
POLITECNICO DI TORINO

Master’s degree in Mechatronic Engineering

Master’s degree thesis

The development of ROS-based offboard algorithms for
autonomous UAVs intended for Mars exploration

Supervisors Candidate
Prof. Giorgio GUGLIERI Riccardo ENRICO
Dott. Stefano PRIMATESTA

April 2023



Abstract

Unmanned Aerial Vehicles (UAVs) have received increased interest in the field of mobile
robotics. Recently, research in the field of UAVs is also studying their use in space
applications and planetary exploration. An example is Ingenuity, the first drone on Mars
developed by NASA.

This is because a UAV offers a wider area of operation with respect to an unmanned
ground vehicle (UGV), and it provides the mission with a higher resolution regarding
images if compared to a satellite or an orbiter.

Moreover, Software in the loop (SITL) simulation of such vehicles is preferred during
the development phase since it enables to evaluate the algorithms implemented without
making use of a real vehicle and without the risk of damaging the hardware.

This thesis proposes a set of algorithms related to UAV-based planetary exploration.
Such software implementations range from the more straightforward functionalities, related
to the navigation and off-board control of the drone to more complex ones which also
incorporate on-board sensors, such as the available ventral camera, to provide imagery
data of an object by encircling it through a circular trajectory. Additionally, an area
coverage algorithm is used to map an area of the terrain by following a grid sweep path,
while providing images of the underlying terrain.

Each of these algorithms is composed of a path generation functionality and subsequent,
through the usage of a PID controller, trajectory tracking capability.

All the proposed algorithms have been developed with Python. The drone off-board
control software implementation has been developed through the Robotics Operating
System (ROS), more specifically the ROS 2 version, and the PX4 autopilot.

They are designed to work with a Linux operating system along with the firmware
available on board the drone, without needing to resort to the UAV computational resources.
Each of the proposed navigational features are organized according to a request/reply
model available through the interface offered by ROS 2.

Besides, the UAV has been equipped with a precision landing algorithm making
it capable of re-entering on top of a dedicated platform, in this thesis case a UGV.
Moreover, the drone is supplied with a ROS 2 node implementing a Kalman filter algorithm
that produces the relative position and velocity estimates between the drone and the
UGV landing platform, from sensor readings. The available sensors are the ones already
implemented via the PX4 autopilot flight stack, furthermore ultrawide-band antennas and
a top-view camera for AprilTag detection are added to the simulation environment to
increase the estimate precision.

Every sensor combination available on the estimation algorithm is tested in the simula-
tion environment, to check their effectiveness and interaction.

Finally, the simulation environment has been developed through ROS 2 and the Gazebo
simulator, it provides with the condition simulating the drone itself, a rover, and a
reproduction of the Martian ground. The testing phase of the algorithms has been done by
following the Software-in-the-Loop (SITL) approach. The drone model available through
the PX4 autopilot has been used as the starting point and modified according to the
estimation algorithm needs by adding the necessary sensors via Gazebo plugins.



Acknowledgements

I would like to express my gratitude to my advisor, Giorgio Guglieri, for giving me the
opportunity to work on a thesis in such an interesting topic.

I would also like to extend my sincere thanks to my supervisor, Stefano Primatesta,
for his support throughout the development of this thesis. His invaluable feedback and
knowledge have been essential in developing and shaping my approach to the project.

I am deeply grateful to my family for their unconditional support, which has sustained
me through the ups and downs of my academic journey. Their encouragement and belief
in me have been fundamental in helping me achieve my goals.

Finally, I would like to thank all my friends for their constant support and encourage-
ment, both in my academic pursuits and in my personal life.

II



Contents

List of Tables 6

List of Figures 7

1 Introduction 13
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Simulation environment 15
2.1 ROS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 ROS 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Comparison of ROS 2 and ROS 1 features . . . . . . . . . . . . . . 16
2.2.2 ROS 2 Topics vs Services vs Actions . . . . . . . . . . . . . . . . . 18

2.3 PX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 PX4 and ROS 2 for offboard control . . . . . . . . . . . . . . . . . 20
2.3.2 Offboard control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 UAV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 World model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Offboard algorithms 29
3.1 Algorithms organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Reasoning behind the choice of ROS 2 Actions . . . . . . . . . . . . 31
3.1.2 Common capabilities to all the action servers . . . . . . . . . . . . . 32

3.2 Takeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Go to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 PID controller introduction . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 PID controller architecture . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Get images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III



3.5.1 Trajectory generation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Area coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Path generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Path tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Precision landing and estimation 57
4.1 Kalman Filter theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Prediction step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Update step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Kalman Filter implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Estimation node introduction . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 ROS 2 topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Update step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.4 Prediction step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Kalman filter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Estimation launch file . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Interface between the action and the estimation algorithm . . . . . 68
4.4.2 Landing action pseudo-code . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Precision landing simulation results . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 Simulation with only ultra-wide band sensor . . . . . . . . . . . . . 71
4.5.2 Simulation with only the AprilTag sensor . . . . . . . . . . . . . . . 72
4.5.3 Simulation with both UWB and AprilTag sensors . . . . . . . . . . 74
4.5.4 Landing with no UWB and no AprilTag information . . . . . . . . 75

5 Conclusions 79
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Simulation installation tutorial 81
A.1 Repository organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1.1 drone_bringup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1.2 drone_estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1.3 drone_rover_mars . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2.1 Requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2.2 PX4 Autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.3 PX4-ROS2 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.4 Correct version download . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.5 Complete the installation . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2.6 Modifications in the PX4 folder . . . . . . . . . . . . . . . . . . . . 83
A.2.7 Updating the launch files path . . . . . . . . . . . . . . . . . . . . . 84
A.2.8 Building the ROS 2 Workspace . . . . . . . . . . . . . . . . . . . . 84
A.2.9 Simulation aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.3 Running the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

IV



A.3.1 Simulation commands . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3.2 Actions bagfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V



List of Tables

3.1 Drone status code table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 ROS 2 topics employed in the Kalman filter node. . . . . . . . . . . . . . . 61

VI



List of Figures

2.1 ROS graph as shown in the ROS 2 Foxy Fitzroy documentation and the
rqt_graph [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Components of the PX4-ROS 2 communication architecture [18]. . . . . . . 21
2.3 microRTPS link between the PX4 autopilot firmware and ROS 2 nodes [19]. 22
2.4 High level organization of the PX4 flight stack [23]. . . . . . . . . . . . . . 23
2.5 Cascaded architecture of the position and attitude controllers [24]. . . . . . 23
2.6 Nodes publication and subscription to the main topics available through

the PX4 flight stack. Visualized through the rqt_graph tool. . . . . . . . . 24
2.7 3DR Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Modified Iris quadrotor in the simulation environment . . . . . . . . . . . . 26
2.9 Simulation environment in which the UGV and UAV model are placed on

startup together with the martian ground. . . . . . . . . . . . . . . . . . . 27
2.10 Reference frame comparison between PX4 (left) and Gazebo (right) [27]. . 27
3.1 General organization of the simulation environment. This figure shows how

launch files are used during the startup procedure. In this case also the
launch files related to the simulation and the estimation are shown, more in
depth detail are offered in the specific chapters respectively 2.4 and 4. . . . 30

3.2 The figure depicts how the launch files shown in figure 3.1 are used when
starting up the simulation environment. The top-left terminal is used to
start the simulation environment, the top-right the action servers while the
bottom-left the estimation algorithm and it’s auxiliary nodes. A terminal
window is left for the user to send the required commands. . . . . . . . . . 30

3.3 Rqt graph showing all the action servers and the drone status topic. The
communication is bidirectional, all action servers are able to publish to the
topic as well as gather the status information. . . . . . . . . . . . . . . . . 33

3.4 The image shows the general communication model of each action server. . 36
3.5 Figure showing how the status code changes during the takeoff action. As

soon as the action request is received the status code changes to 1 (takeoff
in progress) and similarly does when completing the takeoff, status code 2.
When the action has been completed the drone enters hover mode and so
the status code turns to 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Variation of the position and the status code during the takeoff and reaching
target task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 PID Controller block diagram [29] . . . . . . . . . . . . . . . . . . . . . . . 42

VII



3.8 PID Controller scheme, the lower level controller used are showed more
clearly in figure 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Terminal interface when requesting the get images goal. In this case the
rover frame id is utilized, if the input would have been empty after defining
the radius and number of images the reference frame employed would have
been the local world frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Get images action server trajectory tracking. . . . . . . . . . . . . . . . . . 47
3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.12 4 images taken during an orbit, in this case the target corresponds to the

rover, which is shown from each angle. . . . . . . . . . . . . . . . . . . . . 48
3.13 Terminal interface showed to the user when requesting an area coverage

action. The user has to input the 2D coordinates of the points used to
define the area. The action client takes care of translating the inputs into
geometry_msgs/Point variables for the correct goal request, as seen in
source code 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.14 Figures showing the generated path and the subsequent smoothing. . . . . 51
3.15 Drone effective position (blue line) with respect to the generated path (red

line) during the area coverage. The position at which the images are taken
are flagged with the green marks. . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Coverage of an irregularly shaped area with different resolutions. . . . . . . 56
4.1 Model underlying the Kalman Filter. The matrices are represented by the

squares and ellipses represent the normal distribution (Q and R are the
covariance matrices). The values with no geometric box are the vectors
(input, state, measurements)[36]. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Image taken from the rqt_graph showing the incoming and outgoing topics
related to the Kalman filter node. Topics are shown with a rectangular
shape while the oval shape is related to the node. . . . . . . . . . . . . . . 61

4.3 Incoming and outgoing topics from the AprilTag estimation node. . . . . . 63
4.4 Rqt graph showing the incoming and outgoing topics of the rover odometry. 63
4.5 Comparison of the data incoming from the ultra-wide band and apriltag

algorithms. Used during the tuning process to choose the R value. . . . . . 66
4.6 Estimation launch file organization . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Distinction between the approach and descent phases in the landing algorithm. 71
4.8 Kalman filter estimation output compared to ground-truth data. Case with

UWB data and no AprilTag data. . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Terminal window shown when a precision landing with no UWB sensor is

requested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Kalman filter estimation output compared to ground-truth data. Case with

no UWB data and AprilTag data. A confidence band of 10cm is placed
around each ground truth data plot. . . . . . . . . . . . . . . . . . . . . . 73

4.11 Estimated position of the rover during the precision landing request without
the usage of the UWB data. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.12 Rover position estimate error. Comparing the data coming from the Kalman
filter algorithm and the ground-truth data. . . . . . . . . . . . . . . . . . . 75

VIII



4.13 Kalman filter estimation output compared to ground-truth data. Case with
both UWB data and AprilTag data. . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Landing performed in a safe position, in this case corresponding to the
origin of the local world frame. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 Landing performed on top of the rover. . . . . . . . . . . . . . . . . . . . . 78
A.1 Simulation environment in the Gazebo software. . . . . . . . . . . . . . . . 86
A.2 Table of the commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 Go to target terminal interface, with the aliases enabled. . . . . . . . . . . 87
A.4 Getimages terminal interface, with the aliases enabled and using the default

(world) reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.5 Getimages terminal interface, with the aliases enabled and using the rover

reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

IX



List of Algorithms

1 Pseudo code presenting the procedure employed in the goal_callback
shared by all developed action servers. . . . . . . . . . . . . . . . . . . . . 34

2 Takeoff action server pseudo code . . . . . . . . . . . . . . . . . . . . . . . 37
3 Go to target action server pseudo code . . . . . . . . . . . . . . . . . . . . 40
4 Get images action server pseudo code . . . . . . . . . . . . . . . . . . . . . 46
5 Path smoothing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Procedure used during the computation of the position of the images to

take during the area coverage . . . . . . . . . . . . . . . . . . . . . . . . . 52
7 Pseudo code of the area coverage action server . . . . . . . . . . . . . . . . 54
8 Pseudo code demonstrating the update step of the Kalman filter algorithm 65
9 Landing algorithm pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . 70

X



Acronyms

DDS Data Distribution Service.

EKF Extended Kalman Filter.

ENU East-North-Up.

NED North-East-Down.

PID Propotional-Integral-Derivative.

ROS Robotics Operating System.

RTPS Real Time Publish Subscribe.

SITL Software in the Loop.

UAV Unmanned Aerial Vehicle.

UAVs Unmanned Aerial Vehicles.

UDP User Datagram Protocol.

UGVs Unmanned Ground Vehicles.

uORB micro Object Request Broker.

UWB Ultra-wideband.

VTOL Vertical Takeoff and Landing.

XI



12



Chapter 1

Introduction

1.1 State of the art
Drones and Unmanned Aerial Vehicles (UAVs) are more and more used in the field of
mobile robotics, this is due to the low cost of their hardware components [1] and especially
because of their possibility of navigating the outdoors much more freely with respect to
ground robots [2].

Moreover, the market offering in regards to UAVs propulsion system is a lot varied,
ranging from multi-copters and fixed wing to Vertical Takeoff and Landing (VTOL) drones.

In recent years such surge in utilization has been also reflected in regards to space
exploration. An example is the Mars Helicopter or Ingenuity, an UAV developed by
NASA, an autonomous flight system which is fitted with onboard control and navigation
algorithms, which receives commands from the Perseverance rover [3].

The usage of UAVs has been largely appreciated for such context mainly due the
possibility of offering a mapping of a wider area, with respect to UGVs and provide an
higher image resolution with respect either to satellites or orbiters.

This increase in both interest and utilization of such vehicles has led to the development
of dedicated state-of-the-art frameworks from both a generalized robotics point of view,
this has lead to the creation of the Robotics Operating System (ROS) [4]. Concerning the
flight stack of UAVs the PX4 autopilot [2] has been introduced. Both of these software
tools are publicly available as open source projects. Both projects have been inspected in
details in the following chapters (Chapter 2).

1.2 Thesis objective
The objective of this thesis is to provide with an easily employable simulation environment
for a UAV, such vehicle is intended for mars exploration.

In order to do so, navigation, control and estimation algorithms are developed through
Python. The communication between these algorithms, or nodes, is enabled using the
Robotics Operating System (ROS) framework. The lower level section of the flight stack

13



Introduction

(i.e. attitude control) is taken care of by the PX4 Autopilot. While Gazebo has been
utilized as the simulation environment.

All of the software tools listed previously have been described in their relative section
in chapter 2.

The proposed navigation and control algorithms in order to tackle the main tasks
required for such a vehicle, range from the most simple (e.g. takeoff and reaching a target)
to the most complex (e.g. mapping the underlying area while following a trajectory and
performing a precision landing). The algorithms development and their employment is
described in chapter 3, instead in chapter 4 the ROS 2 nodes employed for the position
estimation are discussed.

1.3 Thesis organization
The structure of the thesis is shown in the following list:

• Software employed introduction: Introductory chapter explaining the main
software tools used during the implementation of the steps required for the thesis
project.

• Control algorithms: Analysis of the user interface, the algorithms, and their
organization, used to accomplish the goal requested by the user.

• State estimation: The state of the UAV is estimated through a Kalman Filter
node developed by using the FilterPy library, as with the proposed algorithms the
communication is enabled trough ROS.

• Simulation results: Finally, the proposed algorithms are tested through a SITL
simulation, with the Gazebo simulator.

14



Chapter 2

Simulation environment

2.1 ROS Introduction
The Robotics Operating System (ROS) is not a full operating system as the name would
suggest. It has two main components, a middleware or a communication layer enabling
algorithms developed with different programming languages to exchange information with
each other, and also offers a set of libraries and tools used for software development for a
robotic application [4].

The ROS project has started in 2007 and a newer version (ROS 2) has been released
starting from 2017 with the first non-beta release (Ardent Apalone). The distribution used
in this thesis is Foxy Fitzroy, released in 2020 [5].

The core concepts of ROS have been described by [4]:
• Peer-to-peer: The ROS system is distributed, meaning that it consist of a number

of processes connected at runtime through a peer-to-peer topology.
• Tools-based: ROS is developed in order to maintain a large number of small tools,

so that everything is pushed into separate module.
• Multi-lingual: ROS supports a number of languages, according to [4] those are

Python, C++, Octave and LISP. In this thesis case Python has been chosen for the
algorithms implementation.

• Thin: The devolvement of each ROS-based applications is encouraged, by the
developers, to use standalone libraries that have no dependencies on ROS. Thus
placing all the complexity in the libraries and creating small executables, allowing
for easier code extraction and reusability.

• Free and open source: To add on the previous point the focus of code developed
for ROS is to be as reusable as possible, thus the source code of ROS is publicly
available.

2.1.1 Concepts
The fundamental concepts of ROS revolve around its organization through nodes, messages,
topics, and services [4].

15



Simulation environment

Nodes: Are processes that perform the computation, a ROS -based system will be
comprised of many nodes.
Messages: Nodes communicate through messages. A message is a strictly typed data
structure and many data primitive types are supported (integer, float, bool etc.).
Topics: For a node to receive certain messages it must subscribe to the topic on which
such messages are sent.
This publisher-subscriber model support one-to-many or many-to-many communication.
Services: Although flexible, the previously shown communication model is not suitable
for synchronous communications. In order to support such communications a request-reply
model is implemented through the use of services.
This is analogous to web services and it has to be noted that in this case only one-to-one
communication is possible.
Actions: Another way to have synchronous, request/reply communications is to use
Actions. This also allows for the client which is requesting the action, to receive a steady
feedback while the action is being executed.

The ROS conceptual graph is shown in figure 2.1. Among the tools made available by
the framework there are rqt and the rqt_graph [6], to visualize such connections.

2.2 ROS 2
2.2.1 Comparison of ROS 2 and ROS 1 features
While the first version of ROS has been designed with mainly academic projects in mind
it has now started to be used in market-oriented products [7].

To satisfy the requirements of such applications a newer version of ROS had to be
developed. It addresses the specifications listed below [8]:

• Multiple robots system versus single robot applications [9].

• Usage via a small embedded platform. Instead the first physical application of ROS 1
was PR2 a robotics system which was equipped with workstation level computational
capabilities [9][8].

• Real-time communication support [10].

• Quality-of-Service (QoS) support, allowing whoever is writing the code related to the
publisher and subscriber to have more control over how the messages are exchanged,
especially in the case of a less than ideal network [7].

• Ability of ROS 2 being able to work also in non-ideal networks condition.

• While still maintaining its research lab applications focus, ROS2 now offers more
support towards production environments.

In order to address those needs some changes between the first and the second version
were made, according to [10] [8] are:

16



2.2 – ROS 2

Figure 2.1: ROS graph as shown in the ROS 2 Foxy Fitzroy documentation and the
rqt_graph [5]

API changes

The user facing APIs have been rewritten, previously the ROS libraries used in order
to write nodes in C++ or Python were respectively roscpp and rospy, these were both
independent from each other and so it is possible that some features may be developed for
only for one of them [11].

In ROS2 these libraries are built by following a layered approach in which the base
library rcl, implemented in C, is the same. On top of that the two language-specific
libraries (rclcpp and rclpy) are built which now share all the same core features.

Programming languages versions

Focusing on the C++ library while previously ROS was built targeting C++03 it now
supports C++11 and uses some parts of C++14, in the future ROS 2 might start employing
C++17.

Instead on the Python side ROS 1 targets Python 2, while in the new version the

17



Simulation environment

minimum requisite is Python 3.5.
Also, in ROS 2 Python is another supported method on how launch files are written,

instead of only XML. On top of that according to [7] it has now become best practice to
write launch file with Python.

ROS Master removal

With ROS 2 starting a ROS master in order for the nodes to discover each other is not
necessary anymore. Each node has the capacity to discover others, thus avoiding the ROS
master requisite and allowing to create a fully distributed system.

Building nodes

In ROS 1 in order to build a package CMake has to be used (catkin_make) instead ROS
2 supports Ament as a build system on top of which stands the colcon command line tool,
so in order to compile the command colcon_build is used when in the ROS 2 workspace.

This also influences how packages are created as previously there was no distinction
between C++ and Python packages, with a ROS 2 package it’s now required to specify
either ament_cmake in the case of a C++ package or ament_python if instead Python is
used.

OS Support

While the main target of ROS 1 is Ubuntu, with ROS 2 the main OSes supported are
Ubuntu, MacOS and Windows 10.

2.2.2 ROS 2 Topics vs Services vs Actions
As explained previously, in section 2.1.1, the robotics operating system offers three type of
interfaces and consequently three types of node elements: topics, services and actions.

The ROS 2 documentation [12] provides a more in depth information regarding how to
use the core components already introduced. In this section, those guidelines are discussed
and examine how these components have been organized in this thesis.

Topics

Topics are based on a publish/subscribe communication model, then should be used for
continuous data streams (such as UAV sensor data or state) to which other nodes have
the possibility of subscribing or publishing.

For example, in this thesis, topics are used in the estimation part for the input and
output of the Kalman filter (Section 4.2).

18



2.2 – ROS 2

Services

Services instead are based on a request/response type of communication, and should be
used for procedure calls that are carried out quickly.

The usage of a service then requires the creation of a client/server pairing and the
related message definition (.srv files), in these types of files the message type of the
request and the response must be defined.

An example in the algorithm is the service used to switch the drone from an a completed
action to the hover state.

Actions

Instead to carry out operations which require more time with respect to services, actions
are employed.

Both actions and services are based on a request and reply protocol and they need a
server that must be started before the operation (i.e. by a launch file), actions are called
to achieve a goal and send back feedback messages to the action client during the time
required to perform it.

Similarly to services an action must be defined using an .action file, in which the goal,
the result and feedback are defined.

In this thesis work actions have been employed to perform the control algorithms of the
drone, in particular the takeoff, reaching a given target, getting images of a given target,
performing an area coverage and the precision landing algorithm.

19



Simulation environment

2.3 PX4

PX4 is an open source flight control software for drones and other unmanned vehicles. The
project offers a set of tools that allow developers to create solutions for specific applications
and to share them. Much like ROS the project has been developed and used in an academic
environment, on top of that is supported by a world wide online community [2][13].

The PX4 flight stack consist of an ensemble of control, guidance and navigation
algorithms [14]. These may be used on a real UAV or, in order to validate the software
code developed via SITL simulation, as it has been done in this thesis.

2.3.1 PX4 and ROS 2 for offboard control

ROS is used by PX4 to provide an offboard control functionality, with a linux companion
computer. In this way its possible to control the PX4 flight stack using a software outside
of the autopilot.

PX4 supports both versions of the robotic operating system, but while the communi-
cation between ROS 2 and the autopilot is done through the ROS2-PX4 bridge (Figure
A.2.3) the communication with the first version can be done either via two bridges (the
PX4-ROS2 bridge and subsequently ros_bridge) or through a MAVROS package over
MAVLink protocol1 [16].

The usage of the second version of ROS is highly recommended, by the development
team of PX4, as the PX4-ROS2 bridge is able to take advantage of the communication
middleware (DDS/RTPS).

PX4 and ROS 2 communication

In this thesis the second version of ROS has been employed thus requiring only to setup
the connection to the autopilot through the PX4-ROS2 bridge.

From the communication standpoint the PX4 autopilot employs an RTPS protocol and
a DDS middleware in order to interface itself with an offboard DDS application (such as
ROS 2 nodes), in this way it is possible to exchange uORB2 topics sent by the client (the
PX4 autopilot) to RTPS messages to the agent side (offboard computer) and vice versa.

The connection between such devices is enabled trough an UART or UDP link. This
translation and communication bridge is called the microRTPS bridge, the main components
of such architecture are shown in figure 2.2.

1MAVLink is a lightweight messaging protocol used in the drone ecosystem [15].
2uORB is an asynchronous publish/subscribe messaging API used between the components of the

PX4 autopilot [17].

20



2.3 – PX4

Figure 2.2: Components of the PX4-ROS 2 communication architecture [18].

Specifically, in the event of using PX4 in conjunction with an offboard computer running
ROS 2 it is necessary to install and build the following packages in the ROS workspace, in
order to enable a translation layer between the uORB topics and the RTPS messages.

The packages are3:

• px4_ros_com: Which contains the microRTPS agent code templates for both
publisher and subscribers. Whenever the build process is initiated the file
urtps_bridge_topics.yaml is mirrored on the agent side, the px4_ros_com folder,
by the uorb_to_ros_urtps_topics.py file.

• px4_msgs: Contains the pre-configured px4 message definitions. At build time the
content of the px4_msgs folder is updated via the uorb_to_ros_msgs.py automati-
cally.

In both cases the packages are populated at build time via the mentioned python scrips
contained in the PX4 firmware. Since not all uORB topics are made available to the ROS
application as a default setting if specific messages are required to be transmitted from
uORB to ROS messages then these scripts must be ran manually [19].

Both packages are available as GitHub repositories for ease of access an installation.
In order to perform it, is’s necessary to clone the repositories and then run the build
command [20][21], as shown in the installation tutorial Appendix-A.

The packages are placed on the agent side of the communication, in the ROS 2 workspace
directory.

3Such package are part of the ROS 2 workspace as shown in the appendix chapter regarding the
installation Appendix-A

21



Simulation environment

Figure 2.3: microRTPS link between the PX4 autopilot firmware and ROS 2 nodes [19].

The client runs on PX4 and an agent will run on the mission/companion computer,
the communication is done through message translation of uORB (PX4 publish-subscribe
messaging API) and ROS 2 messages.

In this way it is possible to create ROS 2 subscriber nodes that receive directly PX4
uORB topics, and vice versa with a publisher node (as shown in figure 2.3).

2.3.2 Offboard control

Offboard control is employed to perform each of the tasks shown in this thesis, this means
that the vehicle responds to position velocity or attitude setpoints computed by algorithms
running on a companion computer, while the PX4 autopilot is charged only with actuating
such commands and stabilizing the drone.

PX4 offboard mode has some requirements that must be satisfied in order to be ran, as
detailed in [22]:

• At least a stream of > 2 Hz of setpoints commands that shall be sent to the autopilot
from the companion computer.

• At least one of the following pose/attitude information has to be available (GPS,
optical flow, visual-inertial odometry, mocap, etc.)

• The vehicle must be previously armed, and it must receive an appropriate stream of
commands prior to the offboard mode engagement.

• RC communication must be disabled. If an RC command is issued to the autopilot or
the stream of setpoints commands is stopped, then the vehicle will exit the offboard
mode and enter a failsafe state, thus landing.

• Offboard mode requires also a continuos connection to a remote MAVLink system
or a ground control station software (such as QGroundControl), otherwise if such
connection is lost the vehicle will enter a failsafe mode and land.

22



2.3 – PX4

Figure 2.4 shows the high level flight stack organization of the PX4 autopilot. The
flight stack is a collection of guidance, navigation and control algorithms for the drone.

The algorithms developed for the thesis focus on the high-level control and navigation
as opposed to the low-level control algorithms which are implemented directly by the
autopilot.

Figure 2.4: High level organization of the PX4 flight stack [23].

The PX4 flight stack allows to get the information regarding the position, velocity and
altitude of the drone. This data is computed through the EKF2, an extended kalman
filter, in the local NED frame [23].

In the estimation chapter it will be shown how this data will be used to compute the
relative position and velocity with respect to the landing platform.

All of the algorithms developed are subscribed to the VehicleOdometry_PubSubTopic
which gets the data from the EKF2 algorithm in the local NED frame (figure 2.6b).

Low level controllers

As shown in figure 2.5 the controller section of the flight stack is organized through a
cascaded architecture, offering a position and velocity controller which are employed to
computed the attitude setpoints fed to the attitude controller.

Figure 2.5: Cascaded architecture of the position and attitude controllers [24].

23



Simulation environment

Position and velocity controllers

The figure does not show that it is possible to send directly a velocity vector (vSP ) as
reference to the PID velocity controller, thus bypassing the first outer loop.

During the development of the algorithms this has been done for the algorithms
which demanded a stricter trajectory following capability, the orbiting algorithm, the area
coverage and the precision landing algorithm.

During the testing phase bypassing the outer loop and using a customizable PID
controller showed better results in term of trajectory tracking.

The topic used by the algorithm to communicate with the controllers is the
TrajectorySetpoint_PubSubTopic (figure 2.6a).

(a) Nodes communicating of the Trajectory
Setpoint topic.

(b) Nodes subscribed to the Vehicle Odome-
try topic.

Figure 2.6: Nodes publication and subscription to the main topics available through the
PX4 flight stack. Visualized through the rqt_graph tool.

ROS 2 Offboard control implementation

ROS 2 nodes can be used to interact with the PX4 flight stack in offboard mode. This
is done through the microRTPS bridge explained section 2.3.1 which enables the ROS 2
node to publish the topics directly as uORB topics. In this thesis, the offboard control is
implemented through ROS 2 nodes organized as actions.

2.4 Simulation Tools
Simulation tools are used to control a vehicle model via ROS 2/PX4 code. This is done
trough Software in the Loop (SITL) in which the flight stack runs on computer as opposed
to Hardware in the Loop (HITL) simulation in which the firmware runs on a controller
board [25].
The PX4 autopilot supports a variety of simulators:

• Gazebo
• FlightGear
• JSBSim

24



2.4 – Simulation Tools

• JMAVSim
• AirSim

Gazebo is the simulator used in this thesis project as it directly support a ROS
integration and it comes pre-installed with the ROS 2 package.

2.4.1 Gazebo
Gazebo is an open source 3D simulator, it can be used to simulate autonomous robots
and in particular is suitable to test computer vision related algorithms. Moreover it is
necessary to point out that it supports also multi-vehicle simulation [26].

The simulator supports a lot of vehicle models, the one used for the thesis project has
been the Iris quadrotor which comes as part of the PX4 autopilot SITL section.

Such models are defined in the .sdf4 format through which is possible to easily modify
the starting model and implementing custom plugins such as sensors.

While it is still possible to be used independently, the Gazebo simulator comes pre-
installed when installing a ROS distribution via the set of packages called gazebo_ros_pkgs.
Because of that and due to the fact that extensive documentation is provided by the
autopilot docs, the gazebo simulator has been employed for the SITL simulation in this
thesis work.

2.4.2 UAV model
The PX4 SITL package provides a UAV model of the 3DR Iris, which is a commercially
available multicopter.

Figure 2.7: 3DR Iris

4sdf stands for Simulation Description Format which is an XML format used to describe, visualize
and control models used in robotics simulators.

25



Simulation environment

While it is possible to start with the base model offered via the PX4 Autopilot to
simulate the most simple tasks (i.e. takeoff, reach a target) through Gazebo. In order to
test the more complex tasks, which require the usage of additional sensors (i.e. camera), it
has been necessary to modify the sdf model in order to add sensors plugins:

• Camera: a ventral camera is added with the libgazebo_ros_camera plugin, the
camera points downward and is used both for image collection and to detect the
position of the apriltag used during the precision landing procedure.

• Ultra-wide band sensor: Similarly, the ultra wide band sensor is added via a
specific plugin (libros2_px4_gazebo_uwb).

• Laser scan/Laser altimeter sensor: In order to simulate the operations of a
laser altimeter a libgazebo_ros_ray_sensor plugin is employed. This plugin is not
specific to a laser altimeter and so it is necessary to specify a narrow angle in the
.sdf file.

This plugins offers an array of different methods regarding the output message type
of the data, this is done by modifying the <output_type> entry in the .sdf file. In
this thesis work two of them has been employed:

– sensor_msgs/LaserScan message type: employed in the control section of this
thesis whenever the altitude of the UAV had to be published as feedback, in
order to provide a 2D scan with multiple results.

– sensor_msgs/Range message type: employed in the estimation section of the
code, this message type returns a single distance value which is the minimum of
all ray ranges recorded by the sensors.

Figure 2.8: Modified Iris quadrotor in the simulation environment

2.4.3 World model
The PX4 Autopilot SITL package provides the user with a convenient bash file in which is
possible to instruct the world and model files employed during the simulation, the bash file
is the sitl_multiple_run.sh. With this is possible to simulate multiple vehicles using
the Gazebo simulator.

26



2.4 – Simulation Tools

The file has been suitably modified in order to employ the mars terrain world file and
placing a platform simulating the UGV on top of which the precision landing is performed.

Figure 2.9: Simulation environment in which the UGV and UAV model are placed on
startup together with the martian ground.

Moreover, the same file can be used to run directly the UAV model in the Gazebo
environment.

2.4.4 Reference frames

It is also necessary to point out that the world reference frame employed by the simulator
is the East-North-Up (ENU) reference frame while the PX4 autopilot employs the North-
East-Down (NED) frame.

Figure 2.10: Reference frame comparison between PX4 (left) and Gazebo (right) [27].

27



Simulation environment

Due to this, it is necessary to convert any position data coming from the simulation envi-
ronment towards the algorithms paired with the autopilot, one example is the ground-truth
measurement coming from the libgazebo_ros_p3d and employed during the estimation
algorithm validation and tuning.

RENU
NED =

0 1 0
1 0 0
0 0 −1

 (2.1)

28



Chapter 3

Offboard algorithms

3.1 Algorithms organization
In order to provide the UAV with the capabilities necessary to perform the tasks, from the
simpler ones i.e. takeoff to the more complex i.e. taking images following a precise pattern
and performing a precision landing, a number of algorithms have been developed.

Furthermore by taking advantage of the different types of interfaces made available
by the robotic operating system it has been chosen to organize such algorithms mainly
through ROS 2 actions.
The main tasks performed by the UAV in the simulation are:

• Takeoff
• Reaching a user-defined target
• Orbiting around a specific target while taking images
• Providing a coverage of a designated area while performing a grid sweep
• Precision landing

To do so, an action server has been developed and associated to each task. Subsequently
an action client, has been set up, in order for the user to request the tasks to be performed,
thus creating a request/reply communication model between the action clients and server.

Everyone of these server is then started via a single launch file for ease of use, and are
paired with a continuously running control node. The organization is displayed in figure
3.1 while the code organization is examined more in depth in the appendix A.
Each of the main launch files starts some nodes and processes, described below:

• Simulation launch file

– The gazebo_sitl_multiple_run.sh is a bash script used to start:
∗ Launch the Gazebo simulation environment
∗ Generate the world model for the martian ground
∗ Position the drone model, which is a modified Iris model, in the Gazebo
simulation

29



Offboard algorithms

Figure 3.1: General organization of the simulation environment. This figure shows how
launch files are used during the startup procedure. In this case also the launch files related
to the simulation and the estimation are shown, more in depth detail are offered in the
specific chapters respectively 2.4 and 4.

Figure 3.2: The figure depicts how the launch files shown in figure 3.1 are used when
starting up the simulation environment. The top-left terminal is used to start the simulation
environment, the top-right the action servers while the bottom-left the estimation algorithm
and it’s auxiliary nodes. A terminal window is left for the user to send the required
commands.

30



3.1 – Algorithms organization

– MicroRTPS Agent, which is necessary in order to establish the communication
with the PX4 flight stack and the ROS 2 nodes.

• Estimation launch file

– gazebo_yaw_estimator: Node which publishes the yaw value of the rover in
the world NED frame.

– drone_rover_uwb_positioning: Node publishing the relative position of the
UAV in the rover NED frame.

– apriltag_estimator_node: Computes the relative position of the drone in the
rover NED frame, similarly to the previous node.

– gazebo_pos: This node is employed to collect the information related to the
actual position of the UAV and the rover in the Gazebo simulation environment.
The data gathered by this node is also used as ground-truth information during
the Kalman filter algorithm tuning.

– kf_tag_uwb: Hosts the actual Kalman filter estimation algorithm, through which
the data fusion process take place, used mainly during the landing phase.

• Drone control launch file,

– action.launch.py: Explained in detail in the next subsection.
– The drone control node is used to implement the hover service capabilities and

to provide a sort of fallback in case the action server were to fail.

Action servers launch file

As shown in the previous section each algorithm which is associated to a task performed
by the UAV is started by a single python launch file in order to maintain a clean code and
organization and to allow the startup phase to be less inconvenient for the user.

The action server are listed below:

• Takeoff → takeoff_action_server.py
• Go to target → gototarget_action_server.py
• Get images → getimages_action_server.py
• Area coverage → grid_sweep_action_server.py
• Landing → landonspot_action_server.py

The functionality and interfaces of each action server is described in details in the following
section.

3.1.1 Reasoning behind the choice of ROS 2 Actions
As already explained in section 2.2.2, the employment of multiple ROS 2 actions instead of
a single node concerning all control and navigation tasks offers a set of advantages. These
consist mainly of:

31



Offboard algorithms

• Possibility of offering the user with a request/response communication model, which
is better from a user usage point of view with respect of the publish and subscribe
experience offered by a simple node [12][28].

• A ROS 2 service paired with a single node containing all the control algorithms can
also be used in order to offer the same request/response communication [28].

• This option has been discarded though because a ROS 2 service offers the client a
single result instead of a steady feedback [28].

• Another reason is that of avoiding a single node and thus a single point of failure.
In this case it has been chosen to associate an action server to each task while still
offering a continuous running node in case of any problem, the drone control node.

It necessary to point out that the other two types of interfaces (topics and services) are
still used for the development of the algorithms.

In particular topics are the core component for the communication of data between
servers, a custom message regarding the drone status is implemented, the details of such
implementation are explained in section 3.1.2.

Instead a service is provided in order to switch the state of the drone from performing
an action to an hovering state. Furthermore, a more in depth examination is provided at
section 3.1.2.

Moreover, a standard service offered by the rcl_interfaces (SetParameters) library
is employed to select the additional sensor data to be employed by the estimation algorithm
(the implementation of such service is showed in section 4.3.1), used by the precision landing
action server.

3.1.2 Common capabilities to all the action servers
The action servers share some characteristics which are displayed in this section in order
not to repeat each of them in every action server sub-chapter and instead focus on the
specific features of each of the algorithms.

Hover service

The hover service is not directly implemented by any of the actions, but it is provided
by the continuously running drone control node. All the proposed algorithms have the
capabilities of requesting the drone to turning off the hovering state, for example when
starting a new action task, or to turn on the hovering state at a specific position, when
the task has been completed.
1 # Request
2 bool hover_req # true if hover requested
3 geometry_msgs /Point hover_pos
4 ---
5 # Response
6 bool hover_mode # true if in hover state

Source Code 3.1: Hover service interface definition. Via the Hover.srv file.

32



3.1 – Algorithms organization

Whenever an action request the hover mode to be turned on it will also specify at which
position in the world frame, by setting the hover_req to true and setting the position in
the hover_pos as shown in the source code 3.1.

After this the drone will hover at the requested position which usually correspond with
the lastly reached setpoint of the action task.

In this way the control node will publish a constant stream of setpoints to the dedicated
topic with a frequency of 10 Hz.

Drone status topic

All the nodes composing the control section of the drone are subscribed to a custom topic
called the status topic, defined by the Status.msg file (source code 3.2).

Each of the action server and the control node are subscribed to the status topic and
can also publish on it, as shown in figure 3.3.

Figure 3.3: Rqt graph showing all the action servers and the drone status topic. The
communication is bidirectional, all action servers are able to publish to the topic as well
as gather the status information.

Each server then has the information regarding which action is being executed, if any.
Furthermore, if any goal request is made while the drone is completing a previously

received goal the action server will reject the goal request.

The topic is defined as follows:

1 uint8 status
2 nav_msgs / Odometry odometry

Source Code 3.2: Drone status topic definition

33



Offboard algorithms

As shown in the source code 3.2, the status message is quite simple. It exchanges
the information related to the current state (in terms of task being performed) and the
odometry of the UAV in the world frame. The status code is defined in the following table:

Action performed status
Idle 0
Takeoff (in progress) 1
Takeoff (completed) 2
Hover 3
Go to target (in progress) 4
Go to target (completed) 5
Get images (in progress) 6
Get images (completed) 7
Landing (in progress) 8
Landing (completed) 9
Area coverage (in progress) 10
Area coverage (completed) 11
Abort 12

Table 3.1: Drone status code table

Goal rejection

In order to avoid a goal interfering with each other it is necessary to reject a goal request
if another task is still in execution.
This is done through the knowledge of the drone status topic (section 3.1.2).

This algorithm component is executed in the goal_callback which is included in all
action servers, the following pseudo code (algorithm 1) is employed to demonstrate this
simple procedure, implemented in the callback function:

Algorithm 1 Pseudo code presenting the procedure employed in the goal_callback
shared by all developed action servers.
Goal received by the action server → Stored in the goal_handle variable
if Drone status shows an idle state (drone status == 0) or Drone status show hover
state (drone status == 3) then

The goal is marked valid
The goal is accepted and the action task can continue

else
The goal action is marked invalid
The goal is rejected
The action task is not completed

end if

This procedure, while shared by all action servers, is slightly different in the case of the

34



3.1 – Algorithms organization

takeoff action server due to the fact that the takeoff action is not necessary in case the
UAV is in hover mode. In this specific case the takeoff request will be rejected if the drone
is already hovering.

In every pseudo code displayed in the following sections this procedure will be substituted
by the phrase If the goal request is valid ... in order to avoid repeating the same pseudo-code
in every section.

Goal cancellation

Each action server has the capability of canceling the previously sent goal, even if accepted
by the action server. This can be done either through the dedicated abort service or
through pressing the CTRL+C key on the keyboard while on the client window of the
terminal.

Once the goal request has been sent to the server the drone starts to move toward the
target requested by the action server, if a cancellation is sent (trough a suitable callback)
then the UAV sets back the hover mode via the control node.

Communication with the PX4 autopilot

Each action server has the possibility of communicating with the PX4 Autopilot by
publishing the required trajectory setpoints, as already seen in section 2.3.2 the input to
the low level controller can be either a position or a velocity array.

In this thesis work case the position setpoint has been employed for the simpler tasks,
like the takeoff or reaching a given target while the velocity setpoints have been used when
requiring either a trajectory tracking capability or more control in general.

The topic used to communicate to those controllers is TrajectorySetpoint_PubSubTopic
while the PX4 odometry (VehicleOdometry_PubSubTopic) has been used as feedback for
each action server except the precision landing one (see chapter 4 for details).

35



Offboard algorithms

Figure 3.4: The image shows the general communication model of each action server.

3.2 Takeoff
The simplest action server, both from the user input point of view and from the algorithm
one, is requested at the start of each mission.

The goal request, specified in the source code 3.3, contains only a boolean message
which is set to true whenever a takeoff action is requested and the altitude of the takeoff,
if different from the default one of 2 meters1.

As already stated for every action which has been developed and therefore for the
takeoff action, a client/server interface has been developed.

The client is operated by the user to send the required messages information to the
action server through a terminal interface. The goal request messages are defined via a
dedicate file called Takeoff.action (source code 3.3).

1 # Goal
2 bool takeoff_request
3 float64 takeoff_altitude

Source Code 3.3: Takeoff action goal definition

The takeoff action is the simplest of the actions, it gathers the current location of the
UAV via the odometry of the drone, after which sends a setpoint request to the PX4
autopilot flight stack via the trajectory setpoint dedicated publishing topic.

The pseudo code of the action server is the following:

1The default value is implemented in the action client and not in the interface definition.

36



3.2 – Takeoff

Algorithm 2 Takeoff action server pseudo code
Takeoff action server started
Wait for goal request
Goal request received
Generate the takeoff setpoint from the knowledge of the vehicle odometry and the
required takeoff altitude
if The goal request is valid then

Arm the drone
while not The drone has reached the requested altitude do

Publish the drone status code corresponding to the takeoff in progress (status code:
1)
Publish the takeoff setpoint on the autopilot trajectory topic
Send feedback to the client

end while
Publish the drone status code corresponding to the takeoff completed (status code: 2)

Request the hover service to be set to true
return Send result to the client

else
Inform the client that the goal request is invalid or that the drone cannot takeoff

end if

The feedback sent to the action client is defined by the Takeoff.action file as well,
and it is composed by the current position and the distance from the target, in this case
the altitude requested.

1 # Feedback
2 geometry_msgs /Point current_position
3 string frame_id
4 float64 distance_to_takeoff

And finally the result is composed by just a boolean value regarding the action being
completed or not.

1 # Result
2 bool takeoff_completed

37



Offboard algorithms

Figure 3.5: Figure showing how the status code changes during the takeoff action. As
soon as the action request is received the status code changes to 1 (takeoff in progress)
and similarly does when completing the takeoff, status code 2. When the action has been
completed the drone enters hover mode and so the status code turns to 3.

3.3 Go to target

Similarly to the previous action the go to target one maintains a quite simple interface,
the additional input required is the position of the target and its frame of reference.

Also, as the go to target action server shares some similarities to the takeoff algorithm it
is possible to incorporate the server and to automatically perform a takeoff action if required
by the user. To this end, as presented in the source code 3.4 and the implementation
shown in algorithm 3, the do_takeoff flag is employed.

In order to do so, the drone has to be in the idle state (indicated by the status code 0,
as shown in figure 3.6b). If the drone is not in idle state, i.e. the drone is already hovering
(status code 3), and a takeoff is requested a warning is sent to the user and only the latter
part of the action is carried out, the drone reaches the target.

38



3.3 – Go to target

(a) Variation of the drone position in the NED frame during the takeoff plus moving
to target task. The target position is expressed in the NED frame through the
coordinate vector (-1,-2,-3).

(b) Variation of the status code during the same task show in figure 3.6a.

Figure 3.6: Variation of the position and the status code during the takeoff and reaching
target task.

The following source code shows that the do_takeoff flag is set to False as a default,
if the user does not specify if a takeoff action is requested then it will not be done, as
similarly with the takeoff altitude in the previous action.
1 # Goal
2 geometry_msgs /Point target_position
3 string frame_id
4 bool do_takeoff False # default : False

Source Code 3.4: Go to target action goal definition

39



Offboard algorithms

The target position is specified through geometry_msgs/Point message type through
which is possible to include 3D coordinates.

In order to specify which frame of reference is employed to determine the position of
the target, the string entry frame_id is employed. As a default the world entry is used,
this corresponds to the PX4 North-East-Down (NED) frame.

It is also possible to specify the rover frame, this requires the knowledge of the position
of the rover, in order to know that the estimation section of the simulation must be
started when using the launch files.

The steps taken by the action server are the following:

Algorithm 3 Go to target action server pseudo code
Go to target server is started
Wait for goal request
Goal request is received
if The goal request is valid then

Set the hover service to false
if The goal request contains the do_takeoff flag set to true then
if The drone is in idle mode then
Publish the drone status code corresponding to the takeoff in progress (status
code: 1)
Publish the takeoff setpoint to the autopilot trajectory topic
→ TrajectorySetpoint_PubSubTopic
Send the feedback to the client

else
Send a warning to the user informing that the takeoff procedure already took
place.

end if
else

The takeoff procedure is skipped
end if
Set the hover service to false
while not The drone has reached the requested target do

Publish the drone status code corresponding to the go to target action in progress
(status code: 4)
Publish the target position on the autopilot trajectory topic
Send feedback to the client

end while
Publish the drone status code corresponding to the go to target action completed
(status code: 5)
Request the hover service to be set to true at the specified target
return Inform the action client that the target has been reached

else
Inform the client that the goal request is invalid or that the drone cannot go to target

end if

40



3.4 – PID Controller

As with the previous action the feedback and the result information are defined in the
Gototarget.action file.
1 # Result
2 bool position_reached
3 ---
4 # Feedback
5 geometry_msgs /Point current_position
6 string frame_id
7 float64 distance_to_target

Source Code 3.5: Go to target action feedback definition

3.4 PID Controller
3.4.1 PID controller introduction
In order to provide the autopilot offboard controller, which responds to a given trajectory
setpoints input, an external PID controller is employed.

This controllers computes the velocity input to be transmitted to the autopilot instead
of sending directly the position request in order to have a smoother transition towards the
target.

The controller is employed in the get images, area coverage and land on spot algorithms
as a trajectory tracking controller.

The PID controller is employed because, even if it doesn’t guarantee optimal control or
control stability is broadly applicable and does not rely on the knowledge of the model
[29].

As shown in a previous section (section 2.3.2) the autopilot flight stack provides with a
position and attitude controllers which can be used to stabilize the drone. Instead, the
proposed customizable high-level controller is used to compute the best velocity setpoints
in the trajectory tracking section of each action server in which is employed.

3.4.2 PID controller architecture
A PID (Proportional integral derivative) controller is a mechanism which employs sensor
feedback which is widely used. From the feedback the error value e(t) is computed, which
is the difference of the actual measured process variable y(t) from the reference setpoint
r(t), the correction input u(t) is applied computed from the PID terms.

In this thesis case the feedback may come from the already available PX4 Odometry
messages, which then are compared to the reference position to be reached by the drone.
Instead, in the precision landing case the error is computed directly through the relative
position of the UAV with respect to the rover (more information is provided in section
4.4.2).

In this thesis case the control input u(t) are the velocity setpoints [vx, vy, vz] sent to
the autopilot flight stack, the interaction of the PID controller and the PX4 autopilot is
shown in figure 3.8.

41



Offboard algorithms

Figure 3.7: PID Controller block diagram [29]

Mathematical form of the control input

The control input expression is then:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

• Kp: proportional gain

• Ki: integral gain

• Kd: derivative gain

• e(t) = r(t)− y(t): error

The positioning error value is then computed for each iteration of the PID computation,
so each time the controller receives the information regarding to where the UAV should be
positioned r(i) and the odometry from the PX4 autopilot.

Figure 3.8: PID Controller scheme, the lower level controller used are showed more clearly
in figure 2.5.

3.5 Get images
With this action server the drone has the capability of performing an orbit around a target,
the user has the possibility of specifying the width of the radius and the number of images.

42



3.5 – Get images

Differently from the previous cases, an higher number of entries is required to define
the goal message, moreover the procedure followed in order to complete the task is more
complex.

1 # Goal
2 geometry_msgs /Point target_position
3 float64 orbit_radius
4 uint8 num_images
5 string frame_id

Source Code 3.6: Get images action goal definition

The position of the target is expressed trough the same message type (geometry_msgs/Point)
in order to maintain consistency through the interfaces. It is important to note that the
position of the target will not be reached directly because the drone will orbit around it
with a radius specified through the floating point message stored in the orbit_radius
variable.

The target position entry is required to give the server the information of the position
of the target, by default the frame of reference is the world NED frame but it is possible
to specify a different one by sending the frame_id string, such as the frame centered on
the rover.

Figure 3.9: Terminal interface when requesting the get images goal. In this case the rover
frame id is utilized, if the input would have been empty after defining the radius and
number of images the reference frame employed would have been the local world frame.

Looking at figure 3.9 it is important to point out that the inputs and so the slots related
to the coordinates of the target and the radius of the orbit are float64 variables, the
action clients takes care of the translation from integer to float if the user puts the input
as integer as in the image above.

Still looking at the image, it can be seen how the image position are shown related to
the local world NED frame even if the request has been done in the rover frame.

The integer message containing the information regarding the number of images to be
acquired is used in the algorithm to compute the positions at which they need to be taken.

The corresponding indices, in the setpoint array of the orbit, are saved in an array
called image_index_arr, its usage is described in algorithm 4.

43



Offboard algorithms

3.5.1 Trajectory generation
Those informations are then sent to the action server and are used in order to generate
the setpoints of the path that the drone will follow during the orbit. In order to do so
they are sent as an input to the custom generate_trajectory function.

Since the function is employed to generate the trajectory meaning the circular path
paired with the time information regarding when the setpoints will have to be reached, it’s
also necessary to specify the required tangential velocity (vt) of the orbit.

Such value, while still editable by the user, is set by a ROS 2 parameter instead of
being sent in the goal request, this is done in order to simplify the action client interface.

The path is generated by employing the following equations, the altitude setpoints
information instead is kept constant during the procedure, and it is set by the user (as
shown in source code 3.6).

ω = vt/r (3.1)
x(t) = x0 + r cos(ω(t)) (3.2)
y(t) = y0 + r sin(ω(t)) (3.3)

It’s also possible to get the feedforward velocities to be sent to the drone autopilot,
with the following equations:

vx(t) = −rω sin(ω(t)) (3.4)
vy(t) = rω cos(ω(t)) (3.5)

With this information, although not used directly in the action server, is possible to
compute the yaw angle to be sent to the drone autopilot, in order to make the drone face
toward the next setpoint.

ψ(t) = arctan
(
vy(t)
vx(t)

)
(3.6)

Instead in order to maintain the drone heading toward the center of the orbit it’s
necessary to add π/2 to the computed value. With this yaw information it is possible for
the ventral camera to point toward the target when getting the images.

It is then possible to see that the trajectory generation is a process completely done
offline, in fact the UAV does not take into account the possible presence of obstacles while
computing the trajectory setpoints.

Moreover, during the trajectory generation, the algorithms select the position at which
to take the images, as the required number of images has been specified during the goal
request and the orbit trajectory is known.

44



3.5 – Get images

3.5.2 Trajectory tracking

Once the trajectory has been generated, the action server employs a PID controller in order
to generate the correct velocity inputs to be sent to the PX4 autopilot on the trajectory
setpoint topic.

The trajectory tracking is implemented in the execute_callback section of the algo-
rithm, which is the following:

Similarly to all the actions, the feedback and the result information are pre-defined in
the GetImages.action file.

1 # Results
2 bool get_images_completed
3 sensor_msgs /Image [] images
4 geometry_msgs /Point [] image_positions
5 float64 [] image_yaws
6 string frame_id
7 sensor_msgs /Imu [] image_imus
8 sensor_msgs / NavSatFix [] image_navsats
9 float64 [] image_altimeters

10 ---
11 # Feedback
12 sensor_msgs /Image current_image
13 geometry_msgs /Point current_position
14 float64 current_yaw
15 string frame_id
16 sensor_msgs /Imu current_imu
17 sensor_msgs / NavSatFix current_navsat
18 float64 current_altimeter

Source Code 3.7: Get images action feedback definition

The user has the possibility of choosing whether to receive the images as feedback, at
soon as the drone gathers them, or getting them all at once when the drone completes the
orbit.

The tracking of the path can be seen in the following image 3.10.

45



Offboard algorithms

Algorithm 4 Get images action server pseudo code
Get images action server started
Wait for goal request
Goal request received
if The goal request is valid then

Generate the trajectory → generate_trajectory function
Get the positions at which to take the images
Set the hover service to false
Initialize the indices → i = 0, j = 0
while not The drone has completed the orbit do

Get the current position setpoints ← Previously generated path
Get the current drone position from the odometry topic ←
VehicleOdometry_PubSubTopic
Given the current setpoint as r(i) and the current position as x
Compute the positioning error → e(i) = r(i)− x
From the positioning error knowledge generate velocity setpoints with a PID
controller
Publish the drone status code corresponding to the get images action in progress
(status code: 6)
Publish the generated setpoints to the autopilot trajectory topic
→ TrajectorySetpoint_PubSubTopic
Send feedback to the client
if i = image_index_arr(j) then

Get the image from the /camera/image_raw topic
Send the image to the client as feedback with the information regarding the
position of the drone and the yaw.
Increase image array → j = j + 1

end if
Increase setpoint index → i = i+ 1

end while
Publish the drone status code corresponding to the get images action completed
(status code: 7)
Request the hover service to be set to true at the position corresponding to the end
of the orbit
Add the image array to the result
return Send result to the client

else
Inform the client that the goal request is invalid or that the drone cannot go to target

end if

46



3.6 – Area coverage

Figure 3.10: Get images action server trajectory tracking.

In order to track the generated setpoints a PID controller is employed, from which the
velocity setpoints are generated with a custom frequency that can be chosen by the user,
also in this case the value is defined using a ROS 2 parameter, in order to leave to the
user some flexibility while maintaining a simple interface regarding the action.

During the simulation the frequency that has been chosen is of 100 Hz, which is way
higher if compared to the one used in the go_to_target and takeoff actions, this is done
in order to have a smoother trajectory following, but it can be easily set to a lower value
in order to have a lighter simulation.

3.6 Area coverage
This action is called whenever the task requires for the user to obtain a map of the
underlying terrain, the mapping is done through the imagery feed provided by the same
topic as the previous action (camera/image_raw).

47



Offboard algorithms

(a) Image n.1 (b) Image n.2

(c) Image n.3 (d) Image n.4

Figure 3.11

Figure 3.12: 4 images taken during an orbit, in this case the target corresponds to the
rover, which is shown from each angle.

The user has to insert the variables shown at source code 3.8.
1 # Goal
2 geometry_msgs /Point [] grid_points
3 string frame_id
4 float64 resolution

Source Code 3.8: Area coverage goal interface definition

The user sends as input a set of points that define the perimeter of the area which has
to be mapped, the information is completed with the frame_id information and so the
reference frame used to define the coordinate system used for the grid_points.

The altitude is maintained at a constant level during the mapping procedure so a single
value is requested when launching the action.

Instead, the resolution parameter is used by the path generation algorithm in order
to define the distance between the straight segments composing the path.

48



3.6 – Area coverage

Figure 3.13: Terminal interface showed to the user when requesting an area coverage
action. The user has to input the 2D coordinates of the points used to define the area.
The action client takes care of translating the inputs into geometry_msgs/Point variables
for the correct goal request, as seen in source code 3.8.

The same value is used also as the distance between the set of images taken by the
drone during the action, this can be seen in figure 3.13 which shows which variables are
requested to the user.

3.6.1 Path generation
In order to generate the path a library called Python Robotics has been used, this is an
open source software project which focuses on autonomous navigation [30].

All the source code can be found in the dedicated GitHub repository [31]. In the
action server only the grid_based_sweep_coverage_path_planner.py algorithm has
been employed, although the library offers a large set of algorithms in the field of localization,
path planning, mapping and path tracking.

The algorithm requires the set of vertex points of the perimeter and the resolution of
the path as inputs, these are provided to the action server through the action client. The
actual implementation of the algorithm takes place in the action server and returns a set
of points that define the path to be followed by the drone.

In figure 3.14a the path generated by such algorithm for a square area of 5 m of side
and 0.5 m of resolution is shown.

Path smoothing

In order to track a smooth path it is necessary to publish a high number of setpoints close
together. As can be seen in figure 3.14a the number of points defining the area coverage

49



Offboard algorithms

path is low and so the setpoints are spaced out. To this end a path smoothing step is
implemented in the action execution callback, the result can be seen in figure 3.14b.

In order to provide the drone with a smoother path and to substitute the straight
segments present when changing direction with curvilinear ones, the Numpy and Scipy
library have been employed [32][33].

More specifically, two functions have been employed to generate the smoothed path.
Those are splprep which is used to find the B-spline representation of a 1-D curve and
splev which, given the knots and coefficient of the previously generated B-spline returns
the 2D coordinates of the points representing the smoothed path. In the following pseudo
code section (algorithm 5) the smoothing procedure has been described.

Algorithm 5 Path smoothing procedure
Input: Numpy array with the points coordinate defining the path → pts
Function: smooth_path(pts)
Generate a B-spline given the path ← splprep
Generate the smoothed path given the coefficients and ← splev

return Numpy array with the 2D coordinates of the points defining the smoothed path

The result of the smoothing process can be seen in figure 3.14b.

While it cannot be seen directly from the image, the number of setpoints describing
the path is also increased, so that the drone has a smoother trajectory to follow.

50



3.6 – Area coverage

(a) Path generated with python robotics algorithm,
no smoothing applied. Each x corresponds to a point
used to define the path.

(b) Path generated with the python robotics algorithm,
in this case the smoothing has been applied.

Figure 3.14: Figures showing the generated path and the subsequent smoothing.

51



Offboard algorithms

Position of the images

Since the goal is to provide to the user with a map of the area to be explored, it’s necessary
to take images of the surface underneath.

With the resolution entry of the action goal section the user has to set the distance
between each rectilinear segments of the path. The same value is used in order to determine
the distance between each position at which the drone has to take an image.

The equation written below, which is employed to compute the length of the path
given an n number of setpoints, is used in a custom function called pathlenght. The
coordinates of the setpoints composing the path are known from the offline computation
of the smoothed path, proposed in the previous section.

L =
∑

i=1,...,n

√
(xi − xi−1)2 + (yi − yi−1)2 (3.7)

This information is then used in another custom function used instead to gather the
position at which to take each image.

Algorithm 6 Procedure used during the computation of the position of the images to
take during the area coverage
Input: Set of points composing the path → pts
Input: Required distance from one image position to the next → d (same value as
resolution input)
Function: path_image_pos(pts, d)
for Each points defining the path do

Given the path distance between two points as L (eq. 3.7)
if L ≥ d then

Save the index of the point to an array
end if

end for
return Index array

At the end of this process the action server is provided with an array of integers
(image_index_arr) which correspond to the position at which the drone has to send the
image from the camera/image_raw ROS 2 topic and publish it on the feedback and finally
the result topics defined in the action, as show in algorithm 7.

Feedback and results topics

As with the goal topics the type of messages sent for the feedback and the results are
defined in the AreaCoverage.action file, as shown in source code 3.9.
1 # Result
2 bool sweep_completed
3 sensor_msgs /Image [] images
4 geometry_msgs /Point [] image_positions

52



3.6 – Area coverage

5 float64 [] image_yaws
6 string frame_id
7 sensor_msgs /Imu [] image_imus
8 sensor_msgs / NavSatFix [] image_navsats
9 float64 [] image_altimeters

10 ---
11 # Feedback
12 geometry_msgs /Point current_position
13 sensor_msgs /Image current_image
14 float64 current_yaw
15 string frame_id
16 sensor_msgs /Imu current_imu
17 sensor_msgs / NavSatFix current_navsat
18 float64 current_altimeter

Source Code 3.9: Area coverage action feedback and result definition

3.6.2 Path tracking

Similarly to the previous action a PID controller has been employed in order for the UAV
to track the path generated during the previous section.

The controller takes as input the positioning error and provides the UAV with the
velocity setpoints as output, these are published on the TrajectorySetpoints_PubSub
topic, a more detailed view of the implementation is provided in the dedicated section 3.4.

The complete pseudo code of the area coverage algorithm is presented below:

53



Offboard algorithms

Algorithm 7 Pseudo code of the area coverage action server
Start the area coverage server
Wait for the goal request
Get the goal requests from the action client
Call the hover service and set it to false
Initialize the indices → i = 0, j = 0
while not Drone has completed the grid sweep do

Get the current position setpoints ← Generated path
Get the current drone position from the odometry topic ←
VehicleOdometry_PubSubTopic
Given the current setpoint as r(i) and the current position as x
Compute the current positioning error → e(i) = r(i)− x
Generate the velocity setpoints from the positioning error← PID controller algorithm

Publish the drone status code corresponding to the area coverage in progress (status
code: 10)
Publish the computed velocity setpoints to the autopilot trajectory topic →
TrajectorySetpoint_PubSubTopic
if i = image_index_arr(j) then

Get the image from the /camera/Image_raw topic
Publish the image to the feedback topic
Publish the current position and yaw of the drone as feedback
Increase image array → j = j + 1

end if
Increase setpoint index → i = i+ 1

end while
Publish the drone status code corresponding to the area coverage completed (status
code: 11)
Call the hover service and set it to true in correspondence to the last area coverage
setpoint
return Send the result of the action to the client

The drone, then, is able to follow the desired trajectory and to gather a set of image at
the user-defined distance. The result of the tracking can be seen at figure 3.15. With the
green marks are indicated the positions at which the images are taken.

The position of the drone is expressed in the world NED frame.

It is evident how the drone is able to track the computed path, the tracking happens
at a low velocity due to the nature of the action.

54



3.6 – Area coverage

Figure 3.15: Drone effective position (blue line) with respect to the generated path (red
line) during the area coverage. The position at which the images are taken are flagged
with the green marks.

Irregularly shaped areas

The action server also offer the possibility of covering convex or, in general, irregularly
shapes areas.

As shown in figure 3.16 a lower (narrower) resolution results in a better mapping of the
terrain, the irregular shape is covered better than with an higher resolution.

This comes at a cost though the number of images taken during the task increases, 185
with a resolution of 0.25 meters (figure 3.16a) versus 603 in the latter lower resolution
(0.15 meters) case (figure 3.16b). This in turn will result in an higher time related to the
mapping process.

55



Offboard algorithms

(a) Resolution set to 0.25 meters.

(b) Resolution set to 0.15 meters.

Figure 3.16: Coverage of an irregularly shaped area with different resolutions.
56



Chapter 4

Precision landing and
estimation

In order to estimate the relative position of the UAV with respect to the rover, a Kalman
filter has been employed. The input of the filter employs the use of two additional sensor
data to the ones already provided by the PX4 flight stack.

The first additional measurement comes from an ultra-wide band (UWB) system, from
which it is possible to estimate the relative distance between the rover and the drone,
while the second sensor is a camera, which is paired with an Apriltag marker placed on
the rover landing platform, then through an estimation algorithm it is possible to estimate
the relative position of the drone with respect to the rover.

All this sensor outputs are then fed to the Kalman filter which will return an estimate
of the relative position of the drone with respect to the rover.

The starting point of this section has been the following theses: [34] and [35] as they
also provide with a Kalman filter implementation for an UAV.

In the works cited only the ultra-wide band technology has been employed as input to
the Kalman filter in order to retrieve the relative position between the rover and UAV.
Then, when the Apriltag marker is detected, the control algorithm switches to the relative
position estimate provided by the Apriltag algorithm.

In this thesis work instead the Apriltag estimation data is implemented as a Kalman
filter input, thus allowing to select upon landing request which additional information is
employed, then the simulation environment is used in order to test and analyze the result
of the various selections.

Nonetheless the Kalman filter implementation and the organization follows the one
provided in the cited theses although the modifications mentioned above were made in
order to improve the flexibility of the algorithm.

57



Precision landing and estimation

4.1 Kalman Filter theory
First of all, the theory related to the Kalman filter has to be shown. A Kalman filter is a
recursive algorithm which is used to estimate of unknown variables such as the state of a
system, starting from a series of measurements over time paired with statistical noise and
inaccuracies [36].

The algorithm works with a two-phase process. During the prediction step the filter
estimates the state variables, given the system dynamic equations knowledge. In the
update step, instead the measurements gathered from the sensors are used to update such
estimates [36].

4.1.1 Prediction step
Below it is shown the model employed during the prediction step, the state xk at time k is
derived from the value of the state at time k − 1. Then in order to show that these values
are estimated the notation x̂ is used.

x̂k = Fkx̂k−1 +Bkuk + wk (4.1)

• x̂k: state estimate at time k

• Fk: state transition matrix, applied to the previous state xk−1

• Bk: control input matrix, applied to the control input vector uk

• uk: control input vector

• wk: process noise, assumed to be a zero mean multivariate normal distribution N
where the covariance matrix is Qk: wk ∼ N (0, Qk)

During this step the filter provides with a prediction of the state of the system, using
the 4.2 and 4.3 equations, this does not include the observation (zk) information from the
current k step.

x̂k−1 = Fkx̂k−1|k−1 +Bkuk (4.2)

P̂k|k−1 = FkP̂k−1|k−1F
T
k +Qk (4.3)

4.1.2 Update step
Instead, during the update step the model related to the observed measurements zk is
shown as follows.

zk = Hkxk + vk (4.4)

• Hk: observation model

58



4.1 – Kalman Filter theory

• vk: observation noise, assumed to be a zero mean Gaussian white noise with covariance
matrix Rk: vk ∼ N (0, Rk)

In the update section of the algorithm, the observation information regarding the
current k timestep is taken into account refining the state estimate.
The update step is performed through the following equations:

Innovation residual:

ỹk = zk −Hkx̂k|k−1 (4.5)

Covariance innovation:

Sk = HkP̂k|k−1H
T
k +Rk (4.6)

Optimal Kalman gain:

Kk = P̂k|k−1H
T
k S
−1
k (4.7)

Updated (a posteriori) state estimate:

xk|k = x̂k|k−1 +Kkỹk (4.8)

Updated (a posteriori) covariance estimate:

Pk|k = (I −KkHk)P̂k|k−1 (4.9)

Measurement residual:

ỹk = zk −Hkx̂k|k (4.10)

Tuning the Kalman Filter

The tuning parameters of this algorithms are:

• Qk: Covariance matrix of the process noise.

• Rk: Covariance matrix of the observation noise.

The value of such parameters must be appropriately selected, it is possible to do so
trough a trial and error procedure. For this to be achieved, the result of the Kalman
filter has been compared to ground-truth data coming from the simulation software, more
details about the ground-truth data are shown in section 4.2 and 4.3.

59



Precision landing and estimation

Figure 4.1: Model underlying the Kalman Filter. The matrices are represented by the
squares and ellipses represent the normal distribution (Q and R are the covariance matrices).
The values with no geometric box are the vectors (input, state, measurements)[36].

4.2 Kalman Filter implementation

4.2.1 Estimation node introduction

The estimation algorithm main goal is to provide the UAV with the relative position and
velocity to the rover. In this way it’s possible for the UAV to perform a precision landing
and to perform most of the actions described in chapter 3. Also, it provides the algorithms
the ability to perform the tasks by selecting the coordinates relative to the UGV position
instead of getting the coordinates in the local world frame.

FilterPy Library

For the Kalman filter code implementation, the FilterPy Python library has been
employed. This library implements the steps and computations shown in the previous
section 4.1 into easily employable functions (e.g. KalmanFilter.predict() and
KalmanFilter.update())[37].

4.2.2 ROS 2 topics

As already stated the Kalman filter algorithm employs a number of measurements which
are then filtered, such estimates come from a number of ROS2 nodes and subsequent
sensors fitted on the UAV and UGV, this data flow is carried out through ROS2 topics,
shown in the table below (the table does not include the namespaces which are instead
shown in the rqt_graph image 4.2).

60



4.2 – Kalman Filter implementation

Measurement ROS 2 Topic
Relative distance between UGV and
UAV obtained through the UWB sen-
sor.

norot_pos

Position of the UAV expressed in the
world NED frame. Measurement of-
fered by the autopilot flight stack.

VehicleLocalPosition_PubSubTopic

Estimated yaw of the UGV expressed
in the world NED frame.

estimated_yaw

Relative position between the UGV
and UAV retrieved through the April-
tag estimation algorithm

estimated_pos

Relative altitude of the drone, ac-
quired through a laser altimeter

DistanceSensor_PubSubTopic

Table 4.1: ROS 2 topics employed in the Kalman filter node.

All such topics incoming to the Kalman filter estimation node can also be visualized
through the rqt_graph tool.

Figure 4.2: Image taken from the rqt_graph showing the incoming and outgoing topics
related to the Kalman filter node. Topics are shown with a rectangular shape while the
oval shape is related to the node.

Kalman filter node organization

As shown in figure 4.2 the Kalman filter estimator node is subscribed to each topic
pertaining to the estimation algorithm. The data may come directly from sensor or
through an algorithm like in the case of the AprilTag and the ultra-wide band sensor.

61



Precision landing and estimation

Ultra wide band measurements

The ROS2 node gathers the ultra-wide band data, through the norot_pos topic the
position of the UWB tag, implemented on board of the UAV, is known.

The position, though, is expressed in the rover reference frame. Since the outgoing
topic of the Kalman filter node is expressed in a local NED frame, it’s necessary to rotate
such measurement.

In order to perform the rotation from the UGV frame to the NED frame it is necessary
to know the yaw angle of the rover, in the NED frame.

This computation can be implemented in the Python algorithm through the scipy 1

library more specifically with the from_euler method. Knowing the value of the UGV
yaw ψUGV the rotation corresponds to the following rotation matrix.

RNED
UGV =

cos(ψUGV ) −sin(ψUGV ) 0
sin(ψUGV ) cos(ψUGV ) 0

0 0 1

 (4.11)

Having computed this, it’s possible to rotate the norot_pos information in a NED
frame.

p̂NED
UAV = RNED

UGV · pUGV
UAV (4.12)

The result of this computation is the position of the UAV in a NED frame centered in
the rover origin.

The measurement used for the Kalman filter update step are thus the relative position
of the UAV in the NED frame, shown as follows:

zUW B =
[
x̂NED

rel,UAV

ŷNED
rel,UAV

]
(4.13)

As explained in the section relative to the update step (section 4.1.2) to the measurement
are then added the covariance matrix RUW B.

AprilTag measurements

The AprilTag data comes from the topic /AprilTag_estimator/estimated_pos published
by apriltag_estimation_node.py which employs the dt_apriltags library in order to
estimate the pose of the UAV from the camera feed, published on the /camera/image_raw
topic.

1The precise library is the scipy.spatial.transform.

62



4.2 – Kalman Filter implementation

Figure 4.3: Incoming and outgoing topics from the AprilTag estimation node.

The dt_pariltags library is used in order to detect the pose of the AprilTag marker
from the UAV camera feed.

Vehicle Local Position

The data relative to the position of the drone in the local (NED) frame is published directly
by the PX4 autopilot, so no additional estimation node is necessary.

zP X4 =

xNED

yNED

zNED

 (4.14)

The Kalman filter algorithm receive the PX4 measurements in the local NED frame.
So while the input data is used to update the filter in the dedicated section it will be
necessary to translate the data to the local NED rover frame in the publishing section of
the code.

UGV yaw

The rover is equipped with a plugin that publishes the odometry on the rover_odom topic,
from which is straightforward, with the help of the scipy library to compute the yaw
angle of the UGV in the world NED frame.

zUGV yaw = ψUGV (4.15)

Figure 4.4: Rqt graph showing the incoming and outgoing topics of the rover odometry.

63



Precision landing and estimation

UAV Altitude

In the .sdf file, as explained in section 2.4.2, is implemented a plugin simulating a laser
altimeter, the libgazebo_ros_ray_sensor gazebo plugin.

In the estimation section of the thesis, the sensor_msgs/Range message type has been
chosen, this assures that a single value is returned to the algorithm and not a series of
estimations (as shown in section 2.4.2).

4.2.3 Update step

Each of the previously explained measurements are fed to the estimation algorithms through
a publish/subscribe communication model, moreover to each of the topics correlated to
the measurements a callback method is associated.

In each callback methods the update step, explained in section 4.1.2, is provided by the
FilterPy library and is implemented through the KalmanFilter.update(z, R) method.

The following pseudo code (8) shows the code that is implemented in a callback timer.
The frequency of such timer is twice the set frequency of the prediction step. This value is
adjustable via ROS2 Parameters which can be varied in the estimation launch file or via
the dedicated terminal service. By doing so it’s possible to balance the UAV application
with a steady stream of estimations while tuning the frequency parameter in order not to
overload the computation request for the algorithm.

The following update step is requested every 10 Hz. It will update the Kalman filter
only if it has received a new measurement since the last update step. This is done only as
a precautionary measure, as the measurements are fed to the algorithm with an higher
frequency than that requested by the update step callback. This check is helpful, though,
in the case of the measurement related to the apriltag, which are only available if the
marker is visible by the ventral camera of the UAV. Also it is used in order to avoid using
the incoming data if it has not been requested by the user (as explained in details in
section 4.3.1 and 4.4.1).

64



4.2 – Kalman Filter implementation

Algorithm 8 Pseudo code demonstrating the update step of the Kalman filter algorithm
if UWB measurements are available and they have been requested via the ROS 2
paramters then
Update the kalman filter with the zUW B measurements and the covariance matrix
Ruwb

end if
if PX4 measurements are available then
Update the kalman filter with the zP X4 measurements and the covariance matrix
RP X4

end if
if UGV compass measurement is available then

Update the kalman filter with the zUGV yaw measurements and the covariance matrix
Rcompass

end if
if Altimeter measurement is available then

Update the kalman filter with the zrange sensor measurements and the covariance matrix
Rrange sensor

end if
if Apriltag measurements are available and they have been requested via the ROS 2
Parameters then

Update the kalman filter with the ztag measurements and the covariance matrix Rtag

end if

The z variable represents the measurement data, while the R variable represents the
covariance matrix relative to the incoming data.

Each of the measurements has a different covariance matrix, all of the matrix are
tuned in order to obtain the best estimation, the covariance matrices are RUW B, Rtag,
Rrange sensor, Rcompass and Rpx4.

Since all matrices are diagonal it is possible to define them via a single value that can
be associated to a ROS parameter for ease of use during the tuning process.

Algoritm troubleshooting

All the measurement are published asynchronously and with different frequencies with
respect to the prediction step and to them.

During the development phase of the algorithm, the filter update was embedded in
each sensor callback, so the filter was updated at different frequencies as soon as the new
data was available. These frequencies were up to 100 Hz, so in order to have a lighter
algorithm from the computation standpoint all the update steps were implemented in a
single callback with a fixed and lower frequency of 10 Hz.

65



Precision landing and estimation

4.2.4 Prediction step
The prediction step implements the KalmanFilter.predict() method available through
the FilterPy library [37]. Similarly to the update step it’s performed at a fixed frequency.

In the same callback of that contains the predict() method it is present the publishing
section of the algorithm, so that every time the algorithm publishes the most up to date
information on the estimated_pos topic (as shown in Figure 4.2).

4.3 Kalman filter tuning
The tuning process of the Kalman filter algorithm has been carried out by modifying the
value of the covariance matrices R associated to the observation noise and Q associated to
the process noise.

To tune all these parameter a ground-truth information is used, this is gathered through
the libgazebo_ros_p3d plugin which is used on the UAV and retrurns the position of the
model in the gazebo simulator.

Since the gazebo reference frame is ENU while the reference frame used by the PX4
autopilot and for the estimation and navigation algorithm is NED it is necessary to perform
the rotation described by equation 2.1. To this end a simple ROS2 node performing this
rotation is employed which publishes on the ground-truth topic.

Figure 4.5: Comparison of the data incoming from the ultra-wide band and apriltag
algorithms. Used during the tuning process to choose the R value.

66



4.3 – Kalman filter tuning

In order to choose the best R value related to each incoming data stream, comparison
have been made as showed in figure 4.5. As can be inferred from the image, the value related
to the ultra-wide band will be greater with respect to the one related to the AprilTag, all
the following testing will be done with a value of Ruwb = 2m and Rtag = 0.5m, these value
can be set and tuned in the estimation launch file drone_rover_positioning.launch.py
(the launch file previously indicated in figure 3.1).

4.3.1 Estimation launch file
For ease of use all the nodes related to the estimation section of the code are
grouped and launched simultaneously through single Python launch file, drone_rover-
-_positioning.launch.py. The organization may be seen in the following figure.

Figure 4.6: Estimation launch file organization

It is possible to see that the ground-truth node, and the related topic as also shown in
figure 4.2, do not share directly data with the algorithm, it is just used for comparison
purposes.

The usage of the ground-truth data will be show in section 4.5.

ROS 2 Parameters

As previously stated each of the covariance matrices is associated to a ROS2 parameter, it
is possible to vary the parameter directly in the launch file without the need to modify
it directly in the Kalman filter algorithm, moreover it is possible to request to change
the parameter via either the command line interface or an external algorithm itself by
employng the SetParameters service available through the rclpy ROS2-Python interface
library. This service has been used extensively to change the sensor employed by the
Kalman filter node during the comparison process.

67



Precision landing and estimation

4.4 Landing
While the landing action is not as complex from the algorithm point of view as the area
coverage, since it is not required to track a trajectory or to provide the client with a set of
images, is the most complex action from the interface organization standpoint.

The goal request, provided by the user, allows for the action server to select the usage
of different sensor in the relative position estimation node.

As already specified in chapter 4 the Kalman filter node has the capability to select
additional information coming from:

• The ultra-wide band sensor and thus the relative position estimation.

• The pairing of the camera and an AprilTag marker, again providing with the relative
position between the drone and the rover.

By defining the action interfaces with the dedicated file (LandOnSpot.action the source
code for the goal section is shown at 4.1) it’s possible to analyze the goal request options.
1 # Goal
2 geometry_msgs /Point landing_spot
3 string frame_id
4 bool use_uwb
5 bool use_marker

Source Code 4.1: Land on spot action goal definition

Although the best case scenario is the one related to the usage of all the available
information coming from the sensors. It is still necessary to be assured whether the
algorithm is effective in case one of the sensor is not available in a real world setting.

And then its necessary to check what could be the possible shortcomings of the
estimation algorithms and subsequently of the landing action in case not all the information
is available to use.

From this requirement, then, it is possible to produce four cases corresponding to the
usage of each additional data pairing.

4.4.1 Interface between the action and the estimation algorithm
The usage request of the two sensors is specified in the goal request, but it is necessary to
point out that the client and the estimation node are not directly connected through the
action interface.

It is necessary to add a prior step to the landing algorithm in which the SetParameters
service is used in order to call the ones of the estimation node.

The goal request messages, already defined in the relative file, are then associated to
ROS 2 parameters of the Kalman filter estimation node. Such parameters are:

• use_uwb: Which is a boolean value related to the usage of the ultra-wide band sensor
in the Kalman filter node.

68



4.4 – Landing

• use_tag: A boolean value expressing whether the node will be employing the apriltag
information or not.

• rover_position: A double array message expressing the external estimate of the
position of the rover in the world frame.

The rover position information is requested automatically by the client if the usage
of the ultra-wide band is set to false. This information can be used both as a rough
estimation in case if paired with the apriltag to give to the drone some sort of information
of where to go to locate the apriltag, when this is located then a more precise information
is fed through the estimation which is then used for the landing process.

In case neither the ultra-wide band and apriltag information are used by the estimation
algorithm there is no possibility of estimating the relative position between the UAV
and the rover. The landing action server then requires the landing position information,
through the landing_spot message. This can be either the rover position information or
the another spot available for landing.

4.4.2 Landing action pseudo-code

The landing action server is based on the one proposed in this thesis [34] although there
are some modifications.

The adaptive, or gain scheduled, PID controller usage is shared and so is the usage of
the thresholds associated to the approach. Instead the information related to the relative
position and velocity coming from the Kalman filter depends on the goal request.

In the prior case the landing algorithm implements the apriltag information in the
Kalman filter node instead of switching from a Kalman filter information not based on the
marker information to the relative position computed solely on the marker whenever this
one is detected.

The reasons for doing so are that by implementing the apriltag information directly
in the estimation node allows to test the different cases explained in the previous section
without making changes or adjustments to the source code itself, and thus using a single
algorithm both for the estimation and the action part.

Thanks to the fact that the ROS 2 nodes are organized through actions the user has
the possibility, through the action client interface, to select which additional data wants to
use upon landing request.

69



Precision landing and estimation

Algorithm 9 Landing algorithm pseudo-code
The landing server is started
Wait for the goal request
Receive the goal request from the action client
if The goal request is valid then

Request the hover mode to be set off, via the dedicated service
Send the requested parameter value to the estimation algorithm via the
SetParameters service
while not Landing is completed do

Publish the drone status relative to the landing in progress (status code: 8)
Get the relative position to the rover ← Kalman filter algorithm
Compute the velocity input through the adaptive PID algorithm
Publish the computed inputs on the offboard control topic

end while
Publish the drone status relative to the completed landing (status code: 9)
Disarm the drone
Publish the drone status relative to the idle mode (status code: 0)

else
Inform the action client that the goal requested is not valid or the server is not
available

end if

Similarly to the goal request the feedback and result messages are defined in the
LandOnSpot.action shown in the source code 4.2.
1 # Result
2 bool landing_completed
3 ---
4 # Feedback
5 geometry_msgs /Point current_position
6 string frame_id

Source Code 4.2: Landing feedback and result messages definition

70



4.5 – Precision landing simulation results

Figure 4.7: Distinction between the approach and descent phases in the landing algorithm.

4.5 Precision landing simulation results

In order to test the different capabilities of the estimation algorithm in different condi-
tions represented by the different set of sensor employed during the landing action SITL
simulations have been made.

4.5.1 Simulation with only ultra-wide band sensor

In this case the simulations is used in order to simulate the behavior of the estimation and
landing action algorithms whenever only the ultra-wide band sensor is available while the
AprilTag is not.

71



Precision landing and estimation

Figure 4.8: Kalman filter estimation output compared to ground-truth data. Case with
UWB data and no AprilTag data.

This is imposed by the user via the ROS 2 parameter flags, use_uwb which is set to
true while the use_marker set to false.

From figure 4.10 it is possible to see a visible discrepancy between the z estimated data
and the real simulation data especially when the UAV is flying at an higher altitude, this
effect is compensated when the drone lowers itself on the landing platform.

4.5.2 Simulation with only the AprilTag sensor

Similarly to the previous case the ROS 2 parameter are set when sending the goal request
with the action client in this case the use_uwb will be set to false while the use_marker
will be set to true.

The figures 4.10 and 4.11 refer to a test in which the rover position indication was
deliberately incorrect respect to the real rover position. This has been done in order to
test the algorithm capability in correcting the rover estimate once the marker is detected.

72



4.5 – Precision landing simulation results

Figure 4.9: Terminal window shown when a precision landing with no UWB sensor is
requested.

Figure 4.10: Kalman filter estimation output compared to ground-truth data. Case with
no UWB data and AprilTag data. A confidence band of 10cm is placed around each ground
truth data plot.

Differently to the previous case the estimation data related to the z variable is more
precise if compared to the previous case this is due to the fact that the AprilTag data,
especially in a simulation environment, is more precise than the ultra-wide band data.

A shortcoming of this approach, though, is that the UAV still has the necessity of
hovering in close proximity to the AprilTag in order to identify it with the camera.

When launching the landing action, in this condition with no UWB sensor enabled, the
drone has no knowledge of the relative position to the rover if it can’t detect the tag. So it
must receive a rough indication of that during the landing goal request, as shown in figure
4.9.

73



Precision landing and estimation

The rover position must be expressed in the local world NED reference frame, and the
drone will start the landing action by moving toward this new target, after which the
AprilTag will be detected and the effective rover position updated with real data coming
from the estimation node.

In figure 4.11 it is show the estimation process of the position of the rover, the value
coming from the Kalman filter algorithm is compared to a ground-truth measure. The
rough position information of the rover comes from the terminal interface shown in 4.9,
as it can be seen from the plot in figure 4.11 the one given to the algorithm is a rough
indication and does not correspond to the actual value. It will be the estimation algorithm,
with the use of the camera and AprilTag, that will correct this erroneous indication and
proceed with a correct precision landing.

Figure 4.11: Estimated position of the rover during the precision landing request without
the usage of the UWB data.

As shown both in figure 4.10 and 4.11 the UAV starts its approach phase with an
incorrect information about the position of the rover, and thus its relative position to the
landing platform. This is the corrected once the AprilTag is detected by the camera and
the data gets fed to the estimation algorithm as shown in figure 4.12. A 10 cm band has
been added in order to check the effectiveness of the correction.

4.5.3 Simulation with both UWB and AprilTag sensors
Finally, the best condition is when both the sensor are available this condition is simulated
by setting both bool flags to true. This is also the default condition in the action client, if
the flags are not specified both will be set to true.

74



4.5 – Precision landing simulation results

Figure 4.12: Rover position estimate error. Comparing the data coming from the Kalman
filter algorithm and the ground-truth data.

The estimation algorithm with both ultrawide-band sensor and the data coming from
the camera paired with the AprilTag marker shows the best performance in terms of
precision (as shown in figure 4.13).

This had to be expected, moreover does not require the input of the indication of the
rover position as this is not necessary due to the presence of the UWB sensor.

Comparison

This is the proposed solution regarding the position estimation, it possesses both of the
advantages of the two previous solutions, them being a better estimation of the z coordinate
of the drone given by the AprilTag estimation and avoiding the necessity of inputting the
estimated position of the drone given by the ultra-wide band sensor. Additionally, this
solution doesn’t have the drawbacks of the previous cases.

4.5.4 Landing with no UWB and no AprilTag information
This case simulates the worst possible landing condition, in this case it’s not possible to
perform a precision landing as the estimation algorithm has no possibility of retrieving the
relative position between the rover and the UAV.

Similarly to what is shown in figure 4.9 the user is requested to provide the landing
action algorithm with the landing position coordinates, also shown in the goal request
definition (source code 4.1) as the landing spot entry.

75



Precision landing and estimation

Figure 4.13: Kalman filter estimation output compared to ground-truth data. Case with
both UWB data and AprilTag data.

After which the drone will perform a simple landing action, which only reaches the
landing spot coordinates, which can be either the rover itself in the case the rover coordinates
are known via an external method or another safe landing position.

76



4.5 – Precision landing simulation results

(a) Image showing the drone landed on the origin of the world
local frame

(b) Plot showing the vehicle odometry gotten from the drone PX4 topic.

Figure 4.14: Landing performed in a safe position, in this case corresponding to the origin
of the local world frame.

77



Precision landing and estimation

(a) Image showing the drone landed on top of the rover.

(b) Plot showing the vehicle odometry gotten from the drone PX4 topic.

Figure 4.15: Landing performed on top of the rover.

78



Chapter 5

Conclusions

The thesis work presents a set of algorithms based on ROS 2 and the PX4 autopilot for
offboard control of a UAV system.

Such algorithms have been developed in order to obtain an highly flexible and cus-
tomizable simulation experience. All of the action server used to complete a mission tasks
can be tuned by employing the ROS 2 parameters interface. Nonetheless the presented
solution already proved to reach ideal results in the simulation.

The algorithms are based on both library and custom functions, for example the grid
sweep function provided by the PythonRobotics library relates to the former case, while
the PID controller for trajectory tracking regarding the latter case. In both the flexibility
of the solution has been prioritized as opposed to more sophisticated solutions which
require a better knowledge of the system and higher computation capability.

Moreover, the SITL simulation of such algorithms show how all of them provide
satisfactory results, from the data gathering and trajectory tracking point of view.

Regarding the case of the precision landing algorithm the proposed solution is the one
pairing the data gathered from the PX4 flight stack and additional data incoming from an
ultra-wide band sensor and the camera with an AprilTag marker. This solution showed
good estimation performance with a precision in the landing phase which was between
the 10 cm confidence band with respect to the ground-truth data gotten from the Gazebo
simulator.

Nonetheless, also the algorithms which didn’t implement the additional data or just one
data between the two were tested in SITL simulation, these also provided with satisfactory
results but had shortcomings with respect to the proposed solution.

The simulation shows how the user can select each of the additional data pairings.

5.1 Future work
This thesis delivers a ready-to-use simulation environment, the communication interfaces
between the UAV and a base computer (e.g. a rover), and a set of algorithms regarding the
navigation, control and estimation. Such environment can be used to test the capabilities
of a number of different quadcopters.

79



Conclusions

Once the drone model is selected it is necessary to test the proposed algorithms on real
hardware, thus it will be required to modify some details of the algorithms, as in this case
some plugin data is not provided by Gazebo but by some real world sensors.

Once the hardware has been defined it could also be possible to implement more
sophisticated and system-specific solutions from both the control (e.g model predictive
control) and estimation (e.g. extended kalman filter) section of the flight stack.

80



Appendix A

Simulation installation tutorial

A.1 Repository organization

A.1.1 drone_bringup

Includes all the .launch.py files necessary to launch the simulation environment, estimation
and navigation capabilities of the drone.

A.1.2 drone_estimation

In here are contained the Kalman filter node, the apriltag and ultra-wideband estimation
nodes, plus the Gazebo groudthruth position node which is mainly used during the testin
phase for the validation of the estimation algorithm.

A.1.3 drone_rover_mars

In this folder are contained all the navigation and offboard control algorithms. Most of
which are located in the /actions subfolder as the interface is achieved through ROS2
actions.

A.2 Installation

A.2.1 Requisites

Firstly, it is necessary to install the various repositories which are:

• PX4-Autopilot
• px4_ros_com
• px4_msgs

81



Simulation installation tutorial

A.2.2 PX4 Autopilot
To do so, create a folder mkdir px4_dev/ and inside it use the command:

git clone https://github.com/PX4/PX4-Autopilot.git --recursive

Which will clone the repository to the latest available version, since this simulation
environment has been developed and tested with a specific version it’s necessary to revert
the changes with the command shown in the next section.

A.2.3 PX4-ROS2 Bridge
To setup the PX4 agent on the ROS2 side of the communication bridge it’s required to
clone the other two repositories. It’s necessary to create another folder i.e. px4_ros2_ws
and then another px4_ros2_ws/src in which to clone the two repositories.

git clone https://github.com/PX4/px4_ros_com.git

git clone https://github.com/PX4/px4_msgs.git

As with the source code of the autopilot the complete installation procedure can be
found at this link.

A.2.4 Correct version download
This simulation environment has been developed with a specific version of the PX4 autopilot,
in order to avoid problems it is useful to install the same version.

This can be don by running the following command, while in the same folder of the
repository. This process has to be repeated for the PX4 autopilot source code and the
component of the PX4-ROS2 Bridge.

git checkout <commit hash>

• PX4-Autopilot

– Version: f15eefc

• px4_ros_com

– Version: 3b577d6

• px4_msgs

– Version: cb455c2

82

http://docs.px4.io/v1.12/en/ros/ros2_comm.html#installation-setup


A.2 – Installation

A.2.5 Complete the installation
Then in order to complete the installation and to install all of the dependencies of PX4
it’s necessary to run the following command:

./PX4-Autopilot/Tools/setup/ubuntu.sh

The complete installation tutorial of the autopilot can be found at this link.
It is also necessary to install the FastRTPS/DDS middleware implementation. Installa-

tion tutorial link.

Troubleshooting

It may be necessary to clean up the installation after reverting to the previous version,
after running the ubuntu.sh bash, it may be necessary to run this command:

cd px4_dev/PX4-Autopilot
make distclean

This will clear all the submodules, it should not be ran after modifying the firmware
e.g. updating the iris model and the empy.world file.

Testing the installation

To test the installation it is possible to run the following command:

make px4_sitl gazebo

This will build and launch the default PX4 simulation with the iris model in Gazebo.
If the installation is successful the model should be visible.

A.2.6 Modifications in the PX4 folder
All the modification files can be found in the folder drone_rover_mars/extra

Multiple run script

While in this folder /home/<user>/px4_dev/PX4-Autopilot/Tools/:

• Paste new gazebo_sitl_multiple_run.sh

Model files update

It is possible to copy paste the folder contained in drone_rover_mars/models and
drone_rover_mars/worlds in the folders that can be found at /home/<user>/px4_dev/PX4-Autopilot/Tools/sitl_gazebo/:

• iris.jinja.sdf and model.config in ../sitl_gazebo/models/iris
• Create a new rover_uwb folder (in ../sitl_gazebo/models/)

83

https://docs.px4.io/v1.12/en/dev_setup/dev_env_linux_ubuntu.html
https://docs.px4.io/v1.12/en/dev_setup/fast-dds-installation.html


Simulation installation tutorial

• rover_uwb.sdf and model.config in rover_uwb folder
• Create a new curiosity_path folder (in ../sitl_gazebo/models/)
• Move all the files from ..drone_rover_mars/extra/models/curiosity_path into

the new folder
• empty.world in ../sitl_gazebo/worlds

A.2.7 Updating the launch files path
In the folder ../drone_bringup/launch the file drone_rover_clients_agents.launch.py
has to be updated on line 26.

From:
'/home/riccardo/px4_dev_3/PX4-Autopilot/Tools/gazebo_sitl_multiple_run.sh'

To:
'/home/<user-folder>/px4_dev/PX4-Autopilot/Tools/gazebo_sitl_multiple_run.sh'

Moreover, the path used to save the position data and image data during the testing
phase has to be updated in the files:

• /drone_rover_mars/actions/getimages_action_server.py
• /drone_rover_mars/actions/gridsweep_action_client.py
• /drone_rover_mars/actions/gridsweep_action_server.py

If using Visual Studio Code as Editor, it is possible to use the Replace in Files (or
CTRL+Shift+F) function to update all the paths at once (VsCode function link).

From:
riccardo/thesis_ws

To:
<user-folder>/<workspace>

For example: <user-folder>/px4_ros2_ws.

A.2.8 Building the ROS 2 Workspace
This is the final step of the installation, the ROS 2 workspace should have this hierarchy:

84

https://learn.microsoft.com/en-us/visualstudio/ide/finding-and-replacing-text?view=vs-2022


A.2 – Installation

While the px4_ros2_ws folder should have only the src folder.
At this point the workspace can be built by running the following command:

cd ~/px4_ros2_ws
colcon build --symlink-install

The full guide to build the workspace can be found here.
Before running the simulation it is necessary to source the workspace:

. install/setup.bash

A.2.9 Simulation aliases
In order to have an easier simulation startup, some bash aliases have been written. These
are not strictly necessary in order to run the simulation but they do provide an easier
usage. In order to do so it’s necessary to add the following lines to the .bashrc file, by
running the following command, from the home directory (run the cd ~ if necessary).

gedit .bashrc

Once the file has been opened:

alias simulation='ros2 launch drone_bringup drone_rover_clients_agents.launch.py'
alias estimation='ros2 launch drone_bringup drone_rover_positioning.launch.py'
alias drone_control='ros2 launch drone_bringup drone_control.launch.py'

This will provide an alias related to the launch files contained in the bringup folder.

alias takeoff='ros2 run drone_rover_mars takeoff_action_client'
alias abort='ros2 service call /drone/abort_mission ros2_px4_interfaces/srv/AbortMission'
alias target='ros2 run drone_rover_mars gototarget_action_client'
alias getimages='ros2 run drone_rover_mars getimages_action_client'
alias land_on_spot='ros2 run drone_rover_mars landonspot_action_client'
alias gridsweep='ros2 run drone_rover_mars grid_sweep_action_client'

The abort mission service may no longer be necessary. It is reccomended to abort
an action via the CTRL+C command as the code organization has changed during the
developement.

It is still possible to run the abort mission service, it may be necessary to add this to a
launch file (i.e. the drone_control) as its implementation was not strictly necessary.

In order to get the plots for this Master thesis project the PlotJuggler software has
been employed. If it’s installed another useful alias is this:

alias plotjuggler=' ros2 run plotjuggler plotjuggler -n'

85

https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html
https://github.com/facontidavide/PlotJuggler


Simulation installation tutorial

A.3 Running the simulation
Once all the installation steps have been succesfully done it is possible to run the simulation.

During this part of the tutorial all the commands will be treated as if the aliases have
been added, if this is not the case refer to the previous section to look up the complete
commands.

If the .bashrc aliases have been added the simulation can be started by launching a
terminal (a split screen one might be helpful, for example Terminator and then sending
the following commands:

1. In one window of the terminal launch the simulation command, this will launch the
Gazebo simulation environment.

2. In another terminal window, launch the estimation command. This command is
required for any algorithms that need the relative position of the simulated UAV to
the UGV position. For example, if you are testing only the go_to_target and takeoff
algorithms, you can skip the estimation command, as it is not necessary and may
consume a lot of computational resources.

3. Similarly to the previous case, in a third terminal window the drone_control
command is issued. In any case, if the user wants to test any of the navigational
capabilities or the estimation side of the simulation is necessary to launch these
nodes.

4. Leave a fourth terminal window that can be used when issuing the client side of the
operations, for example sending a request to the action servers.

An additional window may be helpful in order to run complementary software such as
the already cited PlotJuggler or QGroundControl.

This should appear when launching the simulation command:

Figure A.1: Simulation environment in the Gazebo software.

86

https://github.com/gnome-terminator/terminator


A.3 – Running the simulation

A.3.1 Simulation commands
This section has been added assuming the aliases a have been set up in the bashrc file, it
is possible to send the commands by following the following table.

In case the standard notation of ROS2 is followed, do not follow these instructions.
The standard command is the following:

ros2 action send_goal <action_name> <action_type> <values>

The options regarding the reference frame are:

• world, the default options if left empty
• rover, the NED reference frame centered in the position of the rover. To use this

reference frame, launch the estimation file.

Figure A.2: Table of the commands.

Takeoff + Go to target example

Figure A.3: Go to target terminal interface, with the aliases enabled.

All of the coordinate commands are sent following the NED frame convention (z axis in
the down direction), in this case it’s possible to see that the takeoff flag is set to true
and so the drone will takeoff at the default altitude of 2 meters and the go to the target
coordinates. In this case the target coordinates are expressed in the world reference frame.

In case it’s necessary to specify the altitude of the takeoff it’s necessary to use the
takeoff <altitude> command.

87

https://docs.ros.org/en/dashing/Tutorials/Understanding-ROS2-Actions.html#use-actions


Simulation installation tutorial

Getimages example

Figure A.4: Getimages terminal interface, with the aliases enabled and using the default
(world) reference frame.

In this case the first three inputs are correspondent to the coordinates of the orbit, the
following inputs is the radius and finally the number of image that the drone will take.

Since there is no string after the number of images, the reference frame is set to world
by default.

Figure A.5: Getimages terminal interface, with the aliases enabled and using the rover
reference frame.

If instead the drone is required to take the images with a center expressed in the rover
reference frame, the command above is used.

Area Coverage action

Organizing the area coverage task through the Python input function has been decided
due to its complexity from the user’s point of view.

The inputs the required during this action are:

• Specify the number of points required to define a closed perimeter for the mapped
area.

• 2D coordinates of the points
• Mapping altitude of the drone. As with the previous actions, the altitude should be

provided following the NED convention.
• Resolution of the grid sweep.

88



A.3 – Running the simulation

A.3.2 Actions bagfiles
The folder data/bagfiles contains the simulation bagfiles that record the messages and
topics exchanged during the simulation of the drone simulation project. The bagfiles can
be used to replay the simulation data and analyze the performance of the estimation
algorithm.

89



90



Bibliography

[1] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz, “A survey
of open-source UAV flight controllers and flight simulators,” Microprocessors and
Microsystems, vol. 61, pp. 11–20, 2018.

[2] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” in 2015 IEEE international
conference on robotics and automation (ICRA), pp. 6235–6240, IEEE, 2015.

[3] “JPL - Ingenuity Mars Helicopter.” URL: https://www.jpl.nasa.gov/missions/ingenu
ity.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng,
et al., “ROS: an open-source Robot Operating System,” 2009.

[5] “Tutorials — ROS 2 Documentation: Foxy documentation.” URL: https://docs.ros.o
rg/en/foxy/Tutorials.html.

[6] “rqt_graph - ROS Wiki.” URL: http://wiki.ros.org/rqt_graph.

[7] “ROS1 vs ROS2, Practical Overview For ROS Developers - The Robotics Back-End.”
URL: https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_a
nd_not_keep_ROS1.

[8] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating
system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66,
p. eabm6074, 2022.

[9] “Introduction - Programming Multiple Robots with ROS 2.” URL: https://osrf.githu
b.io/ros2multirobotbook/.

[10] “ROS 2 Design.” URL: http://design.ros2.org/.

[11] “Changes between ROS 1 and ROS 2.” URL: http://design.ros2.org/articles/changes
.html.

[12] “Topics vs Services vs Actions — ROS 2 Documentation: Foxy documentation.” URL:
https://docs.ros.org/en/foxy/How-To-Guides/Topics-Services-Actions.html.

[13] “PX4 User Guide.” URL: https://docs.px4.io/main/en/.

91

https://www.jpl.nasa.gov/missions/ingenuity
https://www.jpl.nasa.gov/missions/ingenuity
https://docs.ros.org/en/foxy/Tutorials.html
https://docs.ros.org/en/foxy/Tutorials.html
http://wiki.ros.org/rqt_graph
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
https://osrf.github.io/ros2multirobotbook/
https://osrf.github.io/ros2multirobotbook/
http://design.ros2.org/
http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
https://docs.ros.org/en/foxy/How-To-Guides/Topics-Services-Actions.html
https://docs.px4.io/main/en/


BIBLIOGRAPHY

[14] “PX4/PX4-Autopilot: PX4 Autopilot Software.” URL: https://github.com/PX4/PX4
-Autopilot.

[15] “MAVLink Messaging | PX4 User Guide.” URL: https://docs.px4.io/main/en/middle
ware/mavlink.html.

[16] “ROS (Robot Operating System) | PX4 User Guide.” URL: https://docs.px4.io/main
/en/ros/.

[17] “uORB Messaging | PX4 User Guide.” URL: https://docs.px4.io/main/en/middlewa
re/uorb.html.

[18] “RTPS/DDS Interface: PX4-Fast RTPS(DDS) Bridge | PX4 User Guide.” URL:
https://docs.px4.io/v1.12/en/middleware/micrortps.html.

[19] “ROS 2 User Guide (PX4-ROS 2 Bridge) | PX4 User Guide.” URL: https://docs.px4
.io/main/en/ros/ros2_comm.html.

[20] “GitHub - PX4/px4_ros_com: ROS2/ROS interface with PX4 through a Fast-RTPS
bridge.” URL: https://github.com/PX4/px4_ros_com.

[21] “GitHub - PX4/px4_msgs: ROS/ROS2 messages that match the uORB messages
counterparts on the PX4 Firmware.” URL: https://github.com/PX4/px4_msgs.

[22] “Offboard Mode | PX4 User Guide.” URL: https://docs.px4.io/v1.12/en/flight_mod
es/offboard.html.

[23] “PX4 Architectural Overview | PX4 User Guide.” URL: http://docs.px4.io/main/en/
concept/architecture.html.

[24] “Controller Diagrams | PX4 User Guide.” URL: https://docs.px4.io/v1.12/en/fligh
t_stack/controller_diagrams.html.

[25] “Simulation | PX4 User Guide.” URL: https://docs.px4.io/main/en/simulation/.

[26] “Gazebo Simulation | PX4 User Guide.” URL: https://docs.px4.io/v1.12/en/simulat
ion/gazebo.html#gazebo-simulation.

[27] “Using Vision or Motion Capture Systems for Position Estimation | PX4 User Guide.”
URL: https://docs.px4.io/main/en/ros/external_position_estimation.html.

[28] “Understanding actions — ROS 2 Documentation: Foxy documentation.” URL:
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2
-Actions/Understanding-ROS2-Actions.html.

[29] “PID controller - Wikipedia.” URL: https://www.en.wikipedia.org/wiki/PID_control
ler.

[30] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques, “Pythonrobotics:
a python code collection of robotics algorithms,” arXiv preprint arXiv:1808.10703,
2018.

92

https://github.com/PX4/PX4-Autopilot
https://github.com/PX4/PX4-Autopilot
https://docs.px4.io/main/en/middleware/mavlink.html
https://docs.px4.io/main/en/middleware/mavlink.html
https://docs.px4.io/main/en/ros/
https://docs.px4.io/main/en/ros/
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/v1.12/en/middleware/micrortps.html
https://docs.px4.io/main/en/ros/ros2_comm.html
https://docs.px4.io/main/en/ros/ros2_comm.html
https://github.com/PX4/px4_ros_com
https://github.com/PX4/px4_msgs
https://docs.px4.io/v1.12/en/flight_modes/offboard.html
https://docs.px4.io/v1.12/en/flight_modes/offboard.html
http://docs.px4.io/main/en/concept/architecture.html
http://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html
https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html
https://docs.px4.io/main/en/simulation/
https://docs.px4.io/v1.12/en/simulation/gazebo.html#gazebo-simulation
https://docs.px4.io/v1.12/en/simulation/gazebo.html#gazebo-simulation
https://docs.px4.io/main/en/ros/external_position_estimation.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://www.en.wikipedia.org/wiki/PID_controller
https://www.en.wikipedia.org/wiki/PID_controller


BIBLIOGRAPHY

[31] “AtsushiSakai/PythonRobotics: Python sample codes for robotics algorithms..” URL:
https://github.com/AtsushiSakai/PythonRobotics#citing.

[32] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362,
Sept. 2020.

[33] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

[34] G. A. Pelissero, “Autonomous Precision Landing for UAVs on a Mars-like environment
in ROS/Gazebo - Webthesis,” Master’s thesis, 2022.

[35] G. Scarati, “UAV precise ATOL techniques using UWB technology - Webthesis,”
Master’s thesis, 2021.

[36] “Kalman filter - Wikipedia.” URL: https://en.wikipedia.org/wiki/Kalman_filter?old
format=true.

[37] “FilterPy — FilterPy 1.4.4 documentation.” URL: https://filterpy.readthedocs.io/en/
latest/.

93

https://github.com/AtsushiSakai/PythonRobotics#citing
https://en.wikipedia.org/wiki/Kalman_filter?oldformat=true
https://en.wikipedia.org/wiki/Kalman_filter?oldformat=true
https://filterpy.readthedocs.io/en/latest/
https://filterpy.readthedocs.io/en/latest/

	List of Tables
	List of Figures
	Introduction
	State of the art
	Thesis objective
	Thesis organization

	Simulation environment
	ROS Introduction
	Concepts

	ROS 2
	Comparison of ROS 2 and ROS 1 features
	ROS 2 Topics vs Services vs Actions

	PX4
	PX4 and ROS 2 for offboard control
	Offboard control

	Simulation Tools
	Gazebo
	UAV model
	World model
	Reference frames


	Offboard algorithms
	Algorithms organization
	Reasoning behind the choice of ROS 2 Actions
	Common capabilities to all the action servers

	Takeoff
	Go to target
	PID Controller
	PID controller introduction
	PID controller architecture

	Get images
	Trajectory generation
	Trajectory tracking

	Area coverage
	Path generation
	Path tracking


	Precision landing and estimation
	Kalman Filter theory
	Prediction step
	Update step

	Kalman Filter implementation
	Estimation node introduction
	ROS 2 topics
	Update step
	Prediction step

	Kalman filter tuning
	Estimation launch file

	Landing
	Interface between the action and the estimation algorithm
	Landing action pseudo-code

	Precision landing simulation results
	Simulation with only ultra-wide band sensor
	Simulation with only the AprilTag sensor
	Simulation with both UWB and AprilTag sensors
	Landing with no UWB and no AprilTag information


	Conclusions
	Future work

	Simulation installation tutorial
	Repository organization
	drone_bringup
	drone_estimation
	drone_rover_mars

	Installation
	Requisites
	PX4 Autopilot
	PX4-ROS2 Bridge
	Correct version download
	Complete the installation
	Modifications in the PX4 folder
	Updating the launch files path
	Building the ROS 2 Workspace
	Simulation aliases

	Running the simulation
	Simulation commands
	Actions bagfiles



