
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

ASSOCIATIVE CLASSIFICATION OF
SPATIO-TEMPORAL DATA

Supervisors

Prof. Paolo GARZA

Dott. Luca COLOMBA

Candidate

Salvatore Stefano FURNARI

April 2023

Summary

Among the data mining tasks, the extraction of patterns that show relevant spatial
and temporal dependencies among data is one of the most useful in order to deal
with a wide range of fields of application. In particular, the sector of the digital
platforms is a really huge source of this type of patterns, since the services that
these digital applications are offering are distributed in time and space.
An example of this can be a food delivery service, which keeps track of the historical
data about the orders submitted by the users (with details about the exact times
of the orderings and of the trips for the deliveries) and the associated spatial
information such as the location of the users and restaurants and the position of
the riders. All these information can be put together and exploited in order for the
algorithm behind the digital application to match user’s orders and riders in the
most efficient way possible.

In this thesis, we take into account the analysis of years of historical data about
a bike-sharing service based in San Francisco. The records contained into the
dataset are structured as a minute by minute report of the bike stations status,
meaning the number of bikes currently parked there and the number of docks
currently available. These data can be a good source of information for the fleet
manager, since they can help them understand which kind of interventions have to
be done in order to always have the appropriate amount of bikes in the various
stations around the cities.
The main point to be defined is how to transform the data in order to discover
patterns which embody both the spatial and temporal dimensions, in a way that is
not specific of certain trajectories observed over a region of interest: so we propose
an efficient algorithm to extract this kind of patterns and validate its efficiency and
effectiveness on real data. To achieve this goal, we aim to generalize this type of
information by detecting sequences of events of interest, reporting spatiotemporally
invariant properties. In this way, the data gain more informative power, since we
reduce the huge amount of timestamp records to sequential data of the typology
event_station_time window thanks to a discretization technique that revolves
around a reference (with respect to the stations and the time), where:

ii

• Event: is the discretization of the variety of status that a station can have in
terms of occupancy. In particular, we have defined a set of critical conditions
represented by:

– Full, which represents the situation when the number of docks available
is equal to 0;

– Almost full, which represents the situation when the number of docks
available is less or equal than a certain threshold;

– Empty, which represents the situation when the number of bikes available
is equal to 0;

– Increase, which represents the situation when the number of bikes avail-
able is greater than the one of the previous timestamp;

– Decrease, which represents the situation when the number of bikes
available is less than the one of the previous timestamp.

• Station: to represent the stations belonging to the bike-sharing service, the
algorithm makes use of the discretization of the distance with respect to the
reference station. Each sequence of events takes into account the current
and past status of a specific neighborhood of the reference station, composed
as follows (depending on the setting of the algorithm which extracts the
spatiotemporally invariant patterns):

– Radius, meaning that the neighborhood of the reference station will
consist of all the stations located within the Spatial_steps that have
been set.
For example, if this parameter is set to 5, a sequence will report all
the events belonging to the Event_types set that have happened in
all the stations placed within a circle of radius Spatial_threshold ∗
Spatial_steps.

– Incoming, meaning that the neighborhood of the reference station will
consist of the Top_n stations which have the highest number of records
into the trip dataset (i.e. records where the Start_station_id is the
neighbor, while the End_station_id is the reference station). Doing so,
we are selecting the stations from which the highest number of bikes is
arriving to the reference station, regardless of their distance with respect
to the reference station.

• Time: to represent the time at which the events take place, we do not report
the specific details such as the date and the hour. The algorithm makes
use of the discretization of the timeline subdividing it in time windows of a

iii

certain length: the trigger event that happens in the reference station defines
the reference window (i.e. the so called "instant zero"); then, the algorithm
generates sequences of events which take into account the current and past
status of a specific neighborhood of the reference station, looking at a certain
number of time windows (i.e. the duration of the time horizon under analysis,
depending on the setting of the algorithm which extracts the spatiotemporally
invariant patterns).

The extraction of these spatiotemporally invariant patterns is useful for us to
deploy an associative classifier. Indeed, we make use of an algorithm for sequential
data mining (i.e. Prefixspan) in order to detect these type of patterns from
the sequences of correlated events of interest (which are the result of the data
transformation of the original status dataset, necessary to exploit this classification
technique). The steps we take to adopt this classifier are the following:

• Application of the Prefixspan algorithm to get the set of association rules;

• Selection of the rules which contain at least one event associated to the
reference station and happened at the "instant zero";

• Filtering out the rule list according to the critical condition associated to the
reference station and happened at the "instant zero" that we are interested to
classify (keep just the rules which contain it, and not having events of interest
happened in different stations);

• Setting of a minimum confidence threshold to select the rules that have a
certain "strength";

• Setting of a minimum support threshold in order to keep just a certain number
of rules (setting so an order of magnitude for the adopted rules).

Once we have selected the desired number of association rules, we perform
a binary classification task that involves the recognition of some sort of critical
condition for the bike stations such as the lack of bikes or the complete occupancy
of the docks. The associative classifier looks for a correspondence between a certain
amount of rules (defined by a previously set matching threshold) and the sequence
for which we want to predict its class label. In other words, a sequence is classified
as belonging to the positive class if it contains a number of selected rules greater
or equal than the minimum matching threshold (so that they are subsets of it,
except for the "instant zero", which is the timeslot to be predicted and so we do
not look for pattern matching in that period). Instead, a sequence actually belongs
to the positive class if it contains the critical condition of interest associated to the
reference station at the "instant zero".

iv

We compare these results with other models: a Baseline which consists of an
associative classifier that makes use of just a single simple and intuitive rule, and
classical algorithms such as Decision Tree and Random Forest.
To deploy them, we need tabular data with couples attribute-value. Our choice is
to get them from the already generated sequences from the status dataset (the ones
used to extract the association rules). All the columns are of binary type, signalling
if the situation represented by it has occurred. So, the data representation will
be different depending if the neighborhood of the reference station is built in the
radius or the incoming mode:

• Radius: the input data for the classification algorithms have a column for
each combination of event, station and time window as set by the parameters
Event_types, Spatial_steps and Temporal_steps of the sequence gener-
ation algorithm (except for the "instant zero", for which we just report the
class label, since we do not want to use features belonging to the same time
window of the class label for making predictions);

• Incoming: the input data for the classification algorithms have a column for
each combination of event and time window related to the reference station as
set by the parameters Event_types and Temporal_steps of the sequence
generation algorithm (except for the decrease event in case the positive class is
associated with the full condition), and a column for each time window related
to the whole neighborhood (reporting if there is at least one station belonging
to the neighborhood of the reference station which has been in the decrease
condition during that specific time window). Again, for the "instant zero", we
just report the class label, since we do not want to use features belonging to
the same time window of the class label for making predictions;

For some experiments, we do not keep just the whole selection of data, but
instead we subdivide the dataset partitions into timeslots of 4 hours (00-03, 04-07,
08-11, 12-15, 16-19, 20-23), in order to better assess the models performances in
the various parts of the day and their different trends. Indeed, each timeslot is
characterized by its own type of traffic, determined by the necessity of people to
go to work, university, gym... leaving inevitably some timeslots with more stability
in the stations’ status, while the others have a more frenetic pace of changes.

As we see performing the experiments, it is difficult to conciliate satisfactory
values of the metrics precision and recall for the minority class. With a poor
precision, we end up having a lot of false positives: in our case study, that implies
assuming that a station has filled all its docks, and so it is ready to be deprived of
some bikes to be destined to other stations that need them, even if actually is not.
With a poor recall, we end up having a lot of false negatives: in our case study,
that implies assuming that a station has not filled all its docks, and so it is ready

v

to host incoming bikes, even if actually is not. Determining which metric has to be
optimized is a choice that can be made only by means of an accurate analysis by
the decision-makers, whose can numerically evaluate the cost and benefits of these
scenarios and identify the most suitable option, even with differentiated solutions
according to the geographical location of the single stations.
What we observe in general is that the traditional classifiers perform better for
what concerns the precision (in particular the random forest), while the associative
classifier for what concerns the recall.

vi

Acknowledgements

To my family, that has supported me even during the toughest moments.

To my friends, that have filled my academic path with wonderful memories.

To the discography of Death, my soundtrack during the writing of this thesis.

vii

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Related work 3
2.1 Associative classifier . 3

2.1.1 Association rules . 4
2.1.2 Classification by pattern-matching 10
2.1.3 Prefixspan . 12

2.2 Decision Tree . 15
2.3 Random Forest . 18

3 Methodology 21
3.1 Problem and solution description 21
3.2 Dataset . 23

3.2.1 Station dataset . 23
3.2.2 Status dataset . 24
3.2.3 Trip dataset . 24
3.2.4 Training, test and validation split 24

3.3 Algorithm to generate sequences of events 25
3.3.1 The spatio-temporal invariance 28

4 Experimental section 33
4.1 Setting and Metrics . 33

4.1.1 Classification task . 33
4.1.2 Evaluation metrics . 36
4.1.3 Hyperparameters tuning . 38
4.1.4 Layout of the results . 41

4.2 Positive class: Full condition . 43

ix

4.2.1 Neighbor_types: Radius . 44
4.2.2 Neighbor_types: Incoming 55

5 Conclusions 66

Bibliography 68

x

List of Tables

4.1 Radius mode, Associative classifier, Metrics 45
4.2 Radius mode, Associative classifier, Confusion matrix 45
4.3 Radius mode, Other classifiers, Metrics 48
4.4 Radius mode, Other classifiers, Confusion matrix 49
4.5 Radius mode, Associative classifier, Best 51
4.6 Radius mode, Other classifiers, Best 52
4.7 Radius mode, Associative classifier, Best 52
4.8 Radius mode, Other classifiers, Best 52
4.9 Radius mode, Associative classifier, Best 53
4.10 Radius mode, Other classifiers, Best 53
4.11 Radius mode, Associative classifier, Best 53
4.12 Radius mode, Other classifiers, Best 53
4.13 Radius mode, Associative classifier, Best 54
4.14 Radius mode, Other classifiers, Best 54
4.15 Radius mode, Associative classifier, Best 54
4.16 Radius mode, Other classifiers, Best 54
4.17 Radius mode, Associative classifier, Best 55
4.18 Radius mode, Other classifiers, Best 55
4.19 Incoming mode, Associative classifier, Metrics 55
4.20 Incoming mode, Associative classifier, Confusion matrix 56
4.21 Incoming mode, Other classifiers, Metrics 57
4.22 Incoming mode, Other classifiers, Confusion matrix 59
4.23 Radius mode, Associative classifier, Best 61
4.24 Radius mode, Other classifiers, Best 61
4.25 Radius mode, Associative classifier, Best 61
4.26 Radius mode, Other classifiers, Best 62
4.27 Radius mode, Associative classifier, Best 62
4.28 Radius mode, Other classifiers, Best 62
4.29 Radius mode, Associative classifier, Best 62
4.30 Radius mode, Other classifiers, Best 63

xi

4.31 Radius mode, Associative classifier, Best 63
4.32 Radius mode, Other classifiers, Best 63
4.33 Radius mode, Associative classifier, Best 64
4.34 Radius mode, Other classifiers, Best 64
4.35 Radius mode, Associative classifier, Best 64
4.36 Radius mode, Other classifiers, Best 64

xii

List of Figures

2.1 Example of a transactional database: tickets at a supermarket counter. 4
2.2 Example of the lattice drawn from a transactional database with five

items. 6
2.3 Application of the Apriori principle. 7
2.4 Example of a FP-tree. 9
2.5 Example of rules extracted from table rows. 11
2.6 Example of rule-based classification. 11
2.7 A decision tree and the associated splitting of the data space. . . . 16
2.8 Visualization of Random Forest. 19

3.1 Graphical representation of the proposed solution. 22
3.2 Graphical representation of spatio-temporally invariant patterns. . . 28

4.1 Example of a confusion matrix in case of binary classification. . . . 38

xiii

Chapter 1

Introduction

Data-driven decision-making processes are being increasingly adopted in many
business and social fields, such as industrial production and healthcare. This trend
has emerged thanks to the availability of huge volumes of application-specific data,
which allow for a proper training procedure of machine learning algorithms. Being
exposed to this amount of examples, they can infer patterns that are hard to detect
for human operators, showing new perspectives to the decision-makers.

This thesis explores the promising possibilities given by machine learning, using
as a case study a bike-sharing service which operates in the San Francisco Bay
Area (Bay Area Bike Share). The task at hand is specifically a classification of
spatio-temporal data, since we aim to predict labels for samples which present
both spatial (localization of bike stations) and temporal (date and time of bike sta-
tions’ status) details. In particular, labels are events of interest regarding stations’
occupancy: indeed, the objective is to provide insights useful for the bike-sharing
service management, such as setting the most appropriate frequency of bike supply
for the stations.
As for the deployed classification techniques, we compare more traditional al-
gorithms (Decision Tree and Random Forest) with our implementation of an
associative classifier, which looks for matchings between spatio-temporal pat-
terns that happened in the past and similar situations in the future. A distinctive
feature of our classifier is that the extracted patterns are not based on absolute
references to stations’ locations and time, but instead on relative ones, making it a
spatio-temporally invariant algorithm.

Analyses are conducted considering both the whole day and dataset partitions
by time slots; moreover, we take into account different thresholds to consider
successful matchings between samples to be classified and patterns extracted from
the historical data.

1

Introduction

The remaining of the thesis is organized as follows. In Chapter 2, we revise
some bibliography useful to introduce the deployed classification algorithms and
the theoretical concepts at the basis of them, such as the notion of association rules
and the most adopted algorithms to extract frequent patterns (Apriori, FP-tree
and Prefixspan). In Chapter 3, we delve into the dataset structure, the splitting
strategy in order to design a proper training pipeline for the classification models
and the implemented algorithm to transform the original status dataset into a
sequential one (in order to extract spatio-temporal patterns). In Chapter 4, we
introduce the different experimental settings, analyze and compare the different
classification model. In Chapter 5, we draw our conclusions about the obtained
results and we indicate some possible directions to take for further research and
improvement.

2

Chapter 2

Related work

In this thesis, we deploy three different classifiers in order to detect the critical
conditions for the reference station, that are described in more detail in the
subsequent paragraphs.

The main concepts related to data mining and machine learning which are
introduced in the following paragraphs can be found in [1] and [2] respectively.

2.1 Associative classifier

This classifier makes use of the association rules extracted from a transactional
database in order to perform predictions.
This typology of database contains as entry a transaction, which can be defined
as a set of items where their order does not count. For example, we can consider
market basket data, in which a transaction is the purchase of a customer, whereas
the items are the products that have been bought, as we can see in the Figure 2.1.

3

Related work

Figure 2.1: Example of a transactional database: tickets at a supermarket counter.

2.1.1 Association rules
The objective of association rule mining is to extract frequent patterns from a
transactional database, which highlights some kind of correlation between some
items. An example with the already shown database could be:

coke, diapers =⇒ milk (2.1)

The items placed before the arrow constitute the rule body, whereas those after
constitute the rule head. The arrow stands for a co-occurrence of the items belonging
to the rule, and not for a direct causality. This means that it is not always true
that a transaction containing coke and diapers will also contain milk, but that this
correlation is verified with a certain probability.

In order to extract association rules with certain "strength" and "quality", we
first have to filter out the transactional database with a preprocessing algorithm.
In particular, we want that our association rules have not as body and head whatever
kind of items, but instead that together they form a frequent itemset, meaning that
the support (i.e. the fraction of transactions that contains an itemset) is greater or
equal than a certain threshold. With the rule example made before, we can define

4

Related work

the support of a rule as the support of the itemset containing both the body and
the head:

support = #{coke, diapers, milk}
|T |

(2.2)

where on the numerator we have the cardinality of the rule, while on the denominator
the cardinality of the entire database. This quantity can also be viewed as an
estimation of the probability of the rule inside the database.
Another evaluation metric for which we can set a minimum threshold for the
extracted association rules is the confidence, which is the frequency of occurrence
of the head inside the transactions that contain the body. Put into formula:

confidence = sup(coke, diapers, milk)
sup(coke, diapers) (2.3)

where on the numerator we have the support of the rule, while on the denominator
the support of the body. This quantity can also be viewed as an estimation of the
conditional probability of having the head in a rule that contains the body, and so
it represents the "strength" of the "implication" symbol contained in the rule.
So, association rule mining will lead to a result that is complete (i.e. all the rules
satisfy both the thresholds) and correct (i.e. only the rules which satisfy both the
thresholds).

For computational constraints, the adoption of a brute-force approach is usually
avoided: create each possible association rule by permutating all the items inside
the transactional database, and then prune all the rules that do not respect the
threshold requirements.
Indeed, given a database with a number d of items, we end up with 2d itemsets, as
shown in the Figure 2.2.

5

Related work

Figure 2.2: Example of the lattice drawn from a transactional database with five
items.

So, for each candidate itemset contained in the lattice, we should scan the whole
database in order to calculate its support, leading to a computational complexity
equal to O(|T |2dw), where w is the maximum length of a transaction.

Instead, the method of firstly generating the frequent itemsets and then creating
the rules from them is preferred (with all the possible combinations of body and
head, so all possible binary partitioning of each frequent itemset, usually setting
a threshold for the confidence). Most adopted algorithms for the generation of
frequent itemsets are Apriori and FPgrowth.

Apriori

The first one is based on the Apriori principle built upon the antimonotone property
of the support metric which is, given two itemsets A and B:

A ⊆ B =⇒ sup(A) ≥ sup(B) (2.4)

This means that each itemset contained entirely into another one has always a
greater or equal support: so, if we find a certain itemset which does not respect
the minimum support threshold, then all its supersets will behave in the same way,

6

Related work

and so can be pruned from the lattice of the candidate frequent itemsets, as shown
in the Figure 2.3.

Figure 2.3: Application of the Apriori principle.

This algorithm adopts a level-based approach, since step by step it extracts the
frequent itemsets of increasing length, starting from the previously extracted ones
of length k. The steps for each iteration are as follows:

1. Candidate generation: it is the step that allows to find the itemsets which
can be potentially frequent. It consists of the following:

• Join step: the candidate itemsets of length k+1 are generated by com-
bining between each other the frequent itemsets of length k.
This can be done for example by sorting the frequent itemsets of length
k in lexicographical order, and then joining each one of them with every
other itemset which shares the same prefix of length k-1.

• Prune step: the algorithm applies the Apriori principle, so it discards
the itemsets of length k+1 which contain at least one itemset of length k
that is not frequent.

2. Frequent itemset generation: it is the step that determines, given the
potentially frequent itemsets from the previous step, which are the actually
frequent itemsets of length k+1. It consists of the following:

7

Related work

• Scan step: the transactional database is scanned to calculate the support
of the selected candidate itemsets of length k+1.

• Prune step: the candidate itemsets of length k+1 which have a support
below the minimum threshold are discarded.

However, this algorithm still has some performance issues, since the frequent itemsets
are found increasing step by step their length, and so the extraction of the frequent
itemsets of high length requires before the generation of all the frequent subsets.
Indeed, especially the generation of the candidate itemsets of length 2 could be
very computationally expensive, given the fact that they are more probable to be
frequent. Moreover, the computational complexity of the support calculation for
the candidate itemsets increases linearly with the length of the longest frequent
itemset. So, the factors affecting performance can be listed as follows:

• Minimum support threshold: if it is too low, we risk to have a too large
number of candidates and an increasing length of frequent itemsets, which
affects the computational complexity of the support calculation;

• Number of distinct items inside the dataset: this increases the memory
space needed to store the count of the support and the computational costs
for the extraction of frequent itemsets;

• Size of the transactional database: it determines how long it takes for
the algorithm to scan through the database in order to calculate the support
of the candidate itemsets;

• Average width of the transactions: if it is high, we may have frequent
itemsets of greater length, and so a much longer runtime for the algorithm.

FP-tree

This issues can be addressed by the FPgrowth algorithm, which represents the
transactional database in a compressed way building an FP-tree, adopting a recursive
approach for the frequent itemset mining which decomposes it into smaller subtasks.
By doing so, the algorithm just has to perform two scans of the whole transactional
database, to calculate the support of the items and to build the FP-tree. The steps
are as follows:

1. Collect all the items in the transactional database which have a support greater
or equal than the minimum threshold;

2. Build a new database (i.e. the header table), which is a list of the selected
items sorted in decreasing order of support;

8

Related work

3. Scan the transactional database in order to build the tree. So, for each
transaction inside the database, we place the items in the same order as the
header table and then we insert it in the tree (using an existing path if it has
a common prefix, or creating a new branch otherwise);

Figure 2.4: Example of a FP-tree.

As we can see in Figure 2.4, the number inside each node of the tree represents
the support of the item inside certain transactions. For example, looking at the
leftmost path, there are:

• Eight transactions with the item B;

• Five transactions with the itemset BA;

• Three transactions with the itemset BAC;

• One transaction with the itemset BACD;

At this point, the algorithm begins to scan the header table from the bottom,
extracting the frequent itemsets which contain the item under analysis and all the
other ones that are above it in the header table, by means of recursive invocation
of the algorithm on the conditional pattern base for the item under analysis. This
is a reduced version of the original transactional database which contains all the
transactions which are prefixes of the considered item, with a support equal to

9

Related work

the one of the considered item inside the tree paths. So, the algorithm builds the
header table conditioned on the analyzed item, and then again scans it from the
bottom to then recursively apply the algorithm on the conditional pattern base
with respect to the two items under analysis, and so on.
The extracted frequent itemsets will have the support associated with the last item
in the set, as reported in the header table. The recursion goes forward until we
end up with a conditional pattern base which has no frequent items: in this case
the algorithm goes back to the previous header table, scanning it in the upward
direction.

What emerges is that the choice of the threshold for the minimum support is not
trivial. If a too high threshold is set, we risk discarding itemsets which contain items
that have for their intrinsic nature a rare frequency into the transactional database
but are anyway interesting. Taking again the example in which a transaction
consists of the items purchased by a customer, expensive products such as pieces
of jewelry could take this role. On the other hand, if the threshold is too low, the
extraction of the association rules could become very expensive as the number of
frequent itemsets becomes huge.

2.1.2 Classification by pattern-matching

Association rules can be used for the machine learning task of classification. Indeed,
a classical structured database can be viewed as transactional if we consider as
items the couples attribute-value, as well as the class label, which takes the role of
the head of the association rule. So, we can proceed to extract the rules from the
database, as in the example reported in Figure 2.5.

10

Related work

Figure 2.5: Example of rules extracted from table rows.

Having done this, we then check if the instance to be classified is covered by any of
the extracted rules, meaning that the attributes of the instance satisfy the body of
the rule, as we see in Figure 2.6.

Figure 2.6: Example of rule-based classification.

A single instance can be covered by more than one rule, so they have to be sorted
with respect to their support and confidence measures in order to define a priority
among rules, and assign the class which is associated to the head of the highest

11

Related work

ranked rule that covers it. Moreover, we have to define a default class which is
assigned in case the instance is not covered by any rule.

Advantages of this approach is that we are building an interpretable model,
given the fact that we can inspect the selected rules to understand the patterns
involved in the prediction of a certain class. The process of classification is pretty
efficient and still possible even in presence of missing data (the algorithm simply
skips those rules for the coverage check); also, we have good scalability in terms of
the training set size.
For what concerns the drawbacks, we have that the rule extraction could be
computationally expensive (depending on the threshold of minimum support) and
that the scalability is not so good in terms of number and domain of the attributes,
since we could end up with a massive amount of itemsets to be checked.

The dataset analyzed in this thesis is not suitable for an associative classifier,
since it is a logfile which reports the status of each station in terms of bikes and
docks available almost minute by minute over two years of data. This makes it
unfeasible to use as items the couples attribute-value, since the domain of the
attributes is too wide, especially the one of the time; moreover, we have to explicitly
define a label to be classified.
We have chosen to preprocess the data adopting the technique of discretization:
the informations about the bikes and docks available become a discretized set of
events, the station_id becomes the discretized distance with respect to a reference
station and the timestamp becomes a time window discretized with respect to a
reference one inside a predefined time horizon. In this way, any row of the original
dataset simply becomes an item identified by the union of an event, a station and
a time window; a transaction instead will be the aggregation of many rows inside
the chosen time horizon.

2.1.3 Prefixspan
So, we have to use an algorithm which is capable of extracting association rules
from such a database. Actually, to achieve this goal, we rely on an algorithm which
performs sequence mining to extract the spatio-temporal patterns of our interest,
and then we interpret them as association rules.
Since we want to predict a situation of criticality for a station based on the
conditions of its neighborhood during a predefined time horizon in the past, we
identify as body of the rule the set of events temporally localized in the past time
windows, while the head of the rule is identified as the set of events temporally
localized in the last time window (i.e. the time window for which we want to predict
a critical condition for a certain station).

12

Related work

For this purpose, we adopt Prefixspan [3], which stands for prefix-projected
sequential pattern mining. This algorithm has been developed specifically to address
the task of sequential pattern mining, which aims to extract frequent subsequences
as patterns in a sequence database. This is the case of a wide range of applications,
such as customer purchase behavior, Web access patterns, DNA sequences analysis
and, as in our case, analysis of patterns distributed in time and space. The definition
of this task has been given first in [4]: Given a set of sequences, where each sequence
consists of a list of elements and each element consists of a set of items, and given
a user-specified min_support threshold, sequential pattern mining is to find all of
the frequent subsequences, i.e., the subsequences whose occurrence frequency in the
set of sequences is no less than min_support.
Taking as example our dataset (as explained in more details in Chapter 3), the
elements of a sequence are the time windows contained in the analyzed time horizon
(so reported in chronological order), while the items inside it are the triplets
event_station_time window (considered by the algorithm in alphabetical order).
A sequence is a subsequence of another one if all its elements are subsets (or even
equal) with respect to the corresponding ones in the larger sequence (or elements
of larger index).

The majority of previously developed algorithms are based on the Apriori
technique reviewed before, that as we have seen raises computational complexity
issues when the database is huge and the patterns to be extracted are in great
number and with a large variety of items. To recap, these problems are due to the
step-wise candidate sequence generation, which involves the possible escalation to
an enormous number of sequences (especially during the first steps of the algorithm,
where we can have a lot of allowed combinations in the join step, since the Apriori
principle is not easily applicable yet) and difficulties at extracting long sequential
patterns (since before the algorithm has to extract before the numerous sequences
of shorter length, and accordingly to scan the whole database at each iteration to
calculate the support of the candidates).

Prefixspan aims to exploit the logic behind the Apriori principle and in the mean-
time alleviate the burden of the expensive candidate generation. It accomplishes
so by focusing on finding frequent prefixes, since any complete subsequence can
be built by developing a frequent prefix. This strategy reduces the computational
complexity of the previously developed algorithms for sequential pattern mining
since now the sequential patterns are developed by inspecting just the local frequent
patterns (i.e. the postfixes with respect to the discovered frequent prefixes).
Now we define these concepts better.

A sequence is identified as a prefix of another one with a less or equal number

13

Related work

of elements if and only if:

1. all its elements are equal to the corresponding ones of the larger sequence (not
considering the last one);

2. its last element is equal (or at least a subset) of the corresponding one of the
larger sequence;

3. removing its last element from the corresponding one of the larger sequence,
all the remaining items are alphabetically after.

A subsequence x is the projection of its supersequence y with respect to the prefix
z if and only if:

1. the projection x has this prefix z;

2. there exists no supersequence w of the projection x that is a subsequence of
the supersequence y and has also the same prefix z.

The sequence j is the postfix of the sequence y with respect to the prefix z, if it is
composed by all the elements of the projection x after the corresponding ones of the
prefix z (while we remove the last element of the prefix z from the corresponding
one of the projection x).

To summarize, the logic behind the Prefixspan algorithm consists of:

1. Find first all the sequential patterns of length 1 (i.e. all the items of the
sequential dataset that have a support greater or equal than the minimum
support threshold, found with a single scan of the whole dataset);

2. Subdivide the entire list of sequential patterns according to the prefixes consti-
tuted by the frequent items;

3. Extract one by one these partitions of the sequential patterns by building the
corresponding projected datasets with respect to these prefixes and mine each
of them recursively (so again subdividing the sub-list of sequential patterns
to be found according to the prefixes constituted by an increasing number of
items).

So, for example, all the sequences in the sequential dataset which contain the
item x are projected with respect to the item x in order to obtain the x-projected
dataset, which consists of the postfix sequences with respect to the prefix x. Then,
recursively, we scan the x-projected dataset for one time in order to find the totality
of sequential patterns of length two and having as prefix the item x (the support of
a certain sequence is the number of sequences contained in the projected dataset

14

Related work

for which it is a subsequence). Having done this, the algorithm continues again to
build the projected datasets with respect to these new longer prefixes in order to
extract longer sequential patterns.

This problem partitioning allows the Prefixspan algorithm to address the task
recursively, so in a sort of divide-and-conquer approach, as opposed to the sequential
one of the classical Apriori algorithm.
The advantages are that there is not anymore a stage of candidate sequence
generation, since the longer sequential patterns are already extracted from the
shorter ones and not from potentially useless patterns; moreover, the projected
datasets keep reducing in size as the associated prefixes becomes longer, since
there are less postfixes sequences (indeed, often just a little portion of sequential
patterns grow very long in the dataset, and now we are not forced to run through
a long sequence of highly computationally complex steps in order to find them).
As drawback, in the worst case, the algorithm has to build a projected dataset for
each one of the extracted sequential patterns, and this can lead to computational
bottlenecks.

2.2 Decision Tree

A Decision Tree is a predictor, inferred through a supervised learning algorithm
(i.e. it is trained by means of humanly annotated datasets), which predicts the
value of a label or a target variable assigned to an instance of the input space by
walking through a path that goes from the root node to a leaf (or terminal node)
of a tree.

Each leaf of the tree represents a region of the input space which has been
identified by a set of splitting rules. Indeed, every internal node of the tree is
associated with a splitting of the domain of one of the features that characterize the
records to be classified. An example of this can be seen in the figure below, where
in correspondence of each internal node a feature and a threshold has been chosen;
then, the path will be in the direction of the right branch for the instances that
have a value greater than the threshold for that feature, left direction otherwise.
The built tree defines partitions of the input space, which are non-overlapping
regions represented by high-dimensional rectangles. So, in the test phase, a new
instance unseen by the algorithm during the training travels from the root to a leaf,
ending its journey into one of these regions; then, the model assigns the majority
class among the training records which belong to that area of the input space.

15

Related work

Figure 2.7: A decision tree and the associated splitting of the data space.

Intuitively, we can say that the objective of the algorithm is to build the best
possible tree, meaning that it finds the optimal splitting of the input space in order
to get regions where the training records are present predominantly in one of the
classes. However, performing an exhaustive search of all the possible configurations
is unfeasible from the computational point of view; moreover, a perfect tree for the
training set would most likely incur in overfitting and so bad performances in the
test set.
For this reason, a more practical top-down greedy approach is taken, called re-
cursive binary splitting. Indeed, we proceed in the tree construction starting
from the root, considering just two-branches splits. This process follows a greedy
heuristics, meaning that at each step the algorithm considers the best split at that
particular step of the tree construction: this could lead to sub-optimal decisions
because we are not looking into the future to perform splits that could bring us to a
better tree in a subsequent step, but in general it is a good approximation in order
to build a tree in a computationally feasible way. There are various criteria which
can be taken by the algorithm to determine the best split, and here we explore the
most commonly adopted two.

Gini index is a measure of the node impurity, meaning that a high value stands
for a node in which there is a huge promiscuity of class label: so the algorithm
looks for the splitting that could give the biggest reduction of the index value. This
index lies in the range [0, 1 − 1

nc
], where nc = number of class labels, so in the case

of binary classification a value of 0.5 represents a perfect equilibrium between the

16

Related work

classes into the node. The formula is reported below:

G =
KØ

k=1
pmk(1 − pmk) (2.5)

where pmk represents the proportion of training instances in the mth region which
belongs to the kth class.
Another criterion is the Cross-entropy, given by:

D = −
KØ

k=1
pmk log pmk (2.6)

We recursively perform the algorithm of tree construction for each generated sub-
tree until some stopping criterion is met (e.g. we end up with leaves which have
less than a certain number of training records). However, growing up a tree of
indefinite size could make us incur in overfitting: so, in order to get a tree which is
more likely to generalize, we could try to stop the tree building in advance, setting
a maximum depth.

To sum up, the advantage of trees is that it constitutes a very simple model,
easily interpretable even by non-experts, explorable through its graphical display.
Moreover, we do not have the need to create dummy variables in case of categorical
features, since the algorithm is capable of managing the splits as they are. The
main drawback is that generally they do not perform at the same level as other
classification techniques and they are prone to overfitting.

As we have discussed, Decision tree is a pretty visualizable model, meaning
that the structure and the characteristics of the tree diagram that we have been
obtained by the algorithm in order to classify the test data can be easily shown.
For example, for each node, it is possible to report:

• The splitting rule used to perform the node branching and lower the node
promiscuity in terms of class labels;

• The value of the node impurity metric, that we want to be the lowest possible
for the leaves of the Decision tree built by the algorithm, since they are used
to determine the class label to be assigned to a sample for a prediction;

• The number of samples of the train dataset that have crossed a path inside
the built Decision tree until a certain node;

• The class distribution, which is the number of samples belonging to the various
class labels inside a certain node.

17

Related work

Different colors can be used to represent majority of samples belonging to a certain
class label, while the tonality of these colors can stand for the value of node impurity
among the various class labels present inside a certain node.

2.3 Random Forest

To cope with the problem of overfitting and improve the performances, ensemble
trees methods have been explored, exploiting the approach of building multiple
trees and combining their knowledge.

Random Forest makes use of the bagging technique, meaning that each one of
the trees in our ensemble is trained on a different bootstrapped set of the training
data (i.e. we perform a random sub-sampling of the training data with replacement,
considering the records as uniformly distributed). Then, to get trees which are
in some way decorrelated, the following technique is adopted: when building each
decision tree, each time a split in a tree is considered, a random selection of m
predictors is chosen as split candidates from the full set of p predictors, considered
again as uniformly distributed (a typical value for m is √

p).
So, after having built the desired number of decision trees, a new test instance not
seen by the algorithm during training travels inside each of the trees, getting a
class prediction from each of them; then, the overall prediction will be the most
predicted class among the ensemble (i.e. majority voting), as shown in the Figure
2.8.

18

Related work

Figure 2.8: Visualization of Random Forest.

An advantage of this model is its robustness with respect to noise and outliers, since
the prediction is a majority voting among decorrelated trees trained on independent
sub-sets of the training data. Moreover, it can also be estimated a global feature
importance to identify which are the most relevant for the classification task: for
instance, it can be calculated the total amount of node impurity reduction given by
a particular feature across all the trees. As drawback, better performances are
obtained at the expense of the simplicity and interpretability of the model, since
now we have a prediction given by an aggregation of hundreds of trees.

As we have discussed, Random forest can also provide insights in terms of
interpretability, since it can be estimated a feature importance to identify which
are the most relevant for the classification task.
For example, we can use as such metric of feature importance the mean decrease in
impurity (MDI), which is the mean of accumulation of the impurity decrease within
each tree belonging to the ensemble. A histogram could be used to easily detect:

• Which of the features dominate over the others in terms of MDI (resulting so
the most discriminative features for the classification task at hand, as they are
the most helpful ones in order to isolate across the feature space the samples
belonging to the various class labels);

• Which of the features are irrelevant in order to distinguish the class labels

19

Related work

across the feature space (resulting so the less discriminative features for the
classification task at hand, as they do not significantly contribute to the
lowering of the node impurity);

• Which of the features share more or less a similar discriminative power (re-
sulting so, in actionable words useful for the decision-maker, features that are
equally decisive for the managerial planning).

20

Chapter 3

Methodology

3.1 Problem and solution description

As written in the title, in this thesis we deal with the assessment of the classification
task to be performed over spatio-temporal data deploying an associative classifier.

In machine learning, the classification task consists of assigning a predefined set
of labels to data samples contained into a dataset. In the case of our thesis, we
have a specific typology of data which requires an appropriate handling to perform
this task.
Spatio-temporal data are characterized by information distributed both in space and
time, and so they are usually reported in the format of logfile dataset, which records
with a certain frequency what happens in specific locations. As we can imagine, a
huge variety of application fields generate such data: industrial production, where
we can gather data about the status of the various machineries present in the
factory during the entire production cycle; finance, where we can collect values of
economic indicators over a time range from different geographical sources.
Nowadays, they are remarkably important in the sector of the digital platforms:
this is a really huge source of this type of data, since the services that these digital
applications are offering are distributed in time and space, such as the bike sharing
service that we use as case study in this thesis. Another example of this can be
a food delivery service, which keeps track of the historical data about the orders
submitted by the users (with details about the exact times of the orderings and
of the trips for the deliveries) and the associated spatial information such as the
location of the users and restaurants and the position of the riders. All these
information can be put together and exploited in order for the algorithm behind
the digital application to match user’s orders and riders in the most efficient way
possible.

21

Methodology

Usually, the classification task over this typology of data revolves around the
detection of some kind of event which has happened somewhere within a specified
time horizon. In this way, class labels are conditions determined by the status of
the entities which represent the source of the data gathering over space and time.
For example, we can train the classification algorithm in order to detect conditions
of interest that can signal the breaking of a machine in a few time for purposes of
predictive manteinance. The task can consists of distinguishing between multiple
class labels, or instead detecting just the presence or the absence of a specific event
(binary classification task with a one vs all approach).
Moreover, we have to adopt a data representation which is suitable for the classifi-
cation algorithm that we want to deploy. In this thesis, we rely on an associative
classifier, which requires the extraction of association rules from a dataset of
transactional type, as detailed in Chapter 2. The strategy used in this work is to
transform the original logfile into a sequence of events, so that it can be processed
by a sequential data mining algorithm (such as Prefixspan) to get patterns that
can be interpreted as the set of association rules at disposal of the classification
algorithm. As detailed later in this Chapter, our aim is to get spatio-temporally
invariant patterns in order to have a classification algorithm based on association
rules which are robust and with more expressive power.
Anyway, we rely on this sequential representation (transposed into a tabular for-
mat) also for the other classification algorithms that we deploy (i.e. decision tree
and random forest), in order to simplify the data representation by reducing the
cardinality of the original data domains. Unlike the associative classifier, we do
not have to explicitly extract patterns by means of a data mining algorithm, but
instead the classification algorithm internally deduce a characterization of the class
labels, such as the paths of a tree diagram.

Figure 3.1: Graphical representation of the proposed solution.

We graphically sum up the proposed solution in Figure 3.1:

1. Data preprocessing: as first phase, we have to get the sequential data
representation by implementing an algorithm capable of transforming the
original tabular dataset into a one composed of sequences of events which
happen within a predefined spatio-temporal horizon;

22

Methodology

2. Pattern extraction from the training data: having the sequential repre-
sentation of the data at our disposal, we can deploy a sequential data mining
algorithm to extract patterns from the training partition of our dataset,
necessary to implement the associative classifier;

3. Classification of the test data: as last phase, we deploy our algorithm to
perform an associative classification (i.e. interpreting the patterns extracted
by the sequential data mining algorithm as association rules to be matched
with the samples to be classified) over the test partition of our dataset, which
has gone through the same preprocessing step of the training one;

In the rest of this Chapter, we see the details of each one of the solution stages.

3.2 Dataset
The data source for this thesis is [5], a transformed version of the open data shared
by Bay Area Bike Share, available here [6]. For our purposes, we make use of
these three datasets:

• Station dataset, which contains information about the bike stations;

• Status dataset, samples about the availability of bikes and docks for a given
station and time;

• Trip dataset, which keeps track of trips made by individual bikes.

3.2.1 Station dataset
This dataset consists of 70 entries and 7 features:

1. id, a numerical id which identifies the station;

2. name, with which the station is known;

3. lat, the latitude of the station’s location;

4. long, the longitude of the station’s location;

5. dock_count, the number of dock at disposal of the station;

6. city, where the station is placed;

7. installation_date, the date since the station is active.

23

Methodology

3.2.2 Status dataset
This dataset consists of 71.984.434 entries and 4 features:

1. station_id, the numerical id identifying the station;

2. bikes_available;

3. docks_available;

4. time, the date and time for which the status of the station is recorded, in the
format yyyy/mm/dd hh:mm:ss;

3.2.3 Trip dataset
This dataset consists of 669.959 entries and 11 features:

1. id, a numerical id which identifies the trip;

2. duration, in seconds;

3. start_date, when the trip begins;

4. start_station_name, where the trip begins;

5. start_station_id;

6. end_date, when the trip ends;

7. end_station_name, where the trip ends;

8. end_station_id;

9. bike_id, a numerical id which identifies the individual bike;

10. subscription_type, typology of the user whom rides the bike.

3.2.4 Training, test and validation split
A proper training procedure for machine learning algorithms requires a splitting
of the dataset into different partitions, in order to assess fairly the performances
of the models. Indeed, we subdivide the original datasets into training and test
ones, to calculate the classification evaluation metrics predicting over samples that
have not been processed by the algorithm during its training stage. This simulates
real-world applications, where we do not have all the data at our disposal and we
are required to predict new ones.
In order to tune the hyperparameters (i.e. parameters of the algorithms that

24

Methodology

need to be set in advance with respect to the training stage) of the classification
models, we further split the training set to extract a validation partition. Doing
so, we avoid incurring in overfitting over the test set, ending up selecting a set
of hyperparameters which is optimized on the specific test partition that we have
selected, and so not able to generalize well.
Data from status and trip go from 29/08/2013 to 01/09/2015. We choose to keep
almost the 2

3 of data for the training partition: dealing with time series, we have
to make sure that the samples are not selected randomly, but instead follow a
chronological order (past data into the training partition and future data into the
test one). In this way, data until 31/12/2014 are contained in the training partition,
while the rest in the test one; in the same way, data from 01/08/2014 are part of
the validation partition.

For some experiments, we do not keep just the whole selection of data, but
instead we subdivide the dataset partitions into timeslots of 4 hours (00-03, 04-07,
08-11, 12-15, 16-19, 20-23), in order to better assess the models performances in
the various parts of the day and their different trends. Indeed, each timeslot is
characterized by its own type of traffic, determined by the necessity of people to
go to work, university, gym... leaving some timeslots inevitably with more stability
in the stations’ status, while the others have a more frenetic pace of changes.

3.3 Algorithm to generate sequences of events
In order to deploy an associative classifier, we have to transform the original status
dataset into a structure which is more suitable to a transactional format, having so
the possibility to extract the frequent itemsets and generate the association rules.

As data representation, we set our items to be of the type "Event_Station_Time"
in order to rely on association rules constituted by spatio-temporally invariant
patterns (whose points of strength are pointed out later with the aid of graphical
examples). As said in the Introduction, we want to keep relative references to
stations’ locations and time. So, instead of identifying a station by means of its
id, we make use of the discretized distance between it and a reference station,
considering in which one of the concentric circles around the reference station the
station falls. As for the time, we do not use the actual date and hour, but instead
we discretize it by means of temporal windows, so that each record of the dataset
falling into a window happens in the same discretized instant.
The last step for our alternative data representation consists in defining some events
related to the status of a station. We have chosen to adopt these ones:

• Full, which represents the situation when the number of docks available is

25

Methodology

equal to 0;

• Almost full, which represents the situation when the number of docks
available is less or equal than a certain threshold;

• Empty, which represents the situation when the number of bikes available is
equal to 0;

• Increase, which represents the situation when the number of bikes available
is greater than the one of the previous timestamp;

• Decrease, which represents the situation when the number of bikes available
is less than the one of the previous timestamp.

Moreover, we have decided also to take note of the Normal state, which represents
the situation when the critical condition has not happened within a certain time
window for a specific station. This is especially necessary in order to not lose the
type of sequences for which we have a static situation (i.e. none of the events of
interest has happened inside the time window, which means that the related records
of the status dataset would not contribute to the sequence generation, resulting in
an incomplete representation of the data at our disposal), and so have an accurate
representation of the negative class. So, for these classification purposes, we keep
track of this type of event just for the reference station during the "instant 0".

So status dataset records are subdivided into time windows of a certain length,
and all the stations that are inside a certain window will assume the role of reference
station, in order to represent in a relative way the location of all the other stations.
We also have to define the time horizon for the patterns we are going to extract
(i.e. the number of time windows that are inspected for each transaction), since in
turn one of the time windows will become the reference one (so the "discretized
instant 0") and each sequence (i.e. the transaction) will keep track of all the events
of interest that happen in the neighborhood of the reference station within the
time horizon that we have set.

Before we run the algorithm, we have to define a set of parameters, representing
the kind of sequences that will be generated:

• Temporal_threshold, which is the length of the time windows, expressed
in minutes;

• Spatial_threshold, which is the radius of the concentric circles drawn
around the reference station, expressed in kilometers;

• Temporal_steps, which is the number of time windows taken into account
for each generated sequence;

26

Methodology

• Spatial_steps, which is the number of concentric circles that we consider
when we define the neighborhood of the reference station by the Neigh-
bor_type radius;

• Support, which is the minimum threshold used for the extraction of the
association rules;

• Max_patt_len, which is the maximum length of a sequence (i.e. the total
number of items);

• Cities, that is the set of cities on which the generation of sequences and the
extraction of rules is performed;

• Event_types, which is the set of events that are taken into account during
the generation of the sequences;

• Neighbor_type, which defines how the algorithm selects the neighbors of
the reference station;

• Top_n, which is the number of selected neighbors of the reference station
when the Neighbor_type is set to incoming;

• Ignore_set, which is the set of events that will be excluded when projecting
the sequences with respect to the reference station;

• Reproj_mode, which defines if, given a time window as reference, the time
horizon of the algorithm will be backward or forward;

• Absolute_mode, which defines if representing the stations by means of their
Id’s or the discretized distance with respect to the reference station.

So, in addition to the setting of a time horizon for the sequences generated by
the algorithm, we define a neighborhood of the reference station for which the
events will be recorded, that could depend from the proximity with respect to the
reference station (so a spatial horizon) or could be constituted of stations that have
a certain "link" with the reference station. The Neighbor_type can be of this
kind:

1. Radius, meaning that the neighborhood of the reference station will consist
of all the stations located within the Spatial_steps that have been set.
For example, if this parameter is set to 5, a sequence will report all the events
belonging to the Event_types set that have happened in all the stations
placed within a circle of radius Spatial_threshold ∗ Spatial_steps.

27

Methodology

2. Incoming, meaning that the neighborhood of the reference station will consist
of the Top_n stations which have the highest number of records into the
trip dataset (i.e. records where the Start_station_id is the neighbor, while
the End_station_id is the reference station). Doing so, we are selecting
the stations from which the highest number of bikes is arriving to the ref-
erence station, regardless of their distance with respect to the reference station.

When adopting the Neighbor_type parameter to incoming, we also omit to report
in the sequences the decrease status for the reference station and the increase
status for the neighbors when the critical condition that we want to classify is the
full one, since to predict this status is much more useful to know when the number
of bikes in the reference station is increasing and when the number of bikes in the
neighbors is decreasing.
For what concerns the Reproj_mode, we set this parameter to "past" in order to
use the information about the events that happened in the stations belonging to the
adopted Neighbor_type during the preceding Temporal_steps time windows
with respect to the reference one. We also set the Absolute_mode parameter
to "false" in order to use instead a representation for the neighbor stations that is
relative to the reference station (i.e. the discretized distance from the neighbor),
extracting in this way patterns which are spatio-temporally invariant.
Further details about our algorithm deployed to transform the original logfile
dataset into a sequential one (appropriate to be used as input for the sequential
data mining algorithm) are reported in [7].

3.3.1 The spatio-temporal invariance
We underline the expressive power of spatio-temporally invariant patterns by
showing a graphical representation, as reported in Figure 3.2.

28

Methodology

Figure 3.2: Graphical representation of spatio-temporally invariant patterns.

As we can clearly see from the image above, in this case the parameters of our
algorithm which generates the sequences are set as follows:

• Temporal_threshold: 15 minutes, as we can see that each time window has
this duration;

• Spatial_threshold: 0.1 kilometers, which is the length of the radius of the
concentric circles centered in the reference station;

• Temporal_steps: 3, as we can see that the time horizon under analysis is
composed by three time windows of Temporal_threshold duration (where
the first one is the reference window from when the time horizon starts);

• Spatial_steps: 3, as we can see that the spatial horizon of the algorithm
spans over three concentric circles centered in the reference station;

• Event_types: Full, almost full and increase are the kind of events that we
want the algorithm to detect;

• Neighbor_type: Radius, as we can see that the algorithm looks at the
nearest stations with respect to the reference station (i.e. the ones falling
within the spatial horizon set by Spatial_steps);

• Ignore_set: Increase, as the building of the sequences revolves around the
occurrence of full and almost full in the reference station;

• Reproj_mode: Future, as we can see that the time horizon moves in forward
direction with respect to the reference window (from 10:00 AM to 10:45 AM);

• Absolute_mode: False, as we want the algorithm to highlight spatio-
temporally invariant sequential patterns.

Putting sequences generated by our algorithm into graphical form makes more
evident what do we mean by spatio-temporal invariance and its implications.
Stations are represented as points inside the concentric circle centered in the
reference station where they fall into; the reference station is the point placed at
the center of the smallest concentric circle and it is indicated as the "station zero",
since it is the only station located into the hypothetical concentric circle of radius
zero.
In correspondence of the points, we have the items ei belonging the sequences,
which are the triplets "Event_Station_Time". So we have the indication of the
event, the rectangular box that indicates in which time window the event has
occurred, and the spatial location of the station indicated by the concentric circle

29

Methodology

centered in the reference station in which they fall into.
The spatio-temporally invariant patterns that we want to extract (and then to use
in order to perform classification) are specific co-occurrences of items distributed
in time and space that happen "frequently" (according to the minimum support
threshold) inside the generated sequences of triplets. The continuous lines symbolize
a co-occurrence of items between the reference station and another one, whereas
the dashed lines symbolize a co-occurrence of items associated with the reference
station in different time slots; the different colors of the arrows stand for distinct
spatio-temporally invariant patterns that are going to be extracted by the algorithm:

• Orange pattern: this spatio-temporally invariant pattern is characterized by
a reference station which is in an almost full condition and another station in
the area of the third concentric circle which is in an increase condition during
the reference time window, and then in the next time window the reference
station turns into a full condition (this co-occurrence of items happens two
times: one including the items e1, e2 and e5, and the other one including the
items e7, e8 and e11).

This type of spatio-temporally invariant pattern that has been extracted by
the algorithm can be translated into words useful for the fleet manager of the
bike-sharing service in order to plan supply routines for the stations. The
information contained in this pattern is that if a certain station is in an almost
full condition (i.e. the situation when the number of docks available is less
or equal than a certain threshold) and at least one of its neighbor stations
in the area between 200 and 300 meters is in an increase condition (i.e. the
situation when the number of bikes available is greater than the one registered
during the previous detection) within fifteen minutes, then that same station
will turn into a full condition (i.e. the situation when the number of docks
available is equal to zero).
These correlations of events distributed in time and space can be useful to
identify the situations when a certain station is about to saturate their docks
spots (based on its current status and the one of at least one of its neighbors
located in a precise range of distance from itself): so the fleet manager of the
bike-sharing service can intervene by redistributing a certain number of bikes
from this station to another one which lacks them.

• Green pattern: this spatio-temporally invariant pattern is characterized by a
reference station which is in a full condition and another station in the area
of the third concentric circle which is in an almost full condition during the
reference time window (this co-occurrence of items happens two times: one
including the items e3 and e4, and the other one including the items e9 and
e10).

30

Methodology

This type of spatio-temporally invariant pattern that has been extracted by
the algorithm can be translated into words useful for the fleet manager of the
bike-sharing service in order to plan supply routines for the stations. The
information contained in this pattern is that a certain station is in a full
condition (i.e. the situation when the number of docks available is equal to
zero) when at least one of its neighbor stations in the area between 200 and
300 meters is in an almost full condition (i.e. the situation when the number of
docks available is less or equal than a certain threshold) within fifteen minutes.
These correlations of events distributed in time and space can be useful to
identify the situations when a certain station is about to saturate their docks
spots (based on the current status of at least one of its neighbors located in a
precise range of distance from itself): so the fleet manager of the bike-sharing
service can intervene by redistributing a certain number of bikes from this
station to another one which lacks them.

We can see how the purpose of the algorithm is to detect, between all the tracked
status of the various stations over the days, which sequences of events are recurrent
(i.e. repeated many times inside the records of the status dataset).
The detection of these sequential patterns is possibile just because we are represent-
ing all the spatial and temporal informations about an event in a relative way: the
algorithm indicates the stations by means of a discretized distance with respect to
a reference station (counting in which one of the concentric circles centered in the
reference station they fall within), and indicates the time by means of a discretized
timeline for which each timeslot of duration Temporal_threshold is seen as a
unique instant of time (i.e. all the events happened within the same time window
are seen as if they have happened at the same time). This representation method
is fundamental in order to see the events during the day "as they are", without
the specificities given by an absolute method of representation (i.e. the algorithm
indicates the stations by means of their unique numericalid, and indicates the time
by the exact date and hour):

• The peculiar identity of each station is replaced by taking the point of view of
any station in which has occurred a trigger event (i.e. the ones belonging to the
Event_types set, but not to the Ignore_set one) and then projecting this
vision to all the nearby events contained in the delimited (by the parameters
of the algorithm) spatio-temporal landscape under analysis.

• The precision of the time reference is replaced again by taking the point of
view of that trigger event and placing the "instant zero" in the time window in
which it has happened, so that we can track the time in terms of discretized
timesteps proceding from the reference time window.

Doing so, we can actually highlight spatio-temporally invariant patterns, because

31

Methodology

the algorithm can detect a certain "repetitive structure" of events successions (such
as the different colors in Figure 3.1). Instead, in an absolute framework, this would
be more difficult since there is much more variability of values assumed by stations
and time. The invariance is then given by the fact that the pattern can be placed
in different space and time but still being the same identical pattern, as in a relative
representation method what it counts it is just the configuration of the spatial and
temporal gaps between the events in a pattern, and not their exact location and
timing.

32

Chapter 4

Experimental section

4.1 Setting and Metrics

Before showing the models deployed for the classification tasks and the related
results, we first specify the framework adopted to perform the training.

4.1.1 Classification task

The dataset analyzed in this thesis is about a bike-sharing service, which requires
users to take the vehicle from certain locations all over the city called stations and
then, at the end of their trip, park it in another station (or also the same where
they had pick up the bike at the beginning). This type of services needs that the
owners of the digital platform are aware of when and where bikes could be useful,
and from this fundamental aspect depends the success of the application: indeed
for example, they have to avoid situations where a lot of users find out that all the
stations nearby them are unable to satisfy their demand, whereas other far stations
are full of bikes but without incoming requests.

To do so, there should be a planned routine of bike supply during the different
parts of the day, to understand where to pick up the vehicles and where to put
them and with which timing.
For this purpose, we decided to address the task of binary classification between a
critical condition associated to the reference station (such as the totality of docks
inside the station full of bikes, or instead the docks without the presence of vehicles)
and the absence of it (with the first case denoted as the positive class and the other
as the negative one). The data representation differs depending on the model that
we are using to classify.

33

Experimental section

Associative classifier

To appropriately take advantage of this classifier, we need to generate sequences
(as described in the Chapter 3) from the status dataset: the ones created from the
test partition will be used to be classified and to evaluate the performances of the
algorithm, while the ones from the train partition are the input for the Prefixspan
algorithm to execute the sequence mining and extract the patterns useful to assign
the class during the prediction stage. The selection of the rules adopted during the
classification works as follows:

• Application of the Prefixspan algorithm to perform the sequence mining task
over the status dataset. The extracted spatio-temporally invariant patterns
are then interpreted as our set of association rules by considering the body
rule as the time windows from the past, while the head rule is the time window
for which we want to perform the prediction of a critical condition for the
reference station (as explained in Chapter 2);

• Selection of the rules which contain at least one event associated to the
reference station and happened at the "instant zero";

• Filtering out the rule list according to the critical condition associated to the
reference station and happened at the "instant zero" that we are interested
in classifying (keep just the rules which contain it, and not having events of
interest happened in different stations);

• Setting of a minimum confidence threshold to select the rules that have a
certain "strength";

• Setting of a minimum support threshold in order to keep just a certain number
of rules (setting so an order of magnitude for the adopted rules).

So, we have to use an algorithm which is capable of extracting association rules
from such a database. Actually, to achieve this goal, we rely on an algorithm which
performs sequence mining to extract the spatio-temporal patterns of our interest,
and then we interpret them as association rules.
Since we want to predict a situation of criticality for a station based on the
conditions of its neighborhood during a predefined time horizon in the past, we
identify as body of the rule the set of events temporally localized in the past time
windows, while the head of the rule is identified as the set of events temporally
localized in the last time window (i.e. the time window for which we want to predict
a critical condition for a certain station).

Having done so, we classify one by one the sequences generated from the test
partition of the status dataset by looping through the obtained list of rules to
search for a certain number of rules (i.e. the minimum matching threshold that

34

Experimental section

we have set) which cover the analyzed instance. In other words, a sequence is
classified as belonging to the positive class if it contains a number of selected rules
greater or equal than the minimum matching threshold (so that they are subsets of
it, except for the "instant zero", which is the timeslot to be predicted and so we do
not look for pattern matching in that period). Instead, a sequence actually belongs
to the positive class if it contains the critical condition of interest associated to the
reference station at the "instant zero".

Other classifiers

To deploy classifiers such as Decision tree and Random forest, we need tabular
data with couples attribute-value. Our choice is to get them from the already
generated sequences from the status dataset (the ones used to extract the association
rules). So, the data representation will be different depending if the neighborhood
of the reference station is built in the radius or the incoming mode:

• Radius: the input data for the classification algorithms have a column for
each combination of event, station and time window as set by the parameters
Event_types, Spatial_steps and Temporal_steps of the sequence gener-
ation algorithm (except for the "instant zero", for which we just report the
class label, since we do not want to use features belonging to the same time
window of the class label for making predictions);

• Incoming: the input data for the classification algorithms have a column for
each combination of event and time window related to the reference station as
set by the parameters Event_types and Temporal_steps of the sequence
generation algorithm (except for the decrease event in case the positive class is
associated with the full condition), and a column for each time window related
to the whole neighborhood (reporting if there is at least one station belonging
to the neighborhood of the reference station which has been in the decrease
condition during that specific time window). Again, for the "instant zero", we
just report the class label, since we do not want to use features belonging to
the same time window of the class label for making predictions;

All these columns are of binary type, signaling if the situation represented by it has
occurred. Having done so, we classify one by one the sequences generated from the
test partition of the status dataset by applying the predictions performed by the
models trained on the training partition of the status dataset. Again, an instance
actually belongs to the positive class if it presents the critical condition of interest
associated to the reference station at the "instant zero".

35

Experimental section

4.1.2 Evaluation metrics
Here we revise the most commonly adopted metrics for the evaluation of a classifi-
cation task. As notation, we define:

• TP (True positives): the number of records which have been predicted to
belong to the positive class and that actually belong to that class;

• TN (True negatives): the number of records which have been predicted to
belong to the negative class and that actually belong to that class;

• FP (False positives): the number of records which have been predicted to
belong to the positive class, but actually belong to the other class;

• FN (False negatives): the number of records which have been predicted to
belong to the negative class, but actually belong to the other class;

In our case, we consider the critical event that happened in the reference station
as the positive class, while the absence of this type of event as the negative one.
Accuracy represents the proportion of correct predictions over all the ones that
the model has made, regardless of the class, and is given by:

A = TP + TN

TP + TN + FP + FN
(4.1)

Actually, in case of unbalanced datasets, we can get fooled by this metric because we
can get good scores simply performing very well on the majority class, since correct
predictions with respect to that class will have a higher weight in the formula: if
we have a strongly unbalanced dataset, we could even predict all samples to belong
to the majority class and still obtaining a value close to 1.
Precision represents the proportion of correct predictions with respect to a specific
class, and is given by (considering the positive class):

P (+) = TP

TP + FP
(4.2)

In our particular case, we can say that in principle we are more interested in
obtaining a high value for the positive class, since we do not want to abuse
interventions in stations that do not require them, wasting resources that would
have been much more useful in other locations.
Recall represents the proportion of correctly predicted samples over all the ones
actually belonging to that class, and is given by (considering the positive class):

R(+) = TP

TP + FN
(4.3)

36

Experimental section

In our particular case, we can say that in principle we are more interested in
obtaining a high value for the positive class, since we want to correctly detect the
sequences in which a critical event has happened in the reference station at the
"instant zero", limiting as much as possible to miss an intervention in a station in
critical status that needs it.
F1 score represents the harmonic mean between Precision and Recall for a more
balanced summarization of model performance., and is given by:

F1(+) = 2 P (+)R(+)
P (+) + R(+) (4.4)

The class-wise metrics can be aggregated in order to inspect the overall performance
of the classifier with respect to both the classes: we have the macro average, which
is simply the arithmetic mean of the metric values for the two classes, and the
weighted average, where each metric value is weighted by the proportion of that
class in the dataset. In our case, since we are dealing with an unbalanced dataset,
and we are more interested in the performance with respect to the minority class,
we prefer to consider the macro average since it does not give a higher weight to
the majority class and considers equally each class, regardless of the number of
samples that belong to it. In particular, for the hyperparameters tuning, we select
for each model the configuration which obtains the highest macro averaged F1
score and the configuration which obtains the highest macro averaged Precision
score over the validation partition.

An useful way to get an overview of the classifier performance is the so called
confusion matrix which allows to instantly spot the amount of TP, TF, FP, FN
and easily calculate the classification metrics. Following the convention for axes
adopted by the sklearn library, each entry Ci,j of the matrix represents the number
of records which have been predicted to be part of class j and actually belong to
class i: so we have C0,0 = TN, C1,0 = FN, C1,1 = TP and C0,1 = FP.

37

Experimental section

Figure 4.1: Example of a confusion matrix in case of binary classification.

4.1.3 Hyperparameters tuning
As it is known, classification models have a lot of hyperparameters (i.e. model
parameters which have to be set in advance and are not inferred by the training
procedure). The sklearn library sets a default value for each of them, but instead
of this naive approach, we can try to tune the value of some of them to detect
the model configuration that is more likely to perform better in predicting the
test set. The problem of hyperparameters tuning is that, if we directly assess
the performance of the various configurations with respect to the test set, we
could incur into overfitting towards the particular set that we are using for the
final evaluation, failing our objective to find a model capable of generalizing and
obtaining satisfactory results for each data instance of the task at hand.

To deal with this issue, we adopt a training procedure which consists in splitting
the training set to get a validation partition, and select the configuration of
hyperparameters that performs the best on it (with respect to the evaluation
metrics specified in the previous paragraph). Once we have selected it, we train the
algorithm on the totality of the training data (so on the training partition of the
status dataset as it was before performing the splitting into train and validation
partitions).

38

Experimental section

Decision tree

The hyperparameters grid search for the Decision tree algorithm involves parame-
ters which have an impact towards the construction process of the tree structure
used by this algorithm to classify the samples (i.e. determine whether in a certain
moment of the day, a certain station founds itself into a critical condition):

• The min_samples_split parameter, which is the minimum number of
samples required to split an internal node. Otherwise, the splitting process
involving the search of the optimal feature and optimal feature domain sub-
division for that particular algorithm step (in order to optimally partition
the feature space in which the data samples lie and so better isolate the two
typologies of class label) is stopped and the node simply becomes a terminal
node (i.e. a leaf).

• The criterion parameter, which is the index metric by which the building
tree algorithm decides what is the best split for that particular step of the
process.

The grid is composed as follows:

• min_samples_split: [0.02, 0.05, 0.1, 2, 10];

• criterion: [gini, entropy].

In addition to this hyperparameters grid search for the Decision tree algorithm,
we also fix the random_state parameter, which controls the randomness associated
with the construction of the tree diagram. Indeed, the splitter parameter (which
is the strategy used by the algorithm to choose the split at each node of the tree
diagram), can be set in two ways:

• Best, meaning that the splitting process involves the search of the opti-
mal feature and optimal feature domain subdivision (among the selected
max_features) for that particular algorithm step, in order to optimally parti-
tion the feature space in which the data samples lie and so better isolate the
two typologies of class label;

• Random, meaning that during the splitting process the algorithm loops
through the selected max_features and chooses a random threshold split for
the feature domain subdivision, in order to optimally partition the feature
space in which the data samples lie and so better isolate the two typologies of
class label.

39

Experimental section

Although we choose to set the splitter parameter to "best", the max_features are
always randomly permuted at each split, so introducing even in this case randomness
into the algorithm. As a consequence of this, in order to obtain a deterministic
behaviour during the fitting of the algorithm, random_state has to be fixed to an
integer number.

Having selected the best configuration, we show the achieved performances by
reporting the confusion matrix and the classification metrics.

Random forest

The hyperparameters grid search for the Random forest algorithm involves
parameters which have an impact on the construction process of each one of the
tree structures belonging to the ensemble used by this algorithm to classify the
samples (i.e. determine whether in a certain moment of the day, a certain station
founds itself into a critical condition), by taking the majority vote with respect to
the predictions made by each one of the tree structures belonging to the ensemble:

• The n_estimators parameter, which is the number of Decision trees that the
algorithm is going to build in order to then take the majority voting for the
predictions made by the ensemble, where a high number should improve the
model robustness;

• The min_samples_split parameter, which is the minimum number of
samples (belonging to each one of the different bootstrapped datasets extracted
from the train partition of the original status dataset used in the training
process of each one of the trees in our ensemble; i.e. we perform a random
sub-sampling of the training data with replacement, considering the records as
uniformly distributed) required to split an internal node (for each one of the
tree structures belonging to the ensemble). Otherwise, the splitting process
involving the search of the optimal feature (among the random selection of m
predictors that has been selected by the algorithm as split candidates from the
full set of p predictors, considered again as uniformly distributed, during the
building process of each one of the Decision trees belonging to the ensemble,
each time a split in a tree has to be considered) and optimal feature domain
subdivision for that particular algorithm step of the tree construction (in order
to optimally partition the feature space in which the data samples lie and so
better isolate the two typologies of class label) is stopped and the node of
that particular tree inside the ensemble simply becomes a terminal node (i.e.
a leaf).

• The criterion parameter, which is the index metric by which the algorithm
that builds each one of the Decision trees belonging to the ensemble decides

40

Experimental section

what is the best split for that particular step of the process.

The grid is composed as follows:

• n_estimators: [10, 50, 100, 150, 200];

• min_samples_split: [0.02, 0.05, 0.1, 2, 10];

• criterion: [gini, entropy].

In addition to this hyperparameters grid search for the Random forest algo-
rithm, we also fix the random_state parameter, which controls the randomness
associated with the construction of the ensemble of tree diagrams. Other than
the randomness brought by the splitter parameter (which is the strategy used by
the algorithm to choose the split at each node of each one of the tree diagrams
belonging to the ensemble, and incorporates randomness in both their possible
settings), there are other elements in this algorithm that put randomness in its
execution (i.e. the bootstrapping sampling procedure and the feature sampling
described in Chapter 2). As a consequence of this, in order to obtain a deterministic
behaviour during the fitting of the algorithm, random_state has to be fixed to an
integer number.

Having selected the best configuration, we show the achieved performances by
reporting the confusion matrix and the classification metrics.

4.1.4 Layout of the results
Here we explain how we want to report the carried experiments and the structure
and conventions for the tables of numerical results.

We use a paragraph for each typology of positive class label that we have used
for the classification task conducted by means of the various machine learning
algorithms (i.e. Associative classifier, Decision tree and Random forest), and in
a subparagraph we show the tables of numerical results for the specific value of
the Neighbor_types parameter, which determines the extraction of the spatio-
temporally invariant patterns and the data representation of the records to be
classified.

For the different machine learning algorithms, the tables of numerical results
report the following configurations:

41

Experimental section

• Associative classifier: we report the minimum confidence threshold associ-
ated with the spatio-temporally invariant patterns deployed for the classifica-
tion task, and the minimum support threshold to select only a certain number
of them. We also report the minimum matching threshold (i.e. the minimum
number of "valid" association rules to be found in order to predict a record to
belong to the positive class label);

• Decision tree, Random forest: we report the results obtained by these
algorithms with the default configuration of hyperparameters as set by the
sklearn library, and the results obtained by these algorithms with the optimal
configuration of hyperparameters as selected after the validation procedure
described in the subparagraph 4.1.3 over the evaluation metrics precision and
f1 score (considering their macro average).

So, in the table of numerical results, the convention for the columns is:

• A: the value of the accuracy metric achieved by each algorithm;

• P+: the value of the precision metric with respect to the positive class
achieved by each algorithm;

• P-: the value of the precision metric with respect to the negative class achieved
by each algorithm;

• R+: the value of the recall metric with respect to the positive class achieved
by each algorithm;

• R-: the value of the recall metric with respect to the negative class achieved
by each algorithm;

• F+: the value of the F1 score metric with respect to the positive class achieved
by each algorithm;

• F-: the value of the F1 score metric with respect to the negative class achieved
by each algorithm;

• TP: the quantity of true positives detected by each algorithm;

• TN: the quantity of true negatives detected by each algorithm;

• FP: the quantity of false positives detected by each algorithm;

• FN: the quantity of false negatives detected by each algorithm;

• ST: the minimum support threshold to select only a certain number of associ-
ation rules;

42

Experimental section

• CT: the minimum confidence threshold associated with the spatio-temporally
invariant patterns deployed for the classification task;

• #R: the quantity of association rules through which the classification algo-
rithm loops in order to find the necessary matchings to decide whether to
classify a record as belonging to the positive class label;

• TT: the value set for the TEMPORAL_THRESHOLD parameter;

• TZ: the time zone of the status and trip datasets analyzed by the algorithm
(i.e. a range of hours or the entire day time);

• Alg: the algorithm used to classify the records;

• Val: the evaluation metric considered during the validation procedure (i.e.
macro average of precision or f1 score);

• MT: the minimum number of "valid" association rules to be found in order to
predict a record to belong to the positive class label.

In addition to this, we report the most significant association rules (in terms of
confidence and support) extracted by the algorithm of spatio-temporally invariant
patterns mining, separately for each time zone (i.e. a range of hours or the entire
day time).

4.2 Positive class: Full condition
In this typology of experiment, we identify as positive class the case in which
the reference station has been in a Full condition during the "instant zero" (i.e.
the time window considered as reference during the generation of the sequences),
whereas as negative class the case in which this has not occurred.
The parameters for the associative classifier has been set as follows:

• Temporal_threshold: 60 minutes;

• Spatial_threshold: 100 kilometers;

• Temporal_steps: 6;

• Spatial_steps: 5;

• Support: 0;

• Max_patt_len: 6;

• Cities: San Francisco;

43

Experimental section

• Event_types: Almost_full and increase for the radius mode. Almost_full,
increase and decrease for the incoming one;

• Neighbor_type: Radius and incoming;

• Top_n: 5;

• Ignore_set: Increase for the radius mode, Increase and decrease for the
incoming one;

• Reproj_mode: Past;

• Absolute_mode: False.

For this experiment, we consider both full and almost_full as a unique condition.
We first train and test the algorithms on the totality of data, and then we do it
separately for timeslots of four hours during the whole day. We try different values
for the minimum thresholds of confidence, support and matching.

We also compare our results with a baseline, which in this case is an associative
classifier that only makes use of the simple association rule:

almost_full_S0_T − 1 =⇒ almost_full_S0_T0 (4.5)

In other words, if a certain station happens to be in an almost_full condition (i.e.
which represents the situation when the number of docks available is less or equal
than a certain threshold), we expect that same station to be in an almost_full
condition even for the next time window.
Even if it is a very simple and intuitive spatio-temporally invariant pattern, it
obtains very good results (among the best), showing that this is a very meaningful
pattern.

4.2.1 Neighbor_types: Radius
Here we show the results obtained by setting a Radius neighborhood for the
reference station (i.e. the neighborhood of the reference station will consist of all
the stations which are placed within Spatial_steps concentric circles of radius
Spatial_threshold).

Associative classifier

In Table 4.1 we see the results in terms of the value of evaluation metrics for the
classification task for the Associative classifier and the Baseline. When possible,
we also try to limit the list of the selected association rules to the ones which have

44

Experimental section

equal or higher confidence with respect to the one associated with the Baseline
rule. For the experiments related to the entire daytime, we also try to progressively
increase the number of selected rules until we include the Baseline rule.

Table 4.1: Radius mode, Associative classifier, Metrics

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 6e-3 0.6 6 60 00-03 A 1
98.2 98.1 98.2 73.5 99.9 84.0 99.1 6e-3 0.6 20 60 00-03 A 1
98.3 98.6 98.2 73.5 99.9 84.2 99.1 \ \ 0 60 00-03 B 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 6e-3 0.6 1 60 04-07 A 1
91.2 55.7 94.4 47.1 96.0 51.0 95.2 6e-3 0.6 20 60 04-07 A 1
92.2 64.6 94.3 45.4 97.3 53.3 95.8 \ \ 0 60 04-07 B 0
93.7 60.7 95.3 38.0 98.1 46.7 96.7 1e-2 0.6 20 60 08-11 A 1
93.7 58.4 95.8 45.9 97.4 51.4 96.6 \ \ 0 60 08-11 B 0
94.2 61.6 95.9 42.9 98.0 50.6 96.9 8e-3 0.6 20 60 12-15 A 1
94.2 61.6 95.9 42.9 98.0 50.6 96.9 \ \ 0 60 12-15 B 0
93.3 62.3 95.6 50.8 97.2 56.0 96.4 1e-2 0.6 20 60 16-19 A 1
93.3 62.3 95.6 50.8 97.2 56.0 96.4 \ \ 0 60 16-19 B 0
97.4 86.9 98.0 69.0 99.3 76.9 98.6 8e-3 0.6 20 60 20-23 A 1
97.7 91.9 97.9 68.5 99.6 78.5 98.8 \ \ 0 60 20-23 B 0
94.5 79.6 95.0 35.0 99.3 48.6 97.1 2e-2 0.6 1 60 all_day A 1
94.7 76.3 95.5 42.5 98.9 54.6 97.2 2e-2 0.6 2 60 all_day A 1
94.8 76.2 95.6 43.1 98.9 55.1 97.2 2e-2 0.6 3 60 all_day A 1
94.9 71.5 96.3 53.7 98.3 61.3 97.3 2e-2 0.6 4 60 all_day A 1
95.4 71.4 97.1 63.7 97.9 67.4 97.5 2e-2 0.6 5 60 all_day A 1
95.7 71.3 97.7 71.3 97.7 71.3 97.7 2e-2 0.6 6 60 all_day A 1
95.0 64.4 97.8 72.4 96.8 68.2 97.3 2e-2 0.6 20 60 all_day A 1
95.7 71.3 97.7 71.3 97.7 71.3 97.7 \ \ 0 60 all_day B 0

In Table 4.2 we can also see the results in terms of the number of samples which
are correctly classified or not in both classes.

Table 4.2: Radius mode, Associative classifier, Confusion matrix

TP TN FP FN ST CT #R TT TZ Alg MT
1571 31809 22 567 6e-3 0.6 6 60 00-03 A 1
1571 31800 31 567 6e-3 0.6 20 60 00-03 A 1
1571 31809 22 567 \ \ 0 60 00-03 B 0
1507 29826 825 1812 6e-3 0.6 1 60 04-07 A 1
1562 29410 1241 1757 6e-3 0.6 20 60 04-07 A 1

45

Experimental section

1507 29826 825 1812 \ \ 0 60 04-07 B 0
933 30874 605 1523 1e-2 0.6 20 60 08-11 A 1
1127 30675 804 1329 \ \ 0 60 08-11 B 0
1007 30992 627 1339 8e-3 0.6 20 60 12-15 A 1
1007 30992 627 1339 \ \ 0 60 12-15 B 0
1443 30291 873 1398 1e-2 0.6 20 60 16-19 A 1
1443 30291 873 1398 \ \ 0 60 16-19 B 0
1456 31604 220 654 8e-3 0.6 20 60 20-23 A 1
1445 31696 128 665 \ \ 0 60 20-23 B 0
5325 187207 1361 9885 2e-2 0.6 1 60 all_day A 1
6464 186563 2005 8746 2e-2 0.6 2 60 all_day A 1
6560 186521 2047 8650 2e-2 0.6 3 60 all_day A 1
8169 185304 3264 7041 2e-2 0.6 4 60 all_day A 1
9692 184693 3875 5518 2e-2 0.6 5 60 all_day A 1
10840 184212 4356 4370 2e-2 0.6 6 60 all_day A 1
11017 182485 6083 4193 2e-2 0.6 20 60 all_day A 1
10840 184212 4356 4370 \ \ 0 60 all_day B 0

As we could expect, given the fact that we are dealing with an unbalanced
dataset, we see that the better performances are in general with respect to the
negative class, which is the majority one. This is caused by the intrinsic nature
of the data that we have to classify, since of course the situations during the day
in which a station is not in a critical condition are considerably higher than the
critical ones (especially if we also take the "normal" time windows for which no
event of interest happens in the reference station into consideration). With this
data distribution, algorithms are less exposed to samples belonging to the positive
class, and so they have greater difficulties in classifying correctly this class. In
the case of the associative classifier, our sequential dataset contains less examples
of sequences belonging to the positive class, and so it is more difficult to extract
patterns of a certain "strength" related to the detection of that class.

We can see that the worst performing metric with respect to the positive class
is the recall, so this typology of classifiers encounters difficulties in assigning the
samples belonging to the positive class to the correct one, as made evident by
the general trend of a higher number of false negatives with respect to the false
positives. In other words, it is more frequent to predict a positive sample to belong
to the negative class instead of predicting a negative sample to belong to the
positive class. This fact can be explained by the unbalanced data distribution
that is the reason why the sequential data mining algorithm has more difficulties
in extracting spatio-temporally invariant patterns useful for the detection of the

46

Experimental section

positive class: given this situation, it is easier for the classification algorithm to
"miss" the matching between a sequence and the association rule than to wrongly
find a match.
So, it is more probable that when a match is "triggered" the algorithm is going to
classify a sequence belonging to the positive class, since the training data contain
less samples belonging to that class and so the associated extracted patterns are
more "specific" and less present in the general data population. Anyway, as we can
see by the trend followed by the experiments which cover the entire daytime, as we
take an increasing amount of association rules into consideration, we experience an
increasing value of the recall metric and a decreasing value of the precision one with
respect to the positive class. Intuitively, the availability of a higher number of rules
allows the classification algorithm to reduce the possibilities of missing the matches
between a sequence and a rule, and so to improve the recall; at the same time,
such a situation affects negatively the precision since the classification algorithm
takes into account rules of decreasing "strength" in terms of confidence and support,
resulting in more match triggers and so a higher number of false positives (i.e. more
predictions of positive class associated with sequences that belong to the negative
one). This behaviour can be mitigated by raising the threshold of matching: since to
"confirm" a prediction associated with the positive class the classification algorithm
needs to find multiple matches between a sequence and the rules, the precision is
increased because the algorithm is "wiser" in its decision of predicting the positive
class; on the other hand, the recall is decreased because the criteria for a sequence
to be classified as belonging to the positive class are stricter.

Subdividing the data into time zones, we can see drastic variations in terms of
performances.
If we limit the classification task over the night hours (time zones 00-03 and
20-23), we can notice that the algorithm performs better than the other ones,
and even with respect to the entire daytime. We can deduce that the sequential
data mining algorithm is more capable of extracting meaningful spatio-temporally
invariant patterns from these data, characterized by a more "predictable" bike
traffic with respect to the one of the time zones of the morning and the afternoon.
We can imagine that during the night the number of users is limited as well as the
itineraries of the trips, while during the day there is much more variety of usage of
the bike-sharing service.

Looking at the results obtained by the Baseline classifier, we see that for the
time zone data it obtains in general the best results (except for 08-11 and 20-23),
showing that the simple pattern of the permanence of the critical condition from a
time window to the next one is simple but effective and among the most "reliable"
ones.

47

Experimental section

Other classifiers

In Table 4.3 we see the results in terms of the value of evaluation metrics for the
classification task for the Decision tree and the Random forest. For each time zone,
we report the results obtained by the algorithms with the default configuration of
hyperparameters and with the configurations optimized over the evaluation metrics
mentioned in Paragraph 4.1.2 by means of the validation process illustrated in
Paragraph 4.1.3.

Table 4.3: Radius mode, Other classifiers, Metrics

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F F1 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F \ 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T F1 0
98.3 98.7 98.2 73.3 99.9 84.1 99.1 0 60 00-03 T \ 0
91.5 63.0 93.0 31.4 98.0 41.9 95.4 0 60 04-07 F P 0
92.0 63.7 93.9 41.1 97.5 50.0 95.6 0 60 04-07 F F1 0
92.0 63.7 93.9 41.0 97.5 49.9 95.6 0 60 04-07 F \ 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T P 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T F1 0
91.9 62.7 93.8 41.0 97.4 49.6 95.6 0 60 04-07 T \ 0
92.8 42.9 92.8 0.4 99.9 0.7 96.2 0 60 08-11 F P 0
93.6 60.6 94.9 31.9 98.4 41.8 96.6 0 60 08-11 F F1 0
93.4 58.3 94.8 31.3 98.3 40.7 96.5 0 60 08-11 F \ 0
93.7 58.6 95.8 45.4 97.5 51.2 96.6 0 60 08-11 T P 0
93.7 58.4 95.8 45.9 97.4 51.4 96.6 0 60 08-11 T F1 0
93.2 55.2 94.8 31.5 98.0 40.1 96.4 0 60 08-11 T \ 0
93.4 67.7 93.7 9.0 99.7 15.8 96.6 0 60 12-15 F P 0
94.0 60.9 95.5 37.7 98.2 46.6 96.8 0 60 12-15 F F1 0
93.9 60.3 95.4 35.8 98.3 44.9 96.8 0 60 12-15 F \ 0
94.2 61.6 95.9 42.9 98.0 50.6 96.9 0 60 12-15 T P 0
94.2 61.6 95.9 42.9 98.0 50.6 96.9 0 60 12-15 T F1 0
93.7 58.3 95.2 33.4 98.2 42.5 96.7 0 60 12-15 T \ 0
92.0 68.6 92.2 7.1 99.7 12.8 95.8 0 60 16-19 F P 0
93.0 62.1 94.8 41.3 97.7 49.6 96.2 0 60 16-19 F F1 0
93.0 61.9 94.8 40.8 97.7 49.2 96.2 0 60 16-19 F \ 0
92.9 61.4 94.7 39.4 97.7 48.0 96.2 0 60 16-19 T P 0
93.3 62.3 95.6 50.8 97.2 56.0 96.4 0 60 16-19 T F1 0

48

Experimental section

92.7 60.3 94.6 38.3 97.7 46.9 96.1 0 60 16-19 T \ 0
96.9 92.8 97.0 54.0 99.7 68.3 98.4 0 60 20-23 F P 0
97.6 92.1 97.8 66.4 99.6 77.2 98.7 0 60 20-23 F F1 0
97.5 91.8 97.7 65.4 99.6 76.4 98.7 0 60 20-23 F \ 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T P 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T F1 0
97.4 91.5 97.6 63.5 99.6 75.0 98.6 0 60 20-23 T \ 0
93.0 83.9 93.0 7.4 99.9 13.6 96.3 0 60 all_day F P 0
95.7 73.7 97.3 65.8 98.1 69.5 97.7 0 60 all_day F F1 0
95.4 72.4 97.0 62.9 98.1 67.3 97.6 0 60 all_day F \ 0
95.7 71.3 97.7 71.3 97.7 71.3 97.7 0 60 all_day T P 0
95.7 71.3 97.7 71.3 97.7 71.3 97.7 0 60 all_day T F1 0
94.4 64.3 96.6 56.9 97.4 60.4 97.0 0 60 all_day T \ 0

In Table 4.4 we can also see the results in terms of the number of samples which
are correctly classified or not in both classes.

Table 4.4: Radius mode, Other classifiers, Confusion matrix

TP TN FP FN #R TT TZ Alg Val MT
1571 31809 22 567 0 60 00-03 F P 0
1571 31809 22 567 0 60 00-03 F F1 0
1571 31809 22 567 0 60 00-03 F \ 0
1571 31809 22 567 0 60 00-03 T P 0
1571 31809 22 567 0 60 00-03 T F1 0
1568 31810 21 570 0 60 00-03 T \ 0
1043 30039 612 2276 0 60 04-07 F P 0
1364 29874 777 1955 0 60 04-07 F F1 0
1362 29874 777 1957 0 60 04-07 F \ 0
1507 29826 825 1812 0 60 04-07 T P 0
1507 29826 825 1812 0 60 04-07 T F1 0
1361 29841 810 1958 0 60 04-07 T \ 0

9 31467 12 2447 0 60 08-11 F P 0
784 30970 509 1672 0 60 08-11 F F1 0
768 30930 549 1688 0 60 08-11 F \ 0
1115 30691 788 1341 0 60 08-11 T P 0
1127 30675 804 1329 0 60 08-11 T F1 0
773 30851 628 1683 0 60 08-11 T \ 0
210 31519 100 2136 0 60 12-15 F P 0
884 31052 567 1462 0 60 12-15 F F1 0

49

Experimental section

840 31066 553 1506 0 60 12-15 F \ 0
1007 30992 627 1339 0 60 12-15 T P 0
1007 30992 627 1339 0 60 12-15 T F1 0
783 31059 560 1563 0 60 12-15 T \ 0
201 31072 92 2640 0 60 16-19 F P 0
1174 30447 717 1667 0 60 16-19 F F1 0
1160 30450 714 1681 0 60 16-19 F \ 0
1120 30461 703 1721 0 60 16-19 T P 0
1443 30291 873 1398 0 60 16-19 T F1 0
1089 30446 718 1752 0 60 16-19 T \ 0
1140 31736 88 970 0 60 20-23 F P 0
1402 31704 120 708 0 60 20-23 F F1 0
1379 31701 123 731 0 60 20-23 F \ 0
1445 31696 128 665 0 60 20-23 T P 0
1445 31696 128 665 0 60 20-23 T F1 0
1340 31700 124 770 0 60 20-23 T \ 0
1128 188351 217 14082 0 60 all_day F P 0
10014 184994 3574 5196 0 60 all_day F F1 0
9569 184927 3641 5641 0 60 all_day F \ 0
10840 184212 4356 4370 0 60 all_day T P 0
10840 184212 4356 4370 0 60 all_day T F1 0
8657 183752 4816 6553 0 60 all_day T \ 0

As we could expect, given the fact that we are dealing with an unbalanced
dataset, we see that the better performances are in general with respect to the
negative class, which is the majority one, also deploying these more traditional
classifiers. In the case of the Decision tree and the Random forest, with this
data distribution the algorithms are less exposed to samples belonging to the
positive class, and so they have greater difficulties in classifying correctly this class.
Specifically, these algorithms encounter difficulties with the construction of paths
inside the tree diagrams which end with leaves that allow for the prediction of the
minority class: indeed, it is hard for the algorithm to find the distinctive features
that allow to "isolate" these samples inside the feature space where they lie.

We can see that the worst performing metric with respect to the positive class is
again the recall, so also this typology of classifiers encounters difficulties in assigning
the samples belonging to the positive class to the correct one, as made evident by
the general trend of a higher number of false negatives with respect to the false
positives. This fact can be explained by the unbalanced data distribution that is
the same reason why the sequential data mining algorithm has more difficulties

50

Experimental section

in extracting spatio-temporally invariant patterns useful for the detection of the
positive class (the data representation is a binary version of the sequences processed
by the associative classifier). In a similar fashion to what happens with the
associative classifier, since we have less paths inside the tree diagrams which lead
to a prediction of positive class, it is easier for the classification algorithm to "miss"
the detection of a sample belonging to the positive class than to wrongly assign a
prediction of positive class. So, it is more probable that when a sample walks a
path which ends with a leaf predicting the positive class the algorithm is going to
classify a sequence actually belonging to the positive class, since the training data
contain less samples belonging to that class and so the associated extracted traits
contained along the path are more "specific" and less present in the general data
population.

Subdividing the data into time zones, we can see drastic variations in terms of
performances.
If we look at the 08-11, 12-15, 16-19 time zones and at the whole daytime, we
can notice that the Random forest set with the configuration of hyperparameters
optimized over the precision metric gets very low results in terms of the recall
metric with respect to the positive class. In these situations, we see that the
achievement of better performances in terms of precision is correlated with very
bad performances in terms of recall: the algorithm is "wiser" in its predictions but
it misses the detection of a lot of samples belonging to the positive class. This
phenomenon is not as much present in the Decision tree algorithm, showing to
us that optimizing precision in a single tree diagram has a negligible impact on
the recall, whereas doing it for an ensemble exacerbates the gap between the two
metrics. Intuitively, spreading this optimization over multiple diagram trees causes
an increasing distance between the two metrics since the compromise between the
two is iterated many times.
If we limit the classification task over the night hours (time zones 00-03 and 20-23),
we can notice that the algorithm performs better than the other ones, and even
with respect to the entire daytime. As we have noticed by means of the experiments
related to the associative classifier, these time zones are characterized by a more
"predictable" bike traffic with respect to the one of the time zones of the morning
and the afternoon, and so that is reflected in the obtained results.

00-03

We report the best results obtained in the 00-03 time zone, according to the
precision metric with respect to the positive class.

Table 4.5: Radius mode, Associative classifier, Best

51

Experimental section

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 6e-3 0.6 6 60 00-03 A 1
98.3 98.6 98.2 73.5 99.9 84.2 99.1 \ \ 0 60 00-03 B 0

Table 4.6: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
98.3 98.7 98.2 73.3 99.9 84.1 99.1 0 60 00-03 T \ 0

For this time zone, we see that perform best the associative classifier keeping just
the rules with confidence equal or higher than the baseline (together with the baseline
model) and the decision tree with the default configuration of hyperparameters.
We observe that the performances are very similar, with a slight prevalence of the
Decision tree for what concerns the precision and of the Associative classifier for
what concerns the recall.

04-07

We report the best results obtained in the 04-07 time zone, according to the
precision metric with respect to the positive class.

Table 4.7: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
92.2 64.6 94.3 45.4 97.3 53.3 95.8 \ \ 0 60 04-07 B 0

Table 4.8: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T P 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T F1 0

For this time zone, we see that performs best the baseline model and the decision
tree with configuration of hyperparameters optimized towards precision and F1
score. We observe that all the reported models obtain almost equal performances.

08-11

We report the best results obtained in the 08-11 time zone, according to the
precision metric with respect to the positive class.

52

Experimental section

Table 4.9: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
93.7 60.7 95.3 38.0 98.1 46.7 96.7 1e-2 0.6 20 60 08-11 A 1

Table 4.10: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
93.6 60.6 94.9 31.9 98.4 41.8 96.6 0 60 08-11 F F1 0

For this time zone, we see that perform best the associative classifier and the
random forest with configuration of hyperparameters optimized towards the F1
score. We observe that the performances are very similar for what concerns the
precision (with a slight prevalence of the Associative classifier), while there is a
larger gap for what concerns the recall (still in favour of the Associative classifier).

12-15

We report the best results obtained in the 12-15 time zone, according to the
precision metric with respect to the positive class.

Table 4.11: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
94.2 61.6 95.9 42.9 98.0 50.6 96.9 8e-3 0.6 20 60 12-15 A 1
94.2 61.6 95.9 42.9 98.0 50.6 96.9 \ \ 0 60 12-15 B 0

Table 4.12: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
93.4 67.7 93.7 9.0 99.7 15.8 96.6 0 60 12-15 F P 0

For this time zone, we see that perform best the associative classifier together
with the baseline model and the random forest with configuration of hyperparame-
ters optimized towards the precision. We observe that the performances have a bit
of gap for what concerns the precision (with a prevalence of the Random forest),
while there is a huge gap for what concerns the recall (instead in favour of the
Associative classifier, together with the Baseline model).

53

Experimental section

16-19

We report the best results obtained in the 16-19 time zone, according to the
precision metric with respect to the positive class.

Table 4.13: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
93.3 62.3 95.6 50.8 97.2 56.0 96.4 1e-2 0.6 20 60 16-19 A 1
93.3 62.3 95.6 50.8 97.2 56.0 96.4 \ \ 0 60 16-19 B 0

Table 4.14: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
92.0 68.6 92.2 7.1 99.7 12.8 95.8 0 60 16-19 F P 0

For this time zone, we see that perform best the associative classifier together
with the baseline model and the random forest with configuration of hyperparame-
ters optimized towards the precision. Like the 12-15 time zone, we observe that the
performances have a bit of gap for what concerns the precision (with a prevalence of
the Random forest), while there is a huge gap for what concerns the recall (instead
in favour of the Associative classifier, together with the Baseline model).

20-23

We report the best results obtained in the 20-23 time zone, according to the
precision metric with respect to the positive class.

Table 4.15: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
97.7 91.9 97.9 68.5 99.6 78.5 98.8 \ \ 0 60 20-23 B 0

Table 4.16: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
96.9 92.8 97.0 54.0 99.7 68.3 98.4 0 60 20-23 F P 0

For this time zone, we see that perform best the baseline model and the random
forest with configuration of hyperparameters optimized towards the precision. We
observe that the performances are similar for what concerns the precision (with a
prevalence of the Random forest), while there is a bit of gap for what concerns the
recall (instead in favour of the the Baseline model).

54

Experimental section

All day

We report the best results obtained in the whole daytime, according to the precision
metric with respect to the positive class.

Table 4.17: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
94.5 79.6 95.0 35.0 99.3 48.6 97.1 2e-2 0.6 1 60 all_day A 1

Table 4.18: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
93.0 83.9 93.0 7.4 99.9 13.6 96.3 0 60 all_day F P 0

For this time zone, we see that perform best the associative classifier keeping
just the top rule in terms of confidence and the random forest with configuration
of hyperparameters optimized towards the precision. We observe that the perfor-
mances are a bit different for what concerns the precision (with a prevalence of the
Random forest), while there is a huge gap for what concerns the recall (instead in
favour of the the Associative classifier).

4.2.2 Neighbor_types: Incoming
Here we show the results obtained by setting an Incoming neighborhood for the
reference station (i.e. the neighborhood of the reference station will consist of the
Top_n stations which have the highest number of records into the trip dataset).

Associative classifier

In Table 4.19 we see the results in terms of the value of evaluation metrics for the
classification task for the Associative classifier and the Baseline. When possible,
we also try to limit the list of the selected association rules to the ones which have
equal or higher confidence with respect to the one associated with the Baseline
rule. For the experiments related to the entire daytime, we also try to progressively
increase the number of selected rules until we include the Baseline rule.

Table 4.19: Incoming mode, Associative classifier, Metrics

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 6e-3 0.6 7 60 00-03 A 1
98.2 98.1 98.2 73.5 99.9 84.0 99.1 6e-3 0.6 20 60 00-03 A 1

55

Experimental section

98.3 98.6 98.2 73.5 99.9 84.2 99.1 \ \ 0 60 00-03 B 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 7e-3 0.6 1 60 04-07 A 1
91.2 55.7 94.4 47.1 96.0 51.0 95.2 7e-3 0.6 20 60 04-07 A 1
92.2 64.6 94.3 45.4 97.3 53.3 95.8 \ \ 0 60 04-07 B 0
93.6 59.7 95.2 36.6 98.1 45.3 96.6 8e-3 0.6 20 60 08-11 A 1
93.7 58.4 95.8 45.9 97.4 51.4 96.6 \ \ 0 60 08-11 B 0
94.2 61.6 95.9 42.9 98.0 50.6 96.9 8e-3 0.6 20 60 12-15 A 1
94.2 61.6 95.9 42.9 98.0 50.6 96.9 \ \ 0 60 12-15 B 0
93.3 62.3 95.6 50.8 97.2 56.0 96.4 1e-2 0.6 20 60 16-19 A 1
93.3 62.3 95.6 50.8 97.2 56.0 96.4 \ \ 0 60 16-19 B 0
97.4 86.9 98.0 69.0 99.3 76.9 98.6 1e-2 0.6 20 60 20-23 A 1
97.7 91.9 97.9 68.5 99.6 78.5 98.8 \ \ 0 60 20-23 B 0
94.5 79.6 95.0 35.0 99.3 48.6 97.1 2e-2 0.6 1 60 all_day A 1
94.7 76.3 95.5 42.5 98.9 54.6 97.2 2e-2 0.6 2 60 all_day A 1
94.8 76.2 95.6 43.1 98.9 55.1 97.2 2e-2 0.6 3 60 all_day A 1
94.9 71.5 96.3 53.7 98.3 61.3 97.3 2e-2 0.6 4 60 all_day A 1
95.4 71.4 97.1 63.7 97.9 67.4 97.5 2e-2 0.6 5 60 all_day A 1
95.7 71.3 97.7 71.3 97.7 71.3 97.7 2e-2 0.6 6 60 all_day A 1
95.0 64.4 97.8 72.4 96.8 68.2 97.3 2e-2 0.6 20 60 all_day A 1
95.7 71.3 97.7 71.3 97.7 71.3 97.7 \ \ 0 60 all_day B 0

In Table 4.20 we can also see the results in terms of the number of samples
which are correctly classified or not in both classes.

Table 4.20: Incoming mode, Associative classifier, Confusion matrix

TP TN FP FN ST CT #R TT TZ Alg MT
1571 31809 22 567 6e-3 0.6 7 60 00-03 A 1
1571 31800 31 567 6e-3 0.6 20 60 00-03 A 1
1571 31809 22 567 \ \ 0 60 00-03 B 0
1507 29826 825 1812 7e-3 0.6 1 60 04-07 A 1
1562 29410 1241 1757 7e-3 0.6 20 60 04-07 A 1
1507 29826 825 1812 \ \ 0 60 04-07 B 0
898 30872 607 1558 8e-3 0.6 20 60 08-11 A 1
1127 30675 804 1329 \ \ 0 60 08-11 B 0
1007 30992 627 1339 8e-3 0.6 20 60 12-15 A 1
1007 30992 627 1339 \ \ 0 60 12-15 B 0
1443 30291 873 1398 1e-2 0.6 20 60 16-19 A 1
1443 30291 873 1398 \ \ 0 60 16-19 B 0

56

Experimental section

1456 31604 220 654 1e-2 0.6 20 60 20-23 A 1
1445 31696 128 665 \ \ 0 60 20-23 B 0
5325 187207 1361 9885 2e-2 0.6 1 60 all_day A 1
6464 186563 2005 8746 2e-2 0.6 2 60 all_day A 1
6560 186521 2047 8650 2e-2 0.6 3 60 all_day A 1
8169 185304 3264 7041 2e-2 0.6 4 60 all_day A 1
9692 184693 3875 5518 2e-2 0.6 5 60 all_day A 1
10840 184212 4356 4370 2e-2 0.6 6 60 all_day A 1
11017 182485 6083 4193 2e-2 0.6 20 60 all_day A 1
10840 184212 4356 4370 \ \ 0 60 all_day B 0

We can make observations similar to what we have seen in the experiments
related to the radius mode.
Setting this amount of association rules, we end up selecting the same spatio-
temporally invariant patterns, which are associated with the reference station:
we can then deduce that this typology of patterns are the most robust in both
modalities. Thinking about the neighborhood composition of this modality, there
is a wide range of distances from the reference station at which the neighbors are
located, resulting in an increased difficulty for the sequential data mining algorithm
to extract patterns related to the neighbors.

Other classifiers

In Table 4.21 we see the results in terms of the value of evaluation metrics for the
classification task for the Decision tree and the Random forest. For each time zone,
we report the results obtained by the algorithms with the default configuration of
hyperparameters and with the configurations optimized over the evaluation metrics
mentioned in Paragraph 4.1.2 by means of the validation process illustrated in
Paragraph 4.1.3.

Table 4.21: Incoming mode, Other classifiers, Metrics

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F F1 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F \ 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T F1 0
98.3 98.6 98.2 73.3 99.9 84.1 99.1 0 60 00-03 T \ 0
91.7 63.6 93.3 34.9 97.8 45.1 95.5 0 60 04-07 F P 0

57

Experimental section

92.4 66.5 94.1 44.0 97.6 53.0 95.8 0 60 04-07 F F1 0
92.3 65.8 94.2 44.1 97.5 52.8 95.8 0 60 04-07 F \ 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T P 0
92.2 64.6 94.3 45.4 97.3 53.3 95.8 0 60 04-07 T F1 0
92.3 66.3 94.1 44.0 97.6 52.9 95.8 0 60 04-07 T \ 0
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 F P 0
93.6 60.7 94.9 32.5 98.4 42.3 96.6 0 60 08-11 F F1 0
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 F \ 0
93.7 60.1 95.3 38.3 98.0 46.8 96.6 0 60 08-11 T P 0
93.7 58.4 95.8 45.9 97.4 51.4 96.6 0 60 08-11 T F1 0
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 T \ 0
94.1 63.2 95.3 34.6 98.5 44.7 96.9 0 60 12-15 F P 0
94.2 61.5 95.8 42.6 98.0 50.3 96.9 0 60 12-15 F F1 0
94.2 61.5 95.8 42.7 98.0 50.4 96.9 0 60 12-15 F \ 0
94.2 62.0 95.8 42.3 98.1 50.3 96.9 0 60 12-15 T P 0
94.2 61.6 95.9 42.9 98.0 50.6 96.9 0 60 12-15 T F1 0
94.2 62.0 95.8 42.3 98.1 50.3 96.9 0 60 12-15 T \ 0
92.7 66.9 93.5 24.5 98.9 35.9 96.1 0 60 16-19 F P 0
93.2 64.4 94.7 40.4 98.0 49.7 96.3 0 60 16-19 F F1 0
93.4 63.3 95.4 48.5 97.4 54.9 96.4 0 60 16-19 F \ 0
93.4 63.8 95.3 47.6 97.5 54.5 96.4 0 60 16-19 T P 0
93.3 64.0 95.2 45.4 97.7 53.1 96.4 0 60 16-19 T F1 0
93.4 63.8 95.3 47.6 97.5 54.5 96.4 0 60 16-19 T \ 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F P 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F F1 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F \ 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T P 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T F1 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 T \ 0
95.7 72.4 97.5 68.5 97.9 70.4 97.7 0 60 all_day F P 0
95.7 71.3 97.7 71.2 97.7 71.3 97.7 0 60 all_day F F1 0
95.7 72.4 97.5 68.4 97.9 70.3 97.7 0 60 all_day F \ 0
95.7 72.3 97.4 68.1 97.9 70.2 97.7 0 60 all_day T P 0
95.7 71.3 97.7 71.3 97.7 71.3 97.7 0 60 all_day T F1 0
95.7 72.3 97.4 68.1 97.9 70.1 97.7 0 60 all_day T \ 0

In Table 4.22 we can also see the results in terms of the number of samples
which are correctly classified or not in both classes.

58

Experimental section

Table 4.22: Incoming mode, Other classifiers, Confusion matrix

TP TN FP FN #R TT TZ Alg Val MT
1571 31809 22 567 0 60 00-03 F P 0
1571 31809 22 567 0 60 00-03 F F1 0
1571 31809 22 567 0 60 00-03 F \ 0
1571 31809 22 567 0 60 00-03 T P 0
1571 31809 22 567 0 60 00-03 T F1 0
1568 31809 22 570 0 60 00-03 T \ 0
1159 29987 664 2160 0 60 04-07 F P 0
1460 29916 735 1859 0 60 04-07 F F1 0
1465 29890 761 1854 0 60 04-07 F \ 0
1507 29826 825 1812 0 60 04-07 T P 0
1507 29826 825 1812 0 60 04-07 T F1 0
1460 29909 742 1859 0 60 04-07 T \ 0
859 30929 550 1597 0 60 08-11 F P 0
798 30963 516 1658 0 60 08-11 F F1 0
859 30929 550 1597 0 60 08-11 F \ 0
940 30855 624 1516 0 60 08-11 T P 0
1127 30675 804 1329 0 60 08-11 T F1 0
859 30929 550 1597 0 60 08-11 T \ 0
811 31146 473 1535 0 60 12-15 F P 0
999 30993 626 1347 0 60 12-15 F F1 0
1001 30993 626 1345 0 60 12-15 F \ 0
993 31011 608 1353 0 60 12-15 T P 0
1007 30992 627 1339 0 60 12-15 T F1 0
993 31011 608 1353 0 60 12-15 T \ 0
696 30819 345 2145 0 60 16-19 F P 0
1149 30530 634 1692 0 60 16-19 F F1 0
1377 30367 797 1464 0 60 16-19 F \ 0
1351 30397 767 1490 0 60 16-19 T P 0
1291 30437 727 1550 0 60 16-19 T F1 0
1351 30397 767 1490 0 60 16-19 T \ 0
1443 31696 128 667 0 60 20-23 F P 0
1443 31696 128 667 0 60 20-23 F F1 0
1443 31696 128 667 0 60 20-23 F \ 0
1445 31696 128 665 0 60 20-23 T P 0
1445 31696 128 665 0 60 20-23 T F1 0
1443 31696 128 667 0 60 20-23 T \ 0
10415 184591 3977 4795 0 60 all_day F P 0

59

Experimental section

10832 184215 4353 4378 0 60 all_day F F1 0
10402 184597 3971 4808 0 60 all_day F \ 0
10364 184595 3973 4846 0 60 all_day T P 0
10840 184212 4356 4370 0 60 all_day T F1 0
10358 184592 3976 4852 0 60 all_day T \ 0

As for the radius modality, given the fact that we are dealing with an unbalanced
dataset, we see that the better performances are in general with respect to the
negative class, which is the majority one, also deploying these more traditional
classifiers.

We can see that the worst performing metric with respect to the positive class
is again the recall, so also in this modality this typology of classifiers encounters
difficulties in assigning the samples belonging to the positive class to the correct
one, as made evident by the general trend of a higher number of false negatives
with respect to the false positives.

Subdividing the data into time zones, we can see drastic variations in terms of
performances.
If we look at the 08-11, 12-15, 16-19 time zones and at the whole daytime, we can
notice now that the Random forest set with the configuration of hyperparameters
optimized over the precision metric does not get anymore very low results in terms
of the recall metric with respect to the positive class, as opposed to the situation
in the radius modality, so it seems that the gap between precision and recall is not
as much exacerbated in this modality.
If we limit the classification task over the night hours (time zones 00-03 and 20-23),
we can again notice that the algorithm performs better than the other ones, and
even with respect to the entire daytime.

Comparing the two modalities, we can notice slightly better performances of
the incoming modality with respect to the radius one, and this could be caused by
a more effective data representation for this modality.
Indeed, for the radius modality we have a column for each combination of event,
station and time window; instead, for the incoming modality, we just have a single
column which represent the whole neighborhood for each time window, signalling if
at least one of the stations belonging to the neighborhood of the reference station
is in a decrease state. In this way, we limit the number of features as opposed to
the phenomenon of the curse of dimensionality, since usually a higher number of
features leads to more complex models which fail to generalize to data not seen
during the training process. The single column to represent the whole neighborhood

60

Experimental section

within a certain time window seems to be a more distinctive feature with respect
to represent the condition of each neighbor separately.

00-03

We report the best results obtained in the 00-03 time zone, according to the
precision metric with respect to the positive class.

Table 4.23: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 6e-3 0.6 6 60 00-03 A 1
98.3 98.6 98.2 73.5 99.9 84.2 99.1 \ \ 0 60 00-03 B 0

Table 4.24: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F F1 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 F \ 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T P 0
98.3 98.6 98.2 73.5 99.9 84.2 99.1 0 60 00-03 T F1 0
98.3 98.6 98.2 73.3 99.9 84.1 99.1 0 60 00-03 T \ 0

For this time zone, we see that perform best the associative classifier keeping
just the rules with confidence equal or higher than the baseline (together with the
baseline model) and all the configurations of decision tree and random forest. We
observe that the performances are very similar, with a slightly worse performance
of the default Decision tree for what concerns the recall.

04-07

We report the best results obtained in the 04-07 time zone, according to the
precision metric with respect to the positive class.

Table 4.25: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
92.2 64.6 94.3 45.4 97.3 53.3 95.8 \ \ 0 60 04-07 B 0

61

Experimental section

Table 4.26: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
92.4 66.5 94.1 44.0 97.6 53.0 95.8 0 60 04-07 F F1 0

For this time zone, we see that performs best the baseline model and the random
forest with configuration of hyperparameters optimized towards the F1 score. We
observe similar performances, with a slight prevalence of Random forest for what
concerns the precision and of the Baseline in terms of recall.

08-11

We report the best results obtained in the 08-11 time zone, according to the
precision metric with respect to the positive class.

Table 4.27: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
93.7 60.7 95.3 38.0 98.1 46.7 96.7 1e-2 0.6 20 60 08-11 A 1

Table 4.28: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 F P 0
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 F \ 0
93.7 61.0 95.1 35.0 98.3 44.5 96.6 0 60 08-11 T \ 0

For this time zone, we see that perform best the associative classifier and
the random forest with configuration of hyperparameters optimized towards the
precision (together with the default configurations of Random forest and Decision
tree). We observe that the performances are very similar for what concerns the
precision (with a slight prevalence of the traditional classifier), while there is a larger
gap for what concerns the recall (instead in favour of the Associative classifier).

12-15

We report the best results obtained in the 12-15 time zone, according to the
precision metric with respect to the positive class.

Table 4.29: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT

62

Experimental section

94.2 61.6 95.9 42.9 98.0 50.6 96.9 8e-3 0.6 20 60 12-15 A 1
94.2 61.6 95.9 42.9 98.0 50.6 96.9 \ \ 0 60 12-15 B 0

Table 4.30: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
94.1 63.2 95.3 34.6 98.5 44.7 96.9 0 60 12-15 F P 0

For this time zone, we see that perform best the associative classifier together
with the baseline model and the random forest with configuration of hyperparame-
ters optimized towards the precision. We observe that the performances have a bit
of gap for what concerns the precision (with a prevalence of the Random forest),
while there is a larger gap for what concerns the recall (instead in favour of the
Associative classifier, together with the Baseline model).

16-19

We report the best results obtained in the 16-19 time zone, according to the
precision metric with respect to the positive class.

Table 4.31: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
93.3 62.3 95.6 50.8 97.2 56.0 96.4 1e-2 0.6 20 60 16-19 A 1
93.3 62.3 95.6 50.8 97.2 56.0 96.4 \ \ 0 60 16-19 B 0

Table 4.32: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
92.7 66.9 93.5 24.5 98.9 35.9 96.1 0 60 16-19 F P 0

For this time zone, we see that perform best the associative classifier together
with the baseline model and the random forest with configuration of hyperparame-
ters optimized towards the precision. Like the 12-15 time zone, we observe that the
performances have a bit of gap for what concerns the precision (with a prevalence
of the Random forest), while there is a larger gap for what concerns the recall
(instead in favour of the Associative classifier, together with the Baseline model).

63

Experimental section

20-23

We report the best results obtained in the 20-23 time zone, according to the
precision metric with respect to the positive class.

Table 4.33: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
97.7 91.9 97.9 68.5 99.6 78.5 98.8 \ \ 0 60 20-23 B 0

Table 4.34: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F P 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F F1 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 F \ 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T P 0
97.7 91.9 97.9 68.5 99.6 78.5 98.8 0 60 20-23 T F1 0
97.7 91.9 97.9 68.4 99.6 78.4 98.8 0 60 20-23 T \ 0

For this time zone, we see that perform best the baseline model and all the
configurations of the other classifiers. We observe that the performances are similar
between the two model categories.

All day

We report the best results obtained in the whole daytime, according to the precision
metric with respect to the positive class.

Table 4.35: Radius mode, Associative classifier, Best

A P+ P- R+ R- F+ F- ST CT #R TT TZ Alg MT
94.5 79.6 95.0 35.0 99.3 48.6 97.1 2e-2 0.6 1 60 all_day A 1

Table 4.36: Radius mode, Other classifiers, Best

A P+ P- R+ R- F+ F- #R TT TZ Alg Val MT
95.7 72.4 97.5 68.5 97.9 70.4 97.7 0 60 all_day F P 0
95.7 72.4 97.5 68.4 97.9 70.3 97.7 0 60 all_day F \ 0

For this time zone, we see that perform best the associative classifier keeping
just the top rule in terms of confidence and the random forest with configuration

64

Experimental section

of hyperparameters optimized towards the precision (together with the default
configuration). We observe that the performances are a bit different for what
concerns the precision (with a prevalence of the Associative classifier), while there
is a huge gap for what concerns the recall (instead in favour of the the Random
forest).

65

Chapter 5

Conclusions

In this thesis, we have explored what it takes to deploy an associative classifier to
classify spatio-temporal data, and we have compared it with other more traditional
classifiers, as the Decision tree and the Random forest.
First, we have to define the classes that have to be detected by the classification
algorithm, which identify some specific condition that emerges from the data
(e.g. the saturation of the docks in a bike station in a certain timestamp). Then,
the data coming from a dataset of logfile format have to be transformed into a
sequential format, in order to then apply a sequential data mining algorithm to
extract spatio-temporally invariant patterns that can be interpreted as association
rules (necessary for the classification algorithm in order to perform the predictions).
What distinguishes this type of classifier from the other ones is the remarkable
interpretability of the predictions made by it. Indeed, the decisional process of the
classification algorithm is more transparent since we can directly look at the patterns
extracted by the mining algorithm to understand what are the co-occurrences of
events in the past that could determine the happening of a critical condition in a
future period of time.

As we have seen, it is difficult to conciliate satisfactory values of the metrics
precision and recall for the minority class: for this reason is fundamental to define
which metric is more important to be optimized for our purposes.
With a poor precision, we end up having a lot of false positives: in our case study,
that implies assuming that a station has filled all its docks, and so it is ready to
be deprived of some bikes to be destined to other stations that need them, even if
actually is not. With a poor recall, we end up having a lot of false negatives: in
our case study, that implies assuming that a station has not filled all its docks, and
so it is ready to host incoming bikes, even if actually is not.
A choice can be made only by means of an accurate analysis by the decision-
makers, whose can numerically evaluate the cost and benefits of these scenarios

66

Conclusions

and identify the most suitable option, even with differentiated solutions according
to the geographical location of the single stations.
What emerges from our experiments is that in general the traditional classifiers
perform better for what concerns the precision (in particular the random forest),
while the associative classifier for what concerns the recall.

As further developments of the work of this thesis, we can consider to test other
configuration of parameters for the algorithm which generates the sequences in
input to Prefixspan, as well as different subdivision of the data into time zones.
Moreover, we can try to limit the negative effects of unbalanced data distribution,
taking into account some techniques of oversampling to increase the number of
samples belonging to the minority class to which the classification algorithm is
exposed during the training process.
In addition to that, we can also try the application of the associative classifier
to other kind of spatio-temporal data, extracting from them spatio-temporally
invariant patterns after the appropriate preprocessing stage of data transformation.

67

Bibliography

[1] Steinbach Tan and Kumar. Introduction to Data Mining. McGraw Hill, 2006
(cit. on p. 3).

[2] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014 (cit. on p. 3).

[3] Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal,
and Mei-Chun Hsu. «PrefixSpan,: mining sequential patterns efficiently by
prefix-projected pattern growth». In: Proceedings 17th International Conference
on Data Engineering. 2001, pp. 215–224. doi: 10.1109/ICDE.2001.914830
(cit. on p. 13).

[4] R. Agrawal and R. Srikant. Mining sequential patterns. 1995 (cit. on p. 13).
[5] url: https://www.kaggle.com/datasets/benhamner/sf-bay-area-bike-

share (cit. on p. 23).
[6] url: http://www.bayareabikeshare.com/ (cit. on p. 23).
[7] Luca Cagliero Luca Colomba and Paolo Garza. «Mining Spatiotemporally

Invariant Patterns». In: Proceedings of the 30th International Conference
on Advances in Geographic Information Systems. SIGSPATIAL ’22. Seattle,
Washington: Association for Computing Machinery, 2022. isbn: 9781450395298
(cit. on p. 28).

68

https://doi.org/10.1109/ICDE.2001.914830
https://www.kaggle.com/datasets/benhamner/sf-bay-area-bike-share
https://www.kaggle.com/datasets/benhamner/sf-bay-area-bike-share
http://www.bayareabikeshare.com/

	List of Tables
	List of Figures
	Introduction
	Related work
	Associative classifier
	Association rules
	Classification by pattern-matching
	Prefixspan

	Decision Tree
	Random Forest

	Methodology
	Problem and solution description
	Dataset
	Station dataset
	Status dataset
	Trip dataset
	Training, test and validation split

	Algorithm to generate sequences of events
	The spatio-temporal invariance

	Experimental section
	Setting and Metrics
	Classification task
	Evaluation metrics
	Hyperparameters tuning
	Layout of the results

	Positive class: Full condition
	Neighbor_types: Radius
	Neighbor_types: Incoming

	Conclusions
	Bibliography

