Batch_size = 16
- Augmentation =’hard’
- Learning rate = 1e-4
- # Frozen layers = 17
- Train dataset size = 2k samples

VGG19 v11

- 2 dense: 256 + 128 neurons
- Batch_size = 16
- Augmentation =’hard’
- Learning rate = 1e-4
- #Frozen layers = 17
- Train dataset size = 5.5k samples

VGG19 v12

- 2 dense:512 + 256 neurons
- Batch_size = 32
- Augmentation =’hard’
- Learning rate = 1e-4
- # Frozen layers = 17
- Train dataset size = 5.5k samples

Table 6.2: Comparison of backbone models for the Siamese Neural Network

Model Size
(#params) VAL acc TEST acc Time (GPU)

for 1k samples
Mobilenet 10.5 mln – 91.08 2.07min
VGG19 v10 20.2 mln 0.86 85.97 2.07min
VGG19 v11 20.2 mln 0.89 92.88 2.14min
VGG19 v12 20.5 mln 0.91 92.88 3.17min

different importance:

• Precision(p) = T P
T P +F P
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(a) Confusion Matrix for VGG v10 (b) Confusion Matrix for VGG v11

(c) Confusion Matrix for VGG v12 (d) Confusion Matrix for Mobilenet

Figure 6.13: Evaluation of Siamese networks on test dataset

• Recall(r) = T P
T P +T N

• Fmeasure = 2rp
r+p

Table 6.3: Metrics analysis concerning the positive class, i.e. similar input
pairs

Model Accuracy Precision Recall F Measure
Mobilenet 91.08 0.89 0.94 0.91
VGG19 v10 85.97 0.79 0.98 0.87
VGG19 v11 92.88 0.88 0.99 0.93
VGG19 v12 92.88 0.99 0.99 0.93

The experiments carried out on the whole pipeline, taking into consideration
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OPS-SAT images, allow us to make some important considerations based
on visual observations of the network outputs. In that case, the network is
used to predict the distance between the query and each reference picture.
The outputs are then sorted in ascending order, and only the top 10 images
are taken into consideration. A trial is considered successful if the matching
reference image appears among the top 10 selected. First of all, even though
all networks suffered from the domain shift, they were able in some cases to
retrieve the correct landmarks among the reference database. Then, it has
been observed that applying pre-processing to the input to correct the blue
hue did not improve the results; the best option was to match the histogram
of the query to each reference image before feeding the pair to the network.
Overall, the results can be much improved, but they still show how this
approach is a promising path.

6.3.2 Image registration
For what concerns the image registration step, the chosen solution scheme is
composed of SIFT, for the extraction of feature vectors, a KNN matcher to
couple the obtained keypoints, and RANSAC, which divides the matching
points into inliers and outliers.

During the development of the proof of concept, other feature extractors
have been taken into account, such as ORB and SuperPoint. However, ORB
showed lower performances both in terms of the number of detected keypoints
and the Correct Matching Rate (CMR). Similarly, SuperPoint was able to
detect very few features inside the input picture, mainly because the pre-
trained network under use was optimized to work with natural images. The
use of SuperPoint in this context would probably benefit from fine-tuning
its parameters on satellite images, which is let as a suggestion for further
development of this project. SIFT, instead, produced acceptable results in all
the tests performed, although they depended on the previous Image Retrieval
step: the features detection algorithm has been applied on all the top K
candidate matching images selected by the Siamese Network, and it showed
the ability to correctly re-rank them based on the number of keypoint features
found. Moreover, the number of features extracted was, in general, large
enough to find a set of good matches between the images.

In the Proof of Concept, the metric considered to evaluate the registration
process was the alignment error, consisting of the computation of the over-
lapping inaccuracy by means of the Root Mean Squared Error, measured in
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pixels:

RMSE =

vuuut 1
N

NX
i=1

(rxi)2 + (ryi)2 (6.1)

where rx and ry are the residuals (in pixels) in the x and y directions between
the ground truth control points and the transformed points. The image pair
is considered to be matched correctly if the RMSE is below a pre-defined
threshold. In practice, the correctness of the transformation is more quickly
verified by a visual check of the overlapped images.

The computation of the RMSE has been done according to the following
steps:

1. The two input pictures with the corresponding matching points are taken
as input

2. The transformation ϕ is computed, based on a subset of the inlier tie
points (the size of the subset is determined by the minimum number of
points required to estimate the considered geometrical transformation,
3 in the case of an affine transformation).

3. The points left out at the previous step are transformed on the reference
coordinate system according to ϕ, and the RMSE is computed with
respect to the control points.

It is important to observe that if SIFT cannot find enough good keypoints,
RANSAC will filter out many of them. As a consequence, computing the
RMSE on the inliers set can be very misleading, as the estimation would be
based on very few points. For the example reported in the Proof of concept
the results obtained are the following:
Matches before ransac: 70
Number of inliers: 14
Minimum RMSE: 1.9439693189636955
CMR = 14/70 = 20%

In this specific application, where the final goal is to obtain the pointing
direction of the spacecraft, an error of few pixels in the registration of the
images can be considered as negligible. The CMR, representing the inliers
ratio with respect to all the matches found, can be improved with a better
calibration of the RANSAC parameters or with better performing feature
detector and matching algorithms.
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Chapter 7

Conclusions

This Master’s Thesis has at its core the presentation of a method for esti-
mating the attitude of a spacecraft, specifically the ESA CubeSat OPS-SAT,
starting from the pictures captured by the onboard camera.

The technologies currently in use for estimating satellite attitude require the
calibration, weighting, and filtering of multiple sensor inputs and the bespoke
tuning of complex estimation algorithms. This makes their adoption often
tricky and hardly portable and rises the risk of introducing errors in the
recorded telemetries. In particular, when there are errors in the calibration
of the sensors or in the recording of the attitude values, such as gaps or
misalignment with the timestamps, it becomes very hard and time expensive
to retrieve the correct geographical coordinates of the received pictures.

The goal of this thesis was to design and demonstrate a potential solution
to this issue, based on Artificial Intelligence and computer vision techniques,
able to provide insights on the actual attitude of OPS-SAT at the moment
it captured an image, having as input only the picture of interest.

The objective was accomplished through the creation of a pipeline composed
by several modules, each of which served as input for the next one and
contributed to the visual-based geo-localization of the sensed image and suc-
cessive estimation of the attitude parameters of the spacecraft.

The process of design and development of this framework followed a series
of progressive steps. The first phase was devoted to studying and under-
standing the problem of attitude estimation, its physical and mathematical
background, and the software already implemented by the OPS-SAT team
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which is currently in use. Given the specific scope of the application, with
few examples of similar projects, and the numerous potential directions, a
thorough analysis of the landscape of image-based methods exposed in the
literature was then conducted, as well as an in-depth study of most used
computer vision techniques.

Different approaches have been taken into account, such as performing object
detection on a given set of landmarks, but the consideration of constraints re-
sulted in the selection of the image matching approach aimed at geo-localizing
the sensed picture. Once defined a solution scheme, the following phase was
required to address the unavailability of a ground truth for OPS-SAT pic-
tures, which could be handled either by applying self-supervised models or
by searching for a labeled dataset of satellite images that could reduce at
minimum the domain shift. Moreover, since directly performing keypoint
matching between the sensed image and the whole reference database showed
to be too ambitious, it has been decided to split this process into a first image
retrieval step, to filter only the most promising candidate references, and a
subsequent keypoint matching for a more precise registration of two images.
Finally, the implementation of a proof of concept is used to demonstrate the
feasibility of the proposed approach and to show how the different steps can
be connected together.

The major contribution of this work is having produced a solid baseline for
the development of an offline visual attitude estimator, enabled with machine
learning and deep learning techniques, which can be further improved and
continuously updated. Its main strength resides, in fact, in the modularity of
the structure, that allows to easily replace each building block with a newer
version. Furthermore, this demonstrates how promising AI-systems are in
the context of satellite operations, and shows how they can challenge the
performances of state-of-the-art attitude control systems built on traditional
approaches.

7.1 Way forward
As already stated, the solution scheme proposed in the proof of concept has
been constructed as a baseline, to show how the problem can be addressed
and to demonstrate the whole functioning of the pipeline, from the retrieval of
the telemetries describing the state of the satellite at the moment it captured
the image, to the obtainment of the new set of quaternions. Therefore, the
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main limitation of this framework resides in its performances, in terms of
speed as well as robustness, which have significant room for improvement.
At this point, the aim would be to replace the current algorithms with more
robust and accurate methods at the state-of-the-art.

The thorough analysis of the literature carried out continuously during the
development of the project let emerge numerous pathways that can be fol-
lowed to further improve the accuracy of each step, the robustness regarding
the most challenging cases of OPS-SAT pictures, and the efficiency in terms
of computational time. The possible improvements are countless, but it is
surely worth it to start optimizing the early stages of the pipeline, since
their output greatly affects the proper functioning of the models built on
top of them. For instance, it would be a good starting point to precisely
draw the area of interest, by propagating the TLE to know the direction of
the satellite pass. Concerning the image retrieval algorithm, which is the
key step for a successful operation, a promising solution to cope with the
case that geographical landmarks get buried in the complex and cluttered
backgrounds is the attention mechanism. This techniques is used, in fact,
to focus on certain parts or features of the input image, while ignoring irrel-
evant or noisy information. About keypoint matching techniques, instead,
two algorithms that might provide remarkable results if properly trained are,
as already mentioned, SuperGlue [26] and LoFTR [29] networks.

Last but not least, the most exciting and ideal target is the creation of an
autonomous attitude estimator that could operate on board the satellite.
The main barrier in this sense is represented by the limited computing re-
sources available on the spacecraft, and in particular way by the storage
capacity, which prevents us from uploading the reference database. Even on
the ground, the construction of the set of reference images and the download
of the pictures covering the area of interest represent the main bottleneck of
the pipeline, both from the storage space perspective and the time required.

Nevertheless, this application offers extensive and fascinating research op-
portunities, which will foster the development of autonomous space missions
and strengthen the partnership between Artificial Intelligence and Space Op-
erations.
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