HY-TTC 30 Family C API Manual b-TTc-

TrControl \ - 5001

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures I Files |

Diagnostic state machine error codes

Details about the errors of the diagnostic state machine.

They are either returned by the DIAG_Status(..) function or by the callback function

(DIAG_ERR_CALLBACK).

The following table gives an overview of the error codes and their types.

There are four types of errors:

« Fatal errors If a fatal error is detected, the diagnostic state machine always activates the safe

state.
¢ Permanent errors

For non-fatal errors the application can decide which action to take (via the error callback, see

DIAG_ERR CALLBACK).
+ Temporary fatal errors

For these errors a glitch filter (de-bounce) is implemented, which means that they are reported
after the configured anti-glitch time. After the glitch filter time has expired, the error will be treated

like a fatal error.
¢ temporary permanent errors

For these errors a glitch filter (de-bounce) is implemented, which means that they are reported
after the configured anti-glitch time. After the glitch filter time has expired, the error will be treated

like a permanent error.

For the error values please refer to Diagnostic State Machine Error Values

short content ¢
Name fatal? temporary? . .
porary description val
DIAG_E_NOERROR TRUE | FALSE no error not available
an ADC limit was Measured vc
DIAG_E_ADC_LIMITS FALSE | TRUE exceeded or .
value in [mV
underrun
the 5.2V supply
voltage deviates Measured st
DIAG_E_ADC_5V2_SUPPLY TRUE | TRUE from its normal voltage in [
level 4900mV - 9
5380mV
the sensor supply
voltage deviates Measured st
DIAG_E_ADC_SENSOR_SUPPLY FALSE | TRUE from its normal subDplv Volta
level 4850mV - pply volta
5150mV
DIAG_E_ADC_KL30_MAIN FALSE | TRUE the KL30 voltage Measured b
level exceeds or voltage in [
underruns its

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

allowed limits

7600mV -
33400mV
the KL30_CPU
voltage level
exceeds or Measured b
DIAG_E_ADC_KL30_CPU TRUE | TRUE underruns its voltage for ti
allowed limits [mV]
7600mV -
33400mV
the board
temperature Board tempe
exceeds its allowed | tenth degree
DIAG_E_OVER_TEMPERATURE TRUE | TRUE range (the board Remark: Fal
temperature is 133 | is signed (tw
degree Celcius or | complement
higher)
a memory block of ;I;hv(\a/r]ictat::ytgz'
DIAG_E_MEM_USER_STACK TRUE | FALSE the user stack is
protected sp
corrupted
stack memo
internal register
DIAG_E_MEM_REGISTER TRUE | FALSE values are not available
corrupted
a memory block of | The divergin
DIAG_E_MEM_DSRAM TRUE | FALSE the data S-RAM is | that has bee
corrupted detected
a memory block of | The divergin
DIAG_E_MEM_PSRAM TRUE | FALSE the program S- that has bee
RAM is corrupted detected
a memory block of | The divergin
DIAG_E_MEM_DPRAM TRUE | FALSE the dual-port RAM | that has bee
is corrupted detected
the zero flag was
mistakenly raised Register PS'
DIAG_E_MEM_ZeroFlag TRUE | FALSE during a math XC2000 CP!
operation
the carry flag was
mistakenly raised Register PS'
DIAG_E_MEM_CarryFlag TRUE | FALSE during a math XC2000 CP!
operation
the negative flag
. was mistakenly Register PS'
DIAG_E_MEM_NegativeFlag TRUE |FALSE raised during a XC2000 CP!
math operation
the overflow flag
was mistakenly Register PS'
DIAG_E_MEM_OverflowFlag TRUE | FALSE raised during a XC2000 CP!
math operation
DIAG_E_MEM_SYS_STACK_OF TRUE |FALSE An overflow of the | System stac

system stack

of the XC20!I

occurred

DIAG_E_MEM_SYS_STACK_UF

TRUE

FALSE

An underflow of the
system stack

System stac

of the XC20!
occurred
A SRO trap
occurred and all
interrupts have
been disabled. For | Register
DIAG_E_MEM_SRO_TRAP TRUE | FALSE further information | SCU.TRAPS
about System- the XC2000
Request-0 traps
consult the XC2000
user manual.
A class B trap
occurred and all
interrupts have
been disabled.
Examples for class
B traps are:
- Undefined
Opcode
- Memory Access | Register TFI
DIAG_E_MEM_CLASS B_TRAP TRUE | FALSE Error XC2000 CP!
- lllegal Word
Operand Access
For further
information about
Class B traps
consult the XC2000
user manual.
Internal clock e
frequency drifts Indication '.f
DIAG_E_FREQ_STARTUP TRUE |FALSE . frequency is
from its normal
or too low
value
Measured ct
[digits *
Current number_of :
DIAG_E_PWM_CURRENT_ZERO FALSE | FALSE measurement) or OXFFFF
- - - - greater zero during | if a synchror
startup phase error betwee
and checker
has been de
DIAG_E_PWM_CURRENT_OFFSET FALSE | FALSE Offset of current Offset of the
measurement measuremel
circuitry on PWM stored in the
output not within [digits *
limits number_of :
This value
is scaled to 1

number of s

taken

for one mea:
Pulse width not
within range on
DIAG_E_PWM_LIMITS_RANGE FALSE | TRUE PWM output Read duty ¢
(outside min/max
pulse)
C)v:f[lhsli ‘,[Ac/)'lc: ;22; Difference b
DIAG_E_PWM_LIMITS_TOL FALSE | TRUE . set and reac
- - - window on PWM .
cycle in [us]
output
Period mismatch Difference b
DIAG_E_PWM_PERIOD_MISMATCH FALSE | TRUE set and read
on PWM output [us]
Current not within | Difference b
DIAG_E_PWM_CURRENT FALSE | TRUE limits on current set and read
controlled input [mA]
Set current not Difference b
DIAG_E_PWM_CURRENT_DEAD_TIME |FALSE |FALSE reached after dead |set and read
time elapsed [mA]
Current offset too :\r/lleasured e
DIAG_E_PWM_CURRENT_OFFS_DRIFT | FALSE | TRUE low (due to drift or C
[digits
HW defect)
number_of :
Frequency limit
error on timer input | Measured fr
DIAG_E_PWD_LIMITS_FREQ FALSE | TRUE or counter limit value in [Hz]
error in case of counter valu
incremental/counter | [digits]
input
Measured pi
DIAG_E_PWD_LIMITS_PULSE_WIDTH |FALSE | TRUE Pulse width limit ~in [us]. This
- - - - error on timer input | value is satu
OxFFFF
Measured ¢\
DIAG_E_CYCLE_TIME FALSE | FALSE Cycle time too high | " [Usl: This
value is satu
OxFFFF
Insufficient gate
drive on reverse
polarity protection.
Further Reasons Difference b
for occurrence: Urpp and Ut
- Clamp 30 voltage | (Urpp .. Gate
DIAG_E_RPP FALSE | TRUE is not connected to | reverse pola
ECU protection,
- Driver is used with | Ubat .. Supg

external safety
switch but no PWM
is configured safety
critical

for output st

DIAG_E_EXT_WD TRUE | FALSE External WD has Content of fl
activated the safe | in register
state SCU.DMPM

XC2000 CPI
Over-current Error code

DIAG_E_LS_PROT FALSE | TRUE condition on safety | (IO_ErrorTy
switch digital outpu
Over voltage
detector startup
test has failed
Further Reasons
for occurrence: Internal state

DIAG_E_OVD_STARTUP TRUE | FALSE - Hardware over- | information (

- - current protection is | which an err
tripped due to a occurred)
short battery
condition on the
low-side digital
outputs
Over voltage
detection has Read status

DIAG_E_OVD TRUE | FALSE activated the safe | from OVD ci
state
Safety switch check
error (internal
switch)

Further Reasons

for occurrence:

- Improper wiring

- Improper safety || ol state
switch setting for inf tion (

DIAG_E_SAFETY_SW_INT TRUE |FALSE safety-critical PWM | Mormat

which an err

output occurred)

- Driver has been

configured for use

with an external

safety switch but an

internal one or no

safety switch is

wired
DIAG_E_SAFETY_SW_EXT TRUE | FALSE Safety switch check | Internal state

error (external
switch)

Further Reasons
for occurrence:

- Improper wiring of
external safety
switch

- Improper safety
switch setting for
safety-critical PWM
output

information {
which an err
occurred)

- Driver has been
configured for
internal safety
switch but an
external one is
wired

Attention
The startup
test for the
external Safety
Switch runs in
a
blocking
manner when
being already
in the cyclic
execution
phase
(when the
application
software is
already
running). The
startup
test will violate
the cycle time
that is defined
by the
application
software.

An error while
checking the PWM

Internal state

DIAG_E_SAFETY_SW_SHUT_OFF FALSE | FALSE feedback shut off | mformation |
- - - - - which an err
path of the safety
: occurred)
switches occurred
Error during
DIAG_E_INIT_ERROR TRUE |FALSE initialization of |O-Driver ert
- - diagnostic state
machine
Invalid diagnostic | contentof s
DIAG_E_INVALID DIAG_STATE TRUE |FALSE 9 variable whit
- - - state .
the diagnost
Invalid diagnostic Content of s
DIAG_E_INVALID_STARTUP_STATE TRUE |FALSE state in variable whi
configuration state | the diagnost
Invalid diagnostic | contentof s
DIAG_E_INVALID MAIN_STATE TRUE |FALSE . g_ variable whit
- - - state in main state .
the diagnost
DIAG_E_WD_STARTUP TRUE | FALSE Watchdog startup

test has failed

DIAG_E_SR_LowNibble

TRUE

TRUE

The feedback value
of the low nibble of
the shift register is
faulty

DIAG_E_SR_HighNibble

TRUE

TRUE

The feedback value
of the high nibble of
the shift register is
faulty

DIAG_E_TIMEOUT

TRUE

FALSE

A timeout between
Diagnostic Module
and |O-Driver has
occurred

(e.g. driver
functions of safety
critical 10 not
called)

not available

DIAG_E_APPL_SAFE_STATE

TRUE

FALSE

Application
requested to
activate the safe
state

not available

DIAG_E_PLL_VCO_NOT_LOCKED

TRUE

FALSE

The PLL/VCO lost
its lock to the
oscillator
frequency.

(e.g. if the oscillator
is damaged or not
connected to the
CPU anymore)

Content of C
register PLL

DIAG_E_SW_INTERNAL

TRUE

FALSE

Internal SW error
detected. May be
SW or HW related.

not available

DIAG_E_INIT_ERROR

TRUE

FALSE

Error during
initialization of
diagnostic state
machine

Error code
I0_E_SW_II

DIAG_E_INT_WATCHDOG

TRUE

FALSE

Internal Watchdog
has not been
serviced in time -
WD reset occurred.

Content of C
register RST

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by @]@u@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures | Files |

HY-TTC30 Family pin features

Listing of all 10 driver pins and their configuration options

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Analog Inputs
1-Mode ADC inputs (primary function)

These pins can be used as ADC inputs:

* IO ADC 20
* IO ADC 21

They can be configured by software for:
e absolute (0 .. 32V)

For details on the usage refer to the driver functions for analog
inputs.

As a secondary function they can be used as:

e Digital Inputs

3-Mode ADC inputs (primary function)

These pins can be used as ADC inputs:

e IO ADC 10

e IO _ADC 11

e IO _ADC 12

e IO ADC 13

e 10 anc 14 (for HY-TTC32 variants pin supports also resistive
mode)

e 10 anc 15 (for HY-TTC32 variants pin supports also resistive
mode)

They can be configured by software for:

e absolute (0.. 5V or0.. 10V)
 ratiometric (0 .. 5V)
e current (0.. 24mA)

For details on the usage refer to the driver functions for analog
inputs.

As a secondary function they can be used as:

e Digital Inputs

4-Mode ADC inputs (primary function)

These pins can be used as ADC inputs:

* IO ADC 00
* IO ADC 01

They can be configured by software for:

e absolute (0.. 5V or0.. 10V)
» ratiometric (0 .. 5V)

o current (0 .. 24mA)
 resistive (0 .. 65kOhm)

For details on the usage refer to the driver functions for analog
inputs.

As a secondary function they can be used as:

* Digital Inputs

Normal ADC inputs

These pins have a fixed assignment to internal board voltages:

e IO ADC_UBAT

e IO ADC_UBAT CPU

e IO ADC_SENSOR SUPPLY
e IO K15

* IO ADC NODE_ID 0

* IO ADC NODE_ID 1

e IO ADC_BOARD_ TEMP

For details on the usage refer to the driver functions for analog
inputs.

32V Analog Inputs (secondary function of
PWM Outputs)

As secondary function, these pins can be used as Analog Inputs:

* IO ADC_ 34
* IO ADC 35
* IO ADC 36
* IO ADC_ 37
* IO ADC_ 38
e IO ADC_ 39
* IO ADC 40
* IO ADC 41

They can be configured by software for:

» absolute (0 .. 32V)

LED Outputs

One of the following:

e IO LED 00
e IO LED 01
e IO LED 02
e IO LED 03
e IO LED 04
e IO LED 05
e IO LED 06
e IO LED 07

32V Analog Inputs (secondary function of
Low-Side Digital Outputs)

As secondary function, these pins can be used as Analog Inputs:

e IO ADC 28
e IO ADC 29

They can be configured by software for:

e absolute (0 .. 32V)

32V Analog Inputs (secondary function of
PWD Inputs)

As secondary function, these pins can be used as Analog Inputs:

I0 ADC_30
I0 ADC 31
I0 ADC 32
I0 ADC 33

They can be configured by software for:

e absolute (0 .. 32V)

32V Analog Inputs (secondary function of
PVG Outputs)

As secondary function, these pins can be used as Analog Inputs:

IO ADC_22
IO ADC_ 23
IO ADC_24
IO ADC 25
IO ADC 26
IO ADC_27

They can be configured by software for:

» absolute (0 .. 32V)

Digital inputs

Digital inputs with configurable pull-up/down
resistor (secondary function of 1-Mode ADC
Inputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-32V and have a configurable pull-
up/down resistor:

* IO DI 02
e IO DI 03

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs (secondary function of 3-Mode
ADC Inputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-10V:

e IO DI 10
e IO DI 11
e IO DI 12
e IO DI 13
* IO DI 14
e IO DI 15

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs (secondary function of 4-Mode
ADC Inputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-10V:

e I0 DI 00
e IO DI 01

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs with configurable pull-up/down
resistor (secondary function of PWD Inputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-32V and have a configurable pull-
up/down resistor:

* IO DI_04

e IO DI 05

e IO DI 06

e IO DI 07

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs (secondary function of PWM
Outputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-32V:

e IO DI_24
e IO DI 25
e IO DI 26
* IO DI 27
e IO DI 28
* IO DI 29
e IO DI_30
e IO DI_31

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs (secondary function of Low-Side
Digital Outputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-32V:

e IO DI 22
e IO DI 23

For details on the usage refer to the driver functions for digital
inputs and outputs.

Digital inputs (secondary function of PVG
Outputs)

As secondary function, these pins can be used as digital inputs
with a voltage range of 0-32V:

e IO DI 16
e IO DI 17
e IO DI 18
e IO DI 19
e IO DI 20
e IO DI 21

For details on the usage refer to the driver functions for digital
inputs and outputs.

PWD Inputs

Complex Digital Timer Inputs with
configurable pull-up/down resistor and
incremental decoder (primary function)

These pins can be used as digital timer inputs with incremental
decoding:

® IO PWD 00
* IO PWD 01

They can decode

 signals from incremental encoders,
 PWM signals or
 signals from ABS sensors.

Furthermore they provide analog (ADC) feedback. As PWM
decoder the frequency and pulse width can be measured at the
same time.

As a secondary function they can be used as:

e Analog Inputs
e Digital Inputs

Complex Digital Timer Inputs with
configurable pull-up/down resistor (primary
function)

These pins can be used as digital timer inputs:

e IO PWD 02
e IO PWD 03

They can decode

 PWM signals or
e signals from ABS sensors.

Furthermore they provide analog (ADC) feedback. As PWM
decoder the frequency and pulse width can be measured at the
same time.

As a secondary function they can be used as:

e Analog Inputs
e Digital Inputs

Complex Digital Timer Inputs (secondary
function of PWM Outputs)

As secondary function these pins can be used as digital timer
inputs:

e IO PWD 22
e IO PWD 23

They can decode

» PWM signals or
» signals from ABS sensors.

Furthermore they provide analog (ADC) feedback. As PWM
decoder the frequency and pulse width can be measured at the
same time.

For details on the usage refer to the driver functions for digital
timer inputs.

Digital Timer Inputs (secondary function of
PWM Outputs with Current Measurement)

As secondary function these pins can be used as digital timer
inputs to decode PWM signals. They can measure either the
frequency or the pulse duration:

e IO _PWD_10
e IO PWD 11
e IO PWD 12
e IO PWD 13
e IO PWD 20
* IO PWD 21

Furthermore they provide analog (ADC) feedback.

For details on the usage refer to the driver functions for digital
timer inputs.

High-Side PWM outputs

High-Side PWM Outputs with Current
Measurement (primary function)

These pins can be used to generate a pulse width modulated
(PWM) output:

* IO PWM 00
* IO PWM 01
e IO PWM 02
e IO PWM 03
* IO PWM 04
* IO PWM 05

Furthermore they provide current measurement (CM), digital timer
(PWD) and analog (ADC) feedback.

For details on the usage refer to the driver functions for PWM
outputs.

As a secondary function they can be used as:

e Analog Inputs
e Digital Inputs
e PWD Inputs

e Digital Outputs

High-Side PWM Outputs (primary function)

These pins can be used to generate a pulse width modulated
(PWM) output:

* IO PWM 10
e IO PWM 11

Furthermore they provide a over-current monitoring to detect
overload situations, digital timer (PWD) and analog (ADC)
feedback.

For details on the usage refer to the driver functions for PWM
outputs.

As a secondary function they can be used as:

e Analog Inputs
e Digital Inputs
e PWD Inputs

e Digital Outputs

Digital Outputs
Low-Side Digital Outputs (primary function)

These pins can be used as digital low-side outputs:

* IO DO 10
e IO DO 11

For details on the usage refer to the driver functions for digital
inputs and outputs.

As a secondary function they can be used as:

e Analog Inputs
e Digital Inputs

High-Side Digital Outputs with current
measurement (secondary function of PWM
Outputs)

These pins can be used as digital high-side switches:

IO_DO_20
IO DO 21
IO DO 22
IO _DO_23
IO DO 24
e IO DO 25

Furthermore they provide current measurement (CM) and analog
(ADC) feedback.

For details on the usage refer to the driver functions for digital
inputs and outputs.

High-Side Digital Outputs (secondary function
of PWM Outputs)

These pins can be used as digital high-side switches:

* IO DO 00
* IO DO 01
* IO DO 02
* IO DO 03
* IO DO 04
® IO DO 05
* I0 DO 06
® I0 DO 07

Furthermore they provide an over-current monitoring to detect
overload situations and analog (ADC) feedback.

For details on the usage refer to the driver functions for digital
inputs and outputs.

Push-Pull Digital Outputs (secondary function
of PVG Outputs)

These pins can be used as push-pull digital output switches:

e I0 DO 30
e I0 DO 31
e I0 DO 32
e I0 DO 33
e IO DO 34
e I0 DO 35

Furthermore they provide an over-current monitoring to detect
overload situations and analog (ADC) feedback.

For details on the usage refer to the driver functions for digital
inputs and outputs.

PVG/Voltage Outputs
PVG Outputs (primary function)

These pins can be used as digital low-side switches:

* IO PVG 00
* IO PVG 01
e IO PVG 02
e IO PVG 03
* IO PVG 04
* IO PVG 05

For details on the usage refer to the driver functions for PVG
Outputs.

As a secondary function they can be used as:
e Analog Inputs

e Digital Inputs
e Digital Outputs

Voltage Outputs (secondary function of PVG
Outputs)

These pins can be used as voltage outputs:

* IO VOUT 00
* IO VOUT 01
* IO VOUT 02
* IO VOUT 03
* IO VOUT 04
® IO VOUT 05

Furthermore they analog (ADC) feedback.
These outputs are driven by a configurable PID controller.

For details on the usage refer to the driver functions for voltage
outputs.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by
doXyiaeniEY:

http://www.doxygen.org/index.html

ITrControl)I;I\G(Z'IO'I(')SZIBO Family C API Manual b-T7c-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures I Files |

Pin and diagnostic features

Explicit overview of the diagnostic functions of the ECU pins.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Diagnostic features of HY-TTC 30 Family

Group

PIN GROUP

Pin
Numbers

PWM output groups

Defines

FEATURES

110
Features

Diagnostics

DIAGNOSTIC FUNCTIO

Error Code

PWM
Output
with timer
feedback,
analog
feedback
and
current
feedback

I0_PIN_H1
I0_PIN_G1
I0_PIN_F1
I0_PIN_E1
I0_PIN_D1
I0_PIN_C1

I0_PWM_00
I0_PWM_01
I0_PWM_02
I0_PWM_03
I0_PWM_04
I0_PWM_05

PWM Output

open load
detection

I0_E_PWM_OPEN_LOAD

short circuit to
GND
detection

I0_E_PWM_SHORT_CIRCUI

short circuit to
UBAT
detection

I0_E_PWM_SHORT_BATTER

the PWM
output is
disabled

I0_E_PWM_OUTPUT _DISAB

measured
signal period
is too small

I0_E_PWM_CAPTURE_ERR(

Current
monitoring
and over
current
protection.

Be reminded
that the output
protection will
return these
errors not only
if the output
current is too
high but if one
of the
following
conditions are
met:

- over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for
reverse
polarity
protection)

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

10_DO_00
I0_DO_01

Digital
Output

open load
detection

I0_E_DO_OPEN_LOAD

10_DO_02
I0_DO_03
I0_DO_04
I0_DO_05

short circuit to
GND
detection

short circuit to
UBAT
detection

I0_E_DO_SHORT_CIRCUIT

I0_E_DO_SHORT_BATTERY

open load
detection /
short circuit to
UBAT
detection

(if a pull up
resistor is
configured)

I0_E_DO_OPEN_LOAD_OR_

low pass of
digital outputs
with analog
feedback is
being tuned
in.

I0_E_DO_DIAG_TRANSIENT

Current
monitoring
and current
protection.

Be reminded
that the output
protection will
return these
errors not only
if the output
current is too
high but if one
of the
following
conditions are
met:

- over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for
reverse
polarity
protection)

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

10_DO_20
10_DO_21
10_DO_22
10_DO_23
10_DO_24
10_DO_25

Digital
Output

open load
detection

I0_E_DO_OPEN_LOAD

short circuit to
GND
detection

I0_E_DO_SHORT_CIRCUIT

short circuit to

I0_E_DO_SHORT_BATTERY

UBAT
detection

open load
detection /
short circuit to
UBAT
detection

(if a pull up
resistor is
configured)

I0_E_DO_OPEN_LOAD_OR_

low pass of
digital outputs
with analog
feedback is
being tuned
in.

I0_E_DO_DIAG_TRANSIENT

Current
monitoring
and current
protection.

Be reminded
that the output
protection will
return these
errors not only
if the output
current is too
high but if one
of the
following
conditions are
met:

- over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

reverse
polarity
protection)
IO_ADC_34
10_ADC_35 no built-in
I0O_ADC_36 |Analog diagnostic
I0_ADC_37 |Input functions
I0_ADC_38 '
I0_ADC_39
10_DI_24 Digital Input | open load I0_E_DI_OPEN_LOAD_OR_S
10_DI_25 (with proper | detection /
10_DI_26 limits short circuit to
10_DI_27 configured) |GND

I0_DI_28
I0_DI_29

detection

(if a pull down
resistor is
configured)

short circuit to
UBAT
detection

I0_E_DI_SHORT_BATTERY

invalid voltage
level detection
(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

short to GND
detection

I0_E_DI_SHORT_CIRCUIT

open load
detection

I0_E_DI_OPEN_LOAD

I0_PWD_20
I0_PWD_21
I0_PWD_10
I0_PWD_11
I0_PWD_12
I0_PWD_13

Digital
Timer Input

measured
signal period
is too small

I0_E_PWD_CAPTURE_ERRC

time
measurement
not finished
yet

I0_E_PWD_NOT_FINISHED

only a
constant high
level is
detected

I0_E_PWD_HIGH_LEVEL

only a
constant low
level is
detected

I0_E_PWD_LOW_LEVEL

PWM
Output
with timer
feedback,
analog
feedback

I0_PIN_K1
I0_PIN_J1

I0_PWM_10
I0_PWM_11

PWM Output

open load
detection

I0_E_PWM_OPEN_LOAD

short circuit to
GND
detection

I0_E_PWM_SHORT_CIRCUI

short circuit to
UBAT
detection

I0_E_PWM_SHORT_BATTER

the PWM
output is
disabled

I0_E_PWM_OUTPUT_DISAB

measured
signal period
is too small

I0_E_PWM_CAPTURE_ERR(

Over current
monitoring
and over
current
protection.

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

Be reminded
that the output
protection will
return these
errors not only
if the output
current is too
high but if one
of the
following
conditions are
met:

- over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for
reverse
polarity
protection)

I0_DO_06
I0_DO_07

Digital
Output

open load
detection

I0_E_DO_OPEN_LOAD

short circuit to
GND
detection

I0_E_DO_SHORT_CIRCUIT

short circuit to
UBAT
detection

I0_E_DO_SHORT_BATTERY

open load
detection /
short circuit to
UBAT
detection

(if a pull up
resistor is
configured)

I0_E_DO_OPEN_LOAD_OR_

low pass of
digital outputs
with analog
feedback is
being tuned
in.

I0_E_DO_DIAG_TRANSIENT

Over current
protection.

Be reminded
that the output
protection will
return these
errors not only
if the output

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

current is too
high but if one
of the
following
conditions are
met:

- over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for
reverse
polarity
protection)

I0_ADC_40
I0_ADC_41

Analog
Input

no built-in
diagnostic
functions.

10_DI_30
I0_DI_31

Digital Input
(with proper
limits
configured)

open load
detection /
short circuit to
GND
detection

(if a pull down
resistor is
configured)

I0_E_DI_OPEN_LOAD_OR_¢

short circuit to
UBAT
detection

I0_E_DI_SHORT_BATTERY

invalid voltage
level detection
(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

short to GND
detection

10_E_DI_SHORT_CIRCUIT

open load
detection

I0_E_DI_OPEN_LOAD

I0_PWD_22
I0_PWD_23

Digital
Timer Input

measured
signal period
is too small

I0_E_PWD_CAPTURE_ERRC

time
measurement
not finished
yet

I0_E_PWD_NOT_FINISHED

timer overflow
occurred

I0_E_PWD_TIMER_OVERFL(

Digital output groups

Digital
Output

I0_PIN_B1
I0_PIN_A1

I0_DO_10
I0_DO_11

Digital
Output

open load
detection

I0_E_DO_OPEN_LOAD

low-side
with
analog
feedback

short circuit to
GND
detection

I0_E_DO_SHORT_CIRCUIT

short circuit to
UBAT
detection

I0_E_DO_SHORT_BATTERY

open load
detection /
short circuit to
UBAT
detection

(if a pull up
resistor is
configured)

I0_E_DO_OPEN_LOAD_OR_

low pass of
digital outputs
with analog
feedback is
being tuned
in.

I0_E_DO_DIAG_TRANSIENT

Over current
protection. Be
reminded that
the output
protection will
return these
errors not only
if the output
current is too
high but if one
of the
following
conditions are
met:

- Over
temperature

- Supply for
power stages
disconnected
(due to loss of
gate drive for
reverse
polarity
protection)

- OVP
circuitry has
been tripped

- External
watchdog has
disabled the
output stages

I0_E_PROT_USER_OVERLO
I0_E_PROT_TEMP_OVERLO
I0_E_PROT_ACTIVE
I0_E_PROT_FATAL
I0_E_PROT_REENABLE

I0_ADC_28

Analog

no built-in

I0_ADC_29

Input

diagnostic
functions.

I0_DI_22
I0_DI_23

Digital Input
(with proper
limits
configured)

open load
detection

I0_E_DI_OPEN_LOAD

short circuit to
UBAT
detection

I0_E_DI_SHORT_BATTERY

short circuit to
GND
detection

I0_E_DI_SHORT_CIRCUIT

invalid voltage
level detection
(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

open load /
short circuit to
GND
detection

(if a pull down
resistor is
configured)

I0_E_DI_OPEN_LOAD_OR_¢

Analog input groups

4-Mode
ADC

I0_PIN_J4
I0_PIN_H4

I0_ADC_00
I0_ADC_01

Analog
Input

configuration
switch
protection

I0_E_FET_PROTECTION

I0_LED_00
I0_LED_01

LED Switch

an over
current was
detected

I0_E_FET_PROTECTION

10_DI_00
10_DI_01

Digital Input
(with proper
limits
configured)

open load
detection /
short circuit to
GND
detection

(if a pull down
resistor is
configured)

I0_E_DI_OPEN_LOAD_OR_¢

short circuit to
UBAT
detection

I0_E_DI_SHORT_BATTERY

invalid voltage
level detection
(i.e. outside of
specified
limits)

10_E_DI_INVALID_VOLTAGE

short to GND
detection

I0_E_DI_SHORT_CIRCUIT

open load
detection

I0_E_DI_OPEN_LOAD

3-Mode

I0_PIN_E4

I0_ADC_10

Analog

configuration

I0_E_FET_PROTECTION

ADC I0O_PIN_D4 [IO_ADC_11 |Input switch
IO_PIN_C4 | I0O_ADC_12 protection
I0O_PIN_B4 [I0_ADC_13
I0O_PIN_A4 [IO_ADC_14
I0O_PIN_A3 [IO_ADC_15
IO_LED_02
IO_LED_03 an over
:8-t§g—gg LED Switch | current was I0_E_FET_PROTECTION
IO LED 06 detected
IO_LED_07
open load
detection /
short circuit to
GND I0_E_DI_OPEN_LOAD_OR_§
detection
(if a pull down
resistor is
10 DI 10 configured)
10_DI_11 Digital Input | short circuit to
10 DI 12 (with proper UBAT I0_E_DI_SHORT_BATTERY
10_DI_13 limits detection
I0_DI_14 configured) |invalid voltage
I0_DI_15 level detection
(i.e. outside of | I0_E_DI_INVALID_VOLTAGE
specified
limits)
shortto GND |, £) SHORT_CIRCUIT
detection
open load I0_E_DI_OPEN_LOAD
detection
1-Mode |IO_PIN_G4 no built-in
o I0_ADC_20 |Analog . .
ADC I0_PIN_G4 I0_ADC_21 |Input dlagr?ostlc
functions.
10_DI_02 Digital Input | open load
10_DI_03 (with proper | detection /
limits short circuit to
configured) | GND I0_E_DI_OPEN_LOAD_OR_§
detection
(if a pull down
resistor is
configured)
short circuit to
UBAT I0_E_DI_SHORT_BATTERY
detection

invalid voltage
level detection
(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

short to GND

10_E_DI_SHORT_CIRCUIT

detection

open load
detection

I0_E_DI_OPEN_LOAD

Digital timer input groups

Digital
Timer
Input

I0_PIN_E3
I0_PIN_D3
I0_PIN_C3
I0_PIN_B3

I0_PWD_00
I0_PWD_01
I0_PWD_02
I0_PWD_03

Digital
Timer Input

measured
signal period
is too small

I0_E_PWD_CAPTURE_ERRC

time
measurement
not finished
yet

I0_E_PWD_NOT_FINISHED

timer overflow
occurred

I0_E_PWD_TIMER_OVERFL(

only a
constant high
level is
detected

I0_E_PWD_HIGH_LEVEL

only a
constant low
level is
detected

I0_E_PWD_LOW_LEVEL

I0_ADC_30
I0_ADC_31
IO_ADC_32
I0_ADC_33

Analog
Input

no built-in
diagnostic
functions.

I0_DI_04
I0_DI_05
I0_DI_06
I0_DI_07

Digital Input
(with proper
limits
configured)

open load
detection /
short circuit to
GND
detection

(if a pull down
resistor is
configured)

I0_E_DI_OPEN_LOAD_OR_¢

short circuit to
UBAT
detection

I0_E_DI_SHORT_BATTERY

invalid voltage
level detection
(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

short to GND
detection

I0_E_DI_SHORT_CIRCUIT

open load
detection

I0_E_DI_OPEN_LOAD

PVG output groups

PVG
Output

I0_PIN_K2
I0_PIN_J2
I0_PIN_H2
I0_PIN_G2

I0_PVG_00
I0_PVG_01
I0_PVG_02
I0_PVG_03

PVG Output

short circuit to
UBAT
detection

I0_E_PVG_SHORT_BATTER

short circuit to

I0_E_PVG_SHORT_CIRCUIT

I0_PIN_F2
I0_PIN_E2

I0_PVG_04 GND
I0_PVG_05 detection
the PVG
output is I0_E_PVG_OUTPUT_DISABL
disabled
overcurrent |5 £ pROT ACTIVE IO_E_P
protection
short circuit to
UBAT I0_E_VOUT_SHORT_BATTEI
detection
short circuit to
GND I0_E_VOUT_SHORT_CIRCUI
detection
I0_VOUT_00 .
IO VOUT 01 the configured
I0_VOUT 02 | Voltage \?V‘:;":]to‘t’o"age
I0_VOUT_03 | Output reached I0_E_VOUT_PRECISION
I0_VOUT_04 o .
IO VOUT 05 within settling
- - time
the voltage
output is I0_E_VOUT_OUTPUT_DISAE
disabled
overcurrent |, £ pROT ACTIVE I0_E_P
protection
I0_ADC_22
I0_ADC_23 no built-in
I0O_ADC_24 |Analog diaanostic
IO_ADC_25 |Input ; 9n
IO ADC 26 unctions.
I0_ADC_27
open load
detection /
short circuit to
GND . I0_E_DI_OPEN_LOAD_OR_S
detection
(if a pull down
resistor is
I0_DI_16 configured)
10_DI_17 Digital Input | Short circuit to
10_DI_18 (with proper | UBAT I0_E_DI_SHORT_BATTERY
10_DI_18 i detection
limits
I0_DI_19 . . .
10 DI 20 configured) invalid voltage
| O_DI_2 1 level detection

(i.e. outside of
specified
limits)

I0_E_DI_INVALID_VOLTAGE

short to GND
detection

I0_E_DI_SHORT_CIRCUIT

open load
detection

I0_E_DI_OPEN_LOAD

10_DO_30
I0_DO_31
I0_DO_32
I0_DO_33
I0_DO_34
I0_DO_35

Digital
Output

short circuit to
UBAT
detection

short circuit to
GND
detection

I0_E_DO_SHORT_BATTERY

I0_E_DO_SHORT_CIRCUIT

the digital
output is
disabled

I0_E_DO_OUTPUT_DISABLE

over current
protection

I0_E_PROT_ACTIVEIO_E_P

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by ﬁ!@lﬁﬁge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures | Files |

ECU Map

Description and properties of the ECU

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

ECU properties

The HY-TTC 30 ECU is equipped with an Infineon XC2267
microcontroller which is driven at a CPU frequency of 80MHz.

Memory Map

The HY-TTC 30 provides different memory types. The following
table shows which memories and sizes are available:

EEPROM 8128 Byte
internal Flash | 768 kByte
internal RAM | 82 kByte

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures | Files |

Implementation Examples for Safety
Functions

Example for using the 10-Driver in a safety critical environment

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Example implementation for Safety-
Callback

See DIAG_ERR_CALLBACK for details on the safety callback
function.

For further details on error types and how they are treated by the
diagnostic state machine, refer to Diagnostic state machine
error codes.

static ubytel APPL SafetyCb(ubytel diag state
, DIAG ERRORCODE *
const error)

ubytel action;

// Error codes can for example be saved to
error memory of application software

// (APPL WriteErrMem is a hypothetical
function of the application software).
APPL WriteErrMem(diag state, error);

// Just a simple example which does
// not take the type of error into account
switch (error->device num)
{
case IO ADC 00:
case IO ADC 0O1:

//

// Do something sophisticated
//

action = DIAG ERR NOACTION;
break;

case IO PWM 00:
case IO PWM O1:

case IO_PWM_OZ:
case IO PWM 03:

//

// Do something sophisticated
//

action = DIAG ERR SAFESTATE;
break;

case IO PWM 04:

case IO PWM 05:

case IO PWM 10:

case IO PWM 11:
//
// Do something sophisticated
//
action = DIAG ERR NOACTION;
break;

default:
action = DIAG ERR SAFESTATE;
break;

}

return action;

Example for calling PWM step functions
for safety critical PWM outputs to explain
how to react on certain error codes of the
step functions:

void APPL PWM ControlOutput (void)
{

bool pwm current new 00;

ubyte2 pwm current 00;

ubyte?2 duty;

I0 ErrorType rc pwm 00;

I0 ErrorType rc pwm current 00;

rc_pwm current 00 = IO PWM GetCur (
IO _PWM 00, &pwm current 00,

&pwm_ current new 00);

// Application controller for PWM
(hypothetical user function)

duty = APPL PWM PidCtrl(IO PWM 00,
pwm current 00, pwm current new 00,
rc_pwm current 00);

// set duty cycle
rc pwm 00 = IO PWM SetDuty(IO PWM 00,
duty, NULL);

switch (rc_pwm 00)
{
case IO E OK:
// Everything fine
break;
case IO E PWM SHORT CIRCUIT:
// BApplication code
break;

case
I0 E PWM OPEN LOAD OR SHORT BATTERY:
// Application code
break;
case I0 E PWM SHORT BATTERY:
// Application code
break;
case IO E PWM OPEN LOAD:
// Application code
break;
case
// Application code
break;
default:
// Unexpected error code
break;

Example for safety critical Driver
configuration

// Safety configuration for IO-Driver
static const IO DRIVER SAFETY CONF

c driver safety conf =

.safety switch type =

IO DRIVER SAFETY SWITCH INT
.glitch filter time = 40 // [ms]

, .cycle time = 11000 // [us]
> task cycle time plus tolerance

, .error callback = &APPL SafetyCb //
(Set to NULL if IO-Driver should decide
what to do on errors)

’

b g

// Safety configuration for PWM Output
static const IO PWM SAFETY CONF

c_pwm safety conf =
{

I0 SAFETY SWITCH O

, 80

, 100

, 200

¥

volid task (void)

{
I0 ErrorType rc driv _begin;
I0 ErrorType rc_driv_end;

rc_driv begin = IO Driver TaskBegin();
1f (rc driv begin != IO E OK)
{

// User code

}

// User Application
// and calls to driver task functions.
APPL PWM ControlOutput () ;

rc driv_end = IO Driver TaskEnd();
1f (rc_ driv_end != IO E OK)
{

// User code

vold main (void)

{

ubyted timestamp;
I0 ErrorType rc driv_init;
I0 ErrorType rc_pwm init;

R e e T T et //

// start of driver initialization //

R e e T T et //

// IO Driver Init() is the first function:
rc driv_init = IO Driver Init(

I0 DRIVER MODE SERVICE WD,
&c_driver safety conf); // safety
critical application

1f (rc_ driv _init != IO E OK)

{

// User code

}

// Initialization of PWM Output, 200Hz
rc_pwm init = IO PWM Init(IO PWM 00, 200,
TRUE, TRUE, 0, &c pwm safety conf);

1f (rc_pwm init != IO E OK)

// User code

e //

// end of driver initialization //
e //

[= e e e e e e e e e e e e e
——=)

// from now on only task functions are
called //

while (1) {
IO RTC StartTime (×tamp) ;

task () ;

while (IO RTC GetTimeUS (timestamp) <
10000) ;
}

Example for manual safety switch test

This example shows how to perform a manual safety switch test
(for both internal and external safety switch configuration), which is
necessary in case safety critical configured PWM outputs are
applied with loads after the ECU startup.

// number of safety configured PWM outputs //

#define SAFETY PWM NUM 2

// number of software cycle to elapse before
the return value from IO PWM SetDuty 1is
plausible //

#define SSW CYCLES 5

// status for safety critical PWM outputs //
typedef struct pwm status
{

IO PIN pwm pin;

I0 ErrorType pwm set rc;

ubyte2 duty cycle;

// flag that indicates if the respective
PMW output has to be tested with a manual
safety switch test again //

bool pwm man ssw_ test;

} PWM_STATUS;

// states of manual safety switch test //
typedef enum { SSW START,

SSW DISABLED,

SSW_ ENABLED,

SSW WAIT,

SSW DONE
} SSW_STATE;

void Man SSW Test (IO PIN safety switch);

static IO ErrorType driver init rc;
static IO ErrorType driver task begin rc;
static IO ErrorType driver task end rc;
static IO ErrorType pwm init rc;

static IO ErrorType power rc;

static IO ErrorType diag rc;

static DIAG ERRORCODE diag error;

static ubytel diag state;

// insert ALL safety configured PWM outputs in
this structure! //
// set duty cycle only via:
(pwm status[i].duty cycle = value)! //
static PWM STATUS pwm status[] = {{IO PIN HI,
I0 E OK, 0x8000, FALSE },
{IO_PIN G1,
I0 E OK, 0x8000, FALSE }};

//
// global variables for manual safety switch
test //
static SSW_STATE ssw_test next state =
SSW_ START;
static SSW_STATE ssw_test prev state =
SSW_ START;

static ubytel ssw cnt = 0;

static ubytel APPL SafetyCb(ubytel diag state,
DIAG ERRORCODE * const error)

{
ubytel 1i;

switch (error->device num)
{

// add case for ALL safety configured
PWM output pins! //

case IO PIN HI1:

case IO PIN Gl:

//
switch (error->error code)
{

// ignore error case and label
the affected PWM output for later manual
ssw testing (pwm man ssw_test) //

case DIAG E SAFETY SW SHUT OFF:

for (1 0; 1 <
SAFETY PWM NUM; i++)
{
if
(pwm_status[i] .pwm pin == error-
>device num)
{
pwm status[i].pwm man ssw test = TRUE;

}

}
return DIAG ERR NOACTION;

default:
return DIAG ERR NOACTION;

}
default:
return DIAG ERR SAFESTATE;

}

// safety configuration for IO-Driver //
static const IO DRIVER SAFETY CONF
driver safety conf =

IO DRIVER SAFETY SWITCH INT, // or
IO DRIVER SAFETY SWITCH EXT,

180,

11000,

APPL SafetyCb
I

// safety configuration for PWM output //
static const IO PWM SAFETY CONF pwm safety conf

{
IO SAFETY SWITCH 0, // or

IO SAFETY SWITCH 1
50,
150,
200

b g

volid main (void)
{
ubytel 1i;
ubyted timestamp;

driver init rc = IO Driver Init (

I0 DRIVER MODE DEFAULT, &driver safety conf
) ;

// safety configured PWM outputs

pwm init rc = IO PWM Init(IO PIN HI1, 200,
TRUE, TRUE, 5000, &pwm safety conf);

pwm init rc = IO PWM Init(IO PIN G1, 200,
TRUE, TRUE, 5000, &pwm safety conf);

//

power rc = IO POWER Set(
IO INT POWERSTAGE ENABLE, IO POWER ON) ;

while (1)

{
(void) IO RTC StartTime (×tamp);

driver task begin rc =
IO Driver TaskBegin();

// User code //

OUTPUTS ============—==—cc—cc=c //
// ensure that the duty cycle of not
yet tested safety PWM outputs is 0%!//
for (1 = 0; i < SAFETY PWM NUM; i++)
{
1f (pwm status[i].pwm man ssw_test
!= FALSE)
{

pwm status[i].pwm set rc =
IO PWM SetDuty(pwm status[i].pwm pin,

0,

NULL) ;
}

else

{

pwm status[i].pwm set rc =
IO PWM SetDuty(pwm status[i].pwm pin,

pwm_ status[i].duty cycle,
NULL) ;

}

// trigger manual safety switch test
(only during diagnostic main state!) //

A

// Note: As the function Man SSW Test
test has to be called several times //

// 1in order to perform a complete
manual safety switch test, it must be //

// ensured that the user defined
trigger condition does not inhibit the //

// function call, once the manual

safety switch test has been started! //

[/ ——mmmmm e
—————————————————————————————————— //

if ((diag state == DIAG STATE MAIN) &&

((#INSERT TRIGGER CONDITION HERE#

) ||l (ssw _test next state != SSW START))

Man SSW Test (
pwm safety conf.safety switch);

// User code //

// retrieve diagnostic state and error
code //

diag rc = DIAG Status(&diag state,
&diag error);

driver_task_end_rc = IO_Driver_TaskEnd
()

while (IO RTC GetTimeUS (timestamp) <
10000) ;

}

ECIE==— = ———————
void Man SSW Test (IO PIN safety switch)

{
ubytel i,

switch (ssw_test next state)
{
// [1]: start manual safety switch test
//
case SSW_START:
(void) IO POWER Set(safety switch,
I0 POWER OFF);
ssw_test next state = SSW WAIT;
ssw_test prev state = SSW START;
break;

// [3]: check PWM set error only for
not yet tested PWM outputs with load after
SSW is disabled //

case SSW_DISABLED:

for (i = 0; i < SAFETY PWM NUM;
i4++)

if
((pwm_status[i] .pwm man ssw test != FALSE)
& &
(pwm_status[i] .pwm set rc
!= IO _E PWM OPEN LOAD))
{
// Error: PWM output is not
correctly disabled! //
if
(pwm_status[i] .pwm set rc == IO E OK)
{

(void)
DIAG EnterSafestate();
}

}

(void) IO POWER Set(safety switch,
IO POWER ON) ;

ssw_test next state = SSW WAIT;

ssw_test prev state SSW_DISABLED;

break;

// [5]: check PWM set error only for
not yet tested PWM outputs with load after
SSW is enabled //

case SSW ENABLED:

for (i = 0; 1 < SAFETY PWM NUM;

i++4)
{
if
((pwm_status[i] .pwm man ssw _test != FALSE)
& &

(pwm_status[i] .pwm set rc
!= IO E PWM OPEN LOAD))
{
// Error: PWM output is not
correctly enabled! //
if
(pwm_status[i] .pwm set rc != IO E OK)
{
(void)
DIAG EnterSafestate();
}
}
}
(void) IO POWER Set(safety switch,
I0 POWER ON) ;

ssw_test next state = SSW DONE;
break;

// [6]: set the tested flag for
affected PWM outputs with load //
case SSW DONE:
for (i = 0; i < SAFETY PWM NUM;
it+)

if
((pwm_status[i] .pwm man ssw _test != FALSE)
& &
(pwm_status[i] .pwm set rc
!= I0 E PWM OPEN LOAD))
{

pwm status[i].pwm man ssw test = FALSE;
}
}
ssw_test next state = SSW START;
break;

// [2, 4]: wait some software cycles,
in order to receive plausible return values
from IO PWM SetDuty () //

case SSW WAIT:

1f (ssw_cnt >= SSW CYCLES)
{
1f (ssw_test prev state ==
SSW_START)

ssw_test_next_state =
SSW_DISABLED;
}

else

{

Ssw_test next state =
SSW_ENABLED;
}
ssw _cnt = 0;
}

else

{

ssw_cnt++;

}

break;

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

UEEHEIRMm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZAOI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures | Files |

Examples for using UDS support functions

This chapter shows some examples how to use the support
functions for UDS reprogramming.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Read Dataldentifiers stored in the
Branding Block

This section describes how to read a Dataldentifier that has been
stored in the ECU's branding block.

10
10
10

//

//

//

//

rc

if

{

ErrorType rc validate;
ErrorType rc _get did;
BRBL CUSTOM DID did item;

First the consistency of the BRBL has to be
checked. The wvalidity of

the BRBL has to be checked only once per
power cycle. It is best to

call this function during the init phase
(directly after calling \c IO Driver Init)

because validating the BRBL will take
approximately 1.2ms.

validate = IO BRBL Validate();

(rc_validate == IO E OK)

rc_get did = IO BRBL GetDid(
IO BRBL CUSTOM DID IDX 0, &did item);
1f (rc_get did == IO E OK)
{
// The DID data can now be accessed as
follows:
// did item.Did holds the DID (e.g.
OxFDO0OO)
// did item.DidLength holds the length
of the data that is attached to the DID
// did item.DidData is a pointer to the
DID data (array with length
did item.DidLength)

// Copying the DID data from the
branding block can be done as follows:
for (1 = 0; 1 < did item.DidLength;
i++4)
{
app did data buffer[i] =
did item.DidDatal[i];
}
}
}
else
{
// Reading from the BRBL is not possible
because it could not be validated.

Machine active - Reprogramming not
allowed

If the machine is currently active, reprogramming is not allowed in
general. In such a case none of the driver functions for UDS
support may be called. The following response shall be sent by the

application:

//Tester: 02 10 02 55 55 55 55 55 (Request to
switch to the programming sessions)

//Rpp: 03 7F 10 22 55 55 55 55 (Request
denied with code "conditions not correct")

Reset to boot mode with authentication in
bootloader

Example for giving control to the bootloader and letting the
bootloader handle the security access. In the example the length
of the seed/key mechanism has been assumed to be 4 bytes
(setting in branding block). This method (giving control to the
bootloader triggered by the session control) is the one suggested
within ISO 14229-1:2013. It is also the easiest solution to
implement for the application software.

// Tester: 02 10 02 55 55 55 55 55 (App checks
i1f machine i1s inactive ...)

// If reprogramming is allowed in the current
operating state the application

// gives control to the bootloader. Please be
aware that a response pending

// has to be sent in case the application does
not switch to boot mode immediately

// but needs some time to shut down to a safe
operating state!

(void) IO Driver ResetToBootMode (

IO DRIVER RTBM UDS RPG ATTEMPT AUTH BL
14
IO DRIVER RTBM UDS RSP SEND);

// The bootloader will now take over. Note: In
this case the bootloader will send the
positive response

// to the request to switch to the programming
session (see function \c
IO Driver ResetToBootMode) .

// BL : 06 50 02 00 32 01 F4 55

// Tester: 02 27 07 55 55 55 55 55

// BL : 06 67 07 xx xxX xXx xX 55

// Tester: 06 27 08 yy yy yy yy 55
// BL : 02 67 08 55 55 55 55 55

Reset to boot mode with authentication in
application

Example for giving control to the bootloader after the application
software handled the security access. In the example the length of
the seed/key mechanism has been assumed to be 4 bytes (setting
in branding block).

Attention
With this approach the authentication within the bootloader is
bypassed and has to be handled by the application. The
responsibility for correct authentication lies solely with the
application and therefore with the system integrator.

ubyted prn;
ubyted key;
ubyted secret key[IO BRBL XTEA PRIV KEY LEN];

// Tester: 02 10 02 55 55 55 55 55 (App checks
if machine is inactive ...)

// App : 06 50 02 00 32 01 F4 55 (... if yes
a positive response needs to be sent.)

// Tester: 02 27 07 55 55 55 55 55

// RApp : Calls the driver function to
generate a random seed.

(void) IO Crypt GetPseudoRandomNumber (&prn);

//Be aware that service 0x27 uses the Big
Endian format but the XC2000 CPU uses the
Little

//Endian format. Thus when copying prn to the
UDS message, byte3 of prn must be on the
LSB position

//1in the response message and byte0 of prn on
the MSB position.

// App : 06 67 07 xx xx xxX xx 55 (Random Seed
"xx xx xx xxX" from
IO Crypt GetPseudoRandomNumber)

// Tester: 06 27 08 yy yy yy yy 55

// RApp : Deciphers the key sent by the tester
by passing "yy yy vy yy" to the XTEA
decipher function.

// Be aware that the key is sent by the tester
in Big Endian format. It must be stored in
the variable

// key in Little Endian format.

(void) IO BRBL GetXteaKey (

IO BRBL XTEA PRIV _KEY IDX 1
, secret key //array of
TO_BRBL XTEA PRIV KEY LEN elements
IO BRBL XTEA PRIV KEY LEN);
(void) IO Crypt XteaDecipher32(&key //yyyyyyvy
, secret key
, TRUE) ;

// The key is now deciphered and must match the
sent seed again (otherwise a negative
response has to be sent!).

// If seed matches the deciphered key the
control can be given to the bootloader.

IO Driver ResetToBootMode (

IO DRIVER RTBM UDS RPG ATTEMPT AUTH APP
IO _DRIVER RTBM UDS RSP _SEND) ;

// The bootloader will now take over. Note: In
this case the bootloader will send the
positive response

// to the previous service 0x27 message of the
tester (see function \c
IO Driver ResetToBootMode) .

// BL : 02 67 08 55 55 55 55 55

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

UEEHEIRMm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

| Data Fields |

Data Structure Index

Main Page Related Pages Data Structures Files |

Data Structures

Here are the data structures with brief descriptions:

@ _diag_errorcode
@ _io_adc_safety conf

@ _io_brbl _can_id_
@ _io_brbl_can_param

@ _io_brbl _dids

@ _io_can_data_frame
@ _io_driver_di_limits

@ _io_driver_rst_info
@ _io_driver_safety_conf

@ _io_driver_trap_info

@ _io_pid_config
@ _io_pwd_cplx_safety conf

@ _io_pwd_inc_safety_conf

Diagnostic Error code
structure

Safety configuration for the
ADC inputs

CAN ID structure

Branding block CAN
parameter structure

Entry definition for DID
table

CAN data frame

Voltage limits for digital
inputs

Reset information

Driver Safety Configuration

Contains information
regarding traps/exceptions

PID configuration structure
Safety configuration for the
Complex PWD inputs
Safety configuration for the
Incremental or Counter

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

@ _io_pwd_pulse_samples
@ _io_pwm_current_queue

@ _io_pwm_current_safety conf

@ _io_pwm_safety_conf

@ ApdbType
@ can_id

PWD inputs

PWD pulse-width data
structure

PWM current
measurement queue

Safety configuration for the
PWM outputs

Safety configuration for the
PWM outputs

APDB structure
CAN ID structure

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by

doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_diag_errorcode
Struct Reference

Data Fields

Diagnostic Error code structure. More...

#include <DIAG Constants.h>

Data Fields
DIAG_ErrorType error_code

IO_PIN device_num

ubyte2 faulty value

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Diagnostic Error code structure.

Stores all relevant error parameters returned from the diagnostic
state machine or returned from the WD

Field Documentation

I0_PIN _diag_errorcode::device_num

device number which caused error

DIAG_ErrorType _diag_errorcode::error_code

error code: for a detailed description of the diagnostic error
codes see Listing of diagnostic errors

ubyte2 diag_errorcode::faulty_value

value which caused the error

The documentation for this struct was generated from the following
file:

 DIAG_Constants.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_adc_safety conf
Struct Reference

Data Fields

Safety configuration for the ADC inputs. More...

#include <IO ADC.h>

Data Fields
ubyte2 adc_val_upper

ubyte2 adc_val_lower

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Safety configuration for the ADC inputs.

Stores all relevant safety configuration parameters for the ADC
inputs as an absolute value. The values shall be stated as mV, uA
or Ohm - depending on the configuration of the channel.

It is not allowed to set the lower limit higher than or equal to the
upper limit.

The valid min/max limits for each measured unit and range are like
follows:

10 apc aBsoLuTk for 5V range configuration: 1mV ... 5000mV
10 apc aBsowLuTk for 10V range configuration: 1mV ...
10500mV

10 apc_arsorLuTkE 32V inputs: 1mV ... 32780mV (1mV ...
33333mV for TTC32 variants)

10 apc RATIOMETRIC: 1mV ... 5000mV

10 apc_curreNT: TUA ... 25000uA

10 apc RESISTIVE: 1 Ohm ... 65534 Ohm

The safety configuration is applicable for the following channels:

IO_ADC_00 .. I0_ADC_01
IO ADC_10 .. IO ADC 15

e IO ADC 20 .. IO ADC 21

Field Documentation

ubyte2 _io_adc_safety conf::adc_val_lower

Lower limit for analog input value

ubyte2 io_adc_safety_conf::adc_val_upper

Upper limit for analog input value

The documentation for this struct was generated from the following
file:

. 10_ADC.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_brbl _can_id_
Struct Reference

Data Fields

CAN ID structure. More...

#include <IO BRBL.h>

Data Fields
ubyted4 extended

ubyte4 ID

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

CAN ID structure.

Field Documentation

ubyted4 io_brbl_can_id_::extended

Type of CAN identifier to be used. Valid values are: 0 ...
standard CAN identifier is used 1 ... extended CAN identifier is
used

ubyted4 _io_brbl_can_id_::ID

The CAN identifier (LSB must start at bit 0): bit 0-10 ... if
standard CAN identifier is used bit 0-28 ... if extended CAN
identifier is used

The documentation for this struct was generated from the following
file:

« 10_BRBL.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyigengEE:

http://www.doxygen.org/index.html

TrControl

HYDAC INTERNATIONAL

HY-TTC 30 Family C

API Manual D-TTC-X-G-
20-001

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index | Data Fields |

Data Fields

_io_brbl _can_param
Struct Reference

Branding block CAN parameter structure. More...

#include <IO BRBL.h>

Data Fields

ubyted4
ubyted4
I0_BRBL_CAN_ID
I0O_BRBL_CAN_ID
I0O_BRBL_CAN_ID
I0_BRBL_CAN_ID

I0_BRBL_CAN_ID

CANBaudrate
CANChannel
CANDownloadID
CANUploadID
UDSONnCANRXxID
UDSONnCANTXID

UDSONCANFuncRxID

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Branding block CAN parameter structure.

Field Documentation

ubyted4 io_brbl_can_param::CANBaudrate

Baud rate in kbit/s used for CAN communication.

ubyted4 _io_brbl_can_param::CANChannel

The channel used for CAN communication.

IO BRBL_CAN_ID _io_brbl_can_param::CANDownloadID

The CAN identifier used for download direction (TTC-
Downloader -> target).

I0O_BRBL_CAN_ID _io_brbl_can_param::CANUploadID

The CAN identifier used for upload direction (target -> TTC-
Downloader).

I0_ BRBL_CAN_ID
_io_brbl_can_param::UDSOnCANFuncRxID

The CAN identifier used for download direction (diagnostic
tester -> target).

I0O_BRBL_CAN_ID _io_brbl_can_param::UDSOnCANRXxID

The CAN identifier used for download direction (diagnostic
tester -> target).

I0O_BRBL_CAN_ID _io_brbl_can_param::UDSOnCANTXxID

The CAN identifier used for upload direction (target ->
diagnostic tester).

The documentation for this struct was generated from the following
file:

. 10_BRBL.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EERM 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index | Data Fields |

_io_brbl_dids Struct
Reference

Data Fields

Entry definition for DID table. More...

#include <IO BRBL.h>

Data Fields
ubyte2 Did

ubyte2 DidLength

const ubyte1 * DidData

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Entry definition for DID table.

Field Documentation

ubyte2 _io_brbl_dids::Did

Data Identifier

const ubyte1* _io_brbl_dids::DidData

Pointer to DID data. DID data must be stored MSB first (Array
index 0 -> MSB, index X -> LSB) and must not exceed
DidLength.

ubyte2 _io_brbl_dids::DidLength

Length of Data Identifier

The documentation for this struct was generated from the following
file:

. 10 BRBL.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_can_data_frame
Struct Reference

Data Fields

CAN data frame. More...

#include <IO CAN.h>

Data Fields
ubyte1 data [8]

ubyte1 length
ubyte1 id_format

ubyted4 id

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

CAN data frame.

Stores a data frame for the CAN communication.

Field Documentation

ubyte1 _io_can_data_frame::data[8]

data buffer

ubyte4 _io_can_data_frame::id

ID for CAN communication

ubyte1 _io_can_data_frame::id_format

standard or extended format

ubyte1 _io_can_data_frame::length

number of words in transmit buffer

The documentation for this struct was generated from the following
file:

e 10_CAN.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
O @ERM 182

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

| | |
_io_driver_di_limits Struct Reference

Voltage limits for digital inputs. More...

#include <IO DIO.h>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Voltage limits for digital inputs.

Contains the thresholds for valid low- and high-levels for digital
inputs.

The range for the low-level is defined by the voltages 10w threshi
and 1ow thresh2, Where 1ow threshi is the lower limit for a low-
level and 10w thresh2 the upper limit.

The range for the high-level is defined by the voltages

high threshl and high thresh2, Where high thresh1 is the lower
limit for a high-level and high thresnh2 the upper limit.

The value of 10w _thresh1 must always be smaller than 10w thresh2
and nhigh thresh1l must always be smaller than nigh thresh2.

It is possible to configure a hysteresis by setting 10w thresh2
bigger than nhigh threshi. In this mode an already detected logic
level will be hold as long as the analog voltage varies within the
hysteresis band 1ow thresh2 - high threshl. Please see the
following examples:

Examples:

// voltage limits without hysteresis
IO DRIVER DI LIMITS limitsl = { 0, 2000, 3000,
5000 };

In the above example 1imits1 defines the range 0-2000mV as
valid low-level and 3000-5000mV as valid high-level. The voltage
range between 2000 and 3000mV represents an invalid area. In
this case the error code 10 E pr_1nvanip vorTace Will be returned.

// voltage limits with hysteresis
I0 DRIVER DI LIMITS limits2 = { 0, 3000, 2000,

5000 };

In the above example 1inits1 defines the range 0-2000mV as
valid low-level and 3000-5000mV as valid high-level. The range
2000-3000mV forms a hysteresis. If the voltage value rises or
drops within this band (between 2000 and 3000mV) the former

state of the channel will be held.

The documentation for this struct was generated from the following
file:

. 10_DIO.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index | Data Fields |

. . . Data Fields
_io_driver_rst_info

Struct Reference

Reset information. More...

#include <IO Driver.h>

Data Fields
I0_DRIVER_RESET_REASON reset_reason

ubyte2 reset_counter

IO_DRIVER_TRAP_INFO trap_info

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Reset information.

Field Documentation

ubyte2 _io_driver_rst_info::reset_counter

Reset counter, 0 means it was a power-on reset

I0_DRIVER_RESET_REASON
_io_driver_rst_info::reset_reason

Reset reason

IO_DRIVER_TRAP_INFO _io_driver_rst_info::trap_info

Trap/Exception information

The documentation for this struct was generated from the following
file:

e 10_Driver.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index | Data Fields |

. . Data Fields
_io_driver_safety co

nf Struct Reference

Driver Safety Configuration. More...

#include <IO Driver.h>

Data Fields
ubyte1 safety_switch_type

ubyte1 glitch_filter_time
ubyte2 cycle_time

DIAG_ERR_CALLBACK error_callback

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Driver Safety Configuration.

This structure is used to pass the configuration for a safety critical
application to the 10-Driver.

Field Documentation

ubyte2 _io_driver_safety_conf::cycle_time

Maximum Cycle time for the |O-Driver task (500..25000us)

DIAG_ERR_CALLBACK
_io_driver_safety_conf::error_callback

Callback function that will be called in case of non-fatal errors.
Can be set to NULL if no function shall be called

ubyte1 _io_driver_safety conf::glitch_filter_time

Filter time for debouncing errors (10..180ms)

ubyte1 _io_driver_safety conf::safety_switch_type

Declares whether an internal, external or no safety switch is
used (I0 DRIVER SAFETY SWITCH INT,
I0_DRIVER SAFETY SWITCH_ EXT Ol IO_DRIVER SAFETY SWITCH NONE

)

The documentation for this struct was generated from the following
file:

e 10_Driver.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

@L@*{Mge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
API Manual D-TTC-X-G-

TrControl , .,

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index | Data Fields |

Data Fields

_io_driver_trap_info
Struct Reference

Contains information regarding traps/exceptions. More...

#include <IO Driver.h>

Data Fields

ubyte2
ubyte2
ubyte2
ubyte2
ubyte2

ubyted4

trap_id
cpu_tfr
cpu_trapstat
cpu_eccstat
cpu_pecon

fault_location

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Contains information regarding traps/exceptions.

Field Documentation

ubyte2 _io_driver_trap_info::cpu_eccstat

Content of CPU register ECCSTAT before reset

ubyte2 _io_driver_trap_info::cpu_pecon

Content of CPU register PECON before reset

ubyte2 _io_driver_trap_info::cpu_tfr

Content of CPU register TFR before reset

ubyte2 _io_driver_trap_info::cpu_trapstat

Content of CPU register TRAPSTAT before reset

ubyted _io_driver_trap_info::fault_location

Fault location. In most cases the address given in this variable
points to the location following the one which caused the
exception/trap. This fault location is only a hint where to search.
It does not point to the exact location of the problem. The fault
location is only available for system stack over-/under-flow and
class B traps.

ubyte2 _io_driver_trap_info::trap_id

Trap-id. Can be one of:

e 0: no trap occurred

1: Service Request 0 trap occurred

2: System stack overflow trap occurred
3: System stack underflow trap occurred
4: Software trap occurred

5: Class B trap occurred

The documentation for this struct was generated from the following
file:

e 10_Driver.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EERM 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index | Data Fields |
. . . Data Fields
_io_pid_config
Struct Reference

PID configuration structure. More...

#include <IO PID.h>

Data Fields
sbyted4 Kiff

sbyted Kp
sbyte4 Ki
sbyte4d Kd
sbyte4 max_limit

sbyte4 min_limit

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

PID configuration structure.

Data structure that contains all configuration parameters for PID

control.
The following formula is used for the PID:

output = Kff/10"3 * setpoint + Kp/10"3 * error
+ Kd/107"4 * delta(error) + Ki/1074 *
sum (error)

Please note that Kff and Kp are scaled by a factor of 1,000 and Ki
and Kd by a factor of 10,000 to improve the resolution on small
gains.

Remarks
» Typical values for Kff are between 10.000 and 15.000
» Typical values for Ki are around 20.000
» Typical values for Kp and Kd are smaller than 1.000

Attention
Please keep in mind that the unit of cutput has to be

» \olts for voltage outputs
e Duty cycle in digits [0 .. 65535] for PWM outputs

Field Documentation

sbyted4 _io_pid_config::Kd

Derivative gain constant scaled by a factor of 10,000. A value of
0 disables the derivative term in the PID.

sbyted _io_pid_config::Kff

Gain constant for feed-forward control scaled by a factor of
1,000. A value of 0 disables the feed-forward control, a value of
1,000 leads to a 1:1 loop through of the setpoint.

sbyted4 _io_pid_config::Ki

Integral gain constant scaled by a factor of 10,000. A value of O
disables the integral term in the PID.

sbyted4 _io_pid_config::Kp

Proportional gain constant scaled by a factor of 1,000. A value
of 0 disables the proportional term in the PID.

sbyted4 _io_pid_config::max_limit

Upper boundary for output value. The output will saturate on
this value.

sbyted _io_pid_config::min_limit

Lower boundary for output value. The output will saturate on
this value.

The documentation for this struct was generated from the following
file:

« 10_PID.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_pwd_cplx_safety
_conf Struct Reference

Data Fields

Safety configuration for the Complex PWD inputs. More...

#include <IO PWD.h>

Data Fields
ubyte2 pwd_freq_val_upper

ubyte2 pwd_freq_val_lower
ubyte4 pwd_pulse_val_upper

ubyte4 pwd_pulse_val_lower

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Safety configuration for the Complex PWD inputs.

Stores all relevant safety configuration parameters for the
Complex PWD inputs.

Field Documentation

ubyte2 _io_pwd_cplx_safety conf::pwd_freq_val_lower

Lower PWD frequency limit in Hz [1Hz..65534Hz]

ubyte2 _io_pwd_cplx_safety_conf::pwd_freq_val_upper

Upper PWD frequency limit in Hz [1Hz..65534Hz]

ubyted4 _io_pwd_cplx_safety conf::pwd_pulse_val_lower

Lower limit of the pulse time in us for a single PWD pulse
[1us..4294967294us].

Depending on the configuration of the channel (whether the
high or low time of the pulse should be measured) this value
represents the respective time segment.

ubyted4 _io_pwd_cplx_safety conf::pwd_pulse_val_upper

Upper limit of the pulse time in us for a single PWD pulse
[1us..4294967294us].

Depending on the configuration of the channel (whether the
high or low time of the pulse should be measured) this value
represents the respective time segment.

The documentation for this struct was generated from the following
file:

« 10_PWD.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyiaenyEY:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_pwd_inc_safety
conf Struct Reference

Data Fields

Safety configuration for the Incremental or Counter PWD inputs.
More...

#include <IO PWD.h>

Data Fields
ubyte2 pwd_cnt_val_upper

ubyte2 pwd_cnt_val_lower

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Safety configuration for the Incremental or Counter PWD inputs.

Stores all relevant safety configuration parameters for the
Incremental PWD inputs.

Field Documentation

ubyte2 _io_pwd_inc_safety_conf::pwd_cnt_val_lower

Lower PWD counter limit [1..65534]

ubyte2 _io_pwd_inc_safety_conf::pwd_cnt_val_upper

Upper PWD counter limit [1..65534]

The documentation for this struct was generated from the following
file:

. 10_PWD.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C API

TTControl Manual bp-Trc-x-G-20-001

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_pwd_pulse_samples
Struct Reference

Data Fields

PWD pulse-width data structure. More...

#include <IO PWD.h>

Data Fields

ubyte1 pulse_samples_count

ubyte4 pulse_sample [[O_PWD_MAX PULSE_SAMPLES]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

PWD pulse-width data structure.

stores each captured pulse-width for one measurement.

Field Documentation

ubyted
_io_pwd_pulse_samples::pulse_sample[|lO_PWD_MAX_ PULSE_SAMPLES]

stores each captured pulse-width for one measurement

ubyte1 _io_pwd_pulse_samples::pulse_samples_count

number of pulse_samples

The documentation for this struct was generated from the following file:

« 10_PWD.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by @J@@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Mmanual b-TTc-x-G-20-001

Main Page | Related Pages Data Structures Files |

Data Structures | Data Structure Index Data Fields |

. Data Fields
_io_pwm_current_queu

e Struct Reference

PWM current measurement queue. More...

#include <IO_ PWM.h>

Data Fields

ubyte1 count

bool overrun

ubyte2 values [IO_PWM_CURRENT_QUEUE_MAX]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

PWM current measurement queue.
Stores results of the equidistant current measurement.

The queue holds all current measurement since the last retrieval via the
step function 1o pwM Getcur ().

Field Documentation

ubyte1 _io_pwm_current_queue::count

Number of results stored in the queue

bool _io_pwm_current_queue::overrun

Signal queue overrun. TRUE means queue is full and older
measurement results may have been dropped. FALSE means queue is
not overrun.

ubyte2
_io_pwm_current_queue::values[|O PWM CURRENT_QUEUE_MAX]

Buffer holding the measurement values values

The documentation for this struct was generated from the following file:

« 10_PWM.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by @]@!@ﬁﬂ
1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_pwm_current_sa
fety _conf Struct Reference

Data Fields

Safety configuration for the PWM outputs. More...

#include <IO PWM.h>

Data Fields

ubyte2 current_tolerance
ubyted4 dead_time

I0_PWM_SAFETY_CONF pwm_safety conf

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Safety configuration for the PWM outputs.

Stores all relevant safety configuration parameters for the PWM
outputs.

Attention
For the current check to work properly it is necessary that the
application does not change the set-point of the PID controller
before the dead time elapses! for example if a dead time of
10ms is set, the application shall change the set-point for the
current value less frequently than 10ms!

To disable the current check, set the value of the parameters
current_tolerance to 65535 and dead_time to 4294967295.

Field Documentation

ubyte2 _io_pwm_current_safety conf::current_tolerance

Tolerance of the measured electric current in Milli-Ampere.
Allowed values: 50mA .. 500mA

ubyted4 io_pwm_current_safety conf::dead_time

Time until current should have reached its target value in
Microseconds. Allowed values: 5000us ..10000000us

IO PWM_SAFETY_CONF
_io_pwm_current_safety_conf::pwm_safety conf

Safety configuration for PWM signal

The documentation for this struct was generated from the following
file:

. 10_PWM.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

_io_pwm_safety _con
f Struct Reference

Data Fields

Safety configuration for the PWM outputs. More...

#include <IO PWM.h>

Data Fields
IO_PIN safety_switch

ubyte2 margin_lower_lim
ubyte2 margin_upper_lim

ubyte2 duty_cycle_tolerance

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Safety configuration for the PWM outputs.

Stores all relevant safety configuration parameters for the PWM
outputs.

Field Documentation

ubyte2 _io_pwm_safety conf::duty_cycle_tolerance

Tolerance in microseconds for the set duty cycle. This limit can
be adjusted within 100us to 200us

ubyte2 _io_pwm_safety conf::margin_lower_lim

Limit in microseconds for the lower minimum pulse. This limit
can be adjusted within 50us to 100us.

ubyte2 io_pwm_safety conf::margin_upper_lim

Limit in microseconds for the upper minimum pulse pause. This
limit can be adjusted within 50us to 150us

I0_PIN _io_pwm_safety conf::safety_switch

Connected safety switch (1o sarFeTy swiTcH 0 Or
IO SAFETY SWITCH 1, Or alternatively 1o sareTy swiTcH NONE if
neither safety switch is connected).

The documentation for this struct was generated from the following
file:

. 10_PWM.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

@L@*{Mge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures

ApdbTyp

| Data Structure Index |

e Struct

Reference

APDB structu

re. More...

#include <Apdb.h>

Data Fields

uint32

uint32

uint32

uint32

uint32

uint32

uint32

uint32

ApdbVersion
FlashDate

BuildDate

NodeType
CrcStartAddress
CodeSize
LegacyApplicationCrc

ApplicationCrc

Data Fields

Data Fields

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

uint32 NodeNumber

uint32 CrcSeed

uint32 Flags

uint32 Hook1

uint32 Hook2

uint32 Hook3

uint32 MainAddress
CanldType CanDownloadld
CanldType CanUploadid

uint32 LegacyHeaderCrc

uint32 ApplicationVersion

uint32 CanBaudrate

uint32 CanChannel

uint32 Password

uint32 MagicSeed

uint8 TargetlpAddress [4]

uint8 SubnetMask [4]

uint8

uint32

uint32

uint8

uint8

uint16

uint32

DiMulticastipAddress [4]
DebugKey

AbrdTimeout
Manufacturerld
Applicationld

Reserved

HeaderCrc

Detailed Description

APDB structure.

Data structure for accessing the Application Descriptor Block.

Field Documentation

uint32 ApdbType::AbrdTimeout

The timeout for automatic CAN baud rate detection.

uint32 ApdbType::ApdbVersion

The APDB version: bit 0-7 ... minor number bit 8-15 ... major
number

uint32 ApdbType::ApplicationCrc

CRC-32 value calculated over the application or if a CRC table
is used, CRC-32 value calculated over the CRC table
(automatically provided by the TTC-Downloader).

uint8 ApdbType::Applicationld

The application identifier (must be provided by the customer).

uint32 ApdbType::ApplicationVersion

The application version (must be provided by the customer): bit
0-15 ... revision number bit 16-23 ... minor number bit 24-31 ...
major number

uint32 ApdbType::BuildDate

The application's build date (must be provided by the customer).

uint32 ApdbType::CanBaudrate

Baud rate in kbit/s used for CAN communication.

uint32 ApdbType::CanChannel

The channel used for CAN communication.

CanldType ApdbType::CanDownloadld

The CAN identifier used for download direction (TTC-
Downloader -> target).

CanldType ApdbType::CanUploadid

The CAN identifier used for upload direction (target -> TTC-
Downloader).

uint32 ApdbType::CodeSize

Code size in bytes (used for CRC calculation) or if a CRC table
is used, number of CRC table entries (automatically provided by
the TTC-Downloader).

uint32 ApdbType::CrcSeed

Seed for application CRC calculation (automatically provided by
the TTC-Downloader).

uint32 ApdbType::CrcStartAddress

Start address for CRC calculation or if a CRC table is used,
start address of the CRC table (automatically provided by the
TTC-Downloader).

uint32 ApdbType::DebugKey

Debug key for booting the device in debug mode.

uint8 ApdbType::DIMulticastipAddress[4]

Multicast IP address of the TTC-Downloader (most significant
byte first).

uint32 ApdbType::Flags

Predefined application flags can be specified here. Following
flags can be specified: bit O ... Auto-BaudrateDetectionEnable 0
= disable automatic baud rate detection 1 = enable automatic
baud rate detection

uint32 ApdbType::FlashDate

The date when the application has been flashed (automatically
provided by the TTC-Downloader).

uint32 ApdbType::HeaderCrc

The CRC value calculated over the whole APDB (except
HeaderCRC field).

uint32 ApdbType::Hook1

Custom hook 1.

uint32 ApdbType::Hook2

Custom hook 2.

uint32 ApdbType::Hook3

Custom hook 3.

uint32 ApdbType::LegacyApplicationCrc

Legacy application CRC for flash checker (automatically
provided by the TTC-Downloader).

uint32 ApdbType::LegacyHeaderCrc

Legacy header CRC for flash checker (automatically provided
by the TTC-Downloader).

uint32 ApdbType::MagicSeed

Seed for CRC calculation with the MCHK HW module.

uint32 ApdbType::MainAddress

The application's vector address. Note that the bootloader uses
this address to start the application after reset/power-up.

uint8 ApdbType::Manufacturerid

The manufacturer identifier (must be provided by the customer).
The generic ID OxFF shall be used for private use.

uint32 ApdbType::NodeNumber

The unique node number used to identify nodes of a CODESYS
application. Note that only values from 0 to 127 are allowed.

uint32 ApdbType::NodeType

The hardware type the application is built for.

uint32 ApdbType::Password

The password hash for memory access. Set this field to 0 or
OxFFFFFFFF to disable password protection. Note that it is
highly recommended to set a password upon application
download with the TTC-Downloader.

uint16 ApdbType::Reserved

Reserved for future use. Shall be set to 0.

uint8 ApdbType::SubnetMask[4]

Subnet mask for Ethernet download (most significant byte first).

uint8 ApdbType::TargetipAddress[4]

Target IP address for Ethernet download (most significant byte
first).

The documentation for this struct was generated from the following
file:

« Apdb.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |

Data Structures Data Structure Index Data Fields

can_id Struct
Reference

Data Fields

CAN ID structure. More...

#include <TypesGen.h>

Data Fields
uint32 Extended

uint32 Id

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

CAN ID structure.

Field Documentation

uint32 can_id::Extended

Type of CAN identifier to be used. Valid values are: 0 ...
standard CAN identifier is used 1 ... extended CAN identifier is
used

uint32 can_id::Id

The CAN identifier (LSB must start at bit 0): bit 0-10 ... if
standard CAN identifier is used bit 0-28 ... if extended CAN
identifier is used

The documentation for this struct was generated from the following
file:

 TypesGen.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyigengEE:

http://www.doxygen.org/index.html

ITrControl)I;I\G(Z'IO'I(')SIIBO Family C API Manual b-T7c-

HYDAC INTERNATIONAL

Main Page | Related Pages

Data Structures Files |

Data Structures Data Structure Index Data Fields |

Data Structure Index

AlC|_
_io_brbl_can_param _io_driver_safety_conf _io_p
. _io_brbl_dids _io_driver_trap_info _io_p
ApdbType _diag_errorcode _io_can_data_frame _io_pid_config _io_pwn
_io_adc_safety_conf _io_driver_di_limits _io_pwd_cplx_safety_conf _io_
_io_brbl_can_id_ _io_driver_rst_info _io_pwd_inc_safety_conf
can_id
AlC|_

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by ﬁ!@l&\ﬂge 1.8.2

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |
Data Structures | Data Structure Index Data Fields
“ Variables |

a b ¢|d|e|f g h i kI m n| of|lp|lr|,s t|u|yv
S I e s

Here is a list of all documented struct and union fields with links to
the struct/union documentation for each field:

-a -

e AbrdTimeout : ApdbType
e adc val lower: io_adc_safety conf
e adc val upper: io_adc_safety conf
e ApdbVersion : ApdbType

o ApplicationCrc : ApdbType

o Applicationld : ApdbType

o ApplicationVersion : ApdbType

BuildDate : ApdbType

CANBaudrate : _io _brbl can_param
CanBaudrate : ApdbType
CanChannel : ApdbType
CANChannel : _io_brbl_can_param

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

1
Q

CanDownloadld : ApdbType
CANDownloadID : _io_brbl_can_param
CANUploadID : _io_brbl_can_param
CanUploadid : ApdbType

CodeSize : ApdbType

count : _io_pwm_current_queue
cpu_eccstat : _io_driver_trap_info
cpu_pecon : _io_driver_trap_info
cpu_tfr: _io_driver_trap_info
cpu_trapstat: _io_driver_trap_info
CrcSeed : ApdbType

CrcStartAddress : ApdbType
current_tolerance : _io_pwm_current_safety conf
cycle time : _io_driver_safety conf

data: _io_can_data_frame

dead time: _io_pwm_current_safety conf
DebugKey : ApdbType

device_ num : diag_errorcode

Did : _io_brbl_dids

DidData : _io_brbl_dids

DidLength : _io_brbl_dids
DIMulticastlpAddress : ApdbType

duty cycle tolerance : _io_pwm_safety conf

error_callback : _io_driver_safety _conf
error_code : _diag_errorcode

extended : io_brbl _can_id_

Extended : can_id

fault_location : _io_driver_trap_info
faulty value : _diag_errorcode
Flags : ApdbType

FlashDate : ApdbType

- g -
o glitch_filter_time : _io_driver_safety conf
-h -

» HeaderCrc : ApdbType
e Hook1 : ApdbType
 Hook2 : ApdbType
e Hook3 : ApdbType

Id : can_id

id : _io_can_data_frame

ID : _io_brbl_can_id_

id format: io _can_data frame

-k -
o Kd: _io_pid_config
o Kff: _io_pid_config
o Ki: _io_pid_config
o Kp: _io_pid_config

» LegacyApplicationCrc : ApdbType
e LegacyHeaderCrc : ApdbType
e length : _io_can_data_frame

-m -

MagicSeed : ApdbType

MainAddress : ApdbType

Manufacturerld : ApdbType
margin_lower_lim : _io_pwm_safety conf
margin_upper_lim : _io_pwm_safety conf
max_limit : _io_pid_config

min_limit : _io_pid_config

NodeNumber : ApdbType
NodeType : ApdbType

overrun : _io_pwm_current_queue

1
©
1

Password : ApdbType

pulse sample : io pwd pulse _samples

pulse _samples count: io pwd pulse _samples
pwd_cnt val lower: io_pwd_inc_safety conf
pwd_cnt_val upper: _io_pwd_inc_safety conf
pwd_freq _val lower: io_pwd_cplx_safety conf
pwd_freq_val _upper: _io_pwd_cplx_safety conf
pwd_pulse val lower: io_pwd_cplx_safety conf
pwd_pulse val upper: _io_pwd_cplx_safety conf
pwm_safety conf: io_pwm_current_safety conf

-r-

* Reserved : ApdbType

e reset counter: io_driver_rst_info
e reset reason: io_driver_rst_info

-G =
o safety switch : _io_pwm_safety_conf
o safety switch _type : _io_driver_safety conf
e SubnetMask : ApdbType
-t-
o TargetlpAddress : ApdbType
e trap id: io_driver_trap_info
e trap_info: _io_driver_rst_info
- u -
e UDSONCANFuncRxID : _io_brbl_can_param
e UDSONCANRXID : _io_brbl_can_param
e UDSONCANTXID : _io_brbl_can_param

-V =

e values : _io_pwm_current_queue

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by

162

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages Data Structures Files |
Data Structures Data Structure Index Data Fields

a b ¢|d|e|f g h i kI m n| of|lp|lr|,s t|u|yv
[N e e

-a -

e AbrdTimeout : ApdbType
e adc val lower: io_adc_safety conf
e adc val upper: io_adc_safety conf
e ApdbVersion : ApdbType

o ApplicationCrc : ApdbType

o Applicationld : ApdbType

o ApplicationVersion : ApdbType

BuildDate : ApdbType

CANBaudrate : _io _brbl can_param
CanBaudrate : ApdbType
CanChannel : ApdbType
CANChannel : _io_brbl_can_param
CanDownloadld : ApdbType

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

1
Q

-f-

CANDownloadID : io_brbl_can_param
CANUploadID : _io_brbl_can_param
CanUploadid : ApdbType

CodeSize : ApdbType

count : _io_pwm_current_queue
cpu_eccstat : _io_driver_trap_info
cpu_pecon : _io_driver_trap_info
cpu_tfr: _io_driver_trap_info
cpu_trapstat: _io_driver_trap_info
CrcSeed : ApdbType

CrcStartAddress : ApdbType
current_tolerance : _io_pwm_current_safety conf
cycle time : _io_driver_safety conf

data: _io_can_data_frame

dead time: _io_pwm_current_safety conf
DebugKey : ApdbType

device_ num : diag_errorcode

Did : _io_brbl_dids

DidData : _io_brbl_dids

DidLength : _io_brbl_dids
DIMulticastlpAddress : ApdbType

duty cycle tolerance : _io_pwm_safety conf

error_callback : _io_driver_safety _conf
error_code : _diag_errorcode

extended : io_brbl _can_id_

Extended : can_id

fault_location : _io_driver_trap_info

o faulty value : _diag_errorcode
o Flags : ApdbType
e FlashDate : ApdbType

- g -
o glitch_filter_time : _io_driver_safety conf
-h -

» HeaderCrc : ApdbType
e Hook1 : ApdbType
 Hook2 : ApdbType
e Hook3 : ApdbType

e |Id:can_id

e id: _io_can_data_frame

ID : _io_brbl_can_id_

e id format: io _can_data_frame

Kd : _io_pid_config
Kff . _io_pid_config
Ki: _io_pid_config
Kp : _io_pid_config

-] -
» LegacyApplicationCrc : ApdbType

e LegacyHeaderCrc : ApdbType
e length : _io_can_data_frame

-m -

MagicSeed : ApdbType

MainAddress : ApdbType

Manufacturerld : ApdbType
margin_lower_lim : _io_pwm_safety conf
margin_upper_lim : _io_pwm_safety conf
max_limit : _io_pid_config

min_limit : _io_pid_config

NodeNumber : ApdbType
NodeType : ApdbType

overrun : _io_pwm_current_queue

1
©
1

Password : ApdbType

pulse sample : io pwd pulse _samples

pulse _samples count: io pwd pulse _samples
pwd_cnt val lower: io_pwd_inc_safety conf
pwd_cnt_val upper: _io_pwd_inc_safety conf
pwd_freq _val lower: io_pwd_cplx_safety conf
pwd_freq_val _upper: _io_pwd_cplx_safety conf
pwd_pulse val lower: io_pwd_cplx_safety conf
pwd_pulse val upper: _io_pwd_cplx_safety conf
pwm_safety conf: io_pwm_current_safety conf

-r-

* Reserved : ApdbType

e reset counter: io_driver_rst_info
e reset reason: io_driver_rst_info

-G =
o safety switch : _io_pwm_safety_conf
o safety switch _type : _io_driver_safety conf
e SubnetMask : ApdbType
-t-
o TargetlpAddress : ApdbType
e trap id: io_driver_trap_info
e trap_info: _io_driver_rst_info
- u -
e UDSONCANFuncRxID : _io_brbl_can_param
e UDSONCANRXID : _io_brbl_can_param
e UDSONCANTXID : _io_brbl_can_param

-V =

e values : _io_pwm_current_queue

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by

162

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZAOI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures W

File List

Here is a list of all documented files with brief descriptions:

2 Apdb.h APDB define for bootloader

2 ApdbCfg.h Definitions for Apdb.h

= DIAG_Constants.h Global defines for IO Driver
diagnostic state machine and WD

2 DIAG_Functions.h Auxiliary functions for the
diagnostic state machine

210_ADC.h |O Driver functions for ADC

£10_BRBL.h API for accessing data in the
branding block of the ECU

210_CAN.h |O Driver functions for CAN
communication

2 10_Constants.h Global defines for IO Driver

£10_Crypt.h API for I/O driver cryptographic
functions

£10_DIO.h |O Driver functions for Digital
Input/Output

2/ 10_Driver.h High level interface to 10 Driver

= 10_EEPROM.h |O Driver functions for EEPROM

- 10_EEPROM_Preload.h Pre-load functions for EEPROM
210_LED.h |O driver functions for LED

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

2 10_NodelD.h
510_PID.h

510 _Pins.h
= 10_POWER.h

510_PVG.h
210_PWD.h

2 10_PWM.h
510_RTC.h

2 10_UART.h

10 _Vout.h

2 10_WD.h

5 10_WDTimer.h

I ptypes_xe167.h
=z TypesGen.h

IO Driver functions for reading the
NodelD pins

Contains the data structure for
configuring the PID controller

Global 10 Pin defines for 1O Driver

|O Driver functions for Power
control

|O Driver functions for PVG
channels

IO Driver functions for timer input
channels

|O Driver functions for PWM
channels

RTC functions, provides exact
timing functions

|O Driver functions for UART
communication

IO Driver functions for voltage
outputs

|O-Driver for the Window
Watchdog

|O Driver functions for the CPU's
Watchdog timer

Primitive data types
Types header file

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

doxyiaenyEY:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures W

File List | Globals |

External ; LogisticTypes ; Apdb ;
Apdb.h File
Reference

Data Structures | Macros

APDB define for bootloader. More...

#include "TypesGen.h"

Data Structures

struct ApdbType
APDB structure. More...

Macros
#define APDB_VERSION (0x00000206lu)

#define APDB_SIZE (0x80u)

APDB flags
Defined APDB flags.

#define APDB_FLAGS_ABRD_ENABLE (0x00000001Iu)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define APDB_FLAGS_CRC64_ENABLE (0x40000000lu)

#define APDB_FLAGS_MULTI_APP (0x80000000lu)

Detailed Description

APDB define for bootloader.

Contains the definition for the application database. This database
is used by the bootloader.

The bootloader needs this information to determine where the
application actually starts. For this reason the field "MainAddress"
must be provided by the application.

APDB Usage:

« Example for APDB definition

APDB Code Example

Example for using the APDB

Example for APDB definition in an application

volatile const ApdbType Apdb =
{
APDB VERSION, // APDB version
{0}, // Flash date
(provided by TTC-Downloader)
// Build date

{ ((((RTS_TTC FLASH DATE YEAR) & OxOFFF)
<< 0) |

(((RTS_TTC FLASH DATE MONTH) & Ox0F)
<< 12) |

(((RTS_TTC_ FLASH DATE DAY) & 0x1F)
<< 16) |

(((RTS_TTC_ FLASH DATE HOUR) & 0x1F)
<< 21) |

(((RTS_TTC FLASH DATE MINUTE) & Ox3F)
<< 26)) 1},
0, // Node type
0, // CRC start
address (provided by TTC-Downloader)
0, // Code size
(provided by TTC-Downloader)
0, // Legacy
application CRC (provided by TTC-
Downloader)
0, // RApplication CRC
(provided by TTC-Downloader)
1, // Node number
0, // CRC seed
(provided by TTC-Downloader)
0, // Flags
0, // Hook 1
0, // Hook 2

0, // Hook 3
APPL START, // Main address,

i.e., application entry point
{0, 1}, // CAN
(standard format, ID 0x1)
{0, 2}, // CAN
(standard format, ID 0x2)

download ID

upload ID

0, // Legacy header
CRC (provided by TTC-Downloader)
// Application

version (major.minor.revision)

((((uint32) REVISION NUMBER) << 0) |
(((uint32) MINOR NUMBER) << lo) |
(((uint32) MAJOR NUMBER) << 24)),

500, // CAN baud rate in

kbps

0, // CAN channel

0, // Password
(disable password protection)

0, // Magic seed

{ 10, 100, 30, 200}, // Target IP

address

{255, 255, 0, 0}, // Subnet mask

{239, 0, 0, 1}, // Multicast IP

address

0, // Debug key

0, // Automatic baud

rate detection timeout

0x00, // Manufacturer ID
(The generic ID OxFF shall be used for

private use.)

0x00, // RApplication ID
{0}, // Reserved, must

be set to zero

0 // Header CRC

(provided by TTC-Downloader)

b7

Copyright (c) TTControl. All rights reserved. Confidential and
proprietary.

Macro Definition Documentation

#define APDB_FLAGS_ABRD_ENABLE (0x00000001Iu)

Enables automatic baudrate detection at start-up (HY-TTC30X
family only). Access mode: read/write.

#define APDB_FLAGS_CRC64_ENABLE (0x40000000lu)

Indicates whether or not CRC-64 is used for application CRC.,
Access mode: read only.

#define APDB_FLAGS_MULTI_APP (0x80000000lu)

Indicates whether or not the app- lication is distributed over
multiple (incoherent) application regions. Access mode: read
only.

#define APDB_SIZE (0x80u)

Size of the APDB in bytes

#define APDB_VERSION (0x000002061u)

Current APDB version is version 2.6.

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by

oj,g_)‘(mge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-x-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures W

File List | Globals |

inc |
/

ApdbCfg.h File Reference

Definitions for Apdb.h. More...

#include "ptypes xel67.h"

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Definitions for Apdb.h.

This file defines important settings for Apdb.h

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by

ej,_m‘_)‘gﬁge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Manual b-TTc-x-G-20-001

Main Page | Related Pages | Data Structures .aa

File List | Globals |

inc ;
DIAG_Constants.h File
Reference

Data Structures | Typedefs

Global defines for 10 Driver diagnostic state machine and WD. More...

#include "IO Pins.h" #include "ptypes xel67.h"

Data Structures

struct _diag_errorcode
Diagnostic Error code structure. More...

Macros

States of the diagnostic state machine
State information returned by the function DIAG_Status

#define DIAG_STATE_INIT 0x03

#define DIAG_STATE_STARTUP 0x05
#define DIAG_STATE_MAIN 0x06
#define DIAG_STATE_SAFE_STATE 0x09

#define DIAG_STATE_DISABLED 0x00

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

error callback reaction
allowed return values of error callback function

#define DIAG_ERR_NOACTION Ox1

#define DIAG_ERR_SAFESTATE 0x9

Typedefs

typedef struct _diag_errorcode DIAG_ERRORCODE
Diagnostic Error code structure.

typedef ubyte1(* DIAG_ERR_CALLBACK)(ubyte1
diagnostic_state, DIAG_ERRORCODE
*error_code)
Error callback to be used by application
software.

Diagnostic State Machine Error Values

Errors codes that the function DIAG_Status returns in parameter
diag_error.error_code. They are also used for the error callback function.

Remarks
For a detailed description see Listing of diagnostic errors

enum _diag_errortype {
DIAG_E_NOERROR =0,
DIAG_E_ADC_LIMITS =1,
DIAG_E_ADC_5V2_SUPPLY = 2,
DIAG_E_ADC_SENSOR_SUPPLY = 3,
DIAG_E_ADC_KL30_MAIN =4,
DIAG_E_ADC_KL30_CPU =5,
DIAG_E_OVER_TEMPERATURE = 6,
DIAG_E_MEM_USER_STACK =7,
DIAG_E_MEM_REGISTER = 8,
DIAG_E_MEM_DSRAM =9,

DIAG_E_MEM_PSRAM = 10,
DIAG_E_MEM_DPRAM = 11,
DIAG_E_MEM_ZeroFlag = 12,
DIAG_E_MEM_CarryFlag = 13,
DIAG_E_MEM_NegativeFlag = 14,
DIAG_E_MEM_OverflowFlag = 15,
DIAG_E_MEM_SYS_STACK_OF = 16,
DIAG_E_MEM_SYS_STACK_UF =17,
DIAG_E_MEM_SRO_TRAP = 18,
DIAG_E_MEM_CLASS B_TRAP =19,
DIAG_E_PWM_CURRENT_ZERO = 20,
DIAG_E_PWM_CURRENT_OFFSET =
21,
DIAG_E_PWM_LIMITS_RANGE = 22,
DIAG_E_PWM_LIMITS_TOL = 23,
DIAG_E_PWM_PERIOD_MISMATCH =
24,
DIAG_E_PWM_CURRENT = 25,
DIAG_E_PWM_CURRENT_DEAD_TIME
= 26,
DIAG_E_PWM_CURRENT_OFFS_DRIFT
= 27,
DIAG_E_PWD_LIMITS_FREQ = 28,
DIAG_E_PWD_LIMITS_PULSE_WIDTH
=29,
DIAG_E_CYCLE_TIME = 30,
DIAG_E_RPP = 31,
DIAG_E_EXT_WD = 32,
DIAG_E_LS_PROT = 33,
DIAG_E_OVD_STARTUP = 34,
DIAG_E_OVD = 35,
DIAG_E_SAFETY_SW_INT = 36,
DIAG_E_SAFETY_SW_EXT = 37,
DIAG_E_SAFETY_SW_SHUT_OFF = 38,
DIAG_E_INVALID_DIAG_STATE = 39,
DIAG_E_INVALID_STARTUP_STATE =
40,
DIAG_E_INVALID_MAIN_STATE = 41,
DIAG_E_WD_STARTUP =42,
DIAG_E_SR_LowNibble =43,

DIAG_E_SR_HighNibble = 44,
DIAG_E_FREQ_STARTUP = 45,
DIAG_E_TIMEOUT = 486,
DIAG_E_APPL_SAFE_STATE = 47,
DIAG_E_PLL_VCO_NOT_LOCKED = 48,
DIAG_E_SW_INTERNAL = 49,
DIAG_E_INIT_ERROR = 50,
DIAG_E_INT_WATCHDOG = 51,
DIAG_E_MEM_SOFTBREAK_TRAP =

52

}

typedef enum _diag_errortype DIAG_ErrorType

Detailed Description

Global defines for 10 Driver diagnostic state machine and WD.

This header file defines the Error Codes for diagnostic state machine and
WD.

Macro Definition Documentation
#define DIAG_ERR_NOACTION 0x1

take no action (ignore the error)

#define DIAG_ERR_SAFESTATE 0x9

enter the safe state (switch off all outputs)

#define DIAG_STATE_DISABLED 0x00

Diagnostic state machine is disabled. This means the 10-Driver has been
configured NON-SAFETY

#define DIAG_STATE_INIT 0x03

Diagnostic state machine is in its initial state (safety-outputs not
operational)

#define DIAG_STATE_MAIN 0x06

Diagnostic state machine is in main state performing runtime tests
(safety-outputs operational)

#define DIAG_STATE_SAFE_STATE 0x09

Diagnostic state machine is in safe state due to errors that have been
detected (safety-outputs not operational)

#define DIAG_STATE_STARTUP 0x05

Diagnostic state machine is in startup state performing startup tests
(safety-outputs not operational)

Typedef Documentation

typedef struct _diag_errorcode DIAG_ERRORCODE

Diagnostic Error code structure.

Stores all relevant error parameters returned from the diagnostic state
machine or returned from the WD

typedef enum _diag_errortype DIAG_ErrorType

For a detailed description see Listing of diagnostic errors

Enumeration Type Documentation

enum _diag_errortype

For a detailed description see Listing of diagnostic errors

Enumerator:

DIAG_E_NOERROR
Nno error

DIAG_E ADC LIMITS
an ADC limit was

exceeded or underrun

DIAG_E ADC 5V2 SUPPLY
the 5.2V supply voltage

deviates from its
normal level

DIAG_ E ADC SENSOR_SUPPLY
the sensor supply

voltage deviates from
its normal level

DIAG_E ADC_KL30_MAIN
the KL30 voltage level

exceeds or underrun its
allowed limits

DIAG_E ADC _KL30 _CPU
the KL30_CPU voltage

level exceeds or
underrun its allowed
limits

DIAG_E OVER TEMPERATURE
the board temperature

exceeds its allowed

DIAG_E_MEM_USER _STACK

DIAG_E_MEM_REGISTER

DIAG_E_MEM _DSRAM

DIAG_E_MEM_PSRAM

DIAG_E_MEM _DPRAM

DIAG_E_MEM_ZeroFlag

DIAG_E MEM_CarryFlag

DIAG_E_MEM_NegativeFlag

range

a memory block of the
user stack is corrupted

internal register values
are corrupted

a memory block of the
data S-RAM is
corrupted

a memory block of the
program S-RAM is
corrupted

a memory block of the
dual-port RAM is
corrupted

the zero flag was
mistakenly raised
during a math
operation

the carry flag was
mistakenly raised
during a math
operation

the negative flag was
mistakenly raised
during a math
operation

DIAG_E MEM_OverflowFlag

DIAG_E_MEM_SYS_STACK_OF

DIAG_E_MEM_SYS_STACK_UF

DIAG_E_MEM_SRO_TRAP

DIAG_E MEM_CLASS B_TRAP

DIAG_E_PWM_CURRENT ZERO

DIAG_E PWM_CURRENT OFFSET

DIAG_E _PWM_LIMITS RANGE

the overflow flag was
mistakenly raised
during a math
operation

an overflow of the
system stack occurred

an underflow of the
system stack occurred

a SRO trap occurred
and all interrupts have
been disabled

a class B trap occurred
and all interrupts have
been disabled

Current measurement
greater zero during
startup phase

Offset of current
measurement circuitry
on PWM output not
within limits

Pulse width not within
range on PWM output
(outside min/max
pulse)

DIAG E PWM LIMITS TOL Pulse width not within
tolerance window on
PWM output

DIAG_E PWM_PERIOD MISMATCH
Period mismatch on

PWM output

DIAG E PWM_CURRENT
Current not within limits

on current controlled
input

DIAG_ E PWM_CURRENT _DEAD TIME
Set current not reached

after dead time elapsed

DIAG_ E PWM_CURRENT _OFFS DRIFT
Current offset too low

(due to drift or HW
defect)

DIAG_E PWD _LIMITS _FREQ
Frequency limit error

on timer input or
counter error on
incremental/counter
input

DIAG E PWD LIMITS PULSE WIDTH
Pulse width limit error

on timer input

DIAG_E CYCLE _TIME
Cycle time too high

DIAG_E RPP
Insufficient gate drive

on reverse polarity
protection.

DIAG_E_EXT WD

DIAG_E LS PROT

DIAG_E_OVD_STARTUP

DIAG_E_OVD

DIAG_E _SAFETY SW._INT

DIAG_E _SAFETY SW_EXT

DIAG_E_SAFETY SW_SHUT OFF

DIAG_E_INVALID DIAG_STATE

DIAG_E_INVALID _STARTUP_STATE

DIAG_E_INVALID MAIN_STATE

DIAG_E WD_STARTUP

External WD has
activated the safe state

Over-current condition
on safety switch

Over voltage startup
test has failed

Over voltage detection
has activated the safe
state

Safety switch check
error (internal switch)

Safety switch check
error (external switch)

Safety switch check
failed during start-up

Invalid diagnostic state

Invalid diagnostic state
in startup state

Invalid diagnostic state
in main state

Watchdog startup test
has failed

DIAG _E_SR_LowNibble

DIAG_E_SR_HighNibble

DIAG_E_FREQ_STARTUP

DIAG_E_TIMEOUT

DIAG_E_APPL_SAFE_STATE

DIAG E_PLL_VCO NOT _LOCKED

DIAG_E_SW_INTERNAL

DIAG_E_INIT_ERROR

The feedback value of
the low nibble of the
shift register is faulty

The feedback value of
the high nibble of the
shift register is faulty

Internal clock
frequency drifts from its
normal value

A timeout between
Diagnostic Module and
|O-Driver has occurred
(f.ex driver functions of
safety critical 10 not
called)

Application requested
to activate the safe
state

The PLL/VCO lost its
lock to the oscillator
frequency.

Internal SW error
detected. Maybe SW or
HW related.

Error during
initialization of

diagnostic state
machine

DIAG_E INT_WATCHDOG
Internal Watchdog has

not been serviced in
time - WD reset
occurred

DIAG_E MEM_SOFTBREAK _TRAP
a SOFTBREAK trap

occurred (software
triggered)

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by @]@!@m
1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

inc ;r

DIAG_Functions.h
File Reference

Enumerations | Functions

Auxiliary functions for the diagnostic state machine. More...

finclude "IO Driver.h" ffinclude "IO_Constants.h"
#include "DIAG Constants.h"

Enumerations

enum DIAG_STARTUP_TEST CTRL{
DIAG_STARTUP_TEST_INHIBIT,
DIAG_STARTUP_TEST_ACTIVATE
}

control modes for blocking startup tests More...

Functions

I0_ErrorType DIAG_Status (ubyte1 *diag_state,
DIAG_ERRORCODE *diag_error)
status function for diagnostic state machine

I0_ErrorType DIAG_EnterSafestate (void)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

10_ErrorType

10_ErrorType

allows an application driven safe state

DIAG_StartupTestCirl
(DIAG_STARTUP_TEST_CTRL ctrl)
Inhibits the startup tests.

DIAG_EnableDischargeCircuit (void)
Enables the usage of the integrated discharge
circuit (on ECU HW V5.00)

Detailed Description

Auxiliary functions for the diagnostic state machine.

Provides the interface to the diagnostic state machine

Enumeration Type Documentation

enum DIAG_STARTUP_TEST CTRL

control modes for blocking startup tests

Enumerator:

DIAG_STARTUP_TEST _INHIBIT
inhibit startup tests

DIAG _STARTUP _TEST ACTIVATE
activate startup

tests

Function Documentation

I0_ErrorType DIAG_EnableDischargeCircuit (void)

Enables the usage of the integrated discharge circuit (on ECU
HW V5.00)

Returns
IO_ErrorTpye

Return values
I0_E_OK Everything fine
I0_E_CHANNEL_BUSY Discharge circuit has been
already enabled

I0_E_DRIVER_INITIALIZED IO_Driver_Init() has been
already called

Remarks
e This function has only influence on ECUs that provide
an integrated discharge circuit (ECU HW V5.00).
e This function needs to be called before
I0_Driver_Init() in order to enable the discharge
circuit.

I0_ErrorType DIAG_EnterSafestate (void)

allows an application driven safe state

When this function is called the diagnostic state machine enters
the safe state.

Returns
|O_ErrorType

Return values
I0O_E OK everything fine
I0O_E_CHANNEL_NOT_CONFIGURED Diagnostic

state machine
still in init state

IO E ECU _ALREADY IN_SAFE_STATE ECU is already
in safe state

I0_ErrorType
DIAG_StartupTestCtrl (DIAG_STARTUP_TEST_CTRL ctrl)

Inhibits the startup tests.

Parameters
ctrl Control command for inhibiting/activating startup tests

Returns
IO _ErrorType

Return values
I0_E_OK Everything fine
I0_E_INVALID_PARAMETER Invalid parameter has been
passed to this function
I0_E_UNKNOWN Function has not been

called before startup tests
are being executed

Remarks
This function needs to be called before the startup test are
being executed in order to inhibit them.

After the startup test are inhibited, this function has to be
called once more in order to activate the startup tests.

10_ErrorType
DIAG_Status (ubyte1 * diag_state,

DIAG_ERRORCODE * diag_error
)

status function for diagnostic state machine

Returns the current satus as well as the error codes of the
diagostic state machine and the watchdog CPU.

Parameters
diag_state current state of the diagnostic state machine
diag_error error codes of the diagnostic state machine

Returns
I0_ErrorType

Return values
I0_E_NULL_POINTER null pointer has been passed
I0O_E OK everything fine

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by
QCEEER 182

http://www.doxygen.org/index.html

ITrControl)I;I\G(Z'IO'I('JSZIBO Family C API Manual b-T7c-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures ﬁ

File List | Globals |

inc J.l’

I0_ADC.h File Reference

Data Structures | Typedefs | Functions

IO Driver functions for ADC. More...

#include "IO Driver.h"

Data Structures

struct _io_adc_safety_conf
Safety configuration for the ADC inputs. More...

Macros
Types of configurable Analog inputs

Input configuration for configurable ADC inputs. These defines can be used for the mode parameter
of the function IO_ADC_ChannellInit.

#define 10_ADC_RATIOMETRIC 0x01
#define 10_ADC_CURRENT 0x03
#define 10_ADC_RESISTIVE 0x00

#define 10_ADC_ABSOLUTE 0x02

Range configuration for ADC inputs

Configuration of the ADC input range. These defines can be used for the range parameter of the
function IO ADC ChannellInit.

#define 10_ADC_RANGE_5V 0

#define 10_ADC_RANGE_10V 1

Typedefs

typedef struct _io_adc_safety_conf 10_ADC_SAFETY_CONF
Safety configuration for the ADC inputs.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Functions

10_ErrorType

10_ErrorType

10_ErrorType

float4

sbyte2

I0_ADC_Channellnit (I0_PIN adc_channel, ubyte1 mode, ubyte1 range, const
I0_ADC_SAFETY_CONF *const safety_conf)
Setup one ADC channel.

I0_ADC_ChannelDelnit (I0_PIN adc_channel)
Deinitializes one ADC input.

I0_ADC_Get (IO_PIN adc_channel, ubyte2 *const adc_value, bool *const fresh)
Returns the value of the given ADC channel.

I0_ADC_BoardTempFloat (ubyte2 raw_value)
Calculates the board temperature in tenth degree Celsius.

I0_ADC_BoardTempSbyte (ubyte2 raw_value)
Calculates the board temperature in degree Celsius.

Detailed Description

IO Driver functions for ADC.

Contains all service functions for the ADC.
There are four groups of Analog Inputs available:

* ADC 4-Mode: Can be configured as absolute, resistive (0-65535 Ohm), current (4-20mA) or

ratiometric input. An additional sensor supply measurement (for the ratiometric case) will be
configured and serves to correct the ADC signal. Input range is 0-5V for ratiometric and
configurable (0-5V or 0-10V) for absolute mode. Up to 2 channels (4 channels for HY-TTC 32
variants) can be configured (I0_ADC_00..10_ADC_01 for HY-TTC 30 variants and
I0_ADC_14..10_ADC_15 for HY-TTC 32 variants).

ADC 3-Mode: 6 ADC inputs (4 ADC inputs for HY-TTC 32 variants) for current (4-20mA sensors),
absolute and ratiometric measurement (I0_ADC_10..10_ADC_15 for HY-TTC 30 variants,
I0_ADC_10..10_ADC_13 for HY-TTC 32 variants). Input range is 0-5V for ratiometric and
configurable (0-5V or 0-10V) for absolute mode. If ratiometric mode is used the measurement of
the sensor supply will be initialized.

ADC 1-Mode: These inputs (I0_ADC_20..10_ADC_41) can only be configured in absolute mode.
Input range: 0-32V

Normal ADC: Various ADC inputs for retrieving onboard voltages (UBat, Sensor-Supply, Board-
Temperature, ...)

ADC Code Examples

Please refer to section Basic structure of an application for understanding where to place the
initialization and task function calls.

Examples for ADC initialization:

// ADC 4-Mode:
IO _ADC ChannelInit(IO _ADC 00

, IO _ADC RESISTIVE // configuration for resistive
measurement

, 0 // parameter is ignored for
IO ADC RESISTIVE

, NULL); // no safety configuration

// ADC 4-Mode:
IO _ADC ChannelInit(IO _ADC 01

, IO _ADC ABSOLUTE // configuration for absolute
measurement

, IO _ADC RANGE 5V // measurement range 0-5V

, NULL); // no safety configuration

// ADC 3-Mode:
IO _ADC ChannelInit(IO _ADC 10

, IO _ADC CURRENT // configuration for current
measurement

, 0 // parameter is ignored for
IO ADC CURRENT

, NULL); // no safety configuration

// Normal ADC:
IO _ADC_ChannelInit(IO _ADC_SENSOR SUPPLY

, I0 ADC_ ABSOLUTE // Only absolute allowed for
normal ADCs

, 0 // parameter is ignored for ADC
channels other than 3-Mode and 2-Mode

, NULL); // safety configuration; not

supported

Example for ADC task function call:
This function call is identical for every type of ADC inputs.

ubyte2 adc_val 0;
bool adc fresh O;

I0 ADC Get (IO ADC 00
, &adc val O
, &adc fresh 0);

Macro Definition Documentation

#define |I0_ADC_ABSOLUTE 0x02

Absolute voltage measurement
use this configuration to measure an absolute voltage signal
Task function returns voltage in [mV]

#define IO_ADC_CURRENT 0x03

Current loop configuration
use this configuration if the connected sensor deliveres a current signal (4..20mA sensors)
Task function returns current in [uA]

#define I0_ADC_RANGE_10V 1

ADC range 0 .. 10V

#define I0_ADC_RANGE_5V 0

ADC range 0 .. 5V

#define |I0_ADC_RATIOMETRIC 0x01

Ratiometric configuration

use this configuration if the connected sensor is supplied by the sensor supply
(zo_apc_sensor suppry) and delivers a voltage signal.

Task function returns voltage in [mV]

#define I0_ADC_RESISTIVE 0x00

Resistive configuration
use this configuration if the sensor value shall be determined by measuring its resistance
Task function returns resistance in [Ohm]

Typedef Documentation

typedef struct _io_adc_safety _conf |O_ADC_SAFETY_CONF

Safety configuration for the ADC inputs.

Stores all relevant safety configuration parameters for the ADC inputs as an absolute value. The
values shall be stated as mV, uA or Ohm - depending on the configuration of the channel.

It is not allowed to set the lower limit higher than or equal to the upper limit.
The valid min/max limits for each measured unit and range are like follows:

» 10 _apnc_amsoLutk for 5V range configuration: 1mV ... 5000mV

e 10_anc_assoLutTk for 10V range configuration: 1mV ... 10500mV

e 10_apc_assoLuTE 32V inputs: 1mV ... 32780mV (1mV ... 33333mV for TTC32 variants)
e 10 _ADC_RATIOMETRIC: 1mV ... 5000mV

e 10 _apc_cUrRENT: TUA ... 25000uA

e 10 _apc_RESISTIVE: 1 Ohm ... 656534 Ohm

The safety configuration is applicable for the following channels:

e IO_ADC 00 .. IO_ADC_01
¢ IO_ADC 10 .. IO_ADC_15
¢ IO _ADC 20 .. IO0_ADC 21

Function Documentation

float4 I0_ADC_BoardTempFloat (ubyte2 raw_value)

Calculates the board temperature in tenth degree Celsius.

The function converts the raw ADC value (retrieved from 10_apc_cet()) to a temperature in degree
Celsius and returns it as a float value.

Parameters
raw_value raw adc board temperature returned from the 1o _anc et () function

Returns
the board temperature in degree celsius (-55 .. 140.55 degree C)

Remarks
Usage:

IO ADC Get(IO _ADC BOARD TEMP, &raw value, &fresh);
temp = IO ADC BoardTempFloat (raw value);

sbyte2 I0_ADC_BoardTempSbyte (ubyte2 raw_value)

Calculates the board temperature in degree Celsius.

The function converts the raw ADC value (retrieved from 1o_apc_cet()) to a temperature in tenth
degree Celsius and returns it as a sbyte1 value.

Parameters
raw_value raw adc board temperature returned from the 1o _apc_cet () function

Returns
returns the board temperature in tenth degree celsius (-550 .. 1405 which corresponds to -55
.. 140.5 degree C)

Remarks
e Usage:

IO ADC Get(IO _ADC BOARD TEMP, &raw value, &fresh);
temp = IO ADC BoardTempSbyte(raw value);

I0_ErrorType IO_ADC_ChannelDelnit (10_PIN adc_channel)

Deinitializes one ADC input.
deinitializes the given ADC channel, allows reconfiguration by 10 _abc_channelinit()

Parameters
adc_channel ADC channel, one of:

Returns

10_ErrorType

Return values
I0_E_OK

I0_E_INVALID_CHANNEL_ID

I0_ADC_00 .. I0_ADC_01
I0_ADC 10 .. IO0_ADC_15
I0_ADC 20 .. IO_ADC_41

I0_K15

I0_ADC_BOARD_TEMP
I0_ADC_SENSOR_SUPPLY

I0_ADC_UBAT

I0_ADC_UBAT CPU
I0_ADC NODE ID 0

I0_ADC NODE ID 1

I0_INT PIN_SHIFT LB HI

I0_INT PIN_SHIFT LB LO

10_INT_PIN sHIFT1_LB HI (Only relevant for HY-TTC 32 variants)
10 _INT PIN sHIFT1_ LB Lo (only relevant for HY-TTC 32 variants)

everything fine
the given channel id does not exist

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY

The given channel is not a analog input

Remarks
» The following channels form groups. A group always has to be configured as a whole.
© IO _ADC_00 .. IO_ADC 01
© IO _ADC_10 .. IO _ADC_11
© IO _ADC_12..I0 _ADC 13
o IO_ADC_14 ..I0_ADC 15
o IO_ADC_20 .. I0_ADC 21
o IO _ADC_22 .. I0_ADC 24
o IO_ADC_25.. I0_ADC_27
o IO _ADC_30 .. I0_ADC 31
0 IO _ADC_32 .. IO _ADC_33
I0_ErrorType 1I0_ADC_Channelinit (I0_PIN adc_channel,
ubyte1 mode,
ubyte1 range,

Setup one ADC channel.

Parameters

)

const IO_ADC_SAFETY_CONF *const safety_conf

adc_channel ADC channel, one of:

e IO _ADC_00 .. IO0_ADC_01
e IO _ADC_10 .. IO_ADC_15
e IO ADC 20 .. I0 ADC 41

I0_K15

I0_ADC_BOARD_TEMP
I0_ADC_SENSOR_SUPPLY
I0_ADC_5V2

I0_ADC_UBAT
I0_ADC_UBAT_CPU
I0_ADC_NODE_ID_0
I0_ADC_NODE_ID_1
I0_INT PIN SHIFT LB HI
I0_INT PIN_SHIFT LB LO
IO_INT PIN SHIFT1_LB_HI
IO_INT PIN_SHIFT1_LB LO

mode Type of input:
I0_ADC_RATIOMETRIC: VOltage measurement proportional to sensor supply voltac
10_apc_curreNT: 0-27600uA input

10_apc_RESISTIVE: 0-655350hm input

I0_ApC_ABSOLUTE: normal voltage input

range Measurement-range when mode is set to |IO_ADC_ABSOLUTE. This parameter is ¢
evaluated for analog channels with configurable range, i.e.:

I0_ADC_00 .. I0_ADC_01

10_apc_10 .. 10_anc_15 All other channels have a non-configurable range of 0-3:
(parameter is ignored). The parameter can be one of:

I0_ADC_RANGE_5V
I0_ADC_RANGE_10V

safety_conf Safety configuration.

Returns
10_ErrorType

Return values
I0_E_OK

I0_E_INVALID_CHANNEL_ID
I0_E_INVALID_PARAMETER

I0_E_CHANNEL_

BUSY

I0_E_DRIVER_NOT_INITIALIZED
I0_E_GROUP_CONFLICT
I0_E_TASK_NO_FREE_SLOTS
I0_E_SW_INTERNAL
I0_E_CH_CAPABILITY
I0_E_SAFETY_NOT_SUPPORTED
I0_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as safety device --

Remarks

everything fine

the channel id does not exist

parameter is out of range

the ADC input channel is currently used by another 1
The common driver init function has not been called
desired configuration not possible due to a group co
No more free slots to setup task function

Internal software error

The ADC capability of this channel has not been act
the given channel does not support safety features

the safety feature is not available for this channel

e The supported features depend on the selected channel:
0 IO ADC 00 .. I0 ADC 01:

® mode: IO_ADC_ABSOLUTE, IO_ADC_RATIOMETRIC, IO_ADC_CURRENT Of IO _ADC_RESISTIVE

© IO_ADC 10 .. IO ADC_15:

® mode: IO_ADC_ABSOLUTE, IO_ADC_RATIOMETRIC O IO_ADC_CURRENT

© IO _ADC_20 .. IO_ADC_41:

® mode:

IO_ADC_ABSOLUTE

© IO K15:
® mode: IO_ADC_ABSOLUTE
o IO_ADC_5V2:
" mode: IO_ADC_ABSOLUTE
© IO_ADC_BOARD_TEMP:
" mode: IO_ADC_ABSOLUTE
0 IO_ADC_SENSOR SUPPLY:
® mode: IO_ADC ABSOLUTE
0 IO_ADC_UBAT:
® mode: IO_ADC ABSOLUTE
© IO_ADC_UBAT CPU:
® mode: IO_ADC ABSOLUTE
© IO _ADC_NODE ID 0/IO_ADC NODE_ID 1:
® mode: IO_ADC_ABSOLUTE
0 IO_INT_PIN SHIFT LB _LO/IO_INT PIN SHIFT_LB_HI/IO_INT PIN SHIFT1_LB_LO/IO_INT PIN S
= mode: IO _ADC_RATIOMETRIC (ratiometric measurement to internal 5V2_VM voltage)

« The following channels form groups. They have to be configured in the same mode within a group.
I0_ADC_00 .. I0_ADC_01
IO _ADC_10 .. I0_ADC_11
IO _ADC_12 .. I0_ADC_13
IO_ADC_14 .. I0_ADC_15
IO_ADC_20 .. I0_ADC_21
IO_ADC_22 .. I0_ADC_24
IO _ADC_25 .. I0_ADC_27
I0_ADC 30 .. I0_ADC 31
I0_ADC 32 .. IO_ADC 33

0O 0O 0 0O 0O O o O o

+ Check the alternate functions of the pins used in each group. A pin can only be configured for one
a time and it has to be the same function within the group.The alternate functions can be found at

Remarks

» The channels IO_ADC_UBAT, I0O_ADC_UBAT_CPU, I0O_ADC_BOARD_TEMP and I0O_K15
initialized in the function 10_Driver_Init. Therefore the return value is IO_E_CHANNEL_BUS'
10_Driver_Init has been called before.

« [f the driver is initialized with safety-parameters, i.e., I0_Driver_Init has been called with a sa
structure != nuLL, the channels IO_ADC_5V2, I0_ADC_SENSOR_SUPPLY,
IO_INT_PIN_SHIFT_LB_LO, IO_INT_PIN_SHIFT_LB_HI, IO_INT_PIN_SHIFT1_LB_LO and
IO_INT_PIN_SHIFT1_LB_HI are additionally initialized with the call to I0_Driver_Init (the cal
I0_ADC_Channellnit will return IO_E_CHANNEL_BUSY IO_Driver_Init has been called bef

* The parameter range is only valid if the mode is set to IO_ADC_ABSOLUTE

e For HY-TTC 32 and HY-TTC 32S channels 1o apc 14 and 10 abc_15 support also 1o apc_REsSI

10_ErrorType I0_ADC_Get (10_PIN adc_channel,
ubyte2 *const adc_value,
bool *const fresh

)

Returns the value of the given ADC channel.

Parameters

adc_channel ADC channel, one of:

I0_ADC 00 .. I0_ADC_01
I0_ADC_10 .. IO_ADC 15

I0_ADC 20 .. IO_ADC 41

I0_ADC_BOARD_ TEMP

I0_ADC_SENSOR_SUPPLY

I0_ADC_5V2

I0_ADC_UBAT

I0_ADC UBAT CPU

10 K15

I0_ADC_NODE_ID_0

I0_ADC_NODE_ID_1

IO_INT PIN SHIFT LB HI

IO_INT PIN_SHIFT LB _LO

10_INT PIN sHIFT1_ LB HI (Only relevant for HY-TTC 32 variants)
I0_INT PIN sHIFT1_LB Lo (only relevant for HY-TTC 32 variants)

adc_value ADC value, the range depends on the input group and its configuration (type
parameter of IO_ADC_Channellnit()):

I0_ADC_00 .. I0_ADC_01

o 10 apc_assorLuTk: 0..10500 (0OV..10.500V)

o 10_apnc_rarroMETRIC: 0..5000 (OV..5.000V)

o 10 apc curRreNT: 0..27600 (OmA..27.600mA)

o 10 _apnc_RESISTIVE: 0..65535 (00Ohm..655350hm)
I0_ADC_10 .. I0_ADC_15

o 10 _anc_assorutE: 0..10500 (OV..10.500V)

o 10 apnc_raTIoMETRIC: 0..5000 (OV..5.000V)

o 10 _apc_curreNnT: 0..27600 (OmA..27.600mA)
I0_ADC_20 .. I0_ADC_21

o 10 _anc_assorutk: 0..32780 (0V..32.780V) (0V..33.333V for TTC32

variants)

I0_ADC_22 .. IO0_ADC_27

o 10 _apc_assoruTe: 0..32780 (0V..32.780V)
I0_ADC_28 .. I0_ADC_41

o 10 _apc_amsorute: 0..32780 (0V..32.780V) (0V..33.333V for TTC32

variants)

I0_ADC_BOARD_TEMP

o 10_apc_aBsoLuTe: 4500..24055 (-60.17..148.62 degree C)
I0_ADC_5V2

o 10 _apnc_aBsoLuTE: 0..5313 (0V..5.313V)
I0_ADC_SENSOR_SUPPLY

o 10 apc_aBsoruTE: 0..5313 (0V..5.313V)
I0_ADC_UBAT

o 10 _anc_assorutk: 0..55000 (0V..55.000V)
I0_ADC_UBAT CPU

o 10 apc_assoLuTk: 0..55000 (0OV..55.000V)
I0_ADC_NODE_ID_0/IO_ADC_NODE ID_1

o 10 _anc_amsorutk: 0..32780 (0V..32.780V)
1I0_K15

o 10 _anc_assorutk: 0..32780 (0V..32.780V)

fresh Status of the ADC value

trUE: ADC value is fresh (channel has been converted)

e rarse: ADC value is old (channel has not been converted)

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_ADC_CHANNEL_STARTUP Channel is in initialization phase
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is not a analog input
I10_E_NULL_POINTER A NULL pointer has been passed
I0_E_FET_PROTECTION FET is disabled, protection is active
I0_E_CHANNEL_NOT_CONFIGURED Channel has not been setup
10_E_ADC_INVALID The ADC value is invalid/not available
Remarks

» The temperature value in degree C must recalculated in the following manner, since the
value has an offset of 10000 and is multiplied with 100:
degree_value = ((float) adc_value - 10000) / 100
Please use the functions 10 _apc_BoardTempFloat () OF I0_ADC_ BoardTempSbyte () for this
calculation

» For the input zo0_apc 00 .. 10_apc_o1 and 1o_apc_10 .. I0_ADC_15 iN I0_ADC_CURRENT mode,
the inputs will be switched off for 2s if the current exceed 27.600mA. In this time the
functions returns 1o E _FET PROTECTION.

e For HY-TTC 32 and HY-TTC 32S channels 1o apc_14 and 1o_apc_15 support also
I0_ADC_RESISTIVE mode

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by @j@u@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
ITControl Manual b-TTc-x-G-20-001

Main Page | Related Pages | Data Structures m
File List | Globals |

inc f

I0_BRBL.h File Reference

Data Structures | Typedefs | Functions

API for accessing data in the branding block of the ECU. More...
#include "ptypes_xel67.h" #include "IO_Constants.h"

Data Structures

struct _io_brbl_can_id_
CAN ID structure. More...

struct _io_brbl_can_param
Branding block CAN parameter structure. More...

struct _io_brbl_dids
Entry definition for DID table. More...

Macros

#define 10_BRBL_XTEA_PRIV_KEY_LEN 4U

#define 10_BRBL_XTEA_PRIV_KEY_IDX_0 OU
Definitions for private key table.

#define 10_BRBL_XTEA_PRIV_KEY_IDX_1 1U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_2 2U

#define 10_BRBL_XTEA_PRIV_KEY_IDX_3 3U

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define 10_BRBL_XTEA_PRIV_KEY_IDX_4 4U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_5 5U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_6 6U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_7 7U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_8 8U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_9 9U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_10 10U
#define 10_BRBL_XTEA_PRIV_KEY_IDX_11 11U

#define 10_BRBL_XTEA_PRIV_KEY TBL_LEN 12U

#define 10_BRBL_CUSTOM_DID_IDX_0 OU
Definitions for custom DID table.

#define 10_BRBL_CUSTOM_DID_IDX_1 1U
#define 10_BRBL_CUSTOM_DID_IDX_2 2U
#define 10_BRBL_CUSTOM_DID_IDX_3 3U
#define 10_BRBL_CUSTOM_DID_IDX_4 4U
#define 10_BRBL_CUSTOM_DID_IDX_5 5U
#define 10_BRBL_CUSTOM_DID_IDX_6 6U
#define 10_BRBL_CUSTOM_DID_IDX_7 7U
#define 10_BRBL_CUSTOM_DID_IDX_8 8U
#define 10_BRBL_CUSTOM_DID_IDX_9 9U

#define 10_BRBL_CUSTOM_DID IDX_10 10U

#define 10_BRBL_CUSTOM DID_IDX_11 11U

#define 10_BRBL_CUSTOM_DID_IDX_12 12U

#define 10 BRBL_CUSTOM _DID_IDX_13 13U

#define 10_BRBL_CUSTOM _DID IDX_14 14U

#define 10_BRBL_CUSTOM_DID_IDX_15 15U

#define 10_BRBL_CUSTOM_DID TBL_LEN 16U

Typedefs

typedef struct _io_brbl_can_id_ 10_BRBL_CAN_ID

CAN ID structure.

typedef struct _io_brbl_can_param 10_BRBL_CAN_PARAM

Branding block CAN parameter structure.

typedef struct _io_brbl_dids 10_BRBL_CUSTOM_DID

Functions

Entry definition for DID table.

I0_ErrorType

I0_ErrorType

10_ErrorType

10_ErrorType

I0_BRBL_Validate (void)
Validates the branding block.

I0_BRBL_GetXteaKey (ubyte1 key_num, ubyte4 *const

key buf, ubyte1 key buf len)

Returns a secret key from the secret key table that is located in
the branding block.

I0_BRBL_GetDid (ubyte1 did_tbl_idx,
I0_BRBL_CUSTOM_DID *const did_entry)

Returns a DID from the DID table that is located in the branding
block.

I0_BRBL_GetCanParam (I0_BRBL_CAN_PARAM *const
brbl_can_param)

Returns the CAN parameters set in the Branding Block.

Detailed Description

API for accessing data in the branding block of the ECU.

Read Dataldentifiers stored in the Branding Block

This section describes how to read a Dataldentifier that has been stored in the
ECUs braning block.

10
10
10
10
10

//

//

//

//

rc

ErrorType rc validate;
ErrorType rc_get did;
ErrorType rc get can params;
BRBL CUSTOM DID did item;
BRBL CAN PARAM can params;

First the consistency of the BRBL has to be checked.
The validity of

the BRBL has to be checked only once per power cycle.
It is best to

call this function during the init phase (directly
after calling \c IO Driver Init)

because validating the BRBL will take approximately
1.2ms.

brbl validate = IO BRBL Validate();

if_(rc_validate == IO_E_OK7

{

rc_get did = IO BRBL GetDid(IO BRBL CUSTOM DID IDX O,
&did item);
if (rc_get did == IO E OK)
{

// The DID data can now be accessed as follows:

// did item.Did holds the DID (e.g. OxFDO0O)

// did item.DidLength holds the length of the data
that is attached to the DID

// did item.DidData is a pointer to the DID data
(array with length did item.DidLength)

// Copying the DID data from the branding block
can be done as follows:

for (i = 0; i < did _item.DidLength; i++)

{

app did data buffer[i] = did item.DidDatal[i];

}

rc_get can params = IO BRBL GetCanParam(&can_ params
);
if (rc_get can params == I0_E OK)

// The can parameters have been successfully read.

}

else

{
// Reading from the BRBL is not possible because it
does

Macro Definition Documentation

#define |0_BRBL_CUSTOM_DID IDX_0 0OU

Definitions for custom DID table.

Custom DID at index 0

#define I0_BRBL_CUSTOM_DID_IDX_1 1U

Custom DID at index 1

#define IO_BRBL_CUSTOM_DID_IDX_10 10U

Custom DID at index 10

#define I0_BRBL_CUSTOM_DID IDX_11 11U

Custom DID at index 11

#define |0_BRBL_CUSTOM_DID_IDX_12 12U

Custom DID at index 12

#define I0_BRBL_CUSTOM_DID_IDX_13 13U

Custom DID at index 13

#define |0_BRBL_CUSTOM_DID_IDX_14 14U

Custom DID at index 14

#define |0_BRBL_CUSTOM_DID_IDX_15 15U

Custom DID at index 15

#define |I0_BRBL_CUSTOM DID IDX_2 2U

Custom DID at index 2

#define I0_BRBL_CUSTOM_DID_IDX_3 3U

Custom DID at index 3

#define |0_BRBL_CUSTOM_DID_IDX_4 4U

Custom DID at index 4

#define I0_BRBL_CUSTOM DID IDX_5 5U

Custom DID at index 5

#define |I0_BRBL_CUSTOM_DID IDX_6 6U

Custom DID at index 6

#define I0_BRBL_CUSTOM_DID_IDX_7 7U

Custom DID at index 7

#define |0_BRBL_CUSTOM_DID_IDX_8 8U

Custom DID at index 8

#define 10_BRBL_CUSTOM_DID_IDX_9 9U

Custom DID at index 9

#define I0_BRBL_CUSTOM_DID_TBL_LEN 16U

Number of entries available in the DID table.

#define |0_BRBL_XTEA_PRIV_KEY_IDX_0 0U

Definitions for private key table.

Reserved by ECU manufacturer!

#define I0_BRBL_XTEA_PRIV_KEY_IDX_1 1U

Application reprogramming key.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_10 10U

Key 10.

#define |0_BRBL_XTEA_PRIV_KEY_IDX_11 11U

Key 11.

#define |0_BRBL_XTEA_PRIV_KEY_IDX_2 2U

Key 2.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_3 3U

Key 3.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_4 4U

Key 4.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_5 5U

Key 5.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_6 6U

Key 6.

#define I0_BRBL_XTEA_PRIV_KEY_IDX_7 7U

Key 7.

#define I0_BRBL_XTEA_PRIV_KEY_ IDX_8 8U

Key 8.

#define |0_BRBL_XTEA_PRIV_KEY_IDX_9 9U

Key 9.

#define I0_BRBL_XTEA_PRIV_KEY_LEN 4U

Length of private key in 32bit words

#define I0_BRBL_XTEA_PRIV_KEY_TBL_LEN 12U

Number of entries available in private key table.

Function Documentation

10_ErrorType
I0_BRBL_GetCanParam (I0_BRBL_CAN_PARAM *const brbl_can_param)

Returns the CAN parameters set in the Branding Block.

Parameters
[out] brbl_can_param Branding block CAN parameter structure

Returns
IO_ErrorType

Return values
I0_E_OK Everything ok.
I0_E_NULL_POINTER A NULL pointer has been passed.

I0_E_CHANNEL_NOT_CONFIGURED Branding block has not been
validated successfully yet.

10_ErrorType
I0_BRBL_GetDid (ubyte1 did_tbl_idx,
I0_BRBL_CUSTOM_DID *const did_entry
)

Returns a DID from the DID table that is located in the branding block.

Parameters

[in] did_tbl_idx Index within DID table to read from. Can be one of:
IO_BRBL_CUSTOM DID_IDX_O0 ..
IO_BRBL_CUSTOM DID_IDX_15

[out] did_entry Structure that holds the DID number, the length of its
data and a pointer to the DID data.

Returns
IO_ErrorType

Return values

I0_E_OK Everything ok.

I0_E_NULL_POINTER A NULL pointer has been
passed.
I0_E_INVALID_PARAMETER An invalid parameter has been

passed (out of range).

I0_E_CHANNEL_NOT_CONFIGURED Branding block has not been
validated successfully yet.

I0_ErrorType I0_BRBL_GetXteaKey (ubyte1 key_num,
ubyte4 *const key_buf,
ubyte1 key_buf_len

)

Returns a secret key from the secret key table that is located in the branding
block.

Parameters
[in] key_num Index within key table to read from. Can be one of:
IO_BRBL_XTEA_PRIV_KEY_IDX O ..
IO_BRBL_XTEA_PRIV_KEY_IDX 11

[out] key_buf Array with 4 elements to store the key to.
[in] key_buf_len Length of array passed for parameter xey obuf

Returns
IO_ErrorType

Return values

I0O_E_OK Everything ok.

I0_E_NULL_POINTER A NULL pointer has been
passed.

I0_E_INVALID_PARAMETER An invalid parameter has been

passed (out of range).

I0_E_CHANNEL_NOT_CONFIGURED Branding block has not been
validated successfully yet.

Remarks
The secret key is returned encrypted. It can only be used in combination
with the cipher functions in the module 10 crypt.

I0_ErrorType I0_BRBL_Validate (void)

Validates the branding block.

Returns
IO_ErrorType

Return values
I0_E_OK Everything ok.
I0_E_INVALID_CRC Branding block inconsistent.

I0O_E_UNKNOWN Branding block does not fit to the installed
bootloader.

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by @j@@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Manual b-TTc-x-G-20-001

Main Page | Related Pages | Data Structures w

File List | Globals |

inc ;r

I0O_CAN.h File
Reference

Data Structures | Macros | Typedefs | Functions

IO Driver functions for CAN communication. More...

#include "IO Driver.h"

Data Structures

struct _io_can_data frame
CAN data frame. More...

Macros
#define 10_CAN_BAUDRATE_10K 0

#define 10_CAN_BAUDRATE_20K 1
#define 10_CAN_BAUDRATE_25K 2
#define 10_CAN_BAUDRATE_50K 3
#define 10_CAN_BAUDRATE_100K 4
#define 10_CAN_BAUDRATE_125K 5

#define 10_CAN_BAUDRATE_250K 6

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define 10_CAN_BAUDRATE_500K 7
#define 10_CAN_BAUDRATE_800K 8

#define 10_CAN_BAUDRATE_1000K 9

Message buffer direction

CAN Channel 0
uses the ECU pins C2 (CAN-H) and B2 (CAN-L)

CAN channel 1 (only available for HY-TTC 32 variants)
uses the ECU pins K3 (CAN-H) and J3 (CAN-L)

Selects the transmission direction of a CAN message buffer

#define 10_CAN_MSG_READ 0

#define 10_CAN_MSG_WRITE 1

CAN frame format
Selects the format for a CAN frame

#define 10_CAN_STD_FRAME 0

#define 10_CAN_EXT_FRAME 1

Typedefs

typedef struct _io_can_data_frame 10_CAN_DATA_FRAME
CAN data frame.

Functions

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_ErrorType

10_CAN_Init (I0_PIN channel, ubyte1 baudrate)
Initialization of the CAN communication driver.

10_CAN_InitTimings (IO_PIN channel, ubyte1 brp,
bool div8, ubyte1 tseg1, ubyte1 tseg2, ubyte1 sjw)
Initialization of the CAN communication driver for given
bit timings.

10_CAN_DelnitHandle (ubyte1 handle)
Deinitializes a single message handle.

I0_CAN_Delnit (I0_PIN channel)
Deinitializes the given CAN channel.

I0_CAN_ConfigMsg (ubyte1 *const handle, I0_PIN
channel, ubyte1 mode, ubyte1 id_format, ubyte4 id,
ubyte4 ac_mask)

Configures a message object.

I0_CAN_ReadMsg (ubyte1 handle,
I0_CAN_DATA_FRAME *const buffer)
Returns the data of a message object.

10_CAN_WriteMsg (ubyte1 handle, const
I0_CAN_DATA_FRAME *const data)
Transmits a CAN Message.

I0_CAN_ConfigFIFO (ubyte1 *const handle, IO_PIN
channel, ubyte1 size, ubyte1 mode, ubyte1 id_format,
ubyte4 id, ubyte4 ac_mask)

Configures a FIFO buffer.

I0_CAN_ReadFIFO (ubyte1 handle,
I0_CAN_DATA_FRAME *const buffer, ubyte1
buffer_size, ubyte1 *const rx_frames)

Reads the data from a FIFO buffer.

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_CAN_WriteFIFO (ubyte1 handle, const
I0_CAN_DATA_FRAME *const data, ubyte1 tx_length)
Writes CAN frames to a FIFO buffer.

I0_CAN_Status (IO_PIN channel, ubyte1 *const
rx_error_counter, ubyte1 *const tx_error_counter)
Returns the error counters of the CAN channel.

I0_CAN_MsgStatus (ubyte1 handle)
Returns the status of a message buffer object.

I0_CAN_FIFOStatus (ubyte1 handle)
Returns the status of a FIFO buffer.

Detailed Description

O Driver functions for CAN communication.
The CAN driver uses the MultiCAN module of the XC2000 CPU.

The CAN driver supports 1 CAN channel (2 CAN channels for HY-TTC
32 variants), so-called CAN nodes.

All CAN nodes share a common set of message objects, where each
message object may be individually allocated to one of the CAN nodes.
Besides serving as a storage container for incoming and outgoing
frames, message objects may be combined to build gateways between
the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each
CAN node has its own list of message objects. A CAN node stores
frames only into message objects that are allocated to the list of the CAN
node. It only transmits messages from objects of this list.

The functions 'remote acknowledge' and 'remote request' are not
supported.

Usage of the acceptance masks:

The acceptance mask defines the relevant bits of the CAN ID. A binary 1
marks a relevant bit in the CAN ID on the same position.

Setting all bits of the acceptance mask (Ox1FFFFFFF) only accepts the
ID set with the ID parameter and rejects all other IDs. Setting the
acceptance mask to 0 causes the message buffer to accept any IDs.

Using this mechanism a message buffer can be used to accept a range
of CAN IDs.

Example:

0O b1 1111 1111 1111 1111

ac_mask = Ox1FFFFFO0O
1111 0000 0000

id = 0x00000200
0010 0000 0000

0O b O 0000 0000 0000 0000

in this example all messages with an ID between 0x200 and Ox2FF are
accepted.

CAN code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function calls.

Examples for CAN initialization:

ubytel handle w, handle r, handle fifo w,
handle fifo r;

IO CAN Init(IO CAN CHANNEL O
, IO _CAN BAUDRATE 500K); // Configure
with 500 kbit/s

// standard message buffers //

IO CAN ConfigMsg(&handle w
, IO _CAN CHANNEL O // channel O
, IO CAN MSG WRITE // transmit
message buffer
, IO CAN STD FRAME // standard ID
, 0
; 0);

IO CAN ConfigMsg(&handle r
, IO CAN CHANNEL 0 // channel 0
, I0 _CAN MSG READ // receive
message buffer
, I0 CAN STD FRAME // standard ID
, 1
+ OX1FFFFFFF) ; // accept only
ID 1

// FIFO message buffer //

IO CAN ConfigFIFO(&handle fifo w
, I0 CAN CHANNEL 0 // channel O
, 20 // 20 items
, I0 CAN MSG WRITE // transmit fifo
buffer

0 IO_CAN_STD_FRAME // standard ID
, O
- O g

IO CAN ConfigFIFO(&handle fifo r
, I0 CAN CHANNEL O // channel 0
, 20 // 20 items
, 10 CAN MSG READ // receive fifo

buffer
, IO CAN STD FRAME // standard ID
, O
o 0)7 // accept every
ID

Examples for CAN task function calls:

IO CAN DATA FRAME can frame;
IO ErrorType can status;

// check if new message has been received
can_status = IO CAN MsgStatus (handle r);

1f ((can_status == IO E OK) || (can_status ==
IO _E CAN OVERFLOW))

// 1f message has been received, read the
message from the buffer
IO CAN ReadMsg(handle r, &can frame);

// received message is now stored in can frame
// and can be used by the application

// assemble CAN frame:
can frame.id = 1;

can frame.id format
can frame.length = 4
can frame.data[0]
can frame.data[l]
can frame.data[2]
can frame.data[3]

IO CAN STD FRAME;

. e

~Ne

I
S W N .
~

~e

// transmit message
IO CAN WriteMsg(handle w, &can frame);

// wait until the transmission has been finished:
while (IO _CAN MsgStatus (handle w) != IO E OK);

Macro Definition Documentation

#define IO_CAN_BAUDRATE_1000K 9

Configure CAN Channel with 1000KBIt/s. Used settings:
BRP =2, TSEG1 =16, TSEG2 = 3, SJW = 2 and DIV8 = FALSE
(Sampling Point 85%)

#define I0_CAN_BAUDRATE_100K 4

Configure CAN Channel with 100KBit/s. Used settings:
BRP =25, TSEG1 =13, TSEG2 = 2, SJW = 2 and DIV8 = FALSE
(Sampling Point 87.5%)

#define IO_CAN_BAUDRATE_10K 0

Configure CAN Channel with 10KBit/s. Used settings:
BRP =25, TSEG1 =16, TSEG2 = 3, SJW = 2 and DIV8 = TRUE
(Sampling Point 85%)

#define I0_CAN_BAUDRATE_125K 5

Configure CAN Channel with 125KBit/s. Used settings:
BRP =20, TSEG1 =13, TSEG2 = 2, SJW = 2 and DIV8 = FALSE
(Sampling Point 87.5%)

#define IO_CAN_BAUDRATE_20K 1

Configure CAN Channel with 20KBit/s. Used settings:
BRP =10, TSEG1 = 16, TSEG2 = 8, SIJW = 2 and DIV8 = TRUE

(Sampling Point 68%)

#define I0_CAN_BAUDRATE_250K 6

Configure CAN Channel with 250KBit/s. Used settings:
BRP =10, TSEG1 =13, TSEG2 = 2, SJW = 2 and DIV8 = FALSE
(Sampling Point 87.5%)

#define IO_CAN_BAUDRATE_25K 2

Configure CAN Channel with 25KBit/s. Used settings:
BRP =10, TSEG1 = 16, TSEG2 = 3, SJW = 2 and DIV8 = TRUE
(Sampling Point 85%)

#define 10_CAN_BAUDRATE_500K 7

Configure CAN Channel with 500KBit/s. Used settings:
BRP =5, TSEG1 =13, TSEG2 = 2, SJW = 2 and DIV8 = FALSE
(Sampling Point 87.5%)

#define IO_CAN_BAUDRATE_50K 3

Configure CAN Channel with 50KBit/s. Used settings:
BRP =50, TSEG1 =13, TSEG2 = 2, SUW = 2 and DIV8 = FALSE
(Sampling Point 85%)

#define IO_CAN_BAUDRATE_800K 8

Configure CAN Channel with 800KBit/s. Used settings:
BRP =2, TSEG1 = 16, TSEG2 = 8, SJW = 2 and DIV8 = FALSE
(Sampling Point 68%)

#define IO_CAN_EXT_FRAME 1

the ID parameter holds an extended (29-bit) ID

#define I0_CAN_MSG_READ 0

used to setup a message buffer for receiving

#define I0_CAN_MSG_WRITE 1

used to setup a message buffer for transmitting

#define I0_CAN_STD_FRAME 0

the ID parameter holds a standard (11-bit) ID

Typedef Documentation

typedef struct _io_can_data_frame I0_CAN_DATA_FRAME

CAN data frame.

Stores a data frame for the CAN communication.

Function Documentation

I0_ErrorType IO_CAN_ConfigFIFO (ubyte1 *const handle,

10_PIN channel,
ubyte1 size,
ubyte1 mode,
ubyte1 id_format,
ubyte4 id,

ubyte4 ac_mask

Configures a FIFO buffer.
Configures a FIFO buffer for the given CAN channel.

Parameters
handle Returns the FIFO buffer handle
channel CAN channel, one of:
® IO CAN CHANNEL 0
* IO_CAN CHANNEL 1

Note

Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Parameters
size Size of FIFO buffer (number of frames).
mode Mode for CAN Message, one of:
® IO _CAN MSG_READ
® IO CAN MSG WRITE
id_format Format of message identifier, one of:
®* IO _CAN _STD_FRAME
® IO CAN EXT FRAME

id CAN message identifier

ac_mask CAN acceptance mask, refer to Usage of the
acceptance mask for further details.

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_CAN_MAX_MO_REACHED no more HW message
objects are available

IO E_ CAN_MAX HANDLES REACHED no more free handles
are available

IO_E_NULL_POINTER null pointer has been
passed
I0_E_INVALID_CHANNEL_ID invalid channel
number has been
passed
I0_E_INVALID_PARAMETER a parameter is out of
range
I0O_E_CHANNEL_NOT_CONFIGURED channel has not been
initialized
I0_E_CH_CAPABILITY the given channel

does not support the
desired functionality

I0_ErrorType I0_CAN_ConfigMsg (ubyte1 *const handle,

10_PIN channel,
ubyte1 mode,
ubyte1 id_format,
ubyte4 id,

ubyte4 ac_mask

Configures a message object.

Configures a message object for the given CAN channel and returns a
message object handle.

Parameters
handle Returns the message object handle

channel CAN channel, one of:
* IO _CAN CHANNEL 0
* IO_CAN_CHANNEL 1

Note
Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Parameters

mode Mode for CAN Message, one of:
* IO_CAN MSG_READ,
® IO CAN MSG WRITE

id_format Format of message identifier, one of:
* IO _CAN_STD_ FRAME,
® IO CAN EXT FRAME

id CAN message identifier

ac_mask CAN acceptance mask, refer to Usage of the
acceptance mask for further details.

Returns
I0_ErrorType

Return values
I0O_E_OK everything fine
I0_E_CAN_MAX_MO_REACHED no more HW message
objects are available
I0O_E_CAN_MAX_HANDLES_REACHED no more handles are

available
I0O_E_NULL_POINTER null Pointer has been

passed
I0_E_INVALID_CHANNEL_ID invalid Channel ID has

been passed

I0_E_INVALID_PARAMETER invalid Parameter has
been passed

I0O_E_CHANNEL_NOT_CONFIGURED the given channel was
not initialized

I0O_E_CH_CAPABILITY the given channel
does not support the
desired functionality

I0_ErrorType IO_CAN_Delnit (I10_PIN channel)

Deinitializes the given CAN channel.
Allows re-initialization by 1o can 1nit()

Parameters
channel CAN channel, one of:
® IO CAN CHANNEL O
® IO _CAN CHANNEL 1

Note
Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID invalid parameter has
been passed
I0O_E_CHANNEL_NOT_CONFIGURED channel has not been
initialized
I0O_E_CH_CAPABILITY the given channel does

not support the desired
functionality

I0_ErrorType IO_CAN_DelnitHandle (ubyte1 handle)

Deinitializes a single message handle.
Allows re-initialization by 10 can configMsg() Of I0 CAN ConfigFIFO ()

Parameters

handle CAN message handle (retrieved from 10 can configMsg()
OF IO CAN ConfigFIFO())

Returns
I0_ErrorType

Return values
I0_E_OK everything fine
I0_E_INVALID_PARAMETER invalid parameter has
been passed

I0O_E_ CHANNEL_NOT_CONFIGURED handle has not been
initialized

I0_ErrorType IO_CAN_FIFOStatus (ubyte1 handle)

Returns the status of a FIFO buffer.

If a CAN node is in bus-off state, the bus-off recovery sequence
detection is started automatically. By default the CAN node is not
allowed to continue bus communication once the bus-off recovery
sequence has finished. It is necessary to call IO_CAN_MsgStatus() or
I0_CAN_FIFOStatus() respectively to enable further bus
communication.

Parameters

handle CAN message object handle (retrieved from
IO CAN ConfigFIFO())

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_BUSY transmission is ongoing.
Only reported for write
handle.

I0_E_CAN_OVERFLOW Overflow of FIFO buffer

occurred. Data has been
lost. Only reported for
read handle.

I0_E_CAN_OLD_DATA no new data has been
received. Only reported
for read handle.

I0O_E_CAN_WRONG_HANDLE invalid handle has been
passed

I0_E_CHANNEL_NOT_CONFIGURED the given handle has not
been configured

Remarks
» Calling this function also starts the Bus Off recovery
sequence if the respective CAN node is in Bus Off.

I0_ErrorType IO_CAN_Init (I0_PIN channel,
ubyte1 baudrate

)

Initialization of the CAN communication driver.
The function

o Enables the module
» Sets the module clock to 40MHz
o Automatically sets up the bit timing for the given baudrate

Parameters
channel CAN channel, one of:
® IO CAN CHANNEL 0
* IO _CAN CHANNEL 1

Note
Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Parameters
baudrate Baud rate
* IO_CAN BAUDRATE_10K
* IO _CAN BAUDRATE_ 20K
®* IO_CAN BAUDRATE_ 25K
® IO CAN BAUDRATE 50K
* IO_CAN BAUDRATE_ 100K
® IO CAN BAUDRATE 125K
®* IO_CAN BAUDRATE_ 250K
® IO CAN BAUDRATE 500K
* IO_CAN BAUDRATE_ 800K
e IO CAN BAUDRATE 1000K

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_INVALID_PARAMETER invalid parameter has been
passed
I0_E_INVALID_CHANNEL_ID invalid channel ID has been
passed
I0_E_CHANNEL_BUSY channel has been initialized
before
I0O_E_CH_CAPABILITY the given channel does not

support the desired functionality
Remarks

Module is initialized only once. To re-initialize the module, the
function I0_CAN_Delnit() needs to be called.

I0_ErrorType IO_CAN_InitTimings (I0_PIN channel,

ubyte1 brp,
bool div8,
ubyte1 tseg1,
ubyte1 tseg2,
ubyte1 sjw

Initialization of the CAN communication driver for given bit timings.
The function

e Enables the module
e Sets the module clock to 40MHz
» Configures the CAN channel with the given bit timings

Parameters

channel CAN channel, one of:
e IO CAN CHANNEL 0
* IO_CAN_CHANNEL 1

Note
Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Parameters
brp Baudrate prescaler (1 ... 63)
div8 Configures an additional clock divider of 8
tseg1 Time segment before sample point (3 ... 16)
tseg2 Time segment after sample point (2 ... 8)
sjw Synchronization jump width (1 ... 4)

Returns
I0_ErrorType

Return values
I0_E_OK everything fine
I0_E_INVALID_PARAMETER invalid parameter has been

passed
I0_E_INVALID_CHANNEL_ID invalid channel ID has been

passed
I0_E_ CHANNEL_BUSY channel has been initialized
before
I0O_E_CH_CAPABILITY the given channel does not
support the desired functionality
Remarks
» The timing parameters and baudrate are calculated as
follows:

The time quanta "tq" results from the Baudrate prescaler and
the additional clock divider:

tq = brp / 40,000,000Hz , if div8 = FALSE

tq =8 * brp /40,000,000Hz , if div8 = TRUE

The syncronization time (Tsync [s]), Phase Buffer Segment
Time 1 (Tseg1 [s])

and Phase Buffer Segment Time (Tseg2 [s]) are calculated as
follows based upon "tq":

Tsync=1*1q

TSeg1 =segl1 *tq

TSeg2 = seg2 * tq

The overall bit time [s] and baudrate [bit/s] are calculated
with:

bit_time = Tsync + TSeg1 + TSeg2

baudrate = 1/ bit_time

Example: brp =5, seg1 = 13, seg2 = 2, sjw = 2 and div8 =
FALSE

tq =5/40,000,000Hz = 125ns

Tsync =1 * 125ns = 125ns

TSeg1 =13 * 125ns = 1625ns

TSeg2 =2 * 125ns = 250ns

bit_time = 125ns + 1625ns + 250ns = 2000ns
baudrate = 1/2000ns = 500,000 bit/s

The sampling point can be calculated with:
sampling_point = (1 + seg1) / (1 + seg1 + seg2)

* Module is initialized only once. To re-initialize the module, the
function 1o_can pernit() needs to be called.

I0_ErrorType IO_CAN_MsgStatus (ubyte1 handle)

Returns the status of a message buffer object.

If a CAN node is in bus-off state, the bus-off recovery sequence
detection is started automatically. By default the CAN node is not
allowed to continue bus communication once the bus-off recovery
sequence has finished. It is necessary to call IO_CAN_MsgStatus() or
I0_CAN_FIFOStatus() respectively to enable further bus
communication.

Parameters

handle CAN message object handle (retrieved from
IO _CAN ConfigMsg())

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_BUSY transmission is ongoing

I0O_E_CAN_OVERFLOW message object overflow

I0O_E_CAN_OLD_DATA no new data received

I0O_E_ CAN_WRONG_HANDLE invalid handle has been
passed

IO_E_CHANNEL_NOT_CONFIGURED the given handle has not
been configured

Remarks
 Calling this function also starts the Bus Off recovery
sequence if the respective CAN node is in Bus Off.

I0_ErrorType

I0O_CAN_ReadFIFO (ubyte1 handle,
I0_CAN_DATA_FRAME *const buffer,
ubyte1 buffer_size,
ubyte1 *const rx_frames

)

Reads the data from a FIFO buffer.

Copies received CAN frames from a given FIFO buffer to a SW frame
buffer.

Parameters
handle CAN FIFO buffer handle (retrieved from
I0 CAN ConfigFIFO())
buffer Pointer to SW frame buffer structure. The received
frames will be stored there.
buffer_size Size of buffer, maximum number of frames to be
written to the buffer. If buffer_size is higher than the

actual size of the buffer, data outside the buffer will
be overwritten!

rx_frames Number of valid frames which have been copied to
buffer

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0O_E_NULL_POINTER null pointer has been
passed to function

I0O_E_CAN_WRONG_HANDLE invalid handle has been
passed

I0_E_CHANNEL_NOT_CONFIGURED the given handler has
not been configured

I0_E_CAN_OVERFLOW overflow of FIFO buffer
occurred. Data has been
lost. In rare cases
received data might be
in a wrong order. Please
note that the function
doesn't check whole
buffer for overflow. For
whole buffer overflow

check please call
I0_CAN_FIFOStatus

function
I0O_E_CAN_OLD_DATA no new data is available

I0_ErrorType
I0_CAN_ReadMsg (ubyte1 handle,

I0_CAN_DATA_FRAME *const buffer
)

Returns the data of a message object.

Reads a message from a given message object. Returns whether the
message is new or not.

Parameters
handle CAN message object handle (retrieved from
IO _CAN ConfigMsg())

buffer Pointer to data buffer structure. The received frame will
be stored there.

Returns
I0_ErrorType

Return values
I0O_E_OK everything fine
I0_E_CAN_OVERFLOW overflow of message
object

I0O_E_CAN_OLD_DATA no new data has been
received since the last

read
I0O_E_CAN_WRONG_HANDLE invalid handle has been
passed
IO_E_NULL_POINTER null pointer has been
passed
I0O_E_CHANNEL_NOT_CONFIGURED the given handle was not
configured
I0_E_CAN_INVALID_DATA the received data is

invalid - read again to
get the valid data

10_ErrorType 10_CAN_Status (10_PIN channel,
ubyte1 *const rx_error_counter,
ubyte1 *const tx_error_counter

)

Returns the error counters of the CAN channel.

Returns the transmit and receive error counters of the selected CAN
channel.

Parameters
channel CAN channel, one of:
®* IO CAN CHANNEL 0
* IO_CAN CHANNEL 1

Note
Second CAN Interface (I0_CAN_CHANNEL_1) is only available
for HY-TTC 32 and HY-TTC 32S

Parameters
rx_error_counter Value of the receive error counter
tx_error_counter Value of the transmit error counter

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_CAN_ERROR_PASSIVE controller is in error
passive state

I0_E_CAN_BUS_OFF controller is in bus off
state

I0_E_INVALID_CHANNEL_ID wrong channel number
has been passed

IO_E_NULL_POINTER null pointer has been
passed

I0_E_CHANNEL_NOT_CONFIGURED the given channel has
not been initialized

I0_E_CH_CAPABILITY the given channel does
not support the desired
functionality

10_ErrorType

I0_CAN_WriteFIFO (ubyte1 handle,
const |IO_CAN_DATA_ FRAME *const data,
ubyte1 tx_length

)

Writes CAN frames to a FIFO buffer.

Copies CAN Frames from a SW frame buffer to a transmit FIFO buffer.
The CAN transmission will be started.

Parameters
handle CAN message object handle (retrieved from
IO CAN ConfigFIFO())
data Pointer to data structure. The data in this structure will
be transmitted.
tx_length Number of frames in data which shall be transmitted.

Returns
I0_ErrorType

Return values

I0_E_OK everything fine

I0O_E_CAN_FIFO_FULL FIFO is full - no data has
been copied into FIFO

I0O_E_CAN_WRONG_HANDLE invalid handle has been
passed

IO_E_NULL_POINTER null pointer has been
passed

I0O_E_CHANNEL_NOT_CONFIGURED the given channel has not
been configured

10_ErrorType
I0_CAN_WriteMsg (ubyte1 handle,

const IO_CAN_DATA_FRAME *const data
)

Transmits a CAN Message.

Transmits a CAN message, using the given channel and message
object. Returns whether the transmission has been started
successfully or not.

Parameters
handle CAN message object handle (retrieved from
IO _CAN ConfigMsg())

data Pointer to data structure. The data in this structure will be
transmitted.

Returns
10_ErrorType

Return values
I0_E_OK everything fine

I0_E_BUSY message object busy -
no data has been
transmitted

I0O_E_CAN_WRONG_HANDLE invalid handle has been
passed

IO_E_NULL_POINTER null pointer has been
passed

I0_E_CHANNEL_NOT_CONFIGURED the given handle has not
been configured

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by

1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures W

File List | Globals |

I0_Constants.h File
Reference

Typedefs

Global defines for 10 Driver. More...

#include "ptypes xel67.h"

Macros

Error Values
Errors codes that a function might return in 10_ErrorType.

#define 10 E OK 0

#define 10_E_BUSY 2

#define 10_E_UNKNOWN 3

#define 10_E_DRV_SAFETY_CONF_NOT_CONFIG 20

#define 10_E_INVALID_SAFETY_CONFIG 21

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

|I0_E_SAFETY_NOT_SUPPORTED 22
|IO_E_ECU_ALREADY_IN_SAFE_STATE 23
I0_E_INVALID CRC 24
I0_E_NO_SAFETY_SWITCH_CONFIGURED 25
|I0_E_DRIVER_INITIALIZED 26
|0_E_INVALID_DIAG_STATE 27
I0_E_NULL_POINTER 30
|I0_E_INVALID_PARAMETER 31
|I0_E_CHANNEL_BUSY 32
|IO_E_CHANNEL_NOT_CONFIGURED 33
|IO_E_INVALID_CHANNEL_ID 34
|I0_E_FET_PROTECTION 35
|I0_E_PERIODIC_NOT_CONFIGURED 36
|IO_E_CH_CAPABILITY 37
|IO_E_DRIVER_NOT_INITIALIZED 38
|I0_E_GROUP_CONFLICT 39

I0_E_CAN_OVERFLOW 40

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

|I0_E_CAN_WRONG_HANDLE 41
|I0_E_CAN_MAX_MO_REACHED 42
|IO_E_CAN_MAX_HANDLES_REACHED 43
|IO_E_CAN_FIFO_FULL 44
IO_E_CAN_OLD_DATA 45
|I0_E_CAN_ERROR_PASSIVE 46
|I0_E_CAN_BUS_OFF 47
IO_E_CAN_INVALID_DATA 48
|I0_E_WD_TRIGGER_DISABLED 50
|I0_E_WD_TRIGGER_TEMPORARY_DISABLED 51
IO_E_WD_INT_ONLY_NON_SAFETY 52
|I0_E_EEPROM_RANGE 60
|I0_E_EEPROM_BUFFER_FULL 61
|I0_E_EEPROM_CRC_MISMATCH 62
|I0_E_UART_BUFFER_FULL 70
|I0_E_UART_BUFFER_EMPTY 71

|IO_E_UART_OVERFLOW 72

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

|I0_E_UART_PARITY 73
|I0_E_SPI_MAX_DEV_REACHED 80
|I0_E_SPI_BUFFER_FULL 81
|I0_E_ADC_INVALID 92
|I0_E_ADC_CHANNEL_STARTUP 93
|I0_E_PWM_CAPTURE_ERROR 100
|I0_E_PWM_NOT_FINISHED 101
|I0O_E_PWM_OPEN_LOAD 102
|I0O_E_PWM_SHORT CIRCUIT 103
|IO_E_PWM_SHORT_BATTERY 104
|I0O_E_PWM_OPEN_LOAD_OR_SHORT_BATTERY
|I0_E_PWM_CHANNEL_STARTUP 107
|I0O_E_PWM_OUTPUT_STARTUP_ERROR 108
|I0_E_PWM_OUTPUT_DISABLED 109
|I0_E_PWM_OUTPUT_LOW 110
|I0_E_PWM_OUTPUT HIGH 111

I0_E_PWM_DIAG_TRANSIENT OSC 112

105

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

|I0_E_PWM_CURRENT_INACCURATE 113
|I0_E_PWD_TIMER_OVERFLOW 120
|I0_E_PWD_HIGH_LEVEL 121
|I0_E_PWD_LOW_LEVEL 122
|I0_E_PWD_CAPTURE_ERROR 123
|I0_E_PWD_NOT_FINISHED 124
|I0_E_DO_CHANNEL_STARTUP 130
|I0_E_DO_OUTPUT_STARTUP_ERROR 131
I0_E_DO_OPEN_LOAD 132
|I0_E_DO_SHORT_CIRCUIT 133
|I0_E_DO_SHORT_BATTERY 134
|I0_E_DO_OPEN_LOAD_OR_SHORT_BATTERY
I0_E_DO_DIAG_TRANSIENT OSC 136
|I0_E_DO_OUTPUT_DISABLED 137
|IO_E_DO_CURRENT_INACCURATE 138
|I0_E_PROT_USER_OVERLOAD 140

|I0_E_PROT_TEMP_OVERLOAD 141

135

#define 10_E_PROT_ACTIVE 142
#define 10_E_PROT_FATAL 143

#define 10_E_PROT_REENABLE 144

#define 10_E_PROT_PERMANENT OFF 145

#define 10_E_DI_OPEN_LOAD 160

#define 10_E_DI_OPEN_LOAD_OR_SHORT_CIRCUIT 161
#define 10_E_DI_SHORT_CIRCUIT 162

#define 10_E_DI_SHORT_BATTERY 163

#define 10_E_DI_INVALID_VOLTAGE 164

#define 10_E_DI_INVALID_LIMITS 165

#define 10_E_NODEID_PINS_INVALID 170

#define 10_E_NODEID_EEPROM_MISMATCH 171
#define 10_E_NODEID_EEPROM_INVALID 172

#define 10_E_NODEID_EEPROM_FALLBACK 173
#define 10_E_PVG_SHORT_CIRCUIT 180

#define 10_E_PVG_SHORT_BATTERY 181

#define 10_E_PVG_OUTPUT_DISABLED 182

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

|I0_E_VOUT_SHORT_CIRCUIT 190
|I0_E_VOUT_SHORT_BATTERY 191
|I0_E_VOUT_OUTPUT_DISABLED 192
|I0_E_VOUT_PRECISION 193
|I0_E_PID_NO_FREE_HANDLES 200
I0_E_PID_USED 201
I0_E_SW_INTERNAL 220
|IO_E_SW_OUTPROT_SM 221
|I0_E_WRONG_HW_TYPE 230
|I0_E_TASK_NO_FREE_SLOTS 240
|I0_E_DISCHARGE_FAILED 241
|I0_E_RESET_COUNTER_INVALID 250

|IO_E_SBRAM_CONTENT _INVALID 251

Typedefs

typedef ubyte2 10_ErrorType

Detailed Description

Global defines for IO Driver.

This header file defines the Error Codes for the 10-Driver.

Macro Definition Documentation

#define I0_E_ADC_CHANNEL_STARTUP 93

The given ADC channel is in its initialization phase and the low-
pass filter of the analog input is still during tune-in.

The initialization phase takes about 20ms. The ADC value
which is returned is not valid.

#define I0_E_ADC_INVALID 92

The reported ADC value is invalid or not available.

This error is reported in two cases. First, if an ADC value will be
read out immediately after initializing the ADC channels and the
ADC conversion of the respective channel has not been started
yet (after startup).

Secondly, this error is reported during runtime if a conversion
error has been detected by the 10-Driver which means that the
ADC did not convert the channel in the last conversion cycle.

#define IO_E_BUSY 2

Module or function is busy.

This error is reported if a function or module has not yet finished
its task. For example the EEPROM write function will return this
error code if a previous write command has not been finished
yet. Or if a channel is still initializing (e.g. during startup,
changing modes, ...) and therefore not ready so far.

#define I0_E_CAN_BUS_OFF 47

The CAN node is in bus off state.
The bus-off recovery sequence is triggered by calling the
function IO0_CAN_MsgStatus() or I0_CAN_FIFOStatus().

#define I0_E_CAN_ERROR_PASSIVE 46

The CAN node is in error passive state.

#define I0_E_CAN_FIFO_FULL 44

The FIFO buffer is full.

When reading: The respective FIFO buffer is full, but no data
has been lost.

When writing: The data has not been accepted by the driver.
The application needs to transmit it again when there is enough
space in the buffer.

#define I0_E_CAN_INVALID DATA 48

Received data is invalid.
Read again to get the valid data.

#define I0_E_CAN_MAX_HANDLES_REACHED 43

No more message handles are available.
The maximum number of message handles has been reached.
A message handle is generated every time the function

I0_CAN_ConfigMsg() or IO_CAN_ConfigFIFO() is called
without returning an error.

#define I0_E_CAN_MAX_MO_REACHED 42

No more message objects are available.

The maximum number of available message objects has been
reached. A single message object is needed to setting up a
single message object with the function |IO_CAN_ConfigMsg().
When configuring a FIFO buffer with the function
I0_CAN_ConfigFIFO() the number of needed message objects
equals the size of the FIFO buffer. (single message objects are
joined together to a FIFO buffer)

#define I0_E_CAN_OLD_DATA 45

No new data is available.
This error is returned if no CAN frame has been received since
the last successful read.

#define IO_E_CAN_OVERFLOW 40

Message object or FIFO buffer overflow.

This error is reported if CAN messages have been lost due to a
full buffer. To avoid this error FIFO buffers can be used. If FIFO
buffers are already used, try to increase the buffer size.

#define I0_E_CAN_WRONG_HANDLE 41

A wrong or invalid handle has been used.
This error is reported if:

* a non-existent handle has been used.

« if a write handle has been passed to a read function or vice
versa

 if a message object handle has been passed to a FIFO
function or vice versa

#define I0_E_CH_CAPABILITY 37

The 10 channel (IO pin) does not support the requested feature.
Two conditions can lead to this error code:

e For example when trying to initialize or use an ADC pin as
PWM output.

» When trying to initialize an O for a pin function which is not
available on the ECU variant. (For example when trying to
initialize a PWD input but it is not physically mounted on
the used ECU variant)

#define 10_E_CHANNEL_BUSY 32

The 1O channel (IO pin) is busy.

This error is reported if an IO Pin has been initialized before. To
change the configuration of the channel during runtime the
according De-Init function needs to be called before the channel
can be again initialized with a new configuration.

#define I0_E_CHANNEL_NOT_CONFIGURED 33

The 10 channel (IO pin) has not been initialized.

This error is reported by an IO driver task function if the channel
has not been initialized. To initialize the channel, the according
Init function needs to be called.

#define 10_E_DI_INVALID_LIMITS 165

The voltage thresholds passed to I0_DI_Init are not valid.

#define 10_E_DI_INVALID_VOLTAGE 164

A voltage level outside of the specified thresholds has been
detected on a digital input.

#define I0_E_DI_OPEN_LOAD 160

An open load condition has been detected on a digital input.

#define |IO_E_DI_OPEN_LOAD_OR_SHORT_CIRCUIT 161

An open load or short circuit to ground has has been detected
on a digital input.

#define 10_E_DI_SHORT_BATTERY 163

An open load or short circuit to battery has has been detected
on a digital input.

#define I0_E_DI_SHORT_CIRCUIT 162

A short circuit to ground has has been detected on a digital
input.

#define |IO_E_DISCHARGE_FAILED 241

Discharging of capacitor failed.

Discharge circuit(new feature for ECU HW V5.00) was not able
to discharge capacitor in time. Probably HW set-up regarding
external safety switch is wrong (see also HW user manual).

#define I0_E_DO_CHANNEL_STARTUP 130

The digital output is in it's startup phase.
For digital output channels with current measurement the
current measurement is being calibrated during this phase.

#define IO_E_DO_CURRENT_INACCURATE 138

Current measurement inaccurate.

This error is reported if the values for zero current
compensation which are stored in the PDB are out of range or
do not match the values which are measured during startup.

#define 10_E_DO_DIAG_TRANSIENT_OSC 136

The diagnostic functions on a digital output with analog
feedback have been temporarily disabled.

PWM output in digital output mode:
This error code is reported if the output value of a digital
output with analog feedback has been changed. Due to the
low pass filter in the feedback path, the diagnostic functions
are disabled for 100 ms after a change of the output level
to avoid wrongly reported errors during the settling time of
the filter.

Remarks
This is no error but a information for the application
software that currently no output diagnostic is available on
this channel. If this code is returned the application
software should wait until the error IO_E_OK is returned
before changing the output value again. Otherwise no
diagnostic information can be provided.

#define IO_E_DO_OPEN_LOAD 132

An open load condition has been detected on a digital output.

#define I0_E_DO_OPEN_LOAD OR_SHORT BATTERY 135

An open load condition or a short circuit to battery voltage has
been detected on a digital output.

#define I0_E_DO_OUTPUT DISABLED 137

Digital outputs are disabled.

This error is reported if the high-side powerstages are disabled
via |IO_POWER_Set or not yet enabled after ECU startup. No
diagnosis is possible during this stage.

#define I0_E_DO_OUTPUT_STARTUP_ERROR 131

The digital output could not be started up.

This error code is related to digital output channels with current
measurement and describes that the offset of the current
measurement is out of range. To protect the current
measurement hardware (electric shunt) this output will stay
disabled for the remaining driving cycle.

#define I0_E_DO_SHORT_BATTERY 134

A short circuit to battery voltage condition has been detected on
a digital output.

#define I0_E_DO_SHORT CIRCUIT 133

A short circuit to ground condition has been detected on a
digital output.

#define |IO_E_DRIVER_INITIALIZED 26

The common driver init function 1o priver 1nit() has been
already called.

This error code is reported by a function if it is called after the
common driver init function 1o priver 1nit() has been called.

#define IO_E_DRIVER_NOT_INITIALIZED 38

The common driver init function 1o priver 1nit() has not been
called.

This error code is reported by the 10-Driver init functions if the
common driver init function 10 priver Init() has not been
called.

#define 10_E_DRV_SAFETY_CONF_NOT_CONFIG 20

Global safety configuration is missing.

This error is reported if an IO is defined as safety critical
although no safety configuration has been passed to the
I0_Driver_Init() (parameter safety conf) function. An 1O pin is
considered as safety critical if a valid safety configuration has
been passed to the init function (see safety conf parameter of
the functions I0_ADC_Channelinit(), IO_PWM _Init(),
I0_PWD_lInclnit() and 10_PWD_Complexinit()).

#define I0_E_ECU_ALREADY_IN_SAFE_STATE 23

The ECU is already in safe state.

This error code is reported by the function p1ac Entersafestate
if the ECU is already in the safe state at the time the application
requests to switch to the safe state.

#define |IO_E_EEPROM_BUFFER_FULL 61

EEPROM buffer overrun.
An internal SPI buffer has reported an overrun, data was lost.

#define I0_E_EEPROM_CRC_MISMATCH 62

Error on CRC calculation.

The checksum stored in the EEPROM and the calculated one
do not match.

The read data contains errors.

#define |IO_E_EEPROM_RANGE 60

Invalid address range.
This error is reported if read or write operations are requested
for non-existent EEPROM addresses.

#define 10_E_FET_PROTECTION 35

An internal switch (FET) has been disabled to protect the
hardware from damages.

If the current on an internal FET is too high, the FET will be
switched off by software to protect it from destruction. After 1s
timeout the driver tries to re-enable the FET.

When a FET has been switched off by the protection
mechanism, this error code will be returned by the respective
task function. The measured values are therefore invalid and
should not be used for further calculations.

#define I0_E_GROUP_CONFLICT 39

The 10 channel (10 pin) cannot be configured due to conflicts
with other 10 channels.

This error is reported by initialization functions if the
configuration cannot be performed due to conflicts with other
already configured 10 pins.

#define I0_E_INVALID_CHANNEL_ID 34

The 10 channel (IO pin) does not exist.
This error is reported if a non-existent channel ID has been
passed to the function.

#define 10_E_INVALID CRC 24

CRC checksum wrong.
This error code is reported if the CRC calculation of the
production data block has failed.

#define |0_E_INVALID DIAG_STATE 27

The instruction is not permitted in the current diagnostic state.
This error code is reported if the instruction is not permitted in
the current state of the diagnostic state machine (e.g.
en-/disabling an 10 Pin during p1Ac STATE STARTUP).

#define IO_E_INVALID_PARAMETER 31

An invalid parameter has been passed to the function.
This error is reported if at least one of the parameters which
have been passed to the function is outside the allowed range.

#define 10_E_INVALID_SAFETY_CONFIG 21

The safety configuration for the channel to be configured is
invalid.
This error is reported if a parameter in the safety configuration

structure used for configuring a IO channel is wrong (see
safety conf parameter of the functions I0_ADC_Channellnit(),
10_PWNM_Init(), IO_PWD_Inclnit() and
10_PWD_ComplexInit()).

#define IO_E_NO_SAFETY_SWITCH_CONFIGURED 25

No safety switch is configured.

This error is reported when trying to access (e.g. en- or
disabling) a safety switch but no internal or external safety
switch is configured.

#define I0_E_NODEID_EEPROM_FALLBACK 173

The bootloader used the (valid) values stored in the EEPROM
to calculate the modifier as the voltage level on the pins
I0_PIN_K3 (I0_ADC_NODE_ID_0) and IO_PIN_J3
(I0_ADC_NODE_ID_1) did not represent a valid modifier.

#define IO_E_NODEID_EEPROM_INVALID 172

The Node ID stored in the EEPROM was invalid on startup and
overwritten with the Node ID determined via pins I0_PIN_K3
and I0_PIN_J3.

#define |IO_E_NODEID_EEPROM_MISMATCH 171

The Node ID stored in the EEPROM and the voltage levels on
pins IO_PIN_K3 and I0_PIN_J3 do not match.

#define |O_E_NODEID_PINS_INVALID 170

The voltage levels on pins IO_PIN_K3 (I0_ADC_NODE_ID_0)
and IO_PIN_J3 (I0_ADC_NODE_ID_1) represent no valid
Node ID.

#define I0_E_NULL_POINTER 30

A NULL pointer has been passed to the function.
This error is reported if a non-optional pointer parameter of the
function has been set to NULL.

#define IO_E_OK 0

everything is fine, no error has occurred.

#define I0_E_PERIODIC_NOT_CONFIGURED 36

The periodic interrupt timer has not been initialized.
This error code is reported if trying to disable the periodic
interrupt timer although it has not been setup.

#define 10_E_PID_NO_FREE_HANDLES 200

No unused PID controllers available.

This error is reported when a PID controller is configured, but all
available PID controller (I0_PID_MAX_HANDLES in total) are
already used

#define 10_E_PID_USED 201

PID controller is currently in use.

This error is reported if a PID controller is de-initialized while it is
in use. At present, this error code is not returned by any |O-
Driver function.

#define I0_E_PROT_ACTIVE 142

An output has detected a overload situation and has been
switched off to protect the hardware from damage.

High Side Outputs with Current Measurement:
If the current on a power output is too high, the output will
be switched off by software to protect the system from
thermal overload. The current limit for these outputs is
3.0A. The driver will switch off the output if the current is
» between 3.0A and 4.0A for more than 1s
e above 4.0A
e above "6*duty _cycle"A (value duty cycle from 0..1,
50% duty cycle means that the maximum current can
be 3A, 25% duty cycle means 1.5A)
After a timeout of 1 second the driver tries to re-enable
the output. When a output has been switched off by
the protection mechanism, this error code will be
returned by the respective task function.

High Side Outputs with Overcurrent Protection:
If the current on a power output is higher than
» 3.75A for longer than 1 second,
e 5A for longer than 250ms
e 7.1A for longer than 128ms
the output will be switched off by software to protect
the system from thermal overload. After a timeout of 1

second the driver tries to re-enable the output (for the
7.1A limit the timeout is 10s). When a output has been
switched off by the protection mechanism, this error
code will be returned by the respective task function.

Low-Side Digital Outputs:
If the current on a low-side power output is too high, the
output will be switched off by software to protect the system
from thermal overload. The current limit for these outputs is
3.5A. The driver will switch off the affected low-side output
if the current is:
» between 3.5A and 5.5A for more than 1s (see also
I0_E_PROT_TEMP_OVERLOAD).
e above 5.5A
After a timeout of 1 second the driver tries to re-enable
the output. When an output has been switched off by
the protection mechanism, this error code will be
returned by the respective task function.

Common for all power outputs
If the driver detects over temperature or loss of gate-drive
of the reverse polarity protection the power outputs
(Highside and Lowside) are switched off. During the time
the outputs are switched off, this error code gets returned.

PVG/Voltage Outputs:
If the absolute value of the difference (Udiff) between the
configured output voltage and the voltage measured with
the analog feedback channel and is greater than 9.5V for
more than 100ms, the output enters the protection state.
Udiff = (Us - Ufb), where Us is the set output voltage and
Ufb is the measured feedback voltage.
If Udiff > 9.5V (e.g. short circuit to ground) the output is
reduced to 25% for 1s.
If Udiff <-9.5V (e.g. short circuit to battery) in the output is
increased to 75% for 1s.

#define I0_E_PROT_FATAL 143

An output has been switched off due to a fatal overload
condition to protect the hardware from damage.

PWM outputs:
If the current on these outputs rises above 5.4A, the output
is switched off automatically. After a timeout of 1 second
the driver tries to re-enable that output. When an output
has been switched off by the protection-circuit, this error
code will be returned by the respective task function.

High Side Outputs with Overcurrent Protection:
If the current on these output rises above 7.1A, output is
switched off automatically. After a timeout of 10 seconds
the driver tries to re-enable that output. When an output
has been switched off by the protection-circuit, this error
code will be returned by the respective task function.

Low-Side Digital Outputs:
If the current on these output rises above 7A, the
protection-circuit gets activated and the affected output is
switched off automatically. After a timeout of one second
the driver tries to re-enable that output. When an output
has been switched off by the protection-circuit, this error
code will be returned by the respective task function.

PVG/Voltage Outputs:
These channels do not report fatal protection errors.

#define I0_E_PROT_PERMANENT OFF 145

An output has been switched off permanently.

Reasons could be:

» Diagnostic module entered safe state
» ECU is being switched off via KL15-Hold by the application
software

#define |I0_E_PROT_REENABLE 144

An output which has been switched off has been re-enabled.

High Side Outputs with Current Measurement:
If these outputs are switched off due to an over-current
condition, the 10-Driver will try to re-enable the output after
1 second. During the re-enable phase the |O-Driver returns
this error code.
If the current is higher than the limits specified for the
output, the power output will be switched off again during
the re-enable phase.

High-Side Digital Outputs:
If these outputs are switched off due to an over-current
condition, the 10-Driver will try to re-enable the output after
1 second. During the re-enable phase the |O-Driver returns
this error code.
If the current is higher than the limits specified for the
output, the power output will be switched off again during
the re-enable phase.

Low-Side Digital Outputs:
If these outputs are switched off due to an over-current
condition, the 10-Driver will try to re-enable the output after
1 second. During the re-enable phase the |O-Driver returns
this error code.
If the current is higher than the limits specified for the

output, the power output will be switched off again during
the re-enable phase.

PVG/Voltage Outputs:

If these outputs are switched off due to a large difference
between the measured and configured voltage, the 10-
Driver will try to re-enable the output after 1s.

#define |IO_E_PROT_TEMP_OVERLOAD 141

An output has detected a temporary overload situation.

High Side Outputs with Current Measurement:

These channels can take 3.0A continuous current and up
to 4A peak current for 1 second. If the current is above
3.0A the IO-Driver signals to the application with this error
code that after 1 second the output stages will be switched
off unless the current is decreasing to or below 3.0A.

If the power output has been switched off, the error code
I0_E_PROT_ACTIVE will be reported.

High Side Outputs with Overcurrent Protection:

This error code is not returned by channels with slow
overcurrent protection, as these outputs do allow a high
current for 1 second. If the current is above 3.75A after 1
second the output stages will be switched off.

If the power output has been switched off, the error code
I0_E_PROT_ACTIVE will be reported.

Low-Side Digital Outputs:

These channels can take 3.5A continuous current and up
to 5.5A peak current for 1 second. If the current is above
3.5A the 10-Driver signals to the application with this error
code that after 1 second the affected low-side output will be
switched off unless the current is decreasing to or below

3.5A.
If the low-side output has been switched off, the error code
I0_E_PROT_ACTIVE will be reported.

PVG/Voltage Outputs:
There is no temporary overload situation for PVG/Voltage
outputs.

#define IO_E_PROT_USER_OVERLOAD 140

An output has detected a situation that was specified as
overload by the user.

PWM Outputs:
If the measured current rises above the overiocad 1imit
specified upon initialization with |O_PWM _Init, the driver
task-function will return this error code.

Digital Outputs:
If the measured current rises above the overicad 1imit
specified upon initialization with |O_DO _Init, the driver task-
function will return this error code.

PVG/Voltage Outputs:
For PVG/Voltage outputs there is no user configurable
overload situation available.

#define IO_E_PVG_OUTPUT_DISABLED 182

PVG/Voltage outputs are disabled.

This error is reported if the PVG/Voltage Outputs are disabled
via |IO_POWER_Set or not yet enabled after ECU startup. No
diagnosis is possible during this stage.

#define I0_E_PVG_SHORT_BATTERY 181

If the measured voltage on the analog feedback of a PVG
output is above 95% of UBat, this error is reported by the step
function.

#define I0_E_PVG_SHORT_CIRCUIT 180

If the measured voltage on the analog feedback of a PVG
output is below 5% of UBat, this error is reported by the step
function.

#define I0_E_PWD_CAPTURE_ERROR 123

A capture error occurred on a timer channel

PWM output with timer feedback in digital timer input
mode:
This error is reported if two edges of the measured signal
are too close to each other, and the internal timer cannot
measure the time difference anymore (for example spikes
caused by the switching of inductive loads in electric
motors).

Digital Timer input:
This error is reported if two edges of the measured signal
are too close to each other, and the internal timer cannot
measure the time difference anymore (for example spikes

caused by the switching of inductive loads in electric
motors).

#define I0_E_PWD_HIGH_LEVEL 121

A constant high level has been detected on a timer channel.

PWM output with timer feedback in digital timer input
mode:
This error is reported if no edges are captured for 100ms
and a high level is detected on the input pin.

#define |I0_E_PWD_LOW_LEVEL 122

A constant low level has been detected on a timer channel.

PWM output with timer feedback in digital timer input
mode:
This error is reported if no edges are captured for 100ms
and a low level is detected on the input pin.

#define I0_E_PWD_NOT_FINISHED 124

The timer channel has not yet finished the measurement.

Digital timer input in digital timer input mode:
Depending on the configuration a certain number of signal
edges are required for a timing measurement. This error is
reported if not all edges have been captured. If the task
function is called multiple times during a period of the
signal which shall be measured, the function will return
I0_E_OK only if valid data is available, otherwise it returns
this error code.
This error is also reported if no edges have been captured
at all.

#define I0_E_PWD_TIMER_OVERFLOW 120

A timer overflow occurred.

This error code appears when the 24bit timer overflows. The
time depends on the timer resolution which can be configured
with the respective initialization function.

Remarks

timer_res = 0.2us -> max. period of input signal to measure
= 3.34s

timer_res = 0.4us -> max. period of input signal to measure
= 6.68s

timer_res = 0.8us -> max. period of input signal to measure
= 13.36s

timer_res = 1.6us -> max. period of input signal to measure
= 26.73s

timer_res = 3.2us -> max. period of input signal to measure
=53.47s

#define I0_E_PWM_CAPTURE_ERROR 100

A capture error occurred on a PWM loop-back channel.

This error code can be the result of a stuck measurement timer
or if two edges of the measured signal are too close to each
other, and the internal timer cannot measure the time difference
anymore.

PWM output with timer feedback in PWM output mode:
This error is reported if two edges of the measured signal
are too close to each other, and the internal timer cannot
measure the time difference anymore (for example spikes
caused by the switching of inductive loads in electric
motors).

#define 10_E_PWM_CHANNEL_STARTUP 107

The PWM output is in its startup phase.
For PWM channels with current measurement the current
measurement is being calibrated during this phase.

#define I0_E_PWM_CURRENT_INACCURATE 113

Current measurement inaccurate.

This error is reported if the values for zero current
compensation which are stored in the PDB are out of range or
do not match the values which are measured during startup.

#define I0_E_PWM_DIAG_TRANSIENT _OSC 112

The diagnostic functions on a PWM output with analog
feedback have been temporarily disabled.

This error code is reported if a error is detected on a PWM
output with disabled diagnostic margin. Due to the low pass
filter in the feedback path, the diagnostic functions are disabled
for 50ms after a change of the output level to avoid wrongly
reported errors during the settling time of the filter.

Remarks
This is no error but a information for the application
software that currently no output diagnostic is available on
this channel. If this code is returned the application
software should wait until the error IO_E_OK is returned
before changing the output value again. Otherwise no
diagnostic information can be provided.

#define I0_E_PWM_NOT_FINISHED 101

The timer feedback channel of a PWM output has not yet
finished the pulse-width and period measurement.

This error code is currently being suppressed and only used
internally. Currently it will not be returned by any API function

#define IO_E_PWM_OPEN_LOAD 102

An open load condition has been detected.

This error is reported if the output signal cannot be measured
via the timer feedback and the level on the analog feedback
channel corresponds to the device-internal pull-up resistor.

Remarks
No open load detection is available if the power stages
have been disabled.

#define
I0O_E_PWM_OPEN_LOAD OR_SHORT_BATTERY 105

An open load or short to battery condition has been detected.
At the point of time when this error is returned, it was not yet
possible to distinguish between open load or short to battery.
After 50ms — if the error is still present — depending on the
voltage level at the output pin the following errors will be
returned:

« |IO_E_PWM_SHORT_BATTERY if voltage is near battery
voltage

« IO_E_PWM_OPEN_LOAD if voltage is in open load range

o Still lO_E_PWM_OPEN_LOAD_OR_SHORT_BATTERY if
the 10 driver was not able to precisely determine which
error occurred.

#define I0_E_PWM_OUTPUT DISABLED 109

PWM outputs are disabled.

This error is reported if the high-side powerstages are disabled
via |IO_POWER_Set or not yet enabled after ECU startup. No
diagnosis is possible during this stage.

#define I0_E_PWM_OUTPUT_HIGH 111

A high level has been detected on a PWM channel.

This error is returned, if the diagnostic margin of a PWM
channel has been deactivated and the duty cycle exceeds the
higher diagnostic margin of 250us. In this state — due to the
high duty cycle — a short to battery situation cannot be
distinguished from a faultless situation.

Remarks

This is no error, but an information for the application
software that due to the high duty cycle only reduced
diagnosis is available.

#define I0_E_PWM_OUTPUT LOW 110

A low level has been detected on a PWM channel.

This error is returned, if the diagnostic margin of a PWM
channel has been deactivated and the duty cycle exceeds the
lower diagnostic margin of 100us. In this state — due to the low

duty cycle — a short to ground situation cannot be distinguished
from a faultless situation.

Remarks

This is no error, but an information for the application
software that due to the low duty cycle only reduced
diagnosis is available.

#define IO_E_PWM_OUTPUT_STARTUP_ERROR 108

The PWM output has been switched off because a error
occurred during it's startup phase.

For PWM channels with current measurement this means that
the offset of the current measurement is out of range. For
reasons to protect the current measurement hardware (electric
shunt) this output will stay disabled for the remaining driving
cycle.

#define I0_E_PWM_SHORT_BATTERY 104

A short circuit to battery condition has been detected.

This error is reported if the output signal cannot be measured
via the timer feedback and the level on the analog feedback
channel is larger than 0.8 times UBAT.

Remarks
No short circuit detection is available if the power stages
have been disabled. Refer to the ECU power functions for
further details.

#define 10_E_PWM_SHORT_CIRCUIT 103

A short circuit condition has been detected.

This error is reported if the output signal cannot be measured
via the timer feedback and the level on the feedback channel is
low (ground level) This means that no edges could be captured

on the timer feedback channel within a timeout of 4 times of the
PWM period time.

The error condition is reset as soon as the timer was able to
capture a complete PWM period (3 edges).

Remarks
No short circuit detection is available if the power stages
have been disabled. Refer to the ECU power functions for
further details.

#define |IO_E_RESET_COUNTER_INVALID 250

Reset counter is invalid The content of the reset save CPU
registers that are used to store the reset counter is inconsistent.

#define I0_E_SAFETY_NOT_SUPPORTED 22

The given channel does not support to be configured safety
critical.

This error is reported if an IO channel is configured as safety
critical but does not support this feature (reported by
I0_ADC_Channelinit(), I0_PWM _Init()).

#define IO_E_SBRAM_CONTENT_INVALID 251

Content of standby memory invalid The content of a section of
the standby memory is inconsistent and can't be read.

#define IO_E_SPI_BUFFER_FULL 81

SPI hardware buffer is full.
This error code is used internally by the SPI driver. It is not
reported by any API function.

#define 10_E_SPI_MAX_DEV_REACHED 80

Maximum number of SPI devices reached.
This error code is used internally by the SPI driver. It is not
reported by any API function.

#define 10_E_SW_INTERNAL 220

Internal error has occurred.
This error can be caused by a SW or processor malfunction.

#define I0_E_SW_OUTPROT_SM 221

An internal error within the output protection has occurred.
An error within the state machine which handles the output
protection for power outputs with current measurement
occurred. This is an error caused by SW malfunction.

#define I0_E_TASK_NO_FREE_SLOTS 240

Maximum number of tasks reached.

Certain 10s use a task running in the background for managing
protection mechanisms or executing PID controllers. If the
number of free task slots reaches its maximum, this error code

gets returned. The root cause of such a error is most probably a
malfunction within the IO driver software.

#define I0_E_UART_BUFFER_EMPTY 71

A UART software buffer is empty.
This error code is used internally by the UART driver. It is not
reported by any API function.

#define I0_E_UART_BUFFER_FULL 70

The UART software buffer is full.

When receiving: Too much data has been received since the
last successful read operation - data has been lost.

When transmitting: The given data does not fit into the buffer,

data has been rejected. Try again when there is more space in
the buffer.

#define |IO_E_UART_OVERFLOW 72

Overflow in the UART hardware buffer.

The hardware buffer reported an overflow. This happens if to
much data has been received between two consecutive SW
cycles.

To avoid this problem the application can call the function
I0_UART _Task() at any time. This function copies the data
from the hardware buffer to the software buffer.

#define I0_E_UART_PARITY 73

UART parity error.
The received parity bit doesn't match the calculated one.

#define IO_E_UNKNOWN 3

General error. No further information can be provided.

#define |IO_E_VOUT_OUTPUT_DISABLED 192

PVG/Voltage outputs are disabled.

This error is reported if the PVG/Voltage Outputs are disabled
via |IO_POWER_Set or not yet enabled after ECU startup. No
diagnosis can be applied while the output stage is disabled.

#define I0_E_VOUT_PRECISION 193

Voltage on the output is outside the allowed tolerance.

If the configured output voltage is not reached after 150ms
within a tolerance of (+/- 200mV), this error is returned by the
step-function.

#define IO_E_VOUT_SHORT_BATTERY 191

A short circuit to battery condition has been detected on a
voltage output.

This error is reported if after the settling time of 150ms the
configured voltage is not reached and the the voltage measured
on the analog feedback is greater than (UBat - 1000mV).

#define I0_E_VOUT_SHORT_CIRCUIT 190

A short circuit to ground condition has been detected on a
voltage output.

This error is reported if after the settling time of 150ms the
configured voltage is not reached and the the voltage measured
on the analog feedback is less than 1000mV.

#define I0_E_WD_INT_ONLY_NON_SAFETY 52

Configuring/triggering/disabling of internal watchdog via API
functions is only possible if IO Driver is configured as non-safety
relevant. If 10 Driver is configured as safety relevant
configuration and triggering/disabling is performed via functions
I0_Driver_Init() / 10_Driver_TaskBegin() automatically

#define |IO_E_WD_TRIGGER_DISABLED 50

The trigger mechanism for the external watchdog has been
disabled.

This error code is returned when the diagnostic part of the 10-
Driver has activated the Safe-State!

#define I0_E_WD_TRIGGER_TEMPORARY_DISABLED 51

The trigger mechanism for the external watchdog has been
temporary disabled for diagnosis of the watchdog.

#define |I0_E_WRONG_HW_TYPE 230

Hardware type does not match.
This error is caused by using an 10-Driver for the wrong device

(e.g. TTC-30XH driver for TTC-30XI).

Attention
The 10-Driver remains uninitialized and no out- or inputs

will work.

Typedef Documentation

typedef ubyte2 I0_ErrorType

Every driver function returns an error code of type
IO _ErrorType. Refer to Error Values for a documentation of the
possible values

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by

162

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual b-1TC-X-G-

HYDAC INTERNATIONAL 20_001

Main Page | Related Pages | Data Structures ﬁ

File List | Globals |

inc ,:’

IO_Crypt.h File
Reference

Functions

API for I/O driver cryptographic functions. More...

#include "ptypes xel67.h" #include "IO Constants.h"

Macros

#define 10_CRYPT_XTEA_KEY_LEN 4U
Definition of key length for XTEA algorithm.

Functions

I0_ErrorType 10 _Crypt_GetPseudoRandomNumber (ubyte4
*const prn)
Returns a pseudo random number.

I0_ErrorType 10_Crypt_XteaEncipher (ubyte4 *const vO,
ubyte4 *const v1, const ubyte4 *const key, bool
key encrypted)

Enciphers a 64bit value with the XTEA algorithm
(in-place)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

I0_ErrorType

I0_ErrorType

I0_ErrorType

I0_Crypt_XteaDecipher (ubyte4 *const v0,
ubyte4 *const v1, const ubyte4 *const key, bool
key encrypted)

Deciphers a 64bit value with the XTEA algorithm
(in-place)

10_Crypt_XteaEncipher32 (ubyte4 *const v, const
ubyte4 *const key, bool key encrypted)

Enciphers a 32bit value with the XTEA algorithm
(in-place)

I0_Crypt_XteaDecipher32 (ubyte4 *const v, const
ubyte4 *const key, bool key_encrypted)

Deciphers a 32bit value with the XTEA algorithm
(in-place)

Detailed Description

API for 1/O driver cryptographic functions.

XTEA block cipher algorithm

The following section shows the XTEA block cipher algorithm as C
code examples. The examples can be used as basis for integration
of the algorithm into a diagnostic tester. The tester only needs the
functions for enciphering (a comparable decipher function is used by
the ECU). Nevertheless, for the purpose of completion both
encipher and decipher functions are listed. The XTEA algorithm is a
freely available algorithm for symmetrical encryption purposes. The
current cipher implementation uses 64 feistel rounds. The algorithm
uses a 128bit secret key that can be chosen freely but must of
course be kept secret. If the chosen secret key becomes public
security is compromised!

The application code does not have to implement the following
functions because the algorithm is already included in the I/O driver
library:

® T0 Crypt XteaEncipher
® TO0 Crypt XteaDecipher
® I0 Crypt XteaEncipher32
® IO Crypt XteaDecipher32

XTEA block cipher algorithm details

#define XTEA DELTA (ubyted) 0x9E3779B9UL

#define XTEA DELTA SHORT (ubyte2) 0x79B9U

#define XTEA NUM CYCLES (ubyted)32UL // 1
cycle corresponds to 2 feistel rounds. 32
cycles := 64 feistel rounds

// Enciphers a 32bit wvalue
void xXtea encipher u32(ubyted4 * const v
, const ubyted4 * const key

)

ubyte2 i; // use a machine word for the loop
variable

ubyte? sum;

ubyte2 vO0;

ubyte2 vl;

sum = 0;

v0 = (ubyte2) *v;
vl = (ubyte2) (*v >> 16);

for (1 = 0; 1 < XTEA NUM CYCLES; i++) // 1
cycle corresponds to 2 feistel rounds. 32
cycles := 64 feistel rounds
{
vl += (((vl << 4) ~ (vl >> 5)) + v1) *©
(sum + (ubyte2)key[sum & 3]);
sum += XTEA DELTA SHORT; // adding XTEA
delta value. overrun of sum is irrelevant
vl += (((v0 << 4) ~ (vO >> 5)) + v0) ~©
(sum + (ubyte2)key[(sum>>11) & 31);
}

*v = (ubyted)v0;
*v |= (ubyted)vl << 16;

}

// Deciphers a 32bit value
void xXtea decipher u32(ubyted4 * const v
, const ubyted4d * const key

)

ubyte2 i; // use a machine word for the loop
variable

ubyte? sum;

ubyte2 v0;

ubyte2 vl;

sum = (ubyte2) ((ubyted4)XTEA DELTA SHORT *
(ubyte4)XTEA NUM CYCLES); // overrun of sum
is irrelevant

v0 = (ubyte2) *v;
vl = (ubyte2) (*v >> 16);

for (1 = 0; 1 < XTEA NUM CYCLES; i++) // 1
cycle corresponds to 2 feistel rounds. 32

cycles := 64 feistel rounds
{

vl -= (((v0 << 4) ~ (vO >> 5)) + v0) »
(sum + (ubyte2)key[(sum>>11) & 3]);

sum -= XTEA DELTA SHORT;

v —= (((vl << 4) ~ (vl >> 5)) + v1) ~

(sum + (ubyte2)key[sum & 3]);
}

*v = (ubyted)v0;
*v |= (ubyted)vl << 16;
}

// Enciphers a 64bit value (2*32bit, high word in
vl, low word in vO0)
volid xtea encipher (ubyted4d * const v0
, ubyted * const vl

, const ubyted * const key)

ubyte2 i; // use a machine word for the loop
variable
ubyted sum;

sum = 0;

for (1 = 0; 1 < XTEA NUM CYCLES; i++) // 1
cycle corresponds to 2 feistel rounds. 32
cycles := 64 feistel rounds
{

*vO += (((*v1l << 4) 7~ (*v1 >> 5)) + *v1l)
(sum + key[sum & 3]);

sum += XTEA DELTA; // overrun of sum is
irrelevant

*vl 4= (((*v0 << 4) ~ (*v0 >> 5)) + *vO0)

A (sum + key[(sum>>11) & 3]);
}

AN

}

// Deciphers a 64bit value (2*32bit, high word in
vl, low word in wvO)
void xtea decipher(ubyted4 * const v0
, ubyted * const vl
, const ubyted * const key)

ubyte?2 1i; // use a machine word for the loop
variable
ubyted sum;

sum = (ubyted) ((ubyte8)XTEA DELTA *
(ubyte8)XTEA NUM CYCLES); // overrun of sum
is irrelevant

for (1 = 0; 1 < XTEA NUM CYCLES; i++) // 1
cycle corresponds to 2 feistel rounds. 32
cycles := 64 feistel rounds

{

*v1l == (((*v0 << 4) ~ (*v0O >> 5)) + *v0)
A (sum + key[(sum>>11) & 3]);
sum -= XTEA DELTA;
*vO —-= (((*v1l << 4) ~ (*v1 >> 5)) + *vl)
(sum + key[sum & 3]1);

A

}

Macro Definition Documentation

#define I0_CRYPT_XTEA_KEY_LEN 4U

Definition of key length for XTEA algorithm.

The XTEA algorithm operates with 128 bit keys (4*32bit)

Function Documentation

I0_ErrorType
I0_Crypt_GetPseudoRandomNumber (ubyte4 *const prn)

Returns a pseudo random number.

Returns
|O_ErrorType

Return values
I0O_E_OK Everything ok.
IO_E_NULL_POINTER A NULL pointer has
been passed.
IO E_ CHANNEL NOT_CONFIGURED I/O driver has not
been initialized
before.

Remarks
This functions returns a 32bit random number. If a 64bit
random number is needed, the function can be called twice

like in code example below.

ubyte8 prn64;
ubyted prn32;

IO Crypt GetPseudoRandomNumber (&prn32) ;
prn6d = (ubyte8)prn32 << 32;

I0 Crypt GetPseudoRandomNumber (&prn32) ;
prn6d4d |= prn32;

I0_ErrorType
I0_Crypt_XteaDecipher (ubyte4 *const v0,

ubyte4 *const v1,
const ubyte4 *const key,
bool key_encrypted

)

Deciphers a 64bit value with the XTEA algorithm (in-place)

Parameters
[in,out] vO lower half of 64bit block to
decipher
[in,out] v1 upper half of 64bit block to
decipher
[in] key secret key, must have 4
elements
[1n] key_encrypted set to TRUE if given key is
encrypted (e.g. because it
originates from the branding
block), otherwise to FALSE.
Returns

|O_ErrorType

Return values
I0_E_OK Everything ok.
IO_E_NULL_POINTER A NULL pointer has been passed.

I0_ErrorType

I0_Crypt_XteaDecipher32 (ubyte4 *const Vv,
const ubyte4 *const key,
bool key_encrypted

)

Deciphers a 32bit value with the XTEA algorithm (in-place)

Parameters

[in,out] v 32bit block to decipher
[in] key secret key, must have 4 elements
[in] key_encrypted set to TRUE if given key is

encrypted (e.g. because it
originates from the branding
block), otherwise to FALSE.

Returns
|O_ErrorType

Return values
I0O_E_OK Everything ok.
IO_E_NULL_POINTER A NULL pointer has been passed.

Remarks
The XTEA algorithm has been designed to work on 64bit
blocks (2x32). This 32bit version is a derivative of it that
operates based on the same secret key but using only 4x16bit
of it instead of 4x32bit.

I0_ErrorType

I0_Crypt_XteaEncipher (ubyte4 *const v0,
ubyte4 *const vi,
const ubyte4 *const key,
bool key_encrypted
)

Enciphers a 64bit value with the XTEA algorithm (in-place)

Parameters

[in,out] v0 lower half of 64bit block to
encipher

[in, out] v1 upper half of 64bit block to

encipher

[in] key secret key, must have 4
elements
[in] key_encrypted set to TRUE if given key is

encrypted (e.g. because it
originates from the branding
block), otherwise to FALSE.

Returns
|O_ErrorType

Return values
I0O_E_OK Everything ok.
IO_E_NULL_POINTER A NULL pointer has been passed.

I0_ErrorType

I0_Crypt_XteaEncipher32 (ubyte4 *const V,
const ubyte4 *const key,
bool key_encrypted

)

Enciphers a 32bit value with the XTEA algorithm (in-place)

Parameters
[in,out] v 32bit block to encipher
[in] key secret key, must have 4 elements
[in] key_encrypted set to TRUE if given key is
encrypted (e.g. because it
originates from the branding
block), otherwise to FALSE.
Returns

|O_ErrorType

Return values
I0O_E_OK Everything ok.
IO_E_NULL_POINTER A NULL pointer has been passed.

Remarks
The XTEA algorithm has been designed to work on 64bit
blocks (2x32). This 32bit version is a derivative of it that
operates based on the same secret key but using only 4x16bit
of it instead of 4x32bit.

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by
AR 182

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Manual b-TTc-x-G-20-001

Main Page | Related Pages | Data Structures w

File List | Globals |

inc ,|":

10_DIO.h File
Reference

Data Structures | Typedefs | Functions

IO Driver functions for Digital Input/Output. More...

#include "IO Driver.h"

Data Structures

struct _io_driver_di_limits
Voltage limits for digital inputs. More...

Macros

Pull up / down configuration
Pull up/down resistor for the digital inputs

#define 10 _DI_PU 0x01

#define 10_DI_PD 0x02

Typedefs

typedef struct _io_driver_di_limits 10_DRIVER_DI_LIMITS
Voltage limits for digital inputs.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Functions

10_ErrorType

I0_ErrorType

10_ErrorType

I0_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

I0_DI_Init (IO_PIN di_channel, ubyte1 pupd, const
I0_DRIVER_DI_LIMITS *const limits)
Setup the Digital Inputs.

I0_DO_Init (IO_PIN do_channel, ubyte2 overload_limit)
Setup the Digital Outputs.

10_DI_Delnit (I0_PIN di_channel)
Deinitializes a DI channel.

10_DO_Delnit (I0_PIN do_channel)
Deinitializes a DO channel.

I0_DI_Get (IO_PIN di_channel, bool *const di_value)
Returns the state of a Digital Input.

I0_DO_Set (I0_PIN do_channel, bool do_value,
ubyte2 *const voltage fb)
Sets the state of a Digital Output.

I0_DO_GetCur (I0_PIN do_channel, ubyte2 *const
current, bool *const fresh)
Returns the measured current of the given channel.

Detailed Description

IO Driver functions for Digital Input/Output.

Contains all service functions for the digital in/outputs.

DIO Code Examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function calls.

DIO initialization examples:

IO DRIVER DI LIMITS limits = { 0, 3000, 3000, 32000
}i

IO DI Init(IO DI 00, IO DI PU, &limits);
// configure digital input with pull-up

IO DO Init(IO DO 00, 2500);
// digital output with 2500mA overload
configuration

IO POWER_Set(IO INT POWERSTAGE ENABLE, IO POWER_ON
) // enable high-side outputs

DIO task function examples:

bool di val O;
ubyte2 do voltage fb;

IO DI Get(IO DI 00 // read value of
digital input
, &di val 0);

IO DO Set(IO DO 00 // set digital
output value and get analog feedback
, TRUE

, &do _voltage fb);

Macro Definition Documentation
#define 10_DI_PD 0x02

pull-down resistor

#define 10_DI_PU 0x01

pull-up resistor

Typedef Documentation

typedef struct _io_driver_di_limits IO_DRIVER_DI_LIMITS

Voltage limits for digital inputs.

Contains the thresholds for valid low- and high-levels for digital inputs.
The range for the low-level is defined by the voltages 10w thresh1 and
low thresh2, Where 1ow thresh1 is the lower limit for a low-level and
low thresh2 the upper limit.

The range for the high-level is defined by the voltages high thresh1
and high thresh2, Where high thresh1 is the lower limit for a high-level
and high thresh2 the upper limit.

The value of 10w _thresn1 must always be smaller than 10w thresh2 and
high threshl must always be smaller than nigh thresh2.

It is possible to configure a hysteresis by setting 10w thresh2 bigger
than nigh threshi. In this mode an already detected logic level will be
hold as long as the analog voltage varies within the hysteresis band
low thresh2 - high threshl. Please see the following examples:

Examples:

// voltage limits without hysteresis
I0 DRIVER DI LIMITS limitsl = { 0, 2000, 3000, 5000
}:

In the above example 1inits1 defines the range 0-2000mV as valid
low-level and 3000-5000mV as valid high-level. The voltage range
between 2000 and 3000mV represents an invalid area. In this case the
error code 1o E DI_INVALID VOLTAGE Will be returned.

// voltage limits with hysteresis

I0 DRIVER DI LIMITS limits2 = { 0, 3000, 2000, 5000

I 8

In the above example 1inits1 defines the range 0-2000mV as valid
low-level and 3000-5000mV as valid high-level. The range 2000-
3000mV forms a hysteresis. If the voltage value rises or drops within
this band (between 2000 and 3000mV) the former state of the channel

will be held.

Function Documentation

I0_ErrorType 10_DI_Delnit (10_PIN di_channel)

Deinitializes a DI channel.

Parameters

di_channel Digital input:

Returns

e IO DI_00..I0_DI_07
e IO DI_10..I0 DI_31

I0_ErrorType:

Return values
I0_E OK

IO_E_INVALID_CHANNEL_ID

everything fine
the given core id does
not exist

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not

I0_E_CH_CAPABILITY

Remarks

configured

The DI capability of this
channel has not been
activated

» The following channels form groups. A group always has to

be configured as a whole.
I0 DI _00 ..
I0 DI _02 ..
I0 DI 04 ..
I0 DI _06 ..
I0 DI _10 ..
I0 DI_12 ..
I0 DI_14 ..
I0 DI_16 ..

O O O O O o o o

I0 DI_01
I0 DI_03
I0 DI_05
I0 DI_07
I0 DI_11
I0 DI_13
IO DI_15
IO DI_18

© IO DI_19..I0 DI_21

I0_ErrorType 10_DI_Get (10_PIN di_channel,
bool *const di_value

)

Returns the state of a Digital Input.

Parameters

di_channel Digital input:
* IO DI_00.. IO _DI_07
* IO DI_10..I0 DI_31

di_value Input value:
e trUE: High Level
e raLSE: Low Level

Returns
I0_ErrorType

Return values
I0_E OK
I0_E_INVALID CHANNEL_ID
I0_E_CH_CAPABILITY
IO_E NULL POINTER
I0_E_CHANNEL_NOT_CONFIGURED

I0_E_ADC_INVALID

|I0_E_DI_SHORT_CIRCUIT

everything fine
the channel id
does not exist
The given
channel is not a
digital input
null pointer
passed as
argument

the given
channel is not
configured

ADC
measurement
error

short to ground

was detected

I0_E_DI_SHORT_BATTERY short to battery
was detected

I0O_E_DI_OPEN_LOAD open-load
situation was
detected

I0_E_DI_INVALID_VOLTAGE voltage

measured not
within configured
voltage limits

I0_E_DI_OPEN_LOAD_OR_SHORT_CIRCUIT open-load or

short to GND
detected (not
distinguishable)
Remarks
The digital input is determined according to the following rules and
order:

1.

If the measured voltage lies between low_thresh1 and
low_thresh2 configured with I0_DI_Init, raLsk is reported as
digital value. If the voltage lies between high_thresh1 and
high_thresh2, Truk is reported as digital value. In both cases,
I0_E_OKis returned as error-code.

. If a pull-up is configured on the input and the voltage lies

between 4.75V and 5.5V, the value in di_value is not valid
and the function returns I0_E_DI_OPEN_LOAD.

. If a pull-down or no pull-resistor is configured on the input and

the voltage lies between 0V and 1.25V, the value in di_value
is not valid and the function returns
I0_E_DI OPEN_LOAD OR_SHORT _CIRCUIT

. If the measured voltage lies between UBat and UBat - 1.25V,

TRUE is stored in 4i_va1ue and the function returns
I0O_E_DI_SHORT_BATTERY.

. In all other cases, the value in ai_va1lue is not valid and the

function returns IO_E_DI_INVALID VOLTAGE, as the
measured voltage neither lies in the range defined by the
user, nor in any range that allows diagnosis.

Note
The voltage levels defined by the user via the parameter 1imits of
IO_DI_Init always have priority over diagnosis functionality.
For example, if an input is configured with pull-up resistor and the
voltage range 0-6V is defined as valid low-level, no open-load
error will be returned by this function.

I0_ErrorType

10_DI_lInit (10_PIN di_channel,
ubyte1 pupd,
const IO_DRIVER_DI_LIMITS *const limits

)

Setup the Digital Inputs.

Parameters
di_channel Digital input:
® IO DI_00..I0_DI_07
* IO DI_10..I0 DI_31
pupd Pull-up/down configuration, one of (only for
IO DI_02..I0 DI_07):
e 10 DI_pU: configure with pull-up resistor
e 10 DI_pD: configure with pull-down resistor

limits voltage limits for low/high-levels. If nurt, default limits
will be used. See IO_DRIVER_DI_LIMITS for details.

Returns
I0_ErrorType:

Return values

I0_E_OK everything fine

I0_E_INVALID _CHANNEL_ID the channel id does not exist

I0_E_CHANNEL_BUSY the digital output channel is
currently used by another
function

I0_E_INVALID_PARAMETER parameter is out of range

I0_E_GROUP_CONFLICT desired configuration not
possible due to a group

conflict.

The DI capability of this

channel has not been

activated

the given voltage limits are

not valid

I0_E_DRIVER_NOT_INITIALIZED the common driver init
function 1o priver Init() has
not been called

I0_E_CH_CAPABILITY

|IO_E_DI_INVALID_LIMITS

Remarks
o If the parameter 1inmits is nuLL, default values will be used:
o low-level: 0..1500mV
o high-level: 3500..32000mV

e The parameter pupd is only considered for digital inputs which
allow the configuration of a pull-up/down resistor; i.e.
I0_DI_02..10_DI_07. For all other digital inputs this parameter
is ignored.

 All digital inputs are connected via multiplexers to the CPU. A
changing value on the connector pin may only be available
after some delay.

» The following channels form groups. They have to be
configured in the same mode within a group.

© I0_DI_00.. IO DI_01
IO DI_02 .. IO _DI_03
IO DI_04 .. IO DI_05
IO DI_06 .. I0_DI_07
IO DI_10 .. IO DI_11
IO DI_12 .. IO DI_13
IO DI_14 .. IO DI_15
IO DI_16 .. IO _DI_18
IO DI_19 .. IO DI_21

» Check the alternate functions of the pins used in each group. A pin
can only be configured for one function at a time and it has to be

the same function within the group.The alternate functions can be
found at I0_Pins.h

I0_ErrorType 10_DO_Delnit (10_PIN do_channel)

Deinitializes a DO channel.

Parameters
do_channel Digital Output:
* IO _DO_00..I0_DO_07
* IO _DO_10..I0 DO_11
* IO_DO_20..I0_DO_25
* IO _DO_30..I0_DO_35

Returns
I0_ErrorType:

Return values

I0_E_OK everything fine

I0_E_INVALID CHANNEL_ID the given core id does
not exist

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not
configured

I0O_E_CH_CAPABILITY The DO capability of this
channel has not been
activated

Remarks

» The following channels form groups. A group always has to
be configured as a whole.
I0 DO 00, I0 DO 20
10 DO 01, IO DO 21
I0 DO 02, IO DO 22
I0 DO 03, I0 DO 23
10 DO 04, IO DO 24
10 DO 05, IO DO 25

O O O O o o

10_ErrorType IO_DO_GetCur (10_PIN do_channel,
ubyte2 *const current,
bool *const fresh

)

Returns the measured current of the given channel.

Parameters

do_channel Digital Output:
* IO DO 20..I0 DO 25

current Measured current
» Range: 0..7575 (OmA..7575mA)
fresh Fresh flag for current value

e TrUE Value is valid
e FALSE NO new value available

Returns
I0_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not
configured
I0_E_INVALID_CHANNEL_ID the given channel id
does not exist
I0_E_ADC_INVALID an ADC error occured

I0_E_PWM_CURRENT_INACCURATE Current measurement
has reduced accuracy

I0_E_NULL_POINTER A NULL pointer has
been passed to the
function

I0_E_CH_CAPABILITY The DO capability of this
channel has not been
activated

I0_ErrorType 10_DO_Init (I0_PIN do_channel,

ubyte2 overload_limit

)

Setup the Digital Outputs.

Parameters

do_channel Digital Output:

» 10 DO _00..10 Do 07 Digital High-Side
Outputs with analog feedback

e 10 DO 10..10 Do 11 Digital Low-Side with
analog feedback

e 10 DO 20..10 DO 25 Digital High-Side
Outputs with analog and current feedback

e 10 DO 30..10 DO 35 Push-Pull Digital
Outputs

overload_limit Configurable limit [mA] above which
I0O_E_PROT_USER_OVERLOAD is reported.
Parameter is ignored for 1o po 10..10 po 11 and
I0_DO_30 .. I0_DO_35
e overload_limit configured to O: overload limit
disabled; I0_E_PROT_USER_OVERLOAD
error will not be reported
» overload_limit configured to 1mA .. 2999mA:
I0_E_PROT_USER_OVERLOAD error will
be reported via function I0_DO_Set() if the
measured current is above defined
overload_limit
« if measured current exceeds 3000mA other
error codes than
I0_E_PROT_USER_OVERLOAD are
reported (see error codes of function
10_DO_Set():
I0_E_PROT_TEMP_OVERLOAD,
I0_E_PROT_ACTIVE and
I0_E_PROT_FATAL)

Returns
10_ErrorType:

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID the channel id does not exist

I0_E_CHANNEL_BUSY the digital output channel is
currently used by another
function

I0_E_SW_INTERNAL Internal software error

I0_E_CH_CAPABILITY The DO capability of this
channel has not been
activated

I0O_E_TASK_NO_FREE_SLOTS No more free slots to setup
task function

I0_E_DRIVER_NOT_INITIALIZED the common driver init
function 1o priver Init() has
not been called

Remarks
For detection of open-load/short-circuit on the digital output
channels 1o po 00..10 po 07, I0 DO 10..10 DO 11 and
10 po 20..10 po 25 the associated ADC channel will also be
configured.

For detection of overload on the digital output channels
I0 po 20..10 po 25 the associated current feedback channel will
also be configured.

» The following channels form groups. They have to be
configured in the same mode within a group.
© I0 DO 00, I0 DO 20
© I0_DO_01, IO_DO_21
© I0_DO_02, IO_DO_22
© I0_DO_03, IO_DO_23
© IO_DO_04, IO_DO_24
© IO_DO_05, IO_DO_25

» Check the alternate functions of the pins used in each group. A pin
can only be configured for one function at a time and it has to be
the same function within the group.The alternate functions can be
found at I0_Pins.h

I0_ErrorType IO_DO_Set (10_PIN do_channel,
bool do_value,
ubyte2 *const voltage fb

)

Sets the state of a Digital Output.

Parameters

do_channel Digital Output:
* IO DO 00 .. IO DO 07
* I0 DO 10 .. I0 DO 11
* I0 DO 20 ..I0 DO 25
* IO DO 30 .. I0 DO 35

do_value Input value:
e TrUE: High Level
e raLse: Low Level

voltage_fb ADC value in mV of the feedback signal
* Range: 0..32780 (OmV..32780mV)

Returns
I0_ErrorType

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID the channel id
does not exist

I0_E_INVALID_DIAG_STATE the instruction is

not permitted in
the current
diagnostic state.

I0_E_CHANNEL_NOT_CONFIGURED the given
channel is not
configured

I0_E_DO _SHORT _CIRCUIT a short to GND
has been

detected

I0O_E_DO_OPEN_LOAD

I0O_E_DO_SHORT_BATTERY

open load is
detected on the
output

short to battery
detected on the
output

IO_E_DO_OPEN_LOAD_OR_SHORT_BATTERY open load or

I0O_E_DO_DIAG_TRANSIENT_OSC

I0_E_DO_CHANNEL_STARTUP

I0_E_DO_OUTPUT_DISABLED

IO_E_DO_OUTPUT STARTUP_ERROR

I0_E_PROT_USER_OVERLOAD

I0_E_PROT_TEMP_OVERLOAD

short battery is
detected on the
output

low pass of DO
outputs with
analog feedback
is being tuned
in.

The digital
output is in its
startup phase
The digital
outputs are
disabled by the
powerstage (see
I0_POWER.h
for details)

The digital
output could not
be started

Output current is
above the
threshold
configured on
initialization.
The output
remains active.

Output current is
between 3.0A
and 4.0A (HS
outputs) or 3.5A

I0_E_PROT_ACTIVE

I0_E_PROT_FATAL

and 5.5A (LS
outputs) and
output will be
switched off if
the current does
not decrease to
or below 3.0A
(HS outputs) or
to or below 3.5A
(LS outputs)
within the next 1
second (see
I0_Constants.h
for details).
Output is
disabled,
protection is
active because
of too high
output current
(over 4A for HS
outputs or 5.5A
for LS Outputs).
The driver will
try to re-enable
the output again
in 1 second
(both HS and LS
outputs) (see
I0_Constants.h
for details).
Output is
disabled,
protection is
active because
of too high
output current
(over 7A). The
driver will try to

re-enable the
output again in 1
second (HS
outputs with
current
measurement,
LS Outputs) or
in 10 seconds
(HS outputs with
overcurrent
protection) (see
I0_Constants.h
for details).
I0_E_PROT_REENABLE The 10 driver
tries to re-
enable the given
output channel
I0_E_SW_OUTPROT_SM Software
malfunction
(state machine
error)
I0_E_ADC_INVALID the ADC driver
reported an
error
I0O_E_CH_CAPABILITY The DO
capability of this
channel has not
been activated

Remarks
e For the low-side outputs 1o po 10 .. 10 po 11 the measurement
of the voltage feedback adc vaiue is only possibly in OFF-state.
During ON-state the measured value will always be zero.

« If the driver is initialized as safety, the low-side outputs 1o po 10
.. Io_po_11 are allowed to be en- and disabled only while the
driver is running in main state.

» For detection of open-load/short-circuit on all digital output
channels the associated ADC channel will be used.

» In order to obtain a plausible value in voltage_fb, the
I0_DO_Set() function has to be called a second time at least

after 10 ms.
Note

» The high-side digital outputs 10 po 00 .. 10 po 05 and 1o po 20
.. 10_po_25 have to be enabled with |IO_POWER_Set.
Otherwise the outputs remain disabled.

e The push-pull digital outputs 10 po 30 .. 10 po 35 have to be
enabled with IO_POWER_Set as well, otherwise these outputs
remain disabled.

Attention

« If the driver is initialized as non-safety, driving the low-side
outputs 1o po 10 .. 10 po 11 immediately after an ECU power
reset can trigger a fatal output protection (I0_E_PROT_FATAL)
due to an initial current peak.

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by @j@!@m
1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Manual b-TTc-x-G-20-001

Main Page | Related Pages I Data Structures m

File List | Globals |

inc |
/
Data Structures | Typedefs | Enumerations | Functions

I0_Driver.h File Reference

High level interface to 10 Driver. More...

#include "ptypes xel67.h" #include "IO Constants.h"
#include "DIAG Constants.h"
#include "IO_Pins.h"

Data Structures

struct _io_driver_safety_conf
Driver Safety Configuration. More...

struct _io_driver_trap_info
Contains information regarding traps/exceptions. More...

struct _io_driver_rst_info
Reset information. More...

Macros

CPU clock setting
CPU frequency in MHz

#define 10_DRIVER_SYSTEM_CLOCK 80

Driver operating modes

Attention

These defines are left in for compatibility reasons. Their purpose has gone
with driver version 1.2.24. Setting these parameters has no effect. Non-safety
ECUs do not have a external watchdog and for safety relevant ECUs the

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

external watchdog is triggered by 10 priver TaskBegin. However, one of these
values has to be used for the parameter mode of the function 10 priver 1nit
because the parameter checks of this functions are still active (for compatibility
reasons).

#define 10_DRIVER_MODE_DEFAULT 0x00

#define 10_DRIVER_MODE_SERVICE_WD 0x02

CPU reset status
#define 10_DRIVER_RST_STAT_NA 0x00

#define 10_DRIVER_RST_STAT_PORST 0x01
#define 10_DRIVER_RST_STAT WD 0x02
#define 10_DRIVER_RST_STAT WDT 0x04

#define 10_DRIVER_RST_STAT _SW 0x08

Options regarding the UDS security access for function reset to boot mode
#define 10_DRIVER_RTBM_UDS_RPG_ATTEMPT_NONE 0x0000

#define 10_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL 0x0001

#define 10_DRIVER_RTBM_UDS_RPG_ATTEMPT AUTH_APP 0x0002

Options regarding the response behavior of the bootloader after it was
triggered by the application

due to an UDS reprogramming attempt.

#define 10_DRIVER_RTBM_UDS_RSP_NONE 0x0000

#define 10_DRIVER_RTBM_UDS_RSP_SEND 0x0001

Safety switch
Type of used safety switch (internal or external)

#define 10_DRIVER_SAFETY_SWITCH_INT 0x00

#define 10_DRIVER_SAFETY_SWITCH_EXT 0x01

#define 10_DRIVER_SAFETY_SWITCH_NONE 0x02

No safety switch
Not use safety switch 0,1 for the second shut-off path

#define 10_SAFETY_SWITCH _NONE [0 _PIN_NONE

Typedefs

typedef enum
_io_driver_reset_reason |0_DRIVER_RESET_REASON
Reset reasons.

typedef struct
_io_driver_safety_conf 10_DRIVER_SAFETY_CONF
Driver Safety Configuration.

typedef struct _io_driver_trap_info 10_DRIVER_TRAP_INFO
Contains information regarding
traps/exceptions.

typedef struct _io_driver_rst_info 10_DRIVER_RESET_INFO
Reset information.

Enumerations

enum _io_driver_reset_reason {
I0_DRIVER_RESET_REASON_PORST,
I0_DRIVER_RESET_REASON_WDT,
I0_DRIVER_RESET_REASON_TRAP,
I0_DRIVER_RESET_REASON_SW,
I0_DRIVER_RESET_REASON_UNKNOWN
}

Reset reasons. More...

Functions

I0_ErrorType 10_Driver_Init (ubyte1 mode, const IO_DRIVER_SAFETY_CONF

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

ubyte2

10_ErrorType

10_ErrorType

10_ErrorType

*const safety_conf)

Global initialization of 10 driver. This function shall be called before
any other driver function (except function
10_Driver_GetVersionOfDriver() and
I0_Driver_GetResetStatus())

I0_Driver_GetMode (ubyte1 *const mode)
Returns the mode configured with IO_Driver_Init.

10_Driver_GetVersionOfDriver (ubyte1 *const major, ubyte1
*const minor, ubyte2 *const patchlevel)
Returns the version number of the driver.

I0_Driver_GetVersionOfBootloader (ubyte1 *const major, ubyte1
*const minor, ubyte4 *const patchlevel)
Returns the version number of the bootloader.

I0_Driver_TaskBegin (void)
Task function for 10 Driver. This function shall be called at the
beginning of the task.

I0_Driver_TaskEnd (void)
Task function for 10 Driver. This function shall be called at the end
of the task.

I0_Driver_GetAutoBaudrate (void)
Returns the result of the autobaudrate detection.

I0_Driver_ResetToBootMode (ubyte2 bm_option, ubyte2
bm_option_rsp)

Resets the ECU to boot mode and instructs the bootloader to
proceed with an UDS download procedure.

I0_Driver_GetResetStatus (ubyte2 *const status)
Returns the reset status.

I0_Driver_GetResetStatus_ex (I0_DRIVER_RESET_INFO *const
reset_info)
Returns the reset status in more detail.

Detailed Description

High level interface to 10 Driver.

The 10 Driver high level interface provides a general initialization function, a version
API and general task functions which shall wrap the whole user application.

Basic structure of an application
The 10 Driver API provides two different types of functions:

« Initialization functions: These functions are designed to be called once at the
beginning of an application.
» Task functions: These functions are designed to be called periodically at runtime.

The function 10_Driver_Init() needs to be the first function, called during the
initialization.

All safety critical 10 initialization functions need to be called before the first call of
I0_Driver_TaskBegin().

All task functions need to be enclosed by the functions I0_Driver_TaskBegin() and
I0_Driver_TaskEnd()

Example of an application:

void task (void)

{
IO Driver TaskBegin();

// User Application
// and calls to driver task functions.

IO Driver TaskEnd();
}

void main (void)
{
ubyted timestamp;

e e //

// start of driver initialization //
e //

// I0 Driver Init() is the first function:

I0 Driver Init(IO DRIVER MODE SERVICE WD, NULL); //
configure automatic WD servicing

B e R E C b //

// end of driver initialization //

e e R EE e e ST //
e //

// initialize all the safety critical IO functions

e e //
// end of safety critical IO initialization //
[/ —m e //
e R //
// from now on only task functions are called //
e R //
while (1) {

IO RTC StartTime (×tamp) ;
task () ;

while (IO RTC GetTimeUS (timestamp) < 5000);

The task function is called every 5000us = 5ms. Please refer to the Real Time Clock
documentation for details on how to use the RTC functions.

Macro Definition Documentation

#define IO_DRIVER_MODE_DEFAULT 0x00

Default mode for the |O-Driver with:

* need to manually serve the Window Watchdog (I0_WD.h)

#define IO_DRIVER_MODE_SERVICE_WD 0x02

Bit to set |O-Driver mode to service the Window Watchdog automatically.

The Watchdog will be served automatically within function 10_Driver_TaskBegin.
Due to a Watchdog window of 2ms..45ms (see I0_WD.h), in this mode the
application cycle time must not exceed 45ms.

#define 10_DRIVER_RST_STAT_NA 0x00

Reset status could not be determined

#define IO_DRIVER_RST_STAT_PORST 0x01

Reset status for a Poweron Reset

#define I0_DRIVER_RST_STAT_SW 0x08

Reset status for a Software reset

#define I0_DRIVER_RST_STAT WD 0x02

Reset status for a Window Watchdog reset

#define I0_DRIVER_RST_STAT WDT 0x04

Reset status for a Watchdog Timer reset

#define I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_APP 0x0002

Reset to boot mode. Authentication has been done already by the application
software. Not recommended!

#define I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL 0x0001

Reset to boot mode. Authentication will be done in the bootloader. This is the
recommended option

#define I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_NONE 0x0000

No reprogramming attempt. Bootloader will not stop during boot.

#define I0_DRIVER_RTBM_UDS_RSP_NONE 0x0000

The bootloader will not send any response without receiving the request for
reprogramming by itself.

#define 10_DRIVER_RTBM_UDS_RSP_SEND 0x0001

The bootloader will send the response to the request for reprogramming that has
been received by the application.

#define IO_DRIVER_SAFETY_SWITCH_EXT 0x01

External safety switch

#define IO_DRIVER_SAFETY_SWITCH_INT 0x00

Internal safety switch

#define IO_DRIVER_SAFETY_SWITCH_NONE 0x02

No safety switch
#define IO_DRIVER_SYSTEM_CLOCK 80
CPU frequency in MHz

#define 10_SAFETY_SWITCH_NONE 10_PIN_NONE

Pin NONE, PWM safety switch none configuration

Typedef Documentation

typedef enum _io_driver_reset_reason IO_DRIVER_RESET_REASON

Reset reasons.

Remarks
» Depending on the ECU not all or additional reasons are available.

» Definitions may be used instead of enumerations.

typedef struct _io_driver_safety_conf I0_DRIVER_SAFETY_CONF

Driver Safety Configuration.

This structure is used to pass the configuration for a safety critical application to
the 10-Driver.

Enumeration Type Documentation

enum _io_driver_reset_reason

Reset reasons.

Remarks
» Depending on the ECU not all or additional reasons are available.

» Definitions may be used instead of enumerations.

Enumerator:

I0_DRIVER RESET REASON_PORST
Power-On reset

I0_DRIVER_RESET_REASON_WDT
Watchdog-Timer reset

I0_DRIVER_RESET_REASON_TRAP
Reset due to exception

I0_DRIVER _RESET _REASON_SW
Reset due to call of

|IO_Driver_ResetToBootMode
or IO_Driver_Reset

I0_DRIVER RESET _REASON_UNKNOWN
Unknown reset

Function Documentation

ubyte2 10_Driver_GetAutoBaudrate (void)

Returns the result of the autobaudrate detection.

This function returns the result of the autobaudrtate detection which was executed
during startup (within the bootloader).

Returns
ubyte2 autoBaudrate

Return values
0 the autoBaudrate detection could not verify a valid baudrate
125 a baudrate of 125kbps was detected
250 a baudrate of 250kbps was detected
500 a baudrate of 500kbps was detected

I0_ErrorType 10_Driver_GetMode (ubyte1 *const mode)

Returns the mode configured with IO_Driver_Init.

This function returns the mode passed when initializing the 10-Driver with
10_Driver_Init.

Parameters
mode Returned mode (see 10_Driver_Init for details)

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_DRIVER_NOT_INITIALIZED the common driver init function has not
been called before

Attention
This function has been left in for compatibility reasons. Its functionality has
been removed with driver version 1.2.24. The returned value for mode is
always 10 DRIVER MODE DEFAULT

I0_ErrorType 10_Driver_GetResetStatus (ubyte2 *const status)

Returns the reset status.
This function returns the status/reason for the last CPU-reset.

Parameters

status Returned status. One of:

o |O_DRIVER_RST_STAT_NA
I0O_DRIVER_RST_STAT _PORST
I0O_DRIVER_RST_STAT_WD
I0_DRIVER_RST_STAT_WDT
I0O_DRIVER_RST_STAT_SW

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_NULL_POINTER null pointer has been passed

10_ErrorType
10_Driver_GetResetStatus_ex (IO_DRIVER_RESET_INFO *const reset_info)

Returns the reset status in more detail.

Parameters
[out] reset_info Information about reset

Returns
IO_ErrorType

Return values
I0_E_OK Everything ok.
I0O_E_NULL_POINTER A null pointer has been passed

I0_E_RESET_COUNTER_INVALID The reset counter is invalid. No reset or
trap info is available (This indicates a
SW or HW malfunction).

I0_E_SBRAM_CONTENT_INVALID The trap information stored in the
SBRAM is invalid. No trap info is

available (This indicates a SW or HW
malfunction).

I0_ErrorType 10_Driver_GetVersionOfBootloader (ubyte1 *const major,
ubyte1 *const minor,
ubyte4 *const patchlevel

)

Returns the version number of the bootloader.

Parameters
major Major version
minor Minor version

patchlevel Patchlevel

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_NULL_POINTER null pointer has been passed

I0_ErrorType 10_Driver_GetVersionOfDriver (ubyte1 *const major,
ubyte1 *const minor,
ubyte2 *const patchlevel

)

Returns the version number of the driver.

Parameters
major Major version
minor Minor version

patchlevel Patchlevel

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0O_E_NULL_POINTER null pointer has been passed

10_ErrorType
10_Driver_Init (ubyte1 mode,

const IO_DRIVER_SAFETY_CONF *const safety_conf
)

Global initialization of 1O driver. This function shall be called before any other driver
function (except function 10_Driver_GetVersionOfDriver() and
I0_Driver_GetResetStatus())

Initializes SPI Devices

Switches off all power outputs

Initializes the RTC

Switches on the interrupts of the CPU

« Initializes the measurement of UBAT

* Initializes and configures the Window Watchdog

Parameters
mode A bitfield that allows to configure various settings of the 1O-
Driver. One or more of:
+ |O_DRIVER_MODE_DEFAULT: Default mode with manual
triggering.
e |IO_DRIVER_MODE_SERVICE_WD: The Watchdog is
serviced automatically by the 10-Driver.
safety_conf Safety Configuration if the hardware is supporting and used as
safety device. Otherwise set this parameter to NULL.

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_WRONG_HW_TYPE wrong HW-Type detected
I0_E_BUSY driver is just initialized

I0_E_SAFETY_NOT_SUPPORTED the HW does not support safety features
IO_E_INVALID_SAFETY_CONFIG the safety configuration is faulty
I0_E_INVALID_CRC the CRC from the APDB is invalid
I0_E_TASK_NO_FREE_SLOTS No more free slots to setup task function

Remarks
Initializing the driver with a valid safety configuration might take about 65ms.

Attention

The parameter mode is left in for compatibility reasons. Its functionality has
been removed with driver version 1.2.24. Setting this parameter has no effect.
Non-safety ECU do not have a external watchdog and for safety relevant
ECUs the external watchdog is triggered by 10 priver TaskBegin.

I0_ErrorType I0_Driver_ResetToBootMode (ubyte2 bm_option,

ubyte2 bm_option_rsp
)

Resets the ECU to boot mode and instructs the bootloader to proceed with an UDS

download procedure.

Parameters
bm_option

Option for Bootloader
* |IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL.:

Reset to boot mode. Authentication will be handled by the
bootloader. This is considered the standard compliant
way and thus recommended.
I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_APP:
Reset to boot mode. Authentication will be handled by the
application software. It is the software integrator's
responsibility to secure the ECU from unauthorized
access in this case. This option is considered to be not
compliant to the standard and thus NOT
RECOMMENDED! It is only possible to unlock security
access level 1 via this function (reprogramming of
application).

bm_option_rsp Defines if the response to either the UDS request to switch to

the programming session or the security access has to be
sent by the bootloader or not.
e |O_DRIVER_RTBM_UDS RSP_NONE: The bootloader

will not send any response without receiving the request
for reprogramming by itself.
I0_DRIVER_RTBM_UDS_RSP_SEND: Instruct the
bootloader to send a response to the request for
reprogramming that has been received by the application.
The response depends on the parameter bm option: if
called with
IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL,
the application responds to the request to switch to the
programming session (UDS service 0x10 response
message <06 50 02 00 32 01 F4 55>); if called with
IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_APP,

Returns

the application responds to "send key" (UDS service 0x27
response message <02 67 xx 55 55 55 55 55>, where
"xx" is the respective sub-function selected in the
branding block, or the default 0x62).

IO_ErrorType

Return values
I0_E_OK Function executed Successfully (This

error will never be shown because if
the function executed successfully a
CPU reset has been done and the
function will never return).

I0O_E_CHANNEL_NOT_CONFIGURED The I/O driver init function has not

been called before.

I0_E_INVALID_PARAMETER An invalid parameter has been

passed.

Remarks

Prior to calling this function the pre-programming steps according to ISO
14229-1:2013 have to be handled by the application software.

After receiving a request to switch to the programming session the
application software shall call this function to switch to the programming
session if the machine conditions allow it.

It is recommended that after the application received a request to switch to
the programming session (CAN message <02 10 02>) the function

IO Driver ResetToBootMode (IO DRIVER RTBM UDS RPG ATTEMPT AUTH BL) IS
be called. If the application needs time to shut down then a RCRRP
(service 0x78) shall be sent to the diagnose tester.

If this function is called with parameter
I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL the bootloader will
send the positive response to the request to switch to the programming
session (CAN message <06 50 02 00 32 01 F4>).

If this function is called with parameter
I0_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_APP the application
software must add the bootloaders P2 timing parameters into the response
of request to switch to the programming session.

Be aware that the option |IO_DRIVER_RTBM_UDS_RSP_NONE for
parameter bm_option rsp is Not recommended. If the application sends the
response to the request to switch to the programming session before it
calls the function 10 priver ResetToBootMode, then there will be a gap
where the ECU can not answer any requests from the tester until the
bootloader including its UDS server is started. For the TTC30X type of
ECUs this time can be up to 30ms (time from calling the function

IO_Driver_ResetToBootMode until the UDS server of the bootloader is
ready to accept commands).

Attention

Be aware that resetting to boot mode during normal operation is dangerous and
in general NOT ALLOWED. The application software is only authorized to call
this function if:

» The vehicle is inactive/not moving

e The engine is not running

« the risk of any other hazard by stopping the application software at the time

of the reprogramming request can be ruled out

I0_ErrorType 10_Driver_TaskBegin (void)

Task function for 10 Driver. This function shall be called at the beginning of the
task.

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED Driver was not initialized correctly
I0_E_UART_PARITY parity check failed
I0_E_UART_OVERFLOW HW receive buffer overrun
I0_E_UART_BUFFER_FULL SW receive queue is full and data

has been lost

I0_ErrorType 10_Driver_TaskEnd (void)

Task function for 10 Driver. This function shall be called at the end of the task.

Returns
10_ErrorType

Return values

I0O_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED Driver was not initialized correctly
I0_E_UART_PARITY parity check failed
I0_E_UART_OVERFLOW HW receive buffer overrun
I0O_E_UART_BUFFER_FULL SW receive queue is full and data

has been lost

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C APl Manual by d@)ﬁ%g =20 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIOrflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures m

File List | Globals |

inc }

I0_EEPROM.h File
Reference

Functions

IO Driver functions for EEPROM. More...

#include "IO Driver.h"

Functions

I0_ErrorType 10_EEPROM_Init (void)
Initialization of the EEPROM driver.

I0_ErrorType 10_EEPROM_Delnit (void)
Deinitializes the EEPROM driver.

I0_ErrorType I0_EEPROM_Read (ubyte2 offset, ubyte2
length, bool use_crc, ubyte1 *const data)
Read data from the EEPROM.

I0_ErrorType I0_EEPROM_Write (ubyte2 offset, ubyte2
length, bool use_crc, const ubyte1 *const data)
Write data to the EEPROM.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

I0_ErrorType 10_EEPROM_GetStatus (void)
Returns the status of the EEPROM driver.

Detailed Description

|O Driver functions for EEPROM.

The EEPROM driver functions allow writing to the SPI EEPROM
as well as reading from it.

The EEPROM driver is a high level SPI device driver and uses the
low level SPI driver.

The memory amounts 8128 Byte, because 64 Byte of the
EEPROM are reserved for internal use.

Since the content of the EEPROM is not initialized or verified
during the production procedure, there is no guarantee of a
defined initial content (of OxFF) on any position.

The communication with the EEPROM is handled in a cyclic
manner. EEPROM operations take plenty of time. A write as well
as a read process is only triggered by calling the respective
function. A status function is provided which returns whether the
driver has finished the last task or not.

The EEPROM driver gives the option of calculating CRC32
checksums (size of 4 Bytes, polynome 0x04C11DB7 and
initialization value 0x00000000) on write and read operations.
When enabled, the user must take care to leave enough space for
the checksum and not to overwrite it. For example, writing to offset
zero data with a size of 6 Bytes, the checksum will be appended to
this 6 Bytes. This means, that offsets 0-5 contain the actual written
data and offsets 6-9 contain the checksum. The user must not
overwrite the bytes 6-9 via other calls of IO_EEPROM_Write.
Otherwise the next read operation with checksum enabled will
resultin an I0_E_EEPROM_CRC_MISMATCH error.

EEPROM code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function
calls.

EEPROM initialization example:
EEPROM does not need an explicit initialization. The EEPROM
driver is initialized by 10_Driver_Init().

EEPROM write example:

ubytel datal6] = {0, 1, 2, 3, 4, 5};

// check if EEPROM is busy
if (IO EEPROM GetStatus() == IO E OK)
{

// 1f not busy write data without checksum
I0_EEPROM Write (0, 6, FALSE, data);
}

// write is complete when IO EEPROM GetStatus ()
returns IO _E OK again.

EEPROM read example:

ubytel data[2000] = {0};

// check if EEPROM is busy
if (IO EEPROM GetStatus() == IO E OK)
{
// 1if not busy start reading without
checksum
IO EEPROM Read (0, 2000, FALSE, data);
}

// data is not yet available!!

// data is available when IO EEPROM GetStatus ()
returns IO E OK again.

Function Documentation

I0_ErrorType IO_EEPROM_Delnit (void)

Deinitializes the EEPROM driver.

Deinitializes the module. Allows re-initialization by
I0 EEPROM Init()

Returns
I0_ErrorType

Return values

I0O_E OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the module is not
initialized

I0_ErrorType IO_EEPROM_GetStatus (void)

Returns the status of the EEPROM driver.

Returns whether the EEPROM is idle or if a read or write
operation is ongoing.

Returns
10_ErrorType

Return values
I0_E_OK everything fine,
driver is idle
I0_E_EEPROM_CRC_MISMATCH the stored and

calculated CRC
value of a read
operation do not

match
I0_E_BUSY a read or a write
operation is
ongoing, driver is
busy.
I0_E_CHANNEL_NOT_CONFIGURED the module is not
initialized
I0_ErrorType IO_EEPROM._Init (void)
Initialization of the EEPROM driver.
Initialization of EEPROM driver.
« |nitializes internal data structure
e Configures SPI driver
Returns
I0_ErrorType
Return values
I0_E_OK everything fine
I0_E_CHANNEL_BUSY module has been initialized

before

Remarks
* Module is initialized only once. To re-initialize the
module, the function 1o EEproM DeInit () needs to be
called.

o The EEPROM driver is initialized when the
10 priver Init() function is called. Therefore it will

return 1o E cuanneL Busy if it is called after this
function. This means that 1o EEproM Init() needs to
be called only when 10 priver 1Init() iS not used in
the respective application.

I0_ErrorType 10_EEPROM_Read (ubyte2 offset,
ubyte2 length,
bool use_crc,
ubyte1 *const data

)

Read data from the EEPROM.

The function only triggers a read operation. The read operation
can take several cycles to be completed, depending on the SPI
load and the amount of data to be read.

The read data is available on the address where the data
parameter points to as soon as the read operation is finished.
The state can be polled using the |IO_EEPROM_GetStatus|()
function.

Parameters
offset EEPROM memory offset (0..8127)
length Length of data to be read (0..8128)

use_crc Indicates if the CRC value stored by
|O_EEPROM_Write should be read and
evaluated

data Pointer to data

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_BUSY EEPROM module
is still busy

I0_E_EEPROM_RANGE invalid address
offset or range

IO_E_NULL_POINTER a null pointer has

been passed
I0_E_CHANNEL_NOT_CONFIGURED the module is not

initialized
10_ErrorType
I0_EEPROM_Write (ubyte2 offset,
ubyte2 length,
bool use_crc,
const ubyte1 *const data

)

Write data to the EEPROM.

The function triggers a write operation. The write operation can
take several cycles to be completed, depending on the SPI load
and the amount of data to be read.

The write operation is completed as soon as the SPI
communication has been finished. The state can be polled
using the IO_EEPROM_GetStatus() function.

Parameters
offset EEPROM memory offset (0..8127)
length Length of data to be written (0..8128)

use_crc Indicates if a CRC value (4-bytes) should be
stored automatically immediately after the written

bytes. If TRUE, the maximum writable address is
8124.

data Pointer to data

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_BUSY EEPROM module
is still busy
I0_E_EEPROM_RANGE invalid address
offset or range
IO_E_NULL_POINTER a null pointer has

been passed

I0_E_ CHANNEL _NOT_CONFIGURED the module is not
initialized

Note
Please note that the parameter 'data’ must not be a local
variable since the driver does not create a copy of the
content but saves the address of the pointer.

Generated on Mon Nov 16 2020 16:59:46 for HY-TTC 30 Family C API Manual by
O @ERM 182

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIOrflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures m

File List | Globals |

inc }

I0O_ EEPROM_ Preload
.h File Reference

Functions

Pre-load functions for EEPROM. More...

#include "IO Driver.h"

Functions

I0_ErrorType 10_EEPROM_Preloadinit (void)
Preload initialization of the EEPROM driver.

I0_ErrorType 10_EEPROM_PreloadDelnit (void)
De-initializes the preloaded EEPROM driver.

I0_ErrorType 10_EEPROM_PreloadRead (ubyte2 offset,
ubyte2 length, bool use crc, ubyte1 *const data)
Read data from the pre-loaded EEPROM
module.

I0_ErrorType 10_EEPROM_PreloadWrite (ubyte2 offset,
ubyte2 length, bool use_crc, const ubyte1
*const data)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Write data to the pre-loaded EEPROM module.

I0_ErrorType 10_EEPROM_PreloadStatus (void)
Returns the status of the pre-load EEPROM
driver.

I0_ErrorType 10_EEPROM_PreloadTask (void)
Task function for the pre-load EEPROM driver.

Detailed Description

Pre-load functions for EEPROM.

The EEPROM pre-load functions allow writing to the SPI
EEPROM as well as reading from it without initializing the whole
|O driver. Therefore it is possible to read data from the memory
which could be necessary for a proper initialization of the 10 driver
(e.g. safety configuration data).

The EEPROM driver is a high level SPI device driver and uses the
low level SPI driver.

The memory amounts 8128 Byte, because 64 Byte of the
EEPROM are reserved for internal use.

Since the content of the EEPROM is not initialized or verified
during the production procedure, there is no guarantee of a
defined initial content (of OxFF) on any position.

The communication with the EEPROM is handled in a cyclic
manner. EEPROM operations take plenty of time. A write as well
as a read process is only triggered by calling the respective
function. A status function is provided which returns whether the
driver has finished the last task or not.

The EEPROM driver gives the option of calculating CRC32
checksums (size of 4 Bytes, polynome 0x04C11DB7 and
initialization value 0x00000000) on write and read operations.
When enabled, the user must take care to leave enough space for
the checksum and not to overwrite it. For example, writing to offset
zero data with a size of 6 Bytes, the checksum will be appended to
this 6 Bytes. This means, that offsets 0-5 contain the actual written
data and offsets 6-9 contain the checksum. The user must not

overwrite the bytes 6-9 via other calls of |IO_EEPROM_Write.
Otherwise the next read operation with checksum enabled will
result in an IO_E_EEPROM_CRC_MISMATCH error.

EEPROM pre-load code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function

calls.

Typical usage of the pre-load functions:

ubytel data[50] = {0};
IO EEPROM PreloadInit();

IO EEPROM PreloadRead (0, 50, FALSE, data);
while(IO EEPROM PreloadStatus() != IO E OK)

{
IO EEPROM PreloadTask();

}
IO EEPROM PreloadDeInit ();

EEPROM write example:

ubytel data[6] = {0, 1, 2, 3, 4, 5};

// check if EEPROM is busy

if (IO _EEPROM PreloadStatus() == IO E OK)

{
// 1f not busy write data without checksum
IO EEPROM PreloadWrite (0, 6, FALSE, data);

// wait until write cycle 1is over
while(IO EEPROM PreloadStatus() !=
I0 _E OK)
{

IO EEPROM PreloadTask();

EEPROM read example:

ubytel data[2000] = {0};

// check if EEPROM is busy
if (IO _EEPROM PreloadStatus() == IO E OK)
{
// 1f not busy start reading without
checksum
IO EEPROM PreloadRead (0, 2000, FALSE,
data) ;

// wait until read cycle 1is over
while(IO EEPROM PreloadStatus() !=
I0_E OK)
{

IO EEPROM PreloadTask();

Note
It is highly recommended to de-initialize the EEPROM pre-
load module before calling the 10_Driver_Init() function.

Function Documentation

I0_ErrorType IO_EEPROM_PreloadDelnit (void)

De-initializes the preloaded EEPROM driver.
De-initializes the EEPROM module as well as the SPI driver.

Returns
I0_ErrorType

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the module is not
initialized

I0_ErrorType IO_EEPROM_Preloadlnit (void)

Preload initialization of the EEPROM driver.
Initialization of EEPROM driver.

¢ |nitializes internal data structure
o Configures SPI driver

Returns
I0_ErrorType

Return values
I0_E_OK everything fine
I0_E_ CHANNEL_BUSY module has been initialized

before

Remarks
e Module is initialized only once. To re-initialize the
module, the function 1o EEPROM PreloadDeInit () Nneeds
to be called.

10_ErrorType

I0_EEPROM_PreloadRead (ubyte2 offset,
ubyte2 length,
bool use_crc,

ubyte1 *const data

)

Read data from the pre-loaded EEPROM module.

The function only triggers a read operation. The read operation
can take several cycles to be completed, depending on the SPI
load and the amount of data to be read.

The read data is available on the address where the data
parameter points to as soon as the read operation is finished.
The state can be polled using the
I0_EEPROM_PreloadStatus() function.

Parameters
offset EEPROM memory offset (0..8127)
length Length of data to be read (0..8128)

use_crc Indicates if the CRC value stored by
|IO_EEPROM_Write should be read and
evaluated

data Pointer to data

Returns

10_ErrorType

Return values
I0_E OK
I0_E_BUSY

I0_E_EEPROM_RANGE

IO_E_NULL_POINTER

everything fine
EEPROM module
is still busy
invalid address
offset or range

a null pointer has
been passed

I0_E_CHANNEL_NOT CONFIGURED the module is not

initialized

I0_ErrorType IO_EEPROM_PreloadStatus (void)

Returns the status of the pre-load EEPROM driver.

Returns whether the EEPROM is idle or if a read or write

operation is ongoing.

Returns

I0_ErrorType

Return values
I0_E OK

I0_E_EEPROM_CRC_MISMATCH

I0_E_BUSY

everything fine,
driver is idle

the stored and
calculated CRC
value of a read
operation do not
match

a read or a write
operation is

ongoing, driver is

busy.
IO_E_CHANNEL_NOT_CONFIGURED the module is not

initialized

I0_ErrorType IO_EEPROM_PreloadTask (void)

Task function for the pre-load EEPROM driver.

Handles the SPI communication and calls the EEPROM
read/write function task.

When using the EEPROM pre-load functions it is mandatory to
call the task function periodically. Otherwise no SPI
communication takes place and any read or write operation will
fail.

Returns
10_ErrorType

Return values
I0O_E_OK everything fine
I0_E_BUSY SPI communication is still ongoing

10_ErrorType

I0O_EEPROM_PreloadWrite (ubyte2 offset,
ubyte2 length,
bool use_crc,

const ubyte1 *const data

)

Write data to the pre-loaded EEPROM module.

The function triggers a write operation. The write operation can
take several cycles to be completed, depending on the SPI load
and the amount of data to be read.

The write operation is completed as soon as the SPI
communication has been finished. The state can be polled
using the IO_EEPROM_PreloadStatus() function.

Parameters
offset EEPROM memory offset (0..8127)
length Length of data to be written (0..8128)

use_crc Indicates if a CRC value (4-bytes) should be
stored automatically immediately after the written
bytes. If TRUE, the maximum writable address is
8124.

data Pointer to data

Returns
I0_ErrorType

Return values

I0O_E OK everything fine
I0_E_BUSY EEPROM module
is still busy
I0_E_EEPROM_RANGE invalid address
offset or range
I0_E_NULL_POINTER a null pointer has

been passed

I0O_E CHANNEL NOT_CONFIGURED the module is not
initialized

Note
Please note that the parameter 'data’ must not be a local
variable since the driver does not create a copy of the
content but saves the address of the pointer.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by

QCEIEIEMm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m
File List | Globals |

inc },

I0_LED.h File
Reference

Functions

O driver functions for LED. More...

#include "IO Driver.h"

Functions

I0_ErrorType I0_LED_Channellnit (I0_PIN led_channel)
Setup one LED channel.

I0_ErrorType I0_LED_ChannelDelnit (I0_PIN led_channel)
Deinitializes one LED channel.

I0_ErrorType I0_LED_Set (I0_PIN led channel, bool
led_value, ubyte2 *measurement)
Sets the state of a LED channel.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

|O driver functions for LED.

The LED module allows to turn on and off LEDs on the designated
channels 1o LED 00 ... I0 LED 07.

LED Code Examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function
calls.

Example for a LED initialization

IO LED ChannelInit(IO LED 00);
I0 LED ChannelInit(IO LED 01);

Example to turn on/off a LED

ubyte? led0 fb;
ubyte? ledl fb;

I0 LED Set(IO _LED 00, TRUE, &led0 fb);
// turns LED on

10 LED Set(IO LED 01, FALSE, &ledl fb);
// turns LED off

Function Documentation

I0_ErrorType IO_LED_ChannelDelnit (10_PIN led_channel)

Deinitializes one LED channel.

deinitializes the given LED channel, allows re-initialization by
IO_LED_ChannelInit()

Parameters

led_channel LED channel, one of:
e IO LED 00 ... IO _LED 07

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0O_E_INVALID_CHANNEL_ID the given channel
id does not exist

I0O_E_CHANNEL_NOT_CONFIGURED the given channel
is not configured

Remarks
e The following channels form groups. They have to be
configured in the same mode within a group.
© IO _LED 00 .. IO _LED 01
© IO _LED 02 .. IO LED 03
© IO LED 04 .. IO LED 05
© IO LED 06 .. I0 LED 07

I0_ErrorType IO_LED_Channellnit (10_PIN led_channel)

Setup one LED channel.

Parameters

led_channel LED channel, one of:
e IO LED 00 ... IO _LED 07

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID the channel id does
not exist

I0_E_CHANNEL_BUSY the ADC input channel

is currently used by
another function

I0_E DRIVER_NOT INITIALIZED The common driver init
function has not been
called before

I0_E_CH_CAPABILITY The LED capability of
this channel has not
been activated

Remarks
» The following channels form groups. They have to be
configured in the same mode within a group.
© IO _LED 00 .. IO LED 01
© IO _LED 02..IO0 LED 03
© IO LED 04 .. IO LED 05
© IO LED 06 .. I0 LED 07
e Check the alternate functions of the pins used in each
group. A pin can only be configured for one function at

a time and it has to be the same function within the
group.The alternate functions can be found at
I0_Pins.h

I0_ErrorType IO_LED_Set (10_PIN led_channel,
bool led_value,
ubyte2 * measurement

)

Sets the state of a LED channel.

Parameters

led_channel LED channel, one of:
® IO LED 00 ... IO _LED 07

led_value Input value:
e TRUE: Turns LED on
e FarsE: Turns LED off

measurement If the LED was turned on (led_value =
TRUE) this parameter returns the actual
current value (Range: 0...27.600mA) If the
LED was turned off (led_value = FALSE)

this parameter returns the actual voltage on

the pin in mV (Range: 0...10.500V)

Returns
10_ErrorType

Return values

I0_E_OK everything fine

IO_E_NULL_POINTER A NULL pointer
has been passed

I0_E_INVALID CHANNEL_ID the channel id

does not exist

I0_E_BUSY the channel is not
settled so far
(after switching a
LED)

I0O_E_CHANNEL_NOT_CONFIGURED the given channel
is not configured

I0_E_ADC_CHANNEL_STARTUP Channel is in
initialization phase

I0O_E_FET_PROTECTION an overcurrent
was detected

I0_E_ADC_INVALID The ADC value is
invalid/not
available

I0_E_INVALID _PARAMETER invalid parameter

has been passed

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by
doxyiaenyEY:

http://www.doxygen.org/index.html

TrControl ﬁzjggoigfamlly C API Manual b-

Main Page | Related Pages | Data Structures m
File List | Globals |

inc /
Functions
I0_NodelD.h File Reference

IO Driver functions for reading the NodelD pins. More...

#include "IO Driver.h"

Functions

I0_ErrorType 10_NodelD_GetModifierStartup (ubyte1 *const modifier, ubyte1 *const nodeid)
Retrieves the Modifier and the NodelD used on ECU startup by the bootloader.

I0_ErrorType 10_NodelD_GetModifier (ubyte2 ubat, ubyte2 nodeid_0, ubyte2 nodeid_1,
ubyte1 *const modifier)

Calculates the modifier for the given voltage levels.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

IO Driver functions for reading the NodelD pins.

Attention

NodelD pin functionality is NOT provided for HY-TTC32H or HY-TTC32SH, since those pins
are used for the second CAN interface.

The HY-TTC 30 has two connector pins IO_ADC_NODE_ID 0 and IO_ADC_NODE_ID_1 which
allow two change the NodelD of the ECU.
A NodelD pin can be connected to either battery voltage, sensor supply, ground or left floating.

The final NodelD used by the bootloader and/or the application, is calculated with

NodelID =

BaselID + Modifier

where Base1D is the value stored in the field Nodenumber Of the APDB (see ApdbType) and Modifier
the value read from the NodelD pins according to the following table for non-safety related devices:

Modifier +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
NODEID_0 | Floating | Ground | SS UBAT+ | Ground | SS | UBAT+ | Ground | SS UBAT+
NODEID_1 | Floating | Ground | Ground | Ground | SS SS|SS UBAT+ | UBAT+ | UBAT+
For safety-related devices the following table applies:

Modifier +0 +3 +5 47

NODEID_0 | Floating | UBAT+ | SS | Ground

NODEID_1 | Floating | Ground | SS | UBAT+

All combinations not mentioned in the above table are an invalid state. The Modifier determined by
the bootloader is saved to the EEPROM automatically.

The modifier and actual NodelD determined by the bootloader can be retrieved using the function
I0_NodelD_GetModifierStartup. The current state of the NodelD pins can be retrieve dusing the
function 10_NodelD_GetModifier.

NodelD code examples

Please refer to section Basic structure of an application for understanding where to place the

initialization and task function calls.

Startup NodelD initialization example:
Reading the NodelD at startup does not need initialization.

Startup NodelD read example:
ubytel modifier;
ubytel nodeid;

I0 NodeID GetModifierStartup(&modifier // will contain
modifier (0..9)

the NodelD

, &nodeid) ; // will contain the used

NodeID (0..127)

Current NodelD initialization example:

// The range parameter is ignored for these inputs

I0_ADC ChannelInit(IO _ADC_UBAT, IO ADC ABSOLUTE, 0, NULL);
// Initialize analog channel of UBAT

IO _ADC ChannelInit(IO ADC NODE ID 0, IO ADC ABSOLUTE, 0, NULL);
// Initialize analog channel of NODEID 0

I0 ADC_ChannelInit(IO ADC _NODE ID 1, IO ADC ABSOLUTE, 0, NULL);
// Initialize analog channel of NODEID 1

Current NodelD read example:

bool fresh;

ubyte2 ubat;

ubyte2 nodeid 0;

ubyte? nodeid 1;

ubytel modifier;

IO ADC Get(IO ADC UBAT, &ubat, &fresh); // Get voltage

level of UBAT

IO ADC Get(IO ADC NODE ID 0, &nodeid 0, &fresh); // Get voltage

level of NODEID O

IO ADC Get(IO ADC NODE ID 1, &nodeid 1, &fresh); // Get voltage

level of NODEID 1

IO NodeID GetModifier(ubat

, nodeid 0
, nodeid 1
, &modifier); // Contains the modifier
corresponding
// to the current voltage
levels

// on NodeID pins

Function Documentation

10_ErrorType 10_NodelD_GetModifier (ubyte2 ubat,
ubyte2 nodeid_0,
ubyte2 nodeid_1,

ubyte1 *const modifier

)

Calculates the modifier for the given voltage levels.

Parameters
ubat Battery voltage (I0_ADC_UBAT) in mV
nodeid_0 Voltage of pin IO_ADC_NODE_ID_0 [mV]
nodeid_1 Voltage of pin IO_ADC_NODE_ID_1 [mV]
modifier Calculated modifier (Range: 0..9)

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_NODEID_PINS_INVALID the given voltage levels represent no valid Modifier
I0_E_NULL_POINTER a null pointer has been passed

Remarks

It is recommended to check the validity of the sensor supply voltage before calling the
I0_NodelD_GetModifier() function. Otherwise it is possible that an invalid value is
computed (e.g. if the sensor supply is short-circuited to GND).

10_ErrorType 10_NodelD_GetModifierStartup (ubyte1 *const modifier,
ubyte1 *const nodeid

)

Retrieves the Modifier and the NodelD used on ECU startup by the bootloader.

Parameters
modifier returned NodelD Modifier (Range: 0..9)
nodeid returned NodelD (Range: 0..127 for non-safety variants, 0..64 for safety-variants)

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_NODEID_PINS_INVALID content of EEPROM and pins invalid (no valid

modifier could be determined)

I0_E_NODEID_EEPROM_FALLBACK Value of NodelD pins was invalid but EEPROM

values could be used as Modifier

I0_E_NODEID_EEPROM_INVALID Modifier stored in the EEPROM was not valid and

rewritten with the current Modifier read from
NodelD pins

I0_E_NODEID_EEPROM_MISMATCH Both modifier gotten from pins and EEPROM are

valid, but did not match on startup (values from the
NodelD pins have been used)

I0_E_SW_INTERNAL an internal error has occurred

10_E_NULL_POINTER a NULL pointer has been passed to the function
Remarks

The following five combinations are possible for the calculation of the modifier by the

bootloader:

Both, the current value of the NodelD pins and the values stored in the EEPROM are
valid and match:

The function returns 10_E_OK, the value of the parameter modifier corresponds to the
modifier determined via the NodelD pins (and matches the EEPROM values).

Both, the current value of the NodelD pins and the values stored in the EEPROM are
valid but do not match (because, e.g., wiring has changed):

The function returns IO_E_NODEID_EEPROM_MISMATCH, the value of the
parameter modifier corresponds to the modifier determined via the NodelD pins.
Before starting the application, the bootloader has updated the EEPROM values with
the current state of the pins such that upon the next start-up the function returns
I0_E_OK if the pin values do not change.

The value of the NodelD pins is valid but the values stored in the EEPROM are invalid
(e.qg. first start-up of device or after the EEPROM has been cleared):

The function returns IO_E_NODEID_EEPROM_INVALID, the value of the parameter
modifier corresponds to the modifier determined via the NodelD pins. Before starting
the application, the bootloader has updated the EEPROM values with the current state
of the pins such that upon the next start-up the function returns I0_E_OK if the pin
values do not change.

The value of the NodelD pins is invalid and the values stored in the EEPROM are valid:
The bootloader will use the values in the EEPROM to calculate the modifier, the
function returns IO_E_NODEID_EEPROM_FALLBACK. This is an error case typically
provoked by errors in wiring and should be checked by the application - the state of the
NodelD pins has to be valid in a typical execution.

Both, the current value of the NodelD pins and the values stored in the EEPROM are
invalid:

This bootloader will use the default NodelD 0xA, the function returns
I0_E_NODEID_PINS_INVALID.

If necessary, the application can reproduce this check by using the modifier parameter and
the nodenr field from the APDB to calculate the acutal nodeid and comparing it to the value
provided by this function.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by @]@@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

inc ;

. Data Structures | Macros | Typedefs |
|O_P|Dh File Functions
Reference

Contains the data structure for configuring the PID controller.
More...

#include "IO Driver.h"

Data Structures

struct _io_pid_config
PID configuration structure. More...

Macros
#define 10_PID_MAX_HANDLES 12U

Typedefs

typedef struct _io_pid_config 10_PID_CONFIG
PID configuration structure.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Functions

I0_ErrorType 10_PID_Setintegrator (ubyte1 pid_handle,
sbyte4 integrator, bool hold)
Sets the integral term of a PID controller.

Detailed Description

Contains the data structure for configuring the PID controller.

Macro Definition Documentation

#define I0_PID_MAX_HANDLES 12U

Number maximal allowed PID handles.

In total 12 PID controllers are supported: 6 for Voltage Outputs
and 6 for current-controlled PWM outputs.

Typedef Documentation

typedef struct _io_pid_config I0_PID_CONFIG

PID configuration structure.

Data structure that contains all configuration parameters for PID
control.
The following formula is used for the PID:

output = Kff/10"3 * setpoint + Kp/1073 *
error + Kd/10"4 * delta (error) + Ki/10"4
* sum(error)

Please note that Kff and Kp are scaled by a factor of 1,000 and
Ki and Kd by a factor of 10,000 to improve the resolution on
small gains.

Remarks
e Typical values for Kff are between 10.000 and 15.000
e Typical values for Ki are around 20.000
e Typical values for Kp and Kd are smaller than 1.000

Attention
Please keep in mind that the unit of cutput has to be

» \olts for voltage outputs
o Duty cycle in digits [0 .. 65535] for PWM outputs

Function Documentation

I0_ErrorType IO_PID_Setintegrator (ubyte1 pid_handle,
sbyte4 integrator,
bool hold

)

Sets the integral term of a PID controller.

Sets the integral term of a PID controller to a given value or
freezes it.

Parameters
pid_handle handle of PID controller.

integrator new value of integral term; parameter is
ignored if ho1d IS TRUE

hold TRUE to freeze the integral term to the current
value. Can be unfrozen by calling again with
hold=FALSE
Returns

IO _ErrorType

Return values
I0O_E OK everything fine
I0O_E_INVALID_PARAMETER an invalid parameter has
been passed

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by
doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C API
TTControl Manual Dp-Trc-x-G-20-001

Main Page | Related Pages | Data Structures m
File List | Globals |
inc !;

Macros | Enumerations

I0_Pins.h File Reference

Global IO Pin defines for 10 Driver. More...

Macros

#define 10_ADC_UBAT 10_PIN_L2
#define 10_ADC_UBAT_CPU 10_PIN_L1
#define 10_K15 10_PIN_K4

#define 10_ADC_SENSOR_SUPPLY 10_PIN_H3
#define 10_ADC_NODE_ID_0 I0_PIN_K3
#define 10_ADC_NODE_ID_1 10_PIN_J3
#define 10_ADC_20 10_PIN_G4

#define 10_DI_02 10_PIN_G4

#define 10_ADC_21 10_PIN_F4

#define 10_DI_03 10_PIN_F4

#define 10_PWD_00 10_PIN_E3

#define 10_ADC_30 10_PIN_E3

#define 10_DI_04 10_PIN_E3

#define 10_PWD_01 10_PIN_D3

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

I0_ADC_31 10_PIN_D3
I0_DI_05 10_PIN_D3
IO_PWD_02 I0_PIN_C3
I0O_ADC_32 10_PIN_C3
I0_DI_06 10_PIN_C3
I0_PWD_03 IO_PIN_B3
I0_ADC_33 10_PIN_B3
I0_DI_07 10_PIN_B3
IO_ADC_00 10_PIN_J4
IO_LED_00 10_PIN_J4
I0_DI_00 10_PIN_J4
IO_ADC_01 10_PIN_H4
IO_LED_01 10_PIN_H4
I0_DI_01 10_PIN_H4
IO_ADC_10 10_PIN_E4
IO_LED 02 10_PIN_E4
I0_DI_10 10_PIN_E4
IO_ADC_11 10_PIN_D4
IO_LED_03 10_PIN_D4
I0_DI_11 10_PIN_D4

I0O_ADC_12 10_PIN_C4

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

IO_LED_04 10_PIN_C4
I0_DI_12 10_PIN_C4
I0_ADC_13 10_PIN_B4
IO_LED_05 10_PIN_B4
I0_DI_13 10_PIN_B4
IO_ADC_14 10_PIN_A4
IO_LED_06 10_PIN_A4
IO_DI_14 10_PIN_A4
IO_ADC_15 10_PIN_A3
IO_LED_07 10_PIN_A3
I0_DI_15 10_PIN_A3
IO_PWM_00 IO_PIN_H1
I0_DO_00 10_PIN_H1
I0_DO_20 10_PIN_H1
IO_ADC_34 10_PIN_H1
I0_DI_24 10_PIN_H1
IO_PWD_20 IO_PIN_H1
IO_PWM_01 I0O_PIN_G1
I0_DO_01 10_PIN_G1
I0_DO_21 10_PIN_G1
I0_ADC_35 10_PIN_G1

I0_DI_25 10_PIN_G1

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

I0_PWD_21 10_PIN_G1
IO_PWM_02 10_PIN_F1
I0_DO_02 10_PIN_F1
I0_DO_22 10_PIN_F1
I0_ADC_36 10_PIN_F1
I0_DI_26 10_PIN_F1
IO_PWD_10 IO_PIN_F1
IO_PWM_03 I0_PIN_E1
I0_DO_03 10_PIN_E1
|I0_DO_23 10_PIN_E1
I0_ADC_37 10_PIN_E1
I0_DI_27 10_PIN_E1
IO_PWD_11 10_PIN_E1
IO_PWM_04 10_PIN_D1
I0_DO_04 10_PIN_D1
I0_DO_24 10_PIN_D1
I0_ADC_38 10_PIN_D1
I0_DI_28 10_PIN_D1
I0_PWD_12 10_PIN_D1
IO_PWM_05 10_PIN_C1

I0_DO_05 10_PIN_CH1

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

I0_DO_25 10_PIN_C1
I0_ADC_39 10_PIN_C1
I0_DI_29 10_PIN_C1

I0_PWD_13 10_PIN_C1
IO_PWM_10 10_PIN_K1
I0_DO_06 10_PIN_K1
IO_ADC_40 10_PIN_K1
I0_DI_30 10_PIN_K1
I0_PWD_22 10_PIN_K1
IO_PWM_11 10_PIN_J1
I0_DO_07 10_PIN_J1

IO_ADC_41 10_PIN_J1
I0_DI_31 10_PIN_J1

I0_PWD_23 10_PIN_J1
IO_SAFETY_SWITCH_0
I0_DO_10 10_PIN_B1
I0_ADC_28 10_PIN_B1
I0_DI_22 10_PIN_B1

|IO_SAFETY_SWITCH_1
I0_DO_11 10_PIN_A1
IO_ADC_29 10_PIN_A1

I0_DI_23 10_PIN_A1

I0_PIN_B1

I0_PIN_A1

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

I0_PVG_00 I10_PIN_K2
I0_VOUT_00 10_PIN_K2
I0_ADC_22 10_PIN_K2
I0_DI_16 10_PIN_K2
I0_DO_30 10_PIN_K2
IO_PVG_01 10_PIN_J2
I0_VOUT_01 10_PIN_J2
I0_ADC_23 10_PIN_J2
I0_DI_17 10_PIN_J2
I0_DO_31 10_PIN_J2
I0_PVG_02 10_PIN_H2
I0_VOUT_02 10_PIN_H2
IO_ADC_24 10_PIN_H2
I0_DI_18 10_PIN_H2
I0_DO_32 10_PIN_H2
I0_PVG_03 10_PIN_G2
I0_VOUT_03 10_PIN_G2
I0_ADC_25 10_PIN_G2
I0_DI_19 10_PIN_G2
|I0_DO_33 10_PIN_G2

IO_PVG_04 10_PIN_F2

#define 10_VOUT_04 10_PIN_F2

#define 10_ADC_26 10_PIN_F2

#define 10_DI_20 10_PIN_F2

#define 10_DO_34 10_PIN_F2

#define 10_PVG_05 10_PIN_E2

#define 10_VOUT_05 10_PIN_E2

#define 10_ADC_27 10_PIN_E2

#define 10_DI_21 10_PIN_E2

#define 10_DO_35 10_PIN_E2

#define 10_UART 10_INT_PIN_UART_CHO

#define 10_ADC_BOARD_TEMP IO_INT_PIN_TEMP

#define 10_INT_POWERSTAGE_ENABLE 10_INT_PIN_POWERSTAGE_ENABLE
#define 10_INT_PVG_VOUT_0_ENABLE 10_INT_PIN_PVG_VOUT_0_ENABLE
#define 10_INT_PVG_VOUT_1_ENABLE 10_INT_PIN_PVG_VOUT_1_ENABLE
#define 10_CAN_CHANNEL_0 10_INT_PIN_CAN_CHO

#define 10_CAN_CHANNEL_1 IO_INT_PIN_CAN_CH1

#define 10_ADC_5V2 IO_INT_PIN_5V2

Enumerations

enum 1O_PIN {
I0_PIN_L2
I0_PIN_L1
I0_PIN_K4
I0_PIN_H3 =3,
I0_PIN_K3 =4,
I0_PIN_J3 =5,

0,
1,
2,

IO_PIN_G4 = 6,

IO_PIN_F4 =7,

IO_PIN_E3 =8,

IO_PIN D3 =09,

I0_PIN_C3 = 10,

I0_PIN_B3 = 11,

I0_PIN_J4 = 12,

I0_PIN_H4 = 13,

I0_PIN_E4 = 14,

I0_PIN_D4 = 15,

I0_PIN_C4 = 16,

I0_PIN_B4 = 17,

IO_PIN_A4 = 18,

I0_PIN_A3 = 19,

I0_PIN_H1 = 20,

I0_PIN_G1 =21,

I0_PIN_F1 =22,

I0_PIN_E1 = 23,

I0_PIN_D1 = 24,

I0_PIN_C1 = 25,

I0_PIN_K1 = 26,

I0_PIN_J1 = 27,

I0_PIN_B1 = 28,

I0_PIN_A1 = 29,

I0_PIN_K2 = 30,

I0_PIN_J2 = 31,

I0_PIN_H2 = 32,

I0_PIN_G2 = 33,

I0_PIN_F2 = 34,

I0_PIN_E2 = 35,
IO_INT_PIN_UART_CHO = 36,
IO_INT_PIN_DRIVER = 37,
IO_INT_PIN_RTC = 38,
IO_INT_PIN_PERIODIC = 39,
IO_INT_PIN_POWER = 40,
IO_INT_PIN_EEPROM = 41,
IO_INT_DEV_CPU = 42,
IO_INT_PIN_EXT_WD = 43,
IO_INT_PIN_TEMP = 44,
IO_INT_PIN_POWERSTAGE_ENABLE = 45,
IO_INT_PIN_PVG_VOUT_0_ENABLE = 46,
IO_INT_PIN_PVG_VOUT_1_ENABLE = 47,
IO_INT_PIN_CAN_CHO = 48,
IO_INT_PIN_CAN_CH1 = 49,
I0_INT_PIN_5V2 = 50,

IO_INT_PIN_SHIFT_LB_HI = 51,

IO_INT_PIN_SHIFT_LB_LO = 52,

IO_INT_PIN_SHIFT1_LB_HI = 53,

IO_INT_PIN_SHIFT1_LB_LO = 54
Y

Enumeration of all (internal and external) pins. More...

Detailed Description

Global 10 Pin defines for 10 Driver.

This header file defines the 10 Pins as well as the aliases for the 1O Pins.

Macro Definition Documentation

#define IO_ADC _00 IO _PIN_J4

Pin J4, for details and features see IO_PIN_J4

#define I0_ADC_01 IO _PIN_H4

Pin H4, for details and features see I0_PIN_H4

#define I0_ADC_10 IO _PIN_E4

Pin E4, for details and features see I0_PIN_E4

#define I0_ADC_11 10_PIN_D4

Pin D4, for details and features see I0_PIN_D4

#define I0_ADC_12 10 _PIN_C4

Pin C4, for details and features see I0_PIN_C4

#define I0_ADC_13 10_PIN_B4

Pin B4, for details and features see IO_PIN_B4

#define IO_ADC_14 IO_PIN_A4

Pin A4, for details and features see I0_PIN_A4

#define I0_ADC_15 10 _PIN_A3

Pin A3, for details and features see I0_PIN_A3

#define IO_ADC_20 I0_PIN_G4

Pin G4, for details and features see I0_PIN_G4

#define IO_ADC_21 [O_PIN_F4

Pin F4, for details and features see IO_PIN_F4

#define I0_ADC_22 10 _PIN_K2

Pin K2, for details and features see I0_PIN_K2

#define I0_ADC_23 10 _PIN_J2

Pin J2, for details and features see IO_PIN_J2

#define I0_ADC_24 [0 PIN H2

Pin H2, for details and features see I0_PIN_H2

#define I0_ADC_25 IO _PIN_G2

Pin G2, for details and features see I0_PIN_G2

#define I0_ADC_26 10 PIN_F2

Pin F2, for details and features see IO_PIN_F2

#define I0_ADC_27 10 _PIN_E2

Pin E2, for details and features see I0_PIN_E2

#define I0_ADC_28 10 PIN_B1

Pin B1, for details and features see IO_PIN_B1

#define IO_ADC_29 IO_PIN_A1

Pin A1, for details and features see 10_PIN_A1

#define I0_ADC_30 10 _PIN_E3

Pin E3, for details and features see I0_PIN_E3

#define I0_ADC_31 10 _PIN_D3

Pin D3, for details and features see I0_PIN_D3

#define I0_ADC_32 10 _PIN_C3

Pin C3, for details and features see I0_PIN_C3

#define I0_ADC_33 IO _PIN B3

Pin B3, for details and features see I0_PIN_B3

#define I0_ADC_34 10 _PIN_H1

Pin H1, for details and features see 10_PIN_H1

#define I0_ADC_35 10 _PIN_G1

Pin G1, for details and features see IO_PIN_G1

#define I0_ADC_36 10 PIN_F1

Pin F1, for details and features see I0O_PIN_F1

#define I0_ADC_37 IO _PIN_E1

Pin E1, for details and features see 10_PIN_E1

#define I0_ADC_38 10 _PIN_D1

Pin D1, for details and features see I0_PIN_D1

#define I0_ADC_39 10 PIN_C1

Pin C1, for details and features see 10_PIN_C1

#define I0_ADC_40 10 PIN K1

Pin K1, for details and features see IO0_PIN_K1

#define IO_ADC_41 10_PIN_J1

Pin J1, for details and features see I0_PIN_J1

#define I0_ADC_5V2 10 _INT_PIN 5V2

internal pin for measuring the 5.2V Voltage

#define I0_ADC_BOARD_TEMP [0 _INT_PIN_TEMP

internal pin for measuring the board temperature

#define I0_ADC_NODE_ID 0 10 _PIN_K3

Pin K3, for details and features see I0_PIN_K3

#define I0_ADC_NODE_ID_1 10 PIN_J3

Pin J3, for details and features see I0_PIN_J3

#define |I0_ADC_SENSOR_SUPPLY IO _PIN H3

Pin H3, for details and features see I0_PIN_H3

#define I0_ADC_UBAT IO _PIN L2

Pin L2, for details and features see I0_PIN L2

#define I0_ADC_UBAT _CPU 10 _PIN L1

Pin L1, for details and features see I0_PIN_L1

#define I0_CAN_CHANNEL_0 IO _INT_PIN_CAN_CHO

Internal Pin for CAN channel 0

#define I0_CAN_CHANNEL_1 10 INT_PIN_CAN_CHf1

Internal Pin for CAN channel 1

#define I0_DI_00 10 PIN J4

Pin J4, for details and features see IO_PIN_J4

#define 10_DI_01 10 PIN_H4

Pin H4, for details and features see I0_PIN_H4

#define 10_DI_02 10 PIN_G4

Pin G4, for details and features see I0_PIN_G4

#define 10_DI_03 10_PIN_F4

Pin F4, for details and features see I0_PIN_F4

#define 10_DI_04 10 PIN_E3

Pin E3, for details and features see I0_PIN_E3

#define 10_DI_05 10 PIN_D3

Pin D3, for details and features see IO_PIN_D3

#define I0_DI_06 10 _PIN_C3

Pin C3, for details and features see I0_PIN_C3

#define 10_DI_07 10 PIN_B3

Pin B3, for details and features see I0_PIN_B3

#define 10_DI_10 10 PIN_E4

Pin E4, for details and features see I0_PIN_E4

#define 10_DI_11 I0_PIN_D4

Pin D4, for details and features see I0_PIN_D4

#define I0_DI_12 10 _PIN_C4

Pin C4, for details and features see I0_PIN_C4

#define 10_DI_13 10 _PIN_B4

Pin B4, for details and features see 10_PIN_B4

#define 10 _DI_14 10 PIN_A4

Pin A4, for details and features see I0_PIN_A4

#define 10_DI_15 10 PIN_A3

Pin A3, for details and features see I0_PIN_A3

#define 10_DI_16 10 PIN_K2

Pin K2, for details and features see I0_PIN_K2

#define I0_DI_17 10_PIN_J2

Pin J2, for details and features see I0_PIN_J2

#define 10_DI_18 10 PIN_H2

Pin H2, for details and features see I0O_PIN_H2

#define 10_DI_19 10 PIN_G2

Pin G2, for details and features see I0_PIN_G2

#define 10_DI_20 10 PIN_F2

Pin F2, for details and features see I0_PIN_F2

#define I0_DI_21 10 _PIN_E2

Pin E2, for details and features see I0_PIN_E2

#define 10_DI_22 10 PIN_B1

Pin B1, for details and features see IO_PIN_B1

#define 10_DI_23 10 PIN_A1

Pin A1, for details and features see 10_PIN_A1

#define 10_DI_24 10 PIN_H1

Pin H1, for details and features see I0_PIN_H1

#define 10_DI_25 10 PIN_G1

Pin G1, for details and features see I0_PIN_G1

#define 10_DI_26 10 _PIN_F1

Pin F1, for details and features see IO_PIN_F1

#define 10_DI_27 10 _PIN_E1

Pin E1, for details and features see 10_PIN_E1

#define 10_DI_28 10 PIN_D1

Pin D1, for details and features see 10_PIN_D1

#define 10_DI_29 [0_PIN_C1

Pin C1, for details and features see 10_PIN_C1

#define 10_DI_30 10 PIN_K1

Pin K1, for details and features see 10_PIN_K1

#define 10_DI_31 10_PIN_J1

Pin J1, for details and features see I0_PIN_J1

#define 10_DO 00 10 PIN_H1

Pin H1, for details and features see I0_PIN_H1

#define I0_DO_01 10_PIN_G1

Pin G1, for details and features see I0_PIN_G1

#define I0_DO_02 10 _PIN_F1

Pin F1, for details and features see IO_PIN_F1

#define I0_DO_03 10 _PIN E1

Pin E1, for details and features see 10_PIN_E1

#define 10_DO_04 10 PIN_D1

Pin D1, for details and features see 10_PIN_D1

#define I0_DO_05 I0_PIN_C1

Pin C1, for details and features see I0_PIN_C1

#define I0_DO_06 10 _PIN_Ki1

Pin K1, for details and features see 10_PIN_K1

#define I0_DO_07 10 _PIN_J1

Pin J1, for details and features see I0_PIN_J1

#define 10_DO_10 10 PIN_B1

Pin B1, for details and features see 10_PIN_B1

#define I0_DO_11 10 _PIN_A1

Pin A1, for details and features see I0_PIN_A1

#define |I0_DO_20 10 _PIN_H1

Pin H1, for details and features see 10_PIN_H1

#define I0_DO_21 10 PIN_G1

Pin G1, for details and features see I0_PIN_G1

#define 10_DO_22 10 PIN_F1

Pin F1, for details and features see IO_PIN_F1

#define I0_DO_23 10_PIN_E1

Pin E1, for details and features see I0_PIN_E1

#define I0_DO_24 10 _PIN_D1

Pin D1, for details and features see 10_PIN_D1

#define I0_ DO _25 10 _PIN_Cf1

Pin C1, for details and features see 10_PIN_C1

#define 10_DO_30 10 PIN_K2

Pin K2, for details and features see IO _PIN_K2

#define 10_DO_31 10 _PIN_J2

Pin J2, for details and features see IO_PIN_J2

#define 10_DO_32 10 PIN_H2

Pin H2, for details and features see I0_PIN_H2

#define 10_DO_33 I0_PIN_G2

Pin G2, for details and features see I0_PIN_G2

#define I0_DO_34 10 _PIN_F2

Pin F2, for details and features see IO_PIN_F2

#define I0_DO_35 10 _PIN_E2

Pin E2, for details and features see I0_PIN_E2

#define
IO_INT_POWERSTAGE_ENABLE IO _INT_PIN_POWERSTAGE_ENABLE

Internal Pin for enabling powerstages

#define 10_INT_PVG_VOUT_0_ENABLE 10 INT_PIN_PVG_VOUT 0 ENABLE

Internal Pin for enabling PVG group 0 outputs

#define I0_INT_PVG_VOUT_1_ENABLE 10 _INT_PIN_PVG_VOUT 1 _ENABLE

Internal Pin for enabling PVG group 1 outputs

#define I0_K15 10 _PIN_K4

Pin K4, for details and features see 10_PIN_K4

#define I0_LED 00 10 _PIN_J4

Pin J4, for details and features see I0_PIN_J4

#define I0_LED 01 10 _PIN H4

Pin H4, for details and features see 10_PIN_H4

#define I0_LED 02 10 PIN_E4

Pin E4, for details and features see IO_PIN_E4

#define IO_LED_03 10_PIN_D4

Pin D4, for details and features see I0_PIN_D4

#define I0_LED 04 10 _PIN C4

Pin C4, for details and features see I0_PIN_C4

#define I0_LED 05 10 _PIN B4

Pin B4, for details and features see |0_PIN_B4

#define I0_LED 06 10 PIN A4

Pin A4, for details and features see I0_PIN_A4

#define I0_LED 07 10 PIN_A3

Pin A3, for details and features see I0_PIN_A3

#define I0_PVG_00 10 PIN K2

Pin K2, for details and features see I0_PIN_K2

#define I0_PVG_01 10 PIN_J2

Pin J2, for details and features see I0_PIN_J2

#define I0_PVG_02 10 PIN_H2

Pin H2, for details and features see I0_PIN_H2

#define I0_PVG_03 10 _PIN_G2

Pin G2, for details and features see I0_PIN_G2

#define I0_PVG_04 10 _PIN _F2

Pin F2, for details and features see IO_PIN_F2

#define I0_PVG_05 10 PIN_E2

Pin E2, for details and features see IO_PIN_E2

#define IO_PWD_00 I0_PIN_E3

Pin E3, for details and features see I0_PIN_E3

#define I0O_PWD_01 10 _PIN_D3

Pin D3, for details and features see IO_PIN_D3

#define I0_PWD_02 10 _PIN_C3

Pin C3, for details and features see I0_PIN_C3

#define IO_PWD_03 10_PIN_B3

Pin B3, for details and features see I0_PIN_B3

#define I0O_PWD_10 10 _PIN_F1

Pin F1, for details and features see I0O_PIN_F1

#define I0_PWD_11 10 _PIN_E1

Pin E1, for details and features see 10_PIN_E1

#define I0O_PWD_12 10 _PIN_Df1

Pin D1, for details and features see 10_PIN_D1

#define I0_PWD_13 10 _PIN C1

Pin C1, for details and features see I0_PIN_C1

#define I0O_PWD_20 10 _PIN_H1

Pin H1, for details and features see 10_PIN_H1

#define I0_PWD_21 10 _PIN_G1

Pin G1, for details and features see IO_PIN_G1

#define IO PWD_22 10 PIN_Ki1

Pin K1, for details and features see 10_PIN_K1

#define I0_PWD_23 10 _PIN_J1

Pin J1, for details and features see I0O_PIN_J1

#define IO_PWM_00 10 PIN_H1

Pin H1, for details and features see 10_PIN_H1

#define IO_PWM_01 IO_PIN_G1

Pin G1, for details and features see 10_PIN_G1

#define IO_PWM_02 [O_PIN_F1

Pin F1, for details and features see I0_PIN_F1

#define I0_PWM_03 10 _PIN_E1

Pin E1, for details and features see I0_PIN_E1

#define |IO_PWM_04 10 PIN_D1

Pin D1, for details and features see 10_PIN_D1

#define I0_PWM_05 10 _PIN_C1

Pin C1, for details and features see I0_PIN_C1

#define I0_PWM_10 10 _PIN K1

Pin K1, for details and features see 10_PIN_K1

#define I0_PWM_11 10_PIN_J1

Pin J1, for details and features see I0_PIN_J1

#define IO_SAFETY_SWITCH_0 IO_PIN_B1

Pin B1, for details and features see 10_PIN_B1

#define 10_SAFETY_SWITCH_1 IO _PIN_Af1

Pin A1, for details and features see I0_PIN_A1

#define I0_UART 10 _INT_PIN_UART_CHO

Internal Pin for UART channel on the Debug Adapter

#define I0_VOUT 00 10 PIN_K2

Pin K2, for details and features see I0_PIN_K2

#define I0_VOUT_01 I10_PIN_J2

Pin J2, for details and features see I0_PIN_J2

#define IO_VOUT_02 I10_PIN_H2

Pin H2, for details and features see I0_PIN_H2

#define I0_VOUT_03 10 PIN_G2

Pin G2, for details and features see I0_PIN_G2

#define I0_VOUT 04 10 PIN_F2

Pin F2, for details and features see IO_PIN_F2

#define I0_VOUT 05 10 PIN_E2

Pin E2, for details and features see IO_PIN_E2

Enumeration Type Documentation

enum |IO_PIN

Enumeration of all (internal and external) pins.

Lists all used and available (virtual) 1/O pins for operating functionality as well as

for diagnostic purposes.

Enumerator:
I0_PIN_L2

10_PIN_L1

10_PIN_K4

10 _PIN_H3

10_PIN_K3

Pin L2

main function: High-Side battery
supply input. See ADC input (for
battery measurement)

alternate functions: none

Pin L1

main function: CPU battery supply
input. See ADC input (for battery
measurement)

alternate functions: none

Pin K4

main function: Terminal 15 input.
See Driver for ECU Power
functions for details

alternate functions: none

Pin H3

main function: Sensor supply
output. See ADC input (for
feedback measurement)
alternate functions: none

Pin K3 (function NOT available for
HY-TTC32 and HY-TTC32S)
main function: Node ID 0 input. See

10_PIN_J3

10_PIN_G4

10 _PIN_F4

10 _PIN_E3

10_PIN_D3

10 _PIN_C3

10_PIN_B3

ADC input (for feedback
measurement)
alternate functions: none

Pin J3 (function NOT available for
HY-TTC32 and HY-TTC32S)

main function: Node ID 1 input. See
ADC input (for feedback
measurement)

alternate functions: none

Pin G4
main function: 1-Mode ADC Input
alternate functions: Digital Input

Pin F4
main function: 1-Mode ADC Input
alternate functions: Digital Input

Pin E3

main function: Complex Timer
Input (with incremental decoder)
alternate functions: Analog Input,
Digital Input, Complex Timer
Input

Pin D3

main function: Complex Timer
Input (with incremental decoder)
alternate functions: Analog Input,
Digital Input, Complex Timer
Input

Pin C3

main function: Complex Timer
Input

alternate functions: Analog Input,
Digital Input

10 _PIN_J4

10_PIN_H4

10_PIN_E4

10_PIN_D4

10_PIN_C4

10_PIN_B4

10_PIN_A4

Pin B3

main function: Complex Timer
Input

alternate functions: Analog Input,
Digital Input

Pin J4

main function: 4-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin H4

main function: 4-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin E4

main function: 3-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin D4

main function: 3-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin C4

main function: 3-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin B4

main function: 3-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin A4
main function: 3-Mode ADC Input

10_PIN_A3

10_PIN_H1

10_PIN_G1

10_PIN_F1

10_PIN_E1

alternate functions: Digital Input,
LED Output

Pin A3

main function: 3-Mode ADC Input
alternate functions: Digital Input,
LED Output

Pin H1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side
Digital Output, Analog input,
Digital input

Pin G1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side
Digital Output, Analog input,
Digital input

Pin F1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side
Digital Output, Analog input,
Digital input

Pin E1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side

10_PIN_D1

10_PIN_C1

10_PIN_K1

10 _PIN_J1

10_PIN_B1

Digital Output, Analog input,
Digital input

Pin D1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side
Digital Output, Analog input,
Digital input

Pin C1

main function: PWM Output with
current measurement

alternate functions: Timer Input,
High-Side Digital Output (with
current measurement), High-Side
Digital Output, Analog input,
Digital input

Pin K1

main function: PWM Output
alternate functions: Complex
Timer Input, High-Side Digital
Output, Analog input, Digital
input

Pin J1

main function: PWM Output
alternate functions: Complex
Timer Input, High-Side Digital
Output, Analog input, Digital
input

Pin B1

main function: Low-Side Digital
Output

alternate functions: Analog Input,
Digital Input

10_PIN_A1

10 _PIN_K2

10 _PIN_J2

10_PIN_H2

10_PIN_G2

10 _PIN_F2

10 _PIN_E2

Pin A1

main function: Low-Side Digital
Output

alternate functions: Analog Input,
Digital Input

Pin K2

main function: PVG Output
alternate functions: Voltage
Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Pin J2

main function: PVG Output
alternate functions: Voltage
Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Pin H2

main function: PVG Output
alternate functions: Voltage
Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Pin G2

main function: PVG Output
alternate functions: Voltage
Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Pin F2

main function: PVG Output
alternate functions: Voltage
Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Pin E2
main function: PVG Output
alternate functions: Voltage

10_INT_PIN_UART_CHO

10_INT_PIN_DRIVER

10_INT_PIN_RTC

10_INT_PIN_PERIODIC

10_INT_PIN_POWER

10_INT_PIN_EEPROM

10 _INT_DEV_CPU

10_INT_PIN_EXT_WD

10_INT_PIN_TEMP

10_INT_PIN_POWERSTAGE _ENABLE

Output, Analog Input, Digital
Input, Push-Pull Digital Outputs

Internal Pin for UART module, see
Driver for ECU Power functions
for details

Internal Pin for general Driver, see
General Driver items for details

Internal Pin for RTC, see RTC
Driver for details

Internal Pin for Periodic Timer, see
RTC Driver for details

Internal Pin for Power Driver, see
Driver for ECU Power functions
for details

Internal Pin for EEPROM Driver,
see EEPROM Driver for details

General device 'pin' for internal
CPU diagnosis

Internal device pin for diagnosis of
external watchdog

Internal Pin for temperature
measurement, see ADC Driver for
details

Internal Pin for Powerstage enable
signal, see Driver for ECU Power
functions for details

IO_INT_PIN_PVG_VOUT_0_ENABLE Internal Pin for PVG group 0 Output
enable signal, see Driver for ECU
Power functions for details

IO_INT_PIN_PVG _VOUT 1 _ENABLE
Internal Pin for PVG group 1 Output

enable signal, see Driver for ECU
Power functions for details

IO_INT_PIN_CAN_CHO
Internal Pin for CAN channel 0, see

CAN Driver for details

IO_INT_PIN_CAN_CH1
Internal Pin for CAN channel 1, see

CAN Driver for details

IO_INT_PIN_5V2
Internal Pin for measurement of

+5V2 voltage, see ADC Driver for
details

IO_INT_PIN_SHIFT LB HI
Internal Pin for measurement shift

register 0 loopback voltage (high
nibble)

IO_INT_PIN_SHIFT LB LO
Internal Pin for measurement shift

register 0 loopback voltage (low
nibble)

IO _INT_PIN_SHIFT1_LB HI
Internal Pin for measurement shift

register 1 loopback voltage (high
nibble)

IO_INT_PIN_SHIFT1 LB LO
Internal Pin for measurement shift

register 1 loopback voltage (low
nibble)

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by @j@@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures W

File List | Globals |

inc ,l':

I0_ POWER.h File
Reference

Functions

IO Driver functions for Power control. More...

#include "IO Driver.h"

Macros

Power values
Selects power configuration.

#define 10 POWER_OFF 0

#define 10 POWER_ON 1

Functions

I0_ErrorType 10_POWER Init (void)
Initialization of the power module driver.

I0_ErrorType 10_POWER_Delnit (void)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

10_ErrorType

10_ErrorType

10_ErrorType

Deinitializes the power module driver.

I0_ POWER_Set (I0_PIN pin, ubyte1 mode)
Sets a certain mode of a POWER feature.

I0_POWER_Get (I0_PIN pin, ubyte1 *const
state)
Returns the current state of a POWER feature.

I0_POWER_SetK15Threshold (ubyte2
threshold)

Sets the threshold in mV below which a low-level
is detected on the K15 pin.

Detailed Description

IO Driver functions for Power control.

The Power control functions allow enable/disable the power-
stages, the PVG/Voltage-outputs as well as switching off the whole

unit.

Power code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function
calls.

Power initialization example:
The Power driver does not need an explicit initialization. The
Power driver is initialized by 10_Driver_Init().

Power task example:

// switch on high-side power stages
IO POWER Set (IO INT POWERSTAGE ENABLE,
I0_POWER ON) ;

// send ECU to sleep mode (switch off K15)
IO POWER Set (IO K15, IO POWER OFF);

Macro Definition Documentation
#define |I0_POWER_OFF 0

switch off - deactivates the respective power function

#define IO_POWER_ON 1

switch on - activates the respective power function

Function Documentation

I0_ErrorType IO_POWER_Delnit (void)

Deinitializes the power module driver.

Deinitializes the module. Allows re-initialization by
I0_POWER Init()

Returns
I0_ErrorType

Return values
I0O_E OK everything fine
I0O_E_CHANNEL_NOT_CONFIGURED module has not
been initialized

Remarks
This function disables all powerstage-enable signals
(PVG/Vout, PWM/DO) and switches off the power outputs
permanently. To switch the outputs to a operational state
again, the outputs have to be re-initialized (together with
the POWER driver)

Re-initializing the POWER driver is only possible on non-
safety ECUs or if the |O-Driver was configured not safety-
critical.

I0_ErrorType IO_POWER_Get (10_PIN pin,
ubyte1 *const state

)

Returns the current state of a POWER feature.

Returns the state of power stage enable, PVG/VOut enable or
K15

Parameters
pin pin for which the mode shall be set, one of:

®* IO INT POWERSTAGE ENABLE

* IO_INT PVG_VOUT_O_ ENABLE

e IO_INT PVG _VOUT_1 ENABLE

® IO _SAFETY SWITCH_ O

®* IO SAFETY SWITCH 1

e IO K15

state pointer to ubyte1, returns the state of the selected
feature, one of:
* IO_POWER ON
®* IO _POWER OFF

Returns
I0_ErrorType

Return values
I0O_E OK everything
fine
I0O_E_INVALID _CHANNEL_ID an invalid
channel
has been
chosen

I0_E_CHANNEL_NOT_CONFIGURED module has
not been
initialized

IO_E _NULL_POINTER a NULL
pointer has
been
passed

I0_E_ADC_INVALID the ADC
value of the
KL15
sampling is
invalid

I0O_E_NO_SAFETY_SWITCH_CONFIGURED the safety
switch is
not used or
was not
configured

Remarks

® IO INT POWERSTAGE ENABLE @nd IO INT PVG VOUT ENABLE
are internal pins.

* IO INT POWERSTAGE ENABLE controls the internal
powerstage enable signal. Without enabling this signal
all high-side power outputs remain low (switched off).

* TO INT PVG VOUT ENABLE controls the internal enable
signal for the PVG/Voltage-outputs. Without switching
this signal to ON, the PVG/Voltage-outputs will remain
deactivated.

Note
Both 1o 1nT POwERSTAGE ENABLE and
I0_INT_PVG_VOUT_O0_ENABLE/IO_INT PVG_VOUT 1 ENABLE are
"software-switches", i.e. they are pure software functionality
without the use of any hardware-parts.

I0_ErrorType IO_POWER_lInit (void)

Initialization of the power module driver.

Initialization of power module driver.

* Initializes internal data structure
» disables powerstage enable signal
» disables PVG/VOut enable signal

Returns
IO _ErrorType

Return values

I0_E_OK everything fine
I0_E_CHANNEL_BUSY the module is already
initialized

I0_E_TASK_NO_FREE_SLOTS No more free slots to
setup task function

Remarks
Module is initialized only once. To re-initialize the module,
the function IO_POWER _Delnit() needs to be called.

I0_ErrorType IO_POWER_Set (10_PIN pin,
ubyte1 mode

)

Sets a certain mode of a POWER feature.

Parameters
pin pin for which the mode shall be set, one of:

®* IO_INT_ POWERSTAGE ENABLE

®* IO_INT_PVG_VOUT 0 ENABLE

* IO _INT_PVG _VOUT 1 ENABLE

* IO SAFETY SWITCH 0

* IO SAFETY SWITCH 1

e 10 k15 (for power down)

mode sets a certain mode, one of:

e IO POWER ON
* IO POWER OFF

Returns
10_ErrorType

Return values
I0_E_OK
I0_E BUSY

|IO_E_INVALID_PARAMETER

IO_E_INVALID_DIAG_STATE

I0_E_CHANNEL_NOT_CONFIGURED

IO_E_DRV_SAFETY_CONF_NOT_CONFIG

IO_E_DRIVER_NOT_INITIALIZED

IO_E_INVALID_CHANNEL_ID

everything
fine
driveris in
startup
phase

an invalid
parameter
has been
passed

the
instruction
is not
permitted in
the current
diagnostic
state.
module has
not been
initialized
driver is
initialized
as non-
safety

driver is not
initialized
an invalid
channel

has been
chosen

IO_E_GROUP_CONFLICT a pin of this

group has
been
initialized in
a different
mode

I0_E_SW_INTERNAL trying to set

a PVG/Vout

group
which is not

initialized

IO_E_NO_SAFETY_SWITCH_CONFIGURED the safety

switch is
not used or
was not
configured

Remarks

IO INT POWERSTAGE ENABLE and

IO _INT_PVG _VOUT_x_ ENABLE are internal pins.

IO INT POWERSTAGE ENABLE controls the internal
powerstage enable signal. Without enabling this signal
all high-side power outputs remain low (switched off).
IO INT PVG_VOUT 0 ENABLE and

I0 INT PVG vouT 1 ENABLE controls the internal enable
signal for each group of the PVG/Voltage-outputs.
Without switching this signal to ON, the PVG/Voltage-
outputs will remain deactivated.

I0 SAFETY SWITCH 0 and 1o sareTy swiTcH 1 allow to
en- and disable both safety switches separately. To be
able to switch the safety switches the driver must be
initialized as safety and running in main state.

If the high side outputs are used as safety critical, turning
off the powerstage by calling 10 powER_set ¢

TO INT POWERSTAGE ENABLE, I0 PowerR OFF) Will activate the
safe state and return an error code

DIAG_E PWM PERIOD MISMATCH.

Note
Both 10 1INT POWERSTAGE ENABLE and
I0_INT_PVG_VOUT 0 ENABLE/IO_INT PVG _VOUT 1 ENABLE are
"software-switches", i.e. they are pure software functionality
without the use of any hardware-parts.

10_ErrorType
I0_ POWER_SetK15Threshold (ubyte2 threshold)

Sets the threshold in mV below which a low-level is detected on
the K15 pin.

Parameters

threshold voltage-threshold below which 1o rower orF
shall be reported for K15. Range: = 0 .. 2500 (0
.. 2500mV)
Default: 2500mV

Returns
IO _ErrorType

Return values
I0O_E OK everything fine
I0_E_INVALID PARAMETER an invalid

parameter has
been passed

I0_E CHANNEL NOT_CONFIGURED module has not
been initialized

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by
dOXYTENEEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

inc ;

I0_PVG.h File
Reference

Functions

IO Driver functions for PVG channels. More...

#include "IO Driver.h"

Functions

I0_ErrorType 10_PVG_lInit (I0_PIN pvg_channel, ubyte2
output_value)
Setup one PVG channel.

I0_ErrorType 10_PVG_Delnit (I0_PIN pvg_channel)
Deinitializes one PVG output.

I0_ErrorType 10_PVG_SetOutput (I0_PIN pvg_channel,
ubyte2 output_value)
Sets the output value of one PVG channel.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

IO Driver functions for PVG channels.

Contains all service functions for the PVG (Proportional Valve

Group) outputs. Up to 6 channels can be configured: 1o rpvec oo ..
I0_PVG_05

» The pins for PVG- and Voltage-Outputs are organized in two
groups of three:
o Group 1: 10 _PVG_00/I0 VOUT 00, IO PVG_01/IO VOUT 01

and I0_PVG_02/I0 VOUT 02 Group 2:
I0_PVG_03/I0_VOUT 03, IO_PVG_04/I0_VOUT 04 and
10 pvG 05/10 vour 05 VWhenever a pin within a group is
configured either as PVG or voltage output, all other pins
within the same group must be either remain
unconfigured, or be configured with the same type. For
example, if 1o pIN J2 (10 PVG 01/I0 VOUT 01) iS
configured as PVG output, pins 1o pInN k2
(zo_pve_00/10 vouT 00) and 10 PIN H2
(zo_pve 02/10 vour 02) must either remain unconfigured
or used as PVG-outputs. Initializing it as any other output
type will resultin a IO_E_GROUP_CONFLICT error.

» The outputs will only be activated after enabling them via

I0_POWER Set (IO INT PVG VOUT 0 ENABLE,
I0_POWER ON) ;

I0_POWER Set (IO INT PVG VOUT 1 ENABLE,
I0_POWER ON) ;

After activating the outputs, it is not possible to initialize any
further PVG channels.

 Recommended initialization/usage order: 1) Initialize ALL
needed PVG-channels. 2) Call
IO_POWER_Set(lIO_INT_PVG_VOUT_x_ENABLE,
|IO_POWER_ON); 3) Set desired output value with
IO _PVG_SetOutput.

» After enabling the outputs by calling |IO_POWER _Set, all
configured PVG channels will output the desired value, while
all other pins within this group will output OV constantly.

» When configuring a PVG output, the associated voltage
feedback channel will also be configured. If the difference
between the measured output (U_feedback) and the
configured output calculated by U_diff = output_value / 100 *
U_BAT - U_feedback is greater than abs(+-9.5V), the output
protection will be activated:

o If U_diff > 9.5V, the output protection will set the output to
1500 (i.e. 15%) for 1 second.

o If U_diff <-9.5V, the output protection will set the output
to 8000 (i.e. 80%) for 1 second.

PVG code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function
calls.

PVG initialization examples:

// Setup a PVG output with output value of 50%
of the supply voltage
IO PVG_Init(IO _PVG 00
, 5000); // output value is
5000 = 50%

// Enable all configured PVG outputs
IO _POWER Set (IO INT PVG VOUT 0 ENABLE,
TI0_POWER ON) ;

PVG task examples:

I0 PVG_SetOutput(IO PVG 00
, 6200); // set duty cycle
to 62% of the supply voltage

Function Documentation

I0_ErrorType IO_PVG_Delnit (I0_PIN pvg_channel)

Deinitializes one PVG output.

Parameters
pvg_channel PVG output (zo_pve 00 .. 10 _PVG 05)

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0O_E_INVALID_CHANNEL_ID the given channel
id does not exist

I0O_E_CHANNEL_NOT_CONFIGURED the given channel
is not configured

Remarks
» The following channels form groups. A group always
has to be configured as a whole.
© IO PVG 00 .. IO PVG 02
© IO _PVG 03..I0 PVG 05

I0_ErrorType I0_PVG_Init (10_PIN pvg_channel,
ubyte2 output_value

)

Setup one PVG channel.

Parameters
pvg_channel PVG channel (zo_rpve 00 .. 10 _PVG 05)

output_value Output value with which the PVG-channel
will be initialized in percent * 100 (
1500..8500) of the supply voltage. The
configured value will be output after
enabling the PVG-outputs via
|IO_POWER_Set (
IO _INT_PVG _VOUT_x_ENABLE) until the
first call of IO_PVG_SetOutput.

Returns
I0_ErrorType

Return values
I0O_E OK everything fine
I0_E_GROUP_CONFLICT configuring the output
not allowed due to

conflicts with other
in/outputs in the same

group
I0O_E_INVALID_CHANNEL_ID the channel id does
not exist
I0_E_INVALID_PARAMETER parameter is out of
range
I0_E_CHANNEL_BUSY the ADC input channel

is currently used by
another function
I0_E_DRIVER_NOT_INITIALIZED The common driver init
function has not been
called before
I0O_E TASK_NO_FREE_SLOTS No more free slots to
setup task function
I0_E_SW_INTERNAL Internal software error

I0O_E CH_CAPABILITY The ADC capability of
this channel has not
been activated

Remarks
» The following channels form groups. They have to be
configured in the same mode within a group.
© IO_PVG_00 .. I0_PVG 02
© IO _PVG 03 .. IO _PVG 05
» Check the alternate functions of the pins used in each
group. A pin can only be configured for one function at
a time and it has to be the same function within the
group - however mixing DO functionality together with
PVG functionality in the same group is a valid
configuration and vice versa. The alternate functions
can be found at IO_Pins.h

I0_ErrorType IO_PVG_SetOutput (10_PIN pvg_channel,
ubyte2 output_value

)

Sets the output value of one PVG channel.

Parameters
pvg_channel PVG channel (1o pve 00 .. 10 PVG 05)

output_value Output value in percent * 100 (1500..8500)
of the supply voltage

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0O_E_INVALID_CHANNEL_ID the channel id does not

exist
I0_E_INVALID _PARAMETER parameter is out of
range
I0_E_CHANNEL_BUSY the ADC input channel
is currently used by
another function

I0_E_PVG_SHORT BATTERY short to UBAT has been

detected
I0_E_PVG_SHORT_CIRCUIT short to GND has been

detected
I0_E_PVG_OUTPUT_DISABLED the PVG output is

disabled
I0_E_PROT_ACTIVE Protection is active and

output value was
automatically setto a
value to protect the
outputs.

I0_E_PROT_REENABLE The |0-Driver signals
that the protection was
disabled and the output
functionality was

restored.
I0_E_ADC_INVALID the ADC returned an
invalid result
I0O_E CH_CAPABILITY the chosen channel

does not support the
requested feature

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by
O NEEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C API Manual
TrControl ptrcx-6-20-001

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures

File List | Globals |

inc [

I0_PWD.h File Reference

Data Structures | Typedefs | Functions

IO Driver functions for timer input channels. More...

#include "IO Driver.h"

Data Structures

struct _io_pwd_pulse_samples
PWD pulse-width data structure. More...

struct _io_pwd_inc_safety_conf
Safety configuration for the Incremental or Counter PWD inputs. More...

struct _io_pwd_cplx_safety_conf
Safety configuration for the Complex PWD inputs. More...

Macros

High-/ Low time

Specifies whether the high,low or both(period) time shall be captured
#define 10_PWD_LOW_TIME 0

#define 10_PWD_HIGH_TIME 1

#define 10_PWD_PERIOD_TIME 2

Variable edge

Specify the variable edge of the input signal.
If the rising edge is variable, the frequency is measured between the surrounding falling
edges.

#define 10_PWD_RISING_VAR 2

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

#define 10_PWD_FALLING_VAR 3

Counting mode
Specify the counting mode of a incremental channel.

#define 10_PWD INC 2 COUNT 0x03

#define 10_PWD_INC_1_COUNT 0x01

PWD resolution configuration

Resolution of the timer of a complex timer input. Note: the timing measurement is based
on a 16bit timer, therefore the product (65535 * resolution) must be greater than the
period that shall be measured

#define 10_PWD_RESOLUTION_0_2 0x01
#define 10_PWD_RESOLUTION_0_4 0x02
#define 10_PWD_RESOLUTION_0_8 0x03
#define 10_PWD_RESOLUTION_1_6 0x04

#define 10_PWD_RESOLUTION_3 2 0x05

Pull up / down configuration
Pull up/down resistor for the PWD inputs

#define 10_PWD_PU 0x01

#define 10_PWD_PD 0x02

edge count
Specify on which edge shall be counted

#define 10_PWD_RISING_COUNT 1
#define 10_PWD_FALLING_COUNT 2

#define 10_PWD_BOTH_COUNT 3

count direction

Specify the counting direction

#define 10_PWD_UP_COUNT 0

#define 10_PWD_DOWN_COUNT 1

PWD maximum pulse pulse-width samples

Maximum pulse-width samples that can be stored in the datastructure

I0 PWD PULSE_SAMPLES

#define 10_PWD_MAX_PULSE_SAMPLES 9

Typedefs

typedef struct
_io_pwd_pulse_samples

typedef struct
_io_pwd_inc_safety_conf

typedef struct
_io_pwd_cplx_safety_conf

Functions

I0_PWD_PULSE_SAMPLES
PWD pulse-width data structure.

I0O_PWD_INC_SAFETY_CONF
Safety configuration for the Incremental or Counter PWD
inputs.

I0_PWD_CPLX_SAFETY_CONF
Safety configuration for the Complex PWD inputs.

I0_ErrorType 10_PWD_Inclnit (I0_PIN inc_channel, ubyte1 mode, ubyte2 count_init,
ubyte1 pupd, const IO_PWD_INC_SAFETY_CONF *const safety_conf)
Setup single incremental interface.

I0_ErrorType 10_PWD_IncGet (I0_PIN inc_channel, ubyte2 *const count, ubyte2
*const adc_value 0, ubyte2 *const adc_value_1, bool *const fresh_0,
bool *const fresh_1)

Get the counter value of a incremental interface.

I0_ErrorType 10_PWD_IncSet (I0_PIN inc_channel, ubyte2 count)
Set the counter value of a incremental interface.

I0_ErrorType 10_PWD_IncDelnit (I0_PIN inc_channel)

10_ErrorType

I0_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

I0_ErrorType

10_ErrorType

I0_ErrorType

10_ErrorType

Deinitializes a single incremental interface.

I0_PWD_Complexinit (I0_PIN timer_channel, ubyte1 pulse_mode,
ubyte1 freq_mode, ubyte1 timer_res, ubyte1 capture_count, ubyte1
pupd, const IO_PWD_CPLX_SAFETY_CONF *const safety_conf)
Setup single timer channel that measures frequency and pulse-width at
the same time.

I0_PWD_ComplexGet (I0_PIN timer_channel, ubyte2 *const frequency,
ubyte4 *const pulse_width, |IO_PWD_PULSE_SAMPLES *const
pulse_samples, ubyte2 *const duty_cycle, ubyte2 *const adc_value,
bool *const fresh)

Get the frequency and the pulse-width from the specified timer channel.

I0_PWD_ComplexDelnit (I0_PIN timer_channel)
Deinitializes a complex PWD input.

I0_PWD_Freqlnit (I0O_PIN timer_channel, ubyte1 freq_mode)
Setup single timer channel that measures frequency only.

I0_PWD_Pulselnit (I0_PIN timer_channel, ubyte1 pulse_mode)
Setup single timer channel that measures pulse-width only.

I0_PWD_PulseFreqlnit (I0_PIN timer_channel, ubyte1 capture_mode)
Setup single timer channel that measures pulse-width and frequency.

I0_PWD_FreqGet (I0_PIN timer_channel, ubyte2 *const frequency)
Get the frequency.

I0_PWD_PulseGet (IO_PIN timer_channel, ubyte4 *const pulse_width)
Get the pulse-width.

I0_PWD_PulseFreqGet (I0_PIN timer_channel, ubyte2 *const
frequency, ubyte4 *const pulse_width)
Get the pulse-width.

I0_PWD_FreqDelnit (I0_PIN timer_channel)
Deinitializes a PWD input for frequency measurement. Allows the re-
initialization of the input by other functions.

I0_PWD_PulseDelnit (I0_PIN timer_channel)
Deinitializes a PWD input for pulse-width measurement. Allows the re-
initialization of the input by other functions.

10_PWD_PulseFreqDelnit (I0_PIN timer_channel)

10_ErrorType

I0_ErrorType

10_ErrorType

10_ErrorType

De-initializes a PWD input for pulse-width and frequency measurement.
Allows the re-initialization of the input by other functions.

10_PWD_Countlnit (I0_PIN count_channel, ubyte1 mode, ubyte1
direction, ubyte2 count_init, ubyte1 pupd,
I0_PWD_INC_SAFETY_CONF const *const safety_conf)

Setup single counter channel.

I0_PWD_CountGet (I0_PIN count_channel, ubyte2 *const count,
ubyte2 *const adc_value, bool *const fresh)
Get the counter value of a single counter channel.

I0_PWD_CountSet (I0_PIN count_channel, ubyte2 count)
Set the counter value of a single counter channel.

10_PWD_CountDelnit (I0_PIN count_channel)
Deinitializes a single counter channel.

Detailed Description

IO Driver functions for timer input channels.

Contains all service functions for the PWD (Pulse Width Demodulation). There are two
different groups of timer inputs:

e 10 _PWD_00..I0 Pwp_03 and 1o_pwp_22 .. 10_pwp_23: Complex timer inputs. Can be
configured to measure frequency, pulse-width and duty-cycle at the same time.
Furthermore pins IO_PWD_00 in combination with IO_PWD 01 can read incremental
(relative) encoders. In this case two inputs are reserved for one incremental encoder
(clock and direction).

* IO PWD_10.. IO _PWD_13, IO _PWD 20 .. IO _PWD_21:
Simple timer inputs. Can be configured to measure either frequency or pulse-width.
These inputs evaluate only 2 edges (frequency) or 3 edges (pulse-width).

PWD code examples

Please refer to section Basic structure of an application for understanding where to
place the initialization and task function calls.

PWD initialization examples:

// setup frequency measurement input
IO PWD FreqgInit(IO _PWD 20
, I0_PWD_FALLING_VAR); // select falling edge as
variable

// setup pulse measurement input
IO PWD PulseInit(IO PWD 21
, IO PWD HIGH TIME); // measure high time of
the signal

// setup complex timer input (frequency and pulse measurement)
IO PWD ComplexInit(IO PWD 03
, 10 PWD HIGH TIME // measure high time
, I0 PWD FALLING VAR // select falling
edge as variable
, 10 PWD RESOLUTION 0 8 // set timer
resolution to 0.8us

, 8 // set number of
accumulations

, 10 PWD PU // configure pull-up
resistor

, NULL); // Handle for PID

controller not needed => pass NULL

// setup incremental input
I0_PWD_IncInit(IO PWD 00
, IO PWD INC 2 COUNT

, O0xX7FFF // set initial value for
counter

, 10 _PWD PU // configure pull-up
resistor

, NULL); // Handle for PID

controller not needed => pass NULL

PWD task examples:

ubyte? freq 20 val, freq 3 val, duty 3 val, adc 3 val, inc 0 val,
adc 4 val, adc 5 val;

ubyted4 pulse 21 val, pulse 3 val;

bool adc_ 3 fresh, adc_4 fresh, adc 5 fresh;

// read frequency value
I0_PWD_FreqgGet(IO _PWD 20
, &freq 20 val);

// read pulse value
IO PWD PulseGet (IO PWD 21
, &pulse 21 val);

// read complex timer values (frequency and pulse value)
IO PWD ComplexGet (IO PWD 03
, &freq 3 val
, &pulse 3 val
, NULL // pulse samples not needed
, &duty 3 val
, &adc_ 3 val
, &adc 3 fresh);

// read incremental counter value
IO PWD IncGet (IO _PWD 00

, &inc 0 val

, &adc 4 val

, &adc 5 val

, &adc 4 fresh

, &adc 5 fresh);

Macro Definition Documentation
#define I0_PWD_BOTH_COUNT 3

count on both edges

#define IO_PWD_DOWN_COUNT 1

count down

#define |0_PWD_FALLING_COUNT 2

count on a falling edge

#define I0_PWD_FALLING_VAR 3

falling edge of the input signal is the variable one

#define I0_PWD_HIGH_TIME 1

capture the high time of the input signal

#define |I0_PWD_INC_1_COUNT 0x01

count only on one edge of the two inputs

#define I0_PWD_INC_2_COUNT 0x03

count on any edge of the two inputs

#define |I0_PWD_LOW_TIME 0

capture the low time of the input signal

#define IO_PWD_PD 0x02

pull-down resistor

#define IO_PWD_PERIOD_TIME 2

capture the high and low time of the input signal

#define IO_PWD_PU 0x01

pull-up resistor

#define |IO_PWD_RESOLUTION_0_2 0x01

resolution is set to 0.2 us

#define I0_PWD_RESOLUTION_0_4 0x02

resolution is set to 0.4 us

#define I0_PWD_RESOLUTION_0_8 0x03

resolution is set to 0.8 us

#define I0_PWD_RESOLUTION_1_6 0x04

resolution is setto 1.6 us

#define I0_PWD_RESOLUTION_3_2 0x05

resolution is set to 3.2 us

#define |IO_PWD_RISING_COUNT 1

count on a rising edge

#define |0_PWD_RISING_VAR 2

rising edge of the input signal is the variable one

#define I0_PWD_UP_COUNT 0

count up

Typedef Documentation

typedef struct _io_pwd_cplx_safety_conf |IO_PWD_CPLX_SAFETY_CONF

Safety configuration for the Complex PWD inputs.

Stores all relevant safety configuration parameters for the Complex PWD inputs.

typedef struct _io_pwd_inc_safety_conf |IO_PWD_INC_SAFETY_CONF

Safety configuration for the Incremental or Counter PWD inputs.

Stores all relevant safety configuration parameters for the Incremental PWD inputs.

typedef struct _io_pwd_pulse_samples |IO_PWD_PULSE_SAMPLES

PWD pulse-width data structure.

stores each captured pulse-width for one measurement.

Function Documentation

I0_ErrorType 10_PWD_ComplexDelnit (IO_PIN timer_channel)

Deinitializes a complex PWD input.

Parameters

timer_channel Timer channel, one of:
® IO _PWD 00 .. I0_PWD_03
* IO PWD_22 .. IO _PWD_23

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel is not a PWD input
Remarks
» The following channels form groups. A group always has to be configured as a
whole.

© IO _PWD_00 .. IO_PWD_01
© IO_PWD_02 .. IO_PWD_03

10_ErrorType

I0_PWD_ComplexGet (10_PIN timer_channel,
ubyte2 *const frequency,
ubyte4 *const pulse_width,
I0_PWD_PULSE_SAMPLES *const pulse_samples,
ubyte2 *const duty_cycle,
ubyte2 *const adc_value,
bool *const fresh

Get the frequency and the pulse-width from the specified timer channel.

Parameters

timer_channel Timer channel, one of:
* IO PWD_00 .. IO _PWD_03

* IO _PWD 22 .. I0_PWD_23
frequency Accumulated frequency in Hz
pulse_width Accumulated pulse-width in us
pulse_samples contains each pulse-width measure sample
duty_cycle contains the measured duty cycle in percent * 10 (e.g. 200 for
20%).
adc_value ADC value, range: 0..32780 (in mV; 0..33333 for TTC32 variants)

fresh Status of the ADC value
e TrUE: ADC value is fresh
e rarse: ADC value is old

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is either not a PWD
input
I0_E_PWD_NOT_FINISHED not enough edges to accumulate a result
I0_E_PWD_CAPTURE_ERROR the frequency was too high
I0_E_NULL_POINTER A NULL pointer has been passed
I0_E_ADC_INVALID A ADC error occured

I0_E_PWD_TIMER_OVERFLOW A timer overflow occured

Remarks
» The timing measurement is based on a 16bit timer + 8bit overflow timer,
therefore the product (65535 * 255 * resolution) must be greater than the
period that shall be measured. If this period is greater, the function return
I0_E_PWD_TIMER OVERFLOW. | he maximum frequency that can be measured is
around 10kHz (restricted by low pass filtering)

e The parameters adc value and fresh are optional. If not needed, these
parameters can be set NULL to ignore them. If the parameters should be
calculated one has to provide both, a valid pointer to the location of the
adc_value and the fresh indication.

« if each individual measured pulse-width sample is not needed, the parameter
pulse_samples should be set to nuLL

» The parameter duty cycle contains the duty cycle of the active signal part.
o If pulse mode iS T0_PWD_HIGH TIME, duty cycle contains the duty cycle of
the high time
o If pulse mode iS I0 PWD LOW TIME, duty cycle contains the duty cycle of the
low time

Attention
» The calculation of the parameter duty cycie is heavily time consuming due to
the slow division unit of the XC2000, especially when the pulse-width is
greater or equal 0.4294967s. It is recommended to set this parameter to nuLw if
it is not needed (the calculation of the parameter duty cyc1e will then be
skipped)!

Remarks
e The parameter puise width contains the

o high time of the measured signal in microseconds, if pulse mode was set to
IO_PWD_HIGH TIME

o low time of the measured signal in microseconds, if pulse mode was set to
I0_PWD_LOW_TIME

o period-time of the measured signal in microseconds, if pulse mode was set
to 10_PWD_PERIOD TIME

Attention
e The parameter frequency only shows integral frequency values. For input
frequencies smaller than 1Hz this value is set to 0 and only the parameters
pulse-width and duty cycle are valid.

10_ErrorType

10_PWD_Complexinit (10_PIN timer_channel,
ubyte1 pulse_mode,
ubyte1 freq_mode,
ubyte1 timer_res,
ubyte1 capture_count,
ubyte1 pupd,
const IO_PWD_CPLX_SAFETY_CONF *const safety conf

)

Setup single timer channel that measures frequency and pulse-width at the same time.

Parameters
timer_channel Timer channel, one of:
¢ IO _PWD 00 .. IO _PWD 03
L4 IO_PWD_22 .. IO_PWD_23
pulse_mode Specify which pulse time to measure:
e 10 PWD _HIGH TIME: configuration to measure pulse-high-time
e 10 _Pwp_Low_TIME: configuration to measure pulse-low-time
e 10 PWD_PERIOD TIME: configuration to measure pulse-high and
low-time (Period). The parameter puise width of the function
10 _PWD ComplexGet Will contain the period time instead of the
pulse-width.

freq_mode Specify the variable edge

e IO_PWD_RISING VAR: rising edge is variable this means that
frequency is measured on falling edges

e 10 PwWD_FALLING VAR: falling edge is variable this means that
frequency is measured on rising edges

timer_res Specify the timer resolution (only for To_pwp_00 .. 10_pwp_03)

e IO PWD_RESOLUTION 0_2: 0.2us

e IO PWD_RESOLUTION 0_4: 0.4us

e 10 PWD_RESOLUTION 0_8: 0.8us

* IO PWD RESOLUTION 1 6: 1.6uUS

* IO PWD_RESOLUTION 3_2: 3.2uUS

capture_count Number of frequency/pulse-width measurements that will be

accumulated (0..8)

pupd Specify which pull-resistor to use (only for 1o _pwp_00 .. T0_pwp_03)
e 10 _pwp_pu: pull-up resistor to 5V
e 10 pwp_pD: pull-down resistor to ground

safety_conf Safety configuration.

Returns
10_ErrorType:

Return values
I0_E_OK
I0_E_CHANNEL_BUSY

I0_E_INVALID_CHANNEL_ID
I0_E_INVALID_PARAMETER

I0_E_CH_CAPABILITY
I0_E_DRIVER_NOT_INITIALIZED

IO_E_GROUP_CONFLICT

I0_E_SAFETY_NOT_SUPPORTED

I0_E_SW_INTERNAL
IO_E_INVALID_SAFETY_CONFIG

everything fine

the channel is currently used by
another function

the channel id does not exist
parameter capture_count, timebase or
mode is out of range

The PWD-Complex capability of this
channel has not been activated

The common driver init function has
not been called before

configuring the output not allowed due
to conflicts with other in/outputs in the
same group

the given channel does not support to
be configured safety critical

an internal software error occurred
one or more parameters of the safety
configuration are invalid (out of range)

I0_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as

Remarks

safety device - therefore the safety
feature is not available for this channel

A channel that is initalized with this function can retrieve frequency and duty cycle by
calling the function: 1o pwp_complexGet ()

The timing measurement is based on a 16bit timer + 8bit overflow timer, therefore
the product (65535 * 255 * resolution) must be greater than the period that shall be
measured. If this period is greater, the function will return 1o E pwp_TIMER OVERFLOW.
The maximum frequency that can be measured is around 10kHz (restricted by low
pass filtering)

The parameters timer res and pupd are only consired for 1o_pwp_00 .. I10_PWD_03.
When configuring 1o_epwp_22 .. 10_pwp_23 these parameters are ignored.

If capture count = 0, the driver accumulates all the measurements captured in the
last round. Note: In this mode at least 4 edges are required for one measurement. If
capture_count = 1..8, the driver captures exactly as many measurements are given
in the parameter capture_count. Note: Until not all configured samples are captured,
the driver don't return a value.

The channels 1o_pwp_22 and 1o_pwp_23 are not allowed to be configured safety
critical.

The resolution of the channels 1o _pwp 22 and 1o _pwp 23 is fixed to 0.2 microseconds
(=200ns).
» The following channels form groups. They have to be configured in the same mode
within a group.
0 IO_PWD_00 .. IO_PWD 01

© IO_PWD_02 .. I0_PWD_03

» Check the alternate functions of the pins used in each group. A pin can only be
configured for one function at a time and it has to be the same function within the
group.The alternate functions can be found at I0_Pins.h

10_ErrorType 10_PWD_CountDelnit (10_PIN count_channel)

Deinitializes a single counter channel.

Parameters
count_channel Counter channel (zo_pwp 01)

Returns
I0_ErrorType:

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel is not a incremental

timer input

Remarks
Only channel 1o _pwp_01 can be used for counting functionality

I0_ErrorType I0_PWD_CountGet (10_PIN count_channel,
ubyte2 *const count,
ubyte2 *const adc_value,
bool *const fresh

)

Get the counter value of a single counter channel.

Parameters
count_channel Counter channel (zo_pwp_01)
count Value of counter (0..65535)
adc_value ADC value, Range: 0..32780 (in mV; 0..33333 for TTC32 variants)
fresh Status of the ADC value
+ truE: ADC value is fresh
e rarse: ADC value is old
Returns

10_ErrorType:

Return values

I0_E_OK everything fine

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured

I0_E_INVALID_CHANNEL_ID the given channel id does not exist

I0_E_CH_CAPABILITY The given channel is not a incremental
timer input

I0_E_NULL_POINTER a NULL pointer has been passed to the
function

I0_E_ADC_INVALID the ADC value is invalid

Remarks

Only channel 1o _pwp_01 can be used for counting functionality

The parameters adc_value and fresh are optional. If not needed, these parameters
can be set nuLt to ignore them. If the parameters should be calculated one has to
provide both, a valid pointer to the location of the adc_value and the fresh
indication.

10_ErrorType
I0_PWD_Countlnit (IO_PIN count_channel,

ubyte1 mode,
ubyte1 direction,

ubyte2 count_init,

ubyte1 pupd,

I0_PWD_INC_SAFETY_CONF const *const safety_conf
)

Setup single counter channel.

Parameters
count_channel Counter channel (zo_pwp _01)
mode Specify on wich edge shall be count
e IO PWD RISING COUNT: count on a rising edge
e IO PWD_FALLING COUNT: count on a falling edge
e IO PWD_BOTH COUNT: count on a both edges
direction Specify the counting direction
e IO PWD_UP_COUNT: COunts up
e IO _PWD_DOWN_COUNT: counts down
count_init Init value of counter (0..65535)
pupd Specify which pull-resistor to use

e 10 _pwp_pu: pull-up resistor to 5V
e 10 pwp_pD: pull-down resistor to ground

safety_conf Safety configuration

Returns

10_ErrorType:

Return values

I0_E_OK
IO_E_CHANNEL_BUSY

I0_E_INVALID_CHANNEL_ID
I0_E_INVALID_PARAMETER
I0_E_CH_CAPABILITY

I0_E_DRIVER_NOT_INITIALIZED
I0_E_SW_INTERNAL

I0_E_INVALID_SAFETY_CONFIG

IO_E_SAFETY_NOT_SUPPORTED

everything fine

the channel is currently used by
another function

the channel id does not exist

a parameter is out of range

The PWD-Inc capability of this
channel has not been activated

The common driver init function has
not been called before

Internal SW malfunction

one or more parameters of the
safety configuration are invalid (out
of range)

the given channel does not support
safety features

I0_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as

safety device - therefore the safety

feature is not available for this
channel

Remarks
» Only channel o _pwp_o01 can be used for counting functionality. zo_pwp_o00 must
not be configured.
» Check the alternate functions of the pin. A pin can only be configured for one
function at a time.The alternate functions can be found at IO_Pins.h

I0_ErrorType 10_PWD_CountSet (10_PIN count_channel,
ubyte2 count

)

Set the counter value of a single counter channel.

Parameters

count_channel Counter channel (zo_pwp_01)

count New value to set of incremental counter (0..65535)
Returns

10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is not a incremental
timer input
Remarks

Only channel 1o _pwp 01 can be used for counting functionality

10_ErrorType I0_PWD_FreqDelnit (10_PIN timer_channel)

Deinitializes a PWD input for frequency measurement. Allows the re-initialization of the
input by other functions.

Parameters
timer_channel Timer channel, one of:
® IO PWD_10 .. IO_PWD_13
® IO _PWD_20 .. IO_PWD_21

Returns
10_ErrorType:

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID the given channel id does not exist

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured

I0_E_CH_CAPABILITY The given channel is not a PWD input
I0_ErrorType I0_PWD_FreqGet (10_PIN timer_channel,

ubyte2 *const frequency

)

Get the frequency.

Parameters

timer_channel Timer channel, one of:
® IO _PWD_10 .. IO_PWD_13
* IO _PWD 20 .. I0_PWD_21
frequency Measured frequency in Hz

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is not a PWD input
I0_E_PWD_CAPTURE_ERROR frequency too high
I0_E_NULL_POINTER A NULL pointer has been passed
I0_E_PWD_HIGH_LEVEL only a constant high level is detected
I0O_E_PWD_LOW_LEVEL only a constant low level is detected
I0_E_PWD_NOT_FINISHED not enough edges to accumulate a result
Remarks

The lowest frequency that can be measured is 10Hz plus a jitter in the size of the
cycle time. If the signal has a lower frequency, the function returns a frequency
value of 0 and a return a status of 10_E_pwp_HIGH LEVEL Of I0_E_PWD_LOW_LEVEL after
104ms. The maximum frequency that can be measured is around 10KHz
(restricted by low pass filtering)

I0_ErrorType 10_PWD_Freqglnit (I0_PIN timer_channel,
ubyte1 freq_mode

)

Setup single timer channel that measures frequency only.

Parameters
timer_channel Timer channel, one of:
* IO _PWD_10 .. IO _PWD_13
e IO PWD 20 .. I0_PWD_ 21
freq_mode Specify the variable edge
e IO PWD_RISING VAR: fising edge is variable
e 10 _pWp_FALLING VAR: falling edge is variable

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_BUSY the input channel is currently used by another
function

I0_E_INVALID_CHANNEL_ID the input channel id does not exist
I0_E_INVALID_PARAMETER parameter mode is out of range

I0_E_CH_CAPABILITY The PWD-Freq capability of this channel has
not been activated

I0_E_DRIVER_NOT_INITIALIZED The common driver init function has not been
called before

Remarks
The resolution of the channels 1o _pwp_10 .. 10_pwp_13, 10_Pwp_20 and 1o_pwp_21 iS
fixed to 1.6 microseconds.

I0_ErrorType 10_PWD_IncDelnit (I0_PIN inc_channel)

Deinitializes a single incremental interface.

Parameters
inc_channel Incremental channel (zo_pwp 00 .. 10 PWwD _01)

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel is not a incremental

timer input

Remarks
Use the primary channel (same channel that is used in the init function).

I0_ErrorType 10_PWD_IncGet (IO_PIN inc_channel,
ubyte2 *const count,
ubyte2 *const adc_value_0,
ubyte2 *const adc_value_1,
bool *const fresh_0,
bool *const fresh_1

Get the counter value of a incremental interface.

Parameters
inc_channel Incremental channel (zo_pwp_00 .. 10_pwp_01)
count Value of incremental counter (0..65535)
adc_value_0 ADC value channel 0, Range: 0..32780 (in mV; 0..33333 for TTC32
variants)
adc_value_1 ADC value channel 1, Range: 0..32780 (in mV; 0..33333 for TTC32
variants)

fresh_0 Status of the ADC value channel 0
e 7true: ADC value is fresh
o raLse: ADC value is old
fresh_1 Status of the ADC value channel 1
e 1rUE: ADC value is fresh
e raLse: ADC value is old

Returns
10_ErrorType:

Return values

I0_E_OK everything fine

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured

I0_E_INVALID_CHANNEL_ID the given channel id does not exist

I0_E_CH_CAPABILITY The given channel is not a incremental
timer input

I0_E_NULL_POINTER a NULL pointer has been passed to the
function

I0_E_ADC_INVALID the ADC value is invalid

Remarks

Use the primary channel (same channel that is used in the init function).

The parameters adc value 0, adc_value 1, fresh 0 and fresh 1 are optional. If not
needed, these parameters can be set nurL to ignore them. If the parameters should
be calculated one has to provide both, a valid pointer to the location of the adc
value and the fresh indication for both input channels!

10_ErrorType

10_PWD_InclInit (10_PIN inc_channel,
ubyte1 mode,
ubyte2 count_init,
ubyte1 pupd,

const IO_PWD_INC_SAFETY_CONF *const safety_conf
)

Setup single incremental interface.

Parameters
inc_channel Incremental channel (zo_pwp_00 or 10_pwp 01)
mode Defines the counter behavior
e 10 Pwpn_INC_2_counT: Counts up/down on any edge of the two
inputs

e 10 _pwp_INC_1_count: Counts up/down on any edge of one
channel (zo_pwp_00 Or 10 _pwp_01)
count_init Init value of incremental counter (0..65535)

pupd Specify which pull-resistor to use
e 10 _pwp_pu: pull-up resistor to 5V
e 10 _pwp_pD: pull-down resistor to ground

safety_conf Safety configuration

Returns
10_ErrorType:

Return values
I0_E_OK everything fine

I0_E_CHANNEL_BUSY

I0_E_INVALID_CHANNEL_ID
I0_E_INVALID_PARAMETER
I0_E_CH_CAPABILITY

I0_E_DRIVER_NOT _INITIALIZED

I0_E_SW_INTERNAL
I0_E_INVALID_SAFETY_CONFIG

the channel is currently used by
another function

the channel id does not exist
a parameter is out of range

The PWD-Inc capability of this
channel has not been activated

The common driver init function has
not been called before

Internal SW malfunction
one or more parameters of the

safety configuration are invalid (out
of range)

I0_E_SAFETY_NOT_SUPPORTED the given channel does not support
safety features

I0_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as
safety device - therefore the safety
feature is not available for this
channel

Remarks
I0_pWD_00 in combination with 1o_pwp_o1 defines the incremental interface. Both
PWD channels are used (needed) for the incremental interface.

The given channel is the primary channel. All further operations (step and deinit
functions) must be performed with this channel.

» Check the alternate functions of the pins used. A pin can only be configured
for one function at a time.The alternate functions can be found at I0_Pins.h

I0_ErrorType I0_PWD_IncSet (10_PIN inc_channel,
ubyte2 count

)

Set the counter value of a incremental interface.

Parameters
inc_channel Incremental channel (zo_pwp 00 .. 10 PWwD _01)
count New value to set of incremental counter (0..65535)
Returns

10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is not a incremental
timer input
Remarks

Use the primary channel (same channel that is used in the init function).

I0_ErrorType I0_PWD_PulseDelnit (I0_PIN timer_channel)

Deinitializes a PWD input for pulse-width measurement. Allows the re-initialization of
the input by other functions.

Parameters

timer_channel Timer channel, one of:
* IO PWD_10 .. IO _PWD_13
e IO PWD 20 .. I0_PWD_21

Returns
I0_ErrorType:

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel is not a PWD input

I0_ErrorType I0_PWD_PulseFreqDelnit (10_PIN timer_channel)

De-initializes a PWD input for pulse-width and frequency measurement. Allows the re-
initialization of the input by other functions.

Parameters

timer_channel Timer channel , one of:
* IO _PWD_10 .. IO_PWD_13
e IO PWD 20 .. I0_PWD_ 21

Returns
IO_ErrorType:

Return values
I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel is not a PWD input

I0_ErrorType 10_PWD_PulseFreqGet (10_PIN timer_channel,
ubyte2 *const frequency,
ubyte4 *const pulse_width

)

Get the pulse-width.

Parameters
timer_channel Timer channel, one of:
® IO PWD_10 .. IO_PWD_13
e IO PWD 20 .. I0_PWD 21
frequency Measured frequency in Hz (optional parameter)
pulse_width Measured pulse-width in us (optional parameter)

Returns
IO_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel is not a PWD input
I0_E_PWD_CAPTURE_ERROR frequency too high
I0_E_PWD_HIGH_LEVEL only a constant high level is detected
I0O_E_PWD_LOW_LEVEL only a constant low level is detected
I0_E_PWD_NOT_FINISHED not enough edges to accumulate a result
Remarks

» The largest pulse that can be measured is 100ms plus a jitter in the size of the
cycle time. If the signal has larger pulses, the function returns a pulse
measurement value of 0 and a return a status of 10 E_pwp_HIGH LEVEL Of
I0_E_PWD_LOW LEVEL. The maximum frequency that can be measured is around
10KHz (restricted by low pass filtering)

Attention
» This function has to be called cyclically with a cycle time smaller than 100ms.
Cycle times greater 100ms are not allowed for this function!

I0_ErrorType I0_PWD_PulseFreqlnit (I0_PIN timer_channel,
ubyte1 capture_mode

)

Setup single timer channel that measures pulse-width and frequency.

Parameters
timer_channel Timer channel, one of:
L4 IO_PWD_lO . IO_PWD_13
¢ IO _PWD_20 .. IO_PWD_21
capture_mode Capture mode
e |O_PWD_HIGH_TIME:
o measure pulse-high-time and

o measure frequency from falling to falling edge
¢ |O_PWD_LOW_TIME: configuration to measure

o measure pulse-low-time and

o measure frequency from rising to rising edge

Returns
IO_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_BUSY the input channel is currently used by another
function

I0_E_INVALID_CHANNEL_ID the input channel id does not exist
I0_E_INVALID_PARAMETER parameter mode is out of range

I0_E_CH_CAPABILITY The PWD-Pulse capability of this channel has
not been activated

I0_E_DRIVER_NOT_INITIALIZED The common driver init function has not been
called before

Remarks
The corresponding step function 10 _pwp pPulserreqcet has to be called cyclically
with a cycle time smaller than 100ms

The resolution of the channels 1o _pwp_10 .. 10_Pwp_13, 10 _PWwp_20 and 1o_pwp_21 iS
fixed to 1.6 microseconds.

I0_ErrorType I0_PWD_PulseGet (I0_PIN timer_channel,
ubyte4 *const pulse_width

)

Get the pulse-width.

Parameters
timer_channel Timer channel, one of:
* IO _PWD_10 .. I0_PWD_13
® IO _PWD_20.. IO PWD_21

pulse_width Measured pulse-width in us

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist

I0_E_CH_CAPABILITY The given channel is not a PWD input

I0_E_PWD_CAPTURE_ERROR frequency too high

I0_E_NULL_POINTER A NULL pointer has been passed

I0_E_PWD_HIGH_LEVEL only a constant high level is detected

I0O_E_PWD_LOW_LEVEL only a constant low level is detected

I0_E_PWD_NOT_FINISHED not enough edges to accumulate a result
Remarks

The largest pulse that can be measured is 100ms plus a jitter in the size of the
cycle time. If the signal has larger pulses, the function returns a pulse
measurement value of 0 and a return a status of 10 E_pwp_HIGH LEVEL Or

10 E_pwp_row_LEVEL after 104ms. The maximum frequency that can be measured is
around 10KHz (restricted by low pass filtering)

I0_ErrorType I0_PWD_Pulselnit (10_PIN timer_channel,
ubyte1 pulse_mode

)

Setup single timer channel that measures pulse-width only.

Parameters
timer_channel Timer channel, one of:
* IO PWD 10 .. IO _PWD_13
e IO PWD 20 .. I0_PWD_ 21
pulse_mode Capture mode
e 10 _PwpD_HIGH TIME: configuration to measure pulse-high-time
e 10 _PWD_LoOWw_TIME: configuration to measure pulse-low-time

Returns
10_ErrorType:

Return values

I0_E_OK everything fine
I0_E_CHANNEL_BUSY the input channel is currently used by another
function

I0_E_INVALID_CHANNEL_ID the input channel id does not exist
I0_E_INVALID_PARAMETER parameter mode is out of range

I0_E_CH_CAPABILITY The PWD-Pulse capability of this channel has
not been activated

I0_E_DRIVER_NOT_INITIALIZED The common driver init function has not been
called before

Remarks

The resolution of the channels 10 _pwp_10 .. 10 Pwp_13, T0 PWwp 20 and 1o _pwp_21 iS
fixed to 1.6 microseconds.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by ﬁ!@%uge 1.8.2

http://www.doxygen.org/index.html

TrcControl ﬂr\éj)ggoigfamlly C API Manual b-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures m
File List | Globals |

inc f

I0_PWM.h File Reference

Data Structures | Typedefs | Functions

IO Driver functions for PWM channels. More...

#include "IO Driver.h" #include "IO_RTC.h"
#include "IO_PID.h"

Data Structures

struct _io_pwm_current_queue
PWM current measurement queue. More...

struct _io_pwm_safety_conf
Safety configuration for the PWM outputs. More...

struct _io_pwm_current_safety_ conf
Safety configuration for the PWM outputs. More...

Macros

Size of current queue
Size of the queue holding the measured values of the equidistant current measurement

#define 10_PWM_CURRENT_QUEUE_MAX 6U

Typedefs

typedef struct
_io_pwm_current_queue 10_PWM_CURRENT_QUEUE
PWM current measurement queue.

typedef struct _io_pwm_safety_conf 10_PWM_SAFETY_CONF
Safety configuration for the PWM outputs.

typedef struct
_io_pwm_current_safety_conf 10_PWM_CURRENT_SAFETY_CONF
Safety configuration for the PWM outputs.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Functions

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_ErrorType

10_PWM_Init (I0_PIN pwm_channel, ubyte2 frequency, bool polarity, bool
diag_margin, ubyte2 overload_limit, const IO_PWM_SAFETY_CONF *const
safety_conf)

Setup single PWM output.

10_PWM_Currentlnit (I0_PIN pwm_channel, ubyte2 frequency, const
I0_PID_CONFIG *const pid_config, ubyte1 pwm_period_multi, ubyte1 *const
pid_handle, const IO_PWM_CURRENT_SAFETY_CONF *const safety_conf)
Setup a current controlled PWM output.

10_PWM_CurrentDelnit (I0_PIN pwm_channel)
Deinitializes a current-controlled PWM output. Allows the re-initialization of the
output by other functions.

10_PWM_Delnit (I0_PIN pwm_channel)
Deinitializes a PWM output. Allows the re-initialization of the output by other
functions.

10_PWM_SetDuty (I0_PIN pwm_channel, ubyte2 duty cycle, ubyte4 *const
duty_cycle_fb)
Set the duty cycle for a PWM channel.

10_PWM_SetCur (I0_PIN pwm_channel, ubyte2 current, ubyte4 *const
duty_cycle_fb)
Sets the current for a current-controlled PWM channel.

10_PWM_GetCur (I0_PIN pwm_channel, ubyte2 *const current, bool *const
fresh)
Returns the measured current of the given channel.

10_PWM_GetCurQueue (I0_PIN pwm_channel, IO_PWM_CURRENT_QUEUE
*const current_queue)
Returns the measured current values since the last call of the given channel.

Detailed Description

1O Driver functions for PWM channels.

Contains all service functions for the PWM (Pulse Width Modulation). Up to 8 channels can be
configured:

10_pwM 00 .. 10_pwM _05: High-side PWM outputs with current-measurement
10 pwM 10 .. 10_pwM 11: High-side PWM outputs with overcurrent-monitoring.
Not all PWM channels can have their own frequency time base.
o IO _PWM 00, I0_PWM 01, I0_pwM 10 and zo_pwm 11 have their own frequency time base
(variable frequency)
o IO PWM 02, IO_PWM 03, I0_PwWM 04 and 1o_pwm 05 share one frequency time base. It's only
allowed to configure these outputs with the same PWM frequency.
The associated precise current-measurement will be configured for the channels 1o_ewm o0 ..
10_pwM_05. These PWM outputs will be switched off if the the continuous current is above 3.0A
after a specific amount of time (1s) and switched off immediately if the current exceeds 4.0A.
The step function for retrieving the current is To_pwM Getcur ().
The associated overcurrent-monitoring will be configured for the channels 1o _ewm 10 ..
10_pwM_11. These PWM outputs will be switched off if the the continuous current is above 3.0A
after a specific amount of time (1s). The outputs allow overcurrent for 1 second to allow
switching of light-bulbs with high inrush current.

Additionally, current-controlled PWM outputs can be configured with I0_PWM_ Currentlnit.
These outputs are controlled by a PID controller.

PWM code examples

Please refer to section Basic structure of an application for understanding where to place the

initialization and task function calls.

PWM initialization examples:

// Setup a PWM output with precise current-measurement

IO _PWM Init(IO _PWM 00

, 100 //

, TRUE //

, TRUE //

, 1500 //

, NULL); //
supported

IO POWER Set(IO INT POWERSTAGE ENABLE,

high-side outputs
PWM task examples:

ubyte2 curr;
bool new;

IO PWM SetDuty(IO PWM 00

, 0x8000 //

, NULL); //

I0_PWM GetCur (IO _PWM 00 //
, &curr //

, &new); //

current value is available

frequency is 100 Hz

positive polarity

diag margin

signal overload above 1.5A

safety configuration; currently not

IO POWER ON); // enable

set duty cycle to 50%
duty-cycle feedback is ignored

read current value of PWM output
variable to store current
variable to store information if a

Current-controlled PWM code examples
Current-controlled PWM initialization examples:
// PID controller configuration

IO PID CONFIG pid cfg =
{

.Kd = 5000, // Differnetial gain scaled by 10000 =>
gain of 0.05

.Kff = 100000, // Feed-forwared gain scaled by 1000 =>
gain of 10

.Ki = 150000, // Integral gain scaled by 10000 =>
gain of 15

.Kp = 5000, // Proportional gain sclaed by 1000 =>
agin of 0.05

.max limit = 655350, // Maximal allowed duty cycle is 100%
(27°16)

.min limit 0uU, // Minimal allowed duty cycle is 0% (0)

¥

// Setup a current-controlled PWM output
IO PWM CurrentInit(IO PWM 00

, 100 // frequency is 100 Hz

, &pid cfg // use custom PID configuration

, 10 // use 10ms as cycle time for the
PID controller

, NULL // Handle for PID controller not
needed => pass NULL

, NULL); // safety configuration; currently
not supported

IO POWER Set(IO INT POWERSTAGE ENABLE, IO POWER ON); // enable

high-side outputs
PWM task examples:

ubyte?2 curr;
bool new;

IO PWM SetCur (IO PWM 00

, 500 // set current to 500mA
, NULL); // duty-cycle feedback is ignored
IO PWM GetCur(IO PWM 00 // read current value of PWM output
, &curr // variable to store current
, &new); // variable to store information if a

current value is available

Macro Definition Documentation

#define |I0_PWM_CURRENT_QUEUE_MAX 6U

maximum number of items in the current queue

Typedef Documentation

typedef struct _io_pwm_current_queue I0_PWM_CURRENT_QUEUE

PWM current measurement queue.
Stores results of the equidistant current measurement.

The queue holds all current measurement since the last retrieval via the step function
IO_PWM GetCur().

typedef struct _io_pwm_current_safety_conf |l0_PWM_CURRENT_SAFETY_CONF

Safety configuration for the PWM outputs.
Stores all relevant safety configuration parameters for the PWM outputs.

Attention
For the current check to work properly it is necessary that the application does not change
the set-point of the PID controller before the dead time elapses! for example if a dead time
of 10ms is set, the application shall change the set-point for the current value less
frequently than 10ms!

To disable the current check, set the value of the parameters current_tolerance to 65535
and dead_time to 4294967295.

typedef struct _io_pwm_safety_conf |l0_PWM_SAFETY_CONF

Safety configuration for the PWM outputs.

Stores all relevant safety configuration parameters for the PWM outputs.

Function Documentation

10_ErrorType I0_PWM_CurrentDelnit (10_PIN pwm_channel)

Deinitializes a current-controlled PWM output. Allows the re-initialization of the output by other
functions.

Parameters
pwm_channel PWM channel (zo_pwm 00 .. 10 _PwM 05)

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_CH_CAPABILITY The given channel has no PWM capability

10_ErrorType

10_PWM_Currentlnit (10_PIN pwm_channel,
ubyte2 frequency,
const IO_PID_CONFIG *const pid_config,
ubyte1 pwm_period_multi,
ubyte1 *const pid_handle,

const IO_PWM_CURRENT_SAFETY_CONF *const safety_conf

Setup a current controlled PWM output.

Parameters
pwm_channel PWM channel (zo_pwM 00 .. 10 _PwM 05)
frequency PWM frequency (15Hz .. 250Hz, only frequencies with a period of an
integral multiple of 1ms are possible)
pid_config Coefficients (Ki, Kd, Kp) for PID controller

pwm_period_multi Period multiplier for PID controller. The cycle time for the PID controller
is calculated by multiples of the PWM period time.
» Range: ((1 .. 255)/ PWM_period_[ms])
pid_handle Contains handle of the PID controller used for this output. Can be used
to interact with the PID controller after initializing it (e.g. calling
10_PID_Setintegrator)

safety_conf Safety configuration for PWM output

Returns

10_ErrorType

Return values

I0_E_OK everything fine

I0_E_CHANNEL_BUSY the PWM output channel or the timer input
channel is currently used by another function

I0_E_INVALID_CHANNEL_ID the PWM output channel or the timer input
channel id don't exist

I0_E_INVALID_PARAMETER a given parameter is out of range

I0_E_CH_CAPABILITY The PWM capability of this channel has not
been activated.

I0_E_DRIVER_NOT_INITIALIZED The common driver init function has not been
called before

I0_E_SW_INTERNAL Internal SW error when handling configuration
tables (index out of range)

I0_E_GROUP_CONFLICT configuring the output not allowed due to
conflicts with other in/outputs in the same
group

I0_E_INVALID_SAFETY_CONFIG one or more parameters of the safety
configuration are invalid (out of range)

I0_E_SAFETY_NOT_SUPPORTED the given channel does not support safety
features

I0_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as safety

device - therefore the safety feature is not
available for this channel

I0_E_TASK_NO_FREE_SLOTS No more free slots to setup task function

Remarks

Note

The product of (PWM_period_[ms] x multiplier) must not exceed 255! So for a frequency
of 250Hz the maximum multiplier value equals 63. For a frequency of 15Hz (15.625Hz,
64ms period time) the maximum multiplier value equals 3.

The associated timer loopback channel will also be configured for open load and short
circuit detection for all channels.

The associated analog feedback channel will also be configured for all channels.

The associated precise current-measurement will be configured for the channels

10 _PWM 00 .. I0_PpwM 05. These PWM outputs will be switched off after 1 second if the the
continuous current is above 3.0A but below 4.0A or switched off immediately if the
current exceeds 4.0A. After a recovery time of 1 second the output stages get enabled
again.

10_pwM 00 and 1o_pwm 01 have their own frequency time base (variable frequency)
I0_PWM 02, I0_PWM 03, I0_PwM 04 and 1o_pwM 05 share one frequency time base. It's only
allowed to configure these outputs with the same PWM frequency.

When one PWM channel of a frequency group is initialized, it's only allowed to initialize the
other channels of this group with the same frequency. Otherwise the function will return
I0_E_GROUP_CONFLICT.

Attention

The parameter pwn period multi specifies the cycle time in multiples of the period time of the
PWM signal. However for backwards compatibility the cycle time of the PID controller can not
exceed 255ms. Therefore the upper limit of this parameter depends on the set PWM
frequency. For example for a 100Hz PWM signal (10ms period time) the highest number for
the period multiplier of the PID controller is 25.

10_ErrorType 10_PWM_Delnit (10_PIN pwm_channel)

Deinitializes a PWM output. Allows the re-initialization of the output by other functions.

Parameters
pwm_channel PWM channel (zo_pwmM 00 .. I0_PwM 05, I0_PWM 10 .. IO_PWM 11)

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID the given channel id does not exist

I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured

I0_E_CH_CAPABILITY The given channel has no PWM capability
Remarks

« If a current measurement is configured for the given PWM channel, the current
measurement channel will also be deinitialized.

10_ErrorType 10_PWM_GetCur (10_PIN pwm_channel,
ubyte2 *const current,
bool *const fresh

)

Returns the measured current of the given channel.

Parameters
pwm_channel PWM channel, one of
® IO_PWM 00 .. IO_PWM 05
current Measured current Range: 0..7575 (OmA..7575mA)

fresh Indicates if new values are available since the last call.
e TrRUE: Value in "current" is valid
e raLseE: No new value available.

Returns
10_ErrorType

Return values
I0_E_OK Everything fine
I0_E_CHANNEL_NOT_CONFIGURED The given PWM channel is not configured
I0_E_INVALID_CHANNEL_ID The given channel id does not exist

I0_E_ADC_INVALID An ADC error occured
I0_E_PWM_CURRENT_INACCURATE Current measurement has reduced accuracy

I0_E_CH_CAPABILITY The given channel is not a PWM channel or the
given PWM channel has no current measurement
I0_E_NULL_POINTER A NULL pointer has been passed to the function
Attention

The current measurement for all PWM channels is equidistant, which means that the
sampling happens synchronous to the PWM period. Every 1ms a current value will be
captured. The captured current values will be averaged over the time of one period of the
PWM signal and then provided to the application.

Only PWM channels 1o_pwM 00 .. 10_pwM 05 have current-measurement.

Remarks
* When the function 1o_pwM cetcur () is called, the internal queue holding the values of
the current measurement is flushed. If the function is called more than once in a cycle it
may or may not deliver new values, depending on how many values the equidistant
current measurement has sampled since the last call.
« If there is no new current value available (for example the function 1o _pwM Getcur ()
gets called more frequently than the PWM period) the flag fresh will be set to raLsrE.

« If the functions I0_PWM_GetCurQueue() IO_PWM_GetCur() are called after another,
only the first function will deliver a current value because both functions will empty the
internal measurement queue.

10_ErrorType
10_PWM_GetCurQueue (I0_PIN pwm_channel,

I0_PWM_CURRENT_QUEUE *const current_queue
)

Returns the measured current values since the last call of the given channel.

Parameters
pwm_channel PWM channel, one of
® IO _PWM 00 .. IO_PWM 05
e IO _PWM 10 .. I0_PWM 11
current_queue Queue holding the current values since the last call of the step function
including a queue overrun flag and a counter for the quantity of available

values

Returns
10_ErrorType

Return values
I0_E_OK Everything fine
I0_E_CHANNEL_NOT_CONFIGURED The given PWM channel is not configured
I0_E_INVALID_CHANNEL_ID The given channel id does not exist
I0_E_ADC_INVALID An ADC error occured

I0_E_PWM_CURRENT_INACCURATE Current measurement has reduced accuracy

I0_E_CH_CAPABILITY The given channel is not a PWM channel or the
given PWM channel has no current measurement

I0_E_NULL_POINTER A NULL pointer has been passed to the function

Attention
The current measurement for all PWM channels is equidistant which means that the
sampling happens synchronous to the PWM period. Every 1ms a current value will be
captured. The captured current values will be averaged over the time of one period of the
PWM signal and then provided to the application in a queue. The queue storage was
chosen to avoid the loss of any measurement value if the user application runs
asynchronous to the current measurement or if its cycle time is lower than the PWM period.
(Size of queue: 10_pwM _cURRENT QUEUE Max, Queue data type: 10 PWM CURRENT QUEUE)

Only PWM channels 1o_pwm 00 .. 10_pwM_05 have current-measurement.

Remarks
* When the function 1o_pwM_cetcurgueue () is called, the internal queue holding the
values of the current measurement is flushed. If the function is called more than once
in a cycle it may or may not deliver new values, depending on how many values the
equidistant current measurement has sampled since the last call.

« If there is no new current value available (for example the function

I0_PWM GetCurQueue () gets called more frequently than the PWM period) the value
count in the structure current queue will be 0.

« [f the functions I0_PWM_GetCurQueue() and IO_PWM_GetCur() are called after
another, only the first function will deliver a current value because both functions will
empty the internal measurement queue.

10_ErrorType 10_PWM_Init (10_PIN pwm_channel,
ubyte2 frequency,
bool polarity,
bool diag_margin,
ubyte2 overload_limit,
const IO_PWM_SAFETY_CONF *const safety_conf
)

Setup single PWM output.

Parameters
pwm_channel PWM channel (zo_pwM 00 .. 10 _PWM 05 Of T0_PWM 10 .. IO_PWM 11)
frequency PWM frequency (15Hz .. 1000Hz, only frequencies with a period of an
integral multiple of 1ms are possible)
polarity Polarity of output signal
e raLsE: Low output signal is variable
e TrUE: High output signal is variable
diag_margin Indicate if a margin should be applied or not.
e TRUE: mMargin is on
e rFALSE: NO margin will be applied

overload_limit Limit in mA above which a lO_E_PROT_USER_OVERLOAD error will be
reported

 overload_limit configured to O: overload limit disabled;
I0_E_PROT_USER_OVERLOAD error will not be reported

» overload_limit configured to 1mA .. 2999mA:
I0_E_PROT_USER_OVERLOAD error will be reported via function
I0_PWM_SetDuty() or IO_PWM_SetCur() if the measured current is
above defined overload_limit

« if measured current exceeds 3000mA other error codes than
I0_E_PROT_USER_OVERLOAD are reported (see error codes of
function I0_PWM_SetDuty() or IO_PWM_SetCur():
I0_E_PROT_TEMP_OVERLOAD, I0_E_PROT_ACTIVE and

I0_E_PROT_FATAL)

safety_conf Safety configuration.

Returns
10_ErrorType

Return values
I0_E_OK
I0_E_CHANNEL_BUSY
I0_E_INVALID_CHANNEL_ID

I0_E_INVALID_PARAMETER
I0_E_CH_CAPABILITY

I0_E_DRIVER_NOT_INITIALIZED
I0_E_SW_INTERNAL

I0_E_GROUP_CONFLICT

IO_E_INVALID_SAFETY_CONFIG

I0_E_SAFETY_NOT_SUPPORTED

everything fine

the PWM output channel or the timer input
channel is currently used by another function
the PWM output channel or the timer input
channel id don't exist

a given parameter is out of range

The PWM capability of this channel has not
been activated.

The common driver init function has not been
called before

Internal SW error when handling
configuration tables (index out of range)
configuring the output not allowed due to
conflicts with other in/outputs in the same
group

one or more parameters of the safety
configuration are invalid (out of range)

the given channel does not support safety
features

IO_E_DRV_SAFETY_CONF_NOT_CONFIG the driver has not been initialized as safety

I0_E_TASK_NO_FREE_SLOTS

Remarks

device - therefore the safety feature is not
available for this channel

No more free slots to setup task function

» For the equidistant current measurement to work properly only frequencies that have a
period which is an integral multiple of 1ms are allowed. Periods which are not a integral
multiple of 1ms will be rounded down to the next lower integral multiple of 1ms which
means that the frequency will be calculated with the next lower integral period. For
example a wanted frequency of 180Hz means 5.55ms. The next lower integral value is
5ms therefore the resulting frequency is 200Hz in this case. Possible frequencies are:

Available frequencies: ‘

Period(ms) Frequency(Hz)

1 1000
2 500

3 333 (333.333333333333)
4 250

5 200

6 166 (166.666666666667)
7 142 (142.857142857143)
8 125

9 111 (111.111111111111)
10 100

11 90 (90.9090909090909)
12 83 (83.3333333333333)
13 76 (76.9230769230769)
14 71 (71.4285714285714)
15 66 (66.6666666666667)
16 62 (62.5)

17 58 (58.8235294117647)
18 55 (55.5555555555556)
19 52 (52.6315789473684)
20 50

21 47 (47.61904762)

22 45 (45.45454545)

23 43 (43.47826087)

24 41 (41.66666667)

25 40

26 38 (38.46153846)

27 37 (37.03703704)

28 35 (35.71428571)

29 34 (34.48275862)

30 33 (33.33333333)

31 32 (32.25806452)

32 31 (31.25)

33 30 (30.3030303)

34 29(29.41176471)

35 28 (28.57142857)

37 27 (27.02702703)

38 26 (26.31578947)

40 25

41 24 (24.3902439)

43 23 (23.25581395)

45 22 (22.22222222)

47 21 (21.27659574)
50 20

52 19 (19.23076923)
55 18 (18.18181818)
58 17 (17.24137931)
62 16 (16.12903226)
64 15 (15.625)

Remarks

Note

The associated timer loopback channel will also be configured for open load and short
circuit detection for all channels.

The associated analog feedback channel will also be configured for all channels.

The associated precise current-measurement will be configured for the channels

10 _PwWM 00 .. I0_PwM _05. These PWM outputs will be switched off after 1 second if the
the continuous current is above 3.0A but below 4.0A or switched off immediately if the
current exceeds 4.0A. After a recovery time of 1 second the output stages get enabled
again.

The associated overcurrent-measurement will be configured for the channels 1o _pwm 10
.. To_pwM_11. These PWM outputs will be switched off after 1 seconds if the the
continuous current is above 3.0A but below 4.0A or switched off immediately if the
current exceeds 4.0A. After a recovery time of 1 second the output stages get enabled
again.

The duty cycle cannot exceed the margin of 100us(lower boundary) and 250us(upper
boundary) used for diagnostic if the parameter diag_margin is True. This mode is
important for hydraulic coils If the parameter diag_margin is raLse, no duty cycle range
margin will be applied

Io_PWM 00, I0_PWM 01, T0_PWM 10 and 1o_pwM 11 have their own frequency time base
(variable frequency)

I0_PWM 02, I0_PWM 03, T0_PwM 04 and ro_pwM 05 share one frequency time base. It's only
allowed to configure these outputs with the same PWM frequency.

Static friction and stiction can cause a hysteresis and make the control of a hydraulic
valve erratic and unpredictable. In order to counteract these hysteretic effects, small
vibrations about the desired position shall be created in the valve. This constantly
breaks the static friction ensuring that it will move even with small input changes, and
the effects of hysteresis are average out. A proper setting of PWM frequency according
to the resonance frequency of the actuator allows to adjust this desired small vibration,
low enough in amplitude to prevent noticeable oscillations on the hydraulic output but
sufficient high to prevent friction. The PWM frequency can be set in the range of 15 ..
1000Hz, a typical range for hydraulic valves to operate without friction is 90 .. 160Hz.

If a PWM channel is initialized as safety and a valid safety configuration is given, the
diagnostic margin must be set to TRUE. Otherwise the initialization will fail and the
error code 10_E_INVALID_PARAMETER is returned.

When one PWM channel of a frequency group is initialized, it's only allowed to initialize
the other channels of this group with the same frequency. Otherwise the function will
return IO_E_GROUP_CONFLICT.

Attention

 For the current measurement circuitry of the channels 1o _pwM 00 .. 10 pwM 05 a oOffset
compensation will be made at startup of the channel. The application software has to
make sure that no current is driven by the actuator coil (through the free wheeling
diode) during this time. Otherwise the offset compensation will be wrong and the
channel startup may fail. That means that in case a PWM channel with current
measurement is re-initialized during runtime, the application has to make sure that
there is enough time between the calls of 10_pwM DeInit and 1o PwM Init OF
I0_PWM CurrentInit and Io_pwM CurrentDeInit for the actuator coil to finish its recovery
phase (time depends on inductance of the load). This is mainly relevant for channels
that will be re-initialized during runtime and are connected to a inductive load.

10_ErrorType 10_PWM_SetCur (10_PIN pwm_channel,
ubyte2 current,
ubyte4 *const duty_cycle_fb

)

Sets the current for a current-controlled PWM channel.

Parameters
pwm_channel PWM channel, one of
* IO _PWM 00 .. IO_PWM 05
current Current in mA which shall be output
duty_cycle_fb Duty cycle feedback for the channels (optional): high-time in us

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED the given channel is not configured
I0_E_INVALID_CHANNEL_ID the given channel id does not exist
I0_E_CH_CAPABILITY The given channel has no PWM capability
I0_E_PWM_OPEN_LOAD open load has been detected
I0_E_PWM_SHORT_CIRCUIT short circuit to GND has been detected
I0_E_PWM_SHORT_BATTERY short to UBAT has been detected
I0_E_PWM_OUTPUT_DISABLED The PWM output has been disabled by the

main CPU and there was no output signal
detected on the output.

I0_E_PWM_CHANNEL_STARTUP the PWM output is in it's startup phase

I0_E_PWM_OUTPUT_STARTUP_ERROR an error occurred on the channel mode

I0_E_ADC_INVALID A ADC error occurred

I0_E_SW_INTERNAL Internal SW error when handling configuration
tables (index out of range)

I0_E_PWM_CAPTURE_ERROR A capture error occurred on the loopback

channel. This error can occur if two edges of
the feedback signal are to close to each other
and the internal timer can not measure the
time difference anymore (for example spikes

I0_E_PROT_USER_OVERLOAD

I0_E_PROT_TEMP_OVERLOAD

I0_E_PROT_ACTIVE

I0_E_PROT_FATAL

I0_E_PROT_REENABLE

10_ErrorType I0_PWM_SetDuty (I0_PIN
ubyte2

caused by the switching of inductive loads in
electric motors).

Output current is above the threshold
configured on initialization. The output remains
active.

Output current is above 3.0A and output will
temporarily be switched off if the current does
not decrease to or below 3.0A within the next 1
seconds.

Output is disabled, protection is active
because of too high output current (over 4A).
The driver will try to re-enable the output again
in 1 second

Output is disabled, protection is active
because of too high output current (over 6A).
The driver will try to re-enable the output again
in 1 second

The 10-Driver signals that the switched off
PWM output is going to be re-enabled.

pwm_channel,
duty_cycle,

ubyte4 *const duty_cycle_fb

)

Set the duty cycle for a PWM channel.

Parameters

pwm_channel PWM channel, one of
® IO _PWM 00 .. IO_PWM 05
* IO _PWM 10 .. IO_PWM 11
duty_cycle

Duty cycle for the channel (0..65535)

duty_cycle_fb Duty cycle feedback for the channels (optional): high-time in us

Returns
10_ErrorType

Return values
I0O_E_OK
I0_E_CHANNEL_NOT_CONFIGURED
I0_E_INVALID_CHANNEL_ID
I0_E_CH_CAPABILITY

everything fine
the given channel is not configured
the given channel id does not exist

The given channel has no PWM
capability

I0_E_PWM_OPEN_LOAD_OR_SHORT_BATTERY an open-load or short-to-battery

condition has been detected (at the
point in time of the occurrence of this
error it is not yet possible to

IO_E_PWM_OPEN_LOAD
I0_E_PWM_SHORT_CIRCUIT

IO_E_PWM_SHORT_BATTERY
I0_E_PWM_OUTPUT_DISABLED

I0_E_PWM_CHANNEL_STARTUP

I0O_E_PWM_OUTPUT_STARTUP_ERROR

I0_E_ADC_INVALID
I0_E_SW_INTERNAL

I0_E_PWM_CAPTURE_ERROR

I0_E_PROT_USER_OVERLOAD

I0_E_PROT_TEMP_OVERLOAD

I0_E_PROT_ACTIVE

I0_E_PROT_FATAL

I0_E_PROT_REENABLE

Remarks

distinguish between open-load and
short-to-battery conditions)

open load has been detected

short circuit to GND has been
detected

short to UBAT has been detected

The PWM output has been disabled
by the main CPU and there was no
output signal detected on the output.

the PWM output is in it's startup
phase

an error occurred on the channel
mode

A ADC error occured

Internal SW error when handling
configuration tables (index out of
range)

A capture error occured on the
loopback channel. This error can
occur if two edges of the feedback
signal are to close to each other and
the internal timer can not measure
the time difference anymore (for
example spikes caused by the
switching of inductive loads in electric
motors).

Output current is above the threshold
configured on initialization. The
output remains active.

Output current is above 3.0A and
output will temporarily be switched off
if the current does not decrease to or
below 3.0A within the next 1 seconds
(only 1o _pwM 00..10 PwM 05)

Output is disabled, protection is
active because of too high output
current (over 4A). The driver will try to
re-enable the output again in 1
second

Output is disabled, protection is
active because of too high output
current (over 6A). The driver will try to
re-enable the output again in 1
second

The 10-Driver signals that the
switched off PWM output is going to
be re-enabled.

* The duty cycle cannot exceed a margin of 100us(lower boundary) and 250us(upper
boundary) used for diagnostic if the parameter diag_margin was set TRUE (via the
function 1o_pwM_1nit()). This mode is important for hydraulic coils. If the parameter
diag_margin is ransg, no duty cycle range margin will be applied.

¢ If the parameter duty cycie fb is nunL, the parameter is ignored. The parameter
duty cycle fb returns the measured pulse-width of the PWM signal in the last round in
us. If the duty cycle measurement is not finished yet, the parameter duty cycie fb
holds the value 0.

Note
* The PWM outputs must be enabled with I0_POWER_Set. Otherwise the outputs
remain disabled.

+ PWM outputs configured with frequencies above 250Hz can only sustain a continuous
current of 100mA.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by @j@!‘@m 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures m

File List | Globals |

inc }

I0O_RTC.h File
Reference

Functions

RTC functions, provides exact timing functions. More...

#include "IO Driver.h"

Functions
I0_ErrorType 10_RTC_lInit (void)
Initializes the RTC clock.

I0_ErrorType 10 _RTC_StartTime (ubyte4 *const timestamp)
Returns an RTC timestamp.

ubyte4d 10_RTC_GetTimeUS (ubyte4 timestamp)
Returns the passed time.

I0_ErrorType 10_RTC_Periodiclnit (ubyte2 period,
rtc_eventhandler_ptr event_handler)
Initializes the Periodic Timer.

I0_ErrorType I0_RTC_PeriodicDelnit (void)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Deinitializes the Periodic Timer.

Detailed Description

RTC functions, provides exact timing functions.

Provides setup and utility functions for the Real Time Clock. The
RTC is used for SW timings.

The function 10 rRTC startTime () returns atimestamp. The
function 1o rRTc GetTimeus () returns the time which has passed
since the timestamp-value passed as an argument to this function.
The application can use these two functions as often as it needs
to. For different timing tasks only different timestamp variables
need to be used.

code example:

The example initializes the RTC driver, and implements a loop
which is executed every 5ms:

ubyted time stamp;

// RTC can be initialized:

// by initializing the driver

IO_Driver_Init (IO_DRIVER_MODE_DEFAULT, NULL
) 8

// or by only initializing the RTC module
// IO RTC Init();

while (1)

{
IO RTC StartTime (&time stamp);
// start time (get timestamp)

task () ; // user task function

while (IO RTC GetTimeUS (time stamp) <
5000) ; // wait until 5ms have passed

Function Documentation

ubyte4 I0_RTC_GetTimeUS (ubyte4 timestamp)

Returns the passed time.

The function returns the time in us which has passed since the
given timestamp has been taken (via the function
IO RTC StartTime())

Parameters

timestamp Timestamp received from a call of
IO _RTC_StartTime ()

Returns
ubyte4

Remarks
o If the RTC module has not initialized, the function will
return O

» Please keep in mind that the time between
IO RTC StartTime () and 10 RTC GetTimeus () for one
timestamp should not exceed 74min (overflow)

I0_ErrorType IO_RTC_Init (void)

Initializes the RTC clock.

Initializes the RTC clock to a f_sys / 80. For a system clock of
80MHz the RTC resolution is 1us

Returns
10_ErrorType

Return values

I0O_E OK everything fine
I0_E_CHANNEL_BUSY the module has been initialized
before
Remarks

Module is initialized only once.

e The RTC driver is initialized when the
10 priver Init() function is called. Therefore it will
return 1o E cuanneL Busy if it is called after this
function. This means that 1o rTc 1nit() needs to be
called only when 10 priver Init() is not used in the
respective application.

I0_ErrorType IO_RTC_PeriodicDelnit (void)

Deinitializes the Periodic Timer.
Deinitializes a Periodic Timer and stops it

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0O_E_PERIODIC_NOT_CONFIGURED the channel has

not yet been
initialized

Remarks

e This function can also be used without initializing the
RTC driver

10_ErrorType
I0O_RTC_Periodiclnit (ubyte2 period,
rtc_eventhandler_ptr event_handler

)

Initializes the Periodic Timer.
Initializes a Periodic Timer

Parameters

period Period on which the event handler should
be called. unit: us (500..65535)

event_handler Function pointer to the periodic event

handler
Returns
I0_ErrorType
Return values
I0_E_OK everything fine
IO_E_ NULL_POINTER a null pointer has been

passed
I0_E_INVALID_PARAMETER a invalid parameter has
been passed

I0_E_BUSY the channel has been
initialized before

Remarks
e This function can also be used without initializing the
RTC driver

10_ErrorType
I0_RTC_StartTime (ubyte4 *const timestamp)

Returns an RTC timestamp.

Returns a timestamp which can be used for RTC timing
functions

Parameters
timestamp Pointer for the returned timestamp value

Returns
10_ErrorType

Return values
I0O_E OK everything fine
IO_E _NULL_POINTER a null pointer has
been passed

IO E CHANNEL NOT_CONFIGURED the module has
not been
initialized

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by

O @ERM 182

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

inc },

I0_UART.h File
Reference

Functions

IO Driver functions for UART communication. More...

#include "IO Driver.h"

Functions

I0_ErrorType I0_UART_Init (I0_PIN channel, ubyte4
baudrate)
Initialization of the UART communication driver.

I0_ErrorType I0_UART_Delnit (I0_PIN channel)
Deinitialization of the UART channel.

I0_ErrorType 10_UART_Task (void)
Task function for UART communication.

I0_ErrorType 10_UART_Read (IO_PIN channel, ubyte1 *const
data, ubyte1 len, ubyte1 *const rx_len)
Read data from serial interface.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

I0_ErrorType 10_UART_Write (I0_PIN channel, const ubyte1
*const data, ubyte1 len, ubyte1 *const tx_len)
Write data to serial interface.

I0_ErrorType 10_UART_GetRxStatus (I0_PIN channel,
ubyte1 *const rx_len)
Retrieve the status of the receive buffer.

I0_ErrorType 10_UART_GetTxStatus (I0_PIN channel,
ubyte1 *const tx_len)
Retrieve the status of the transmit buffer.

Detailed Description

IO Driver functions for UART communication.

The Universal Serial Interface Channel module (USIC) is a flexible
interface module covering several serial communication protocols.

A USIC module contains two independent communication
channels named UxCO and UxC1, with x being the number of the
USIC module.

The UART communication driver uses the USIC module as
universal asynchronous receiver transmitter.

When initializing the UART communication driver it is possible to
define the baudrate individually. Apart from the baudrate, the
following parameters are fixed:

o databits: 8
» stopbits: 1
e parity: none

The UART buffers

The XC2000 has 16 byte transmit and receive buffers for every
UART channel. The UART driver additionally implements a SW
buffer of 128 bytes.

This means that a maximum of 128 bytes can be written, using the
10 UART write () function. The UART Task function sequentially
copies the data to the HW buffer and sends it. The function

IO UART GetTxStatus () returns the number of remaining bytes in
the SW buffer. The write function can be called any time, as long
as the SW buffer is not full.

The UART Task function is called automatically every SW cycle by
IO Driver TaskEnd().

To speed up the transmission the application can call the

10 UART Task () function at any time.

In every software cycle a maximum of 16 bytes (size of HW buffer)
can be received via a UART interface.

The data is copied to the SW buffer by the UART task function. To
increase the number of bytes which can be received within a cycle
the application can call the function 1o varT Task() during the
cycle.

The function 10 UART Getrxstatus () returns the number of bytes in
the SW buffer which is available for reading.

UART code examples

Please refer to section Basic structure of an application for
understanding where to place the initialization and task function
calls.

UART initialization example:

// setup UART channel:
I0 UART Init(IO UART
, 115200); // 115200
baud

UART read example:

ubytel data[40] = {0};
ubytel size;

// check if new bytes have been received
IO UART GetRxStatus (IO UART, &size);

1f (size > 0)

{

// read a maximum of 40 bytes
IO UART Read (IO UART, data, 40, &size);

// data now holds the received data
// size holds the number of actually read
bytes.

UART write example:

ubytel datalb] = {0, 1, 2, 3, 4};
ubytel size;

// write data to UART buffer:

IO UART Write (IO UART, data, 5, &size);
// size holds the number of actually written
bytes.

// check i1f data has been transmitted

IO UART GetTxStatus (IO UART, &size);

// when size returns 0 all the data has been
transmitted

Function Documentation

I0_ErrorType IO_UART_Delnit (I0_PIN channel)

Deinitialization of the UART channel.
Allows re-initialization by 1o UaRT Init()

Parameters
channel UART Channel: 1o uart

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID channel number is
invalid

I0O_E_CHANNEL_NOT_CONFIGURED channel has not
been initialized

I0O_E_CH_CAPABILITY channel should
not be capable of
the desired
functionality

10_ErrorType
I0_UART_GetRxStatus (10_PIN channel,

ubyte1 *const rx_len

)

Retrieve the status of the receive buffer.

Returns the current status of the receive buffer: new data

available, error has occured...

Parameters

channel UART Channel: 1o _uart

rx_len Number of received data frames in receive buffer

Returns
10_ErrorType

Return values
I0_E_OK

I0_E_UART _BUFFER_FULL

I0O_E_UART_OVERFLOW

IO_E_UART_PARITY
I0_E_INVALID_CHANNEL_ID

IO_E_NULL_POINTER

everything fine
SW receive queue

is full and data
has been lost

HW receive buffer
overrun

parity check failed
invalid channel ID
has been passed
null pointer has
been passed

I0_E_CHANNEL_NOT_CONFIGURED channel has not

I0_E_CH_CAPABILITY

10_ErrorType

been initialized

channel is not
capable of the
desired
functionality

(10_PIN channel,

I0_UART_GetTxStatus
ubyte1 *const tx_len

)
Retrieve the status of the transmit buffer.
Returns the number of remaining bytes in the SW buffer.

Parameters
channel UART Channel: 1o _uart

tx_len Number of received data frames in receive buffer

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_INVALID_CHANNEL_ID invalid channel ID
has been passed

I0_E_NULL_POINTER null pointer has

been passed

I0_E CHANNEL NOT_CONFIGURED channel has not
been initialized

I0_E_CH_CAPABILITY channel is not
capable of the
desired
functionality

I0_ErrorType IO_UART _Init (10_PIN channel,
ubyte4 baudrate

)

Initialization of the UART communication driver.
Initialization of UART Serial Communication Driver

* Enables module

» Configures module for ASC

* Initializes SW queue

e Sets the communication mode to 8N1

Parameters
channel UART Channel: 10 uart

baudrate Baud rate in baud/s (1200 ... 115200)

Returns
I0_ErrorType

Return values
I0_E_OK everything fine
I0O_E_INVALID_CHANNEL_ID channel number is invalid
I0_E_INVALID _PARAMETER a given parameter is out of

range
I0_E_CHANNEL_BUSY the channel is already

initialized
I0_E_CH_CAPABILITY channel is not capable of

the desired functionality

Remarks
e Module is initialized only once. To re-initialize the
module, the function 1o _varT peInit() needs to be
called.

e The UART channel is not available on the external
connector but only on the debugging interface.

I0_ErrorType IO_UART_Read (10_PIN channel,
ubyte1 *const data,
ubyte1 len,
ubyte1 *const rx_len

)

Read data from serial interface.

Reads the data from the SW buffer. If new data is available the
content will transferred from the SW buffer to the data array. In
case there is no new data available the array is untouched.

Parameters
channel UART Channel: 1o _uart
data Data array
len Maximum size of data array
rx_len Actually read bytes

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_UART_BUFFER_FULL SW receive queue

is full and data
has been lost

I0_E_UART_OVERFLOW HW receive buffer
overrun
I0O_E_UART_PARITY parity check failed
I0_E_INVALID_CHANNEL_ID invalid channel ID
has been passed
IO_E_NULL_POINTER null pointer has

been passed

I0_E CHANNEL_NOT_CONFIGURED channel has not
been initialized

I0O_E_CH_CAPABILITY channel is not
capable of the
desired
functionality

I0_ErrorType IO_UART_Task (void)

Task function for UART communication.

The task function copies the data to be sent from the SW buffer
to the HW buffer and the received data from the HW buffer to
the SW buffer.

Returns
I0_ErrorType

Return values
I0_E_OK everything fine
I0_E_UART_BUFFER_FULL SW receive queue is full
and data has been lost
I0O_E_UART_OVERFLOW HW receive buffer overrun
I0_E_UART_PARITY parity check failed

I0_ErrorType

I0_UART_Write (10_PIN channel,
const ubyte1 *const data,
ubyte1 len,

ubyte1 *const tx_len

)

Write data to serial interface.
Writes the data to the SW buffer and starts the transmission.

Parameters
channel UART Channel: 1o _uart
data Data array
len Number of bytes in data array
tx_len Actually written bytes

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_UART_BUFFER_FULL SW transmit

queue is full, no
data has been

written
I0O_E _INVALID_CHANNEL_ID invalid channel ID
has been passed
I0_E_NULL _POINTER null pointer has

been passed

I0_E_ CHANNEL_NOT_CONFIGURED channel has not
been initialized

I0_E_CH_CAPABILITY channel is not
capable of the
desired
functionality

Note
It is highly recommended not to modify the content of the
data array while a write operation is ongoing! Furthermore

please note that the data array must not be a local variable
since the driver does not create a copy of the content but
saves the address of the pointer.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by
doxyiaenyEY:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures m

File List | Globals |

inc ;

I0_Vout.h File
Reference

Functions

IO Driver functions for voltage outputs. More...

#include "IO Driver.h" #include "IO_PID.h"

Functions

I0_ErrorType 10_VOut_Init (I0_PIN vout channel, const
I0_PID_CONFIG *const pid_config, ubyte1
*const pid_handle)
Setup one voltage output channel.

I0_ErrorType 10_VOut_Delnit (I0_PIN vout_channel)
Deinitializes one voltage output channel.

I0_ErrorType 10_VOut_SetVoltage (I0_PIN vout_channel,
ubyte2 output_voltage, ubyte2 *const
voltage _fb)

Sets the output voltage of one VOut channel.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

IO Driver functions for voltage outputs.

Contains all service functions for the voltage outputs. Up to 6
channels can be configured: 1o vout 00 .. 10 vouTr 05

» The pins for PVG- and Voltage-Outputs are organized in two
groups of three

o Group 1: 10 PVG 00/I0 VOUT 00, IO PVG 01/I0 VOUT 01
and IO_PVG 02/I0 _VOUT 02

o Group 2: 10 PVG 03/I0 VOUT 03, IO PVG 04/I0 VOUT 04
and 10_PVG_05/10 vouT 05 \Whenever a pin within a group
is configured either as PVG or voltage output, all other
pins within the same group must be either remain un-
configured, or be configured with the same type. For
example, if 1o pIn J2 (10 PVG 01/I0 VOUT 01) iS
configured as voltage output, pins 1o pIn k2
(zo_pve_00/10 vouT 00) and 10 PIN H2
(o pve 02/10 vout 02) must either remain unconfigured
or also used as voltage outputs. Initializing it as any other
output type will result in @ 10 E GrouP cONFLICT €rror.

» The outputs will only be activated after enabling them via

IO POWER Set (IO INT PVG VOUT 0 ENABLE,
IO _POWER ON) ;

IO POWER Set (IO INT PVG VOUT 1 ENABLE,
IO _POWER ON) ;

After activating the outputs, it is not possible to initialize any
further PVG/VOut channels.
« Initialization/usage order:
1. Initialize ALL needed voltage output channels.

2. Call IO_POWER_Set(IO_INT_PVG_VOUT_x_ENABLE,
|IO_POWER_ON);
3. Set desired output value with 10 vout setvoltage.

» After enabling the outputs by calling IO_POWER_Set, all
configured VOut channels will output the desired value, while
all other pins within this group will output OV constantly.

» When configuring a voltage output, the associated voltage
feedback channel will also be configured.

» On initialization of a voltage output, a configuration for the PID
controller can be specified via the parameter pid config.
If this parameter is nuwrL, following default values will be used:

IO PID CONFIG pid config = {
Kff = 1000,

.Kp = 200,
JKi = 2500,
.Kd = 300,

.max_ limit = 65535,
.min limit =

b g

The PID configuration heavily depends on the load attached
to the output and most likely need to be modified.

» The cycle time of the PID controller used for voltage outputs is
3ms.

I
o

VOut code examples
Please refer to section Basic structure of an application for
understanding where to place the initialization and task function

calls.

VOut initialization examples:

// Setup a voltage output with the default PID-

parameters
IO VOut Init(IO VOUT 00
, NULL // use default PID-
parameters
, NULL); // use no PID
handler

// Enable all configured Voltage/PVG outputs
IO POWER Set (IO INT PVG VOUT 0 ENABLE,
IO _POWER_ON) ;

VOut task examples:

ubyte2 voltage fb;

IO VOut SetVoltage(IO VOUT 00

, 6200 // set
output voltage to 6200mV

, &voltage fb); // variable
to store voltage feedback

Function Documentation

I0_ErrorType 10_VOut_Delnit (10_PIN vout_channel)

Deinitializes one voltage output channel.

Parameters

vout_channel voltage output channel (zo_vour oo ..
IO VOUT 05)

Returns
10_ErrorType

Return values
I0_E_OK everything fine
I0_E_INVALID_CHANNEL_ID the given channel
id does not exist

I0O_E_CHANNEL_NOT_CONFIGURED the given channel
is not configured

Remarks
e The following channels form groups. A group always
has to be configured as a whole.
© IO VOUT_00 .. IO_VOUT 02
© IO VOUT 03 .. IO VOUT 05

10_ErrorType
I0_VOut_Init (1O0_PIN vout_channel,

const IO_PID_CONFIG *const pid_config,
ubyte1 *const pid_handle

Setup one voltage output channel.

Parameters
vout_channel voltage output channel (zo vour oo ..
IO VOUT 05)
pid_config Pointer to the data structure containing a
PID configuration (optional). If NULL,
default values will be used.

pid_handle PID handle of the used PID controller
(optional).
Can be used to call PID functions. If NULL,
no handle will be returned.

Returns
10_ErrorType

Return values

I0_E_OK everything fine

I0_E_GROUP_CONFLICT configuring the output
not allowed due to
conflicts with other
infoutputs in the same
group

I0O_E_PID_NO_FREE_HANDLES No PID controller
could be initialized

I0O_E_INVALID_CHANNEL_ID the channel id does
not exist

I0_E_CHANNEL_BUSY the ADC input channel
is currently used by
another function

I0_E _DRIVER_NOT_INITIALIZED The common driver init
function has not been

I0_E_TASK_NO_FREE_SLOTS

IO_E_SW_INTERNAL
I0_E_CH_CAPABILITY

called before

No more free slots to
setup task function

Internal software error
The ADC capability of

this channel has not
been activated

Remarks
The associated voltage feedback channel will also be
configured for diagnosis.

The associated PID controller will be initialized and
activated.

When NULL is passed as pid config, following default
configuration will be used:

IO PID CONFIG pid config = {

.Kff = 1000,

.Kp = 200,

.Ki = 2500,

.Kd = 300,

.max limit = 65535,
.min limit = 0

¥

The cycle time of the PID controller is 3ms and not
configurable.

The values min 1imit and max 1imit Of the parameter
pid config are ignored by the PID controller for the voltage
outputs.

e The following channels form groups. A group always
has to be configured as a whole.
© IO VOUT 00 .. IO VOUT 02
© IO VOUT 03 .. IO VOUT 05

» Check the alternate functions of the pins used in each
group. A pin can only be configured for one function at a
time and it has to be the same function within the group -
however mixing DO functionality together with VOUT
functionality in the same group is a valid configuration and
vice versa. The alternate functions can be found at
I0_Pins.h

10_ErrorType
I0_VOut_SetVoltage (10_PIN vout_channel,

ubyte2 output_voltage,
ubyte2 *const voltage_fb

)

Sets the output voltage of one VOut channel.

Parameters
vout_channel voltage output channel (zo vour oo ..
IO VOUT 05)
output_voltage Output voltage in mV (0..32000)
voltage_fb Voltage feedback in mV (optional)

Returns
10_ErrorType

Return values

I0_E_OK everything fine
I0_E_INVALID_PARAMETER parameter is out
of range
I0_E_INVALID CHANNEL_ID the channel id
does not exist
I0_E_ CH _CAPABILITY the given channel

does not support

the requested

feature

I0O_E_CHANNEL_NOT_CONFIGURED the given channel

I0_E_CHANNEL_BUSY

IO_E_VOUT_OUTPUT DISABLED
IO_E_VOUT_SHORT BATTERY
I0_E_VOUT_SHORT_CIRCUIT

I0_E_VOUT_PRECISION

I0O_E_PROT_ACTIVE

IO_E_PROT_REENABLE

I0_E_ADC_INVALID

is not configured

the given channel
is configured for
another purpose

the voltage output
is disabled

short to UBAT has
been detected

short to GND has
been detected

the desired output
voltage was not
reached within the
settling time

Protection is
active and output
value was
automatically set
to a value to
protect the
outputs

The |O-Driver
signals that the
protection was
disabled and the
output
functionality was
restored

the received ADC
value is corrupted

Remarks
The output voltage is dependent of the supply voltage. It is
not possible to set an output voltage higher than the supply
voltage.

An output voltage level close to the supply voltage can
cause an lO_E VOUT_SHORT_ BATTERY error.

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by
doXyiaeniEY:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures W

File List | Globals |

inc ,l':

I0_WD.h File
Reference

Functions

|O-Driver for the Window Watchdog. More...

#include "IO Driver.h"

Functions

I0_ErrorType 10_WD_Service (void)
Services the Window Watchdog.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

|O-Driver for the Window Watchdog.

Contains a function to service the external Watchdog.
The Window Watchdog needs no initialization, at it is initialized
automatically by 10_Driver_lInit.

Function Documentation

I0_ErrorType IO_WD_Service (void)

Services the Window Watchdog.

This function services the CPU-external Window Watchdog. If
the flag IO_DRIVER_MODE_SERVICE_WD was not set on 10-
Driver configuration (see 10_Driver.h), this function must be
called at least every 40ms, otherwise the Watchdog will
deactivate the low-side digital outputs.

Remarks
» The Window Watchdog also has a lower time limit of
2ms, i.e. it must not be serviced with a period shorter
than 2ms. This function handles the lower boundary
automatically, that is, if it's called more frequent than
2ms it does only service the Watchdog if 2ms have
passed.

e Evenif IO_DRIVER_MODE_SERVICE_WD was set
as mode on |O-Driver initialization, this function can be
called. This can be useful if some operations (e.g.
during initialization phase) take more time than 40ms,
but the automatic servicing feature shall be used.

Returns
IO _ErrorType

Return values
I0O_E OK everything fine
I0_E_CHANNEL_NOT_CONFIGURED module has not
been initialized

I0_E_WD_TRIGGER_DISABLED trigger has been
disabled
permanently

I0_E_SW_INTERNAL a internal software
error occured

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by

1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

inc ;

I0O_WDTimer.h File
Reference

Functions

IO Driver functions for the CPU's Watchdog timer. More...

#include "IO Driver.h"

Functions
I0_ErrorType 10_WDTimer_Init (ubyte4 timeout)
Initialization of the Watchdog Timer.

I0_ErrorType 10_WDTimer_Delnit (void)
Disable the Watchdog Timer.

I0_ErrorType 10_WDTimer_Service (void)
Service the Watchdog timer.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

IO Driver functions for the CPU's Watchdog timer.

The Watchdog Timer (WDT) is a secure mechanism to overcome
life- and dead-locks. An enabled WDT generates a reset for the
system if not serviced in a configured time frame.

Remark

After the first watchdog timer overrun (ie. when the watchdog timer
is not serviced within the configured timeout), the CPU will be
reset and the application starts again. After the second overrun the
CPU will be held in a reset state to avoid endless resets.

Note
These 10 Driver functions are only available if

I0_Driver_Init() is called without safety configuration i.e.:
|O_Driver_Init(I0_DRIVER_MODE_DEFAULT, NULL);

Watchdog timer code examples
Example for watchdog timer initialization:

IO WDTimer Init (350000); //setup the wdtimer
with a timeout of 350ms

Example for watchdog timer service:

IO WDTimer Service(); //service the watchdog
timer

Function Documentation

I0_ErrorType IO_WDTimer_Delnit (void)

Disable the Watchdog Timer.
disables the watchdog timer functionality.

Returns
IO _ErrorType

Return values
I0_E_OK everything fine
I0O_E_CHANNEL_NOT_CONFIGURED internal Watchdog
not initialized

IO_E_WD INT_ONLY_NON_SAFETY I10_Diriveris
safety relevant
configured,
therefore it's not
allowed to
disabled the
internal Watchdog

I0_ErrorType IO_WDTimer_Init (ubyte4 timeout)

Initialization of the Watchdog Timer.
The function

» configures the timeout of the watchdog timer
* enables the timer

Parameters

timeout timeout for the watchdog timer in us the CPU will
be reseted if the watchdog timer is not serviced
within this period

Returns
IO_ErrorType

Return values

I0_E_OK everything fine
I0_E_BUSY Module already
initialized
I0_E_INVALID_PARAMETER Given parameter is
invalid
IO_E_WD_INT_ONLY_NON_SAFETY Watchdog already
initialized via

I0_Driver_Init()

I0_ErrorType IO_WDTimer_Service (void)

Service the Watchdog timer.

Service routine for the watchdog timer. If the time between two
Service function calls exceeds the timeout (set with
IO_WDTimer_Init) the CPU will be resetted.

Returns
IO _ErrorType

Return values

I0O_E OK everything fine
IO_E_WD_INT_ONLY_NON_SAFETY Watchdog is
serviced

automatically

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by

QEEIEIEMm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-x-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures W

File List | Globals

inc |
/

Macros | Typedefs

ptypes xe167.h File
Reference

Primitive data types. More...

Macros
#define FALSE ((bool)0)

#define TRUE (IFALSE)

#define NULL (0)

Typedefs
typedef unsigned char ubyte1

typedef unsigned int ubyte2
typedef unsigned long ubyte4

typedef unsigned long long ubyte8

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

typedef signed char
typedef signed int
typedef signed long
typedef signed long long
typedef float

typedef unsigned char

sbyte1
sbyte2
sbyte4
sbyte8
float4

bool

Detailed Description

Primitive data types.

This file defines the primitive data types used for the 1O Driver

Macro Definition Documentation
#define FALSE ((bool)0)

FALSE value for boolean type

#define NULL (0)

NULL value, e.g. for invalid pointers

#define TRUE (IFALSE)

TRUE value for boolean type

Typedef Documentation

typedef unsigned char bool

boolean type, should only be set to 0 (FALSE) or 1 (TRUE)

typedef float float4

floating point, four bytes (32bit)

typedef signed char sbyte1
signed, length: one byte (8bit)
typedef signed int sbyte2
signed, length: two bytes (16bit)
typedef signed long sbyte4

signed, length: four bytes (32bit)

typedef signed long long sbyte8

signed, length: eight bytes (64bit)

typedef unsigned char ubyte1

unsigned, length: one byte (8bit)

typedef unsigned int ubyte2

unsigned, length: two bytes (16bit)

typedef unsigned long ubyte4

unsigned, length: four bytes (32bit)

typedef unsigned long long ubyte8

unsigned, length: eight bytes (64bit)

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C API Manual by
doXyigengE:®:

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page | Related Pages | Data Structures m

File List | Globals |

External ; LogisticTypes ; Types

/

Data Structures | Macros | Typedefs

TypesGen.h File
Reference

Types header file. More...

Data Structures

struct can_id
CAN ID structure. More...

Macros

#define UINT32_ALL_BITS_SET (OxFFFFFFFFIlu)
Compiler instruction to create full-sized pointers.

Typedefs

typedef struct can_id CanldType
CAN ID structure.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Detailed Description

Types header file.

Copyright (c) TTControl. All rights reserved. Confidential and
proprietary.

Macro Definition Documentation

#define UINT32_ALL_BITS_SET (OxFFFFFFFFIlu)

Compiler instruction to create full-sized pointers.

On some CPUs it is possible to select a memory model that
creates pointers with a reduced size (e.g. CPUs where the bit
width of the ALU is smaller than the bit-width of the address
bus). For these memory models the below definition is important
to create full-sized pointers to be able to address memory
objects that are greater than the range of the reduced size
pointer.

For environments where those memory models that operate
with reduced size pointers do not exist or are not used the
definition below can be empty

Generated on Mon Nov 16 2020 16:59:47 for HY-TTC 30 Family C APl Manual by
doxyigengEE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

a b|c d, f i n|s t u
.IIIIIIIIII

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

o diag_errortype : DIAG_Constants.h
e o _driver_reset reason : 10 _Driver.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures W

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

s b | ¢c d f i | n| s t|u
'IIIIIIIII

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-a -

« APDB_FLAGS ABRD ENABLE : Apdb.h
APDB_FLAGS_CRC64_ENABLE : Apdb.h
APDB_FLAGS_MULTI_APP : Apdb.h
APDB_SIZE : Apdb.h

APDB_VERSION : Apdb.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_ | a c d f i n s t|u
IHIIIIIIII

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-b -

e bool : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros

_ | a | b d f|i n s /|t u
IIhIIIIIII

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-C =

e CanldType : TypesGen.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures W

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_ | a | b|c f i n|s |t u
|||H|||||I

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-d -

DIAG_E_ADC 5V2 SUPPLY : DIAG_Constants.h
DIAG_E _ADC KL30 CPU : DIAG_Constants.h
DIAG_E_ADC _KL30_MAIN : DIAG_Constants.h
DIAG_E _ADC LIMITS : DIAG_Constants.h
DIAG_E_ADC _SENSOR_SUPPLY : DIAG_Constants.h
DIAG_E_APPL_SAFE_STATE : DIAG_Constants.h
DIAG_E _CYCLE_TIME : DIAG_Constants.h
DIAG_E_EXT_WD : DIAG_Constants.h

DIAG_E FREQ_STARTUP : DIAG_Constants.h
DIAG_E_INIT_ERROR : DIAG_Constants.h

DIAG_E INT_WATCHDOG : DIAG_Constants.h
DIAG_E_INVALID DIAG_STATE : DIAG_Constants.h
DIAG_E_INVALID MAIN_STATE : DIAG_Constants.h
DIAG_E_INVALID STARTUP_STATE : DIAG_Constants.h
DIAG_E LS PROT : DIAG_Constants.h

DIAG_E MEM_CarryFlag : DIAG_Constants.h
DIAG_E_MEM _CLASS B TRAP : DIAG_Constants.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

DIAG_E MEM_DPRAM : DIAG_Constants.h

DIAG_E MEM_DSRAM : DIAG_Constants.h
DIAG_E _MEM _NegativeFlag : DIAG_Constants.h
DIAG_E MEM_OverflowFlag : DIAG_Constants.h
DIAG_E MEM_PSRAM : DIAG_Constants.h

DIAG_E MEM_REGISTER : DIAG_Constants.h
DIAG_E MEM_SOFTBREAK_TRAP : DIAG_Constants.h
DIAG_E MEM_SRO_TRAP : DIAG_Constants.h
DIAG_E MEM_SYS STACK OF : DIAG_Constants.h
DIAG_E MEM_SYS STACK UF : DIAG_Constants.h
DIAG_E MEM_USER_ STACK : DIAG_Constants.h
DIAG_E MEM_ ZeroFlag : DIAG_Constants.h

DIAG_E NOERROR : DIAG_Constants.h

DIAG_E OVD : DIAG_Constants.h

DIAG_E OVD_STARTUP : DIAG_Constants.h

DIAG_E OVER _TEMPERATURE : DIAG_Constants.h
DIAG_E PLL VCO_NOT_LOCKED : DIAG_Constants.h
DIAG_E_PWD_LIMITS_FREQ : DIAG_Constants.h
DIAG_E PWD_LIMITS PULSE_WIDTH :
DIAG_Constants.h

DIAG_E PWM_CURRENT : DIAG_Constants.h

DIAG_E PWM_CURRENT_DEAD_TIME :
DIAG_Constants.h

DIAG_E PWM_CURRENT_OFFS _DRIFT :
DIAG_Constants.h

DIAG_E PWM_CURRENT_OFFSET : DIAG_Constants.h
DIAG_E PWM_CURRENT_ZERO : DIAG_Constants.h
DIAG_E PWM_LIMITS RANGE : DIAG_Constants.h
DIAG_E PWM_LIMITS TOL : DIAG_Constants.h
DIAG_E PWM_PERIOD_ MISMATCH : DIAG_Constants.h
DIAG_E RPP : DIAG_Constants.h

DIAG_E SAFETY_SW_EXT : DIAG_Constants.h
DIAG_E _SAFETY_SW_INT : DIAG_Constants.h
DIAG_E _SAFETY_SW_SHUT _ OFF : DIAG_Constants.h
DIAG_E_ SR _HighNibble : DIAG_Constants.h
DIAG_E SR LowNibble : DIAG_Constants.h

DIAG_E_SW _INTERNAL : DIAG_Constants.h
DIAG_E TIMEOUT : DIAG_Constants.h
DIAG_E_WD_STARTUP : DIAG_Constants.h
DIAG_EnableDischargeCircuit() : DIAG_Functions.h
DIAG_EnterSafestate() : DIAG_Functions.h
DIAG_ERR_CALLBACK : DIAG_Constants.h
DIAG_ERR_NOACTION : DIAG_Constants.h
DIAG_ERR_SAFESTATE : DIAG_Constants.h
DIAG_ERRORCODE : DIAG_Constants.h
DIAG_ErrorType : DIAG_Constants.h
DIAG_STARTUP_TEST_ACTIVATE : DIAG_Functions.h
DIAG_STARTUP_TEST _CTRL : DIAG_Functions.h
DIAG_STARTUP_TEST INHIBIT : DIAG_Functions.h
DIAG_StartupTestCtrl() : DIAG_Functions.h
DIAG_STATE_DISABLED : DIAG_Constants.h
DIAG_STATE_INIT : DIAG_Constants.h
DIAG_STATE_MAIN : DIAG_Constants.h
DIAG_STATE_SAFE_STATE : DIAG_Constants.h
DIAG_STATE _STARTUP : DIAG_Constants.h
DIAG_Status() : DIAG_Functions.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_|a|b|c dmHWi n s t|u
||||'||||I

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-f -

e FALSE : ptypes_xe167.h
o float4 : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

TrControl

HYDAC INTERNATIONAL

HY-TTC 30 Family C

API Manual D-TTC-X-G-
20-001

Related Pages

Main Page

| Data Structures m

“ Functions | Typedefs | Enumerations | Enumerator |

Macros

_|a |/ b|c | d| f n| /s t u
|||||.|||I

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

I0_ADC_00 :

I0_ADC_01

IO_ADC_10 :

I0_ADC_11

IO_ADC_12:
IO_ADC_13:
IO_ADC_14 :
IO_ADC_15 :
I0_ADC_20 :

IO_ADC_21

IO_ADC_22:
IO_ADC_23 :
|IO_ADC_24 :
I0_ADC_25 :
IO_ADC_26 :
|IO_ADC_27 :
IO_ADC_28 :

I0_Pins.h
: 10_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

|IO_ADC _29:
|IO_ADC _30:
: 10_Pins.h
|IO_ADC 32:
|IO_ADC _33:
|IO_ADC _34:
|IO_ADC _35:
|IO_ADC _36:
|IO_ADC _37:
|IO_ADC 38:
|IO_ADC _39:
|IO_ADC 40:

|IO_ADC_31

IO_ADC_41 :

IO_ADC 5V2:
|IO_ADC_ABSOLUTE :

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h

|IO_ADC_BOARD _TEMP:

I0_ADC.h
I0_Pins.h

|O_ADC_BoardTempFloat() : IO_ADC.h
|O_ADC_BoardTempSbyte() : IO_ADC.h
|O_ADC_ChannelDelnit() : I0_ADC.h
|O_ADC_Channellnit() : IO_ADC.h
IO_ADC_CURRENT : 10_ADC.h
IO_ADC_Get() : IO_ADC.h
|IO_ADC_NODE_ID 0:10_Pins.h
|IO_ADC_NODE_ID 1:10_Pins.h
|IO_ADC_RANGE_10V :10_ADC.h
IO_ADC_RANGE_5V :10_ADC.h
IO_ADC_RATIOMETRIC : 10_ADC.h
|IO_ADC_RESISTIVE : 10_ADC.h
IO_ADC_SAFETY_CONF : 10_ADC.h
IO_ADC_SENSOR_SUPPLY : 10_Pins.h
IO_ADC_UBAT : 10_Pins.h
|IO_ADC_UBAT_CPU : 10_Pins.h
|IO_BRBL_CAN_ID : I0_BRBL.h
|IO_BRBL_CAN_PARAM : I0_BRBL.h
IO_BRBL_CUSTOM_DID : 10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 0:10_BRBL.h

IO_BRBL_CUSTOM_DID IDX 1:10_BRBL.h
IO_BRBL_CUSTOM_DID _IDX 10:10_BRBL.h
IO_BRBL_CUSTOM_DID_IDX_11:10_BRBL.h
IO_BRBL_CUSTOM _DID _IDX 12 :10_BRBL.h
IO_BRBL_CUSTOM _DID _IDX 13 :10_BRBL.h
IO_BRBL_CUSTOM _DID _IDX 14 :10_BRBL.h
IO_BRBL_CUSTOM_DID _IDX 15:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 2:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 3:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 4:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 5:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 6:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 7 :10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 8:10_BRBL.h
IO_BRBL_CUSTOM_DID IDX 9:10_BRBL.h
IO_BRBL_CUSTOM_DID_TBL_LEN : 10_BRBL.h
|O_BRBL_GetCanParam() : IO_BRBL.h
IO_BRBL_GetDid() : I0O_BRBL.h
|O_BRBL_GetXteaKey() : IO_BRBL.h
|O_BRBL_Validate() : I0_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 0:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 1:10_BRBL.h
IO_BRBL_XTEA_PRIV_KEY_IDX 10:10_BRBL.h
|IO_BRBL_XTEA _PRIV_KEY_IDX 11 :10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 2:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 3:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 4:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 5:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 6:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 7 :10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 8:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_IDX 9:10_BRBL.h
|IO_BRBL_XTEA_PRIV_KEY_LEN :10_BRBL.h
IO_BRBL_XTEA_PRIV_KEY_TBL_LEN :10_BRBL.h
|O_CAN_BAUDRATE_1000K : IO_CAN.h
|O_CAN_BAUDRATE_100K : I0O_CAN.h

IO _CAN_BAUDRATE_10K:10_CAN.h
IO _CAN_BAUDRATE 125K :10_CAN.h
IO _CAN_BAUDRATE_20K :10_CAN.h
|IO_CAN_BAUDRATE_ 250K : 10_CAN.h
IO _CAN_BAUDRATE_25K : 10_CAN.h
|IO_CAN_BAUDRATE_500K : 1I0_CAN.h
IO _CAN_BAUDRATE_50K : 10_CAN.h
|IO_CAN_BAUDRATE_800K : 10_CAN.h
IO_CAN_CHANNEL 0 :10_Pins.h

IO _CAN_CHANNEL _1:10 Pins.h
IO_CAN_ConfigFIFO() : I0_CAN.h
|O_CAN_ConfigMsg() : IO_CAN.h

IO _CAN_DATA FRAME : 10 _CAN.h
|O_CAN_Delnit() : I0_CAN.h
IO_CAN_DelnitHandle() : I0_CAN.h

IO _CAN_EXT FRAME : 10_CAN.h

IO _CAN_FIFOStatus() : IO_CAN.h
IO_CAN_Init() : IO_CAN.h
|O_CAN_InitTimings() : IO_CAN.h
IO_CAN_MSG_READ :10_CAN.h
IO_CAN_MSG_WRITE : 10_CAN.h
IO_CAN_MsgStatus() : IO_CAN.h

IO _CAN_ReadFIFO() : IO_CAN.h
|O_CAN_ReadMsg() : I0O_CAN.h

IO _CAN_Status() : IO_CAN.h

IO CAN_STD _FRAME : 10 _CAN.h
IO_CAN_WriteFIFO() : IO_CAN.h
|O_CAN_WriteMsg() : IO_CAN.h
|O_Crypt_GetPseudoRandomNumber() : I0_Crypt.h
IO CRYPT_XTEA KEY _LEN: 10 Crypt.h
|O_Crypt_XteaDecipher() : I0_Crypt.h
|O_Crypt_XteaDecipher32() : I0_Crypt.h
|O_Crypt_XteaEncipher() : I0_Crypt.h
|O_Crypt_XteaEncipher32() : I0_Crypt.h
IO_DI 00:10_Pins.h

IO_DI 01:10_Pins.h

IO _DI_02:
IO _DI_03:
IO_DI_04:
IO _DI_05:
IO _DI_06:
IO_DI_07:
IO _DI_10:
: 10_Pins.h
IO _DI_12:
IO _DI_13:
IO_DI_14:
IO _DI_15:
IO _DI_16:
IO _DI_17:
IO _DI_18:
IO _DI_19:
IO _DI_20:
: 10_Pins.h
IO _DI_22:
IO _DI_23:
IO _DI_24:
IO _DI_25:
IO _DI_26:
|O_DI_27:
IO_DI_28:
IO _DI_29:
IO _DI_30:

10_DI_11

|0_DI_21

IO_DI_31:

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

|O_DI_Delnit() : 10_DIO.h
IO _DI_Get() : 10_DIO.h
|O_DI_Init() : 10_DIO.h
IO DI PD: 10 _DIO.h

IO DI PU: 10 _DIO.h

IO DO _00:10 Pins.h
IO DO _01:10 Pins.h
IO DO _02:10 Pins.h

IO_DO_03:
|IO_DO 04 :
IO_DO_05:
IO_DO_06:
|IO_DO _07:
IO_DO_10:
: 10_Pins.h
IO_DO_20:
: 10_Pins.h
|IO_DO _22:
IO DO _23:
|IO_DO 24 :
|IO_DO_25:
IO_DO_30:
: 10_Pins.h
IO DO _32:
IO_DO_33:
IO DO _34:

I0_DO_11

I0_DO_21

I0_DO_31

IO_DO_35:

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

I0O_Pins.h

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

|O_DO_Delnit() : 10_DIO.h

|O_DO_GetCur() : 10_DIO.h

|O_DO_Init() : 10_DIO.h

|O_DO_Set() : 10_DIO.h

|O_DRIVER_DI_LIMITS : 10_DIO.h
|O_Driver_GetAutoBaudrate() : IO_Driver.h
|O_Driver_GetMode() : I0_Driver.h
|O_Driver_GetResetStatus() : I0_Driver.h
|O_Driver_GetResetStatus_ex() : IO_Driver.h
|O_Driver_GetVersionOfBootloader() : IO_Driver.h
|O_Driver_GetVersionOfDriver() : 10_Driver.h
|O_Driver_Init() : I0_Driver.h
|O_DRIVER_MODE_DEFAULT : I0_Driver.h
|O_DRIVER_MODE_SERVICE_WD : 10_Driver.h
IO_DRIVER_RESET _INFO : 10_Driver.h
|O_DRIVER_RESET_REASON : I0_Driver.h
|O_DRIVER_RESET_REASON_PORST : I0_Driver.h

IO _DRIVER_RESET_REASON_SW : 10_Driver.h

IO _DRIVER_RESET_REASON_TRAP : 10_Driver.h

IO _DRIVER_RESET_REASON_UNKNOWN : 10_Driver.h
|IO_DRIVER_RESET_REASON_WDT : 10_Driver.h
|O_Driver_ResetToBootMode() : I0_Driver.h
IO_DRIVER_RST_STAT_NA': IO_Driver.h
IO_DRIVER_RST_STAT_PORST : 10_Driver.h
IO_DRIVER_RST_STAT_SW : 10_Driver.h
IO_DRIVER_RST_STAT_WD : I0_Driver.h
IO_DRIVER_RST_STAT_WDT : I0_Driver.h
IO_DRIVER_RTBM_UDS RPG_ATTEMPT _AUTH_APP:
I0_Driver.h

IO _DRIVER_RTBM_UDS RPG_ATTEMPT _AUTH BL:
I0_Driver.h

|IO_DRIVER_RTBM_UDS RPG_ATTEMPT_NONE :
I0_Driver.h

|IO_DRIVER_RTBM_UDS RSP_NONE : I0_Driver.h
IO_DRIVER_RTBM_UDS RSP_SEND : I0_Driver.h
|IO_DRIVER_SAFETY_CONF : 10_Driver.h
IO_DRIVER_SAFETY_SWITCH_EXT : I0_Driver.h

IO _DRIVER_SAFETY_SWITCH_INT : 10_Driver.h
IO_DRIVER_SAFETY_SWITCH_NONE : 10_Driver.h
IO _DRIVER_SYSTEM_CLOCK : 10_Driver.h
|O_Driver_TaskBegin() : IO_Driver.h
|O_Driver_TaskEnd() : IO_Driver.h
IO_DRIVER_TRAP_INFO : 10_Driver.h
IO_E_ADC_CHANNEL_STARTUP : I0_Constants.h
IO_E_ADC_INVALID : I0_Constants.h

IO _E BUSY : 10 _Constants.h

IO _E _CAN_BUS OFF : 10_Constants.h

|IO_E _CAN_ERROR_PASSIVE : I0_Constants.h

IO_E CAN_FIFO_FULL : I0_Constants.h

IO_E _CAN_INVALID DATA: I0_Constants.h

IO_E _CAN_MAX_ HANDLES REACHED : I0_Constants.h
IO_E CAN_MAX_ MO_REACHED : 10_Constants.h
|IO_E CAN_OLD_DATA: 10_Constants.h

IO _E_CAN_OVERFLOW : I0_Constants.h

IO E_ CAN_WRONG_HANDLE : 10_Constants.h

IO E_CH CAPABILITY : 10_Constants.h
IO_E_CHANNEL _BUSY : 10_Constants.h

IO _E_ CHANNEL_NOT_CONFIGURED : I0_Constants.h
IO _E DI _INVALID LIMITS : 10_Constants.h

IO _E_ DI INVALID VOLTAGE : 10_Constants.h

IO _E DI OPEN _LOAD : 10 _Constants.h

IO _E DI OPEN _LOAD OR_SHORT_ CIRCUIT :
I0_Constants.h

IO_E DI SHORT BATTERY : 10 _Constants.h

IO _E DI SHORT_CIRCUIT : I0_Constants.h

IO_E DISCHARGE_FAILED : 10_Constants.h

IO _E DO _CHANNEL_STARTUP : I0_Constants.h

IO E DO_CURRENT_INACCURATE : I0_Constants.h
IO E DO_DIAG _TRANSIENT OSC :10_Constants.h
IO E DO_OPEN _LOAD : 10 _Constants.h

IO E DO _OPEN_LOAD OR _SHORT_BATTERY :
I0_Constants.h

IO E DO _OUTPUT _DISABLED : 10 _Constants.h

IO E DO_OUTPUT_STARTUP_ERROR: 10 _Constants.h
IO E DO_SHORT BATTERY : 10_Constants.h

IO _ E DO_SHORT_CIRCUIT : 10_Constants.h

IO _E_DRIVER INITIALIZED : I0_Constants.h

IO _E _DRIVER _NOT _INITIALIZED : I0_Constants.h
IO E_ DRV_SAFETY_CONF_NOT_CONFIG:
I0_Constants.h

IO E_ ECU_ALREADY_IN_SAFE_STATE : 10_Constants.h
IO E_ EEPROM _BUFFER _FULL : I0_Constants.h

IO E_ EEPROM_CRC_MISMATCH : 10_Constants.h
IO E_ EEPROM_RANGE : 10_Constants.h

IO E FET _PROTECTION : IO_Constants.h

IO _E_GROUP_CONFLICT : 10_Constants.h

IO _E_INVALID_CHANNEL ID : 10 _Constants.h

IO _E INVALID _CRC : I0_Constants.h

IO _E _INVALID_DIAG _STATE : I0_Constants.h

IO _E_INVALID_PARAMETER : 10 _Constants.h

IO _E _INVALID_SAFETY_CONFIG : 10 _Constants.h

IO _ E_ NO_SAFETY_SWITCH_CONFIGURED :
I0_Constants.h

IO _ E NODEID_EEPROM_FALLBACK : 10 _Constants.h
IO _E NODEID_EEPROM _INVALID : 10 _Constants.h
IO _E NODEID _EEPROM_MISMATCH : I0_Constants.h
IO _E_NODEID_PINS_INVALID : I0_Constants.h

IO _E _NULL _POINTER : 10_Constants.h

IO _ E OK: 10 _Constants.h

IO _E PERIODIC_NOT_CONFIGURED : 10_Constants.h
IO E PID_NO_FREE_HANDLES : 10 _Constants.h

IO _E PID USED : 10 _Constants.h

IO_E PROT_ACTIVE : 10 _Constants.h

IO _E PROT _FATAL : IO _Constants.h

IO E_ PROT_PERMANENT_OFF : 10 _Constants.h

IO _E_ PROT_REENABLE : I0_Constants.h

IO E_ PROT_TEMP_OVERLOAD : I0_Constants.h

IO E_ PROT_USER _OVERLOAD : I0_Constants.h

IO E_ PVG_OUTPUT_DISABLED : 10_Constants.h

IO E_ PVG_SHORT_BATTERY : 10_Constants.h

IO E PVG_SHORT_CIRCUIT : I0_Constants.h

IO E PWD CAPTURE_ERROR :10_Constants.h

IO E PWD HIGH LEVEL: 10 _Constants.h

IO E PWD LOW _ LEVEL : 10 _Constants.h

IO _ E_ PWD NOT_FINISHED : 10_Constants.h

IO E PWD TIMER OVERFLOW :10_Constants.h

IO E PWM_CAPTURE_ERROR : 10 _Constants.h

IO E_ PWM_CHANNEL STARTUP : 10_Constants.h

IO E PWM_CURRENT _INACCURATE : I0_Constants.h
IO E_ PWM_DIAG_TRANSIENT_OSC : 10 _Constants.h
IO E_ PWM_NOT _FINISHED : 10_Constants.h

IO E PWM_OPEN LOAD : 10 _Constants.h

IO E_ PWM_OPEN_LOAD OR SHORT_ BATTERY :
I0_Constants.h

IO E_ PWM_OUTPUT_DISABLED : I0_Constants.h

IO E PWM_OUTPUT_HIGH : 10_Constants.h
IO E PWM_OUTPUT _LOW :10_Constants.h

|I0_E_PWM_OUTPUT_STARTUP_ERROR : I0_Constants.h

IO_E_ PWM_SHORT_BATTERY : 10_Constants.h
IO_E_ PWM_SHORT_CIRCUIT : I0_Constants.h

IO _E_ RESET_COUNTER_INVALID : 10_Constants.h
IO _E_SAFETY_NOT_SUPPORTED : I0_Constants.h
IO _E_SBRAM_CONTENT _INVALID : I0_Constants.h
IO_E_SPI BUFFER _FULL : 10_Constants.h
IO_E_SPI_MAX DEV_REACHED : 10_Constants.h
IO_E_SW_INTERNAL : 10_Constants.h

IO E_ SW_OUTPROT_SM : 10_Constants.h

IO_E _TASK NO _FREE_SLOTS :10_Constants.h

IO _E_UART _BUFFER_EMPTY : I0_Constants.h

IO _E_UART BUFFER_FULL : I0_Constants.h

IO _E_UART_OVERFLOW : 10_Constants.h
IO_E_UART_PARITY : 10_Constants.h

IO _E_UNKNOWN : 10 _Constants.h

IO_E_ VOUT _OUTPUT _DISABLED : I0_Constants.h
IO _E VOUT PRECISION : I0_Constants.h

IO _E VOUT_SHORT_BATTERY : I0_Constants.h

IO E VOUT_SHORT_CIRCUIT : I0_Constants.h

IO _E_ WD_INT_ONLY_NON_SAFETY : 10_Constants.h
IO _E WD_TRIGGER_DISABLED : 10_Constants.h

IO E WD _TRIGGER_TEMPORARY_DISABLED :
I0_Constants.h

IO_E_ WRONG_HW_TYPE : 10_Constants.h
|IO_EEPROM _Delnit() : IO_EEPROM.h
|IO_EEPROM_GetStatus() : |IO_EEPROM.h
|IO_EEPROM _Init() : I0_EEPROM.h

|IO_EEPROM _PreloadDelnit() : IO0_EEPROM_Preload.h
|IO_EEPROM _Preloadinit() : IO_EEPROM_Preload.h
|IO_EEPROM_PreloadRead() : IO_EEPROM_Preload.h
|IO_EEPROM _PreloadStatus() : IO_EEPROM_Preload.h
|IO_EEPROM _PreloadTask() : IO_EEPROM_Preload.h
|IO_EEPROM_PreloadWrite() : IO_EEPROM_Preload.h

IO _EEPROM _Read() : I0_EEPROM.h
|IO_EEPROM_Write() : I0_EEPROM.h
|O_ErrorType : I0_Constants.h

|IO_INT_DEV_CPU :
IO_INT_PIN_5V2:
IO_INT_PIN_CAN_CHO :
IO_INT_PIN_CAN_CH?1
IO_INT_PIN_DRIVER :
IO_INT_PIN_EEPROM :
IO_INT_PIN_EXT WD :
|IO_INT_PIN_PERIODIC :
IO_INT_PIN_POWER :

I0_Pins.h
I0_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

IO0_INT_PIN_POWERSTAGE_ENABLE : 10_Pins.h
IO_INT_PIN_PVG_VOUT 0 ENABLE : I0_Pins.h
IO_INT_PIN_PVG_VOUT_1_ENABLE : 10_Pins.h
|IO_INT_PIN_RTC : 10_Pins.h
|IO_INT_PIN_SHIFT1_LB_HI: 10_Pins.h
IO_INT_PIN_SHIFT1_LB_LO: 10_Pins.h
IO_INT_PIN_SHIFT_LB_HI: 10 _Pins.h
IO_INT_PIN_SHIFT LB _LO: 10_Pins.h
IO_INT_PIN_TEMP : 10_Pins.h
IO_INT_PIN_UART_CHO : 10_Pins.h
IO_INT_POWERSTAGE_ENABLE : 10_Pins.h
|IO_INT_PVG_VOUT_0_ENABLE : 10_Pins.h
|IO_INT_PVG_VOUT_1_ENABLE : 10_Pins.h
|I0_K15:10_Pins.h

|IO_LED_00 : 10_Pins.h

|IO_LED_01:10_Pins.h

IO _LED_02:10_Pins.h

|IO_LED_03:10_Pins.h

|IO_LED_04 : 10_Pins.h

|IO_LED 05 :10_Pins.h

|IO_LED_06 : 10_Pins.h

|O_LED_07 : 10_Pins.h

|O_LED_ChannelDelnit() : IO_LED.h
|O_LED_Channellnit() : IO_LED.h

IO_LED_Set() : IO_LED.h
|O_NodelD_GetModifier() : I0_NodelD.h
|O_NodelD_GetModifierStartup() : |IO_NodelD.h
|O_PID_CONFIG : I0_PID.h

IO_PID_MAX_ HANDLES : 10_PID.h
|O_PID_Setlntegrator() : I0_PID.h

IO _PIN:10_
: 10_Pins.h
IO _PIN_AS:
IO _PIN_A4 :
: 10_Pins.h
IO _PIN_B3:
IO _PIN_B4 :
: 10_Pins.h
IO _PIN_C3:
IO _PIN_C4:
: 10_Pins.h
IO _PIN_D3:
IO _PIN D4 :
: 10_Pins.h
IO _PIN_E2:
IO _PIN_E3:
IO _PIN_E4 :
:10_Pins.h
IO _PIN_F2:
IO _PIN_F4:

I0_PIN_A1

I0_PIN_B1

I0_PIN_C1

|0_PIN_D1

I0_PIN_E1

I0_PIN_F1

I0_PIN_G1

10_PIN_H1

I0_PIN_J1:
I0_PIN_J2:
I0_PIN_J3:

Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

: 10_Pins.h
IO _PIN_G2:
IO _PIN_G4 :
: 10_Pins.h
IO _PIN_H2:
IO _PIN_H3:
IO _PIN _H4 :

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

|O_PIN_J4 : 10_Pins.h
IO_PIN_K1:10_Pins.h
IO0_PIN_K2:10_Pins.h
|IO_PIN_K3:10_Pins.h

|IO_PIN_K4 : 10_Pins.h
|IO_PIN_L1:10_Pins.h
IO_PIN_L2:10_Pins.h
|IO_POWER_Delnit() : 1I0_POWER.h
|IO_POWER_Get() : |l0_POWER.h
|IO_POWER_Init() : 1l0_POWER.h
|IO_POWER_OFF : 10_POWER.h
|IO_POWER_ON : 10_POWER.h
|IO_POWER_Set() : I0_POWER.h
|IO_POWER_SetK15Threshold() : I0_POWER.h

IO _PVG_00:
: 10_Pins.h
IO _PVG _02:
IO _PVG_03:
IO _PVG 04 :

I0_PVG_01

I0_PVG_05:

I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_PVG_Delnit() : 10_PVG.h
I0_PVG_Init() : 10_PVG.h
|I0_PVG_SetOutput() : 10_PVG.h

IO_PWD_00:

|IO_PWD_01

I0_PWD 02:
IO_PWD 03:
I0_PWD_10:

I0_PWD_11

IO PWD_12:
IO PWD_13:
I0_PWD 20 :

|I0_PWD_21

IO_PWD_22:

IO_PWD_23:

I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h

|O_PWD_BOTH_COUNT :

I0_PWD.h

|IO_PWD_ComplexDelnit() : I0_PWD.h
IO_PWD_ComplexGet() : IO_PWD.h
IO_PWD_ComplexInit() : IO_PWD.h
IO_PWD_CountDelnit() : IO_PWD.h
IO_PWD_CountGet() : IO_PWD.h
|IO_PWD_Countlnit() : IO_PWD.h
|IO_PWD_CountSet() : I0_PWD.h

IO PWD_CPLX_SAFETY_CONF : 10_PWD.h
IO_PWD_DOWN_COUNT : 10_PWD.h

IO _PWD_FALLING_COUNT : 10_PWD.h
IO_PWD_FALLING VAR :10_PWD.h
|IO_PWD_FreqDelnit() : I0_PWD.h
|IO_PWD_FreqGet() : IO_PWD.h
IO_PWD_Freqlnit() : IO_PWD.h
IO_PWD_HIGH_TIME : 10_PWD.h
IO_PWD_INC_1 COUNT : 10_PWD.h
IO_PWD_INC_2 COUNT : 10_PWD.h
IO_PWD_INC_SAFETY_CONF : 10_PWD.h
|O_PWD_IncDelnit() : IO_PWD.h
IO_PWD_IncGet() : IO_PWD.h
|O_PWD_Inclnit() : I0_PWD.h

IO_PWD _IncSet() : IO_PWD.h

IO PWD_LOW_TIME : 10_PWD.h
|IO_PWD_PD :10_PWD.h
IO_PWD_PERIOD_TIME : 10_PWD.h
IO_PWD_PU :10_PWD.h
IO_PWD_PULSE_SAMPLES : 10_PWD.h
|IO_PWD_PulseDelnit() : I0_PWD.h
|IO_PWD_PulseFreqDelnit() : |IO_PWD.h
|IO_PWD_PulseFreqGet() : IO_PWD.h
|O_PWD_PulseFreqinit() : IO_PWD.h
IO_PWD_PulseGet() : IO_PWD.h
|IO_PWD_Pulselnit() : IO_PWD.h

IO PWD_RESOLUTION_0 2:10_PWD.h
IO PWD_RESOLUTION_0 4:10_PWD.h
IO PWD_RESOLUTION_0 8:10_PWD.h

IO PWD_RESOLUTION_1 6:10_PWD.h
IO PWD_RESOLUTION_3 2:10_PWD.h
IO_PWD_RISING_COUNT : 10_PWD.h
IO_PWD_RISING VAR :10_PWD.h
IO_PWD_UP_COUNT : I0_PWD.h
IO_PWM_ 00 : 10_Pins.h

IO_PWM 01 :10_Pins.h

IO_PWM 02 :10_Pins.h

IO_PWM _03:10_Pins.h

IO_PWM 04 :10_Pins.h
IO_PWM_05:10_Pins.h
IO_PWM_10:10_Pins.h
IO_PWM_11:10_Pins.h

IO PWM_CURRENT_QUEUE : 10_PWM.h
|IO_PWM_CURRENT_QUEUE_MAX: 10_PWM.h
IO_PWM_CURRENT_SAFETY_CONF : 10_PWM.h
|IO_PWM_CurrentDelnit() : IO_PWM.h
|O_PWM_Currentlnit() : 10_PWM.h
IO_PWM_Delnit() : 10_PWM.h
IO_PWM_GetCur() : I0_PWM.h
IO_PWM_GetCurQueue() : IO_PWM.h
IO_PWM _Init() : IO_PWM.h
IO_PWM_SAFETY_CONF : 10_PWM.h
IO_PWM_SetCur() : IO_PWM.h
|IO_PWM_SetDuty() : IO_PWM.h
IO_RTC_GetTimeUS() : IO_RTC.h

IO_RTC Init() : IO_RTC.h
|O_RTC_PeriodicDelnit() : IO_RTC.h
|O_RTC_Periodiclnit() : IO_RTC.h
|IO_RTC_StartTime() : IO_RTC.h

IO _SAFETY_SWITCH_ 0 :10_Pins.h

IO _SAFETY_SWITCH_1:10_Pins.h

IO _SAFETY_SWITCH_NONE : I0_Driver.h
IO_UART : 10_Pins.h

|O_UART_Delnit() : I0_UART.h
IO_UART_GetRxStatus() : I0_UART.h

IO_UART_GetTxStatus() : IO_UART.h
IO_UART _Init() : IO_UART.h

IO _UART_Read() : IO_UART.h
|O_UART _Task() : IO_UART.h
|O_UART_Write() : IO_UART.h
IO_VOUT _00:10_Pins.h
IO_VOUT _01:10_Pins.h
IO_VOUT 02 :10_Pins.h

IO_VOUT _03:10_Pins.h

IO_VOUT 04 :10_Pins.h

IO_VOUT _05:10_Pins.h
|O_VOut_Delnit() : 10_Vout.h
|O_VOut_Init() : 10_Vout.h
IO_VOut_SetVoltage() : I0_Vout.h
IO_WD_Service() : IO_WD.h
|O_WDTimer_Delnit() : IO_WDTimer.h
IO_WDTimer_Init() : IO_WDTimer.h
IO_WDTimer_Service() : IO_WDTimer.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
O EEm 1-8-2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_|a|b|c d f i B s t|u
||||||nlll

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-N -

e NULL : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_|a|/b|c d f i|n t u
|||||||=|I

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-G =

o sbytel : ptypes_xe167.h
e sbyte2 : ptypes_xe167.h
o sbyte4 : ptypes_xe167.h
o sbyte8 : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros |

_|a|b|c d f i n s B8 u
||||||||.I

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-t-

e TRUE : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

“ Functions | Typedefs | Enumerations | Enumerator |

Macros

_|a|/b|lc| d f i|n s t
|||||||||'

Here is a list of all documented functions, variables, defines,
enums, and typedefs with links to the documentation:

-U =

ubyte1 : ptypes_xe167.h
ubyte?2 : ptypes_xe167.h
ubyte4 : ptypes_xe167.h
ubyte8 : ptypes_xe167.h
UINT32_ALL BITS SET : TypesGen.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page

Related Pages | Data Structures W

File List Globals

All Functions Typedefs Enumerations Enumerator

Macros

DIAG_EnableDischargeCircuit() : DIAG_Functions.h
DIAG_EnterSafestate() : DIAG_Functions.h
DIAG_StartupTestCtrl() : DIAG_Functions.h
DIAG_Status() : DIAG_Functions.h

|IO_ADC_BoardTempFloat() : IO_ADC.h
|IO_ADC_BoardTempSbyte() : IO_ADC.h
IO_ADC_ChannelDelnit() : I0_ADC.h
|IO_ADC_Channellnit() : IO_ADC.h
IO_ADC_Get() : I0_ADC.h
|IO_BRBL_GetCanParam() : I0_BRBL.h
IO _BRBL_GetDid() : I0_BRBL.h

IO _BRBL_GetXteaKey() : I0_BRBL.h
IO_BRBL_Validate() : IO_BRBL.h

IO _CAN_ConfigFIFO() : I0_CAN.h
IO_CAN_ConfigMsg() : IO_CAN.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

|O_CAN_Delnit() : I0_CAN.h
|O_CAN_DelnitHandle() : IO_CAN.h
|O_CAN_FIFOStatus() : IO_CAN.h
IO_CAN_Init() : IO_CAN.h
|O_CAN_InitTimings() : IO_CAN.h
IO_CAN_MsgStatus() : IO_CAN.h
|O_CAN_ReadFIFO() : IO_CAN.h
|O_CAN_ReadMsg() : IO_CAN.h
|O_CAN_Status() : IO_CAN.h
|O_CAN_WriteFIFO() : IO_CAN.h
|O_CAN_WriteMsg() : IO_CAN.h

|O_Crypt_GetPseudoRandomNumber() : I0_Crypt.h

|O_Crypt_XteaDecipher() : I0_Crypt.h
|O_Crypt_XteaDecipher32() : I0_Crypt.h
|O_Crypt_XteaEncipher() : I0_Crypt.h
|O_Crypt_XteaEncipher32() : I0_Crypt.h
|O_DI_Delnit() : 10_DIO.h

|O_DI_Get() : 10_DIO.h

|O_DI_Init() : 10_DIO.h

IO_DO_Delnit() : 10_DIO.h

|O_DO_GetCur() : 10_DIO.h

IO_DO_Init() : 10_DIO.h

|O_DO_Set() : 10_DIO.h
|O_Driver_GetAutoBaudrate() : IO_Driver.h
|O_Driver_GetMode() : I0_Driver.h
|O_Driver_GetResetStatus() : I0_Driver.h
|O_Driver_GetResetStatus_ex() : IO_Driver.h
|O_Driver_GetVersionOfBootloader() : IO_Driver.h
|O_Driver_GetVersionOfDriver() : IO_Driver.h
|O_Driver_Init() : I0_Driver.h
|O_Driver_ResetToBootMode() : I0_Driver.h
|O_Driver_TaskBegin() : IO_Driver.h
|O_Driver_TaskEnd() : IO_Driver.h
|IO_EEPROM _Delnit() : IO_EEPROM.h
|O_EEPROM_GetStatus() : IO_EEPROM.h
IO_EEPROM _Init() : I0_EEPROM.h

|IO_EEPROM _PreloadDelnit() : I0_EEPROM_Preload.h
|IO_EEPROM _Preloadinit() : IO_EEPROM_Preload.h
|IO_EEPROM_PreloadRead() : IO_EEPROM_Preload.h
|IO_EEPROM _PreloadStatus() : IO_EEPROM_Preload.h
|IO_EEPROM _PreloadTask() : IO_EEPROM_Preload.h
|IO_EEPROM_PreloadWrite() : IO_EEPROM_Preload.h
|IO_EEPROM _Read() : IO_EEPROM.h
|IO_EEPROM_Write() : IO_EEPROM.h
|O_LED_ChannelDelnit() : IO_LED.h

IO _LED_Channelinit() : IO_LED.h

IO _LED Set(): I0_LED.h

|O_NodelD_GetModifier() : I0_NodelD.h
|O_NodelD_GetModifierStartup() : |IO_NodelD.h
|O_PID_Setlntegrator() : I0_PID.h

IO_POWER_Delnit() : I0_POWER.h
|IO_POWER_Get() : I0O_POWER.h

|IO_POWER _Init() : IO_POWER.h

|IO_POWER_Set() : IO_POWER.h
|IO_POWER_SetK15Threshold() : I0_POWER.h
IO_PVG_Delnit() : I0_PVG.h

IO_PVG_Init() : 10_PVG.h

|O_PVG_SetOutput() : I0O_PVG.h
|IO_PWD_ComplexDelnit() : I0_PWD.h
IO_PWD_ComplexGet() : IO_PWD.h
IO_PWD_ComplexInit() : IO_PWD.h
IO_PWD_CountDelnit() : IO_PWD.h
|O_PWD_CountGet() : |IO_PWD.h

|IO_PWD_Countlnit() : IO_PWD.h

|IO_PWD_CountSet() : |IO_PWD.h
|IO_PWD_FreqDelnit() : I0_PWD.h

IO_PWD_FreqGet() : IO_PWD.h

IO_PWD_Freqlnit() : IO_PWD.h

|O_PWD_IncDelnit() : IO_PWD.h

IO_PWD_IncGet() : IO_PWD.h

IO_PWD_Inclnit() : IO_PWD.h

IO_PWD _IncSet() : IO_PWD.h

|IO_PWD_PulseDelnit() : I0_PWD.h
|IO_PWD_PulseFreqDelnit() : |IO_PWD.h
|IO_PWD_PulseFreqGet() : IO_PWD.h
|O_PWD_PulseFreqinit() : IO_PWD.h
IO_PWD_PulseGet() : IO_PWD.h
|IO_PWD_Pulselnit() : IO_PWD.h
|IO_PWM_CurrentDelnit() : IO_PWM.h
|O_PWM_Currentlnit() : 10_PWM.h
|IO_PWM_Delnit() : 10_PWM.h
IO_PWM_GetCur() : I0_PWM.h
IO_PWM_GetCurQueue() : IO_PWM.h
IO_PWM _Init() : IO_PWM.h
IO_PWM_SetCur() : IO_PWM.h
|IO_PWM_SetDuty() : IO_PWM.h
IO_RTC_GetTimeUS() : IO_RTC.h
IO_RTC Init() : IO_RTC.h
|O_RTC_PeriodicDelnit() : IO_RTC.h
|O_RTC_Periodiclnit() : IO_RTC.h
|IO_RTC_StartTime() : IO_RTC.h
|O_UART_Delnit() : I0_UART.h
IO_UART_GetRxStatus() : IO_UART.h
|O_UART_GetTxStatus() : IO_UART.h
|O_UART _Init() : IO_UART.h
IO_UART_Read() : IO_UART.h
|O_UART _Task() : IO_UART.h
IO_UART_Write() : IO_UART.h
|O_VOut_Delnit() : 10_Vout.h
|O_VOut_Init() : 10_Vout.h
IO_VOut_SetVoltage() : I0_Vout.h
IO_WD_Service() : IO_WD.h
|O_WDTimer_Delnit() : IO_WDTimer.h
IO_WDTimer_Init() : IO_WDTimer.h
|IO_WDTimer_Service() : IO_WDTimer.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by

oj,g_)‘(mge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C
ITControl API Manual D-TTC-X-G-

HYDAC INTERNATIONAL 20_00 1

Related Pages | Data Structures m

File List Globals

Main Page

All | Functions Typedefs Enumerations | Enumerator |
Macros |

b c d| f|i|s wu

Y N N B R

-b -

e bool : ptypes_xe167.h

-C -
e CanldType : TypesGen.h

-d -
» DIAG_ERR_CALLBACK : DIAG_Constants.h
« DIAG_ERRORCODE : DIAG_Constants.h
 DIAG _ErrorType : DIAG_Constants.h

-f-
o float4 : ptypes_xe167.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

1 1
: [] [] [] [] m

IO _ADC_SAFETY_CONF : 10_ADC.h

IO BRBL_CAN ID : 10 _BRBL.h

IO BRBL_CAN_PARAM :10_BRBL.h

IO BRBL_CUSTOM DID : 10_BRBL.h

IO _CAN_DATA FRAME : 10 _CAN.h

IO DRIVER_DI _LIMITS : 10_DIO.h

IO DRIVER_RESET INFO : 10 _Driver.h

IO DRIVER_RESET REASON : 10_Driver.h
IO DRIVER_SAFETY_CONF : 10_Driver.h
IO _DRIVER_TRAP_INFO : 10_Driver.h
|O_ErrorType : I0_Constants.h

IO _PID_CONFIG : 10 _PID.h

IO PWD_ CPLX _SAFETY_CONF :10_PWD.h
IO PWD INC_SAFETY_CONF : 10_PWD.h
IO PWD PULSE _SAMPLES : 10_PWD.h
IO_PWM_CURRENT_QUEUE : 1I0_PWM.h
IO PWM_CURRENT_SAFETY _CONF : 10 _PWM.h
IO PWM_SAFETY _CONF : 10_PWM.h

sbyte1 : ptypes_xe167.h
sbyte2 : ptypes_xe167.h
sbyte4 : ptypes_xe167.h
sbyte8 : ptypes_xe167.h

ubyte1 : ptypes_xe167.h
ubyte2 : ptypes_xe167.h
ubyte4 : ptypes_xe167.h
ubyte8 : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by
doxyigengkE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All | Functions | Typedefs Enumerator |

Macros |

_diag_errortype : DIAG_Constants.h
_io_driver_reset _reason : 10_Driver.h
DIAG_STARTUP_TEST _CTRL : DIAG_Functions.h
IO_PIN : 10_Pins.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

162

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures W
All | Functions | Typedefs | Enumerations

Macros |

DIAG_E_ADC 5V2 SUPPLY : DIAG_Constants.h
DIAG_E _ADC KL30 CPU : DIAG_Constants.h
DIAG_E_ADC _KL30_MAIN : DIAG_Constants.h
DIAG_E _ADC LIMITS : DIAG_Constants.h
DIAG_E_ADC _SENSOR _SUPPLY : DIAG_Constants.h
DIAG_E_APPL_SAFE_STATE : DIAG_Constants.h
DIAG_E _CYCLE_TIME : DIAG_Constants.h
DIAG_E_EXT_WD : DIAG_Constants.h

DIAG_E FREQ_STARTUP : DIAG_Constants.h
DIAG_E _INIT_ERROR : DIAG_Constants.h

DIAG_E INT_WATCHDOG : DIAG_Constants.h
DIAG_E_INVALID DIAG_STATE : DIAG_Constants.h
DIAG_E_INVALID MAIN_STATE : DIAG_Constants.h
DIAG_E_INVALID STARTUP_STATE : DIAG_Constants.h
DIAG_E LS PROT : DIAG_Constants.h

DIAG_E MEM_CarryFlag : DIAG_Constants.h
DIAG_E_MEM _CLASS B TRAP : DIAG_Constants.h
DIAG_E_MEM DPRAM : DIAG_Constants.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

DIAG_E MEM_DSRAM : DIAG_Constants.h
DIAG_E _MEM _NegativeFlag : DIAG_Constants.h
DIAG_E MEM_OverflowFlag : DIAG_Constants.h
DIAG_E MEM_PSRAM : DIAG_Constants.h

DIAG_E MEM_REGISTER : DIAG_Constants.h
DIAG_E MEM_SOFTBREAK_TRAP : DIAG_Constants.h
DIAG_E MEM_SRO_TRAP : DIAG_Constants.h
DIAG_E MEM_SYS STACK OF : DIAG_Constants.h
DIAG_E MEM_SYS STACK UF : DIAG_Constants.h
DIAG_E MEM_USER_ STACK : DIAG_Constants.h
DIAG_E MEM_ ZeroFlag : DIAG_Constants.h

DIAG_E NOERROR : DIAG_Constants.h

DIAG_E OVD : DIAG_Constants.h

DIAG_E OVD_STARTUP : DIAG_Constants.h

DIAG_E OVER _TEMPERATURE : DIAG_Constants.h
DIAG_E PLL VCO_NOT_LOCKED : DIAG_Constants.h
DIAG_E_PWD_LIMITS_FREQ : DIAG_Constants.h
DIAG_E PWD_LIMITS PULSE_WIDTH :
DIAG_Constants.h

DIAG_E PWM_CURRENT : DIAG_Constants.h

DIAG_E PWM_CURRENT_DEAD_TIME :
DIAG_Constants.h

DIAG_E PWM_CURRENT_OFFS _DRIFT :
DIAG_Constants.h

DIAG_E PWM_CURRENT_OFFSET : DIAG_Constants.h
DIAG_E PWM_CURRENT_ZERO : DIAG_Constants.h
DIAG_E PWM_LIMITS RANGE : DIAG_Constants.h
DIAG_E PWM_LIMITS TOL : DIAG_Constants.h
DIAG_E PWM_PERIOD_ MISMATCH : DIAG_Constants.h
DIAG_E RPP : DIAG_Constants.h

DIAG_E SAFETY_SW_EXT : DIAG_Constants.h
DIAG_E _SAFETY_SW_INT : DIAG_Constants.h
DIAG_E _SAFETY_SW_SHUT _ OFF : DIAG_Constants.h
DIAG_E_ SR _HighNibble : DIAG_Constants.h
DIAG_E SR LowNibble : DIAG_Constants.h

DIAG_E _SW_INTERNAL : DIAG_Constants.h

DIAG_E TIMEOUT : DIAG_Constants.h

DIAG_E WD_STARTUP : DIAG_Constants.h
DIAG_STARTUP_TEST_ACTIVATE : DIAG_Functions.h
DIAG_STARTUP_TEST _INHIBIT : DIAG_Functions.h

|O_DRIVER_RESET_REASON_PORST : I0_Driver.h
|IO_DRIVER_RESET _REASON_SW : 10 _Driver.h
|IO_DRIVER_RESET _REASON_TRAP : |0 _Driver.h
|O_DRIVER_RESET_REASON_UNKNOWN : 10_Driver.h
|O_DRIVER_RESET_REASON_WDT : I0_Driver.h
|IO_INT_DEV_CPU : 10_Pins.h

IO_INT_PIN_5V2 : 10_Pins.h
IO_INT_PIN_CAN_CHO : 10_Pins.h
IO_INT_PIN_CAN_CH1 : 10_Pins.h
IO_INT_PIN_DRIVER : 10_Pins.h
IO_INT_PIN_EEPROM : IO_Pins.h
IO_INT_PIN_EXT_WD : 10_Pins.h
IO_INT_PIN_PERIODIC : I0_Pins.h
IO_INT_PIN_POWER : I0_Pins.h
IO0_INT_PIN_POWERSTAGE_ENABLE : 10_Pins.h
IO_INT_PIN_PVG_VOUT 0 ENABLE : I0_Pins.h
IO_INT_PIN_PVG_VOUT_1_ENABLE : 10_Pins.h
|IO_INT_PIN_RTC : 10_Pins.h
|IO_INT_PIN_SHIFT1_LB_HI: 10_Pins.h
IO_INT_PIN_SHIFT1_LB_LO: 10_Pins.h
IO_INT_PIN_SHIFT_LB_HI: 10 _Pins.h
IO_INT_PIN_SHIFT LB _LO: 10_Pins.h
IO_INT_PIN_TEMP : 10_Pins.h
IO_INT_PIN_UART_CHO : 10_Pins.h
|IO_PIN_A1:10_Pins.h

|IO_PIN_A3:10_Pins.h

|IO_PIN_A4 :10_Pins.h

|IO_PIN_B1:10_Pins.h

|IO_PIN_B3:10_Pins.h

IO _PIN_B4 :
: 10_Pins.h
IO _PIN_C3:
IO _PIN_C4:
: 10_Pins.h
IO _PIN_D3:
IO _PIN D4 :
: 10_Pins.h
IO _PIN_E2:
IO _PIN_E3:
IO _PIN_E4 :
: 10_Pins.h
IO _PIN_F2:
IO _PIN_F4:

I0_PIN_C1

|0_PIN_D1

I0_PIN_E1

I0_PIN_F1

I0_PIN_G1

10_PIN_H1

10_PIN_J1

I0_PIN_K1

I0_PIN_L1

I0_Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h

: 10_Pins.h
IO _PIN_G2:
IO _PIN_G4 :
: 10_Pins.h
IO _PIN_H2:
IO _PIN_H3:
IO _PIN _H4 :
: 10_Pins.h
IO _PIN_J2:
IO _PIN_J3:
IO _PIN_J4 :

I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h

: 10_Pins.h
IO _PIN_K2 :
IO _PIN_K3:
IO _PIN_K4 :
: 10_Pins.h
IO PIN L2 :

I0_Pins.h
I0_Pins.h
I0_Pins.h

I0_Pins.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C APl Manual by

doxyigengkE:

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIollVIanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All Functions | Typedefs | Enumerations | Enumerator |

« APDB_FLAGS ABRD ENABLE : Apdb.h
APDB_FLAGS_CRC64_ENABLE : Apdb.h
APDB_FLAGS_MULTI_APP : Apdb.h
APDB_SIZE : Apdb.h

APDB_VERSION : Apdb.h

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIOrflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All Functions | Typedefs | Enumerations | Enumerator |

DIAG_ERR_NOACTION : DIAG_Constants.h
DIAG_ERR_SAFESTATE : DIAG_Constants.h
DIAG_STATE_DISABLED : DIAG_Constants.h
DIAG_STATE_INIT : DIAG_Constants.h
DIAG_STATE_MAIN : DIAG_Constants.h
DIAG_STATE _SAFE_STATE : DIAG_Constants.h
DIAG_STATE _STARTUP : DIAG_Constants.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

File List

Main Page Related Pages | Data Structures m

All Functions | Typedefs | Enumerations | Enumerator |

e FALSE : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C API Manual by

162

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C
API Manual D-TTC-X-G-

TrControl , .,
| Data Structures m

HYDAC INTERNATIONAL

Main Page Related Pages

All

Functions

I0_ADC_00
I0_ADC_01

IO_ADC_10 :

I0_ADC_11

IO_ADC_12:
IO_ADC_13:
IO_ADC_14 :
IO_ADC_15 :
I0_ADC_20 :

|IO_ADC_21

IO_ADC_22:
IO_ADC_23 :
|IO_ADC_24 :
I0_ADC_25 :
IO_ADC_26 :
|IO_ADC_27 :
IO_ADC_28 :
IO_ADC_29 :

| Typedefs

: 10_Pins.h
: 10_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

Enumerations

Enumerator

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

|IO_ADC _30:
: 10_Pins.h
|IO_ADC 32:
|IO_ADC _33:
|IO_ADC _34:
|IO_ADC _35:
|IO_ADC _36:
|IO_ADC _37:
|IO_ADC 38:
|IO_ADC _39:
|IO_ADC 40:

|IO_ADC_31

IO_ADC_41 :

I0_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

|IO_ADC_5V2 : 10 _Pins.h
|IO_ADC_ABSOLUTE : 10_ADC.h
|IO_ADC_BOARD _TEMP:
|IO_ADC_CURRENT : 10_ADC.h
|IO_ADC_NODE_ID_0:10_Pins.h
|IO_ADC_NODE_ID_1:10_Pins.h
|IO_ADC_RANGE_10V : 10_ADC.h
|IO_ADC_RANGE_5V : 10_ADC.h
|IO_ADC_RATIOMETRIC :
|IO_ADC_RESISTIVE : 10_ADC.h
|IO_ADC_SENSOR_SUPPLY :
|O_ADC_UBAT : 10_Pins.h
|IO_ADC_UBAT_CPU : 10 _Pins.h
|O_BRBL_CUSTOM_DID_IDX_ O :
|IO_BRBL_CUSTOM_DID_IDX_1

|I0_BRBL_CUSTOM _DID_IDX_11

|IO_BRBL_CUSTOM DID_IDX_2:
|O_BRBL_CUSTOM _DID_IDX_3:
|O_BRBL_CUSTOM _DID_IDX_4 :

I0_Pins.h

I0_ADC.h
I0_Pins.h
I0_BRBL.h

:10_BRBL.h
|O_BRBL_CUSTOM_DID_IDX_10:

I0_BRBL.h

:10_BRBL.h
|O_BRBL_CUSTOM DID_IDX_12:
|O_BRBL_CUSTOM DID_IDX_13:
|O_BRBL_CUSTOM _DID_IDX_14 :
|O_BRBL_CUSTOM _DID_IDX_15:

I0_BRBL.h
I0_BRBL.h
I0_BRBL.h
I0_BRBL.h

I0_BRBL.h
I0_BRBL.h
I0_BRBL.h

|IO_BRBL_CUSTOM_DID_IDX_5:10_BRBL.h
|IO_BRBL_CUSTOM_DID_IDX_6:10_BRBL.h
|IO_BRBL_CUSTOM_DID_IDX_7 :10_BRBL.h
|IO_BRBL_CUSTOM_DID_IDX_8 :10_BRBL.h
|IO_BRBL_CUSTOM_DID_IDX_9:10_BRBL.h
|0_BRBL_CUSTOM _DID_TBL_LEN :10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_0:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_1:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_10:10_BRBL.h
|O_BRBL_XTEA PRIV_KEY_IDX_11:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_2:10 BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_3:10_BRBL.h
|IO_BRBL_XTEA PRIV_KEY_IDX_4:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_5:10 BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_6:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_7:10_BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_8:10 BRBL.h
|I0_BRBL_XTEA PRIV_KEY_IDX_9:10 BRBL.h
|0 BRBL_XTEA PRIV_KEY_LEN:10_BRBL.h
|0 BRBL_XTEA PRIV_KEY_TBL_LEN:I0_BRBL.h
|IO_CAN_BAUDRATE_1000K : 10_CAN.h
|IO_CAN_BAUDRATE_100K : 10_CAN.h
|IO_CAN_BAUDRATE_10K : I0_CAN.h
|IO_CAN_BAUDRATE_125K : 10_CAN.h
|IO_CAN_BAUDRATE_20K : I0_CAN.h
|IO_CAN_BAUDRATE_250K : 10_CAN.h
|IO_CAN_BAUDRATE_25K : 10_CAN.h
|IO_CAN_BAUDRATE_500K : 10_CAN.h
|IO_CAN_BAUDRATE_50K : 10_CAN.h
|IO_CAN_BAUDRATE_800K : I0_CAN.h
|IO_CAN_CHANNEL_0 : 10_Pins.h
|IO_CAN_CHANNEL_1 :10_Pins.h
|IO_CAN_EXT_FRAME : 10_CAN.h
|IO_CAN_MSG_READ : 10_CAN.h
|IO_CAN_MSG_WRITE : 10_CAN.h
|IO_CAN_STD_FRAME : I0_CAN.h

|IO_CRYPT_XTEA_KEY_LEN:

I0_DI_00:
|0_DI_01
|0 DI_02:
IO DI_03:
|O_DI_04 :
|O_DI_05:
|O_DI_06 :
|0_DI_07:
|0 DI_10:
|0_DI_11
IO DI_12:
IO DI_13:
IO DI_14:
IO DI_15:
IO DI_16:
|0 DI_17:
IO DI_18:
IO DI_19:
|0 DI_20:
|0_DI_21
|0 DI_22:
|0 DI_23:
|0 DI_24:
|0 DI_25:
|0 DI_26:
|0 DI_27:
IO DI_28:
|0 DI_29:
|0 DI_30:
|0_DI_31

10_DO_01

|I0_DO _02:

I0_Pins.h

: 10_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

: 10_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

: 10_Pins.h

I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h
I0_Pins.h

: 10_Pins.h
IO _DI PD:
IO _DI PU:
IO_DO_00:

I0_DIO.h
I0_DIO.h
I0_Pins.h
: 10_Pins.h
I0_Pins.h

I0_Crypt.h

|I0_DO _03:
|I0_DO_04 :
|I0_DO _05:
|I0_DO 06 :
|I0_DO_07:
I0_DO_10:
I0_DO_11
|0 DO _20:
I0_DO_21
|0 DO _22:
|I0_DO _23:
|0 _DO 24 :
|I0_DO _25:
|0 DO _30:
I0_DO_31
IO DO _32:
|0 _DO _33:
|0 DO _34:
|0 DO _35:

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

: 10_Pins.h

I0O_Pins.h

: 10_Pins.h

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

: 10_Pins.h

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h

|IO_DRIVER_MODE_DEFAULT : I0_Driver.h

IO _DRIVER_MODE_SERVICE_WD : 10_Driver.h
|IO_DRIVER_RST_STAT _NA: 10_Driver.h
|IO_DRIVER_RST_STAT _PORST : I0_Driver.h
|IO_DRIVER_RST_STAT_SW :10_Driver.h
|IO_DRIVER_RST_STAT WD : 10_Driver.h

IO _DRIVER_RST_STAT _WDT : I0_Driver.h

IO _DRIVER_RTBM_UDS RPG_ATTEMPT_AUTH_APP:
I0_Driver.h

|IO_DRIVER_RTBM_UDS RPG_ATTEMPT_AUTH BL:
I0_Driver.h

|IO_DRIVER_RTBM_UDS RPG_ATTEMPT_NONE :
I0_Driver.h

|IO_DRIVER_RTBM_UDS_ RSP_NONE : I0_Driver.h
IO _DRIVER_RTBM_UDS RSP_SEND : 10_Driver.h
IO_DRIVER_SAFETY_SWITCH_EXT : 10_Driver.h
IO_DRIVER_SAFETY_SWITCH_INT : I0_Driver.h

IO DRIVER_SAFETY_SWITCH_NONE : I0_Driver.h
IO DRIVER_SYSTEM CLOCK : 10 _Driver.h

IO _ E_ADC_CHANNEL _STARTUP : I0_Constants.h
IO_E _ADC _INVALID : 10_Constants.h

IO _E BUSY : 10 _Constants.h

IO _E _CAN_BUS OFF : 10_Constants.h

IO E_ CAN_ERROR_PASSIVE : 10_Constants.h

IO E CAN_FIFO_FULL : IO0_Constants.h

IO _E_CAN_INVALID DATA: 10 Constants.h

IO E_ CAN_MAX HANDLES REACHED : 10 _Constants.h
IO E_ CAN_MAX MO _ REACHED : 10 _Constants.h

IO _ E_ CAN_OLD_DATA: 10 _Constants.h

IO _E_CAN_OVERFLOW : I0_Constants.h

IO E_ CAN_WRONG_HANDLE : 10_Constants.h

IO _E_CH CAPABILITY : 10_Constants.h
IO_E_CHANNEL _BUSY : 10_Constants.h

IO _E_ CHANNEL_NOT_CONFIGURED : I0_Constants.h
IO _E DI _INVALID LIMITS : 10_Constants.h

IO _E_ DI INVALID VOLTAGE : 10_Constants.h

IO _E DI OPEN _LOAD : 10 _Constants.h

IO _E DI OPEN _LOAD OR_SHORT_CIRCUIT :
I0_Constants.h

IO_E DI SHORT BATTERY : 10 _Constants.h

IO _E DI SHORT_CIRCUIT : I0_Constants.h

IO_E DISCHARGE_FAILED : 10_Constants.h

IO E DO _CHANNEL_STARTUP : I0_Constants.h

IO E DO_CURRENT_INACCURATE : I0_Constants.h
IO E DO_DIAG TRANSIENT OSC :10_Constants.h
IO E DO_OPEN _LOAD :10_Constants.h

IO E DO _OPEN_LOAD OR _SHORT_BATTERY :
I0_Constants.h

IO E DO _OUTPUT _DISABLED : 10 _Constants.h

IO E DO_OUTPUT_STARTUP_ERROR: 10 _Constants.h
IO E DO_SHORT BATTERY : 10_Constants.h

IO _ E DO_SHORT_CIRCUIT : 10_Constants.h

IO _E_DRIVER INITIALIZED : I0_Constants.h

IO _E _DRIVER _NOT _INITIALIZED : I0_Constants.h
IO E_ DRV_SAFETY_CONF_NOT_CONFIG :
I0_Constants.h

IO E ECU_ALREADY_IN_SAFE_STATE : 10_Constants.h
IO E_ EEPROM _BUFFER _FULL : I0_Constants.h

IO E_ EEPROM_CRC_MISMATCH : 10_Constants.h

IO E_ EEPROM_RANGE : 10_Constants.h

IO E FET _PROTECTION : IO_Constants.h

IO _E_GROUP_CONFLICT : 10_Constants.h

IO _E_INVALID_CHANNEL ID : 10 _Constants.h

IO _E INVALID _CRC : I0_Constants.h

IO _E _INVALID_DIAG _STATE : I0_Constants.h

IO _E_INVALID_PARAMETER : 10 _Constants.h

IO _E _INVALID_SAFETY_CONFIG : 10 _Constants.h

IO _ E_ NO_SAFETY_SWITCH_CONFIGURED :
I0_Constants.h

IO _ E NODEID_EEPROM_FALLBACK : 10 _Constants.h
IO _E NODEID_EEPROM _INVALID : I0_Constants.h

IO _E NODEID _EEPROM_MISMATCH : I0_Constants.h
IO _E_NODEID_PINS_INVALID : I0_Constants.h

IO _E _NULL POINTER : 10_Constants.h

IO E OK: 10 _Constants.h

IO _E PERIODIC_NOT_CONFIGURED : 10_Constants.h
IO E PID_NO_FREE_HANDLES : 10 _Constants.h

IO _E PID USED : 10 _Constants.h

IO_E PROT_ACTIVE : 10 _Constants.h

IO _E PROT _FATAL : IO _Constants.h

IO _E_ PROT_PERMANENT_OFF : 10_Constants.h

IO _E_ PROT_REENABLE : I0_Constants.h

IO E_ PROT_TEMP_OVERLOAD : I0_Constants.h

IO E_ PROT_USER _OVERLOAD : I0 _Constants.h

IO E PVG_OUTPUT_DISABLED : 10_Constants.h

IO E_ PVG_SHORT_BATTERY : 10_Constants.h

IO E PVG_SHORT_CIRCUIT : I0_Constants.h

IO E PWD CAPTURE_ERROR : 10_Constants.h

IO E PWD HIGH LEVEL: 10 _Constants.h

IO E PWD LOW _LEVEL : 10 _Constants.h

IO E_ PWD NOT_FINISHED : 10_Constants.h

IO E PWD TIMER OVERFLOW :10_Constants.h

IO E PWM_CAPTURE_ERROR : 10 _Constants.h

IO E_ PWM_CHANNEL STARTUP : 10_Constants.h
IO E_ PWM_CURRENT_INACCURATE : 10_Constants.h
IO E_ PWM_DIAG_TRANSIENT_OSC : 10 _Constants.h
IO E_ PWM_NOT _FINISHED : 10_Constants.h

IO E PWM_OPEN LOAD : 10 _Constants.h

IO E PWM_OPEN_LOAD OR SHORT BATTERY :
I0_Constants.h

IO E_ PWM_OUTPUT_DISABLED : I0_Constants.h

IO E PWM_OUTPUT_HIGH : I0_Constants.h

IO E PWM_OUTPUT _LOW :10_Constants.h

IO E PWM_OUTPUT_STARTUP_ERROR : 10_Constants.h
IO E_ PWM_SHORT_BATTERY : I0_Constants.h

IO E PWM_SHORT_CIRCUIT : I0_Constants.h

IO E_ RESET _COUNTER_INVALID : I0_Constants.h
IO _E_SAFETY_NOT _SUPPORTED : I0_Constants.h
IO E_ SBRAM _CONTENT INVALID : I0_Constants.h
IO _E _SPI BUFFER _FULL : I0_Constants.h

IO _E_SPI_ MAX DEV_REACHED : 10 _Constants.h

IO E_SW_INTERNAL : I0_Constants.h

IO E_ SW_OUTPROT_SM : 10_Constants.h
IO_E_TASK NO _FREE_SLOTS :10_Constants.h

IO E_UART _BUFFER _EMPTY : I0_Constants.h

IO E_UART _BUFFER FULL : 10 _Constants.h

IO E_UART_OVERFLOW :10_Constants.h

IO _E _UART _PARITY : 10_Constants.h

IO _E_UNKNOWN : 10 _Constants.h

IO_E VOUT _OUTPUT_DISABLED : 10_Constants.h
IO _E VOUT PRECISION : I0_Constants.h

IO _E VOUT_SHORT _BATTERY : 10 _Constants.h

IO E VOUT_SHORT_CIRCUIT : I0_Constants.h

IO E_ WD_INT_ONLY_NON_SAFETY : 10 _Constants.h
IO E WD_TRIGGER_DISABLED : 1I0_Constants.h

IO E WD_TRIGGER_TEMPORARY_DISABLED :
I0_Constants.h

IO E WRONG_HW _TYPE : 10_Constants.h
IO _INT_POWERSTAGE_ENABLE : 10_Pins.h
IO _INT_PVG VOUT_0 ENABLE : 10 _Pins.h
IO _INT_PVG VOUT_1 ENABLE : 10_Pins.h
IO _K15:10_Pins.h

IO LED 00 :10 _Pins.h

IO LED 01:10_Pins.h

IO LED 02 :10 _Pins.h

IO LED 03:10 _Pins.h

IO LED 04 :10 _Pins.h

IO LED 05:10 _Pins.h

IO LED 06 :10 _Pins.h

IO LED 07 :10_Pins.h

IO_PID_MAX HANDLES :10_PID.h

IO POWER_OFF : 1I0_POWER.h

IO POWER_ON : 10_POWER.h

IO _PVG_00:10 _Pins.h

IO _PVG_01:10_Pins.h

IO _PVG _02:10 _Pins.h

IO _PVG _03:10 _Pins.h

IO _PVG 04 :10 _Pins.h

IO _PVG _05:10 _Pins.h

IO PWD 00:10 Pins.h

IO PWD 01:10 _Pins.h

IO PWD 02:10 Pins.h

IO PWD 03:10 Pins.h

IO PWD 10:10 _Pins.h

IO PWD _11:10_Pins.h

IO PWD 12:10 _Pins.h

IO PWD 13:10 _Pins.h

IO PWD 20:10 Pins.h

IO PWD 21:10 _Pins.h

IO PWD 22:10 Pins.h

IO PWD 23:10 Pins.h

|IO_PWD_BOTH_COUNT : 10_PWD.h
|IO_PWD_DOWN_COUNT : I0_PWD.h
|IO_PWD_FALLING_COUNT : 10_PWD.h
|IO_PWD_FALLING_VAR : 10_PWD.h
|IO_PWD_HIGH_TIME : 10_PWD.h
|IO_PWD_INC_1_COUNT : 10_PWD.h
|IO_PWD_INC_2_COUNT : 10_PWD.h
|IO_PWD_LOW_TIME : 10_PWD.h

|IO_PWD_PD :10_PWD.h
|IO_PWD_PERIOD_TIME : I0_PWD.h
IO_PWD_PU :10_PWD.h
|IO_PWD_RESOLUTION_0 2:10_PWD.h
|IO_PWD_RESOLUTION_0 4 :10_PWD.h
|IO_PWD_RESOLUTION_0 8:10_PWD.h
|IO_PWD_RESOLUTION_1_6:10_PWD.h
|IO_PWD_RESOLUTION_3 2:10_PWD.h

|IO_PWD_RISING_COUNT : 10_PWD.h
|IO_PWD_RISING_VAR : 10_PWD.h
|IO_PWD_UP_COUNT : I0_PWD.h

I0_PWM_00:

I0_PWM_01

I0_PWM_11 :

|IO_PWM_CURRENT_QUEUE_MAX : I0_PWM.h

I0O_Pins.h

: 10_Pins.h
IO_PWM 02 :
IO_PWM 03 :
IO_PWM 04 :
IO_PWM _05:
IO_PWM _10:

I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0O_Pins.h
I0_Pins.h

|IO_SAFETY_SWITCH_0: 10_Pins.h
|IO_SAFETY_SWITCH_1 : 10_Pins.h
|IO_SAFETY_SWITCH_NONE : 10_Driver.h
|IO_UART : 10_Pins.h

|IO_VOUT 00
I0_VOUT 01
|IO_VOUT 02
|IO_VOUT 03

:10_Pins.h
:10_Pins.h
:10_Pins.h
:10_Pins.h

« I0_VOUT 04 :10_Pins.h
« 10_VOUT 05 :10_Pins.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C APl Manual by

oj,g_)‘(mge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All Functions | Typedefs | Enumerations | Enumerator |
d f i t
T ']

-N -

e NULL : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C API Manual by

162

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All Functions | Typedefs | Enumerations | Enumerator |
d | f| i
B I B ']

-t-

e TRUE : ptypes_xe167.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C API Manual by

162

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages | Data Structures m

File List

All Functions | Typedefs | Enumerations | Enumerator |
d f i t
B I I '

-U =

e UINT32 ALL BITS SET : TypesGen.h

Generated on Mon Nov 16 2020 16:59:49 for HY-TTC 30 Family C API Manual by

162

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures | Files |

Related Pages

Here is a list of all related documentation pages:

Diagnostic state machine error codes Details
about the
errors of the
diagnostic
state
machine

HY-TTC30 Family pin features Listing of all
IO driver
pins and
their
configuration
options

Pin and diagnostic features Explicit
overview of
the
diagnostic
functions of
the ECU
pins

ECU Map Description
and
properties of
the ECU

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

Implementation Examples for Safety Functions Example for
using the 10-
Driverin a
safety
critical
environment

Examples for using UDS support functions

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures Files

External ;

External Directory Reference

Directories
directory LogisticTypes

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxygengky:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures Files

External ; LogisticTypes ;

LogisticTypes Directory Reference

Directories
directory Apdb

directory Types

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxiaenyEY:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures Files

External j LogisticTypes ; Apdb ,.f

Apdb Directory Reference

Files

file Apdb.h
APDB define for bootloader.

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyiaenyEY:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,zbz)l?gorflanual D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page | Related Pages | Data Structures | Files |

inc ;r

inc Directory Reference

Files

file ApdbCfg.h
Definitions for Apdb.h.

fle DIAG_Constants.h
Global defines for IO Driver diagnostic state machine and
WD.

file DIAG_Functions.h
Auxiliary functions for the diagnostic state machine.

file 10_ADC.h
|O Driver functions for ADC.

file 10_BRBL.h
API for accessing data in the branding block of the ECU.

file 10_CAN.h
IO Driver functions for CAN communication.

file 10_Constants.h

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html

file

file

file

file

file

file

file

file

file

file

Global defines for 1O Driver.

I0_Crypt.h
API for I/O driver cryptographic functions.

10_DIO.h
|O Driver functions for Digital Input/Output.

I0_Driver.h
High level interface to 10O Driver.

I0_EEPROM.h
O Driver functions for EEPROM.

I0_EEPROM_Preload.h
Pre-load functions for EEPROM.

I0_LED.h
|O driver functions for LED.

10_NodelD.h
|O Driver functions for reading the NodelD pins.

I0_PID.h
Contains the data structure for configuring the PID
controller.

I0_Pins.h
Global 10 Pin defines for IO Driver.

I0_POWER.h
IO Driver functions for Power control.

file

file

file

file

file

file

file

file

file

I0_PVG.h
IO Driver functions for PVG channels.

I0_PWD.h
|O Driver functions for timer input channels.

I0_PWM.h
O Driver functions for PWM channels.

I0O_RTC.h
RTC functions, provides exact timing functions.

I0_UART.h
IO Driver functions for UART communication.

10_Vout.h
|O Driver functions for voltage outputs.

I0_WD.h
|O-Driver for the Window Watchdog.

I0_WDTimer.h
|O Driver functions for the CPU's Watchdog timer.

ptypes_xe167.h
Primitive data types.

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by

ej@‘_)‘gﬁge 1.8.2

http://www.doxygen.org/index.html

HY-TTC 30 Family C

TrControl ,ZABI?OIoll\/IanuaI D-TTC-X-G-

HYDAC INTERNATIONAL

Main Page Related Pages Data Structures Files

External j LogisticTypes ; Types j

Types Directory Reference

Files

file TypesGen.h
Types header file.

Generated on Mon Nov 16 2020 16:59:48 for HY-TTC 30 Family C API Manual by
doxyiaenyEY:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_lqqfn_/efnflx_pdf_out/index.html
http://www.doxygen.org/index.html

	HY-TTC 30 Family I/O Driver Manual
	Diagnostic state machine error codes
	HY-TTC30 Family pin features
	Analog Inputs
	1-Mode ADC inputs (primary function)
	3-Mode ADC inputs (primary function)
	4-Mode ADC inputs (primary function)
	Normal ADC inputs
	32V Analog Inputs (secondary function of PWM Outputs)
	LED Outputs
	32V Analog Inputs (secondary function of Low-Side Digital Outputs)
	32V Analog Inputs (secondary function of PWD Inputs)
	32V Analog Inputs (secondary function of PVG Outputs)

	Digital inputs
	Digital inputs with configurable pull-up/down resistor (secondary function of 1-Mode ADC Inputs)
	Digital inputs (secondary function of 3-Mode ADC Inputs)
	Digital inputs (secondary function of 4-Mode ADC Inputs)
	Digital inputs with configurable pull-up/down resistor (secondary function of PWD Inputs)
	Digital inputs (secondary function of PWM Outputs)
	Digital inputs (secondary function of Low-Side Digital Outputs)
	Digital inputs (secondary function of PVG Outputs)

	PWD Inputs
	Complex Digital Timer Inputs with configurable pull-up/down resistor and incremental decoder (primary function)
	Complex Digital Timer Inputs with configurable pull-up/down resistor (primary function)
	Complex Digital Timer Inputs (secondary function of PWM Outputs)
	Digital Timer Inputs (secondary function of PWM Outputs with Current Measurement)

	High-Side PWM outputs
	High-Side PWM Outputs with Current Measurement (primary function)
	High-Side PWM Outputs (primary function)

	Digital Outputs
	Low-Side Digital Outputs (primary function)
	High-Side Digital Outputs with current measurement (secondary function of PWM Outputs)
	High-Side Digital Outputs (secondary function of PWM Outputs)
	Push-Pull Digital Outputs (secondary function of PVG Outputs)

	PVG/Voltage Outputs
	PVG Outputs (primary function)
	Voltage Outputs (secondary function of PVG Outputs)

	Pin and diagnostic features
	Diagnostic features of HY-TTC 30 Family

	ECU Map
	ECU properties
	Memory Map

	Implementation Examples for Safety Functions
	Example implementation for Safety-Callback
	Example for calling PWM step functions for safety critical PWM outputs to explain how to react on certain error codes of the step functions:
	Example for safety critical Driver configuration
	Example for manual safety switch test

	Examples for using UDS support functions
	Read DataIdentifiers stored in the Branding Block
	Machine active - Reprogramming not allowed
	Reset to boot mode with authentication in bootloader
	Reset to boot mode with authentication in application

	Data Structures
	Data Structures
	_diag_errorcode
	device_num
	error_code
	faulty_value

	_io_adc_safety_conf
	adc_val_lower
	adc_val_upper

	_io_brbl_can_id_
	extended
	ID

	_io_brbl_can_param
	CANBaudrate
	CANChannel
	CANDownloadID
	CANUploadID
	UDSOnCANFuncRxID
	UDSOnCANRxID
	UDSOnCANTxID

	_io_brbl_dids
	Did
	DidData
	DidLength

	_io_can_data_frame
	data
	id
	id_format
	length

	_io_driver_di_limits
	high_thresh1
	high_thresh2
	low_thresh1
	low_thresh2

	_io_driver_rst_info
	reset_counter
	reset_reason
	trap_info

	_io_driver_safety_conf
	cycle_time
	error_callback
	glitch_filter_time
	safety_switch_type

	_io_driver_trap_info
	cpu_eccstat
	cpu_pecon
	cpu_tfr
	cpu_trapstat
	fault_location
	trap_id

	_io_pid_config
	Kd
	Kff
	Ki
	Kp
	max_limit
	min_limit

	_io_pwd_cplx_safety_conf
	pwd_freq_val_lower
	pwd_freq_val_upper
	pwd_pulse_val_lower
	pwd_pulse_val_upper

	_io_pwd_inc_safety_conf
	pwd_cnt_val_lower
	pwd_cnt_val_upper

	_io_pwd_pulse_samples
	pulse_sample
	pulse_samples_count

	_io_pwm_current_queue
	count
	overrun
	values

	_io_pwm_current_safety_conf
	current_tolerance
	dead_time
	pwm_safety_conf

	_io_pwm_safety_conf
	duty_cycle_tolerance
	margin_lower_lim
	margin_upper_lim
	safety_switch

	ApdbType
	AbrdTimeout
	ApdbVersion
	ApplicationCrc
	ApplicationId
	ApplicationVersion
	BuildDate
	CanBaudrate
	CanChannel
	CanDownloadId
	CanUploadId
	CodeSize
	CrcSeed
	CrcStartAddress
	DebugKey
	DlMulticastIpAddress
	Flags
	FlashDate
	HeaderCrc
	Hook1
	Hook2
	Hook3
	LegacyApplicationCrc
	LegacyHeaderCrc
	MagicSeed
	MainAddress
	ManufacturerId
	NodeNumber
	NodeType
	Password
	Reserved
	SubnetMask
	TargetIpAddress

	can_id
	Extended
	Id

	Data Structure Index
	Data Fields
	All
	Variables

	Files
	File List
	Apdb.h
	ApdbType
	AbrdTimeout
	ApdbVersion
	ApplicationCrc
	ApplicationId
	ApplicationVersion
	BuildDate
	CanBaudrate
	CanChannel
	CanDownloadId
	CanUploadId
	CodeSize
	CrcSeed
	CrcStartAddress
	DebugKey
	DlMulticastIpAddress
	Flags
	FlashDate
	HeaderCrc
	Hook1
	Hook2
	Hook3
	LegacyApplicationCrc
	LegacyHeaderCrc
	MagicSeed
	MainAddress
	ManufacturerId
	NodeNumber
	NodeType
	Password
	Reserved
	SubnetMask
	TargetIpAddress

	APDB_FLAGS_ABRD_ENABLE
	APDB_FLAGS_CRC64_ENABLE
	APDB_FLAGS_MULTI_APP
	APDB_SIZE
	APDB_VERSION

	ApdbCfg.h
	APDB
	APDB_ADDRESS
	APPL_START
	LOCATE_APDB
	_cstart
	appl_db

	DIAG_Constants.h
	_diag_errorcode
	device_num
	error_code
	faulty_value

	DIAG_ERR_NOACTION
	DIAG_ERR_SAFESTATE
	DIAG_STATE_DISABLED
	DIAG_STATE_INIT
	DIAG_STATE_MAIN
	DIAG_STATE_SAFE_STATE
	DIAG_STATE_STARTUP
	DIAG_ERR_CALLBACK
	DIAG_ERRORCODE
	DIAG_ErrorType
	_diag_errortype
	DIAG_E_NOERROR
	DIAG_E_ADC_LIMITS
	DIAG_E_ADC_5V2_SUPPLY
	DIAG_E_ADC_SENSOR_SUPPLY
	DIAG_E_ADC_KL30_MAIN
	DIAG_E_ADC_KL30_CPU
	DIAG_E_OVER_TEMPERATURE
	DIAG_E_MEM_USER_STACK
	DIAG_E_MEM_REGISTER
	DIAG_E_MEM_DSRAM
	DIAG_E_MEM_PSRAM
	DIAG_E_MEM_DPRAM
	DIAG_E_MEM_ZeroFlag
	DIAG_E_MEM_CarryFlag
	DIAG_E_MEM_NegativeFlag
	DIAG_E_MEM_OverflowFlag
	DIAG_E_MEM_SYS_STACK_OF
	DIAG_E_MEM_SYS_STACK_UF
	DIAG_E_MEM_SR0_TRAP
	DIAG_E_MEM_CLASS_B_TRAP
	DIAG_E_PWM_CURRENT_ZERO
	DIAG_E_PWM_CURRENT_OFFSET
	DIAG_E_PWM_LIMITS_RANGE
	DIAG_E_PWM_LIMITS_TOL
	DIAG_E_PWM_PERIOD_MISMATCH
	DIAG_E_PWM_CURRENT
	DIAG_E_PWM_CURRENT_DEAD_TIME
	DIAG_E_PWM_CURRENT_OFFS_DRIFT
	DIAG_E_PWD_LIMITS_FREQ
	DIAG_E_PWD_LIMITS_PULSE_WIDTH
	DIAG_E_CYCLE_TIME
	DIAG_E_RPP
	DIAG_E_EXT_WD
	DIAG_E_LS_PROT
	DIAG_E_OVD_STARTUP
	DIAG_E_OVD
	DIAG_E_SAFETY_SW_INT
	DIAG_E_SAFETY_SW_EXT
	DIAG_E_SAFETY_SW_SHUT_OFF
	DIAG_E_INVALID_DIAG_STATE
	DIAG_E_INVALID_STARTUP_STATE
	DIAG_E_INVALID_MAIN_STATE
	DIAG_E_WD_STARTUP
	DIAG_E_SR_LowNibble
	DIAG_E_SR_HighNibble
	DIAG_E_FREQ_STARTUP
	DIAG_E_TIMEOUT
	DIAG_E_APPL_SAFE_STATE
	DIAG_E_PLL_VCO_NOT_LOCKED
	DIAG_E_SW_INTERNAL
	DIAG_E_INIT_ERROR
	DIAG_E_INT_WATCHDOG
	DIAG_E_MEM_SOFTBREAK_TRAP
	DIAG_E_MAX_ERRORCODES

	DIAG_Functions.h
	DIAG_STARTUP_TEST_CTRL
	DIAG_STARTUP_TEST_INHIBIT
	DIAG_STARTUP_TEST_ACTIVATE

	DIAG_EnableDischargeCircuit
	DIAG_EnterSafestate
	DIAG_StartupTestCtrl
	DIAG_Status

	IO_ADC.h
	_io_adc_safety_conf
	adc_val_lower
	adc_val_upper

	IO_ADC_ABSOLUTE
	IO_ADC_CURRENT
	IO_ADC_NO_MODE
	IO_ADC_RANGE_10V
	IO_ADC_RANGE_5V
	IO_ADC_RATIOMETRIC
	IO_ADC_RESISTIVE
	IO_ADC_SAFETY_CONF
	IO_ADC_BoardTempFloat
	IO_ADC_BoardTempSbyte
	IO_ADC_ChannelDeInit
	IO_ADC_ChannelInit
	IO_ADC_Get

	IO_BRBL.h
	_io_brbl_can_id_
	extended
	ID

	_io_brbl_can_param
	CANBaudrate
	CANChannel
	CANDownloadID
	CANUploadID
	UDSOnCANFuncRxID
	UDSOnCANRxID
	UDSOnCANTxID

	_io_brbl_dids
	Did
	DidData
	DidLength

	IO_BRBL_CUSTOM_DID_IDX_0
	IO_BRBL_CUSTOM_DID_IDX_1
	IO_BRBL_CUSTOM_DID_IDX_10
	IO_BRBL_CUSTOM_DID_IDX_11
	IO_BRBL_CUSTOM_DID_IDX_12
	IO_BRBL_CUSTOM_DID_IDX_13
	IO_BRBL_CUSTOM_DID_IDX_14
	IO_BRBL_CUSTOM_DID_IDX_15
	IO_BRBL_CUSTOM_DID_IDX_2
	IO_BRBL_CUSTOM_DID_IDX_3
	IO_BRBL_CUSTOM_DID_IDX_4
	IO_BRBL_CUSTOM_DID_IDX_5
	IO_BRBL_CUSTOM_DID_IDX_6
	IO_BRBL_CUSTOM_DID_IDX_7
	IO_BRBL_CUSTOM_DID_IDX_8
	IO_BRBL_CUSTOM_DID_IDX_9
	IO_BRBL_CUSTOM_DID_TBL_LEN
	IO_BRBL_XTEA_PRIV_KEY_IDX_0
	IO_BRBL_XTEA_PRIV_KEY_IDX_1
	IO_BRBL_XTEA_PRIV_KEY_IDX_10
	IO_BRBL_XTEA_PRIV_KEY_IDX_11
	IO_BRBL_XTEA_PRIV_KEY_IDX_2
	IO_BRBL_XTEA_PRIV_KEY_IDX_3
	IO_BRBL_XTEA_PRIV_KEY_IDX_4
	IO_BRBL_XTEA_PRIV_KEY_IDX_5
	IO_BRBL_XTEA_PRIV_KEY_IDX_6
	IO_BRBL_XTEA_PRIV_KEY_IDX_7
	IO_BRBL_XTEA_PRIV_KEY_IDX_8
	IO_BRBL_XTEA_PRIV_KEY_IDX_9
	IO_BRBL_XTEA_PRIV_KEY_LEN
	IO_BRBL_XTEA_PRIV_KEY_TBL_LEN
	IO_BRBL_CAN_ID
	IO_BRBL_CAN_PARAM
	IO_BRBL_CUSTOM_DID
	IO_BRBL_GetCanParam
	IO_BRBL_GetDid
	IO_BRBL_GetXteaKey
	IO_BRBL_Validate

	IO_CAN.h
	_io_can_data_frame
	data
	id
	id_format
	length

	IO_CAN_BAUDRATE_1000K
	IO_CAN_BAUDRATE_100K
	IO_CAN_BAUDRATE_10K
	IO_CAN_BAUDRATE_125K
	IO_CAN_BAUDRATE_20K
	IO_CAN_BAUDRATE_250K
	IO_CAN_BAUDRATE_25K
	IO_CAN_BAUDRATE_500K
	IO_CAN_BAUDRATE_50K
	IO_CAN_BAUDRATE_800K
	IO_CAN_EXT_FRAME
	IO_CAN_MSG_READ
	IO_CAN_MSG_WRITE
	IO_CAN_STD_FRAME
	IO_CAN_DATA_FRAME
	IO_CAN_ConfigFIFO
	IO_CAN_ConfigMsg
	IO_CAN_DeInit
	IO_CAN_DeInitHandle
	IO_CAN_FIFOStatus
	IO_CAN_Init
	IO_CAN_InitTimings
	IO_CAN_MsgStatus
	IO_CAN_ReadFIFO
	IO_CAN_ReadMsg
	IO_CAN_Status
	IO_CAN_WriteFIFO
	IO_CAN_WriteMsg

	IO_Constants.h
	IO_E_ADC_CHANNEL_STARTUP
	IO_E_ADC_INVALID
	IO_E_BUSY
	IO_E_CAN_BUS_OFF
	IO_E_CAN_ERROR_PASSIVE
	IO_E_CAN_FIFO_FULL
	IO_E_CAN_INVALID_DATA
	IO_E_CAN_MAX_HANDLES_REACHED
	IO_E_CAN_MAX_MO_REACHED
	IO_E_CAN_OLD_DATA
	IO_E_CAN_OVERFLOW
	IO_E_CAN_WRONG_HANDLE
	IO_E_CH_CAPABILITY
	IO_E_CHANNEL_BUSY
	IO_E_CHANNEL_NOT_CONFIGURED
	IO_E_DI_INVALID_LIMITS
	IO_E_DI_INVALID_VOLTAGE
	IO_E_DI_OPEN_LOAD
	IO_E_DI_OPEN_LOAD_OR_SHORT_CIRCUIT
	IO_E_DI_SHORT_BATTERY
	IO_E_DI_SHORT_CIRCUIT
	IO_E_DISCHARGE_FAILED
	IO_E_DO_CHANNEL_STARTUP
	IO_E_DO_CURRENT_INACCURATE
	IO_E_DO_DIAG_TRANSIENT_OSC
	IO_E_DO_OPEN_LOAD
	IO_E_DO_OPEN_LOAD_OR_SHORT_BATTERY
	IO_E_DO_OUTPUT_DISABLED
	IO_E_DO_OUTPUT_STARTUP_ERROR
	IO_E_DO_SHORT_BATTERY
	IO_E_DO_SHORT_CIRCUIT
	IO_E_DRIVER_INITIALIZED
	IO_E_DRIVER_NOT_INITIALIZED
	IO_E_DRV_SAFETY_CONF_NOT_CONFIG
	IO_E_ECU_ALREADY_IN_SAFE_STATE
	IO_E_EEPROM_BUFFER_FULL
	IO_E_EEPROM_CRC_MISMATCH
	IO_E_EEPROM_RANGE
	IO_E_FET_PROTECTION
	IO_E_GROUP_CONFLICT
	IO_E_INVALID_CHANNEL_ID
	IO_E_INVALID_CRC
	IO_E_INVALID_DIAG_STATE
	IO_E_INVALID_PARAMETER
	IO_E_INVALID_SAFETY_CONFIG
	IO_E_NO_SAFETY_SWITCH_CONFIGURED
	IO_E_NODEID_EEPROM_FALLBACK
	IO_E_NODEID_EEPROM_INVALID
	IO_E_NODEID_EEPROM_MISMATCH
	IO_E_NODEID_PINS_INVALID
	IO_E_NULL_POINTER
	IO_E_OK
	IO_E_PERIODIC_NOT_CONFIGURED
	IO_E_PID_NO_FREE_HANDLES
	IO_E_PID_USED
	IO_E_PROT_ACTIVE
	IO_E_PROT_FATAL
	IO_E_PROT_PERMANENT_OFF
	IO_E_PROT_REENABLE
	IO_E_PROT_TEMP_OVERLOAD
	IO_E_PROT_USER_OVERLOAD
	IO_E_PVG_OUTPUT_DISABLED
	IO_E_PVG_SHORT_BATTERY
	IO_E_PVG_SHORT_CIRCUIT
	IO_E_PWD_CAPTURE_ERROR
	IO_E_PWD_HIGH_LEVEL
	IO_E_PWD_LOW_LEVEL
	IO_E_PWD_NOT_FINISHED
	IO_E_PWD_TIMER_OVERFLOW
	IO_E_PWM_CAPTURE_ERROR
	IO_E_PWM_CHANNEL_STARTUP
	IO_E_PWM_CURRENT_INACCURATE
	IO_E_PWM_DIAG_TRANSIENT_OSC
	IO_E_PWM_NOT_FINISHED
	IO_E_PWM_OPEN_LOAD
	IO_E_PWM_OPEN_LOAD_OR_SHORT_BATTERY
	IO_E_PWM_OUTPUT_DISABLED
	IO_E_PWM_OUTPUT_HIGH
	IO_E_PWM_OUTPUT_LOW
	IO_E_PWM_OUTPUT_STARTUP_ERROR
	IO_E_PWM_SHORT_BATTERY
	IO_E_PWM_SHORT_CIRCUIT
	IO_E_RESET_COUNTER_INVALID
	IO_E_SAFETY_NOT_SUPPORTED
	IO_E_SBRAM_CONTENT_INVALID
	IO_E_SPI_BUFFER_FULL
	IO_E_SPI_MAX_DEV_REACHED
	IO_E_SW_INTERNAL
	IO_E_SW_OUTPROT_SM
	IO_E_TASK_NO_FREE_SLOTS
	IO_E_UART_BUFFER_EMPTY
	IO_E_UART_BUFFER_FULL
	IO_E_UART_OVERFLOW
	IO_E_UART_PARITY
	IO_E_UNKNOWN
	IO_E_VOUT_OUTPUT_DISABLED
	IO_E_VOUT_PRECISION
	IO_E_VOUT_SHORT_BATTERY
	IO_E_VOUT_SHORT_CIRCUIT
	IO_E_WD_INT_ONLY_NON_SAFETY
	IO_E_WD_TRIGGER_DISABLED
	IO_E_WD_TRIGGER_TEMPORARY_DISABLED
	IO_E_WRONG_HW_TYPE
	IO_ErrorType

	IO_Crypt.h
	IO_CRYPT_XTEA_KEY_LEN
	IO_Crypt_GetPseudoRandomNumber
	IO_Crypt_XteaDecipher
	IO_Crypt_XteaDecipher32
	IO_Crypt_XteaEncipher
	IO_Crypt_XteaEncipher32

	IO_DIO.h
	_io_driver_di_limits
	high_thresh1
	high_thresh2
	low_thresh1
	low_thresh2

	IO_DI_PD
	IO_DI_PU
	IO_DRIVER_DI_LIMITS
	IO_DI_DeInit
	IO_DI_Get
	IO_DI_Init
	IO_DO_DeInit
	IO_DO_GetCur
	IO_DO_Init
	IO_DO_Set

	IO_Driver.h
	_io_driver_safety_conf
	cycle_time
	error_callback
	glitch_filter_time
	safety_switch_type

	_io_driver_trap_info
	cpu_eccstat
	cpu_pecon
	cpu_tfr
	cpu_trapstat
	fault_location
	trap_id

	_io_driver_rst_info
	reset_counter
	reset_reason
	trap_info

	IO_DRIVER_MODE_DEFAULT
	IO_DRIVER_MODE_SERVICE_WD
	IO_DRIVER_RST_STAT_NA
	IO_DRIVER_RST_STAT_PORST
	IO_DRIVER_RST_STAT_SW
	IO_DRIVER_RST_STAT_WD
	IO_DRIVER_RST_STAT_WDT
	IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_APP
	IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_AUTH_BL
	IO_DRIVER_RTBM_UDS_RPG_ATTEMPT_NONE
	IO_DRIVER_RTBM_UDS_RSP_NONE
	IO_DRIVER_RTBM_UDS_RSP_SEND
	IO_DRIVER_SAFETY_SWITCH_EXT
	IO_DRIVER_SAFETY_SWITCH_INT
	IO_DRIVER_SAFETY_SWITCH_NONE
	IO_DRIVER_SYSTEM_CLOCK
	IO_SAFETY_SWITCH_NONE
	IO_DRIVER_RESET_INFO
	IO_DRIVER_RESET_REASON
	IO_DRIVER_SAFETY_CONF
	IO_DRIVER_TRAP_INFO
	_io_driver_reset_reason
	IO_DRIVER_RESET_REASON_PORST
	IO_DRIVER_RESET_REASON_WDT
	IO_DRIVER_RESET_REASON_TRAP
	IO_DRIVER_RESET_REASON_SW
	IO_DRIVER_RESET_REASON_UNKNOWN

	IO_Driver_GetAutoBaudrate
	IO_Driver_GetMode
	IO_Driver_GetResetStatus
	IO_Driver_GetResetStatus_ex
	IO_Driver_GetVersionOfBootloader
	IO_Driver_GetVersionOfDriver
	IO_Driver_Init
	IO_Driver_ResetToBootMode
	IO_Driver_TaskBegin
	IO_Driver_TaskEnd

	IO_EEPROM.h
	IO_EEPROM_DeInit
	IO_EEPROM_GetStatus
	IO_EEPROM_Init
	IO_EEPROM_Read
	IO_EEPROM_Write

	IO_EEPROM_Preload.h
	IO_EEPROM_PreloadDeInit
	IO_EEPROM_PreloadInit
	IO_EEPROM_PreloadRead
	IO_EEPROM_PreloadStatus
	IO_EEPROM_PreloadTask
	IO_EEPROM_PreloadWrite

	IO_LED.h
	IO_LED_ChannelDeInit
	IO_LED_ChannelInit
	IO_LED_Set

	IO_NodeID.h
	IO_NodeID_GetModifier
	IO_NodeID_GetModifierStartup

	IO_PID.h
	_io_pid_config
	Kd
	Kff
	Ki
	Kp
	max_limit
	min_limit

	IO_PID_INVALID_HANDLE
	IO_PID_MAX_HANDLES
	IO_PID_CONFIG
	IO_PID_SetIntegrator

	IO_Pins.h
	IO_ADC_00
	IO_ADC_01
	IO_ADC_10
	IO_ADC_11
	IO_ADC_12
	IO_ADC_13
	IO_ADC_14
	IO_ADC_15
	IO_ADC_20
	IO_ADC_21
	IO_ADC_22
	IO_ADC_23
	IO_ADC_24
	IO_ADC_25
	IO_ADC_26
	IO_ADC_27
	IO_ADC_28
	IO_ADC_29
	IO_ADC_30
	IO_ADC_31
	IO_ADC_32
	IO_ADC_33
	IO_ADC_34
	IO_ADC_35
	IO_ADC_36
	IO_ADC_37
	IO_ADC_38
	IO_ADC_39
	IO_ADC_40
	IO_ADC_41
	IO_ADC_5V2
	IO_ADC_BOARD_TEMP
	IO_ADC_NODE_ID_0
	IO_ADC_NODE_ID_1
	IO_ADC_SENSOR_SUPPLY
	IO_ADC_UBAT
	IO_ADC_UBAT_CPU
	IO_CAN_CHANNEL_0
	IO_CAN_CHANNEL_1
	IO_DI_00
	IO_DI_01
	IO_DI_02
	IO_DI_03
	IO_DI_04
	IO_DI_05
	IO_DI_06
	IO_DI_07
	IO_DI_10
	IO_DI_11
	IO_DI_12
	IO_DI_13
	IO_DI_14
	IO_DI_15
	IO_DI_16
	IO_DI_17
	IO_DI_18
	IO_DI_19
	IO_DI_20
	IO_DI_21
	IO_DI_22
	IO_DI_23
	IO_DI_24
	IO_DI_25
	IO_DI_26
	IO_DI_27
	IO_DI_28
	IO_DI_29
	IO_DI_30
	IO_DI_31
	IO_DO_00
	IO_DO_01
	IO_DO_02
	IO_DO_03
	IO_DO_04
	IO_DO_05
	IO_DO_06
	IO_DO_07
	IO_DO_10
	IO_DO_11
	IO_DO_20
	IO_DO_21
	IO_DO_22
	IO_DO_23
	IO_DO_24
	IO_DO_25
	IO_DO_30
	IO_DO_31
	IO_DO_32
	IO_DO_33
	IO_DO_34
	IO_DO_35
	IO_INT_POWERSTAGE_ENABLE
	IO_INT_PVG_VOUT_0_ENABLE
	IO_INT_PVG_VOUT_1_ENABLE
	IO_K15
	IO_LED_00
	IO_LED_01
	IO_LED_02
	IO_LED_03
	IO_LED_04
	IO_LED_05
	IO_LED_06
	IO_LED_07
	IO_PVG_00
	IO_PVG_01
	IO_PVG_02
	IO_PVG_03
	IO_PVG_04
	IO_PVG_05
	IO_PWD_00
	IO_PWD_01
	IO_PWD_02
	IO_PWD_03
	IO_PWD_10
	IO_PWD_11
	IO_PWD_12
	IO_PWD_13
	IO_PWD_20
	IO_PWD_21
	IO_PWD_22
	IO_PWD_23
	IO_PWM_00
	IO_PWM_01
	IO_PWM_02
	IO_PWM_03
	IO_PWM_04
	IO_PWM_05
	IO_PWM_10
	IO_PWM_11
	IO_SAFETY_SWITCH_0
	IO_SAFETY_SWITCH_1
	IO_UART
	IO_VOUT_00
	IO_VOUT_01
	IO_VOUT_02
	IO_VOUT_03
	IO_VOUT_04
	IO_VOUT_05
	IO_PIN
	IO_PIN_L2
	IO_PIN_L1
	IO_PIN_K4
	IO_PIN_H3
	IO_PIN_K3
	IO_PIN_J3
	IO_PIN_G4
	IO_PIN_F4
	IO_PIN_E3
	IO_PIN_D3
	IO_PIN_C3
	IO_PIN_B3
	IO_PIN_J4
	IO_PIN_H4
	IO_PIN_E4
	IO_PIN_D4
	IO_PIN_C4
	IO_PIN_B4
	IO_PIN_A4
	IO_PIN_A3
	IO_PIN_H1
	IO_PIN_G1
	IO_PIN_F1
	IO_PIN_E1
	IO_PIN_D1
	IO_PIN_C1
	IO_PIN_K1
	IO_PIN_J1
	IO_PIN_B1
	IO_PIN_A1
	IO_PIN_K2
	IO_PIN_J2
	IO_PIN_H2
	IO_PIN_G2
	IO_PIN_F2
	IO_PIN_E2
	IO_INT_PIN_UART_CH0
	IO_INT_PIN_DRIVER
	IO_INT_PIN_RTC
	IO_INT_PIN_PERIODIC
	IO_INT_PIN_POWER
	IO_INT_PIN_EEPROM
	IO_INT_DEV_CPU
	IO_INT_PIN_EXT_WD
	IO_INT_PIN_TEMP
	IO_INT_PIN_POWERSTAGE_ENABLE
	IO_INT_PIN_PVG_VOUT_0_ENABLE
	IO_INT_PIN_PVG_VOUT_1_ENABLE
	IO_INT_PIN_CAN_CH0
	IO_INT_PIN_CAN_CH1
	IO_INT_PIN_5V2
	IO_INT_PIN_SHIFT_LB_HI
	IO_INT_PIN_SHIFT_LB_LO
	IO_INT_PIN_SHIFT1_LB_HI
	IO_INT_PIN_SHIFT1_LB_LO
	IO_PIN_NONE
	IO_PIN_MAX

	IO_POWER.h
	IO_POWER_OFF
	IO_POWER_ON
	IO_POWER_DeInit
	IO_POWER_Get
	IO_POWER_Init
	IO_POWER_Set
	IO_POWER_SetK15Threshold

	IO_PVG.h
	IO_PVG_DeInit
	IO_PVG_Init
	IO_PVG_SetOutput

	IO_PWD.h
	_io_pwd_pulse_samples
	pulse_sample
	pulse_samples_count

	_io_pwd_inc_safety_conf
	pwd_cnt_val_lower
	pwd_cnt_val_upper

	_io_pwd_cplx_safety_conf
	pwd_freq_val_lower
	pwd_freq_val_upper
	pwd_pulse_val_lower
	pwd_pulse_val_upper

	IO_PWD_BOTH_COUNT
	IO_PWD_DOWN_COUNT
	IO_PWD_FALLING_COUNT
	IO_PWD_FALLING_VAR
	IO_PWD_HIGH_TIME
	IO_PWD_INC_1_COUNT
	IO_PWD_INC_2_COUNT
	IO_PWD_LOW_TIME
	IO_PWD_MAX_PULSE_SAMPLES
	IO_PWD_PD
	IO_PWD_PERIOD_TIME
	IO_PWD_PU
	IO_PWD_RESOLUTION_0_2
	IO_PWD_RESOLUTION_0_4
	IO_PWD_RESOLUTION_0_8
	IO_PWD_RESOLUTION_1_6
	IO_PWD_RESOLUTION_3_2
	IO_PWD_RISING_COUNT
	IO_PWD_RISING_VAR
	IO_PWD_UP_COUNT
	IO_PWD_CPLX_SAFETY_CONF
	IO_PWD_INC_SAFETY_CONF
	IO_PWD_PULSE_SAMPLES
	IO_PWD_ComplexDeInit
	IO_PWD_ComplexGet
	IO_PWD_ComplexInit
	IO_PWD_CountDeInit
	IO_PWD_CountGet
	IO_PWD_CountInit
	IO_PWD_CountSet
	IO_PWD_FreqDeInit
	IO_PWD_FreqGet
	IO_PWD_FreqInit
	IO_PWD_IncDeInit
	IO_PWD_IncGet
	IO_PWD_IncInit
	IO_PWD_IncSet
	IO_PWD_PulseDeInit
	IO_PWD_PulseFreqDeInit
	IO_PWD_PulseFreqGet
	IO_PWD_PulseFreqInit
	IO_PWD_PulseGet
	IO_PWD_PulseInit

	IO_PWM.h
	_io_pwm_current_queue
	count
	overrun
	values

	_io_pwm_safety_conf
	duty_cycle_tolerance
	margin_lower_lim
	margin_upper_lim
	safety_switch

	_io_pwm_current_safety_conf
	current_tolerance
	dead_time
	pwm_safety_conf

	IO_PWM_CURRENT_QUEUE_MAX
	IO_PWM_CURRENT_QUEUE
	IO_PWM_CURRENT_SAFETY_CONF
	IO_PWM_SAFETY_CONF
	IO_PWM_CurrentDeInit
	IO_PWM_CurrentInit
	IO_PWM_DeInit
	IO_PWM_GetCur
	IO_PWM_GetCurQueue
	IO_PWM_Init
	IO_PWM_SetCur
	IO_PWM_SetDuty

	IO_RTC.h
	IO_RTC_TICKS_PER_US
	rtc_eventhandler_ptr
	IO_RTC_GetTimeUS
	IO_RTC_Init
	IO_RTC_PeriodicDeInit
	IO_RTC_PeriodicInit
	IO_RTC_StartTime

	IO_UART.h
	IO_UART_DeInit
	IO_UART_GetRxStatus
	IO_UART_GetTxStatus
	IO_UART_Init
	IO_UART_Read
	IO_UART_Task
	IO_UART_Write

	IO_Vout.h
	IO_VOut_DeInit
	IO_VOut_Init
	IO_VOut_SetVoltage

	IO_WD.h
	IO_WD_Service

	IO_WDTimer.h
	IO_WDTIMER_TIMEOUT_MAX
	IO_WDTIMER_TIMEOUT_MIN
	IO_WDTimer_DeInit
	IO_WDTimer_Init
	IO_WDTimer_Service

	ptypes_xe167.h
	FALSE
	NULL
	SBYTE1_ALL_BITS_SET
	SBYTE2_ALL_BITS_SET
	SBYTE4_ALL_BITS_SET
	SBYTE8_ALL_BITS_SET
	TRUE
	UBYTE1_ALL_BITS_SET
	UBYTE2_ALL_BITS_SET
	UBYTE4_ALL_BITS_SET
	UBYTE8_ALL_BITS_SET
	bool
	float4
	sbyte1
	sbyte2
	sbyte4
	sbyte8
	ubyte1
	ubyte2
	ubyte4
	ubyte8

	TypesGen.h
	can_id
	Extended
	Id

	BL_AUTH_KEY
	BL_AUTH_SEED
	UINT16_ALL_BITS_SET
	UINT32_ALL_BITS_SET
	UINT8_ALL_BITS_SET
	CanIdType

	Globals
	All
	_
	a
	b
	c
	d
	f
	i
	n
	s
	t
	u

	Functions
	Typedefs
	Enumerations
	Enumerator
	Macros
	a
	d
	f
	i
	n
	t
	u

