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Summary 
One of the biggest challenges of the automotive industry in recent history is the process of 
powering the vehicle by electricity which is called Vehicle Electrification. 

Electrification in the automotive industry is the process of converting a vehicle from a traditional 
fuel source to one powered by electricity. Generally, vehicle electrification focuses on the electric 
powertrain and related auxiliary systems, like on-board and off-board charging systems, as well as 
wireless power transmission. 

The major reasons for supporting the vehicle electrification are the reduction of carbon dioxide 
emission and environmental pollutants, transition to new intelligent transportation systems in the 
cities, and possibly the lack of fossil fuels soon. Traditional gasoline cars have an efficiency of 
17% to 21%, while electric motors have an efficiency is approximately 85% to 90%. When it 
comes to maximizing efficiency, electrical systems are the most effective since they can be 
monitored and communicated with more efficiently than any other system. Consequently, a 100% 
electric vehicle (EV) will have high efficiency and zero pollutant emissions, reducing the total 
carbon footprint while still having appealing designs. 

After İncreasing the importance of Vehicle Electrification, the proposal for the “EVERGRIN”      

project was introduced by Brain Technologies and Politecnico di Torino. 

EVERGRIN is an acronym that stands for – Device for Electric Vehicle ERGonomic for 
RINnovamento (renovation) and Revamping of Existing Vehicle with Traditional Engine.  

The vehicles undergoing the transformation are vehicles that have been produced and released 
since 2000, far from being "vintage". 

Production or replacement with new models for at least 5 years in the EURO 3 or EURO 4 
emission class, characterized by a modest and not yet widespread presence of electronic 
components, but still fully functional and functional for a task, especially if it is an urban and 
suburban nature.  

Main activities of the EVERGRIN project are designing the architecture on Fiat Panda 2nd Series, 
development of new components (e.g. ABS), VMU development, HMI System development, 

Functional Architecture and Vehicle Network Integration, Test Bench Development and 
Development and Adaptation of Mechanical Parts.  

Therefore, the main goal of this thesis is to develop a VMU (Vehicle Management Unit) and 
functional architecture and vehicle network integration that can allow for more efficient vehicle 
conversion and management of the electric propulsion system. In that case we worked with the 
HY-TTC 32S ECU (Electronic Control Unit) which is equipped with a Watchdog and a Main 
CPU. The watchdog can be used to bring the Electronic Control Unit to a safe state by 
interrupting the Main CPU and disabling safety switches with using the dedicated output. It is 
based on an Infineon XC22xx microcontroller, and the software is written in C language. Control 
unit has 28 I/Os which are freely configurable and two can buses, one is using for the engine and 
safety systems and another one for the body controls (BCM, ABS, On-Board Systems, HVAC 
Heater, HMI). 

 



In conclusion, some high priority tasks of the VMU is implemented and the first task is focused 
on the pedal management (brake pedal and acceleration pedal) which has the most priority in the 
architecture of the car. 

Second task is behavior of the battery of the vehicle. Third one is related to inverter control and 
the last one is controlling the ABS of the car. Additionally, a debouncer task is implemented and 
it takes the input value and returns the debounced value in the output of the VMU. It is a general 
debouncer which can be used for the several purposes (diagnostic test etc.).  

The primary objective of the EVERGRIN project of Brain Technologies and Politecnico di 
Torino is vehicle electrification, or in our instance, the conversion of a diesel-powered FIAT 
PANDA into a completely electric vehicle. Thus, the objective is "Transformation (electrification) 
of a diesel-powered Fiat Panda car," i.e., converting it into a completely electric vehicle. 

Here are the macro activities and where this thesis work is placed in it [6]: 

Adaptation of the Saver KIT on Panda 2nd Series 

-Development of new components (e.g., ABS) 

- VMU development (This thesis work lies here) 

-Power Box design 

- HMI System development 

-Functional Architecture and Vehicle Network Integration 

-Development of test benches 

-Development and Adaptation of Mechanical Parts 

In this thesis, the construction of a VMU's low-level firmware and basic software for converting a 
diesel Fiat Panda into an electric vehicle is described. Before considering how to construct our 
VMU, one of the first actions undertaken by Brain Technologies was selecting the VMU to be 
built and put in the automobile.  Examining the structure of the tasks in order to undertake 
development was the primary activity. The development was accomplished using the C 
programming language. 

Here are the tasks developed in this thesis work: 

1. Acceleration and Brake Pedal Management.  

2. Battery Key management. 

3. Inverter Management  

4. Pump Management Task  

5. Debouncer 
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Chapter 1 

 
1 Introduction 

 
1.1 The Idea and Motivation Behind Electric Vehicles and 

Vehicle Electrification 
 

Climate change and air pollution are causing national and regional regulations to be tightened, and 
that’s why most of the 1st world countries are doing everything to get rid of gas burning vehicles 
as soon as possible. To be able to reach this point they are contributing to the electric vehicles 
production industry and vehicle electrification which is converting a gas-burning vehicles into a 
fully electric one [7]. During pollution peaks, the city of Beijing in China, for example, has banned 
the use of the most polluting cars [8]. By 2025, several European cities will prohibit the circulation 
of diesel vehicles. For example, a global leader in electrification, is already developing and 
offering cutting-edge technologies that emit less CO2. Vehicle electrification is expected to 
increase by over 15 percent over the next decade, from just 2 percent today to 15 percent in the 
next decade. Increasing consumer demand for greener transportation options and regulations 
requiring carbon emission reductions and improved fuel efficiency are driving the rapid adoption 
of vehicle electrification. As a result of these twin pressures, every major automaker has announced 
plans to release at least one electric vehicle in the next years. [9] 

Nowadays thanks to the efforts put in the development of fully electric vehicles and vehicles 
electrification we can say that we are one step closer towards a world free of gas burning vehicles, 
a healthier and more eco-friendly transportation. Of course, also thanks to the very advanced stage 
we are in regarding embedded development, now adays even gas burning cars are fully electronic 
apart from the motor. All the safety critical systems like the ABS and the airbag are fully electronic 
systems which are very reliable because they are real time embedded. Now the purpose of the 
EVERGRIN project introduced by Brain technologies and Polytechnic University Of Turin is to 
transform a Fiat panda vehicle from a diesel vehicle to a Fully electric one. 

The term "electrified vehicles" encompasses a variety of technologies that rely on electricity to 
propel a vehicle: 

• HEV: Hybrid Electric Vehicles get all of their net propulsion energy from petroleum, but they 
use an electrical system to save money on gas. 

• PHEV: Plug-in Hybrid Electric Vehicles (PHEVs) store energy from the electric grid and can 
run on both electricity and gasoline. The following are the two main variations: 
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• When the battery is charged, blended PHEVs use a combination of gasoline and electricity, then 
switch entirely to gasoline when the battery is depleted. Because the electrical system does not 
have to meet peak power demands on its own, blended operation has the advantage of being 
smaller. 

• Extended Range Electric Vehicles (EREVs) are plug-in hybrid electric vehicles (PHEVs) that 
run solely on electricity when the battery is charged and switch to gasoline when the battery is 
depleted. The vehicle operates as a BEV for trips that are shorter than the battery's range. 

• BEV: Battery Electric Vehicles have larger battery packs that can store more energy from the 
grid for a longer range. They don't have a gasoline backup engine. BEVs are also known as "pure- 
electric vehicles" or "all-electric vehicles" by some (AEVs). 

• FCEV: Fuel Cell Electric Vehicles are hydrogen-powered vehicles that use a fuel cell to generate 
electricity. Fuel cell vehicles, or FCVs, are another name for FCEVs. 

• PEV: Plug-in Electric Vehicle is a term that refers to all vehicles that use the electric power grid 
to charge (BEVs and PHEVs). 

• EV: The term "electric vehicle" is a bit of a misnomer. Some people use the term "electric 
vehicle" to refer to BEVs only, while others use it to refer to PEVs, PEVs + FCEVs, or any 
electrified vehicle. 

 
 
 

1.2 The idea and motivation behind EVERGRIN 
 
The idea is that instead of only relying on producing electric cars, we can also start to electrify 
diesel and gas burning vehicles, because if we want to arrive to the point of having no diesel and 
gas burning vehicles on the streets which is the goal just by producing tons of full electric vehicles, 
this would mean that we will have to throw away most of the vehicles we have now, since most 
of the vehicles we have on the streets at this point are diesel and gas burning vehicles. And that 
would be a lot of waste of course. 

Now despite the fact that Italy is a little bit lagging behind the industry leading countries like 
China and USA, it seems that the shift from combustion to electric vehicles is a must. It also 
seems that this process needs to be performed as fast as possible, and that’s due to latest data 

which is pretty alarming which found that the nitrogen oxide levels in Lombardy and Emilia 
Romagna are exceeding the limits. [10] 
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1.3 EVERGRIN main goal 
 
The main goal is the development of the VMU (vehicle management unit) which would allow the 
conversion of the vehicle into a FEV (full electric vehicle) providing the following functions: 

• Management of the electric propulsion system 

• Interface with existing electronic systems 

• Additional commands such as gear selector, touch-screen display, other interfaces for smart 
devices. 

The main idea is developing the VMU (and that’s covered in this thesis work), and then the 
physical conversion would carry on by disassembling the components which are no longer 
necessary like the combustion engine and so on, and installing the parts necessary for the 
conversion to take place which would be (battery pack, electric motor, VMU with connections). 

The introduction of the VMU allows for a significant upgrade in the car by leveraging its 
established technological base and adding features that are only available in the latest high-end 
electric vehicles. 

For the conversion to happen we need to create hardware and software which would allow the 
conversion into an electric vehicle with respect to the original electronic architecture, so we need 
to choose the VMU which would be compatible and would allow for a smooth installation, then 
comes the software part where it is necessary to develop the entire software from low level (drivers 
and communication) to service for high level software developed in model based design by 
polytechnic University of Turin. 
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Chapter 2 

 
2 EVERGRIN PROJECT and SOFTWARE ARCHITECTURE 

 
2.1 Electric Vehicle (EV) Conversion Process 

 
The development of an electric vehicle (EV) conversion process could be performed without 
spending a lot of money and time even with using the actual components of the design architecture. 
Using model-based system design, the electric vehicle’s propulsion and dynamic load are 
computed in a systematic way. 

There are 2 main inputs for the simulation and the first one is vehicle specification and driving 
cycles. Consequently, the method could accurately predict Electric Vehicle features and design 
parameters, such as EV performance, range of driving, torque speed properties, power of the 
motor, and battery power charge/discharge, which are the required for size of the most important 
EV components and design. 

 
 
 

2.1.1 Adaptation of the Saver Kit on Panda 2nd Series 

The current system configuration includes functional ECU hardware, electric car models, and 
control area network (CAN) connectivity. The Electric Vehicle components and system models 
can be simulated virtually in real time and this current methodology can be employed as a quick 
design tool for software development and ECU design and validation. 

For the EVERGRIN project the SAVER KIT, illustrated in figure 2.1 is adapted to use on the 
Panda 2. Series. Mainly function architecture and vehicle network integration are composed by 
VMU, Battery Pack, Moto-propulsion, 2 Can busses, Pedals & Drive Shift, On-board Charger, 
12V Service Battery and Reduction- Differential Gearbox. 
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Figure 2. 1: Saver Kit 
 
 
Vehicle management unit (VMU) has a connection with 2 Can bus which are Vehicle Can is 
responsible for the communication between VMU and the other Electronics Control Units and 
Powertrain Can which provide to communication between VMU and the other main power 
components. VMU has also direct connection with Pedals and Drive Shift components of the car. 

Battery Pack is created with Energy Management Unit which could be BMS, EDS, IMS, DC/DC 
converter and Battery Modules. Energy Management Unit is connected to 12V battery, Battery 
Modules, On-Board Charger, Inverter with Power link and it has connection with powertrain Can 
bus. 

Moto-propulsion part has 2 main components which are Inverter and Electric Motor. Inverter is 
connected to EMU with power link and Powertrain can bus with data link. Electric Motor is placed 
between Inverter and Reduction-Differential Gearbox and lastly 2 wheel is connected to 
Reduction-Differential Gearbox with power link. 

The EVERGRIN architecture is illustrated in figure 2.2 which is developed and configured based 
on SAVER model and the car specifications. 
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Figure 2. 2: The EVERGRIN architecture 
 
 
In the EVERGRIN architecture, vehicle can bus is connected between the car electronic control 
units and VMU. These ECUs are BCM, ABS, On-Board Systems and HVAC Heater. 

All these ECUs, which are integrated inside in the car, must also interact with one another. 

The Main goal of the Body Control Module (BCM) is to manage and control this communication 
between the ECUs. 

The function the Body Control Modules in automobiles connect with different ECUs in the car via 
the vehicle's bus system such as CAN, LIN, etc. in our case this communication provided by CAN 
protocol. 

The BCM may be thought of as the brain of the ECUs with controlling different components of 
the body (different ECUs) by sending and receiving signals via the vehicle bus. 

A BCM unit, which is also an ECU, acts as a gateway or hub in order to interact with different 
ECUs. This mitigates the need for cabled plug-in connection between ECUs within the vehicle. A 
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BCM unit, which is also an ECU, functions as a gateway or hub to communicate with other ECUs. 
This eliminates the requirement for a cabled plug-in connection between the vehicle's ECUs. 

With the increased use of electronics in cars, the electronic body control module (BCM) plays an 
essential role in controlling the vehicle's body components. Some of them are, central door locking 
or key entry with remote way, front and back wash and wiper, lighting system of the car these 
contains head, hazard, park and break lamps. 

Mirror control, horn control or if there is a siren system in the car and HVAC control which is 
Heating Ventilation and air conditioning control of the car. 

BCM also enables warnings for the safety (e.g., hand brake warnings, seat belt display) and 
diagnostics (e.g., Lamp Mistakes), which increases driver safety and lowers maintenance costs. 

The primary most important function of the anti-lock braking system is to prevent the vehicle from 
sliding uncontrollably by providing better traction when needed. Since the 1970s, ABS has been 
featured in cars. 

First, anti-lock systems, like other modern automotive technologies, were just available in high- 
end luxury and performance vehicles. ABS has become a regular feature in many cars. The ABS 
mechanism is thought to be a mix of threshold and cadence braking techniques; however, it is 
more efficient than either of those. Advanced methods, such as electronic stability systems, can be 
seen to be a development of the ABS. 

The ABS system consists mostly of ABS sensors, a control module, and hydraulic valves, that all 
work together to keep the wheels from locking up. As a result, the technology is known as anti- 
lock braking. 

ABS sensors or wheel speed sensors are placed in all four wheels of modern automobiles. The 
module constantly analyzes the velocities of all four wheels. If one wheel is moving slower than 
all the others, the control module activates the brake hydraulic valves to decrease the braking 
power supplied to that wheel. This causes them to run quicker, putting them back into 
synchronization with other wheels. On the other side, when the module discovers that one of the 
wheels is going faster than another three, it provides additional braking force to that wheel, 
that bringing its speed down to match the speeds of the other wheels. In this approach, The ABS 
control module, with the aid of sensors and valves, restores the vehicle's traction in any condition. 

When the automobile is making a turn, the speeds of the wheels usually vary because the inner 
wheels spin slower than the outer wheels. The reason for that the outer wheels must go a larger 
distance than the inner wheels while turning. The ABS control unit is designed to tolerate 
disparities in wheel velocities up to a specific point, which covers differences in wheel speeds 
during turning or rounding curves. Usually, when the ABS system is active, the driver often feels 
a pulsation inside the brake pedal as a result of the valves rapidly opening and closing. 

An on-board system constantly informs the driver of the vehicle's current or average fuel usage 
through specialized instrument cluster displays. 
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The on-board computer estimates the range based on that data and the amount of gasoline left in 
the tank. 

Furthermore, additional details regarding the average speed or journey duration may be provided. 
With all of this data, the driver gains critical insight into the most efficient and fuel-efficient 
driving technique. 

Heating, ventilation, and air conditioning (HVAC) technology is used to provide a comfort 
conditions and vehicle environment. By controlling the level of hot/cold within the cabin, the 
HVAC system helps in providing a comfortable temperature. 

HVAC was initially introduced in cars with in 1960s and is now standard equipment in the number 
of major vehicles. It is a complicated system with switching devices and knobs inside the frontend. 

The system's backend consists of one or even more blower motors, actuators that are providing 
fresh air circulation, air flow, and temperature control, and a refrigeration module, and several 
ducts that transport air to the cabin. 

Due to the pressure differences, heat transfer occurs from a low-temperature area to a high- 
temperature area inside within the vehicle. Refrigeration is the term that describes this process of 
heat transfer. 

 
 
 

2.2 SOFTWARE ARCHITECTURE 
 
2.2.1 EVERGRIN SOFTWARE ARCHITECTURE 

 
This part is focus on the software tasks architecture of the Vehicle Management Unit. Main 
software architecture is mainly divided based on the 2 sections first one is User Action and other 
one System States. Tasks based on the User actions are the Key positions which are STOP, 
position, ON position, CRANK MOMENTARY position and CAR in motion state. 

The pin configuration of the VMU for the project and the action indicators are illustrated in figure. 
2.3 and figure 2.4. 
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Figure 2. 3: pin configuration of the VMU 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. 4: action indicators 
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2.3.1.1 KEY at STOP POSITION 

 
This task algorithm will be in process due to the user action on the car. 

When the key is in the stop position the algorithm will go on to check if there will be any charging 
process during the key in the stop position. If one of the AC CHARGERS is plugged or SOLAR 
SWITCH is on the VMU is start the process of the charging the battery. 

If the AC Charger is plugged in, VMU receives +12V signal from AC charger which is indicates 
that AC Charger logic board is on, then VMU sends 3 different signals to go on with the task. 

Firstly, +12V signal from ‘HVBAT_PWR_OUT’ pin of the VMU and this signal closes the switch 
R3 which causes to activate HVBATT LOGIC BOARD. Second one is +12V signal from the 
‘HVBAT_WKCHG_OUT’ pin to HV BATTERY. Lastly VMU sends +12V signal from the pin 
name ‘ACCHG_EN_OUT’ and this signal closes the R6 switch to activate the AC CHARGER, 
and this closes the switch R4 because of the 12V supply of the AC CHARGER and this de-energize 
the R5 switch to remove power supply signal of the inverter. 

Thereafter VMU sends +12v signal from ‘DCDC_PWR_OUT’ pin to close R7 switch and activate 
DC/DC Converter. As a last step of the process and as system feedback, VMU sends 12v signal 
from ‘L4_FUEL_ORIGINAL’ pin to flash slowly L4 which is original dashboard fuel light to 
indicate that process is started. If the key on click engaged status, it will run the task for the starting 
the AC charging process and send a signal to the buzzer and this activates alarm sound to warn the 
driver. 

If solar switch is on position, +12V signal "SW SOLARCHG" is received by VMU from the solar 
switch. 

For a reaction of this input signal VMU sends 2 different signals. 

For starters, VMU sends the +12v signal from the "HVBAT PWR OUT" pin to close R3 switch to 
turn on HVBATT LOGIC BOARD. The second one is +12V signal which is sent from the 
"HVBAT WKON OUT" pin to HV BATTERY. After some seconds VMU checks if the HV 
PRE_CHG issued or not. If it is not, then HVBATTERY sends an error message through can 
network to the VMU. 

If everything is okey then VMU 3 other signals which are activates MPPT charger logic board, 
DC/DC Converter and as system feedback turns on the solar charging led, and this indicated that 
the solar charging process is started. 

Below is also illustrated in figure 2.5 the block diagram of the how charging process is starts during 
the Key-STOP position. 
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Figure 2. 5: software block diagram of the Key-STOP position 
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2.3.1.2 KEY at ON POSITION 

 
Main goal of this task is focus on the pre-charge process, battery fault, heater switch status, AC 
Charger is plugged in or Solar charging status. 

In the beginning when the key turns to on position, VMU receives the ‘Key On’ signal from the 
key switch. The vehicle's dashboard lights will be flashed when the VMU is activated, and a 12v 
signal "L1 BATT ORIGINAL" is sent by the VMU in order to turn on L1 "ORIGINAL 
DASHBOARD BATTERY LIGHT." Indicator. 

Later that, R1 switch will be closed by clicking to activate the 12v dc bus for auxiliary power 
(Radio). 

In order to turn on the HVBATT logic board, the VMU sends a +12V signal called "HVBAT PWR 
OUT" to close R3 switch. 

A total of two signals are sent by the VMU: a +12V SIGNAL "HVBAT WKON OUT" signal to 
the high-voltage battery and a +12V SIGNAL "L2w HVDCBUS ST" signal to the flashing L2 
YELLOW LED and signaling the beginning of the DC bus. 

The Preparation for the pre-charge process is carried out by the battery's internal logic circuitry. 

After the completion of this procedure task checks if HV PRE_CHG is issued or not. If it is not 
issued yet it also checks Battery fault timeout, if this is true then VMU sends errors to inform the 
user if this is not a timeout problem then the procedure starts from the beginning part again. If 
everything is fine and HW PRE_CHG is issued then procedure will continue with checking the 
heather switch status, Ac charger is plugging status and solar switch status. 

If Heater switch S2 is on position, then VMU receives a signal from the heater switch and sends a 
signal to enable heating and sends system feedback to turn on the ‘L8_HEATER’ on the dashboard. 

If AC charger is plugged in, then VMU receives a signal from the AC Charger and sends 2 signals 
to warn the driver. First one is activation of the alarm sound and other one is flash the fuel light 
warning on the dashboard. 

If Solar switch S1 is on position, , then VMU receives a signal from the Solar switch and sends a 
signal to charger logic board to turn it on and another signal to flashing the ‘Solar Charging’ led 
on the dashboard. 

At the same time VMU receives HV battery is ready signal from the HV battery then VMU sends 
3 signals to turn on the vacuum pump system, wake up the inverter logic board and activate the 
DC/DC converter and lastly sends another signal to dashboard to turn on ‘HV DC BUS’ led and 
turn off the ‘Original Dashboard Battery light’. 

Below is illustrated in figure 2.6 the block diagram of how the charging process starts during the 
Key-ON position. 
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Figure 2. 6: software block diagram of Key-On position 
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2.3.1.3 KEY at CRANK MOMENTARY POSITION 

 
Main goal of this task is focus on the make the car ready state. When the key at the Crank 
momentary position then VMU receives a signal from the key switch that indicates the key 
position. 

And then VMU checks if the brake is pressed or not pressed. 

If the brake is not pressed, then VMU send a signal to flash the brake light inside of the original 
dashboard and repeat the process until brake is pressed. 

Whenever brake is pressed during the task VMU receives 12v signal from brake pedal and then 
VMU send signal to close main contractor and send another signal to activates the green traction 
ready light. 

After 1 second, it continues with if process that controls inverter pre-charge process. If this process 
is not done yet, then inverter sends blocking message through can network to vehicle management 
unit. 

And VMU sends back a signal that flash the L2 red HV DC bus error light and the process comes 
back to the starting point of when the brake is pressed. 

Whenever inverter pre-charge process is finished then inverter sends signal to close the main 
contractor. 

Later the task is checking whether if main contractor is closed or not. If it found out that main 
conductor is not closed, then inverter sends blocking message through can network to vehicle 
management unit and sends a signal to flash the L2 Red HV DC bus error light. 

Whenever main conductor is closed then HV is connected to the inverter and inverter sends ‘Main 
Conductor Closing’ message with using can network and VMU sends +12v signal to turn on L2 
green traction ready light. 

Then at the end of this procedure it continues with starting the 2nd Click After Cranking State 
procedure. 

Below is illustrated in figure 2.7 the block diagram of the how charging process is starts during 
the Key-CRANK MOMENTARY position. 
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Figure 2. 7: software block diagram of the Key-CRANK MOMENTARY position 
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2.3.1.4 2nd Click after Cranking State 

 
Main goal of this task is focus on the from the parking state to car in the motion state. When the 
key at the Crank momentary position and 2nd clicks after cranking state is a system state which is 
starting after key at the crank momentary procedure. 

First, this procedure is starting with checking the status of the Parking Pawl Switch S3 status. 

If this checking is on state then VMU receives signal from parking pawl switch and then, sends 
back ‘PPAWL_OUT’ to close the R11/11a switch and this will activate bistable brake and lock 
the vehicle. Also, another signal will be sent from VMU to flash L5 led ‘Parking Pawl’ and then 
traction will be disabled. Else, when the parking pawl switch is off state then procedure will 
continue to be checking the brake status. 

If the brake is not pressed, then VMU removes the signal which is ‘PPAWL_OUT’ signal to 
disable bistable brake and let the vehicle free. VMU is also removes the ‘L5_PPAWL’ signal to 
turn of the L5 ‘Parking Pawl’ light. Now traction is enabled and VMU sends enable traction signal 
to the inverter. 

Now the procedure starts a loop with asking the VMU that brake status. If the brake is still pressed, 
then loop checks if one of the FWD or REV is selected or not. If they are not selected, then 
procedure returns to vehicle is neutral position and it comes back to asking if brake is still pressed 
which is beginning of the loop. If brake is not still pressed and FWD or REV is selected, then 
VMU sends active low (ground) warning signal to flash L9 which is ‘The brake light inside the 
original dashboard’ light and comes back to vehicle is in neutral position state. But if brake is still 
pressed and REV or FWD is selected at the same time then the task will go on with ne next steps. 

When the FWD is selected then VMU receives +12v signal ‘SW_FWD’ from forward switch and 
sends back ‘L7_FWD’ to turn on the led L7. Lastly VMU sends forward signal to the inverter wait 
in the loop until the ACC pedal is pressed. 

When the REV is selected then VMU receives +12v signal ‘SW_REV’ from forward switch and 
sends back ‘L6_REV’ to turn on the led L6. Lastly VMU sends reverse signal to the inverter and 
wait in the loop until the ACC pedal is pressed. 

When ACC pedal is pressed then VMU receives 2 analog signals from the pedal which are 
‘THROTTLE_1_IN’ and ‘THROTTLE_2_IN’ signals and now it checks if there is an ACC pedal 
fault or not. 

If there is an ACC pedal fault, then VMU removes enable traction signal which is sent to the 
inverter before and sends another signal to flash the L2 red HV DC bus error light. 

İf there won’t be any ACC pedal fault then VMU sends signal to the inverter to set torque request 
and that is a command for the motion state of the vehicle. 

Below is illustrated the software block diagram of Click After Cranking Mode in figure 2.8 and in 
figure 2.9. 
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Figure 2. 8: software block diagram of Click After Cranking Mode Part1 
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Figure 2. 9: software block diagram of Click After Cranking Mode Part2 
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2.3.1.5 CAR IN MOTION STATE 

 
Main goal of this task is behavior of the VMU to the actions for the when the brake is pressed, 
FWD or REV selected, and the direction switch toggled when the current state of the car is in the 
motion state. 

First, the algorithm will check that if the motor speed is above of the zero. If the motor speed is 
still zero and the direction switch is toggled and also the brake is pressed in the continuously then 
task going to check one of the REV and FWD is selected. 

If REV is selected the VMU receives +12 ‘SW_REV’ signal from forward switch and sends back 
‘L6_REV’ signal to turn on L6 and sends reverse signal to the inverter. 

If FWD is selected the VMU receives +12 ‘SW_FWD’ signal from forward switch and sends back 
‘L7_FWD’ signal to turn on L7 and sends reverse signal to the inverter. 

After checking the forward and reverse switch it checks if acc pedal is pressed if yes then VMU 
receives two analog signals from the pedal which are called ‘Throttle_1_in’ and ‘Throttle_2_in’ 
signals and checks if there will be any pedal fault. In the case of without any error, VMU sends a 
signal to set the torque to the inverter. 

Otherwise, if there will be any pedal error then VMU removes enable traction signal which is sent 
to the inverter before and send another error signal ‘L2r_PWRTRN_ERR’ to flash the L’ red HV 
DC bus error light. 

If motor speed is more than zero without considering situation of the direction switch, and also 
ACC Pedal is pressed then VMU receives the same 2 signals and checks if there is a ACC pedal 
fault and repeat the process as I explained above. 

Below is illustrated in figure 2.10 the block diagram of the how charging process is starts during 
the Car In Motion state. 
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Figure 2. 10: software block diagram of the car in motion state 
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2.3.1.6 HV BATTERY FAULT MANAGEMENT 

 
This fault loop is checking periodically HV battery fault, so whenever fault occurs then VMU 
receives ‘HVBAT_FAULT_IN’ signal and that activates the procedure with removing the 
‘INV_INTLCK_OUT’ signal to open the main conductor. Additionally, VMU also removes 
‘HVBAT_WKON_OUT’ signal to turn off HV DC bus and ‘INV_TRACT_EN_OUT’ signal to 
disable traction. Meanwhile VMU sends other 2 signals to turn on warning led and turn on the 
buzzer on the vehicle. Below is illustrated the block diagram of HV battery management shown in 
figure 2.11. 

 
 
 
 
 

 
 

Figure 2. 11: software block diagram of HV battery management 
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2.3.1.7 DCDC FAULT MANAGEMENT 

 
When the DCDC fault occurs, VMU disable the DC/DC converter with removing the 
‘DCDC_PWR_OUT’ signal immediately to open R17 switch and sends another signal to turn on 
the warning light immediately on the original dashboard battery light. 

Below is illustrated the block diagram of DCDC fault management in figure 2.12. 
 
 
 
 
 

 
 

Figure 2. 12: software block diagram of DCDC fault management 
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2.3.1.8 PARKING MANAGEMENT 

 
This task is starting the whenever user take the parking pawl switch S3 to on position. Later it 
checks if the brake is also pressed and if this condition is also true then VMU receives 
‘SW_PPAWL’ signal from the parking pawl switch and sends back +12v ‘PPAWL_OUT’ signal 
to close R11/11a switch which is activating the bistable brake and lock the vehicle. And for the 
end of this condition VMU activates ‘PARKING PAWL’ led with sending another signal to the 
dashboard. 

Another condition will start the part of the task when the parking pawl switch is closed, and brake 
is pressed at the same time. When this condition is active then VMU removes ‘PPAWL_OUT’ to 
open R11/11a switch to disable the bistable brake and this leaves the vehicle free position. At the 
end VMU sends another signal to deactivate the led of the parking pawl in the dashboard. 

Below is illustrated the block diagram of parking management in figure 2.13. 
 
 
 
 
 

 
 

Figure 2. 13: software block diagram of parking management 



Politecnico di Torino Brain Technologies 

25 

 

 

 

2.3 RTOS 
 
RTOS is a real time operating system. It is a software component which quickly switches among 
tasks, creating the impression that multiple programs are running on a single processing core at 
the same time. 

RTOS has 2 key characteristics: 

1. Predictability. 
2. Determinism. 

 
 
2.3.1 RTOS features and key reasons why it is used of critical 
systems. 

 
• Determinism: If you repeat an input, you'll get the same result [11]. 
• High performance: RTOS based systems are quick and efficient, often completing tasks in 

a fraction of the time required by a traditional operating system. 
• Safety and security: RTOS is commonly used in critical systems, such as robotic systems 

or flight controllers, where breakdowns can have devastating results and consequences. 
They should have larger safety requirements and much more accurate and reliable safety 
features to prevent failures [12]. 

• Prioritized class schedules means that high-priority tasks have to be completed first, 
then lower-priority tasks, which means that the highest priority tasks will always be 
executed by an RTOS [13]. For example, if a vehicle user is pressing the brakes and at the 
same time increasing the volume of the radio, for the suer he will see that both tasks will 
be executed at the same time because it all happens very fast. But actually, the brakes 
system will be executed by the RTOS because it is a critical task, while the radio is not. 

 
 
 
2.3.2 Classic OS vs RTOS 

 
The response time to external events differs between an OS (Operating System) such as Windows 
or Unix and an RTOS (Real Time Operating System) found in embedded systems. Operating 
systems usually provide a non-deterministic, non-real-time response, in which there are no 
assurances as to when every task would be completed, but they will make every effort to remain 
responsive to the user. An RTOS differ significantly in that it provides a solid real-time response, 
meaning it reacts to external events quickly and predictably. [14] Comparing the editing of a 
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pdf document on a PC for example to the process of a motor control, highlights the difference 
between the two. 

Free RTOS which is a class of RTOS is typically implemented for microcontroller and small 
microprocessor. It is the need operating system for applications which demand real time response 
as ABS of the car for example, the ABS is a function that cannot be delayed it has to be executed 
in real time, which means that when the vehicle crashes or hits an object hard enough that that 
requires the ABS to be executed it must be executed with no delays. 

FreeRTOS is an open-source operating system that includes a kernel and a growing set of libraries 
that can be used in a variety of industries. FreeRTOS is designed with dependability, accessibility, 
and ease of use in mind. 

FreeRTOS is a completely free operating system that can be utilized in commercial applications. 
There are a few other factors that make FreeRTOS a good choice [15]: 

• Has a small amount of ROM, RAM, and computing power. Its kernel binary image 
is typically in the 6K up to 12K byte range. 

• Simple. The RTOS kernel core is comprised within just three C files. 
• offers a unified and self-contained solution for a wide range of architectures and design 

tools. 
• For each port, there is a pre-configured example. There's no need to learn how to set up a 

project, simply and straight forward download and compile. 
• Has a fantastic, well-managed, and active free support forum. 
• guaranteed that commercial assistance will be available if needed. 
• Is quite scalable, straightforward, and simple to use. 

 
 
 

2.3.4 RTOS architectures 
 

1. Monolithic RTOS: 
 

Monolithic refers to a single massive stone. A monolithic kernel continues to run all 
the operating system components in kernel space. The kernel space of a monolithic RTOS, 
for example, includes device drivers, file management, networking, and graphics stack. 
Even though, applications that run in the user space. Despite the fact that running user 
applications as memory-protected processes protects a monolithic kernel from errant user 
code, a single programming error in a file system, protocol stack, or driver can cause the 
system to crash. Furthermore, any change to a driver or system file necessitates an OS 
update and recompilation. [16] [17] 
The monolithic RTOS architecture is illustrated in figure 2.14. 
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Figure 2. 14: Monolithic operating system architecture diagram 
 
 
Monolothic RTOS advantages: 

• Thread and process scheduling and file management are all run in the same 
address space as a single large process, which enhances performance. 

• The full operating system is included within fixed binary file that runs faster and 
more accurately than dynamically linked libraries. 

 

Monolothic RTOS disadvantages: 

• Any service failure can cause the entire Operating system to crash. 
• Modifying and recompiling the Operating system is required to add or remove a service. 
• The kernel services of the operating system represent a large attack surface; if one service 

is compromised, the entire system is vulnerable. 
• The footprint is quite large. 
• It's difficult to debug and keep up with. 
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2. microkernel RTOS: 

 
A microkernel RTOS is made up of a small kernel that offers only the most basic services. 
The microkernel collaborates with a group of optional collaborating processes that run 
outside kernel space, allowing for higher-level Operating system functionality. The 
microkernel itself is devoid of file systems and many other services that one would expect 
from an operating system. A microkernel RTOS embraces a fundamental shift in the way 
Operating system functionality is delivered: modularity is the key, and small size is a 
bonus. 
Just the cornerstone RTOS kernel has access to the entire system in a microkernel, which 
enhances security and reliability. The microkernel provides task switching as well as 
memory protection and allocation for other processes. All other components, such as 
drivers and components of the system level, are isolated in their own process space. 
The monolithic RTOS architecture is illustrated in figure 2.15. 

 
 
 
 
 

 

Figure 2. 15: Microkernel operating system architecture diagram 
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Microkernel RTOS advantages: 

 

• Without affecting the kernel, dynamically restart a failed system service (no 
system reboot). 

• Expansion is simple. 
• Easy debug. 
• Small footprint. 

 
Microkernel RTOS advantages: 

 
• Increased over head because it requires more context switching. 

 
 
 
2.4 DRIVERS 

 
2.4.1 Board Stress Test and Driver Initialization 

 
In this part it is consisted in carrying out performance analyzes of the HY-TTC 30 board 
produced by TTControl. 

These analyzes were conducted to try to quantify the computation capacity of the board in a 
certain time interval, in order to obtain sufficient data to start developing the tasks that our VMU 
will have to perform. 

 
 
Four tests were conducted in order to obtain: 

1. The maximum number of multiplications that can be performed in a task lasting 100 
milliseconds. 

2. The time needed to initialize all the peripherals on the board. 
3. The time required to activate and shut down all peripherals on the board. 
4. The time it takes to read the value of an ADC pin. 
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2.4.1.1 Test 1: Obtain the maximum number of multiplications that can be 
performed in a 100ms task 

 
This test was carried out to evaluate the computational capacity of the board. 

The operation tested was multiplication. Since, this is generally the most expensive operation. So, 
finding a maximum limit of possible multiplications gives us an idea of what can be performed 
within a task. 

The duration of the task has been set at 100ms and corresponds to our initial estimate of what 
ideally the tasks should last. 

 
 
 
 
 

 
 

Figure 2. 16: Test 1 implementation 
 
 
It is illustrated in the code above in figure 2.16, the implementation of the task is very simple. It is 
used a while loop and within this a multiplication is performed and a variable is incremented 
counter. 

At the end of each cycle, it is checked whether the task has reached its end. When the variable 
counter reaches the value TEST_LIMIT a writing is made on the EEPROM, in order to verify the 
achievement of the predetermined multiplication value. 

This operation was made necessary by the unreliability of printf UARTs. 

The TEST_LIMIT variable is the value that has been incremented in subsequent runs of the task. 
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The values that have been tested: 

✓ 10 
✓ 100 
✓ 1000 
✓ 10000 
✓ 20000 
✓ 30000 
✓ 35000 
✓ 37000 
✓ 39000 
✓ 40000 
✓ 100000 

 

The initial value was 10. Once it was verified (trivially) that it was possible to perform 10 
multiplications, the value of TEST_LIMIT has been increased by an order of magnitude. Finally, 
verified that it was not possible perform 100000 multiplications, restarted from 10000 by 
increasing the value of TEST_LIMIT by 10000 to the time. 

The maximum number of multiplications (to which, for each cycle, an addition and a "appears" 
are added to check the end of the task) is 39000. 

 
 
 
2.4.1.2 Test 2: Find the initialization time of all devices 

 
When starting the car, it is necessary to initiate all the necessary peripherals. The initialization of 
a peripheral is an even more expensive operation than multiplication, however it is only required 
once. Therefore, the initialization took place inside the main, before the while loop that deals with 
calling the tasks. 

The implementation is illustrated in figure 2.17 below. 
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Figure 2. 17: Test 2 implementation part1 
 
 
The initialized peripherals shown in the figure are for voltage output (IO_VOut_Init), for 
communication. 

via CAN on the 2 available channels (IO_CAN_CHANNEL), for the ADC 
(IO_ADC_ChannelInit) and for input / output digital (IO_DO_Init and IO_DI_Init). 

The number of pins initialized for each function to perform depended on the fact that each pin is 
programmed to carry out different ones. For further information, please refer to the official 
documentation of the board (in particular, see IO_Pins.h). 
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As regards the activation of the peripherals, a task has been implemented, which will be deepened 
in the next section, which activates all the peripherals initialized in figure 2.18. 

In order to measure the initialization times, a digital oscilloscope was used. Specifically, like 
shown in figure 3, the first pin that is raised is the voltage output pin IO_VOUT_00 (corresponding 
on the board to the IO_PIN_K2 pin). At this point, through an oscilloscope display software, a 
trigger was inserted that tripped when the IO_VOUT_00 pin rose, that is, at the end of the process 
initialization. 

In this way it was possible to obtain the time we were looking for, which turned out to be equal to 
220 milliseconds. 

 
 
 
 
 

 
 

Figure 2. 18: Test 2 implementation part2 
 
 
 

2.4.1.3 Test 3: Find the activation and shutdown times of all peripherals 

 
The same method was used to find the activation and deactivation time of the peripherals used for 
test 2. 

As mentioned above, a task has been implemented, called immediately after the initialization of 
peripherals, which activates and turns off all peripherals. The first pin to be raised is 
IO_VOUT_00, which corresponds to the last pin to be lowered, after the activation and 
deactivation of all devices initialized. 

Therefore, a trigger has been inserted again when the IO_VOUT_00  ̧pin is lowered in order to be 
able to obtain the time sought, which was 60 milliseconds. 
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Figure 2. 19: Test 3 implementation 
 
 
 

2.4.1.4 Test 4: Find the time to read the value of an ADC pin 

 
To find the activation time of an ADC pin, a specific task has been implemented; a fragment of it 

is illustrated in figure 2.20. 

 
 
 
 

 
 

Figure 2. 20: Test 4 implementation 
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The activated pin IO_ADC_00 corresponds on the board to the IO_PIN_J4 pin. To find the reading 
time of this pin it was necessary to raise and lower the IO_VOUT_OO pin. In in this way it was 
possible to insert a trigger in the same way exactly as the documented tests previously. 

The time found was 2 milliseconds. 
 
 
 

2.4.2 CAN FIFO Buffer 
 

This activity reported the implementation of a function which puts several CAN messages in a FIFO buffer 

in order to use the data fields of the mentioned messages to set some variables. The test can function has 

been created only to test the feasibility of capturing a sequence of CAN frames into a buffer. The values 

of the data fields of these frames are then utilized to set variables. 

The implementation is reported in figures 2.21 below. 
 
 
 
 
 

 
 

Figure 2. 21: Can FIFO Buffer Implementation 
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The number of items that may be stored into the buffer is equal to the constant NUMBER OF 
MESSAGES. Notice that the UART prints are reported solely for debug purpose, and they were 
removed once the validity of the method has been verified. 

A demonstration is given in the following figures: the number of CAN frames transmitted is equal 
to 5, simply to give a brief look to the behavior of this implementation. 

In the graphic below in figure 2.22 the messages sent and those are going to be captured into the 
buffer are reported. 

 
 
 
 
 

 
 

Figure 2. 22: Buffer Report 
 
 
In the following figures (2.23, 2.24), the UART prints in the terminal are reported. 

 
 
 
 
 

 
 

Figure 2. 23: UART Prints (1) 
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Figure 2. 24 UART prints (2) 
 
 
 

2.5 Automotive Standards (AUTOSAR) 

 
AUTOSAR (Automotive Open System Architecture) is a global development collaboration of 
automotive stakeholders established in 2003. AUTOSAR offers an open software architecture that 
is standardized for automobile ECUs. 

Without a uniform model, such as AUTOSAR, Manufacturers developed ECU software on 
separate platforms. Tier 1 manufacturers and its distributors utilized a range of different software 
architectures to develop Electronic Control Unit software for OEMs. With this strategy, it was 
very difficult for OEMs to move to a new tier 1 supplier or vice versa. 

The new provider previously had tremendous difficulties in comprehending the current software 
architecture, hardware platforms, and standards utilized in the creation of ECU software. The new 
supplier confronts important difficulties in restarting an ongoing project in the middle of its 
manufacturing life cycle. The following are some of the stated goals, primary difficulties, and 
proposed solutions by AUTOSAR, along with the associated advantages. 

These are managing the system's increasing electrical/electronic complexity, freedom of 
implementation for product change, upgrading, and updating, increase the flexibility and cross- 
compatibility of software and services, increase the system quality of the software and 
dependability, allows error detection throughout the early stages of development. [18] 
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2.5.1 AUTOSAR Architecture 
 
AUTOSAR is a standardized open-source software architecture for the automobile sector. The 
AUTOSAR architecture provides a common interface between application software and 
fundamental automotive operations. AUTOSAR is designed to help members by assisting 
companies in managing increasing complexity E/E in-vehicle settings. 

Layered Software Architecture is the term used to describe the Autosar framework. Layered 
architecture explains the hierarchical organizational structure of AUTOSAR software from the top 
down. It connects the Fundamental Software Modules to software layers and illustrates their 
connection. 

In new cars, the number of electronic/electric systems and their complexity are growing. 
AUTOSAR was developed in response to the growing complexities of the vehicle network. Every 
modern car has over a hundred ECUs. Each of them performs thousands of tasks. Without 
following to the guideline, it is quite probable that software development will have to be redone 
whenever the ECU design specification is modified. AUTOSAR enables hardware-independent 
program creation, therefore standard software is much more transferrable. This enables software 
to also be readily shared across various vehicle systems, generally regardless of the system's 
hardware resources, which AUTOSAR enhanced via component interaction standardization. 

AUTOSAR's application scope is limited to vehicle ECUs. These ECUs do have following 
features. These are strong connection with hardware, connectivity to automotive networks such as 
CAN, LIN, Ethernet, and microcontrollers with restricted computation and memory capabilities. 
System that is time-critical and executes real-time programs from internal storage. [19] [20] 

 
 
LAYERS OF AUTOSAR ARCHITECTURE: 

As illustrated in figure 2.25 below the AUTOSAR Structure differentiates different software levels 
at the highest abstraction level. These are Application Layer, Runtime Environment and Basic 
Software which is running on the microcontroller. [20] 

 
 
 
 
 

 
 

Figure 2. 25: AUTOSAR Layer Architecture 
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2.5.1.1 Application level 

 
The application level is indeed the uppermost level of the AUTOSAR architecture and therefore 
is responsible for the implementation of bespoke functions. This layer is comprised of numerous 
software products and apps, which are each composed of a collection of linked AUTOSAR 
Software Components that executes duties in response to commands. Every AUTOSAR System 
Software contains a subset of the application's operations. 

AUTOSAR makes no specification regarding the size of AUTOSAR Software Applications. 
Based on the application's needs, an AUTOSAR System Software may consist of a tiny, reusable 
portion of functionality like line of traffic support, wiper management, and automatic door 
unlocking. By the use of a virtualized Functional Bus, communication across software modules is 
facilitated through particular ports. Additionally, these ports enable communication among 
software components and the AUTOSAR Basic Software. [20] 

 
 

 
2.5.1.2 Runtime environment 

 
The Runtime Environment level communicates with the software modules, which may include 
AUTOSAR Subprograms and AUTOSAR Sensor/Actuator Elements. RTE level enables software 
application modules with ECU-independent application interfaces. The application level is 
composed of numerous SWC that do not correspond to the layered architectural style but instead 
to the component approach. RTE is used to interact with the Software Modules and other elements 
(inter and intra ECU). The SWC Interfaces are fully isolated from the ECU. It separates 
AUTOSAR Software Modules from of the mapping to a particular ECU. Communications 
between SWCs is mostly accomplished through two types of ports. These are Client-Server port 
and Sender-Receiver ports. Client/Server ports are those in which the server is the provider and 
indeed the client is just the service user. Sender/Receiver ports are used when a sender delivers 
data to one or more recipients. [21] 

 
 
 

2.5.1.3 AUTOSAR Basic Software (BSW) 

 
This layer is further divided into different 3 layers which are Service Layer, ECU abstraction 
Layer, Microcontroller Abstraction and Complex Device Drivers layer. Each one of the three 
levels is composed of a few distinct functional groupings. Each one of these tasks may be divided 
into distinct modules. 
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To create a packetized software control structure, each functional group interacts with a specific 
software module located in the subsequent tier. 

Because the Microcontroller Layer is the bottom level of the Fundamental Software, MCAL units 
have full access to the hardware resources. Internal drivers are program units that provide full 
access to the CPU and inner peripherals in MCAL. As the title indicates, the MCAL level isolates 
the higher layers from the Hardware (MCU). 

The Electronic Control Unit Abstraction Layer communicates with the Mcu Abstract Layer's 
drivers (MCAL). Additionally, it includes drivers for external hardware included inside the ECU 
and acts as a layer of abstraction for different peripherals. 

It offers interfaces for accessing all of an ECU's capabilities, including as communication, 
memory, and I/O, regardless of whether these capabilities are integrated within the microprocessor 
or are provided by peripheral devices. 

First from underlying hardware level to the RTE, Complex Device Drivers (CDD) Layer is 
present. 

CDD satisfies the unique functionality and timing constraints associated with the operation of 
sophisticated sensors and actuators. 

Allow for the integration of specialized functions. 

This level comprises drivers for items which were not defined in AUTOSAR and are subject to 
very strict time constraints. 

The Service Level is the outermost level of the Basic Software (BSW), and it also has application 
software implications. It offers a separate api for application software to communicate with a 
microcontroller (MCU) as well as ECU hardware. 

Services Level provides the following properties: 

• Capability of the OS. 
• Solutions for automotive network connection and administration. 
• Service related to memories diagnostics (UDS). 
• Control of the ECU's status and mode Controlling the logical and chronological 

flow of a program. 
• Task Provides fundamental capabilities for programs, remote terminal emulators, 

and fundamental software components. 
• Each AUTOSAR level is composed of a collection of recognized software 

components. 
• Each module is responsible for the interfaces between its neighbors. 
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Chapter 3 

 
3 The EVERGRIN VMU from TTcontrol 

 
3.1 VMU Suppliers (TTcontrol) History 

 
The VMU (vehicle management unit) to be installed in the vehicle for the successful 
transformation of the vehicle is the HY-TTC32S. The family is developed and sold by TTcontrol 
which is a joint venture between TTTech and HYDAC International which is located in Brixen, 
Vienna and Austria. They offer controller interfaces and Control systems for heavy vehicles and 
mobile machinery. Equipment manufacturers can quickly and affordably develop highly reliable 
electronic control systems using their software and hardware platforms, which are recognized as 
industry leaders in functional safety. 

For over 20 years, TTControl has been involved with commercial production projects in the field 
of electronic control systems for heavy vehicles (off-highway vehicles) such as cranes, forklifts 
and snow groomers, which rely on their equipment to function properly even in the most adverse 
conditions. They offer Electromechanical Control Units (ECUs) for high-pressure environments, 
I/O slave modules based on the CANopen protocol, functional safety, and Operator interfaces that 
are extremely durable. And they have a wide variety of applications such as construction, 
warehousing and distribution, agriculture, municipal and special vehicles. This is besides their 
collaboration with TTTech group on a number of research and development projects, which is 
majorly focused on determinism, real time triggered protocols and real time performance in 
applications involving safety-relevant data communication in mixed critically environments, 
basically their goal is to seamlessly integrate and combine such metrics with existing 
communication methods that are currently used in many industrial domains including, , space, 
aerospace, automotive off-highway, railroad, energy, and many others. 

As mentioned above by TTcontrol is a joint venture between TTTech and HYDAC International. 
TTTech group includes several companies which are TTTech Industrial automation AG, TTTech 
auto AG, and TTControl gmbh which are high-tech enterprises with a global focus that run under 
the roof of the TTTech Group. The solutions provided by TTTech Group, which include real-
time networking platforms and safety controls, contribute to enhance the reliability and 
performance of electronic systems in the automotive segment, as well as to contribute to making 
the Iot and automated driving a reality soon. The companies provide products and services that 
are based on extremely creative software technology combined with a thorough understanding of 
the digital transformation process and its implications. They are involved in automotive (TTTech 
auto), aerospace, space, off-highway, manufacturing, railway, and energy. 
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3.2 The HY-TTC32S and the HY-TTC30 Family Technical 

Details and Architecture 

 
3.2.1 Overview 

 
32S is a powerful, yet cost-effective, electronic control unit. It is a safety-certified derivative of 
the HY-TTC 32 controller, which is available for purchase separately. It is equipped with the 
same processor and number of I/Os as the non-safety counterpart. 

The 32S is a small control unit designed for applications with limited budgets or smaller 
machines. The device is made up of an Infineon XC22xx microcontroller that can be 
programmed in C. It can be controlled by a variety of sensors and actuators thanks to its 28 
freely configurable Inputs outputs. Now this is the case of all the HY-TTC30 family in which 
the HY-TTC32S falls under, but what makes the HY-TTC32S and innovated and upgraded 
version of the HY-TTC30 family is the control unit with 2 can interfaces as a result, it is 
perfectly suited for applications involving heterogeneous CAN networks (like, CANopen and 
J1939). And the fact that it has 2 can buses is actually one of the main reasons why we choose 
this ECU for EVERGRIN. The HYDAC controllers can be classified into three series, each of 
which is based on one of two powerful platforms: a 16-bit or a 32-bit processor, depending on 
the application. When a small compact design is required and high control choices are required, 
the HY-TTC 30 family is the ideal choice. Which is exactly the case of EVERGRIN. 

 
 
 

3.2.2 Deeper into 32S and 30 family Technical details 
 
The HY-TTC32S is without doubts one of the best compact ECUs and this can be for example 
because of its ability to control 3 hydraulic axes because it has 6 channels for pulse width 
modulation output with current measurement and other 2 channels for normal pulse width 
modulation which is actually the case for the other previously developed family members. While 
what makes the HY-TTC32 and the HY-TTC32S standout is the can interface upgrade as they 
happen to have 2 CAN interfaces, while the HY-TTC30-H and the HY-TTC30S-H have only 1 
CAN interface. While the 4 family members controllers are equipped with the same processor, the 
infenion XC 22xx microcontroller running at 80MHZ only the HY-TTC30S-H and the HY- 
TTC32S have watchdog which by interrupting the CPU and deactivating the safety switches via a 
dedicated output, can bring the ECU to a safe state. A watchdog processor is a compact simple 
coprocessor that monitors a system's behavior and detects faults. Basically, it’s a hardware that 
checks and monitors the code execution for the purpose of resetting the processor in the case that 
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the software crashes. And it is one of the most powerful innovations in the embedded world. The 
4 members of the family have the same memory, obviously the same flash since they are all 
equipped with the same processor, which is a 768 KBs of flash memory, 82 KBs of RAM, and 8 
KBs of EEPROM. The 4 family members can have ISOBUS on request which is a CAN based 
standard protocol manages communication between tractors, software, and equipment from major 
manufacturers by allowing the exchange of data and information in a universal language using a 
single control console located inside the tractor cab. ISOBUS was developed by the International 
Society of Tractor Manufacturers (ISTM). An agreement amongst the major agricultural 
machinery and equipment manufacturers to overcome compatibility issues by standardizing 
communication among different implements, regardless of the manufacturer, resulted in the 
Isobus protocol, which was developed to solve these issues. Because of Isobus, the cab is 
transformed into an authentic on-board computer that can operate the tools and implement, 
thereby enabling the transmission of data. This is not the case of EVERGRIN since Isobus is for 
off highway vehicles, mainly tractors and agriculture vehicles. All family members have 30 inputs 
and outputs: 8 pulse width modulation, 6 of those has current measurement. 10 analogue inputs, 6 
analogue outputs. 4 timer inputs, and 2 digital outputs. The S versions (HY-TTC30S-H and HY- 
TTC32S) are functional safety certified. All family members are programmed in C programming 
language. 

TUV NORD has certified the 32S, which was developed in accordance with the international 
standard EN ISO 13849. It complies with the Functional Safety requirements of Performance 
Level (PL) d. 

The 32S version is ideal for proportional function control in safety applications. Six of the eight 
PWM outputs have integrated current measurement, allowing current control of up to three 
hydraulic axes which is quite impressive 

The HY-TTC 32S was designed specifically for vehicles and machines that operate in harsh 
environments and at high temperatures. A proven, robust, and compact housing, specifically 
designed for the off-highway industry, protects the device. 
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Figure 3. 1: HY-TTC 30 and 50 families [22] 
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Figure 3. 2: HY-TTC 500 family [22] 
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3.2.3 HY-TTC 32S Features and specifications 
 
This section is based on the data sheet of the HY_TTC32S product [23]. 

• The Electronic Control Unit dimensions are 14 × 92 × 38 mms. 
• The ECU Weights 330 grams which is pretty light and won’t cause installation problems. 
• The Dimensions for Minimum Connector Release Clearance are 208 × 92 × 38. 
• The connector has 48 pins. 
• The ECU operating temperature is - 40 to + 85 °C which is a more than enough range 

taking into account the presence of the vehicle almost anywhere in the world from the 
coldest places to the hottest places. 

• The operating altitude is in the range of 0 to 4000 meters, which is again a more than 
enough range unless the user is using the vehicle to climb mountain Everest or so which is 
not a possible case. 

• Supply voltage: 8 to 32 volts. 
• Peak Supply Voltage: 40 volts. 
• Idle current: up to 120 mA. 
• Standby current: up to 1 mA. 
• Total load current: 24 A. 
• Standards: 

 
Functional Safety EN ISO 13849 
CE-MARK 2014/30/EU 

2006/42/EC 
E-MARK ECE-R10 
EMC EN 13309 

ISO 14982 
CISPR 25 
EN 61000-6-2/-4 

ESD ISO 10605 
Electrical ISO 16750-2 

ISO 7637-2,-3 
Limited to 40V by external 
load bump protection. 

Ingress protection EN 60529 IP67 
ISO 20653 IP6K9K 

Climatic ISO 16750-4 
mechanical ISO 16750-3 

 
• The HY-TTC 32S is equipped with the infenion XC22xx which happens to be a 16/32-bit 

CPU which operates at 80 MHZ. It has an integrated flash, integrated ram and an 8 Kbyte 
integrated EEprom. 
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• Interfaced with 2 can channels which operates on 125Kbit per second up to 1 mbit 

per second, and a CAN channel termination with connector pins that can be customized. 
• A 5 volts sensor channel which operates at 100 mA. 
• temperature, sensor supply, K15 input, and battery voltage internal monitoring. 
• Inputs: 

 
1. 4 channels which can be configured as digital timer input which is able to operate 

from 0.1 HZ up to 10 KHZ, performance level d if used in pairs, could be also 
configured as an analogue input capable of operating at 0 to 32 volts, could also be 
configured as a rotatory encoder, or as a digital input Pull up/ pull down which can 
be configured if desired. 

2. 4 channels which are configured as analogue inputs which are software 
configurable whose input functions are performance level d if used in pairs, 
operating at an input voltage of 0-5 volts up to a maximum of 10 volts and an input 
current of 0 to 25 mA with an input resistance of 0 up to 65 KΩs. 

3. 2 analogue input channels which are software configurable whose input functions 
are performance level d if used in pairs, digital input Pull up/ pull down which can 
be configured. 

• Outputs: 
 

1. 6 channels which can be configured as a pulse width modulator output, or can also 
be configured as digital outputs, can go up till 3 amperes, high side switch, detection 
of overload and open load, performance level d capability. Could be also configured 
as a digital timer input capable of operating at 10 Hz up to 10 KHz with integrated 
pull up. Could also be configured as analogue inputs operating at a range of 0 up to 
32 volts with pull up. 

2. 2 channels which can be configured as a pulse width modulator output, or can also 
be configured as digital outputs, can go up till 3 amperes, high side switch with 
detection of overload and open load, performance level d capability. Could be also 
configured as a digital timer input capable of operating at 10 Hz up to 10 KHz with 
integrated pull up. Could also be configured as analogue inputs operating at a range 
of 0 up to 32 volts with pull up. 

3. 2 digital output channels can go up till 3 amperes, low side switch For high-side 
pulse width modulator outputs, it's used as a redundant switch-off path. 

4. 6 channels configurable as PVG, can also be configured as voltage out. 
• Short-circuit protection is provided for all I/O ports and interfaces, which can be set up via 

software. 
• analog inputs use 10-bit resolution. 
• PL d inputs of the same type must be used in parallel to provide redundancy in case of a 

failure for safety functions. 
• High side outputs have dedicated power supply pins. 
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Figure 3. 3: 30-H Block Diagram [22] 
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Figure 3. 4: 30-H Model code and Dimensions [22] 
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Figure 3. 5: 30S-H Block Diagram [22] 
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Figure 3. 6: 30S-H Model Code and Dimensions [22] 
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Figure 3. 7: 32 Block Diagram [22] 
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Figure 3. 8: 32 Model Code and Dimensions [22] 
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Figure 3. 9: 32S Block Diagram [22] 
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Figure 3. 10: 32S Model Code and Dimensions [22] 
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3.3 Why the HY_TTC32S for EVERGRIN 
 
The HY-TTC32S board was chosen because it is easily integrated, it is very powerful yet low cost 
ECU. The HY-TTC32S is simply one of the best, if not the best compact electronic control units 
that can be used for automobile and heavy vehicle applications now adays, thanks to its channels 
for pulse width modulation output with current measurement, it was possible to manage the pedals 
of the vehicle for evergrin, actually it was more than enough. Every pin of the board is 
configurable and flexible, it has been designed this way on purpose. all out put pins are 
configurable as input pins if desired. it supports a canopen, it is Asil C, and with its powerful 
infenion CPU it is a proper choice for automotive applications. Its Automotive style housing is 
suited for rough operating conditions. And last but not least is its special features, especially the 
fact that it has 2 can buses. 

 

Here is a brief of the 32S special features and benefits: 

• 30 I/Os. 
• 10 analogue inputs. 
• 4 timer inputs. 
• 9 pulse width modulator outputs. 
• 2 digital outputs 
• 6 radiometric voltage outputs. 
• Robust. 
• Waterproof. 
• 2 can buses. 
• Pl c certified according to EN ISO 13849 
• Small form factor 
• CANopen Safety compliant 
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Chapter 4 

 
4 Tasks and Drivers Implementation 

 
This chapter is dedicated to the implementation, so the programming and development of the Tasks 
(Architecture, Algorithm, and Code) of the vehicle management unit performed in C programming 
language. 

 
 
 

4.1 Main Function 
 
4.1.1 Main Function Code Implementation 
 
The main.c file includes the initilazion of the peripherals which are used in the tasks and initilaze the real 
time operation system threads. 
Main file is starting the real time operation system and initialize the all neccessary peripherals with setting 
the starting values on them. 
 
#include "DIAG_Functions.h" 
#include "DIAG_Functions.h" 
#include "DIAG_Constants.h" 
#include "IO_PWM.h" 
#include "utility.h" 
#include "IO_RTC.h" 
#include "IO_Driver.h" 
#include "IO_WDTimer.h" 
#include "IO_UART.h" 
#include "Apdb.h" 
#include "ApdbCfg.h" 
#include "IO_ADC.h" 
#include "IO_PWM.h" 
#include "IO_DIO.h" 
 
 
#include "task_1_gestione_pedali.h" 
#include "task_2_gestione_chiave_batteria.h" 
#include "task_3_gestione_inverter.h" 
#include "task_4_gestione_pompe.h" 
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#include "task_5_gestione_carica.h" 
#include "task_6_gestione_buzzer.h" 
#include "task_7_gestione_interrupt.h" 
 
/* 
 * use these fields to define the software version in three levels 
 * major.minor.patch. this version is accessible from the APDB and  
 * can therefore be read using the ttc-downloader 
 */ 
#define SW_VERSION_MAJOR 1 //  8-bit 
#define SW_VERSION_MINOR 0 //  8-bit 
#define SW_VERSION_PATCH 0 // 16-bit 
 
/* 
 * use these definitions (or replace content in appl_db) to define the 
 * node-nr and baud-rate used by the device 
 */ 
#define NODE_NR         1 
#define CAN_BAUDRATE  500 // kbps 
 
/* 
 * use these definitions to be able to identify the application software 
 * using the TTC-Downloader (vendor and application ID) 
 */ 
#define APDB_MANUF_ID  ((ubyte1) 0x00) 
#define APDB_APP_ID    ((ubyte1) 0x00) 
 
/* 
 * Duty Cycle 
 */ 
#define duty_cycle_inv_management    0x8000 
 
 
/*  
 * application database 
 * needed by TTC-Downloader 
 */ 
 
LOCATE_APDB appl_db = { 
      APDB_VERSION          // ubyte4 versionAPDB 
    , {0}                          // BL_T_DATE flashDate 
                                  // BL_T_DATE buildDate 
    , { (ubyte4) ((((  (ubyte4) RTS_TTC_FLASH_DATE_YEAR)   & 0x0FFF) <<  0)  | 
                    ((((ubyte4) RTS_TTC_FLASH_DATE_MONTH)  & 0x000F) << 12)  | 
                    ((((ubyte4) RTS_TTC_FLASH_DATE_DAY)    & 0x001F) << 16)  | 
                    ((((ubyte4) RTS_TTC_FLASH_DATE_HOUR)   & 0x001F) << 21)  | 
                    ((((ubyte4) RTS_TTC_FLASH_DATE_MINUTE) & 0x003F) << 26)) } 
     



Politecnico di Torino Brain Technologies 

61 

 

 

 
    , 0                      // ubyte4 nodeType 
    , 0                      // ubyte4 startAddress 
     
    , 0                      // ubyte4 codeSize 
    , 0                      // ubyte4 legacyAppCRC 
    , 0                      // ubyte4 appCRC 
    , NODE_NR                // ubyte1 nodeNr 
    , 0                      // ubyte4 CRCInit 
    , 0                      // ubyte4 flags 
    , 0                      // ubyte4 hook1 
    , 0                      // ubyte4 hook2 
    , 0                      // ubyte4 hook3 
    , APPL_START             // ubyte4 mainAddress 
    , {0, 1}                 // BL_T_CAN_ID canDownloadID 
    , {0, 2}                 // BL_T_CAN_ID canUploadID 
    , 0                      // ubyte4 legacyHeaderCRC 
                             // ubyte4 version; (8bit.8bit.16bit) 
    , { (ubyte4) (((ubyte4) ((ubyte1) (SW_VERSION_MAJOR & 0x00FF)) << 24) | 
                  ((ubyte4) ((ubyte1) (SW_VERSION_MINOR & 0x00FF)) << 16) | 
                  ((ubyte4) ((ubyte2) (SW_VERSION_PATCH & 0xFFFF))))  } 
    , CAN_BAUDRATE           // ubyte2 canBaudrate 
    , 0                      // ubyte1 canChannel 
    , 0                      // ubyte4 password 
    , 0                      // ubyte4 magicSeed 
    , {  0,   0,   0,   0}   // ubyte1 targetIPaddress[4] 
    , {  0,   0,   0,   0}   // ubyte1 subnetmask[4] 
    , {  0,   0,   0,   0}   // ubyte1 dlMulticastIP[4] 
    , 0                      // ubyte4 debugKey; 
    , 3                      // timeout value for ABRD in calm mode. [seconds] 
    , APDB_MANUF_ID          // ubyte1 manufacturerID 
    , APDB_APP_ID            // ubyte1 application ID 
    , { 0 }                  // reserved for future use (should be 0) 
    , 0                      // ubyte4 headerCRC 
}; 
 
#define DEBUG 
 
static IO_ErrorType driver_init_rc=IO_E_BUSY; 
static IO_ErrorType adc_init_rc; 
 
static IO_ErrorType pwm_init_00; 
static IO_ErrorType pwm_init_01; 
static IO_ErrorType pwm_init_02; 
static IO_ErrorType pwm_init_03; 
static IO_ErrorType pwm_init_04; 
static IO_ErrorType pwm_init_05; 
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//task1 
static ubyte2 pwm_duty_cycle_acce; 
static ubyte4 pwm_duty_cycle_fb_acce; 
 
 
static ubyte2 pwm_duty_cycle_freno; 
static ubyte4 pwm_duty_cycle_fb_freno; 
 
//task3 
static ubyte2 pwm_duty_cycle_inv; 
static ubyte4 pwm_duty_cycle_fb_inv; 
 
static ubyte2 duty_cycle_set; 
static ubyte4 duty_cycle_rb; 
static ubyte4 duty_cycle_fb; 
 
duty_cycle_set = duty_cycle_inv_management; 
 
pwm_duty_cycle_inv = 0; 
pwm_current_fb_inv = 0; 
 
pwm_duty_cycle_acce = 0; 
pwm_duty_cycle_freno = 0; 
 
//debouncer 
static IO_ErrorType pwm_init_rc_deb; 
static IO_ErrorType pwm_set_rc_duty_deb; 
 
IO_DRIVER_DI_LIMITS limits = { 0, 3000, 3000, 32000 }; 
 
const ubyte4 watchdog_timeout=300000; 
const ubyte2 ctrl_fun_timeout=300000; 
void main (void) 
{ 
 ubyte4 pwm_duty_fb_val_acce; 
 ubyte4 pwm_duty_fb_val_freno; 
 ubyte4 pwm_duty_fb_val_inv; 
 
 
 ubyte4 timestamp; 
    /* driver initialitaion goes here */ 
    /* driver initialitation for watchdog */ 
 
 driver_init_rc = IO_Driver_Init( IO_DRIVER_MODE_DEFAULT, NULL ); 
    /* set watchdog timeout */ 
 #ifndef DEBUG 
  IO_WDTimer_Init(watchdog_timeout); 
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    #endif 
    /* driver RTC initialization */ 
    while (IO_E_OK != IO_RTC_Init()) 
    { 
 
    } 
    
     /* driver EEPROM initialitation */ 
    while (IO_E_OK != IO_EEPROM_PreloadInit()) 
 { 
 
 } 
 
    /* initialize the UART with a baudrate of 115200 baud/s */ 
    (void) IO_UART_Init (IO_UART, 115200 ); 
     
    /* 
     * driver ADC initialization 
     */ 
 
    // initialize the ADC measurement of the battery voltage, task2 
        (void) IO_ADC_ChannelInit( 
              IO_ADC_UBAT 
            , IO_ADC_ABSOLUTE 
            , IO_ADC_RANGE_10V 
            , NULL ); 
 
 
     /* 
      * PWM Driver Initializations 
      */ 
 
      // activate the power stages for the PWM output 
      IO_POWER_Set ( IO_INT_POWERSTAGE_ENABLE, IO_POWER_ON ); 
 
 
       // pwm output safety configuration 
 
  IO_PWM_SAFETY_CONF _io_pwm_safety_conf = 
        { 
            IO_SAFETY_SWITCH_0, 
            80, 
            100, 
            200 
        }; 
 
 
        



Politecnico di Torino Brain Technologies 

64 

 

 

 
 //pwm sefety configuration 
 
 IO_PWM_SAFETY_CONF pwm_safety_cfg = { 
           IO_SAFETY_SWITCH_1  // IO_PIN safety_switch 
         , 50                  // margin_lower_lim 
         , 150                 // margin_upper_lim 
         , 200                 // duty_cycle_tolerance 
     }; 
 
 // initialize PWM output as safety-critical -TASK1 
  pwm_init_00 = IO_PWM_Init ( 
           IO_PWM_00  // PWM channel 
         , 200        // frequency in [Hz] 
         , TRUE       // polarity : high time is variable 
         , TRUE       // enable diagnostic margin 
         , 3000       // user overload limit in [mA]); 
         , &pwm_safety_cfg ); 
 
 // initialize PWM output as safety-critical -TASK1 
     pwm_init_01 = IO_PWM_Init ( 
           IO_PWM_01  // PWM channel 
         , 200        // frequency in [Hz] 
         , TRUE       // polarity : high time is variable 
         , TRUE       // enable diagnostic margin 
         , 3000       // user overload limit in [mA]); 
         , &pwm_safety_cfg ); 
 
     // initialize PWM output as safety-critical -TASK3 inverter pedal read 
     pwm_init_02 = IO_PWM_Init ( 
            IO_PWM_02  // PWM channel 
          , 200        // frequency in [Hz] 
          , TRUE       // polarity : high time is variable 
          , TRUE       // enable diagnostic margin 
          , 3000       // user overload limit in [mA]); 
          , &pwm_safety_cfg ); 
 
     // initialize PWM output as safety-critical -TASK3 inverter management 
     pwm_init_03 = IO_PWM_Init(IO_PWM_03, 100, TRUE, TRUE, 2000, &_io_pwm_safety_conf); 
 
 
 
     // initialize PWM output as safety-critical -TASK34 knob read 
     pwm_init_04 = IO_PWM_Init ( 
            IO_PWM_04  // PWM channel 
          , 200        // frequency in [Hz] 
          , TRUE       // polarity : high time is variable 
          , TRUE       // enable diagnostic margin 
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          , 3000       // user overload limit in [mA]); 
          , &pwm_safety_cfg ); 
 
     // initialize PWM output as safety-critical -TASK3 inverter management 
     pwm_init_05 = IO_PWM_Init(IO_PWM_05, 100, TRUE, TRUE, 2000, &_io_pwm_safety_conf); 
 
     /* 
      * PWM DUTY CYCLE 
      */ 
 
 
//TASK1 
     pwm_set_rc_acce = IO_PWM_SetDuty ( 
                 IO_PWM_PIN_ACCE 
                 , pwm_duty_cycle_acce 
                 , &pwm_duty_fb_val_acce ); 
 
             // if the value is zero the measurement is not yet finished 
             if (pwm_duty_fb_val_acce != 0) 
             { 
                 pwm_duty_cycle_fb_acce = pwm_duty_fb_val_acce; 
             } 
 
 
     pwm_set_rc_freno = IO_PWM_SetDuty ( 
                  IO_PWM_PIN_BREAK 
                , pwm_duty_cycle_freno 
                , &pwm_duty_fb_val_freno ); 
 
        // if the value is zero the measurement is not yet finished 
         if (pwm_duty_fb_val_freno != 0) 
         { 
          pwm_duty_cycle_fb_freno = pwm_duty_fb_val_freno; 
         } 
 
 
//TASK3 
 
     pwm_set_rc_inv = IO_PWM_SetDuty ( 
          IO_PWM_PIN_INV 
            , pwm_duty_cycle_inv 
            , &pwm_duty_fb_val_inv ); 
 
        // if the value is zero the measurement is not yet finished 
        if (pwm_duty_fb_val_inv != 0) 
        { 
            pwm_duty_cycle_fb_inv = pwm_duty_fb_val_inv; 
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} 
 
 
        pwm_set_rc_inv_man=IO_PWM_SetDuty( 
          IO_PWM_PIN_INV_Man 
    , duty_cycle_set 
    , &duty_cycle_rb ); 
  
  /* 
  * DEBOUNCER INITILIZATIONS 
  */ 
 
         

pwm_init_rc_deb = IO_PWM_Init ( 
          IO_PWM_PIN_INPUT  // PWM channel 
                 , 200        // frequency in [Hz] 
                 , TRUE       // polarity : high time is variable 
                 , TRUE       // enable diagnostic margin 
                 , 3000       // user overload limit in [mA]); 
                 , &pwm_safety_cfg ); 
 
        pwm_set_rc_duty_deb = IO_PWM_SetDuty ( 
                     IO_PWM_PIN_INPUT_debouncer 
                      , pwm_duty_cycle 
                      , &pwm_duty_cycle_fb ); 
 
 
 /* 
  * DIO initializations 
  */ 
 
 
     IO_DO_Init( IO_DO_00, 2500 );         //task1 
 
     IO_DO_Init( IO_DO_01, 2500 );      //task2 
     IO_DI_Init( IO_DI_00, IO_DI_PU, &limits );     //task2 
     IO_DI_Init( IO_DI_01, IO_DI_PU, &limits );     //task2 
 
     IO_DI_Init( IO_DI_02, IO_DI_PU, &limits );     //task3 
     IO_DI_Init( IO_DI_02, 2500 );      //task3 
 
     IO_DO_Init( IO_DO_02, 2500 );      //task4 
 
 
 
 #ifdef DEBUG 
     UART_Printf (IO_UART, "\n\r Main task !\n\r"); 
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            #endif 
 
 /* activate interrupt function to check */ 
 /* everything is ok      */ 
 IO_RTC_PeriodicInit(ctrl_fun_timeout,task_7_gestione_interrupt); 
    while (1) 
    { 
     UART_Printf (IO_UART, "\n\r sono nel main !\n\r"); 
     IO_RTC_StartTime(&timestamp); 
 
 
        task_1_gestione_pedali(); 
 
  #ifdef DEBUG 
          

UART_Printf (IO_UART, "\n\r task 1 terminating !\n\r"); 
  #endif 
 
        task_2_gestione_chiave_batteria(); 
 
  #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r task 2 terminating !\n\r"); 
  #endif 
 
  task_3_gestione_inverter(); 
 
  #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r task 3 terminating !\n\r"); 
  #endif 
 
  task_4_gestione_pompe(); 
 
  #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r task 4 terminating !\n\r"); 
  #endif 
 
  task_5_gestione_carica(); 
 
  #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r task 5 terminating !\n\r"); 
  #endif 
 
  task_6_gestione_buzzer(); 
 
  #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r task 6 terminating !\n\r"); 
  #endif 
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        while (IO_RTC_GetTimeUS(timestamp) < 50000); 
    } 
} 
 

 
4.1.2 Functions and Drivers Initialized in the Main Function 

 
Pulse Width Modulation (PWM) driver 
Driver for digital inputs and outputs 
(DIO) Analog to Digital Converter (ADC) 
driver Pulse Width Modulation (PWM)  
 
driver Real Time Clock (RTC) driver 
Controller Area Network (CAN) driver 
Universal Asynchronous Receiver Transmitter (UART) 
driver EEPROM driver 
EEPROM preload functions 
Driver for ECU power 
functions 

 
IO_Driver_Init    //watch dog driver initialization 
IO_EEPROM_PreloadInit   // EEPROM diver initialization 
IO_UART_Init  // UART driver initialization 
IO_ADC_ChannelInit //ADC driver initialization 

IO_PWM_Init // PWM driver initialization  
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4.2 Acceleration and Brake Pedal Management Task 
 
4.2.1 Task Architecture 

 
 
 
 

 
Figure 4. 1: Pedals management task architecture flow chart 
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The main goal of this task is creation of the software algorithm of the pedals which includes both 
accelerator and brake pedals.  
 
This task has the maximum priority in the real time operation system which priority number is equal to 
0. In our case the maximum priority is equal to minimum number and the minimum priority is equal to 
maximum value in a reverse logic. 
The gas pedal is often referred to as the accelerator pedal. This pedal regulates the quantity of gas 
supplied into the engine and, as a result, controls speed of the car.  
Electromagnetic brakes or  electro-mechanical brakes use electromagnetic force to apply mechanical 
resistance, or friction, to slow or stop motion.   
The concept of braking includes the conversion of mechanical energy to thermal energy.  Whenever the 
brake pedal is pressed, a stopping force many times as strong as the force  that sets the automobile or car 
in motion is triggered, and the resulting kinetic energy is absorbed as heat. Independent of the car's 
velocity, the brakes slow the vehicle down in a very short amount of time. 
 
The software architecture and development algorithm of the task is as follows: 

1. Verification of the acceleration pedal activation. 
• If a non-zero current value is received, this implies that there is some force on the gas pedal; 

thus, measure the pedal level. 
• If there is no current is returned that meaning there is no any pressure in the gas pedal and in 

that case we can move on with checking the brake pedal. 
 

2.  Verification of the break pedal activation. 
• If a non-zero current value is received, this implies that there is some force on the brake pedal; 

thus, activate the brake is under pressure. 
• If there is no current is returned that meaning there is no any pressure in the brake pedal. 

 
3.  Activation of the electromagnetic brake 

• If there is a pressure in the brake pedal then we need to activate the electramagnetic brake in 
the car as a last step of the algorithm.  

The task flow chart is illustrated in figure 4.1 above. 

The implementation in terms of code and a detailed documentation of the implementation is 
mentioned below. 
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4.2.2 Acceleration and Brake Pedal Management Code 
Implementation 

 
4.2.2.1 Acceleration and Brake Pedals Management .c Code 

 
        

/* 
*  task_1_gestione_pedali.c  

*  

*  Created on 04/Jun/2021  

*  Author: Celal  

*/  

   
#include "task_1_gestione_pedali.h"  

#include "utility.h"  

#include "eeprom_address.h"  

#include "IO_Driver.h"  

#include "IO_RTC.h"  

#include "IO_WDTimer.h"  

#include "IO_PWM.h"  

#include "IO_DIO.h"  

   
   
static IO_ErrorType driver_task_begin_rc;  

static IO_ErrorType driver_task_end_rc;  

const ubyte1 TASK1_ID [1] ={1};  

   
static IO_ErrorType pwm_set_rc_acce;  

static IO_ErrorType pwm_get_rc_acce;  

static IO_ErrorType do_set_rc;  

   
static IO_ErrorType pwm_set_rc_freno;  

static IO_ErrorType pwm_get_rc_freno;  

   
   
static ubyte2 pwm_current_fb_acce;  

   
   
static ubyte2 pwm_current_fb_freno;  
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static ubyte2 do_voltage_fb;  

   
static ubyte1 diag_state;  

static DIAG_ERRORCODE diag_error;  

   
   
pwm_current_fb_acce = 0;  

pwm_current_fb_freno = 0;  

   
   
void task_1_gestione_pedali( )  

{  

  driver_task_begin_rc = IO_Driver_TaskBegin ();  

  IO_ErrorType eeprom_error=512;  

  ubyte4 task_1_timestamp;  

   
  bool pwm_fresh_acce;  

  ubyte2 pwm_current_fb_val_acce;  

   
   
  bool pwm_fresh_freno;  

  ubyte2 pwm_current_fb_val_freno;  

   
   
  (void) IO_RTC_StartTime (&task_1_timestamp);  

  (void) IO_EEPROM_PreloadWrite (ID_TASK_EXECUTION, 
ID_TASK_EXECUTION_LENGHT, FALSE, TASK1_ID);  

  
    while (IO_EEPROM_PreloadStatus () != IO_E_OK)  

    {  

      (void) IO_EEPROM_PreloadTask ();  

    }  

 #ifdef DEBUG  

  UART_Printf (IO_UART, "\n\r eeprom write ok!\n\r");  

 #endif  

   
   
   
/*  

** VERIFICA PRESSIONE PEDALE ACCELERAZIONE  

*/  

   
// set the PWM output to the specified duty cycle  
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  do{  

   
   
// read the current feedback value  

pwm_get_rc_acce = IO_PWM_GetCur (  

            IO_PWM_PIN_ACCE  

                , &pwm_current_fb_val_acce  

                , &pwm_fresh_acce );  

   
// only update the current feedback value if fresh  

   if ((pwm_get_rc_acce == IO_E_OK) && (pwm_fresh_acce))  

   {  

      pwm_current_fb_acce = pwm_current_fb_val_acce;  

    #ifdef DEBUG  

      UART_Printf (IO_UART, "Acceleration Pedal pressure value: %u \n\r",       
pwm_current_fb_acce);  

    #endif   

   
   }  

   
}while(pwm_get_rc_acce == IO_E_OK);  

   
   
   
 //VERIFICA PRESSIONE PEDALE FRENO  

 pwm_current_fb_val_freno = TRUE;  

   
 while (pwm_current_fb_val_freno == TRUE){  

   
 // read the current feedback value  

 pwm_get_rc_freno = IO_PWM_GetCur (  

                IO_PWM_PIN_BREAK  

                   , &pwm_current_fb_val_freno  

                   , &pwm_fresh_freno );  

   
 // only update the current feedback value if fresh  

    if (pwm_get_rc_freno == IO_E_OK)  

    {  

      pwm_current_fb_freno = pwm_current_fb_val_freno;  

   
      #ifdef DEBUG  

        UART_Printf (IO_UART, "FRENO Pedal pressure value: %u \n\r", pwm_current_fb_freno);  
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       #endif  

   
      //VERIFICA ATTIVAZIONE FRENO MAGNETICO  

   
       
     // set digital output value for magnetic break  

   
     do_set_rc = IO_DO_Set (IO_DO_PIN_MAGNETIC_BREAK  

                , TRUE  

    , &do_voltage_fb );  

   
     if (do_set_rc! = IO_E_OK)  

 {  

   
 #ifdef DEBUG  

  UART_Printf (IO_UART, "Magnetic Break Error: %u mV\n\r", do_set_rc);  

 #endif  

   
 }  

   
    }  

 }  

   
// retrieve diagnostic information  

(void) DIAG_Status (  

       &diag_state  

      , &diag_error );  

   
   
 while (TRUE != Check_Task_End(task_1_timestamp, (ubyte4)TASK1_CYCLE_TIME))  

 {  

   IO_RTC_PeriodicDeInit();  

   #ifdef DEBUG  

     UART_Printf (IO_UART, "\n\r wait for task 1 terminating %u !\n\r", task_1_timestamp);  

   /*serve watchdog */  

   #endif  

   /*serve watchdog */  

   #ifndef DEBUG  

   while (IO_E_OK! =IO_WDTimer_Service());  

   #endif  

}  

   /*serve watchdog */  

   #ifndef DEBUG  
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   while (IO_E_OK! =IO_WDTimer_Service());  

   #endif  

   driver_task_end_rc = IO_Driver_TaskEnd ();  

} 
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4.2.4 Development and Implementation 

 
4.2.4.1 Functions and Drivers Utilized 
 

IO_Driver_TaskBegin 

IO_Driver_TaskEnd 

IO_RTC_StartTime 

IO_EEPROM_PreloadWrite 

IO_EEPROM_PreloadStatus 

IO_EEPROM_PreloadTask 

IO_WDTimer_Service 

IO_PWM_Init (PWM driver function) 

IO_PWM_SetDuty (PWM driver function) 

IO_POWER_Set (PWM driver function) 

IO_PWM_GetCur (PWM driver function) 

IO_DI_Init (DIO driver function) 

IO_DI_GET (DIO driver function) 

 
EEPROM driver 

Real Time Clock (RTC) driver 

Window Watchdog driver 

Digital inputs and outputs (DIO) driver 

Pulse Width Modulation (PWM) driver 

Universal Asynchronous Receiver Transmitter (UART) driver 
 
 
 
 

4.2.4.2 Development and Implementation Documentation 

 
During the implementation different peripherals are used for the receiving information from the pedals 
and the electromagnetic brake. 
For the acceleration and brake pedal we used PWM to communicate between pedal and the control unit. 
Electromagnetic brake is connected to the one of the digital input-output pin of the control unit. 
Pulse Width Modulation is a method for controlling analog components with a digital signal. Alternately 
stated, an electronic product such as an MCU may emit a modulating signal to control an analog 
component.  
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It is one of the principal ways in which microcontrollers operate analog devices such as controllable  
motors, adjustable leds, controllers, and amplifiers. PWM signal is not analogue, though. 
Digital Input/Output, or DIO, is a basic interface used in a broad variety of systems to successfully 
transmit digital signals from sensors, transducers, and mechanical components to other electrical 
electronic devices and circuits. 
So fort he PWM implementation and the communication we needed to use 3 dıfferent PWM API from 

HY-TTC30 family. These are IO_PWM_Init, IO_PWM_SetDuty and IO_PWM_GetCur functions. 
 

1. IO_PWM_Init is basically setup the single PWM output pin of the board. We need 2 PWM pin 
initialized because one pin will be used for the acceleration pedal and the other one is used fort he 
brake pedal. When we set the PWM pin API requires to set some parameters and returns the error 
codes. 

The diagnostic margin should be configured to TRUE if a PWM channel is started as safety and a proper 
safety configuration is provided. Otherwise, startup will fail and the IO_E_INVALID_PARAMETER 
error code will be generated. 
When any PWM channel of a frequency group is established, the other channels of this group may only 
be initialized with the same rate. The method returns IO_E_GROUP_CONFLICT otherwise. 
The duty cycle cannot reach the diagnostic limit of 100us (lowest limit) and 250us (highest boundary) 
when diag margin is TRUE. This is an crucial phase for hydraulic circuits. If the diag margin argument is 
FALSE, no duty cycle range margin is used. 
Parameters 

• pwm_channel is used to choose which pwm channel will be used for the task. There are 12 
pwm channel available to use in our board. 

• frequency Pwm frequency should be set between 15Hz and 1000Hz, and only frequencies 
with a period of an integral multiple of 1ms are possible. 

• polarity  sets polarity of the output signal and we have TRUE or FALSE option fort his 
parameter. True means that the margin will be on and False means that no margin will be 
applied in this time. 

• diag_margin This parameter indicates if a margin should be applied or not and there are again 
2 available inputs which are TRUE or FALSE. 

• overload_limit it sets a current limitation in mA and whenever we have the current more than 
this limit IO_E_PROT_USER_OVERLOAD error flag will be accured. This value can be set 
to zero then no error will be report means this property is disabled. We can set to between 
1mA-2999mA which means error will be accured in case of current value is higher than the set 
value. In case of the measured value exceeds 3000mA then other error code will be reported. 

• safety_conf it is a safety configuration parameter. 

Returns Values 
IO_ErrorType will be returned after API is called by the task. 

• IO_E_OK means that everything is fine and PWM pin is successfuly set and ready to operate. 
• IO_E_CHANNEL_BUSY means that Pulse width modulation channel or timer input channel 

in use by other task 
• IO_E_INVALID_CHANNEL_ID means that the written pwm channel is does not exist  
• IO_E_INVALID_PARAMETER means that given parameter is out of range 
•  
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• IO_E_CH_CAPABILITY means that the capability of this pwm channel has not been 

activated. 
 

• IO_E_DRIVER_NOT_INITIALIZED means that the common driver init function has not 
been called before 

• IO_E_SW_INTERNAL means that there was an internal sw error when configuration tables 
are handeled or index is out of the range. 

• IO_E_GROUP_CONFLICT means that there is a conflict when the configuration of theoutpu 
is processed. 

• IO_E_INVALID_SAFETY_CONFIG means that one or more parameters of the safety 
configuration are not valid. 

• IO_E_SAFETY_NOT_SUPPORTED means that this channel does not support the safety 
properties 

• IO_E_DRV_SAFETY_CONF_NOT_CONFIG means that the driver is not initilized as a 
safety device and does not available in this channel 

• IO_E_TASK_NO_FREE_SLOTS indicates that there is no more available slots to setup task 
function. 

 
 

2. IO_PWM_SetDuty is used to set the duty cycle of the used pwm channel. The duty cycle cannot 
reach the diagnostic limit of 100us (lowest limit) and 250us (highest boundary) when diag margin 
is TRUE. This is a crucial phase for hydraulic circuits. If the diag margin argument is FALSE, no 
duty ratio range tolerance is used.  

 
We also need to consider as an important note that IO_POWER_Set should be activated for Output 

pins. If not, the ports will stay disabled. 
Another important note is that PWM ports set with frequencies more than 250Hz can only provide 

100mA of constant current. 
 

Parameters 
• pwm_channel It is one of the 12 channels. 
• duty_cycle Should be arranged between the value of 0-65535 
• duty_cycle_fb feedback value for the arranged channel, it is optional 
 

Returns Values 
IO_ErrorType will be returned after API is called by the task. 

• IO_E_OK  Indicates that everything is okay. 
• IO_E_CHANNEL_NOT_CONFIGURED  An IO controller task function will return this 

error if the channel has not been established. Calling the corresponding Init method initializes 
the channel. 

• IO_E_INVALID_CHANNEL_ID Returned if a port ID that does not exist was supplied to 
the function. 

• IO_E_CH_CAPABILITY This error can be occured when specified pin is does not provide  
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the requested duty. 

• IO_E_PWM_OPEN_LOAD_OR_SHORT_BATTERY If the fault persists after 50ms, 
based on the output pin's operating voltage 

• IO_E_PWM_OPEN_LOAD returned if the voltage is in open load range 
 

• IO_E_PWM_SHORT_CIRCUIT  This exception is generated if the output signal cannot be 
monitored via the timer return and the value on the response channel is low. 

• IO_E_PWM_SHORT_BATTERY Short Circuit is detected in the battery. 
• IO_E_PWM_OUTPUT_DISABLED when the pwm outputs are disabled then this error will 

be occured. 
• IO_E_PWM_CHANNEL_STARTUP  means that PWM output is not in the startup phase 
• IO_E_PWM_OUTPUT_STARTUP_ERROR there is an error on the channel mode 
• IO_E_ADC_INVALID  There is an error in the ADC 
• IO_E_SW_INTERNAL Configuration table gives an error in the internal software 
• IO_E_PWM_CAPTURE_ERROR This failure may arise if two edges of the feedback signal 

are too close together and the inner timer is no longer able to monitor the time change. 
• IO_E_PROT_USER_OVERLOAD  The value of output current is more than the 

initialization-configured threshold. 
• IO_E_PROT_TEMP_OVERLOAD Meaning that output current is higher than 3A. 

 
 

3. IO_PWM_GetCur returns the mesasured current from the arranged channel pin. 

Parameters 
• pwm_channel It is the arrangement of channel. 
• Current measured current value 
• Fresh Provide is the value is new or the same as before and indicates TRUE or FALSE 

 
Returns Values 
IO_ErrorType will be returned after API is called by the task. Current measurements for all PWM 
channels are equally spaced, indicating that sampling occurs synchronously with the PWM period. Every 
1 millisecond, the current value is collected. The collected current values will be averaged across one 
cycle of the PWM signal before being sent to the software. Returns are the same as explained in details 
before.  

• IO_E_OK Everything fine   
• IO_E_CHANNEL_NOT_CONFIGURED  
• IO_E_INVALID_CHANNEL_ID  
• IO_E_ADC_INVALID An ADC  
• IO_E_PWM_CURRENT_INACCURATE  
• IO_E_CH_CAPABILITY  
• IO_E_NULL_POINTER  

Acceleration pedal important variables will be explained in the next. pwm_get_rc_acce is the return value  
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of the IO_PWM_GetCur function for the gas pedal and only if it returns the code of IO_E_OK then we 
are updating the feedback value of the acceleration which the variable of pwm_current_fb_acce. This 
process will be working while returned code is always indication of everything is fine with the system. 
Same algorithm is used for the brake pedal, pwm_get_rc_freno variable is used for the return value. 
Lastly digital output is set for the activation of the electromagnetic brake and the return variable is 
do_set_rc. 
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4.3 Battery Key management Task 

 
4.3.1 Task Architecture 

 
 
 

  

 
Figure 4. 2: Battery Key Management task architecture flow chart 
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The main goal of this task is creation of the software algorithm of the battery which is being enable with 
the status of the key.  
 
This task has the high priority in the real time operation system which priority number is equal to 1. In our 
case the maximum priority is equal to 0. 
 
The battery pack is composed of battery management system and the battery modules. The main 
condition to enable the battery in the car is that to key should be crank state in that moment. Whenever the 
conditions are set then control unit should send the activation signal to the battery management system of 
the car. 
 
This software architecture aims to use the battery in a most efficient way without wasting any energy 
from the car and also be sure that safety conditions with receiving the car and key status. Newer cells 
have BMS (Battery Management Systems) with designed safety measures to regulate excessive internal 
currents and overheating. It is essential that safety-critical software and hardware function as expected 
and are adequately resilient. 
 
The software architecture and development algorithm of the task is as follows: 
 

1. Verification of the battery voltage and log the value. 
• If a expected return value is received, this implies that we successfully received the value of 

the battery to a variable which is specified before. 
• Then we use this variable to log the valur of the battery. 

 
2. Verification of the crank state of the key. 

• If a expected return value is received from the key status function, this implies that key is in 
the crank status. 

• We also receive the state of the battery and compare them with the key status before enable the 
battery. 

 
3. Activation of the battery enable. 

• If key is in the crank state and battery state is false at the same time then we enable the battery 
successfully. 
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4.3.2 Battery Key Management Code Implementation 
 
4.3.2.1 Battery Key Management.c Code 

 
/* 
 * task_2_gestione_chiave_batteria.h 
 * Created on 05/Jun/2021 
 * Author: Celal 
 */ 
 
//#include <string.h> 
//#include <stdarg.h> 
 
#include "task_2_gestione_chiave_batteria.h" 
#include "utility.h" 
#include "eeprom_address.h" 
#include "IO_RTC.h" 
#include "IO_WDTimer.h" 
#include "IO_ADC.h" 
#include "IO_DIO.h" 
#include "IO_UART.h" 
 
static IO_ErrorType driver_task_begin_rc; 
static IO_ErrorType driver_task_end_rc; 
const ubyte1 TASK2_ID [1] = {2}; 
 
void task_2_gestione_chiave_batteria () 
{ 
   ubyte2 ubat; 
   bool ubat_fresh; 
   bool key_crank_state; 
   bool battery_state; 
   IO_ErrorType adc_error; 
   IO_ErrorType crank_state_error; 
   IO_ErrorType battery_enable_error; 
   IO_ErrorType battery_state_error; 
 
   ubyte4 task_2_timestamp; 
   driver_task_begin_rc = IO_Driver_TaskBegin (); 
   (void) IO_RTC_StartTime (&task_2_timestamp); 
   (void) IO_EEPROM_PreloadWrite (ID_TASK_EXECUTION,              
ID_TASK_EXECUTION_LENGHT, FALSE, TASK2_ID); 
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 while (IO_EEPROM_PreloadStatus () != IO_E_OK) 
 { 
    (void) IO_EEPROM_PreloadTask (); 
 } 
 #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r eeprom write ok !\n\r"); 
#endif 
 
// retrieve and log the battery voltage 
While (IO_E_OK == IO_ADC_Get(Battery_voltage_pin, &ubat, &ubat_fresh) ) 
{ 
  #ifdef DEBUG 
    UART_Printf (IO_UART, "Battery voltage: %u mV\n\r", ubat); 
  #endif 
 
  crank_state_error = IO_DI_Get( Crank_state_pin , &key_crank_state); 
  battery_state_error = IO_DI_Get( Battery_state_pin , &battery_state); 
 
  //key is in crank state and battery is off 
  if (key_crank_state == TRUE && battery_state == FALSE) 
  { 
     //battery enable 
     battery_enable_error = IO_DO_Set (Battery_enable_pin , TRUE, &battery_enable); 
 
     #ifdef DEBUG 
       UART_Printf (IO_UART, "Battery voltage: %u mV\n\r", battery_enable_error); 
     #endif 
   } 
} 
while (TRUE != Check_Task_End(task_2_timestamp, (ubyte4) TASK2_CYCLE_TIME)) 
{ 
   #ifdef DEBUG 
     UART_Printf (IO_UART, "\n\r wait for task 2 terminating %u !\n\r", task_2_timestamp); 
   #endif 
 
   /*serve watchdog */ 
   #ifndef DEBUG 
      while (IO_E_OK!=IO_WDTimer_Service()); 
   #endif 
} 
  /*serve watchdog */ 
  #ifndef DEBUG 
     while (IO_E_OK!=IO_WDTimer_Service()); 
  #endif 
  driver_task_end_rc = IO_Driver_TaskEnd (); 
} 
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4.3.2.2  Battery Key Management.h Code 

/* 
 * task_2_gestione_chiave_batteria.c 
 * Created on 05/Jun/2021 
 * Author: Celal 
 */ 
 
#ifndef TASK_2_GESTIONE_CHIAVE_BATTERIA 
#define TASK_2_GESTIONE_CHIAVE_BATTERIA 
#include "ptypes_xe167.h" 
#define DEBUG 
#define TASK2_CYCLE_TIME 100000u 
 
void task_2_gestione_chiave_batteria(void ); 
/* 
 * ADC and DIO pins could be modified later 
 */ 
#define Battery_voltage_pin   IO_ADC_UBAT 
#define Crank_state_pin   IO_DI_00 
#define  Battery_state_pin   IO_DI_01 
#define  Battery_enable_pin    IO_DO_01 
#endif
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4.3.4 Development and Implementation 

 
4.3.4.1 Functions and Drivers Utilized 

 
IO_Driver_TaskBegin 
IO_Driver_TaskEnd 
IO_RTC_StartTime 
IO_EEPROM_PreloadWrite 
IO_EEPROM_PreloadStatus 
IO_EEPROM_PreloadTask 
IO_WDTimer_Service 
IO_ADC_Get 
IO_DO_Init  
IO_DI_Get  
IO_DO_Set  
EEPROM driver 
Real Time Clock (RTC)  
Digital inputs and outputs (DIO) driver 
Universal Asynchronous Receiver Transmitter (UART) driver 

 
 
 
 

4.3.4.2 Development and Implementation Documentation 

 
During the implementation different peripherals are used for the receiving information from the battery 
and the key status. 
For the battery level we used ADC to receive the value from the batter to the control unit. Key and battery 
state is connected to the one of the digital input-output pin of the control unit. 
The ADC implemented as a microprocessor peripheral has the ability to measure the analog input signal.  
So for the ADC implementation and the communication we needed to use 1 dıfferent ADC API from HY-
TTC30 family. This is IO_ADC_Get function and to take the battery and key status we simple used 
IO_DI_Get function and IO_DO_Set function for the enable the battery in the car.  

1. IO_ADC_Get is a function that we used to receive the value of the battery from the battery 
management system in the car. We have 3 input parameters for this function and a return.  

Parameters: 
 
adc_channel is a first parameter and which presents the input or  output channel which connection is 

used between battery management system and the control unit in the car. 
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Channels could be the one of the 41 IO_ADC channels and additionally could me more specific  
possibilities available in the battery.  
 
Type of this parameter should be IO_PIN from the driver. 
 
adc_value  is a second parameter which a pointer to receive the battery value and store that 

address.There is a range which is depend on the input group and there is also specific 
configuration changing with the channel.  

 
Type of this parameter should be ubyte2 *const from the control unit side. 
 
fresh is the last parameter of this function and it indicates if the received battery value is new value 

or it is the same received value as before.  
 
It is the type of bool pointer and stores true or false. 
 
Return Values 

IO_ErrorType is a return type of this function and this type includes: 
IO_E_OK means everything went fine. 
IO_E_ADC_CHANNEL_STARTUP Channel is still in the init step.   
IO_E_INVALID_CHANNEL_ID The ADC value provided is inaccurate or unavailable. 
This problem has been detected twice. First, if such an ADC quantity will be taken out soon after 
initializing the ADC channels and the ADC transformation of the associated channel has not yet begun, 
the ADC conversion of that channel will not be performed (after startup). 
Second, this issue is displayed at runtime if the IO-Driver has identified a converting error, which 
indicates that the ADC failed to convert the channel during the most recent conversion cycle. 
IO_E_CH_CAPABILITY The required functionality is not supported by the IO channel (IO pin). 
Two circumstances can result in this error code: 
•When trying to start or utilize an ADC pin as an Output pin, for instance. 
•When attempting to configure an IO for a pin function not supported by the ECU variation. (For 

instance, while attempting to configure a PWD input that is not physically mounted on the ECU variation 
in use) 
IO_E_NULL_POINTER  The function has just been supplied a NULL pointer. 
This issue is generated if a non-optional function pointer argument has been changed to NULL. 
IO_E_FET_PROTECTION An inner switching (FET) has been deactivated to prevent harm to the 
hardware. 
If the current on an inner FET is too large, program will disable the FET to prevent its damage. After a 
one-second timeout, the driver attempts to re-enable the FET. 
Whenever a FET has been turned off by the means of protection, the relevant task function will produce 
this error messages. Therefore, the values obtained are incorrect and should not be utilized in future 
calculations. 
IO_E_CHANNEL_NOT_CONFIGURED Neither the IO channel nor the IO pin have been activated. 
An IO driver task function will return this exception if the connection has not been established. Calling 
the corresponding Init method initializes the channel.  
IO_E_ADC_INVALID The ADC value provided is invalid or unavailable. 
This problem has been reported twice. Firstly, if an ADC result will be read out instantly after 
instantiating the ADC channels and the ADC transformation of the associated channel has not yet begun,  
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the ADC conversion of that channel will not be performed (after startup). 
Second, this error is displayed at runtime if the IO-Driver has identified a conversion error, which 
indicates that the ADC did not convert the channel during the most recent conversion cycle. 
 

2. IO_DI_Get  It is a simple digital input status receiver in the current channel pin. Returns the 
digital input state.  

We have 2 inputs and a return value for this function. 
Parameters 
 
di_channel it indicates one of the 4 digital input channels available in the control unit and the type of 

the parameter is IO_PIN. 
 
di_value  It is a pointer variable and indicates true or false depending on the received digital signal in 

the channel. Type of this parameter is bool *const.  
 
 
Return Values 
 
IO_E_OK  
IO_E_INVALID_CHANNEL_ID  
IO_E_CH_CAPABILITY  
IO_E_NULL_POINTER  
IO_E_CHANNEL_NOT_CONFIGURED  
IO_E_ADC_INVALID  
IO_E_DI_SHORT_CIRCUIT  
IO_E_DI_SHORT_BATTERY  
IO_E_DI_OPEN_LOAD  
IO_E_DI_INVALID_VOLTAGE  
IO_E_DI_OPEN_LOAD_OR_SHORT_CIRCUIT  
 
The digital input is governed by the principles and in the correct sequence:  
1.If the voltage level falls within low thresh1 and low thresh2 specified with IO DI Init, a digital 

value of FALSE is provided. If the voltage falls between high thresh1 and high thresh2, the 
digital value TRUE is displayed. In both circumstances, the IO E OK error code is returned. 

 
2.If a pull-up is setup on the intake and the voltage falls within 4.75V and 5.5V, di value is invalid 

and the operation gives IO E DI OPEN LOAD. 
 
3.If a pull-down resistance or no pull-resistor is specified on the intake and the voltage is somewhere 

between 0V and 1.25V, the value in di value is invalid and the operation gives IO E DI OPEN 
LOAD OR SHORT-CIRCUIT. 

 
4.If the voltage level falls within UBat and UBat - 1.25V, di value is set to TRUE and IO E DI 

SHORT BATTERY is returned. 
 
5.In all the other circumstances, the result in di value is incorrect, and the function returns IO E DI 

INVALID VOLTAGE, since the calculated value does not fall inside the user-defined range nor  
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any diagnostic range. 
The voltage levels that the user specifies through the IO DI Init variable limitations generally take 
precedence over diagnostic functionality. 
If an intake is equipped with a pull-up resistor and the voltage range 0-6V is declared as valid 

limited, this operation will not give an open-load failure. 
 

3. IO_DO_Set  It controls the simple digital output value in the current channel pin.  
We have 3 inputs and a return value for this function. 
Parameters 
 
do_channel it indicates one of the 35 digital output channels available in the control unit and the 

type of the parameter is IO_PIN. 
 
do_value  It is a bool variable and indicates true or false depending on the arranged digital signal in 

the channel.  
 
voltage_fb It is an ADC value takes the feedback signal from the outside. The range is between 0-

32780mv. 
 
 
Return Values 
IO_E_OK  
IO_E_INVALID_CHANNEL_ID  
IO_E_INVALID_DIAG_STATE  
IO_E_CHANNEL_NOT_CONFIGURED  
IO_E_DO_SHORT_CIRCUIT  
IO_E_DO_OPEN_LOAD  
IO_E_DO_SHORT_BATTERY  
IO_E_DO_OPEN_LOAD_OR_SHORT_BATTERY  
IO_E_DO_DIAG_TRANSIENT_OSC  
IO_E_DO_CHANNEL_STARTUP  
IO_E_DO_OUTPUT_DISABLED  
IO_E_DO_OUTPUT_STARTUP_ERROR  
IO_E_PROT_USER_OVERLOAD  
IO_E_PROT_TEMP_OVERLOAD  
IO_E_PROT_ACTIVE  
IO_E_PROT_FATAL  
IO_E_PROT_REENABLE  
IO_E_SW_OUTPROT_SM  
IO_E_ADC_INVALID  
IO_E_CH_CAPABILITY 
 
•For the low-side output signals IO DO 10 through IO DO 11, the voltage return adc value reading is 

only possible in the OFF condition. The value obtained will remain 0 during ON phase. 
 
•If the device is started as safety, the low-side ports IO DO 10.. IO DO 11 may only be enabled and 

deactivated during the driver's basic phase. 
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‘ 
•For open-load/short-circuit monitoring on all digital output channels, the corresponding ADC 

channel will be utilized. 
•To acquire a realistic result for voltage fb, the IO DO Set() method must be used a second time at 

least 10 milliseconds later. 
•With IO POWER Set, the high-side digital outputs IO DO 00.. IO DO 05 and IO DO 20.. IO DO 25 

must be activated. If not, the outputs will stay disabled. 
•IO POWER Set must also be used to activate the push-pull digital outputs IO DO 30.. IO DO 35; 

else, those outputs will stay disabled. 
 
4.4 Inverter Management Task 

 
4.4.1 Task Architecture 

 
 
 

 

 
Figure 4. 3: Inverter management task architecture flow chart 
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The main goal of this task is creation of the software algorithm of the inverter management which is being 
enable with control unit.  
This task has the high priority in the real time operation system which priority number is equal to 2. In our 
case the maximum priority is equal to 0. 
A car voltage inverter is a component that transforms your vehicle's DC electricity to Ac voltage. Then, it 
may be used to power smaller electrical gadgets. DC power and AC power cannot be interchanged; thus, 
you should convert it before inserting an AC-powered equipment into a DC socket and conversely. 
This software architecture aims to use the inverter in a most efficient way without wasting any energy 
from the car and also be sure that safety conditions with receiving the car and key status.  
The software architecture and development algorithm of the task is as follows: 

1. Verification of the inverter. 
• Reading the digital channel pin to get the state of the inverter. 
 

2. Receiving the effective pressure of the pedal. 
• Read the pressure with using PWM current value. 
 

3. Inverter management 
• Using pwm manage the interter from the control unit channel. 

 

4.4.2 Inverter Management Code Implementation 
 
4.4.2.1 Inverter Management .c Code 
 
 

/* 
 *  task_3_gestione_inverter.c 
 *  Created on 07/Jun/2021 
 *  Author: Celal 
 */ 
 
#include "task_3_gestione_inverter.h" 
#include "utility.h" 
#include "eeprom_address.h" 
#include "IO_RTC.h" 
#include "IO_WDTimer.h" 
#include "IO_PWM.h" 
#include "IO_DIO.h" 
 
static IO_ErrorType driver_task_begin_rc; 
static IO_ErrorType driver_task_end_rc; 
const ubyte1 TASK3_ID [1] = {3}; 
static IO_ErrorType pwm_set_rc_inv; 
static IO_ErrorType pwm_get_rc_inv; 
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static ubyte2 pwm_current_fb_inv; 
static ubyte2  current; 
 
static DIAG_ERRORCODE diag_error; 
static ubyte1 diag_state; 
static IO_ErrorType pwm_set_rc_inv_man; 
static IO_ErrorType pwm_get_rc_inv_man; 
static ubyte1 diag_state; 
static DIAG_ERRORCODE diag_error; 
 
void task_3_gestione_inverter( ) 
{ 
   bool inverter_state; 
   bool pwm_fresh_inv; 
   ubyte2 pwm_current_fb_val_inv; 
   ubyte4 task_3_timestamp; 
  
   driver_task_begin_rc = IO_Driver_TaskBegin (); 
   (void) IO_RTC_StartTime (&task_3_timestamp); 
   (void) IO_EEPROM_PreloadWrite (ID_TASK_EXECUTION, ID_TASK_EXECUTION_LENGHT,       
 
   FALSE, TASK3_ID); 
   while (IO_EEPROM_PreloadStatus () != IO_E_OK) 
   { 
      (void) IO_EEPROM_PreloadTask (); 
   } 
     
    #ifdef DEBUG 
      UART_Printf (IO_UART, "\n\r eeprom write ok !\n\r"); 
    #endif 
 
    // GET THE STATE OF THE INVERTER 
 
    while(IO_E_OK == IO_DI_Get(inverter_state_pin,&inverter_state)) 
    { 
 
 
        // read the current feedback value 
        pwm_get_rc_inv = IO_PWM_GetCur ( 
           IO_PWM_PIN_INV 
            , &pwm_current_fb_val_inv 
            , &pwm_fresh_inv); 
 
        // only update the current feedback value if fresh 
        if ((pwm_get_rc_inv == IO_E_OK) && (pwm_fresh_inv)) 
        { 
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pwm_current_fb_inv = pwm_current_fb_val_inv; 

  
            #ifdef DEBUG 
              UART_Printf (IO_UART, "Inverter Pedal pressure value: %u \n\r", pwm_current_fb_inv); 
            #endif 
        } 
         
        //INVERTER MANAGEMENT PWM SET 
        pwm_get_rc_inv_man=IO_PWM_SetCur (IO_PWM_PIN_INV_Man, current, NULL); 
 
 
 
           (void) DIAG_Status ( 
                           &diag_state 
                         , &diag_error ); 
        } 
        while (TRUE != Check_Task_End(task_3_timestamp, (ubyte4)TASK3_CYCLE_TIME)) 
        { 
 #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r wait for task 3 terminating %u !\n\r", task_3_timestamp); 
 #endif 
 /*serve watchdog */ 
 #ifndef DEBUG 
   while(IO_E_OK!=IO_WDTimer_Service ()); 
 #endif 
 } 
 /*serve watchdog */ 
 #ifndef DEBUG 
   while (IO_E_OK!=IO_WDTimer_Service()); 
 #endif 
 driver_task_end_rc = IO_Driver_TaskEnd (); 
         }
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4.4.2.2 Inverter Management .h Code 
 
/* 
 * task_3_gestione_inverter.h 
 * Created on 07/Jun/2021 
 * Author: Celal 
 */ 
 
#ifndef TASK_3_GESTIONE_INVERTER 
 
  #define TASK_3_GESTIONE_INVERTER 
  #define DEBUG 
  #define TASK3_CYCLE_TIME 100000u 
 
  void task_3_gestione_inverter(void ); 
 
  #define inverter_state_pin  IO_DI_02 
  #define IO_PWM_PIN_INV  IO_PWM_02 
  #define IO_PWM_PIN_INV_Man  IO_PWM_03 
 
#endif 
 

4.4.3 Development and Implementation 
 
4.4.3.1 Functions and Drivers Utilized 

 
IO_Driver_TaskBegin 
IO_Driver_TaskEnd 
IO_RTC_StartTime 
IO_EEPROM_PreloadTask 
IO_WDTimer_Service 
IO_PWM_Init 
IO_PWM_SetDuty 
IO_PWM_GetCur 
IO_DI_Init 
IO_DO_Init 
IO_DI_Get 
IO_DO_Set  
Digital inputs and outputs (DIO) 
driver Pulse Width Modulation 
(PWM) driver Real Time Clock  
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(RTC) driver  
Universal Asynchronous Receiver Transmitter (UART) 
driver EEPROM driver 
EEPROM preload functions 
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4.4.3.2 Development and implementation documentation 

 
During the implementation different peripherals are used for the receiving and sending information 
fromthe inverter of the vehicle. 
 
For the communication between control unit and the inverter we used PWM to receive the information 
and send commands to the inverter from the control unit.  
The PWM implemented as a microprocessor peripheral has the ability to communicate with other 
components.  
 
So for the PWM implementation and the communication we needed to use 3 dıfferent API from HY-
TTC30 family. These are IO_PWM_SetCur and IO_PWM_GetCur and lastly to get the status from the 
inverter we used IO_DI_Get function. As explained before PWM_GetCur and IO_DI_Get functions here 
will be explained only PWM_SetCur function. 
 

1. PWM_SetCur function sets the current for current-controlled specified pwm channel. We have 3 
input parameters and a return variable for this function. 

Parameters 
pwm_channel it should be one of the 6 available pwm channels.  
current This parameter should be current output which is indicated with mA. 
duty_cycle_fb It is a duty cycle feedback for the channels.  
 
Return Values 
IO_E_OK  
IO_E_CHANNEL_NOT_CONFIGURED  
IO_E_INVALID_CHANNEL_ID  
IO_E_CH_CAPABILITY  
IO_E_PWM_OPEN_LOAD  
IO_E_PWM_SHORT_CIRCUIT  
IO_E_PWM_SHORT_BATTERY  
IO_E_PWM_OUTPUT_DISABLED  
IO_E_PWM_CHANNEL_STARTUP  
IO_E_PWM_OUTPUT_STARTUP_ERROR  
IO_E_ADC_INVALID A ADC  
IO_E_SW_INTERNAL  
IO_E_PWM_CAPTURE_ERROR  
IO_E_PROT_USER_OVERLOAD  
IO_E_PROT_TEMP_OVERLOAD  
IO_E_PROT_ACTIVE  
IO_E_PROT_FATAL  
IO_E_PROT_REENABLE 
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4.5 Pump Management Task 
 

4.5.1 Task architecture 
 
 

 
 

Figure 4. 4: Pump management task architecture flow chart 
 
The main goal of this task is creation of the software algorithm of the pump management which will be 
conrolling the heating of the car. Doing that task is basically verify firstly the ABS and taking the data 
from a know in the car. 
 
This task has the maximum priority in the real time operation system which priority number is equal to 3. 
In our case the maximum priority is equal to 0. 
 
Many HVAC systems rely on pumps to provide the energy necessary to transport water and other fluids 
through pipes, fittings, and machinery. Several aspects must be considered when choosing a pump for an 
HVAC application, including operational expenditures, energy costs, system dependability, and lifespan. 
To use a systems method that focuses on the whole performance of the system as opposed to individual 
parts will assist in the choice of a durable pump that operates effectively. This article examines the most 
prevalent pump types utilized in HVAC applications, as well as selection factors and system selection. 
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The software architecture and development algorithm of the task is as follows: 
 
 

1. Enable the ABS. 
• We used a digital pin to enable the ABS as a starting of the management of the pump and the 

heating system together. 

 
2. Reading the value of the specific know. 

• Using a one of the available pwm channel in the control unit we are able to read the expected 
heating value and with that data we can manage the heating system of the car to arrange the 
expected heating. 

 
3. Heating management. 

• Heating management is arranged with taking data from the know and communication managed 
with using PWM in the system. 
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4.5.2 Pump Management Code Implemention 
 
4.5.2.3 Pump Management.c Code 

 
/* 
 * task_4_gestione_pompe.c 
 * Created on 07/Jun/2021 
 * Author: Celal 
 */ 
 
#include "task_4_gestione_pompe.h" 
#include "utility.h" 
#include "eeprom_address.h" 
#include "IO_RTC.h" 
#include "IO_WDTimer.h" 
#include "IO_PWM.h" 
#include "IO_DIO.h" 
 
static IO_ErrorType driver_task_begin_rc; 
static IO_ErrorType driver_task_end_rc; 
const ubyte1 TASK4_ID [1] = {4}; 
 
static IO_ErrorType do_set_rc_abs; 
static ubyte2 do_voltage_fb; 
 
static IO_ErrorType pwm_set_rc_knob; 
static IO_ErrorType pwm_get_rc_knob; 
 
static ubyte2 pwm_duty_cycle_knob; 
static ubyte4 pwm_duty_cycle_fb_knob; 
static ubyte2 pwm_current_fb_knob; 
 
static ubyte2 duty_cycle_set, current; 
static ubyte4 duty_cycle_rb; 
static ubyte4 duty_cycle_fb; 
 
static DIAG_ERRORCODE diag_error; 
static ubyte1 diag_state; 
 
static IO_ErrorType pwm_set_rc_inv_heat; 
static IO_ErrorType pwm_get_rc_inv_heat; 
 
duty_cycle_set = duty_cycle_heat_management; 
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pwm_duty_cycle_knob = 0; 
  
pwm_current_fb_knob = 0; 
 
// activate the power stages for the PWM output 
IO_POWER_Set (IO_INT_POWERSTAGE_ENABLE, IO_POWER_ON ); 
 
void task_4_gestione_pompe( ) 
{ 
   bool pwm_fresh_knob; 
   ubyte2 pwm_current_fb_val_knob; 
   ubyte4 pwm_duty_fb_val_knob; 
   ubyte4 task_4_timestamp; 
    
   driver_task_begin_rc = IO_Driver_TaskBegin (); 
   (void) IO_RTC_StartTime (&task_4_timestamp); 
   (void) IO_EEPROM_PreloadWrite (ID_TASK_EXECUTION, ID_TASK_EXECUTION_LENGHT,     
 
   FALSE, TASK4_ID); 
   while (IO_EEPROM_PreloadStatus () != IO_E_OK) 
   { 
      (void) IO_EEPROM_PreloadTask (); 
   } 
 
   #ifdef DEBUG 
     UART_Printf (IO_UART, "\n\r eeprom write ok !\n\r"); 
   #endif 
 
   // ENABLE ABS WITH DIGITAL OUTPUT PIN 
  do_set_rc_abs = IO_DO_Set (ABS_ENABLE_PIN 
              , TRUE 
                                    , &do_voltage_fb); 
 
   if (do_set_rc_abs != IO_E_OK) 
   { 
     #ifdef DEBUG 
     #endif 
    
   // UART_Printf (IO_UART, "ABS Enable ERROR: %u mV\n\r", do_set_rc); 
 
    while (do_set_rc_abs == IO_E_OK){ 
 
    // USE PWM TO READ KNOB 
    pwm_set_rc_knob = IO_PWM_SetDuty ( 
   IO_PWM_PIN_KNOB 
   , pwm_duty_cycle_knob 
   , &pwm_duty_fb_val_knob); 
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// if the value is zero the measurement is not yet finished 
   if (pwm_duty_fb_val_knob != 0) 
   { 
      pwm_duty_cycle_fb_knob = pwm_duty_fb_val_knob; 
   } 
 
   // read the current feedback value 
   pwm_get_rc_inv = IO_PWM_GetCur ( 
            IO_PWM_PIN_KNOB 
            , &pwm_current_fb_val_knob 
            , &pwm_fresh_knob); 
 
   // only update the current feedback value if fresh 
   if ((pwm_get_rc_knob == IO_E_OK) && (pwm_fresh_knob)) 
   { 
      pwm_current_fb_knob = pwm_current_fb_val_knob; 
 
      #ifdef DEBUG 
        UART_Printf (IO_UART, "Knob value: %u \n\r", pwm_current_fb_knob); 
        UART_Printf (IO_UART, "Knob Value duty cycle: %u mA\n\r", pwm_duty_cycle_fb_knob); 
      #endif 
   } 
 
    //HEATING MANAGEMENT PWM SET 
    pwm_set_rc_inv_heat=IO_PWM_SetDuty (IO_PWM_PIN_HEAT , duty_cycle_set,      
&duty_cycle_rb ); 
   pwm_get_rc_inv_heat=IO_PWM_SetCur (IO_PWM_PIN_HEAT , current, NULL); //set current 
and duty cycle 
 
   (void) DIAG_Status ( 
     &diag_state 
   , &diag_error); 
   } 
   while (TRUE != Check_Task_End(task_4_timestamp, (ubyte4)TASK4_CYCLE_TIME)) 
   { 
      #ifdef DEBUG 
        UART_Printf (IO_UART, "\n\r wait for task 4 terminating %u !\n\r", task_4_timestamp); 
      #endif 
      /*serve watchdog */ 
      #ifndef DEBUG 
        while(IO_E_OK!=IO_WDTimer_Service ()); 
      #endif 
    } 
    /*serve watchdog */ 
    #ifndef DEBUG 
      while(IO_E_OK!=IO_WDTimer_Service()); 
    #endif 
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driver_task_end_rc = IO_Driver_TaskEnd (); 
} 
 
 
 
 

4.5.2.4 Pump Management.h code 
 
/* 
 * task_4_gestione_pompe.h 
 * Created on 07/Jun/2021 
 * Author: Celal 
 */ 
 
 
#ifndef TASK_4_GESTIONE_POMPE 
  #define TASK_4_GESTIONE_POMPE 
  #define DEBUG 
  #define TASK4_CYCLE_TIME 100000u 
 
  void task_4_gestione_pompe(void ); 
 
  #define ABS_ENABLE_PIN  IO_D0_02 
  #define IO_PWM_PIN_KNOB  IO_PWM_04 
  #define IO_PWM_PIN_HEAT  IO_PWM_05 
  #define duty_cycle_heat_management 0x8000 
 
#endif 
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4.5.3 Development and implementation 

 
4.5.3.1 functions and drivers utilized 

 
IO_Driver_TaskBegin 
IO_Driver_TaskEnd 
IO_RTC_StartTime 
IO_EEPROM_PreloadWrite 
IO_EEPROM_PreloadStatus 
IO_EEPROM_PreloadTask 
IO_WDTimer_Service 
IO_PWM_Init 
IO_PWM_SetDuty  
IO_DO_Init 
IO_DO_Set  
IO_POWER_Set 
IO_PWM_GetCur 

 
Pulse Width Modulation (PWM) 
driver EEPROM driver 
Real Time Clock (RTC) 
driver Window Watchdog 
driver 
Universal Asynchronous Receiver Transmitter (UART) driver 

 
 
 

 
4.5.3.2 Development and implementation documentation 

 
During the implementation different peripherals are used to manage the heating and the pump in the car. 
For the communication between heating system and the knob we used PWM to receive the information 
and send commands to the HVAC from the control unit.  
 
So for the PWM implementation and the communication we needed to use 3 dıfferent API from HY-
TTC30 family. These are IO_PWM_SetCur and IO_PWM_GetCur and lastly to enable the ABS of the 
car we used IO_DO_Set function as we used before the other tasks. 
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As a summary of this task we simply anable the ABS firstly and set a know to read the desired value from  
the user and data communication provided by the pwm and lastly we transmit this information to the 
heating system again with using pwm peropheral of the control unit. 
 

4.6 Debouncer Task 
 

4.6.1 Task architecture 
 
 
The main goal of this task is creation of the generic software algorithm of a debouncer which will be used 
in the buttons of the control unit. 
Debouncing is the process of reducing undesirable input noise from knobs, switches, or other user inputs. 
Debouncing avoids frequent occurrences of excess activations or delayed processes. Debouncing is 
implemented in hardware switches, software, and websites. 
 
In coding, debouncing occurs when a process filters input from the user prior to initiating an action. 
Incorrect debouncing of user input may result in poor performance, duplicate activation, or user 
annoyance. Often, a generic debouncing procedure is employed instead of developing fresh code for each 
input action. The debouncing function follows the user input and then calls the button's intended action. 
Numerous programming libraries offer a debounce function by default. 
 
A result of mechanical and physical difficulties, pushbuttons often create erroneous open/close transitions 
when pushed; these transitions may be interpreted as several pushes in a very little period of time, tricking 
the computer. This example explains how to debounce an event, which involves doing two checks in a 
brief amount of time to confirm that a button has been touched. Without debouncing, a single button hit 
may result in unforeseen outcomes. 
 
The software architecture and development algorithm of the task is as follows: 
 

1. Read the input value. 
• We are reading the input value with using the IO_PWM_GetCur function and assign the 

received value to the specified variable. 
 

2. Filtering algorithm of the reading value. 
• With using a RTC_StartTime and  RTC_GetTimeUS functions, we are executing the 

algorithm in a while loop and filtering the received data in a correct way. 
 

3. Set the output value. 
• We set the output value with using PWM_SetCur function after filtering process is finished. 
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4.6.2 Debouncer Code Implemention 
 

4.6.2.1 Debouncer.c Code 
 
/* 
 *  debouncer.c 
 *  Created on Jul 8, 2021 
 *  Author: Celal 
 */ 
 
#include "debouncer.h" 
#include "utility.h" 
#include "eeprom_address.h" 
#include "IO_RTC.h" 
#include "IO_WDTimer.h" 
#include "IO_PWM.h" 
#include "IO_DIO.h" 
#include "DIAG_Functions.h" 
#include "DIAG_Constants.h" 
 
static IO_ErrorType driver_task_begin_rc; 
static IO_ErrorType driver_task_end_rc; 
const ubyte1 Debouncer_ID [1] ={8}; 
 
static ubyte2 pwm_duty_cycle; 
static ubyte4 pwm_duty_cycle_fb; 
 
static IO_ErrorType pwm_set_rc_output; 
static IO_ErrorType pwm_get_rc_input; 
 
static ubyte4 value; 
static DIAG_ERRORCODE diag_error; 
static ubyte1 diag_state; 
 
void debouncer () 
{ 
   pwm_duty_cycle = 0; 
   pwm_current_fb = 0; 
 
   ubyte4 value; 
   ubyte2 reading_out = 0 
   ubyte4 lastValue = 0; 
   ubyte2 pwm_current_fb_val_input; 
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   bool pwm_fresh_input; 
   ubyte4 debounce_time = 40; 
     
 
    ubyte4 debouncer_timestamp; 
    ubyte4 time_stamp; 
    driver_task_begin_rc = IO_Driver_TaskBegin (); 
    (void) IO_RTC_StartTime (&debouncer_timestamp); 
    (void) IO_EEPROM_PreloadWrite (ID_TASK_EXECUTION, ID_TASK_EXECUTION_LENGHT,  
 
    FALSE, Debouncer_ID); 
     
    while (IO_EEPROM_PreloadStatus () != IO_E_OK) 
   { 
      (void) IO_EEPROM_PreloadTask (); 
   } 
    #ifdef DEBUG 
      UART_Printf (IO_UART, "\n\r eeprom write ok !\n\r"); 
    #endif 
 
    // read input value 
    pwm_get_rc_input = IO_PWM_GetCur ( 
     IO_PWM_PIN_INPUT_debouncer 
              , &pwm_current_fb_val_input 
   , &pwm_fresh_input); 
  
     if (pwm_get_rc_input == IO_E_OK) 
     { 
        value = (ubyte4)pwm_current_fb_val_input; 
     } 
     do 
    { 
       IO_RTC_StartTime (&time_stamp); 
       lastValue = value; 
       if (IO_RTC_GetTimeUS (time_stamp) > debounce_time) 
      { 
         pwm_get_rc_input = IO_PWM_GetCur ( 
          IO_PWM_PIN_INPUT_debouncer 
        , &pwm_current_fb_val_input 
        , &pwm_fresh_input); 
        if (pwm_get_rc_input == IO_E_OK) 
       { 
          value = (ubyte4)pwm_current_fb_val_input; 
       } 
    }   
}while(lastValue != value); 
  reading_out = value; 
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pwm_set_rc_output = IO_PWM_SetCur ( 
     IO_PWM_PIN_OUTPUT_debouncer 
     , reading_out 
     , &pwm_duty_cycle_fb); 
 
 
(void) DIAG_Status ( 
 &diag_state 
           , &diag_error ); 
 
 while (TRUE != Check_Task_End (debouncer_timestamp, (ubyte4) DEBOUNCER_CYCLE_TIME)) 
  { 
   #ifdef DEBUG 
   UART_Printf (IO_UART, "\n\r wait for debouncer terminating %u !\n\r", task_3_timestamp); 
   #endif 
   /*serve watchdog */ 
   #ifndef DEBUG 
   while (IO_E_OK!=IO_WDTimer_Service()); 
   #endif 
 } 
 /*serve watchdog */ 
 #ifndef DEBUG 
   while (IO_E_OK!=IO_WDTimer_Service ()); 
 #endif 
 driver_task_end_rc = IO_Driver_TaskEnd (); 
  }   
} 

4.6.2.2 Debouncer.h code 
 
/* 
 *  debouncer.h 
 *  Created on Jul 8, 2021 
 *  Author: Celal 
 */ 
 
#ifndef SRC_DEBOUNCER_H_ 
 
  #define SRC_DEBOUNCER_H_ 
  #define DEBUG 
  #include "ptypes_xe167.h" 
  #define DEBOUNCER_CYCLE_TIME 100000u 
 
  void debouncer(void); 
 
  #define      IO_PWM_PIN_INPUT_debouncer  1 // input pwm pin 
  #define      IO_PWM_PIN_OUTPUT_debouncer  2 //output pwm pin 
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#endif          /* SRC_DEBOUNCER_H_ */ 
 

4.6.3 Development and implementation 

 
4.6.3.1 Functions and Drivers utilized 
 
IO_Driver_TaskBegin 
IO_Driver_TaskEnd 
IO_RTC_StartTime 
IO_EEPROM_PreloadWrite 
IO_EEPROM_PreloadStatus 
IO_EEPROM_PreloadTask 
IO_WDTimer_Service 
IO_PWM_Init 
IO_PWM_SetDuty  
RTC_StartTime  
RTC_GetTimeUS 
IO_POWER_Set 
IO_PWM_GetCur 

 
Pulse Width Modulation (PWM) 
driver EEPROM driver 
Real Time Clock (RTC) 
driver Window Watchdog 
driver 
Universal Asynchronous Receiver Transmitter (UART) driver 
 

4.6.3.2 Development and implementation documentation 
 
During the implementation different peripherals are used to manage the debouncing of the data received 
by the input of the control unit. 
 
For the communication between control unit and the button we used PWM to receive the information and 
send back the data to specified peripherals from the control unit.  
 
So for the PWM implementation and the communication we needed to use 3 dıfferent API from HY-
TTC30 family. These are IO_PWM_SetCur and IO_PWM_GetCur and from the timer point of view we 
used RTC_StartTime and RTC_GetTimeUS function. 
 

1. RTC_StartTime function returns a timestamp so which can be used for another timer functions  
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available in RTC.  

Parameters 
period The time interval that the event handler shall be invoked. 
event_handler It is a function pointer to the event handler    
 
 
Return Values 
IO_E_OK  
IO_E_NULL_POINTER  
IO_E_INVALID_PARAMETER  
IO_E_BUSY 
 

2. RTC_GetTimeUS Returns the time elapsed. The method returns the time in us since the specified 
timestamp was captured (through the procedure IO RTC StartTime()). 

Parameters 
timestamp Timestamp obtained from an IO RTC StartTime call () 
The method will return 0 if the RTC unit has not been initialized. 
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