
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering (LM-25)

Master’s Degree Thesis

Deep Learning technique for Model
Dynamic Identification and Forecasting

Supervisors

Prof Giorgio GUGLIERI

PhD. Francesco MARINO

Candidate

Antonino GANDOLFO

Marzo 2023

i

Table of Contents

List of Tables iv

List of Figures v

Acronyms viii

1 Introduction 1

2 Motivation and Objectives 2
2.1 System Identification . 3

2.1.1 Data-driven methods . 3
2.1.2 Physics-driven methods . 3

2.2 Universal Differential Equation . 7
2.3 Physics-encoded Neural ODEs . 7

2.3.1 Grey-box modeling . 8

3 Technological Background 9
3.1 Neurons . 10

3.1.1 Biological Neuron . 10
3.1.2 Artificial Neuron . 11

3.2 How an ANN’s learns . 12
3.2.1 Feed-forward . 12
3.2.2 Backpropagation . 13

3.3 Neural ODE . 16
3.4 Experimental Method . 18

3.4.1 Experimental set-up . 19
3.4.2 Training . 20

4 Case Studies 22
4.0.1 Simple Pendulum . 23
4.0.2 Triple Oscillating Mass . 25

ii

4.0.3 Mass Spring Damper . 27
4.0.4 Electrohydraulic actuator 30

5 Results Analysis 34
5.1 Simple Pendulum . 34

5.1.1 Training and Result . 34
5.2 Triple Oscillating Mass . 37

5.2.1 Mini-batching . 38
5.2.2 Multiple shooting . 40

5.3 Mass spring dumper . 42
5.3.1 Mini-batching . 43
5.3.2 Multiple shooting . 45

5.4 Electrohydraulic actuator . 47
5.4.1 Mini-batching . 48
5.4.2 Multiple shooting . 50

6 Conclusion 52

Bibliography 54

iii

List of Tables

4.1 Simple Pendulum NN parameters 24
4.2 Triple Oscillating Mass NN parameters 27
4.3 Mass Damper Spring NN parameters 29
4.4 Electrohydraulic actuator NN parameters 32

5.1 Simple Pendulum results . 36
5.2 Triple rotating mass results . 37
5.3 Mass Spring Dumper results . 42
5.4 Electrohydraulic actuator results 47

iv

List of Figures

2.1 Model Based Design . 2
2.2 PgNN architecture . 5
2.3 PiNN architecture . 6
2.4 Modeling representation . 8

3.1 Biological neuron . 9
3.2 Artificial neuron . 9
3.3 Example of activation function . 12
3.4 ANN structure . 13
3.5 Two dimensional Loss function «L» 15
3.6 Block diagram of Residual Network 16
3.7 Comparison of sequence of transformation 17
3.8 Differentiation of an ODE solution 18

4.1 Simple pendulum . 23
4.2 Simple pendulum NN structure . 25
4.3 Triple oscillating mass . 25
4.4 Triple rotating mass NN structure 27
4.5 Mass damper spring . 28
4.6 Mass Spring Dumper NN structure 29
4.7 Schematic of the flapper-nozzle servovalve 30
4.8 Feedback control loop of electrohydraulic actuator 31
4.9 Simulink representation electrohydraulic actuator 31
4.10 Electrohydraulic actuator NN structure 33

5.1 Loss Function . 34
5.2 Trained NeuralODE . 35
5.3 Validation x0 = [0,1] . 36
5.4 Validation x0 = [1,0] . 36
5.5 Validation x0 = [2,0] . 36
5.6 Loss Function . 38

v

5.7 Training NeuralODE (position) . 39
5.8 Training NeuralODE (velocity) . 39
5.9 Validation NeuralODE (position) 39
5.10 Validation NeuralODE (velocity) 39
5.11 Loss Function . 40
5.12 Training NeuralODE (position) . 40
5.13 Training NeuralODE (velocity) . 40
5.14 Validation NeuralODE (position) 41
5.15 Validation NeuralODE (velocity) 41
5.16 Loss Function . 43
5.17 NeuralODE trainig . 43
5.18 Validation F = 20N . 44
5.19 Validation F = 20N . 44
5.20 Validation F = 50N . 44
5.21 Loss Function . 45
5.22 NeuralODE trainig . 45
5.23 Validation F = 10N . 46
5.24 Validation F = 20N . 46
5.25 Validation F = 50N . 46
5.26 Loss function . 48
5.27 NeuralODE training . 48
5.28 Validation F = 50N . 49
5.29 Validation F = 200 N . 49
5.30 Validation F = 500N . 49
5.31 Loss function . 50
5.32 NeuralODE training . 50
5.33 Validation F = 50N . 51
5.34 Validation F = 200 N . 51
5.35 Validation F = 500N . 51

vi

Acronyms

AI
Artificial Intelligence

ANN
Artificial Neural Networks

NN
Neural Networks

ML
Machine Learning

SIL
Software-in-the-Loop

LTI
Linear time invariant

PgNN
Physics-guided neural network

PiNN
Physics-informed neural network

PeNN
Physics-encoded neural network

UDE
Universal Differential Equation

viii

Abstract

The mathematical modeling of a system is an activity as complex as it is useful for
many fields of work and research.
Technological development in areas such as machine learning opens the door to
new approaches in data analysis and data knowledge extrapolation.
What we propose in this work is a new approach to system identification that takes
the advantage of the newest Deep Learning research for the virtualization of models
from measurements.
NeuralODEs are a new formulation of the classical Neural Network.
NeuralODE set itself the objective not of imitating the pattern of a system but
really learning its dynamics from data. The aim of the work is to validate this
framework for the generation of a surrogate model able to learn the set of ODEs
that represent the model under study.
We propose different test cases with different dynamics to test the abilities and
limitations of this tool.
Furthermore we test the NeuralODEs for different "unseen" conditions and input
values.
The framework studied shows interesting ability in system identification for systems
with a content complexity, showing forward good scalability.

Chapter 1

Introduction

In this work we investigated structural identification problems that usually involve
complex setups, difficulties in the training data-driven algorithm and lack of scala-
bility of the system.
In this approach, the aiming aspect is to exploit the features of Neural Ordinary
Differential Equation (Neural ODE) that can include the dynamic of a system
that leads to formulating the Physics-Encoded Neural Networks (PeNN).
The proposed framework was tested in different scenarios condition and with differ-
ent implementations to explore the capabilities and limits of the proposed tool.
The most inspiring formulation that has brought us to this research comes with
the benefits of generalising the dynamic model with a grey box modellization in
which the true system f(x) is replaced with a generalization of the model, and the
remaining governing dynamics will be captured by means of the neural network.
In the first chapter, a detailed explanation of the motivation that moves this work
and the objectives we want to achieve was proposed.
Additionally an abstract of state of the art concerned about this approach and the
uses of this Deep Learning technique.
Follows, in the second chapter provides a comprehensive explanation of the tech-
nological and theoretical tools used for this approach. An introduction about the
Deep Learning technique, basic concepts of Artificial Neural Networks(ANN)
and a deep clarification about the main tool used, the NeuralODE.
In the third chapter a series of case studies and technical reports will be presented,
will also be explained in detail the methodology developed and made a comparison
between the various policies that we wanted to test. Particular emphasis on the
last case returns us to a true application example of this method.
In the last two chapters we analyze the results and through that motivate our
conclusion and future works, develops and applications.

1

Chapter 2

Motivation and Objectives

In the field of engineering modelling and prototyping a common powerful method-
ology is the Model-based Design.
Model-based design is a method for developing complex policy using mathematical
models to represent the system’s behaviour. This approach is commonly used in
engineering, finance, and other fields to analyze and design systems that involve
multiple variables and relationships.
In model-based design, a mathematical model is developed to represent the sys-
tem’s behaviour under various conditions. This model can be used for time series
predictions, optimal control strategy and identify potential instabilities.
The model can also validate the system’s design and ensure it meets the required
specifications and performance criteria.
Model-based design has several advantages for the integration of different models
and software tools into a single design environment, facilitating and speeding up
different testing phases (Software in the Loop - SIL).

Figure 2.1: Model Based Design

2

Motivation and Objectives

2.1 System Identification
In the context structural-system identification (SI) [1, 2, 3], describes the method-
ologies to define an adherent guess of the mathematical model of the system of
interest from data response of the system itself.
Researcher have been carried out a lot of techniques to transform measured response
into models, is possible to summarize them into two main categories, data-driven
methods and physics-driven methods.

2.1.1 Data-driven methods
Data-driven methods refer to those techniques that take advantage of a large
number of measurements available to reconstruct, through different approaches,
the system that has generated certain output by given input.
Examples of data-drive policy for system identification could be divided in time
domain related and the one related to frequency domain.
Example of time domain are eigensystem realization algorithm [4], that proposes
a procedure, by using the Hankle matrix, to recostruct the state-space representa-
tion of a linear time invariant system (LTI) from measurement.
In frequency domain a well tested method is frequency domain decomposition
where the decomposition is performed simply by analyzing each of the estimated
spectral density matrices [5].
These approaches are examples of classical identification tools that are commonly
related to the LTI system.
A more contemporary approach, due to the computational end technological inno-
vation, to the problem is exploiting the use of machine learning techniques.
The big amount of data used for the inverse modelling process is a good fit with
the use of these kinds of techniques such as Neural Networks (NN).
The neural networks prediction may be physically inconsistent due to their archi-
tecture [6], moreover, their learning ability results restricted for mimicking the
dynamics of a system for which it has been trained.

2.1.2 Physics-driven methods
The physics-drive methods exploit a prior knowledge of the system, that allows to
lean on a general mathematical formulation of the system.
The ability to not only map the input and the output of a system but also bring it
together considering the system dynamics, has become a field of particular interest

3

Motivation and Objectives

in engineering.
This second approach finds promising tools in the field of Machine Learning where
big amount of measurements could be analyzed with the integration of domain
knowledge. This approach enhances interpretability, robustness and physical
consistency. The most suitable approach that allows us to integrate the dynamic
structure into its architecture is the neural networks.
Generally, in literature, we can distinguish three neural network frameworks to
encode physics constraints in training: physics-guided neural networks (PgNN),
physics-informed neural networks (PiNN) and physics-encoded neural networks
(PeNN) [6].

• Physics-guided Neural Network (PgNN)

Constructs the model as a black box to learn a map between inputs x and
outputs y; the function y = F(x,w) with the neural network’s parameters w
were minimized w.r.t the parameters as a classical LossFunction(w).
The particularity of this framework is the data generation, the data are gener-
ated ad hoc in a controlled environment to capture all the possible physical
interactions of the model in the study[7]. Typically the training data set were
generated by experimentation (e.g. phenomenon observation), the solution
of the governing ordinary differential equation (ODE) or partially differential
euquations (PDE), etc.
PgNN has been used since the study of Lee and Chen [8] for estimation of fluid
dynamics properties. The use of ANN in fluid mechanics gives the possibility
to alleviate the numerical computational problem of solving the Navier-Stokes
equations. In Yang et al. [9] the PgNNs have been used as a part of the
resolution process of fluid mechanics simulations showing to be significant
in particular for large-scale of fluid flow computation. PgNN has also been
applied in aerodynamics due to their capability the speeding uo computation.
Wang et al. [10] applied ANN for a modeling process of swirling flow in
combustor. In the field of hypersonic turbulent flows [11] a ANN-surrogate
model was embedded in flow simulator to reduce the high computational cost.
PgNN has benn applied also in topology optimization health condition as-
sessment, structural analysis etc. An example of PgNN application in the
field of solid mechanics was proposed by Tadesse et al. [12] for the deflection
prediction of composite bridge. The PgNN has been shown a good capability
in term of alleviate computational problems but they suffers from several
limitations due to their ability to generate models based on statistics variation
learned by the proposed data set. This aspect gives to the ANN a limited
knowledge of the system’s physic.

4

Motivation and Objectives

Figure 2.2: PgNN architecture

• Physics-informed Neural Networks (PiNN)

Due to the lack of robustness and the impossibility of generalization of the
problem by PgNN the physics behaviour is incorporated outside of the neural
network structure.
This framework typically involves spatial-temporal input and PDE (partial
derivative equation) or ODE’s (ordinary differential equation) solution as
outputs. The models are informed about the physical law by adding next to
the output layer of a classical MLP (3.1.2) a differentiation layer.
The solution obtained by differentiating w.r.t the input is used to optimize the
parameters of the NN by minimizing a suitable loss function that will take into
account boundary condition, data set measurement, governing equations.[6]
In literature is possible find different application for PiNN, they find a wide
application from fluid dynamics to electromagnetic modellization and appli-
cation. In [13] Fang and Zhan has been developed a PiNN for designing of
electromagnetic meta-materials used for specific electrotecnical application
like rotor component, DC motors etc. The PiNN were applied also in non-
distructive material evaluation, Shuka et al. [14] provide a surrogate model
of the poly-cristalline nickel properties. In field of fluids mechanics Depina
et al.[15] demostrates the advantages of PiNN in governing Richards PDE
and estimate the van Genuchten model parameters through the modellization
of unsaturated groundwater flow problem. Wessels et al. [16] develop a La-
grangian method based on PiNN for the solution of inviscid Euler equations
of incompressible free surface flow. In these work, it was demostrated the
validity of the use of PiNN, it was able to mimic the governing equations of
incompressibility condition.
PiNN training process deal with several problematic. The loss function in
PiNN optimization problem contains a lot of terms that affect the final so-
lution, currently there is no guidelines to optimize this process. The PiNNs
due to this problem faces difficulties in good convergence or may encouter

5

Motivation and Objectives

the gradient vanishing problem, this occur when during the backpropagation
algorithm the partial derivative of the Loss Function w.r.t. the NN parameters
can’t reache the deeper layer due to the rapid decreasing of the derivative.

Figure 2.3: PiNN architecture

• Physics-encoded Neural Networks (PeNN)

This family of neural networks directly integrate the physical-driven constraints
into their own mathematical structure. Their peculiar architecture allows
them to have better computational efficiency, generalization and robustness
compared to PgNN and PiNN [17]. Physics-encoded Neural Network propose
different approach for encoding physics law into neural networks.
Li et al. in their work [18] proposed an innovative way to interpret the
resolution of a classica neural networks. Fourier Neural Operator (FNO)
moves the solution field for the optimization of a neural network from time
space to Fourier space.
A different attitude was proposed by Rao et al. [17] in witch with the
Physics-encoded Recurrent Convolutional Neural Network (PeRCNN) they
reformulate basic element of the classical neural network substituting to the
nonlinear activation functions a novel elementwis product operation in order
to simulate the non linearity of the system. PeNN extend learning ability from
instance to continuous learning, representing in the case of Neural Ordinary
Differential Equations (NeuralODE), the dynamics of a system using a set
of continuous-time differential equations.3.3
NeuralODE also due to their ability to learn the dynamic knowledge of a

6

Motivation and Objectives

system give us the possibility to generalize a system and so have the chance to
test this surrogate learned dynamic system under never seen initial condition
or different system-forcing.

2.2 Universal Differential Equation
The link that enabled us to combine the benefits of a data-driven machine learning
approach with the rigour of more traditional scientific models and thus exploit
the characteristics of our chosen typology of PeNN is Universal Differential
Equation(UDE) [19].
The UDE is a mathematical object that represents a differential equation in which
the equation is partially or fully established by a so-called "universal approximator",
a parametrizable black box with the ability to mimic any possible function (i.e.
Neural Networks).
This policy opens the door to an immense variety of possible tools to be devel-
oped,from the simple case in which the part of physic law is missing (fphy) and
fall in the case of NeuralODE 3.3 to more articulated tools in which the encoded
knowledge can be found internally or externally to the structure of the neural
network. Here in this work we explore a part of these application varieties by
analyzing their characteristics, strengths and weaknesses. NN(h(t), t, θ).

dh(t)
dt

= fphy(h(t), t,u(t)(t)) +NN(h(t), t, θ) (2.1)

where:

• h(t) : states vector [x(t), ẋ(t)]

• u(t) : system input

• θ : trainable parameters of the neural networks

2.3 Physics-encoded Neural ODEs
In this work, we look through the different possible implementations and develop a
procedure that allows a strong generalization ability without a lack of accuracy in
the model description.
The PeNN are a typology of the neural network, as expressed before, requires a
model to be encoded inside the formulation of the mathematical model of the
neural network itself.
In this work our proposal is to carry out an optimization problem formulation and

7

Motivation and Objectives

the implementation of a generalized model description in the presence of incomplete
knowledge of the non-linear system (grey-box modelling) was performed.

2.3.1 Grey-box modeling
In a black-box approach, we do not have any prior knowledge of the system and so
any mathematical relations between the variables in the system will be estimated
only by the use of a large amount of data.
On the other hand, white-box modelling presupposes a precise and accurate knowl-
edge of the phenomenon and therefore all the constitutive equations that describe
it.
In different cases is difficult to know the whole dynamic of a system and it is

Figure 2.4: Modeling representation

difficult to have a consistent and varied amount of data available for a purely
black-box approach. In this case, grey-box approach allows us to exploit partial
prior knowledge of the system, and the unknown part of the system dynamics are
estimated by data measurement.

8

Chapter 3

Technological Background

Machine Learning (ML) is a very broad branch of Artificial Intelligence (AI).
Given the variety of topics that comprise it and the number of fields of application,
Machine Learning is characterized by different methods, tools and techniques.
More in general ML is a set of methods that allows an AI to improve its capabilities
over time.
Thus, the AI will be able to increase its own experience and improve itself continu-
ously in carrying out a specific task.
One of the most popular branches of ML is the Artificial Neural networks (ANN’s).
The name and logic behind ANN’s take inspiration from the same biological struc-
tures, the neuron.

Figure 3.1: Biological neuron Figure 3.2: Artificial neuron

The first model of a rough neuron was developed in 1943 by Warren McCulloch
and Walter Pitts. The ANNs is a dynamical mathematical model that has the
capability, in certain conditions, to learn, to map input and output, to reconstruct
any nonlinear function.
ANNs use learning algorithms that can make adjustments independently and thus
improve their performance over time. They work in the same way as a biological
neural network. Receives information from the previous layer of neurons performs

9

Technological Background

an evaluation and communicates its result to the next neuron layer.
Due to their flexible mathematical structure and their strong efficiency, ANNs have
a wide field of applications.
In finance different machine learning startegies have been used for stocks analysis
or in the context of ani-financial crime, the big amount of bank transaction well
match the possibility of this instrument to extract reasonable information from
data.
Furthermore in medical sector ANN are well used in prognostic phase in order to
better analyze heath records and for the definition of prevention treatment.
Generally Machine Learning policy are concretizing the importance of data analysis,
that tools are giving us the possibility to extract knowledge from big amount of
data of every context.

3.1 Neurons

3.1.1 Biological Neuron
A neuron is an electrically excitable cell, w.r.t figure 3.1, it’s composed by:

Dendrites
Short nerve fibres, similar to branches that, receive messages from the axons of
other neurons(the input of the neuron) and transmit them to the nucleus of the
cell inside the body cell.
Soma
The cell body where all the signals are processed.
Axon
Long nerve fibre that transmits messages from the body of the neuron to the
dendrites of other neurons (the output of the neuron).
Synapses
The virtual point of contact between neurons through which a neuron passes the
signal to another neuron.

When a neuron receives stimuli through its dendrites, depending on the kind of
stimulus and the kind of neurons, there is a possibility that the neuron passes in
an activation state. In this state, the neuron produces an electrical signal that
will be propagated via the axon to the following synapses to communicate with
another neuron. Once they reach the axon termination, these impulses (called
action potentials) lead to the release of neurotransmitters at the level of synapses
which could inhibit or propagate the signal to the next neuron.
A neural network consists of the interconnection of a multitude of neurons grouped

10

Technological Background

in different ways that allow the development of various stimuli.

3.1.2 Artificial Neuron
Even for the Artificial Neural Network, the structural unity is the neuron.
An artificial neuron is a simple mathematical structure that establishes a correlation
between inputs and output values.
This relationship will be a function of:

Weights(w) arbitrarily assigned to each input.
Activation function Φ that maps output with the various inputs considered.

Developed for the first time in 1943 by Warren McCulloch and Walter Pitts in the
first time the structure was similar to a unit step function with a threshold. From
now on we refer to the MCP model [20]. This model consists in a classifier, which
maps a vector of n input to a value of output.
With reference to the figure 3.2 here a MCP policy:

• At first the dot product is computed between the input vector x and the
weight/parameter vector w; in this way the importance for each input is
defined. In the same way as a biological neuron, different stimuli can trigger
in different ways the same neuron.

x ·w =
nØ

i=1
xiwi = z (3.1)

• Once the information of a neuron is created, "z" will be the input for the
activation function "Φ" of the neuron. This step recreates the passage of
information between one neuron and to another. The value of the activation
function is used to classify the input vector. There are different kinds of
activation functions for the specific nature of mapping.

Φ
1 nØ

i=1
xiwi

2
(3.2)

An example of activation function could be:

Φ(z) =
z if qn

i=1 xiwi + ϕ ≥ 0
0 else qn

i=1 xiwi + ϕ < 0
(3.3)

11

Technological Background

where ϕ is the bias and set the threshold for the activation of function Φ .

In this way the output of every single neuron is a parametrization of the input
wrt the weights w.

Figure 3.3: Example of activation function

3.2 How an ANN’s learns
ANN propagates the signal of the input forward through its network, computes its
output, and so back-propagates in reverse through the network the information
about the output and the target to be reached.

3.2.1 Feed-forward
The first layer that takes the input is the input layer. Each neuron is initialised
with a random weight and computes its output through the activation function.
Afterwards, the output of each neuron is passed to the next layer with the same
policy described above. The process of information distribution from one layer to
the next one defines the ANN’s as a feed-forward network.
The structure described in 3.1.2 refers to a single operating unit.
A series of n connections between neurons with common input makes up the layers,
and a series of them makes up Multi Layer Perceptron (MLP). This is a nonlinear
feed-forward network that can compute every kind of function.
In figure 3.4 an example of MLP neural network structure.
The learning ability of an ANN’s, in the first instance, is a function of the dimen-
sional characteristics of the network itself number of layers, number of neuron per

12

Technological Background

layer and consequently number of connections.
The structure described creates a very sensitive function that connects input and
output via the weight of every single neuron. These simple networks are suitable
for mathematical readjustments.

Figure 3.4: ANN structure

3.2.2 Backpropagation
The aim is to understand how to efficiently modify the ANN’s weight in order to
have a function of the inputs and weight ỹ = FNN (w,x) that recreates the original
function under study y = F (x). This is an optimization problem whose aim is to
minimize the loss function wrt the set of weight.

L(y, ỹ) = L(y, FNN(w, x)) = min w L(y, FNN(w,x)) (3.4)

a possible choice of L is mean square error so the 3.4 became:

L(y, ỹ) = 1
n

nØ
i=1

(yi − ỹi)2 (3.5)

For this purpose, the ANN are trained using a training data set, a collection
of data in which inputs and outputs are correlated (x, y). The corresponding true
output values y in the training data set will allow the ANN to efficiently modify the
weights. This problem of optimization could be difficult to compute. In massive
ANN’s there is a lot of weight to be adjusted and each of these has a complicated
influence on the result.
The solution is a backpropagation algorithm that allows us to propagate the

13

Technological Background

error (the result of the loss function) to each weight that it composes. It consists
of the computation of the loss gradient ∇L with respect to net weights w.
The aim is to know how much a change in wi affects the total error L(y, ỹ). Taking
into consideration the figure 3.2.

By applying the chain rule:

∂L

∂wi

= ∂L

∂ỹ

∂ỹ

∂z

∂z

∂wi

(3.6)

First term.
∂L

∂ỹ
= 2 1

2(ỹ − y) (3.7)

With L(y, ỹ) = 1
2(y − ỹ)2.

Second term.

∂ỹ

∂z
= z(1− z) (3.8)

Choosing as activation function sigmoid ỹ = Φ(z) = 1
1+e−z

Third term.

∂z

∂wi

=

nØ
i=1

xiwi

∂wi

(3.9)

wrt equation 3.1.

14

Technological Background

Update of the parameters

Once the loss gradient ∇L(w) has been evaluated, it will be used to update the
network weights.

Figure 3.5: Two dimensional Loss function «L»

ANN’s exploit iterative gradient descent algorithms to optimize their network
and find the minimum of the loss function.

wnew
i = wold

i + ∆wi (3.10)

where:
∆wi = −η∇L(wi) (3.11)

The variable η (> 0) is the learning rate and the step size for modifying the
ANN’s weight. It’s one of the most important hyperparameters, whose correct
choice ensures that the optimization problem can be brought to convergence,
avoiding local minima. Choosing a large value could generate instability in the
optimization algorithm. Instead, a small value might prevent the algorithms from
convergence.
One possible solution to the problem is introducing another parameter µ called
momento.

∆wi = −η∇L(wi) + µ∆wi (3.12)
where µ (0<µ<1) in a certain way this hyperparameter represents the inertia of
the neural network’s parameters to be changed by the training algorithm.
It takes into account the contribution of the current variation of the weight. In this
way the correction term takes care of the Loss function dynamic. Before moving
forward, a clarification is due to introduce the terms of epochs and batch.

15

Technological Background

• Epochs -> is a hyperparameter representing the number of times the learning
algorithm will work using the whole training data set.

• Batch -> is a hyperparameter that defines the number of measurements used
before the algorithm updates the NN’s parameters

3.3 Neural ODE
NeuralODE is a particular kind of Deep Neural Network. The idea is similar to
the mathematical structure of the Residual Network, (ResNet) [21] in which the
chain of output layers can be seen as a numerical procedure for solving ordinary
differential equations [Euler’s method]:

Figure 3.6: Block diagram of Residual Network

ht+1 = ht + f(ht,w) (3.13)

The analogy between the structures of Euler’s method with the ODE solver and
the definition of the ResNet network is at the base of the NeuralODE. In this kind
of ANN, the mathematical structure of the chain output of the hidden layer is
replaced by another ODE solver with better accuracy. In this way, it is possible to
parameterize the internal mathematical structure of the hidden layer as an ordinary
differential equation.

dh(t)
dt

= f(h(t),w, t) (3.14)

Thus the connection between the layers is determined by the accuracy of the
ODE solver we want to use. In other words, we take the basic structure of a single
layer of a NN and solve it as a step of our ODE solver. This routine iterates over
from the “layer” h(0) to h(T), where 0 (zero) and T integration extremes give us
the solution of the ODE initial value problem.

16

Technological Background

Figure 3.7: Comparison of sequence of transformation

The backpropagation

The NeuralODE are composed by the same elements and procedure of a common
ANN, the most problematic aspect was the backpropagation of the error.
As explained in the section 3.2.2 the central aspect of ANN’s training is the
learning algorithm so the backpropagation of the error. With reference to the
original paper [22] the Loss function is defined as:

L
1
z(t1)

2
= L

A
z(t0)+

Ú t1

t0
f(z(t), t, θ) dt

B
= L(ODESolve(z(t0), f, t0, t1, θ)) (3.15)

where:
θ: dynamics parameters

t0: start time

t1: stop time

z(t1): final state

In NeuralODE’s training the ODE solver is treated as a black box element
and the gradient of the Loss function was computed using the adjoint sensitivity
method. [23] It is a numerical method to compute the gradient of a function in a
numerical optimization problem.

17

Technological Background

The gradient of 3.15 is computed by solving a second, augmented ODE backwards
in time, and this procedure is available to all ODE solvers. This approach allows
us to compute at first the gradient with respect to the hidden states.

Figure 3.8: Differentiation of an ODE solution

This kind of ANN’s has the following advantages:
Memory efficiency treating the ODEsolve as a black box element and using
adjoin sensitivity method allow us to train our NN with constant memory cost as
a function of size.
Adaptive computation the possibility to use a more suitable ODEsolver allows
us to adjust more precisely the computational cost and the accuracy we want to
give. Also after training.
Continuous time-series models NeuralODE works continuously. This does not
require a constant discretization of input data, they can reconstruct the dynamics
equally even with non-sampled data.

3.4 Experimental Method
In this section, a practical illustration of the procedure used to the various test cases
presented is given. According to the nativity development of the paper already
mentioned [19] we decide to reach our aims by using a specific program language
called Julia. It’s a dedicated programming language for scientific and numerical
computing, it combines the versatility of Python syntax and the performance of
C.

18

Technological Background

All the test cases are developed using the SciML: Open Source Software for Scientific
Machine Learning a differentiable programming software for scientific machine
learning. It contains a variety of modules for automating the process of model
discovery and fitting. The main module that allows use to approach this study
is DiffEqFlux.jl. This library enables the training of embedded neural networks
inside of differential equations (neural differential equations or universal differential
equations) for discovering unknown dynamical equations.

3.4.1 Experimental set-up
All the experimental that we propose for this work follow the same procedure and
they differ for the application case and the problem generalization used to push
the developed toll to the limit of its capabilities.
Going more specifically into this topic what we did was to train PeNN to mimic the
behavior of a set of ordinary differential equations with fixed initial conditions and
input. What we expect to receive after training is a surrogate model of partially
known differential equations (grey box) that will allow us to simulate the learned
system also for other inputs and/or initial conditions.

Data Generation

For all the experiments the data sets were generated by solving the differential
equations (ODE) that described the respective dynamics.
Due to testing the capability of this approach to use a contained number of examples
to train our NN’s parameters all training end validation data set contain a limited
number of measurements.
A traditional approach provides the generation of multiple data sets, one is intended
to be used to train the network (training set), another to validate the training
(validation set) and ultimately for testing the correct learning of the dynamics in
"never seen" conditions. In this case due to the system dynamics of the example
used to train we generate 2 measurements for the validation set. The choice is
about the nature of the examples chosen, they take stable dynamics with a very
limited transient.

Neural Network set-up

Our purpose is to use the NN mathematical structure as a supplemental degree of
freedom to find the feasibility parameter set (FPS) that mixed with the already
known dynamics identify the model.
To do that small NN with a content number of layers and neurons was used,
the reason to limit the FPS in which the network must seek the solution of the

19

Technological Background

optimization problem.
Generally, the NN was constructed by 3∼5 layers and for each layer 10∼50 neurons.
According to the experiment, the layers of NN will be interspersed with customized
layers hphy(θ, t) that describe the approximate dynamics of the system. This is
possible thanks to the ecosystem that is being used that allows us to define sets of
differential equations as custom layers of the network.
The activation functions chosen are the swish function f(x) = x · sigmoid(x) and
the sigmoid function f(x) = 1

1+e(−x) based on the degree of non-linearity that best
suited the optimization problem of the Loss Function.
For all the test cases we decide to use the same gradient descendent algorithms, as
in the official page of the library above DiffEqFlux.jl we opted to train our nets
twice.
The first one involved a rough training that would allow us to avoid bad local minima
to which the algorithm would otherwise have settled. This was performed with
ADAM algorithm [24] a stochastic gradient descent algorithm; following the first
training a second training was carried out with Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) [25] a local search optimization algorithm. In all the test cases
the Loss Function to be minimized has been the Mean Squared Error (MSE):

LossFunction(θ, t) = MSE = 1
n

nØ
i=1

(yi − ỹi)2 (3.16)

w.r.t n number of elements, y measurement, ỹ NN’s output.

3.4.2 Training

Bad local minima are one of the most common problems when approaching gradient
descent optimization. Neural Networks solution space can be big sp that the
presence of many local minima is indeed probable. To minimize the possibility of
getting stuck in a local minimum we employ three different techniques to train our
"nets".

Mini-Batching

Single batch approach could drop the algorithm in a non-optima local minimum
due to their policy to upload the parameters weight once for entire training data
sets. One possible approach to this problem is to divide the measurements in a
parametrizable number of batch. To do this the NN’s parameters will have a higher
update rate that gives us a better ability to move through bad local minima.

20

Technological Background

Algorithm 1 Mini-batching algorithm
Require: Training data set = (X,Y), Batch size = N
batches← (X, Y)grouped in N. elements
for Number of epochs do

for each batch (X, Y) do
Evaluate NeuralODE solution
error ← LossFunction(w)
Backpropagation error
wnew = wold + ∆w ← Update weighs

end for
end for

Multiple shooting

This technique is a method for training NeuralODEs in which the time span [t0, tfin]
of the defined dynamic problem is partitioned in N intervals. In this way, the time
series is divided into N initial value problems that will be resolved simultaneously.
This segmented trajectory is used to evaluate the optimization problem (Loss
Function) as in a single shooting.
For each interval N − 1 the solution of initial value problem gives a discontinuity
trajectory, in order to take trace of the discontinuity gap between the N − 1
trajectories and guide the algorithm to an optimum minima a penalty terms has to
be considered.
Continuity term is a hyperparameter that will penalize the gap between the intervals
thus guiding the training algorithm to create a continuous trajectory.

Algorithm 2 Multiple shooting algorithm
Require: N intervals, Continuity term µ, Time span [t0, tf]
t0 = τ0 ≤ τ1 . . . τN = tf N + 1 points
for i = 1 . . . N do

NNi(xi, [τ i
0, τ

i
f], θ)

end for
solve(NNi, . . . , NNN)
Loss Function
minw LossFunction(w) = MSE(w) + ρQ(w)

s.t. Q(w) = xi
f − xi+1

0 = 0
Evaluate the error
Update weights: wnew = wold + ∆w

21

Chapter 4

Case Studies

This section will present the case studies and the related experiments we carried
out. The intent is to show the capabilities and limits of the PeNN using the
frameworks chosen and the implementation developed. Each case presents a specific
neural network implementation to adapt to the problem under consideration. Also,
we elaborate on different training policies and different versions of PeNN suitable
for testing their ability for system identification.

22

Case Studies

4.0.1 Simple Pendulum
In this first example, we test the ability of this framework to mimic the dynamic of
a simple system to understand its performance in incorporating the dynamic and
test it for different initial conditions x0.
In this case, we do not incorporate any dynamic layer inside the neural network
structure.

Figure 4.1: Simple pendulum

System dynamic description

The dynamic of simple pendulum 4.1 is a well-treated problem in the literature.
It consists of a point of mass m, subjected to a gravitational field of constant g,
suspended thanks to an in-extensible wire of length L from a fixed support. The
angle between the vertical axis and the wire is commonly defined as θ. Despite
its simplicity, it is an excellent example of a non-linear system. The Lagrangian
derivation of the equations of motion of the simple pendulum:

ml2θ̈(t) +mgl sin(θ) = F (4.1)

Converting this second-order differential equation into a set of first-order differential
equations and considering F = 0:

θ = θ1

dθ1

dt
= θ2

dθ1

dt
= θ2

dθ2

dt
= −λ · θ2 −

g

L
· sin(θ1)

(4.2)

23

Case Studies

Data Collection

The training data set was collected by solving the equation 4.2. Above is an extract
of the code that represents its formulation[fig code]. The initial condition x0 = [0,2],
the timespan = [0s,10s]. The data were collected with a sample of 0,1s, so 100
measurements.

Neural-ODE structure

The neural network, defined above, represents the simplest case of PeNN wherein
the fphy, the portion of physics knowledge, is omitted, and then it’s the case of a
NeuralODE xÍ(t) = NN Í(σ, t). Since the structure we created will be treated as a
differential equation, it will also have a solver, initial conditions, and a period (the
same used for data generation). The NN hyperparameters are:

n. Neurons
layer1 10

layer2 30

Hyperparameters
Learning rate 5× 10−2

Initial step 1× 10−2

Activation function swish

n. Epochs 500

Table 4.1: Simple Pendulum NN parameters

24

Case Studies

x01

x02

N
(1)
1

N
(1)
2

N
(1)
3

N
(1)
4

N
(1)
10

N
(2)
1

N
(2)
2

N
(2)
3

N
(2)
4

N
(2)
30

xt1

xt2

... ...

input
layer

hidden layers

output
layer

Figure 4.2: Simple pendulum NN structure

4.0.2 Triple Oscillating Mass

We have not incorporated the system’s dynamics within the neural network’s
structure as in the previous case.
We focused on investigating whether dynamics integration also worked for more
complex systems.

Figure 4.3: Triple oscillating mass

25

Case Studies

System dynamic description

Three rotating discs with inertia [Θ1,Θ2,Θ3] are connected via springs with con-
stants [c1, c2, c3, c4]. The two outermost discs are each connected to a fixed support
with additional springs. Relevant parameters of the system are the inertia Θ1,2,3 of
the three discs, the spring constants c1,2,3,4 as well as the damping factors d1,2,3,
the state vector is x = [φ1, φ2, φ3]. The set of equations that describe the system
can be written as follows:

Θ1φ̈1 = −c1φ1 − c2(φ1 − φ2)− d1φ̇1

Θ2φ̈2 = −c2(φ2 − φ1)− c3(φ2 − φ3)− d2φ̇2

Θ3φ̈3 = −c3(φ3 − φ2)− c4φ3 − d3φ̇3

(4.3)

Reformulating the equation 4.3 in a first order ODEs:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = − c1

Θ1
x1 −

c2

Θ1
(x1 − x2)− d1

Θ1
x4

ẋ5 = − c2

Θ2
(x2 − x1)− c3

Θ2
(x2 − x3)− d2

Θ2
x5

ẋ6 = − c3

Θ3
(x3 − x2)− c4

Θ3
x4 −

d3

Θ3
x6

(4.4)

Data Collection

The "Triple Oscillating Mass" in case of a non-linear system taken from the example
gallery of Do-MPC [26], a Python toolbox for the implementation of a model
predictive control. This toolbox was used only for convenience in the integration of
the ODEs.
After having declared the system by using the equation 4.3, the following boundary
condition are used to solve the initial value problem: x0 = [π, π,−3

2π, π,−π; π],
timespan = [0,20] s

Neural-ODE structure

As in the previous case, the same considerations were made about the structure
neural network due to test it in a more challenging scenario.

26

Case Studies

n. Neurons
layer1 70

layer2 70

layer3 70

Hyperparameters
Learning rate 1× 10−3

Initial step 1× 10−3

Activation function swish

n. Epochs 500

Table 4.2: Triple Oscillating Mass NN parameters

x01

x02

x03

x04

x05

x06

N
(1)
1

N
(1)
2

N
(1)
3

N
(1)
4

N
(1)
70

N
(2)
1

N
(2)
2

N
(2)
3

N
(2)
4

N
(2)
70

N
(3)
1

N
(3)
2

N
(3)
3

N
(3)
4

N
(3)
70

xt1

xt2

xt3

xt4

xt5

xt6

...

input
layer

hidden layers

output
layer

Figure 4.4: Triple rotating mass NN structure

4.0.3 Mass Spring Damper
Previously we dealt with a free dynamic system. In this test case, we want to focus
on forced one. Different from the previous example, now we create a specific neural
network framework able to bring up the dynamic and test it for different initial

27

Case Studies

conditions x0 and different values of input signal F.
For this test case, we proposed an alternative way to exploit NeuralODE. Until
now, we present NeuralODE as an NN able to learn not the trend of a function
over time f(x, t) but to learn the variation itself during time f Í(x, t).
In this case, an alternative approach was offered, in the opposite way of the previous
case, within the dynamic was fully represented by the NN and tan solved like an
ODE function. In this case, we test to solve an ODE formulation like an NN layer.

Figure 4.5: Mass damper spring

System dynamic description

The system comprises a mass m, a spring with elasticity constant k and a damper
of constant c. The mass is attached to the spring and the damper and the latter
are attached to a fixed reference. The system is subject to an impulsive force F .
The measured states are the displacement x(t) of the mass and its velocity ẋ(t).
The dynamic formulation of the problem is:

mẍ+ cẋ+ kx = F (4.5)

Referred as first ODEs:

ẋ1 = x2

ẋ2 = 1
m

(F − cx2 − kx1)
(4.6)

Data Collection

The training data set are collected solving the equation 4.6 for the initial condition
x0 = [0,0], timespan = [] and with an impulsive force F = 5N .
Furthermore, we decide to add noise to the measurements to test the training
algorithm’s convergence ability.

28

Case Studies

Neural-ODE structure

In this case, we create a custom layer in which the connection of the various
learnable parameters is represented by the set of ODEs of the system. A different
configuration due to test different ways the ability of the frameworks to respond to
different stimuli.

n. Parameters dynamic layer 3

Hyperparameters
Learning rate 1× 10−2

Initial step 1× 10−4

Activation function swish

n. Epochs 500

Table 4.3: Mass Damper Spring NN parameters

x01

x02

N
(1)
1

N
(1)
2

N
(1)
3

N
(1)
4

xt1

xt2

input
layer

dynamic layers

output
layer

Figure 4.6: Mass Spring Dumper NN structure

29

Case Studies

4.0.4 Electrohydraulic actuator
In this last case, we elaborate a policy to train our frameworks to mimic the dynamic
of an electrohydraulic actuator. These are very complex devices whose functionality
is crucial in the avionics industry. Servo valves allow the setting of actuators that
are essential for optimal control of primary and secondary flight systems. Due
to their importance in the flight control system, component monitoring action
is important. Creating a surrogate model for model-based fault detection ad
identification becomes a challenge as difficult as useful for preventing critical
operating conditions. This experiment bases its interest in the field of prognostic
[27], a sub-set of system identification problems about failure prediction of some
system components.
Concerning that application area, we’ve tried to create a framework that would
scale up the problem in a way that no longer refers to a specific actuator but, based
on the available measurements, rebuild the dynamics of each specific actuator for
specific failure tests.

Figure 4.7: Schematic of the flapper-nozzle servovalve

System dynamic description

Regarding figure 4.8, the dynamics of the electrohydraulic actuator can be separated
by the interaction of three systems.

30

Case Studies

The controller subsystem is usually a PID (proportional-integral-derivative)
an electronic controller which, according to the designated logic, will command
through a servo-amplifier (a low-power electrical actuating) signals to the next
system.
The Electrohydraulic two-stage servovalve commands the pressure hydraulic
fluid based on the received signals.
The high-pressure fluid, in turn, will control the stroke of a hydraulic piston.

Figure 4.8: Feedback control loop of electrohydraulic actuator

Figure 4.9: Simulink representation electrohydraulic actuator

31

Case Studies

Data Collection

All data sets, in this case study refer to work done by [27]. The measurements come
from a simulation in Matlab exposed in their work. The state of our interest is
the position and velocity of the spool x = [x, ẋ].

Neural-ODE structure

Being aware that the dynamics of the servo actuator consists of several connected
systems, our intuition has moved us to replace the difficult parts modeled as if
they were NeuralODE and implement a simplification of the mechanical part with
a quite good guess (grey-box approach). We decide to approximate as if it was a
"mass-spring dumper" system 4.6.

n. Neurons
layer1 10

layer2 30

Hyperparameters
Learning rate 5× 10−2

Initial step 1× 10−2

Activation function swish

n. Epochs 500

Table 4.4: Electrohydraulic actuator NN parameters

32

Case Studies

x01

x06

N
(1)
1

N
(1)
2

N
(1)
3

N
(1)
4

N
(1)
70

N
(2)
1

N
(2)
2

N
(2)
3

N
(3)
1

N
(3)
2

N
(3)
3

N
(3)
4

N
(3)
70

xt1

xt2

... ...

input
layer

hidden layer

dynamic layer

hidden layer

output
layer

Figure 4.10: Electrohydraulic actuator NN structure

33

Chapter 5

Results Analysis

5.1 Simple Pendulum

5.1.1 Training and Result
The NN was trained over a single batch method at two-step training to avoid
non-optimal minima.
At first, a more shallow training was performed with the ADAM algorithm then
through the BFGS algorithm, we tried to optimize the loss function more precisely,
avoiding the bad local minima. As shown in 5.1, which describes the course of the

Figure 5.1: Loss Function

value of the loss function during the NN training, we early find bad local minima
from which the first algorithm used to train the NN will not be able to escape
from. After the chosen epochs, the developed policy changes the algorithm skipping
from BFGS that will allow a substantial improvement in performance, reaching a

34

Results Analysis

Loss Function = 9,671× 10−9.
In the validation process, we compare the response of the NeuralODE model with

Figure 5.2: Trained NeuralODE

the original one. The trained model was validated by submitting it to resolve
different initial value problems with the new initial conditions. In this way, we
tested if the developed model absorbed the system dynamics.
In figures 5.3,5.4,5.5 the solutions of the NeuralODE for 3 initial conditions x(1)

0 =
[0,1], x(2)

0 = [1,0], x(3)
0 = [2,0] compared with true one obtained by the solution of

the original ODE.
It should be emphasized that the training section was carried out by using only
one test case data set that describes a specific ODE solution, the one for x0 = [0,0].
We can conclude that the trained NeuralODE has learned the dynamics of the
simple pendulum problem.

35

Results Analysis

Loss (MSE)

Training 9,671× 10−9

Validation x0 = [0,1] 1,641× 10−8

Validation x0 = [1,0] 1,541× 10−4

Validation x0 = [2,0] 1,211× 10−1

Table 5.1: Simple Pendulum results

Figure 5.3: Validation x0 = [0,1] Figure 5.4: Validation x0 = [1,0]

Figure 5.5: Validation x0 = [2,0]

36

Results Analysis

5.2 Triple Oscillating Mass
Due to the system’s complexity, two training policies were proposed.
The first approach was to train the surrogate model using mini-batching training
to avoid no-optimal minima in the loss function due to the oscillating trend. The
mini-batching training has been sized to envelop a half cycle for each batch. Then a
fine-tuning optimization with BFGS algorithm was performed in the whole training
data set in a way to fine-tune the already trained network.
Another training approach is to use multiple shooting training policies. As for the
mini-batching, the training data set was split into several groups. Differentially
from the previous one, the groups are evaluated simultaneously. Also, in this case,
the same consideration about the system behavior was made, and the groups was
dimensioned in the same way. To better test the multiple shooting policy, we
experimented with training the network both times, first with ADAM algorithm
for rough training and after with BFGS for fine-tuning, with this splitting data set
technique.
For both training cases, the NN could not converge to an optimal minimum due to
the high complexity of the system in consideration.
The NN performs better for increasing complexity.

Loss(MSE)

Mini-batching Multiple shooting

Training 6,77 2,55

Validation x0 = [0,1] 783,8 69,420

Table 5.2: Triple rotating mass results

37

Results Analysis

5.2.1 Mini-batching
As shown in figure 5.6 the loss function does not have a monotone trend due to the
fact for each iteration, the Loss function was evaluated for a portion of the whole
training data set.

Figure 5.6: Loss Function

In the training section, as shown in figures 5.7,5.8, it is possible to notice that
the NeuralODE didn’t show the same behavior for all the evaluated states.
In particular, for the state corresponding to Θ2 the rotating disc placed in the
middle in the system, the training section shows the worst training result.
Regarding eqn. 4.4 we assumed this result could be produced by error propagation
in the evaluation of the state related to the other two discs Θ1 and Θ3.

38

Results Analysis

Figure 5.7: Training NeuralODE
(position)

Figure 5.8: Training NeuralODE
(velocity)

As a consequence, the validation test didn’t return an interesting result.

Figure 5.9: Validation NeuralODE
(position)

Figure 5.10: Validation NeuralODE
(velocity)

39

Results Analysis

5.2.2 Multiple shooting

Differently for the mini-batching case in figure 5.11 loss function presents a de-
creasing trend. In this case, the loss function was evaluated on the whole training
data set divided in groups for the decided number of epochs. Figures 5.12,5.13

Figure 5.11: Loss Function

show a good result in the training phase. It seems the NeuralODE finds a good
convergence to the training data set but the validation set proves that it isn’t.

Figure 5.12: Training NeuralODE
(position)

Figure 5.13: Training NeuralODE
(velocity)

40

Results Analysis

In the figures 5.14 and 5.15 we can notice that the trained model didn’t acquire
the original system dynamics.
This is an example of overfitting. This phenomenon occurs when the net is
overtrained on a data set and loses its scalability. This event is proven when the
value of the Loss function on the training set continues to decrease instead of the
validation Loss that increases over training.

Figure 5.14: Validation NeuralODE
(position)

Figure 5.15: Validation NeuralODE
(velocity)

41

Results Analysis

5.3 Mass spring dumper
The Mass spring dumper problem differs from the previous test case. Here, we
introduce our proposal for a custom NeuralODE layer.
Before this test case, we tested the NeuralODE system without external input
to take our consideration about the learning ability and the different developed
policies to train the network.
Here we introduce our dynamic layer that describes the MDS system which the
network will treat as a normal layer. This aspect gives us the possibility to provide
the network with an estimate of the dynamics, moreover, in this way, we could
introduce to the network an external input not normally treated by the simple
DiffEqFlux.jl libraries.
As in the previous cases, we investigated the two training policies, mini-batching
and multiple shooting. In this case, we also decide to test the framework to consider
noise in the measurement.
The resulting measurement results:

ynoise = y + 0.02N (µ, σ2)
µ = 0 σ2 = 1

(5.1)

Loss(MSE)

Mini-batching Multiple shooting

Training F = 5N 3.1021× 10−1 268,19

Validation F = 10N 3,91× 10−9 ; 2,11× 10−4 5,88 ; 2,221× 10−1

Validation F = 20N 1,591× 10−2 ; 8,521× 10−4 23,54 ; 9,081× 10−1

Validation F = 50N 9,971× 10−2 ; 5,331× 10−3 147,15 ; 5,671× 10−1

Table 5.3: Mass Spring Dumper results

42

Results Analysis

5.3.1 Mini-batching

Mini-batching training as shown in figure 5.16 has a oscillating trend as the previous
test case.
This time is possible to observe three sections of decreasing trend that corresponds
in a good fitting in training data set 5.22.
Despite the noisy data set, the NeuralODE has demonstrated an interesting capacity
to find a good convergence for the optimization problem particularly in the second
state x2 = ẋ where noise has more influence on measurements.

Figure 5.16: Loss Function Figure 5.17: NeuralODE trainig

As a result of the training, the learned model proves to have embedded the
dynamic of the original system even though the addiction of the noise in the data
set.
The model developed was tested to respond in three scenarios, same initial con-
dition x0 = [0,0] but with different input values F1 = 10N ,F1 = 20N ,F1 = 50N
5.18,5.19,5.20.

43

Results Analysis

Figure 5.18: Validation F = 20N Figure 5.19: Validation F = 20N

Figure 5.20: Validation F = 50N

44

Results Analysis

5.3.2 Multiple shooting
As in the previous case, NeuralODE shows a good ability to take into account noisy
data. The Loss Function trend proves a clear convergence, the chattering behavior
at the end of the big first loss function reduction is to be attributed to the learning
rate not being small enough that easily allows the function to escape from that
bad local minimum.

Figure 5.21: Loss Function Figure 5.22: NeuralODE trainig

Also in this case to test the performances of the trained model we submitted
the model to the same test as before.
Three scenarios with same initial condition x0 = [0,0] and different inputs F1 =
5N ,F2 = 20N ,F3 = 50N . With respect to table 5.3 multiple shooting demonstrates
a greater sensibility to the noise.

45

Results Analysis

Figure 5.23: Validation F = 10N Figure 5.24: Validation F = 20N

Figure 5.25: Validation F = 50N

46

Results Analysis

5.4 Electrohydraulic actuator
The electrohydraulic actuator proved to be a challenge due to its strong multiple
mechanical non-linearity. In the previous case we introduced the possibility to
treat normal set of equations as an artificial neural networks layer. In this case
we provided a grey box modelization proposal using the experimented dynamic
layer, in that case we interconnected the dynamic layer to other classical fully
connected ones. The intuition was to guide the ANN in the research of the function
that better approximate the dynamic of the system to be learned. This strategy
also involves a reduction of the dimension of the optimization problem formulated,
decreasing the amount of parameters of the ANN to be established.
The ANN structure was built following the dynamic description of the system
described in section 4.0.4, substituting to the unknown dynamics a fully connected
layers and for the actuator dynamic an approximation given by the mass spring
damper equations set. Training and validation session were coded in order to take
a force F , related to the fluid pressure controlled by control unit, as input.

Loss(MSE)

mini-batching Multiple shooting

Training F = 100N 27,09 ; 1686,9 1,11× 102 ; 2,11× 102

Validation F = 50N 53,09 ; 3486,9 1,41× 104 ; 3,91× 104

Validation F = 200N 55,66 ; 3727,56 610,4 ; 4,91× 104

Validation F = 500N 924,64 ; 2,91× 10−4 234,5 ; 3,41× 103

Table 5.4: Electrohydraulic actuator results

47

Results Analysis

5.4.1 Mini-batching
In figures 5.27 it’s possible to notice not a complete adherence of the trained
network with the original data set in transient phase. The NeuralODE otherwise
seems to respect the steady state behavior of the system. This ANN configuration
doesn’t overcome the strong non linearity of the system due to the saturation
condition on the spool speed.

Figure 5.26: Loss function Figure 5.27: NeuralODE training

48

Results Analysis

The validation test was performed subjecting, as in the previous case, the
trained model for different input signals. The validation data sets describe the
electrohydraulic actuator subjects to F = [50,200,500]. The results cannot be
considered totally satisfactory, but it’s interesting to notice in figures 5.28,5.29 that
the model responds compatibly to the approximation learned from the data set. In
figure 5.30 we notice that the input value is too far from the condition in which
the ANN was trained causing a totally inconsistency in the output generated.

Figure 5.28: Validation F = 50N Figure 5.29: Validation F = 200 N

Figure 5.30: Validation F = 500N

49

Results Analysis

5.4.2 Multiple shooting
Multiple shooting technique performed in a worse way than Mini-batching training.
Figure 5.31 at velocity state, highlights the responds of the ANN. It perfectly
follows the trend of the true system till the saturation value.
That behaviour in our opinion is due to the falls of the framework into a bad local
minima.

Figure 5.31: Loss function Figure 5.32: NeuralODE training

50

Results Analysis

Figures 5.33-5.34-5.35 underline the bad result of the training phase of this case
study. Differently from the other case study the ANN didn’t acquire knowledge of
the system dynamic

Figure 5.33: Validation F = 50N Figure 5.34: Validation F = 200 N

Figure 5.35: Validation F = 500N

51

Chapter 6

Conclusion

The aim of this thesis work was to explore the possibilities that Physics-encoded
Neural Networks (PeNN) can provide in the context of system identification and
especially in the possibility of creating surrogate models for Software in the Loop
purposes. In particular, we focus our attention on testing the capability and
limitations of one of the newest Deep Learning tools developed in the field of
Universal Differential Equation NeuralODE.
This study aims to develop a neural network able to learn the dynamics of a
system emulating the set of ordinary differential equations (ODEs) that represent
the system itself. That approach allows us to simulate the different condition
models even in the case we physically do not have the model or can’t represent it
mathematically.
The framework studied shows:

• Important features in terms of network architecture and training approach
techniques.

• Allows us to easily implement PeNN architecture enveloping partial knowledge
about the dynamic system to be estimated.

• Interesting ability to embed the dynamic of the system"studied" showing to
mimic the original set of ODEs also for never trained boundary conditions.
To be noticed that also for the problem with bad convergences of the loss
function the networks gave an encouraging respond.

On the contrary, the tool used presents limitations when facing systems with strong
non-linearity like the electrohydraulic actuator of this work or in the case of triple
rotating mass with high complexity systems. This work ends with interesting
proposals for future works based on the benefits and limitations observed during
this study.

52

Conclusion

• Technical upgrades: investigation about better understanding of what the
SciML ecosystem can offer and what starting from that can be developed
together the help of consistent community knowledge.

• Grey-boxing: develop a methodology for generalising the problem of system
approximation. A proposal is Polynomial Optimization Problem (POP), it
could be a good tool to be implemented in support of the ANN approximation.
POP does require general knowledge of the system to be analyzed and that
fits the assumption of our formulated problem.

• Constraints optimization: focus on the optimization problem to emphasise
the respect by the agent to the physical constraints of the system under study.

53

Bibliography

[1] Roger G. Ghanem and Masanobu Shinozuka. «Structural-System Identifi-
cation. I: Theory». In: Journal of Engineering Mechanics-asce 121 (1995),
pp. 255–264 (cit. on p. 3).

[2] L. Ljung. System Identification: Theory for the User. Prentice Hall information
and system sciences series. Prentice Hall PTR, 1999. isbn: 9780136566953.
url: https://books.google.it/books?id=nHFoQgAACAAJ (cit. on p. 3).

[3] Gaëtan Kerschen, Keith Worden, Alexander F. Vakakis, and Jean-Claude
Golinval. «Past, present and future of nonlinear system identification in
structural dynamics». In: Mechanical Systems and Signal Processing 20.3
(2006), pp. 505–592. issn: 0888-3270. doi: https://doi.org/10.1016/j.
ymssp.2005.04.008. url: https://www.sciencedirect.com/science/
article/pii/S0888327005000828 (cit. on p. 3).

[4] Jer-Nan Juang and Richard S. Pappa. «An eigensystem realization algorithm
for modal parameter identification and model reduction». In: Journal of
Guidance, Control, and Dynamics 8.5 (1985), pp. 620–627. doi: 10.2514/
3 . 20031. eprint: https : / / doi . org / 10 . 2514 / 3 . 20031. url: https :
//doi.org/10.2514/3.20031 (cit. on p. 3).

[5] Rune Brincker, Lingmi Zhang, and Palle Andersen. «Modal identification
of output-only systems using frequency domain decomposition». In: Smart
Materials and Structures 10.3 (June 2001), p. 441. doi: 10.1088/0964-1726/
10/3/303. url: https://dx.doi.org/10.1088/0964-1726/10/3/303
(cit. on p. 3).

[6] Salah A Faroughi, Nikhil Pawar, Celio Fernandes, Subasish Das, Nima K.
Kalantari, and Seyed Kourosh Mahjour. Physics-Guided, Physics-Informed,
and Physics-Encoded Neural Networks in Scientific Computing. 2022. doi:
10.48550/ARXIV.2211.07377. url: https://arxiv.org/abs/2211.07377
(cit. on pp. 3–5).

54

https://books.google.it/books?id=nHFoQgAACAAJ
https://doi.org/https://doi.org/10.1016/j.ymssp.2005.04.008
https://doi.org/https://doi.org/10.1016/j.ymssp.2005.04.008
https://www.sciencedirect.com/science/article/pii/S0888327005000828
https://www.sciencedirect.com/science/article/pii/S0888327005000828
https://doi.org/10.2514/3.20031
https://doi.org/10.2514/3.20031
https://doi.org/10.2514/3.20031
https://doi.org/10.2514/3.20031
https://doi.org/10.2514/3.20031
https://doi.org/10.1088/0964-1726/10/3/303
https://doi.org/10.1088/0964-1726/10/3/303
https://dx.doi.org/10.1088/0964-1726/10/3/303
https://doi.org/10.48550/ARXIV.2211.07377
https://arxiv.org/abs/2211.07377

BIBLIOGRAPHY

[7] Salah A. Faroughi, Ana I. Roriz, and Célio Fernandes. «A Meta-Model
to Predict the Drag Coefficient of a Particle Translating in Viscoelastic
Fluids: A Machine Learning Approach». In: Polymers 14.3 (2022). issn: 2073-
4360. doi: 10.3390/polym14030430. url: https://www.mdpi.com/2073-
4360/14/3/430 (cit. on p. 4).

[8] Ming Jer Lee and Jui Tang Chen. «Fluid property predictions with the aid
of neural networks». In: Industrial & Engineering Chemistry Research 32.5
(1993), pp. 995–997. doi: 10.1021/ie00017a034. eprint: https://doi.org/
10.1021/ie00017a034. url: https://doi.org/10.1021/ie00017a034
(cit. on p. 4).

[9] Cheng Yang, Xubo Yang, and Xiangyun Xiao. «Data-driven projection method
in fluid simulation». In: Computer Animation and Virtual Worlds 27.3-4
(2016), pp. 415–424. doi: https://doi.org/10.1002/cav.1695. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1695. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695 (cit. on
p. 4).

[10] Zhikai Wang, Ka Gong, Wei Fan, Chao Li, and Weijia Qian. «Prediction of
swirling flow field in combustor based on deep learning». In: Acta Astronautica
201 (2022), pp. 302–316. issn: 0094-5765. doi: https://doi.org/10.1016/
j.actaastro.2022.09.022. url: https://www.sciencedirect.com/
science/article/pii/S0094576522004878 (cit. on p. 4).

[11] Bradley N. Bond and Luca Daniel. «Guaranteed stable projection-based model
reduction for indefinite and unstable linear systems». In: 2008 IEEE/ACM
International Conference on Computer-Aided Design. 2008, pp. 728–735. doi:
10.1109/ICCAD.2008.4681657 (cit. on p. 4).

[12] Zekarias Tadesse, K.A. Patel, Sandeep Chaudhary, and A.K. Nagpal. «Neural
networks for prediction of deflection in composite bridges». In: Journal of
Constructional Steel Research 68.1 (2012), pp. 138–149. issn: 0143-974X.
doi: https://doi.org/10.1016/j.jcsr.2011.08.003. url: https:
//www.sciencedirect.com/science/article/pii/S0143974X11002173
(cit. on p. 4).

[13] Zhiwei Fang and Justin Zhan. «Deep Physical Informed Neural Networks
for Metamaterial Design». In: IEEE Access 8 (2020), pp. 24506–24513. doi:
10.1109/ACCESS.2019.2963375 (cit. on p. 5).

[14] Khemraj Shukla, Ameya D. Jagtap, James L. Blackshire, Daniel Spark-
man, and George Em Karniadakis. «A Physics-Informed Neural Network for
Quantifying the Microstructural Properties of Polycrystalline Nickel Using Ul-
trasound Data: A promising approach for solving inverse problems». In: IEEE
Signal Processing Magazine 39.1 (Jan. 2022), pp. 68–77. doi: 10.1109/msp.

55

https://doi.org/10.3390/polym14030430
https://www.mdpi.com/2073-4360/14/3/430
https://www.mdpi.com/2073-4360/14/3/430
https://doi.org/10.1021/ie00017a034
https://doi.org/10.1021/ie00017a034
https://doi.org/10.1021/ie00017a034
https://doi.org/10.1021/ie00017a034
https://doi.org/https://doi.org/10.1002/cav.1695
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1695
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.09.022
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.09.022
https://www.sciencedirect.com/science/article/pii/S0094576522004878
https://www.sciencedirect.com/science/article/pii/S0094576522004878
https://doi.org/10.1109/ICCAD.2008.4681657
https://doi.org/https://doi.org/10.1016/j.jcsr.2011.08.003
https://www.sciencedirect.com/science/article/pii/S0143974X11002173
https://www.sciencedirect.com/science/article/pii/S0143974X11002173
https://doi.org/10.1109/ACCESS.2019.2963375
https://doi.org/10.1109/msp.2021.3118904
https://doi.org/10.1109/msp.2021.3118904

BIBLIOGRAPHY

2021.3118904. url: https://doi.org/10.1109%5C%2Fmsp.2021.3118904
(cit. on p. 5).

[15] Ivan Depina, Saket Jain, Sigurdur Mar Valsson, and Hrvoje Gotovac. «Appli-
cation of physics-informed neural networks to inverse problems in unsaturated
groundwater flow». In: Georisk: Assessment and Management of Risk for
Engineered Systems and Geohazards 16.1 (2022), pp. 21–36. doi: 10.1080/
17499518.2021.1971251. eprint: https://doi.org/10.1080/17499518.
2021.1971251. url: https://doi.org/10.1080/17499518.2021.1971251
(cit. on p. 5).

[16] Henning Wessels, Christian Weißenfels, and Peter Wriggers. «The neural
particle method – An updated Lagrangian physics informed neural network for
computational fluid dynamics». In: Computer Methods in Applied Mechanics
and Engineering 368 (Aug. 2020), p. 113127. doi: 10.1016/j.cma.2020.
113127. url: https://doi.org/10.1016%5C%2Fj.cma.2020.113127 (cit.
on p. 5).

[17] Chengping Rao, Hao Sun, and Yang Liu. «Hard Encoding of Physics for
Learning Spatiotemporal Dynamics». In: (2021). doi: 10.48550/ARXIV.2105.
00557. url: https://arxiv.org/abs/2105.00557 (cit. on p. 6).

[18] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural
Operator for Parametric Partial Differential Equations. 2020. doi: 10.48550/
ARXIV.2010.08895. url: https://arxiv.org/abs/2010.08895 (cit. on
p. 6).

[19] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill
Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman.
Universal Differential Equations for Scientific Machine Learning. 2020. doi:
10.48550/ARXIV.2001.04385. url: https://arxiv.org/abs/2001.04385
(cit. on pp. 7, 18).

[20] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton.
Tech. rep. 85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory, Jan.
1957 (cit. on p. 11).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: (2015). url: https://arxiv.org/abs/
1512.03385 (cit. on p. 16).

[22] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
«Neural Ordinary Differential Equations». In: (2019). url: https://arxiv.
org/abs/1806.07366 (cit. on p. 17).

56

https://doi.org/10.1109/msp.2021.3118904
https://doi.org/10.1109/msp.2021.3118904
https://doi.org/10.1109%5C%2Fmsp.2021.3118904
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1016/j.cma.2020.113127
https://doi.org/10.1016/j.cma.2020.113127
https://doi.org/10.1016%5C%2Fj.cma.2020.113127
https://doi.org/10.48550/ARXIV.2105.00557
https://doi.org/10.48550/ARXIV.2105.00557
https://arxiv.org/abs/2105.00557
https://doi.org/10.48550/ARXIV.2010.08895
https://doi.org/10.48550/ARXIV.2010.08895
https://arxiv.org/abs/2010.08895
https://doi.org/10.48550/ARXIV.2001.04385
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366

BIBLIOGRAPHY

[23] L.S. Pontrjagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, and
D.E. Brown. The Mathematical Theory of Optimal Processes. International
series of monographs in pure and applied mathematics. Wiley, 1962. url:
https://books.google.fr/books?id=PcH9oAEACAAJ (cit. on p. 17).

[24] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.
org/abs/1412.6980 (cit. on p. 20).

[25] Wei Zhao. «A Broyden–Fletcher–Goldfarb–Shanno algorithm for reliability-
based design optimization». In: Applied Mathematical Modelling 92 (2021),
pp. 447–465. issn: 0307-904X. doi: https://doi.org/10.1016/j.apm.2020.
11.012. url: https://www.sciencedirect.com/science/article/pii/
S0307904X20306648 (cit. on p. 20).

[26] url: https://www.do-mpc.com/en/latest/getting_started.html (cit.
on p. 26).

[27] Matteo Dalla Vedova, Paolo Maggiore, and Francesco Marino. «Proposal
of a Fast Model-Based Prognostic Paradigm for Electrohydraulic Actuators
affected by Multiple Failures». In: WSEAS Transactions on Systems and
Control 11 (Jan. 2016), pp. 445–452 (cit. on pp. 30, 32).

57

https://books.google.fr/books?id=PcH9oAEACAAJ
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.apm.2020.11.012
https://doi.org/https://doi.org/10.1016/j.apm.2020.11.012
https://www.sciencedirect.com/science/article/pii/S0307904X20306648
https://www.sciencedirect.com/science/article/pii/S0307904X20306648
https://www.do-mpc.com/en/latest/getting_started.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and Objectives
	System Identification
	Data-driven methods
	Physics-driven methods

	Universal Differential Equation
	Physics-encoded Neural ODEs
	Grey-box modeling

	Technological Background
	Neurons
	Biological Neuron
	Artificial Neuron

	How an ANN's learns
	Feed-forward
	Backpropagation

	Neural ODE
	Experimental Method
	Experimental set-up
	Training

	Case Studies
	Simple Pendulum
	Triple Oscillating Mass
	Mass Spring Damper
	Electrohydraulic actuator

	Results Analysis
	Simple Pendulum
	Training and Result

	Triple Oscillating Mass
	Mini-batching
	Multiple shooting

	Mass spring dumper
	Mini-batching
	Multiple shooting

	Electrohydraulic actuator
	Mini-batching
	Multiple shooting

	Conclusion
	Bibliography

